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Abstract 

 

The advances in sensor devices are potentially providing new solutions to many applications 

including prosthetics and robotics. Endowing upper limb prosthesis with tactile sensors 

(electronic/sensitive skin) can be used to provide tactile sensory feedback to the amputees. In this 

regard, the prosthetic device is meant to be equipped with tactile sensing system allowing the user 

limb to receive tactile feedback about objects and contact surfaces. Thus, embedding tactile sensing 

system is required for wearable sensors that should cover wide areas of the prosthetics. However, 

embedding sensing system involves set of challenges in terms of power consumption, data 

processing, real-time response and design scalability (e-skin may include large number of tactile 

sensors). The tactile sensing system is constituted of: (i) a tactile sensor array, (ii) an interface 

electronic circuit, (iii) an embedded processing unit, and (iv) a communication interface to transmit 

tactile data. The objective of the thesis is to develop an efficient embedded tactile sensing system 

targeting e-skin application (e.g. prosthetic) by: 1) developing a low power and miniaturized 

interface electronics circuit, operating in real-time; 2) proposing an efficient algorithm for embedded 

tactile data processing, affecting the system time latency and power consumption; 3)  implementing 

an efficient communication channel/interface, suitable for large amount of data generated from large 

number of sensors. 

Most of the interface electronics for tactile sensing system proposed in the literature are 

composed of signal conditioning and commercial data acquisition devices (i.e. DAQ). However, 

these devices are bulky (PC-based) and thus not suitable for portable prosthetics from the size, 

power consumption and scalability point of view. Regarding the tactile data processing, some 

works have exploited machine learning methods for extracting meaningful information from 

tactile data. However, embedding these algorithms poses some challenges because of 1) the high 

amount of data to be processed significantly affecting the real time functionality, and 2) the complex 

processing tasks imposing burden in terms of power consumption. On the other hand, the literature 

shows lack in studies addressing data transfer in tactile sensing system. Thus, dealing with large 

number of sensors will pose challenges on the communication bandwidth and reliability. Therefore, 

this thesis exploits three approaches: 

1) Developing a low power and miniaturized Interface Electronics (IE), capable of 

interfacing and acquiring signals from large number of tactile sensors in real-time. We 

developed a portable IE system based on a low power arm microcontroller and a DDC232 

A/D converter, that handles an array of 32 tactile sensors. Upon touch applied to the sensors, 

the IE acquires and pre-process the sensor signals at low power consumption achieving a 

battery lifetime of about 22 hours. Then we assessed the functionality of the IE by carrying 

out Electrical and electromechanical characterization experiments to monitor the response of 

the interface electronics with PVDF-based piezoelectric sensors. The results of electrical and 



electromechanical tests validate the correct functionality of the proposed system. In addition, 

we implemented filtering methods on the IE that reduced the effect of noise in the system. 

Furthermore, we evaluated our proposed IE by integrating it in tactile sensory feedback 

system, showing effective deliver of tactile data to the user. The proposed system overcomes 

similar state of art solutions dealing with higher number of input channels and maintaining 

real time functionality. 

2) Optimizing and implementing a tensorial-based machine learning algorithm for 

touch modality classification on embedded Zynq System-on-chip (SoC). The 

algorithm is based on Support Vector Machine classifier to discriminate between 

three input touch modality classes “brushing”, “rolling” and “sliding”. We 

introduced an efficient algorithm minimizing the hardware implementation 

complexity in terms of number of operations and memory storage which directly 

affect time latency and power consumption. With respect to the original algorithm, 

the proposed approach – implemented on Zynq SoC – achieved reduction in the 

number of operations per inference from 545 M-ops to 18 M-ops and the memory 

storage from 52.2 KB to 1.7 KB. Moreover, the proposed method speeds up the 

inference time by a factor of 43× at a cost of only 2% loss in accuracy, enabling the 

algorithm to run on embedded processing unit and to extract tactile information in 

real-time. 

3) Implementing a robust and efficient data transfer channel to transfer aggregated data 

at high transmission data rate and low power consumption. In this approach, we 

proposed and demonstrated a tactile sensory feedback system based on an optical 

communication link for prosthetic applications. The optical link features a low 

power and wide transmission bandwidth, which makes the feedback system suitable 

for large number of tactile sensors. The low power transmission is due to the 

employed UWB-based optical modulation. We implemented a system prototype, 

consisting of digital transmitter and receiver boards and acquisition circuits to 

interface 32 piezoelectric sensors. Then we evaluated the system performance by 

measuring, processing and transmitting data of the 32 piezoelectric sensors at 100 

Mbps data rate through the optical link, at 50 pJ/bit communication energy 

consumption. Experimental results have validated the functionality and 

demonstrated the real time operation of the proposed sensory feedback system. 
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Chapter 1 Introduction 

 

 

 

 

1.1 Tactile Sensing System and E-skin 

1.1.1 Background 

Tactile sensing in humans is one of the fundamental sensory modalities (visual, auditory 

etc.) that plays an important role in conveying information to the brain about objects they 

touch (e.g. contact surface, roughness, shape, grasp stability, slip detection and temperature 

[1] etc.). This information is also crucial for allowing prosthetic and robotics to carry-out 

human-like movements such as manipulation and exploration tasks [2]. To perform such 

tasks successfully, an electronic/artificial skin carrying tactile sensors should be equipped in 

prosthetic and robotic systems [3]. There is wide spectrum/variety of tactile sensors [4], [5], 

however, there usage in practical applications is still limited due to some difficulties 

including sensor performance, signal conditioning, data acquisition, data communication 

and data processing. Addressing these issues is recommended to effectively utilize tactile 

sensor in tactile sensing system for prosthetic and robotics [6]. 

The tactile sensing system is constituted of: (i) a tactile sensor array, (ii) an interface 

electronic circuit (signal conditioning with data acquisition), (iii) a processing unit, and (iv) 

a communication interface to transfer sensor data. Fig. 1.1 presents the general block 

diagram of the tactile sensing system. Applied input touch is detected by the sensor, which 

is then measured and sampled by the interface electronics (IE). The output of the IE is then 

sent to the processing unit for data decoding e.g., touch modality classifications. 



On the other hand, the tactile sensors should be distributed on the prosthetic/robotic 

hand/surface which requires the physical presence of the sensors with the sensing system 

components on the same surface. However, embedding tactile sensing system poses several 

challenges: 1) hardware issues related to the design complexity, scalability and size; 2) 

processing strategies that can deal with large amount of data and run on embedded hardware 

with acceptable hardware computational resources; 3) system power consumption and real-

time operational requirements that are acceptable for wearable system. More about system 

requirements are discussed and introduced in the next section.  

1.1.2 Requirements and expectations 

Signal conditioning and data acquisition 

The specifications of the front-end/electronic circuits of the tactile sensing system is 

merely dependent on the general application requirements and specifically on the type and 

the number of the tactile sensor. However, the front-end electronics generally comprises 

specific components despite what would be the type of the sensors. Almost, most electronic 

circuits that should interface tactile sensors include three main components/circuits: signal 

conditioning, data acquisition and processor/microcontroller. Together, these three 

components form what is called “interface electronics (IE)”. 

The signal conditioning circuit handles directly the tactile sensors and it includes signal 

amplification and in some cases filtering. The output of the conditioning circuit is the input 

of data acquisition circuit which usually includes the analog-to-digital converter (A/D). 

Designing both circuits is affected by some issues related to the acquisition mode and some 

parameters such as sampling rate, data resolution etc. For sequential acquisition where set of 

sensors are connected to a single signal conditioning or data acquisition channel through a 

switching multiplexer. This mode will cause delay in acquiring data from large number of 

sensors, while minimum delay is recommended in delivering tactile data to the prosthetic 

user or robotic controller. Reducing the acquisition time is possible by adopting 

parallel/simultaneous acquisition. However, in parallel/simultaneous acquisition mode, each 

sensor needs a dedicated signal conditioning and data acquisition A/D converter channel. 

This will lead to a complex IE design posing challenges in terms of sensor wiring and power 

 

Fig. 1.1  Block diagram for the tactile sensing system  



consumption. Moreover, the IE design complexity will increase as for handling specific type 

of tactile sensors that generate bipolar signals/charges when they are exposed to contact 

touch. Thus, this requires including some additional circuits in the signal conditioning 

circuit. All these challenges and requirements should be considered and addressed when 

designing an IE (signal conditioning and data acquisition circuit) for tactile sensing system. 

Table 1.1 lists some of the embedded IE features. 

 

Table 1.1 GENERAL EMBEDDED INTERFACE ELECTRONICS SYSTEM FEATURES FOR TACTILE SENSOR 

Analog-to-digital converter Simultaneous sampling 

Signal conditioning circuit Handle current-output sensors 

Controller Retrieve and pre-process sensor data 

Offset circuit Handle bipolar sensor signals 

Sampling rate Wide frequency range 

Time latency  Real-time operation 

Number of sensors Large number 

Power consumption Battery powered system 

Power supply Single 

 

Tactile data processing 

Data processing methods and algorithms (machine/deep learning) are important to extract 

meaningful information from tactile sensor data [7], [8]. For example, extracting some 

features (force, temperature), slippage detection, object texture recognition and touch 

modalities classification. Machine learning has emerged in different scientific fields and 

everyday tasks in today’s electronic systems and smartphones. ML and deep learning 

paradigms have been effectively used to address standard regression and classification 

problems.  

The complexity of such paradigms ranges according to number of computations and the 

structure of the algorithm itself. For wearable prosthetic and robotic applications, these 

algorithms are recommended to run locally on embedded hardware. Thus, imposing several 

challenges on the hardware performance in terms of power consumption and latency. In 

addition to some other hardware constraints such as memory storage and number of 

operational units to perform the necessary computations. The structure of the algorithm 

depends, first, on the type of the tactile data, and second, on the information required to be 



extract from these data (features, textures, touch modalities). For touch modality 

classification, time is an important dimension for predicting the touch modal in addition to 

the position and number of the tactile sensors on the prosthetic/robotic surface. However, 

employing such algorithms for embedded platforms imposes challenges in terms of time 

latency, energy consumption, and storage. Therefore, designing and employing a tactile 

processing algorithm should address and consider some of the aforementioned challenges 

and requirements. Table 1.2 reports some of the main specifications of embedded 

processing unit for tactile data processing.  

 

Table 1.2 GENERAL EMBEDDED PROCESSING UNIT SYSTEM FEATURES AND SPECIFICATIONS FOR 

TACTILE DATA PROCESSING 

Data processing paradigm Sophisticated algorithms to extract meaningful 

information from raw data (slip detection, touch 

modality, force estimation etc.) 

