384 research outputs found

    Torque Sensors for Robot Joint Control

    Get PDF

    An Embedded, Multi-Modal Sensor System for Scalable Robotic and Prosthetic Hand Fingers

    Get PDF
    Grasping and manipulation with anthropomorphic robotic and prosthetic hands presents a scientific challenge regarding mechanical design, sensor system, and control. Apart from the mechanical design of such hands, embedding sensors needed for closed-loop control of grasping tasks remains a hard problem due to limited space and required high level of integration of different components. In this paper we present a scalable design model of artificial fingers, which combines mechanical design and embedded electronics with a sophisticated multi-modal sensor system consisting of sensors for sensing normal and shear force, distance, acceleration, temperature, and joint angles. The design is fully parametric, allowing automated scaling of the fingers to arbitrary dimensions in the human hand spectrum. To this end, the electronic parts are composed of interchangeable modules that facilitate the echanical scaling of the fingers and are fully enclosed by the mechanical parts of the finger. The resulting design model allows deriving freely scalable and multimodally sensorised fingers for robotic and prosthetic hands. Four physical demonstrators are assembled and tested to evaluate the approach

    An Embedded, Multi-Modal Sensor System for Scalable Robotic and Prosthetic Hand Fingers

    Get PDF
    Grasping and manipulation with anthropomorphic robotic and prosthetic hands presents a scientific challenge regarding mechanical design, sensor system, and control. Apart from the mechanical design of such hands, embedding sensors needed for closed-loop control of grasping tasks remains a hard problem due to limited space and required high level of integration of different components. In this paper we present a scalable design model of artificial fingers, which combines mechanical design and embedded electronics with a sophisticated multi-modal sensor system consisting of sensors for sensing normal and shear force, distance, acceleration, temperature, and joint angles. The design is fully parametric, allowing automated scaling of the fingers to arbitrary dimensions in the human hand spectrum. To this end, the electronic parts are composed of interchangeable modules that facilitate the echanical scaling of the fingers and are fully enclosed by the mechanical parts of the finger. The resulting design model allows deriving freely scalable and multimodally sensorised fingers for robotic and prosthetic hands. Four physical demonstrators are assembled and tested to evaluate the approach

    Design of a cybernetic hand for perception and action

    Get PDF
    Strong motivation for developing new prosthetic hand devices is provided by the fact that low functionality and controllability—in addition to poor cosmetic appearance—are the most important reasons why amputees do not regularly use their prosthetic hands. This paper presents the design of the CyberHand, a cybernetic anthropomorphic hand intended to provide amputees with functional hand replacement. Its design was bio-inspired in terms of its modular architecture, its physical appearance, kinematics, sensorization, and actuation, and its multilevel control system. Its underactuated mechanisms allow separate control of each digit as well as thumb–finger opposition and, accordingly, can generate a multitude of grasps. Its sensory system was designed to provide proprioceptive information as well as to emulate fundamental functional properties of human tactile mechanoreceptors of specific importance for grasp-and-hold tasks. The CyberHand control system presumes just a few efferent and afferent channels and was divided in two main layers: a high-level control that interprets the user’s intention (grasp selection and required force level) and can provide pertinent sensory feedback and a low-level control responsible for actuating specific grasps and applying the desired total force by taking advantage of the intelligent mechanics. The grasps made available by the high-level controller include those fundamental for activities of daily living: cylindrical, spherical, tridigital (tripod), and lateral grasps. The modular and flexible design of the CyberHand makes it suitable for incremental development of sensorization, interfacing, and control strategies and, as such, it will be a useful tool not only for clinical research but also for addressing neuroscientific hypotheses regarding sensorimotor control

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    On the development of a cybernetic prosthetic hand

    Get PDF
    The human hand is the end organ of the upper limb, which in humans serves the important function of prehension, as well as being an important organ for sensation and communication. It is a marvellous example of how a complex mechanism can be implemented, capable of realizing very complex and useful tasks using a very effective combination of mechanisms, sensing, actuation and control functions. In this thesis, the road towards the realization of a cybernetic hand has been presented. After a detailed analysis of the model, the human hand, a deep review of the state of the art of artificial hands has been carried out. In particular, the performance of prosthetic hands used in clinical practice has been compared with the research prototypes, both for prosthetic and for robotic applications. By following a biomechatronic approach, i.e. by comparing the characteristics of these hands with the natural model, the human hand, the limitations of current artificial devices will be put in evidence, thus outlining the design goals for a new cybernetic device. Three hand prototypes with a high number of degrees of freedom have been realized and tested: the first one uses microactuators embedded inside the structure of the fingers, and the second and third prototypes exploit the concept of microactuation in order to increase the dexterity of the hand while maintaining the simplicity for the control. In particular, a framework for the definition and realization of the closed-loop electromyographic control of these devices has been presented and implemented. The results were quite promising, putting in evidence that, in the future, there could be two different approaches for the realization of artificial devices. On one side there could be the EMG-controlled hands, with compliant fingers but only one active degree of freedom. On the other side, more performing artificial hands could be directly interfaced with the peripheral nervous system, thus establishing a bi-directional communication with the human brain