Local computation on hardware Low number of operations 

Processing Algorithm complexity No burden on the hardware resources 

Energy consumption Low power 

Response time Fast prediction/classification response 

Processing algorithm output results reliable data with high accuracy 

 

Tactile data transmission 

Sensor data propagate in the tactile sensing system to the user/controller through 

communication channels. Various communication channels could exist at different levels in 

the sensing system. This is according to the number of sensors and the IE design. In addition 

to some power and transmission bandwidth issues. For example, some systems may include 

wiring buses connections (I2C, SPI, CAN) for acquiring sensors signals with wireless 

connection (Bluetooth, Zigbee [9]) for transferring the acquired data to the next levels in the 

sensing system. Increasing the number of sensors should be associated with high transfer 

rates to avoid large delays in the system. Moreover, data loss and reliability are another 

important factor that may affects the type for the required communication channel. 

Therefore, achieving an efficient communication channel for tactile sensing system is 

possible by fulfilling some of the mentioned constraints and requirements. 

 

1.2 Thesis Contribution 



The thesis contributions summarized as follows: 

1.2.1 Low power interface electronics with PVDF-based sensors 

Developing a portable electronic system for tactile sensory feedback for prosthetics. The 

electronic system is based on real-time and low power IE design. The IE comprises three 

main blocks: sensor offset circuit, DDC232 current-input analog-to-digital converter and 

Arm microcontroller. The proposed design is capable of handling 32 input piezoelectric 

(PVDF) sensors with performing simultaneous sampling at high rates i.e. 2 kHz; relative to 

the application requirements. This has reduced the delay in the system. The IE design has 

been implemented and tested with a sensing array for measuring their charges that have 

been generated upon applying forces. Results show that range of charges have been 

acquired and measured by the design with 56 dB signal-to-noise ratio and 14 bits of 

effective number of bits (ENOB). Moreover, the power consumption and time latency of the 

IE have been measured when it has been integrated in sensory feedback system for providing 

tactile information to the user. Results demonstrated very small and acceptable delay with 32 

ms and power consumption around 300 mW, providing about 22h of battery lifetime. The 

proposed electronic system overcomes similar state-of-the-art solutions by featuring higher 

number of input channels with low power and real time operation. 

1.2.2 Embedded data processing unit based on optimized machine 

learning algorithm 

Optimizing and implementing a tensorial-based machine learning algorithm for touch 

modality classification on embedded Zynq System-on-chip (SoC). The algorithm [10] is 

based on Support Vector Machine classifier to discriminate between three input touch 

modality classes “brushing”, “rolling” and “sliding”. Implementing such complex algorithm 

on embedded hardware requires enough memory to store data and will consume large 

number of operations to perform classification. In this regard, the aim was to introduce an 

efficient algorithm minimizing the system complexity in terms of number of operations and 

memory storage which directly affect time latency and power consumption. The proposed 

approach has been implemented on the Zynq-Arm processer where the algorithm has been 

executed and its performance has been analyzed. Results demonstrated that the proposed 

approach have reduced the computational complexity with respect to the original algorithm 

presented in the state of the art. And, the required number of operations has significantly 

decreased leading to a classification speedup of 43×. Moreover, the needed amount of 

memory storage has been minimized from 52.2 KB to 1.7 KB; These results have been 

reached at a 2% of accuracy loss with respect to the literature. This approach enables 



embedding tactile data processing algorithm in a sensory feedback system where the 

embedded algorithm could receive sensor data and extract tactile information in real-time. 

1.2.3 Wide bandwidth and low power transmission bus interface for 

tactile data based on optical communication channel 

Implementing an optical fiber communication channel in tactile sensory feedback system 

for the prosthetic application. The purpose is to provide an efficient communication channel 

for tactile data transfer. The channel is based on UWB pulsed data coding technique that 

allows high data transfer rate with low power consumption. The assembled system is 

composed of both digital transmitter and receiver block, and an acquisition circuit which 

interfaces 32 piezoelectric sensors. The transmitter acquires, encodes and sends sensor data 

via the optical channel. Whereas, the receiver decodes, recovers and translate the sensor 

data into commands. These commands control an electrotactile stimulator, conveying the 

tactile information to the user as electrotactile stimulations. The system performance has 

been evaluated where results showed correct functionality of the proposed system and 

validated that it can transfer large number of data at 100 Mbps with low power 

consumption, 50 pJ/bit. This means that this approach could enable employing large number 

of tactile sensors for the sensory feedback system while maintaining real-time operation. 

1.3 Thesis Outline 

The thesis is organized as follows: 

Chapter 2 reviews the development of the tactile sensing system mainly for prosthetics and 

robotics. This chapter divides the literature into three sections, each related to a specific 

block of the tactile sensing system. First section reports several studies that have used some 

electronic circuits for interfacing sensors for the purpose of evaluating their response and 

behavior. Also, this section covers some dedicated interface electronics for several tactile 

sensors (capacitive, piezoelectric) showing their performance and highlighting their 

limitations. The second section presents some tactile data processing methods and 

demonstrates some implementations of such methods on embedded hardware. While the 

third section reviews and highlights on the most used communication channels in the tactile 

sensing system to transfer the tactile data to the user/controller in prosthetic/robotics. 

Chapter 3 introduces and describes the whole process of designing, implementing, 

assessing and enhancing the interface electronics for tactile sensing system. The chapter 

includes the description of tactile sensor structure/model. Also, it presents the experimental 

tests that has been carried out to analyze the performance of the interface electronics design 

in terms of power consumption and signal-to-noise ratio. Finally, the chapter introduces and 



discuss the effect of implementing in the interface electronics some signal processing 

methods for the purpose of improving its behavior. 

Chapter 4 demonstrates the behavior of the proposed interface electronics in a sensory 

feedback system. The architecture of the feedback system has been introduced including the 

interface electronics. Then the system was evaluated by conducting experiments on three 

healthy subjects. The behavior of the system is assessed by measuring the subject 

recognition rate and the system delay from touch to stimulation applied on the subject. 

Chapter 5 demonstrates an optimized tensorial-based machine learning algorithm for 

touch modality classification. First, an overview of the tensorial-based approach was 

described. Then an optimization method was proposed to reduce the complexity of the 

algorithm. Moreover, the hardware implementation of the optimized algorithm has been 

described and evaluated by passing set of new samples to the algorithm and recording the 

classification accuracy. Finally, results were discussed and analyzed by measuring the 

execution time per classification and calculating the reduction in the number of operations 

and memory storage required after applying the optimization. 

Chapter 6 demonstrates the implementation of a novel architecture based on the use of 

an optical fiber communication link for data transmission in the tactile sensory feedback 

systems for the prosthetic applications. The chapter includes a description of the sensory 

system with additional details on each block. In addition, the communication protocol is 

fully explained, and a prototype that transmits data information measured from real sensors 

to the electrotactile stimulator has been experimentally validated. The implementation of the 

communication channels has been presented and the experimental setup used to evaluate the 

overall system has been described. 





 

 

 

 

 

 

 

 

Chapter 2 Literature Review 

 

 

 

 

2.1 Introduction 

This chapter reviews the development of the tactile sensing system mainly for prosthetics 

and robotics. The literature has highlighted several studies either focusing on the sensing 

system as a whole block or by carrying out individual studies related to the system sub-

blocks. Several studies have focused on the sensing material that would cover large areas on 

the robotic or prosthetic surface. Where the purpose was characterizing and evaluating the 

behavior of multiple sensors after fabrication. This brought attention to the electronic block 

of the sensing system and motivated several researches to focus on developing 

specific/dedicated electronics to effectively utilize tactile data. Contributing to the tactile 

sensing system requires knowing the development status of the system and defining the 

achievements and the gaps as well in this field. In this regard, it’s important to review the 

literature regarding each block of the tactile sensing system (sensors with electronic circuits, 

communication channels and tactile data processing).  

We divided the literature into three sections, corresponding to the three main blocks of 

the tactile sensing system: interface electronics (IE), data processing and data 

communication. Section 2.2 reports several studies that have used electronic circuits for 

interfacing sensors and evaluating their response and behavior. Also, this section covers 

some dedicated IE for several tactile sensors (capacitive, piezoelectric) showing their 

performance and highlighting their limitations. Section 2.3 presents some tactile data 

processing methods and demonstrates some implementations of such methods on embedded 

hardware. While section 2.4 reviews and highlights on the most used communication 

channels in the tactile sensing system to transfer the tactile data to the user in prosthetic or 



controller in robotics. 

2.2 Review of Interface Electronics 

The IE block could be reviewed from several viewpoints. In the first viewpoint, we will 

start with the studies that focused on developing sensing materials with new structures and 

demonstrates the electronic circuits that have been used to interface these sensors for further 

evaluation and characterization. In the second viewpoint, we will present some works that 

have focused on developing dedicated IE for several tactile sensors (capacitive, resistive and 

piezoelectric). In the third viewpoints, we will demonstrate some IE performance in terms of 

power consumption, real-time functionality and the number of attached sensors. Finally, we 

discuss the gaps and some limitations that should be addressed to achieve powerful sensing 

system for prosthetic application. 

Tactile sensors are capable of measuring various contact parameters and are classified 

according to their transduction method i.e. capacitive [11], resistive [12] and piezoelectric 

[13] sensors. The piezoelectric sensors provide high flexibility [14] and sensitivity [15] 

among other sensors since it is based on PVDF materials (polyvinylidene fluoride). Several 

tactile sensors have been developed and characterized [16], [17], [18]. Acer et al. [19] 

developed piezoelectric sensors of ceramic type and performed a study to show the effect of 

the thickness of the silicon substrate on the sensor sensitivity. They connected a 4x2 sensor 

array to signal conditioning circuit, composed of TLV2772 operational amplifier, to convert 

sensor charge into voltage. The output voltage is then sampled through DAQ device 

(National instrument, USB-6009). Another study has been conducted in [20] to show the 

flexibility of the tactile sensors under three-axis dynamic forces. 3x2 tactile units (24 

sensors) were fabricated and then tested by applying normal forces within the frequency 

range 4-500 Hz on the sensor surface. Charges generated by sensors were measured by 

DH5862 charge amplifier and then collected by NI-DAQ device (USB-6343). Drimus et al. 

[21] developed a robotic fingertip equipped with a PVDF-based piezoelectric. The main 

idea was to find the best coupling of sensor material with protective layer for the purpose of 

studying the performance of three learning methods for classifying surfaces textures. A 

single taxel was connected to a charge amplifier (OPA637) with a 16-bit NI DAQ USB 

6341. Figure 2.1 provides a capture of the experimental setup in [19] to evaluate the 

performance of the designed sensor elements.  



 

Fig. 2.1 Experimental setup for characterizing the PZT sensors embedded in silicone (adapted from [19]). 

Other studies aimed a dedicated IE to read charges from tactile sensors [22], [23]. Pinna 

et al. [24] have presented a design methodology to define the metrics required for 

developing an IE prototype. The prototype design depends on the sensor charge value that 

should be detected. So, tests were performed to check the prototype behavior when coupled 

to a PVDF sensor. The IE is composed of an op-amp (OPA348) and a low pass filter. 

Results reported a sensitivity of about 5.7 pC/N after the PVDF sample has been stimulated 

with a shaker with fixed frequency (i.e., 230 Hz) at variable force amplitude (i.e., 0.2-0.6 

N). Moreover, a 2-input sensors IE circuit has been developed in [25]. The design adopts a 

dual channel analog to digital converter DDC112U [26] and an FPGA Xilinx Spartan®-6. 

The design was capable of measuring sensor signals with 0.6 pC/kPa average sensitivity in 

the frequency range from 10Hz to 250 Hz. Furthermore, the functionality of this IE design 

has been more assessed and was experimentally characterized in [27].  Rossi et al. [28] 

proposed a design that can be integrated between the prosthetic limb and the patient body. 

The main idea is to relieve the patient pain by measuring the dynamic and static stimuli that 

usually occurs during movement. Two sensors of different models (piezoelectric and 

piezoresistive) have been staked in a single package and interfaced to the proposed design 

(see fig. 2.2). The design is based on CC3200 Launchpad board Texas Instrument (embeds 

two ARM cores) and a signal conditioning circuit composed of a charge amplifier. The four 

input sensors signals were acquired, sampled and then sent through Wi-Fi to the PC in 

continuous mode at an average 111 mA current consumption. 



 

Fig. 2.2 electronic circuit prototype in [28] 

Handling a large number of sensors to provide high-resolution tactile information should 

be taken into consideration when designing the IE [28]. Recently, large number of 

capacitive sensors were implemented in robotics applications [29]. For instance, a tactile 

sensor suite in [30] can handle more than 32 taxels in a fingertip as well as in the palm. 

Each finger pad carries sensors connected directly to FPGA, and all pads are connected 

through SPI interface (see fig. 2.3). The tactile sensors are scanned, and the data are 

preprocessed in the palm unit with power consumption around 1175 mW (235 mA at 5V). 

Another approach in Schmitz et al. [31] proposed a PCB of sensors and charge to voltage 

converter AD7147. The AD7147 handles up to 13 inputs channeled through a switch matrix 

and provides I2C serial bus for communication. This allows building a chain of sensor PCBs 

with I2C connection in between and a microcontroller master board connected just to one of 

the sensor PCBs for acquiring data. 

 

Fig. 2.3 Smart tactile finger sensor: photograph of the device with array of sensors (adapted 

from [30]). 



 

On the other hand, some IE have been designed to tackle non-tactile sensors that target 

applications rather than prosthetic and robotics. The ALPHADET board in [32] handles four 

BJT detectors where FPGA and DDC114 are used to detect the alpha particles that are 

ejected from the nuclei of unstable atoms. Authors in [33] proposed NI-sbRIO-9632 

mainboard connected to DDC112 to provide high-resolution measurements for gas 

concentration of the two photo detectors inputs.   

Despite the developments of tactile sensors and their interface electronic units presented 

in the aforementioned literature, the interface electronic units were not targeting wearable 

devices especially from the hardware size and energy consumption point of view [34], [35]. 

Wearable devices must be capable of performing the requested tasks with minimal budget in 

terms of energy consumption and time latency powered by a small battery size [36], [37]. 

Table 2.1 shows some recent implementation of interface electronic circuits indicating their 

power consumption and design specifications. Most of the recent IE are based on charge 

amplifier and data acquisition (DAQ) boards. Some approaches [25],[32] proposed analog-

to-digital converters with FPGA devices or microcontroller. 

 

Table 2.1 RECENT WORK ABOUT INTERFACE ELECTRONICS  

Ref Signal 

Conditioning 

ADC/ Control Frequency 

Bandwidth 

Number of 

channels 

Power 

consumption  

[19] TLV2772 NI USB 6009 DAQ  8  0.4-2.5 W 

[20] DH5862 NI USB-6343 DAQ 5-400 Hz 24  11 W-30 W 

[24] OPA348 NI-DAQ 9174 1 kHz 1 ---  

[28] Charge amplifier With CC3200 Launchpad 

board TI 

1 KSps 4  0.396 W 

[30] --- Raw sensor/FPGA Xilinx 

Spartan 6 

 55  0.84-3.3 W 

[31] --- AD7147/Microcontroller 500 Hz 12  --- 

[32] --- DDC114 + FPGA  --- 4 --- 

[33] --- DDC112 + NI-sbRIO-9632 --- 2  8 W 

[38] OPA637 NI USB 634 DAQ 1 kHz 1 11 W- 30 W 

[39] --- DDC112 + FPGA 1 kHz  2 1.278 W 

 

Another important viewpoint should be highlighted in the literature is reviewing the IE 

as a part of the tactile sensing system. Some researchers developed sensing systems [40], 

while others proposed PC controlled stimulation systems [41]. Few studies in the literature 



proposed embedded-real time feedback systems that incorporate the two systems. 

Pamungkas and Ward. et al [42] developed a sensory feedback system based on sixteen 

polymer film force sensors fitted to the fingers and palm of a prosthetic hand. Six 

electrotactile feedback channels were used for force feedback. A host PC was used to 

monitor the sensor data and to deliver appropriate pulses to the six electrodes. Whereas 

Franceschi et al. [35] and Hartman et al. [43]  investigated the possibilities of 

communicating tactile information such as touch position from artificial skin (PVDF based 

sensor array) through a host PC. Information from an array of 64 piezoelectric sensors is 

translated into electro-cutaneous stimulation patterns and conveyed to the subject through 

32 electrodes or concentric electrodes attached to the subject’s arm skin.  

The speed in communicating sensation information has not been widely reported on 

when examining the performance of a sensory feedback system. A healthy nervous system 

can take approximately 14-25 ms to deliver tactile information to the brain [44]. A change 

in the dynamics of a prosthetic feedback system (e.g., response time constants, pure time 

delays) affects the overall system behavior, even its stability. One example of this is the 

integration of advanced haptic intelligence within the feedback loop. Huang et al. [45] 

examined a multi-modal sensory feedback system with three amputees. Sensory information 

from five piezoelectric barometric sensors was mapped into stimulations through 

vibrotactile or mechano-tactile feedback. The developed system can communicate sensory 

information to the remaining stump of the amputees within 85 ms. Schoepp et al. [46] used 

a microcontroller (ATmega32u4) to map force level from two SingleTact sensors into one 

tactor fixed on the upper arm. The system operates with a time delay of 200 ms between 

touch instant and activation of the tactor. 

Therefore, the literature highlights several aspects that should be addressed when 

designing an IE. First most of the proposed IE are based on commercial data acquisition 

devices that make the design bulk. In addition, to some designs that carry small number of 

sensors and sample their signals at low rate in a sequential mode. This leads to a delay in the 

acquisition process and thus making the design not suitable for real-time operations. Power 

consumption is another important aspect, that should be addressed to achieve a wearable 

system. This requires a miniaturized IE design that can be embedded and enable a PC-free 

sensory system that can deliver tactile information to the user with minimum delay.  

2.3 Review of Tactile Data Processing Methods on 

Embedded Processing Unit 

Tactile data processing is required for extracting meaningful tactile information from the 

raw sensor data. Several works have focused on developing algorithms including, but no 



limited to, machine learning and neural networks for either identifying textures or 

classifying touch modalities [47], [48]. This section will report some of the processing 

methods that are useful for such task. In addition to few works that demonstrate some 

hardware implementations and present their performance. 

Martinez-Hernandez et al. [49] proposed a novel approach that combines both 

perception with active exploration methods to allow autonomous robots to explore, perceive 

and feel what they are touching. The perception method is composed of Bayesian 

formulation that performs a random selection of object locations. Six objects have been 

contacted by a three-fingered robot integrated with tactile and strain sensors. The data of 

object position and orientation have been collected to implement offline object exploration 

and recognition. The exploration and perception processes make a decision when a 

predefined belief threshold is exceeded. This approach allowed the robot to achieve better 

trade-off between accuracy and reaction time. Fishel et al. [50] concentrated on classifying 

specific textures from signals detected by BioTac pressure sensor. The texture properties 

(traction, roughness, and fineness) are extracted and processed by Bayesian exploration 

classifier. Where data for 117 textures have been collected to create the training set for the 

classifier. This approach yielded to classify these textures with a high accuracy of 95.4%. 

Madry et al. proposed an unsupervised spatio-temporal feature learning method, named 

Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP) [51]. The main idea is to extract 

features from the raw consecutive frames and then pool them over the time dimension. They 

further demonstrated the effectiveness of the proposed method on two tactile-based robotics 

applications, including the grasping stability assessment and object instance recognition. 

Aimed to recognize objects from four mechanical categories (Rigid-Fixed, Rigid-Movable, 

Soft-Fixed, and Soft-Movable.) during the interactions with tactile sensor array, 

Bhattacharjee et al. [52] developed a classification and recognition algorithm. They first 

extracted features such as maximum force, contact area and contact motion from the object 

and then they used the k-nearest neighbor algorithm K-NN classifier. Another object 

recognition approach proposed in [53]. The purpose is to classify eight objects: finger, hand, 

arm, pen, scissors, pliers, sticky tape, and Allen key, using a 28 × 50 high-resolution tactile 

sensors. They proposed two classification approaches. Both approaches include feature 

extraction followed by supervised vector machine (SVM). However, in the first approach 

the speeded-up Robust Features descriptor has been used for feature extraction, while Deep 

convolutional Neural network DCNN used in the second approach. 