    Pattern recognition-based real-time myoelectric control for anthropomorphic robotic systems : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechatronics at Massey University, Manawatƫ, New Zealand

    Get PDF
    All copyrighted Figures have been removed but may be accessed via their source cited in their respective captions.Advanced human-computer interaction (HCI) or human-machine interaction (HMI) aims to help humans interact with computers smartly. Biosignal-based technology is one of the most promising approaches in developing intelligent HCI systems. As a means of convenient and non-invasive biosignal-based intelligent control, myoelectric control identifies human movement intentions from electromyogram (EMG) signals recorded on muscles to realise intelligent control of robotic systems. Although the history of myoelectric control research has been more than half a century, commercial myoelectric-controlled devices are still mostly based on those early threshold-based methods. The emerging pattern recognition-based myoelectric control has remained an active research topic in laboratories because of insufficient reliability and robustness. This research focuses on pattern recognition-based myoelectric control. Up to now, most of effort in pattern recognition-based myoelectric control research has been invested in improving EMG pattern classification accuracy. However, high classification accuracy cannot directly lead to high controllability and usability for EMG-driven systems. This suggests that a complete system that is composed of relevant modules, including EMG acquisition, pattern recognition-based gesture discrimination, output equipment and its controller, is desirable and helpful as a developing and validating platform that is able to closely emulate real-world situations to promote research in myoelectric control. This research aims at investigating feasible and effective EMG signal processing and pattern recognition methods to extract useful information contained in EMG signals to establish an intelligent, compact and economical biosignal-based robotic control system. The research work includes in-depth study on existing pattern recognition-based methodologies, investigation on effective EMG signal capturing and data processing, EMG-based control system development, and anthropomorphic robotic hand design. The contributions of this research are mainly in following three aspects: Developed precision electronic surface EMG (sEMG) acquisition methods that are able to collect high quality sEMG signals. The first method was designed in a single-ended signalling manner by using monolithic instrumentation amplifiers to determine and evaluate the analog sEMG signal processing chain architecture and circuit parameters. This method was then evolved into a fully differential analog sEMG detection and collection method that uses common commercial electronic components to implement all analog sEMG amplification and filtering stages in a fully differential way. The proposed fully differential sEMG detection and collection method is capable of offering a higher signal-to-noise ratio in noisy environments than the single-ended method by making full use of inherent common-mode noise rejection capability of balanced signalling. To the best of my knowledge, the literature study has not found similar methods that implement the entire analog sEMG amplification and filtering chain in a fully differential way by using common commercial electronic components. Investigated and developed a reliable EMG pattern recognition-based real-time gesture discrimination approach. Necessary functional modules for real-time gesture discrimination were identified and implemented using appropriate algorithms. Special attention was paid to the investigation and comparison of representative features and classifiers for improving accuracy and robustness. A novel EMG feature set was proposed to improve the performance of EMG pattern recognition. Designed an anthropomorphic robotic hand construction methodology for myoelectric control validation on a physical platform similar to in real-world situations. The natural anatomical structure of the human hand was imitated to kinematically model the robotic hand. The proposed robotic hand is a highly underactuated mechanism, featuring 14 degrees of freedom and three degrees of actuation. This research carried out an in-depth investigation into EMG data acquisition and EMG signal pattern recognition. A series of experiments were conducted in EMG signal processing and system development. The final myoelectric-controlled robotic hand system and the system testing confirmed the effectiveness of the proposed methods for surface EMG acquisition and human hand gesture discrimination. To verify and demonstrate the proposed myoelectric control system, real-time tests were conducted onto the anthropomorphic prototype robotic hand. Currently, the system is able to identify five patterns in real time, including hand open, hand close, wrist flexion, wrist extension and the rest state. With more motion patterns added in, this system has the potential to identify more hand movements. The research has generated a few journal and international conference publications