Aiming to build a smart tactile sensing system, Alameh et al. [54] has presented several 

implementations of convolutional neural networks (CNNs) to classify objects from tactile 

dataset e.g. they proposed a CNN model based on decreasing the trainable parameters to 



minimize the hardware complexity. The model has been tested on different hardware 

platforms achieving inference time of 1.2 ms and consuming around 900 uJ. Osta et al. [55] 

has proposed an energy efficient hardware platform for tactile sensing system. The approach 

is based on an ultra-low power processor with multi-core architecture. This allowed to 

achieve an energy efficient implementation of touch modality classification problem based 

on Support Vector Machine (SVM). The proposed platform consumes 81 mJ per 

classification and the inference time is 3.3 s. Ibrahim et al. [56] has presented the hardware 

architectures and implementation of ML based on tensorial kernel approach. The proposed 

implementation deals with tensorial structure of the tactile data and provides parallel 

architecture to achieve real-time touch modality classification. The system has achieved a 

peak performance of 302 G-ops for the Virtex-7 FPGA and achieved 350 ms inference time 

with 945 mJ energy for three class classification. 

Most of the tactile processing methods are complex requiring powerful computational 

processors to perform their tasks. This become highly recommended when the target is to 

run these algorithms on embedded hardware to achieve wearable tactile sensing system. 

Unfraternally, this usually comes at the cost of power consumption and time delay. Thus, 

trade-off between algorithm complexity and hardware performance should be considered 

when implementing tactile processing methods. 

2.4 Review of Tactile Data Communication Channels 

Most of the sensing system research has focused on developing sensing elements with their 

electronics and with some methods for data processing. However, to the best of our 

knowledge, there is no study which addressed the data transmission channel of a sensory 

feedback system either in prosthetic or in robotic applications. This section reviews the 

recent developments in sensory feedback systems where we highlight the communication 

protocols used to transmit tactile sensors data. 

Aiming the reconstruction of hand posture and tactile information, Bianchi et al. [57] 

has proposed a multi-modal sensing glove composed of piezoresistive fabric for measuring 

normal forces with more than 50 taxels spread over the palm surface. During manipulation, 

force was recorded through a data acquisition board:  each single sensor is connected to a 

voltage divider and an analog-to-digital converter (ADC). A PIC18-microcontroller is used 

on the acquisition board to collect sensors data and to transmit them via USB to the host PC. 

The sensory system of a robotic arm in [58] includes large patches based on commercial 

force sensors to cover large areas of the robotic arm. Each patch has 16×9 force sensors, 

sampled at 78 frames per second through an acquisition board. They used PIC18F4680 for 

1) scanning the array of sensors, 2) sorting data and 3) transmitting them via a CAN bus 



communication to a central processing unit. In Schmitz et al. [31] the tactile sensory system 

for robotic hands provides distributed pressure measurements and information about the 

contact location, obtained during interaction with the environment. Each sensing unit 

carrying 12 taxels, shares an I2C bus with a master unit in order to receive the sensor data 

and then transmit them to the PC through CAN bus. 

Delivering tactile information from sensors to the user remains a challenge. Researchers 

are investigating methods that provide useful tactile information in both prosthetics [59], 

[45] and robotic hands [60] , such as force, object texture and slippage. The sensing 

feedback system in [59] enables the prosthetic user to feel various objects touched by means 

of electrotactile stimulations. The system is composed of 16 resistive film force sensors 

connected to a control board. The microprocessor on the control board collects the sensor 

data at 20 samples per second and sends them to a PC via USB. The data in the PC are 

processed and then sent through a USB wireless transmitter to the user as Electrotactile-

stimulation feedback. Similar approach with different stimulation modality has been 

proposed in [45] to improve the recognition rate and to reduce mental workload when 

identifying different stimulation patterns. The system incorporates vibro-tactile and 

mechano-tactile modalities. The system consists of five piezoelectric tactile sensors, which 

are multiplexed to a low energy communication module (CC2640R2F). The sensory data 

are combined into packet and then sent via Bluetooth to the customized-design multi-modal 

stimulator. Regarding robotic hands, Choi et al. [60] have introduced sensing system based 

on robotic fingertip containing 4 force and 2 PVDF sensors. The system can detect normal 

contact and slip forces applied on the surface of the robotic fingertip. The signals coming 

from different PVDF sensors are received by six ADC converters on a microcontroller-

based board (C8051F311) and then transmitted to the PC via RS232 or SMBus. Thus, 

integrating multiple fingertips will make collecting large numbers of data a complex task 

and consequently will require a wide transmission bandwidth. 

For robotics applications, a POSFET sensor arrays has been proposed in [61] to recover 

the contact forces of frequency contents up to 1 KHz. Authors defined the main parameters 

for the data acquisition system for 16 taxels to be 1.6 Mbps. So, the employment of a larger 

number of taxels will result in the need of a wider bandwidth in order to transfer the 

increased amount of data. Moreover, Schmitz et al. [62] have addressed dedicated IE aiming 

a wearable sensing system. The design is based on a single chip containing digital 

microcontroller and 13 charge sensitive analog front ends. The chip measures and processes 

locally the information generated by the taxels and then sent them to the PC through a USB 

to UART converter chip. 

Data transfer is crucial in the tactile sensing system, where data reliability, transfer 



bandwidth and power requirements could affect the behavior of the system leading to safety 

issues in prosthetic and robotic systems. Thus, implementing an efficient and wide-

bandwidth channel enables the system to handle large number of tactile sensor and thus 

providing high-resolution tactile data. This paves the way toward having more human-like 

functionality provided by prosthetic and robotic systems. 





 

 

 

 

 

 

 

 

Chapter 3 Real Time Interface Electronics 

for PVDF-based Piezoelectric Tactile 

Sensing Array 

 

 

 

 

3.1 Introduction 

Developing the interface electronics (IE) for a prosthetic tactile sensing system needs a 

thorough understanding of the sensing system and hardware related requirements. Most of 

these requirements stem out from the “human-like” behavior conception, where initially 

from the mechanical aspect, the system should be wearable and user friendly. In addition to 

that, the system should be capable of performing several sensing tasks (e.g. restoring sense 

of touch, slippage detection, touch force/pressures) which thus requires a specific type of set 

of sensors [63]. Several tactile sensors have been used to detect tactile stimuli when covered 

on the robot body and prosthetic hand, such as capacitive [4], piezo-resistive [60] and 

piezoelectric [64] sensors. Among these sensors, the piezoelectric sensors based on 

polyvinylidene fluoride material (PVDF) provide a high sensitivity, flexibility and a wide 

range of touches [65] (i.e. 1 kHz frequency bandwidth). They generate bipolar charges 

when are get exposed to contact touches on their surfaces. Acquiring such type of signals 

become challenging especially when large number of tactile sensors are used to cover large 

areas of the prosthetic hand for providing high spatial resolution [66]. Considering all these 

requirements leads to the general requirements of the IE in the sensing system. Therefore, 

the IE should be miniaturized, battery powered (low power); and it should be suitable for 

carrying large number of tactile sensors (PVDF-based) of specific features and 



characteristics – that enables performing the system sensing tasks. 

 The recent works as reviewed in the literature (see chapter 2) have focused on 

designing IE, most are based on data acquisition devices (DAQ) and some are based on 

power hungry processors (i.e. FPGA) with limited number of sensors (i.e. two sensors). 

Most of these systems have been developed for the purpose of characterizing sensors, by 

acquiring their signals and recording the data on PC for further processing and analysis.  

In this chapter, we introduce the development of a low power real time miniaturized IE 

system, capable of providing tactile sensory feedback for prosthetics. The system provides 

the possibility to interface 32 piezoelectric PVDF-based sensors with low power budget 

maintaining real time operation. This work provides the first portable version of the 

electronic skin-electrotactile stimulation system moving from the system depicted by Fig. 

3.1 (a) [35]  to a wearable system shown in figure 1 (b). 

Moreover, the chapter demonstrates the functionality of the proposed system describing the 

experimental setup carried out to this aim and it validates the suitability of the system for 

the target prosthetic application when power consumption and time latency are analyzed. 

The chapter is outlined and divided into four main parts: design implementation, design 

characterization, design enhancement and design integration in a feedback system. In the 

implementation part, the sensing system is introduced, and the IE design implementation is 

demonstrated, as in sections 3.2 and 3.3, respectively. Section 3.2 deals with the sensor 

structure/model and the IE circuit design and its specifications. Whereas, section 3.3 

presents the experimental tests carried out to analyze the behavior of the IE circuit design. 

The second part - design characterization - is covered in sections 3.4 and 3.5 where the 

experimental results are discussed and analyzed. Section 3.6, as the design enhancement 

 

(a) 

 

 (b) 

Fig. 3.1 Tactile sensing system (a) using PC-based system and (b) proposed low power wearable sensing system 



part, introduces some signal processing methods for the purpose of improving the behavior 

of the IE in reconstructing sensors signals. The conclusion is drawn in section 3.7. 

3.2 Sensing System  

This section introduces the sensing system blocks including piezoelectric sensor array and 

IE. The model of the sensor with the fabrication process are presented and the IE circuit 

design is demonstrated. 

3.2.1 Piezoelectric tactile sensor  

Piezoelectric materials such as PVDF have been used to make tactile devices/sensors. 

These materials deform and thus generate charges when they are touched. Typically, the 

piezoelectric sensors consist of two electrodes of area A separated by the piezoelectric 

material with thickness t, see fig. 3.2. When contact force F is applied on the piezoelectric 

sensor, it generates charges +Q and -Q, leading to a potential voltage across the sensor 

electrodes. Whereas, when the contact force is maintained, the sensor output degrades to 

zero. This enables the piezoelectric PVDF-based sensors to detect dynamic forces and to 

operate without the need of a power supply. Thus, PVDF-based sensors are good choice for 

tactile sensing because they are reliable and efficient in terms of power consumption. 

 

Fig. 3.2 The scheme of piezoelectric PVDF-based sensor 

Sensor structure 

Fully screen-printed flexible sensor arrays based on P(VDF-TrFE) piezoelectric polymer 

sensors have been fabricated by JOANNEUM RESEARCH (in the following, JNR) [67]. 

They patented a low-temperature sol-gel based synthesis for P(VDF-TrFE) inks [68]. Fig. 

3.3 shows the structure of a sensing patch built on a sensory array. The fabrication of these 

sensor arrays is done by screen-printing at a Thieme LAB 1000 [67]. First, a circular bottom 

electrode is screen-printed on a transparent and flexible (175 μm thick) DIN A4 plastic foil 

(Melinex® ST 725) substrate. The ferroelectric polymer P(VDF-TrFE) is then screen-



printed onto the bottom electrodes, followed by screen printing the top electrodes (Either 

PEDOT: PSS or carbon have been used as top electrodes [67]). A final UV-curable lacquer 

layer is deposited on top for overall sensor protection. As a final step, a pooling procedure is 

then needed to align in the thickness direction randomly oriented dipoles contained in 

P(VDF-TrFE) crystallites. 

The very thin thickness of the electrode layer (0.4µm) with respect to the thicker PVDF-

TrFE layer (5µm) allows considering its mechanical action negligible for the sensor 

electromechanical modeling [24], which will be described in the next section. 

Sensor model 

The behavior of the piezoelectric sensor is a function of the reaction of piezoelectric 

transducer layers under an applied contact stress, see fig. 3.4. Accordingly, the amount of 

the generated charges from the sensor are function of the amplitude of the applied force. 

Thus, to estimate such amount, it is important to have an electromechanical model that 

shows a relation between the sensor charge and the contact stress. For that, the 

mathematical mechanical model described in [25] has been adopted. The derived model 

finds the relationship between the applied mechanical stimulus and the corresponding 

charge that will be measured by the IE. Equation (1) represents the open circuit voltage 

generated by the piezoelectric sensor when a constant vertical stress T3 is applied:  

V𝑜𝑐  = −
𝑄𝑠𝑒𝑛𝑠𝑜𝑟

𝐶𝑝

=  − 
𝑑33𝐴𝑝𝑖𝑒𝑧𝑜

𝐶𝑝

𝑇3 (1) 

Where d33 is the longitudinal piezoelectric charge coefficient, T3 is the mechanical 

stress, Cp is the equivalent capacitance between the electrodes of the piezoelectric film and 

𝐴𝑝𝑖𝑒𝑧𝑜 is the loaded piezoelectric area. Since the sensor is covered with a protective layer of 

thickness h, the direct applied stress is not T3. 

According to equation (1), author in [25] defined an electrical circuit consisting of 

 

 

 

Fig. 3.3 Cross sectional view of a single sensor unit, sketch with indicative thicknesses of the various layers. 



voltage source (Voc) connected in series with a capacitor (Cp). This represents an 

equivalent electrical model of the piezoelectric sensor. Thus, the output charge (Qsensor) of 

the electrical model – equivalent to the output of the real sensors – is calculated in equation 

2. Further, equation 2 will be used to calculate the charge generated from the model at the 

input of the analog-to-digital converter of the IE. Where (w) is the signal frequency and 

(TINT) is the integration time of the internal integrators in the analog to digital converter. 

qsensor_int  =  𝐶𝑝𝑉𝑝sin (𝑤𝑇𝐼𝑁𝑇) (2) 

Equation (2) will be used as a reference point for electrical validation of the IE in 

section 3.4. 

3.2.2 Interface Electronics 

Requirements and specifications 

The development of an interface electronic system necessitates possessing quantitative 

information about the application requirements such as defining the contact stress/force 

range and the electrical response of the piezoelectric sensor. These dynamics has been 

quantified in [69] and can be used as reference point for defining the electronic design 

specifications. Based on their estimations, the application range goes from 50 Pa to 5 MPa 

(over 5 orders of magnitude) resulting a charge response ranging from 0.01 pC to 1 nC. 

However, the range of interest according to [70] is to cover stresses of the order 10-100 kPa 

for normal manipulation tasks and lower than 10 kPa correspond to gentle touches.  

Given the above considerations and based on the frequency range of interest for 

electronic skin application mentioned in [65], the IE should be able to measure an input 

charge up to hundreds of pC with large frequency bandwidth up to 1 kHz. Thus, the 

sampling rate must satisfy the Nyquist condition (above or equal 2 kSps). Moreover, the 

design must take into consideration many input sensors that will be integrated into the 

 

Fig. 3.4 Sketch of the general working mechanism of P(VDF-TrFE) sensors. 



prosthetic glove attached to the amputee forearm. Thus, this requires an acquisition strategy 

based on simultaneous sampling in order to reduce the delay in the system. 

Block diagram and circuit design 

The IE comprises four main components: sensor offset circuit, signal conditioning, analog-

to-digital converter and microcontroller. Fig. 3.5 shows the general block diagram of the IE. 

The tactile sensor array contains set of sensors where each sensor is connected to an offset 

circuit. The offset circuit is followed by a signal conditioning channel including integrators. 

The output of the integrators is connected to analog-to-digital converters which are 

controlled by a microcontroller to acquire the sampled data. Each component is explained in 

the following subsections. 

 

Fig. 3.5 General block diagram of interface electronics for sensing system 

1. Sensor Offset Circuit 

The tactile sensors can be classified into two categories: sensors that detect dynamic 

contacts and sensors that detect static contacts. When applying a dynamic contact, the 

piezoelectric sensor becomes electrically polarized generating potential voltage across the 

electrodes of the sensor. The voltage polarity changes according to the contact force 

direction (press or release), applied on the sensor surface. In this case, a sensor offset circuit 

is needed to handle both voltage polarities (positive/negative). The offset circuit 

implementation depends on a passive component (resistor) with a voltage reference (Vref) 

connected in parallel with sensor output, see fig. 3.6. In this way, the sensor output will be 

shifted up to (Vref/2) level. The offset level value depends on the signal conditioning 

parameters – the integrator feedback capacitance (Cf) and the integration time (Tint) [39]. 

 

Fig. 3.6 Single piezoelectric sensor connected to a current offset circuit 



2. Signal conditioning and analog-to-digital converter 

The signal conditioning block implements set of integrators that converts current input to 

voltage. The output of the integrator is the input of the analog to digital (A/D) converter. 

Each piezoelectric sensor element in the array requires a dedicated integrator and A/D. For 

a big sensor array (up to 32 sensing element), the signal conditioning with A/D circuit 

design becomes complex. To avoid design complexity, a component-off-the-shelf DDC232 

has been used. The DDC232 is a current-input analog-to-digital converter which provides 

simultaneous sampling for 32 input channels. It combines both current-to-voltage integrator 

and A/D converter. Each input has two integrators so that the current-to-voltage integration 

can be continuous in time and the output of the 64 integrators are switched to 16 delta-

sigma A/D converters via multiplexers. The output of the first 32 integrators are digitized 

while the other 32 are in the integration mode. The A/D features a synchronous serial 

interface used to configure the conversion rate and to read the valid converted data [71]. 

The conversion process is controlled by a CLK pin (configured at frequency 10 MHz) 

connected to the system clock of the microcontroller. The results of each conversion are 

stored in an output shift register. The output signal (DVALID) goes low to indicate data are 

valid and trigger the controller to start the retrieving process. 

The retrieved data format can be configured to be either 20 bits or 16 bits. This is done 

by writing to the 12-bit on DDC232 configuration register the corresponding format value. 

Three pins DIN_CFG, CLK_CFG, and RESET pins of the ADC are used to write to this 

register and set the feedback capacitance of the integrators. 

3. Microcontroller for data acquisition 

Since the DDC232 supports a serial connectivity, a microcontroller is required – first, to 

control the DDC232 conversion process; second, to acquire and process the converted data. 

The Laird BL600 module has been used for this purpose. The module contains a Nordic 

nRF51822 microcontroller which is based on 32-bit ARM Cortex M0 processor. It is an 

ultra-low power chip integrating the nRF51 series 2.4 GHz transceiver and supporting 

Bluetooth low energy (BLE). BL600 is a BLE single mode device operating as a slave. 

Hence, enabling wireless connectivity option which is high recommended in wearable 

systems. 



 Implementation 

The block diagram and the printed board circuit of the proposed IE are presented in fig. 

3.7. The SPI serial peripheral of the microcontroller has been enabled for controlling the 

conversion and data retrieval process using Keil-ARM IDE. The microcontroller was 

programed to run three main processes: configuration process, control process and data 

retrieval process. First, in the configuration process two main parameters (data 

format/resolution and the integrator feedback capacitance) of the A/D are configured. 

Where the A/D is initialized to retrieve data with 16-bit resolution and the feedback 

capacitance was set to its maximum value (Cf = 87.5 pF) to achieve a high input range of 
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Fig. 3.7 Interface electronics: (a) block diagram of the design; (b) printed board circuit. 



charges. The configuration process is performed as the microcontroller runs two sequential 

steps: 1) hold the CONV signal and set the RESET signal hi to control the switching 

between integrators, then 2) shift 12-bit data (containing the parameters) to the A/D 

configuration register over DIN_CFG pin (data input pin) at the falling edge of CLK_CFG 

(the configuration register clock input). At the instant the configuration is done, the control 

process starts generating a clock signal CLK at 10 MHz frequency which activates the A/D. 

in parallel, the CONV square signal runs at 1 kHz frequency, allowing the A/D to convert 

sensor signals (32 sensors) at sampling rate 2 kSps. This is because the A/D stores new 

samples during the high and low states of the CONV square signal. When the A/D is done 

with sampling the 32 input sensors and stored their data in a register, its DVALID pin goes 

low to trigger the data retrieval process. Where on the falling edge of DCLK pin (serial 

data clock) the data are shifted out and retrieved by the microcontroller at 4 MHz frequency. 

Finally, data are sent via UART-to-USB port at a baud rate of 115200 bits per second (bps), 

to be collected in MATLAB tool and further analyzed. 

3.3 Experimental Setup and Methods 

After design implementation, first we aimed to verify the correct functionality of the 

design (experiment one) and second to characterize the response/behavior of the IE with 

piezoelectric sensors (experiment two). For experiment one, we conducted an electrical test, 

where the IE was tested with a source generate in series with a capacitor connected at its 

input, as shown in fig. 3.8. The purpose is to inject sinusoidal signals with defined 

frequencies and amplitudes and then measure the charges of these signals. The measured 

charges are then compared to the results which has been estimated through the equation (2) 

derived for the equivalent sensor model mentioned in section 3.1.2. The test details are 

discussed next in section 3.4.1. 

 

Fig. 3.8 Block diagram of the Electrical setup; Equivalent circuit of sensor (left) connected to interface electronics; 

Generated signals are reconstructed by the IE and sent to the PC. 