    Embedded Electronic Systems for Electronic Skin Applications

    Get PDF
    The advances in sensor devices are potentially providing new solutions to many applications including prosthetics and robotics. Endowing upper limb prosthesis with tactile sensors (electronic/sensitive skin) can be used to provide tactile sensory feedback to the amputees. In this regard, the prosthetic device is meant to be equipped with tactile sensing system allowing the user limb to receive tactile feedback about objects and contact surfaces. Thus, embedding tactile sensing system is required for wearable sensors that should cover wide areas of the prosthetics. However, embedding sensing system involves set of challenges in terms of power consumption, data processing, real-time response and design scalability (e-skin may include large number of tactile sensors). The tactile sensing system is constituted of: (i) a tactile sensor array, (ii) an interface electronic circuit, (iii) an embedded processing unit, and (iv) a communication interface to transmit tactile data. The objective of the thesis is to develop an efficient embedded tactile sensing system targeting e-skin application (e.g. prosthetic) by: 1) developing a low power and miniaturized interface electronics circuit, operating in real-time; 2) proposing an efficient algorithm for embedded tactile data processing, affecting the system time latency and power consumption; 3) implementing an efficient communication channel/interface, suitable for large amount of data generated from large number of sensors. Most of the interface electronics for tactile sensing system proposed in the literature are composed of signal conditioning and commercial data acquisition devices (i.e. DAQ). However, these devices are bulky (PC-based) and thus not suitable for portable prosthetics from the size, power consumption and scalability point of view. Regarding the tactile data processing, some works have exploited machine learning methods for extracting meaningful information from tactile data. However, embedding these algorithms poses some challenges because of 1) the high amount of data to be processed significantly affecting the real time functionality, and 2) the complex processing tasks imposing burden in terms of power consumption. On the other hand, the literature shows lack in studies addressing data transfer in tactile sensing system. Thus, dealing with large number of sensors will pose challenges on the communication bandwidth and reliability. Therefore, this thesis exploits three approaches: 1) Developing a low power and miniaturized Interface Electronics (IE), capable of interfacing and acquiring signals from large number of tactile sensors in real-time. We developed a portable IE system based on a low power arm microcontroller and a DDC232 A/D converter, that handles an array of 32 tactile sensors. Upon touch applied to the sensors, the IE acquires and pre-process the sensor signals at low power consumption achieving a battery lifetime of about 22 hours. Then we assessed the functionality of the IE by carrying out Electrical and electromechanical characterization experiments to monitor the response of the interface electronics with PVDF-based piezoelectric sensors. The results of electrical and electromechanical tests validate the correct functionality of the proposed system. In addition, we implemented filtering methods on the IE that reduced the effect of noise in the system. Furthermore, we evaluated our proposed IE by integrating it in tactile sensory feedback system, showing effective deliver of tactile data to the user. The proposed system overcomes similar state of art solutions dealing with higher number of input channels and maintaining real time functionality. 2) Optimizing and implementing a tensorial-based machine learning algorithm for touch modality classification on embedded Zynq System-on-chip (SoC). The algorithm is based on Support Vector Machine classifier to discriminate between three input touch modality classes \u201cbrushing\u201d, \u201crolling\u201d and \u201csliding\u201d. We introduced an efficient algorithm minimizing the hardware implementation complexity in terms of number of operations and memory storage which directly affect time latency and power consumption. With respect to the original algorithm, the proposed approach \u2013 implemented on Zynq SoC \u2013 achieved reduction in the number of operations per inference from 545 M-ops to 18 M-ops and the memory storage from 52.2 KB to 1.7 KB. Moreover, the proposed method speeds up the inference time by a factor of 43 7 at a cost of only 2% loss in accuracy, enabling the algorithm to run on embedded processing unit and to extract tactile information in real-time. 3) Implementing a robust and efficient data transfer channel to transfer aggregated data at high transmission data rate and low power consumption. In this approach, we proposed and demonstrated a tactile sensory feedback system based on an optical communication link for prosthetic applications. The optical link features a low power and wide transmission bandwidth, which makes the feedback system suitable for large number of tactile sensors. The low power transmission is due to the employed UWB-based optical modulation. We implemented a system prototype, consisting of digital transmitter and receiver boards and acquisition circuits to interface 32 piezoelectric sensors. Then we evaluated the system performance by measuring, processing and transmitting data of the 32 piezoelectric sensors at 100 Mbps data rate through the optical link, at 50 pJ/bit communication energy consumption. Experimental results have validated the functionality and demonstrated the real time operation of the proposed sensory feedback system
    • 

    corecore