For experiment two, we prepared an electromechanical setup in order to perform 

consistent tests on the IE when connected to real piezoelectric sensors. The setup provides a 

controlled mechanical indentation on the sensors with the recording of several 

measurements – obtained by the IE and force sensor. The mechanical chain used for 



measurements is shown in fig. 3.9 and it follows the order (up-down). The sensing patch 

was integrated on a rigid circular substrate and covered by an elastic protected layer (PDMS 

elastomer layer with thickness 2.5mm) using double-sided adhesive tape (Model 3M300L, 

3M) around the sensor array. The skin patch (sensing patch + PDMS+ circular substrate) 

was then mounted on a fixed support and faced downside. The aim of this coupling is 

building a skin structure that mimics as close as possible real application conditions. A rigid 

spherical indenter (R = 4mm) and a piezoelectric force transducer (Model 208C01, PCB 

Piezotronics) were coupled on the moving head of an electromechanical shaker 

(Brüel&Kjaer, Minishaker Type 4810). All these elements have been accurately aligned 

before any test. A sinusoidal signal (force) was then provided by a source generator (3390 

Arbitrary Waveform Generator) and conveyed to the electromechanical shaker using a 

Power Amplifier Type 2706. The single taxel was then excited by applying a mechanical 

stimulus (sinusoidal force) directly on the PDMS patch covering the sensing patch using the 

shaker. Before running each test, a preload was applied to guarantee indenter-PDMS contact 

during the whole test. Two tests were done on the same sensors and under the same 

conditions (same coupling and indenter positioning). In the first test, charge generated by 

the sensor was conditioned and acquired by PCB Sensor Signal Conditioner (482C54), 

while in the second test the generated charge was acquired by the IE. In the two tests, the 

electromechanical stimulus measured by the piezoelectric force transducer was conditioned 

and processed by PCB Sensor Signal Conditioner (482C54). A graphical user interface 

(GUI) developed with NI LabVIEW on a host PC and NI DAQ data acquisition board was 

used to collect and visualize both the force transducer (stimulus) and the generated charge. 

3.4 Experimental Results 

This section presents the experimental results obtained from both electrical and 

electromechanical tests.  

 

Fig. 3.9 Experimental Setup 



3.4.1 Electrical measurement results 

In the electrical test, several sine signals generated by the source generated have been 

measured by the IE. The signals frequencies have been varied within the targeted bandwidth 

(i.e. 1 Hz-1 kHz) with an amplitude range from 100 mV up to 9 V. The IE sends the data to 

the PC where it has been analyzed in MATLAB tool. Fig. 3.10 (a) shows the charge 

measured by the IE corresponding to a sine signal of frequency 100 Hz, compared to the 

charges estimated by equation (2) (Qtheoratical = CpVp sin(wTINT)) – by substituting all 

its variables (Cp=22 pF; Vp= [100mV-9V]; w=100 Hz; TINT= ½ kSps). The same test was 

performed for several frequencies. Results illustrated in Fig. 3.10 (b) signifies that the 

amount of charges become larger as the input frequency increases. Therefore, this validates 

the correct functionality of IE in measuring charges, matching the theoretical ones estimated 

by equation (2). 

3.4.2 Electromechanical measurement results 

 

(a) 
 

(b) 

Fig. 3.10 (a) The theoretical fit line is calculated from Qtheoratical = CpVp sin(wTINT) derived from the equations 

presented in [25]; (b) output of IE relative to input signals generated from source generator. 

 

 

Fig. 3.11 Experimental setup block diagram. 



In the electromechanical test, the shaker in the system has been controlled by a source 

generator to apply stimulus/indentation on the sensor surface, see fig. 3.11. The frequency 

of indentation has been varied from 20 to 350 Hz and at every frequency value six force 

levels within 0.2-1.2 N have been applied on the sensor. Note that there were some 

limitations in the experimental setup that prevented us from reaching frequencies and forces 

above 350 Hz and 1.2 N, respectively. Two types of data have been recorded during sensor 

indentation and then sent to the PC-LabVIEW software: the charges measured by the IE; the 

indentation forces measured by the PCB Piezotronics conditioner. The relation between the 

indentation force and sensor charges measured by the IE is illustrated in fig. 3.12 (a). It 

shows the behavior of the IE in detecting a range of charges and provides linear 

measurements that match with the theoretical estimations presented in the previous section.  

To verify more the IE results, the conditioner was included in the test to be a reference 

point. In this case the IE was disconnected and replaced by the conditioner, which measures 

both the sensor charges and the indention forces. By repeating the same test conditions done 

with the IE and with keeping the same parameters (frequency range and force levels), the 

conditioner demonstrated almost similar results as that obtained by the IE. As it is noticed 

from fig. 3.12 (b), that the amount of charges increased as the force levels increased, 

proving the correct results obtained by the IE with just a slight difference in charge values. 

This difference is also observed from the sensitivity curve reported in fig. 3.13 (a). 

Although the IE and conditioner curves diverge a little bit, however, it shows similar change 

over the frequency range which also confirms the correct functionality of the IE. The 

sensitivities have been estimated from the slopes of the measured charge versus force within 

the frequency range 20-400 Hz.  

In a final test, we aimed to demonstrate the ability of the IE in detecting charges that 

occurred due to a small indentation force. The test was done by fixing the shaker frequency 

at 400 Hz and adjusting its amplitude to reach the minimum force value. Results presented 

in fig. 3.13 (b) show that the IE as the conditioner was capable of measuring charges 

obtained at 0.01 N force. Also, the difference in results between IE and conditioner is 

constant, thus, making it is possible to apply setup calibration and find the empirical 

difference value. 



 

(a) 

 

(b) 

Fig. 3.13  (a) Sensitivity as a function of frequency; (b) measured charges at minimum detectable force (0.01 N). 

3.5 Assessment of results 

Two aspects of the design have been analyzed: the IE measurements precision by 

expressing the signal to noise ratio and the design power consumption. 

3.5.1 Signal to noise ratio 

Measuring the signal to noise ratio of the achieved results is important to compare the 

measured charges power to a level of noise power that may exist in the design. Harmonic 

distortions are one of these noises that would add to the input signal or it may occur at the 

output of the IE. Such noise contributes directly to the signal-to-noise ratio of the design. 

According to IEEE [72], SINAD (signal to noise and distortion ratio) and ENOB (effective 

number of bits) are useful methods for noise analysis. SINAD measures the degradation of 

 

(a) 

 

(b) 

Fig. 3.12  (a) IE output measurements with real sensors; (b) Conditioner output measurements with real sensors. 



the signal due to unwanted signals in noise and distortion. Also, it provides the basis for 

calculating the ENOB that specifies the number of bits of the signal which are above the 

noise floor. The formula for calculating the SINAD expressed below: 

 It is computed by finding the ratio of the root-mean-square (rms) of the fundamental 

signal (As) to the root-mean-square of noise and distortion (n + k). After normalizing the 

input data to scale between 0-4.09 V (A/D reference voltage), FFT has been applied to 

distinguish the fundamental signal from other harmonics and noise existing in the spectrum. 

Finally, the amplitude of the signals in the spectrum have been measured and substituted in 

the equation.  

Whereas ENOB has been computed using the equation (5), derived in [73], after 

applying fast Fourier transform (FFT) to the data. Fig. 3.14 shows the process of applying 

FFT to compute both SINAD and ENOB. It demonstrates an example for an input signal of 

100 Hz; a) original signal in time domain, b) reconstructed signal after A/D conversion, and 

c) the FFT of the signal demonstrating the fundamental signal at the 100 Hz of frequency. 

ENOB =  
𝑆𝐼𝑁𝐴𝐷 − 1.76 𝑑𝐵 + 20log (

𝐹𝑢𝑙𝑙 𝑠𝑐𝑎𝑙𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
𝐼𝑛𝑝𝑢𝑡 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

) 

6.02
 

(5) 

Fig. 3.15 illustrates the results of SINAD and ENOB curves versus frequency. It shows 

a consistent behavior of the IE over frequency where 14 bits out of 16 bits of the digitized 

signals are above the noise floor. So, this will be an advantage to retain more accurate data 

and thus acquiring tactile data with high resolution. 

 

Fig. 3.14 Example of an input signal at 100 Hz of frequency in time and frequency domains. 

SINAD =  20 log
rms(As) 

rms(n + k)
 (4) 



  

Fig. 3.15 SINAD and ENOB variation with respect to the applied forces. 

3.5.2 Power consumption 

The current consumption of the whole system has been measured using a DC power 

supply that provides a current limiter. The current consumed by the system is first 

measured, then the power consumption is calculated using the equation Power = Voltage × 

Current with 5V power supply. The power consumption for the different blocks is shown by 

the bar plot in fig. 3.16 where the total power consumption is equal to 300mW. 

 

Fig. 3.16 Measured power consumption of the system 

To supply the system with a single 2Ah Lithium polymer battery with a voltage of 3.7V, 

the available energy in joule is: 

E [J] = 2000mAh × 3.7V × 3600s = 26640J (6) 

With 10% efficiency loss to supply the platform with the correct voltages, the usable 



energy is then 23976J. Ec [J] the total energy consumed by the prototype is 1080J 

(300mW*3600s). To find the lifetime of the battery we use the following formula: 

Lifetime [h] = E [J]/Ec [J] = 22.2h (7) 

This lifetime of the battery is acceptable for the target application. Moreover, the 

presented results are promising towards achieving a wearable sensing system that can be 

powered by a small battery. 

3.6 Interface Electronics with signal pre-processing 

3.6.1 Motivation 

The results demonstrated in the previous sections represent the outcome of a quasi-ideal 

experimental setup where testing parameters have been pre-defined (i.e. touch alignments, 

pre-programmed force, and frequency levels for the touch). Although the results verify and 

validate the good response of the IE in acquiring sensor charges, however, the IE should 

further be experimented and tested in a more realistic scenario. For this purpose, we have 

arranged a different experimental setup including the IE with a senor patch (12 sensors) and 

a load-cell (for measuring force) with a PCB Sensor Signal Conditioner (48C54). The aim is 

study the correlation between stimuli applied at the surface of the skin patch and the 

response detected by the IE. The plan was to touch the sensor with a finger and adjust force 

level. 

The setups shown in Figure 3 are composed of a load cell and the skin patch connected 

to the conditioner (Fig. 3.17, a) or the IE (Fig. 3.18, b). The skin patch was attached to a 

rigid substrate and the final structure was placed on the top of the load cell. The tactile 

sensor and the load cell will detect the force stimuli applied on the surface of the skin patch 

at the same time. Both the output of the load cell and the output from the conditioner are 

digitized by a National Instrument DAQ and visualized on LabVIEW while the output of 

the Interface Electronics was connected directly to the PC through USB. The sensing patch 

in this setup has been sandwiched between two conductive tapes which are connected to a 

ground reference. This is to avoid any external source of charges (i.e. human hand) and thus 

limiting the induced charges to the effect of the PVDF piezoelectric material under a contact 

touch. 

Two similar tests have been conducted with the aforementioned setup installation. We 

have planned a testing scenario composed of applying two types of touches: continuous 

touch (Cont-Touch) and tapping touch (Tap-Touch). In case of Cont-Touch, we pressed the 

sensor by finger and changed the force level without releasing the touch. While in case of 

Tap-Touch the sensor was pressed and released very fast without changing the force level. 



The two types of touches were repeated many times with different contact areas and force 

levels.  These types of touches are expected to occur during manipulation as in grasping and 

rolling objects. On the PC side, a LabVIEW software that receives the sensor data and load 

cell force measurements. 

 

(a) 

 

(b) 

Fig. 3.17 Experimental setup 

Fig. 3.18 shows the IE and conditioner responses for touches with their corresponding 

forces. The time-domain signal of both IE compared to the conditioner does not present 

consistent results, signifying a kind of noise included in the IE output. It is difficult to 

discriminate the touch signals from the no-touch level (0<t< 5s). Thus, a time-frequency 

analysis has been carried out to identify the frequency contents of the touch’s signals. Fig. 

3.19 shows the frequency spectrum of both IE and conditioner measurements, presenting 

two major issues: 1) very low frequency (< 30 Hz) content corresponds to the touches has 

been detected by the conditioner whereas not detected by the IE and 2) harmonics are 

spread in the IE spectrum. 

  

Fig. 3.18 Conditioner measurments (left); Inteface Electronics measurments (right) 

 



  

Fig. 3.19 Conditioner measurments Spectrum (left); Inteface Electronics measurments Spectrum (right) 

Therefore, signal processing strategy is required to improve the response of the IE at 

very low frequency touches and to reduce the effect of noise (harmonics). For this purpose, 

we developed and implemented in the IE three filtering methods: decimation filter, finite 

impulse response filter (FIR) and moving average filter (MAF). The implementation 

process are introduced and the results of the three filter are discussed in the subsequent 

sections.  

3.6.2 Implementation of tactile signal processing 

Filtering by Decimation method 

The issues presented in the previous section concludes that the highest frequency 

component of interest is within tens of hertz (fm < 30 Hz). This implies that it is feasible to 

reduce the original sampling rate to a new rate that satisfy the requirements of Nyquist 

theorem for the new fm. Thus, this process of converting a given high rate F to lower F’ is 

called decimation. It utilizes oversampling and averaging to increase measurement 

resolution and improve signal-to-noise-ratio, see fig. 3.20. During oversampling, set of 

samples are accumulated to output a value within the new sampling period. The number of 

the accumulated samples (N) is defined by the decimation factor M which is the ratio of F 

to F’. The average process properly scales the result back to 16-bits format. 

 

Fig. 3.20 Decimation block diagram and equation 

Decimation filter has been implemented in the IE. The target is to reduce the sampling 



rate from 2 kHz to 64 Hz – the required sampling rate according to the Nyquist frequency 

(fs = 2fm; fm=32 Hz). Thus, the decimation factor is 31.25, the decimator outputs a value 

after accumulating and averaging 32 samples. The effect of applying the decimation is 

reported in Fig. 3.21. It shows a cleaner signal compared to Fig. 3.18 (right) with good 

reconstruction for the touches of low frequency, compared to Fig. 3.19 (right). These results 

verify the feasibility of applying decimation to filter the signal from noise and reconstruct 

the frequencies of interest in the real application. 

    

Fig. 3.21 IE with decimation filter measurments: in time (left); spectrum (right) 

Filtering by Finite Impulse Response method 

Finite impulse response is a well-known digital signal processing filter. The filter output is 

a result of discrete-time convolution process between input signal and the impulse response 

of the filter (filter coefficients), see fig. 3.22. The design of the filter is defined/specified by 

two main parameters: cutoff frequency and filter order. Also, for the purpose of reducing 

the noise in the IE signal, the value of cutoff frequency should be low to eliminate high 

frequencies from the signal spectrum. The filter order generally is recommended to be high 

to have more accurate results. However, high filter order means that many multiply-

accumulate (MAC) operations are required to filter out one output and thus the filter will 

cause a delay in the IE. Therefore, this trade-off should be considered while designing the 

filter. 

 

Fig. 3.22 Decimation block diagram and equation 

MATLAB has been used to design a FIR filter with 30 Hz cutoff frequency and an order 



of 58. The MATLAB code to generate the filter coefficients is shown below: 

H = fir1(57, 30/1000) (8) 

Where the first argument (57) is the filter order and is always one less than the desired 

length. The second argument is the normalized cutoff frequency where 1000 is Nyquist 

frequency (fm=fs/2; fs=2 kHz). The filter will have a delay of 28 samples (order/2) and 

cutoff frequency 30 Hz. This filter has been implemented in the IE. Fig. 3.23 shows the 

output of the filter where the noise spread as high frequencies components are eliminated, 

whereas the low frequency components are reconstructed. Note that applying FIR filter to 

all the IE channels (32) was quite challenging. From the controller resources perspective, 

the memory was limited to run just a set of 10 filters for 10 sensors. 

   

Fig. 3.23 IE with FIR filter measurments: in time (left); spectrum (right) 

Filtering by Moving Average Filter 

Moving average filter (MA) is one of the popular digital filtering techniques that can 

smoothen all kind of data and reduce random noise in the data. Exponential moving average 

filter (EMA) is a type of MA filter that operates with low computational burden and can be 

implemented easily and efficiently. EMA filter computes a weighted average of time-

ordered sequence by applying to the previous inputs weights that decrease exponentially 

[74]. 

The exponential moving average filter is expressed in a simple equation: 

𝑦[𝑛] = 𝛼𝑥[𝑛] + (1 − 𝛼)𝑦[𝑛 − 1] (9) 

Where x[n] is the current input, y[n] is the current output, and y[n−1] is the previous 

output; α is a number between 0 and 1. If α=1, the output is just equal to the input, and no 

filtering takes place. Equation 9 can be demonstrated as follows: 

𝑦[𝑛] = 𝛼 ∑(1 − 𝛼)𝑘𝑥[𝑛 − k]

𝑛

𝑘=0

 (10) 



The output of the filter can be expressed as the convolution of the input with the impulse 

response. The impulse response is the output of the filter when Kronecker delta function is 

applied to the filter input. The definition of the Kronecker delta: 

𝛿[𝑛] = {
1, 𝑛 = 0
0, 𝑛 ≠ 0

 (10) 

Then the impulse response of the EMA is: 

ℎ[𝑛] = 𝛼 ∑(1 − 𝛼)𝑘𝛿[𝑛 − k]

𝑛

𝑘=0

=  𝛼(1 − 𝛼)𝑛 (11) 

Thus, the output of the filter can be expressed as follows: 

𝑦[𝑛] = 𝑥[𝑛] ∗  ℎ[𝑛] (12) 

Analysis of such DTLTI systems is easier in the Z-domain, in which the convolution is 

reduced to a simple product. It is defined as: 

𝑋(𝑧) =  𝑍{𝑥[𝑛]} =  ∑ 𝑥[𝑛]𝑧−𝑛

∞

𝑛=0

 (13) 

Then the transfer function of the system is: 

𝐻(𝑧) =  
𝑌(𝑧)

𝑋(𝑧)
 (14) 

The transfer function of the EMA filter can be calculated from the impulse response of 

the filter expressed in equation 11: 

𝐻(𝑧) =  𝑍{ℎ[𝑛]} =  ∑ ℎ[𝑛]𝑧−𝑛

∞

𝑛=0

=  
𝛼

1 − (1 − 𝛼)𝑧−1
 (15) 

Expressing the frequency response of the filter describes how the spectrum of the input 

changes as it passes through the filter. To calculate the frequency response of the EMA 

filter, we can evaluate the transfer function for z=𝑒−𝑖𝜔 and then calculate the amplitude of 

each frequency component in the output by taking the modulus of H(𝑒−𝑖𝜔). 

|𝐻(𝑒−𝑖𝜔)|
2

=  
𝛼2

1 − 2(1 − 𝛼) cos(𝑤) + (1 − 𝛼)2
 (16) 

w is the normalized angular frequency in radians per sample. You can substitute it 

with ω=2πf/fs where f is the frequency in Hertz, and fs is the sample frequency of the 

system in Hertz. The filter's gain in function of the frequency in fig.3.24 is computed in dB 

by using the logarithmic scale. 

𝐴𝑑𝐵(𝑤) = 10 𝑙𝑜𝑔10|𝐻(𝑒−𝑖𝜔)|
2
 (17) 

 



 

Fig. 3.24  Frequency respons of the moving average filter 

The EMA behaves as a low pass filter where low frequencies have a near-unit gain, and 

high frequencies are attenuated. The filter has been implemented on the IE, performing 

filtering at around 30 Hz cut-off frequency. The filter α value has been computed and set a 

given value to enable the EMA to filter out signals above the cut-off frequency. To find it, 

the following equation has been solved where the power gain is a half:  

|𝐻(𝑒−𝑖𝜔)|
2

=  
1

2
 (17) 

Thus, the cut-off frequency is  

𝑤𝑐 =  arccos
α2 + 2α − 2

2α − 2
 (18) 

Therefore, the value of α is around 0.0909 to achieve cut-off frequency 30 Hz. 

This allows the Interface Electronics (IE) to perform filtering with minimum delay and 

at high sampling rate without the sacrifice of losing the detection of some touches during 

run-time. By implementing the filter on the IE and applying it for the 32 sensors, we 

recognized a significant improvement in the behavior of the IE. The IE is capable at 

initialization to set a small decision threshold which allows the detection of more genuine 

touches avoiding the detection of some fake touches. 

Fig. 3.25 shows sensor data acquired and filtered by the IE. The plot shows small and 

stable noise level compared to the touch applied and detected by the IE. This preliminary 

test shows the reconstruction of taping and continuous touches by the IE. For example, the 

first two spikes (@1.9 sec and 3.2 sec) correspond to tapping touches while the continuous 

touch is represented in the portion after the third spike (@ 5.1 sec). 



 

Fig. 3.25 Output of the IE after implementing EMA fiter 

After all, we can conclude that the IE can be configured to operate in three modes: 

continuous transmission, event-driven and digital filtering mode. In the continuous 

transmission mode, the IE sends data packet at each time it acquires a new sample. The 

transmitted data is for an array of 32 sensors where each sensor data is packed within 40-bit 

packet, leading to 1280 (32x40 bits) overall bits for the whole array. The overall bits are 

transmitted at 1 Mbps baud rate through UART, which will take around 1.3 ms for 

transmitting the data of the whole array. However, during the 1.3 ms, around 3 arrays 

samples will be lost since the actual sampling rate is 2 kSps and the transmission rate is 

around 725 Hz (2000/725). Thus, decreasing the sampling rate down to match with the 

transmission rate could be a solution to avoid losing samples. 

In the event-driven mode, the IE continuously acquires sensor data, but only sends the 

data of the touched/activated sensors. In this scenario, a threshold value should be 

defined/configured representing the decision boundary between touch and no touch events. 

The advantage of this mode is reducing the load on the transmission bandwidth, where only 

part of the sensor array will be touched leading to an overall number of bits smaller than 

1280 bits that should be transmitted. In the third mode, filtering is enabled in the IE where 

the user can select to run either Decimation filter or FIR filter. FIR is a good choice for 

filtering noise in the sensor data, however at the cost of delay and memory storage. With the 

current filter order (58), the delay would be around 28 samples and the number of filters to 

run on the IE would be at most 10 filters. This disadvantage could be solved by combing 

more than senor together to represent an input to the filter. On the other hand, no memory 

limitations occur for applying decimation to the whole sensor array (32 sensors). Noting 

that mode three, filtering, can run with either continues transmission or event-driven 

transmission. Table 3.1 reports the specifications of the IE working in the three modes. 

Table 3.1 IE SPECIFICATIONS WORKING IN THREE MODES: CONTINUOUS TRANSMISSION, EVENT-

DRIVEN AND DIGITAL FILTERING 

Modes Continuous 

Transmission 

Event-driven Digital Filtering 

FIR Decimation EMA 



# of sensors 32 32 32 32 32 

Sampling rate 2 kHz 2 kHz 2 kHz 64 Hz 2 kHz 

Transmission 

rate 

~ 725 Hz Touch-

dependent 

Max: 725 Hz 

Cont. Mode: 725 

Hz; Event-driven 

Max: 725 Hz 

Cont. Mode: 

64 Hz; Event-

driven Max: 64 

Hz 

~ 725 Hz 

Delay (trans. 

Time* + 

sampling time) 

1.3 ms + 500 

us 

Max: 1.3 ms + 

500 us 

Max: 1.3 ms + 500 

us + 14.5 ms**  

Max: 1.3 ms + 

15.625 ms 

1.3 ms + 500 

us 

Lost samples ~ 3 arrays*** Max: ~ 3 arrays Max: ~ 3 arrays No loss ~3 arrays*** 

# of bits of 

packet 

40 bits x array Max: 40 bits x 

array 

Max: 40 bits x 

array 

Max: 40 bits x 

array 

40 bits x 

array 

Memory 

limitations 

No No Yes; 10 sensors of 

the array are 

filtered 

No No 

* time to transmit data of 32 sensors; reciprocal of transmission rate  

** this time is due to the delay resulted from filter (order/2) x sampling time 

*** array contain 32 sensors 

 

3.7 Summary 

The design, implementation and experimental evaluation of miniaturized, low power and 

real-time interface electronics for PVDF-based piezoelectric sensors is presented in this 

chapter. The circuit design has been developed according to the sensing system 

requirements, task and hardware related. The IE is composed of low-power ARM-Cortex 

M0 microcontroller and a DDC232 analog-to-digital converter to interface 32-input tactile 

sensors and acquire their data simultaneously. The sensing system has been introduced by 

presenting the sensor structure with its model and by describing in details the building 

components and implementation process of the IE. After implementation, IE has been tested 

with a sensing array for a range of normal forces 0.01 to 1.2 N (10 kPa – 1.4 MPa) and 

frequency (20 Hz - 350 Hz). Where the generated charges have been acquired and measured 

by the IE with 56 dB signal-to-noise ratio and 14 bits of ENOB. This show that the IE can 

measure range of charge that corresponds to range force (order up to 100 kPa) for normal 

manipulation tasks and stresses. Moreover, the energy consumption of the IE system has 

been measured showing encouraging results of about 22h of battery lifetime. Furthermore, 

enhancement methods have been implemented toward improving the IE behavior by 

reducing the effect of noise in the design. Two filters, decimation and finite impulse 

response has been used and their results have been discussed. The IE provides three 



operational modes that could be tested in the future as its integrated in a sensory feedback 

system. In the next chapter we will demonstrate a sensory feedback system based on the 

proposed IE. Then we will study the behavior of the IE in delivering tactile information to 

the user//participant.  

  



 

  



 

 

 

 

 

 

 

 

Chapter 4 Interface Electronics in the 

Sensory Feedback of Prosthetics 

 

 

 

 

4.1 Introduction 

The tactile sensing system is the basis for enabling the sensory feedback system to deliver 

tactile information to the prosthetic user. Sensory feedback systems are usually composed 

of: i) tactile sensing arrays, ii) Interface Electronics (IE), and iii) stimulation system. The 

stimulation system delivers sensory information from tactile sensors through electrical 

stimulation on the forearm of an amputee. The system must be robust and embedded to be 

integrated into a prosthetic hand or used by patients with sensory deficits. As such, the 

system should include flexible tactile sensors of high electro-mechanical frequency 

bandwidth, with hopefully spatial resolution of 1mm for fingertips. 

Some researchers developed sensing systems [40], while others proposed PC controlled 

stimulation systems [41]. Few studies in the literature proposed embedded-real time 

feedback systems that incorporate the two systems. Pamungkas and Ward. [42] developed a 

sensory feedback system based on sixteen polymer film force sensors fitted to the fingers and 

palm of a prosthetic hand. Six electrotactile feedback channels were used for force feedback. 

A host PC was used to monitor the sensor data and to deliver appropriate pulses to the six 

electrodes. Whereas Franceschi et al. [35] and Hartman et al. [43]  investigated the 

possibilities of communicating tactile information such as touch position from artificial skin 

(PVDF based sensor array) through a host PC. Information from an array of 64 piezoelectric 

sensors is translated into electro-cutaneous stimulation patterns and conveyed to the subject 

through 32 electrodes or concentric electrodes attached to the subject’s arm skin.  



The speed in communicating sensation information has not been widely reported on 

when examining the performance of a sensory feedback system. A healthy nervous system 

can take approximately 14-25 ms to deliver tactile information to the brain [44]. A change 

in the dynamics of a prosthetic feedback system (e.g., response time constants, pure time 

delays) affects the overall system behavior, even its stability. One example of this is the 

integration of advanced haptic intelligence within the feedback loop. The authors in [45] 

examined a multi-modal sensory feedback system with three amputees. Sensory information 

from five piezoelectric barometric sensors was mapped into stimulations through 

vibrotactile or mechanotactile feedback. The developed system can communicate sensory 

information to the remaining stump of the amputees within 85 ms. Schoepp et al. [46] used 

a microcontroller (ATmega32u4) to map force level from two SingleTact sensors into one 

tactor fixed on the upper arm. The system operates with a time delay of 200 ms between 

touch instant and activation of the tactor.  

With respect to previous PC-based systems presented in the literature e.g. [35]-[43], this 

chapter demonstrates an embedded sensory feedback system based on the IE design 

developed and explained in chapter 3. The system can artificially convey to the user the 

position and the level of any touch applied on a flexible distributed electronic skin. The 

system is portable and capable of delivering the tactile information to the user within a 

delay comparable to the healthy nervous system [44]. The system was preliminarily tested 

on three healthy subjects.  

4.2 Feedback System Architecture 

The sketch of the proposed feedback system is shown in fig. 4.1. It consists of a) the tactile 

sensor arrays with three sensing patches, b) an IE, c) a master Bluetooth module [75], and 

d) a fully programmable 24-channel electro-cutaneous stimulator equipped with three 

concentric electrodes. In the following the details of each part. 



 

Fig. 4.1 Sketch of the sensory feedback system 

4.2.1 Tactile sensor arrays 

The presented sensing patches are composed of three sensor arrays (32 sensors in total), 

i.e. palm left1 (16 sensors), palm left2 (8 sensors), and single finger (8 sensors). The three 

patches were chosen following the number of channels offered by the IE (32 channels). 

These sensors have been fabricated as described in chapter 3 and fig. 4.1 shows their shape. 

4.2.2 Interface electronics 

The IE performs three tasks: 1) detection and identification of the position of the touch 

with its charge level (three intervals of charge were selected as the identification of three 

force levels); 2) translation of the charge value into its corresponding electrotactile 

commands; 3) transmission of the commands to the stimulator through the HC-05 Bluetooth 

module. The HC-05 is a master/slave configurable UART-to-Bluetooth converter. It 

supports Bluetooth standard 2.0 and provides UART serial interface for configuration and 

data transfer [76]. 

4.2.3 Stimulation device 

The stimulation block employs a 24-channel programmable battery-powered stimulator 

(WESP, Tecnalia Serbia [77]). It generates current-controlled waveforms with a current 

magnitude in the range of 0-10mA with 0.1mA step, a frequency from 1 to 400 Hz, and a 

pulse width from 50 to 500 μs. The WESP produces simultaneous charge-balanced biphasic 

continuous electrostimulation pulses in any combination of electrodes or individually in 

each electrode. Three self-adhesive concentric electrodes (CoDe 1.0, OT Bioelettronica, IT 

[78]) were used to deliver the electrical stimulation to the user. 

4.3 Experimental Setup and Protocol 



Experimental setup 

To test the effectiveness of the system, localization and identification tests have been 

performed. The localization tests the subject’s ability to localize the touched sensing patch 

while the intensity identification tests the subject’s ability to distinguish between touch 

pressure values. 

Three healthy subjects (3 males, 28 ± 8 years) participated in the experimental tests. The 

experimental setup of the conducted tests is shown in fig. 4.2. The three sensing patches 

were fixed on a table and connected to the IE. The subject was comfortably seated on a 

chair in front of a table in a quiet environment to avoid distraction. With the forearm on the 

table, the three electrodes were put on the volar side and aligned with the position of the 

sensor patches in the prosthetic hand. A sheet of paper was placed in front of the subject 

with a schematic drawing of the position and names of the electrodes. The experimental 

procedure was then explained to the subject. For each electrode, the subject received 

stimulation at a comfortable intensity to familiarize him/her with electro-cutaneous 

stimulation. The electrode locations remained fixed during the experimental sessions 

because they affect the perceptual thresholds. 

For each subject, the Sensation Threshold (ST) and Pain Thresholds (PT) for 

electrotactile stimulation have been determined for the three electrodes using the method of 

limits [79]. The current amplitude and frequency were constant and set to 3 mA and 100 Hz 

respectively. While the pulse width was adjusted to regulate the intensity of stimulation. 

The mean ST and PT calculated among all subjects were equal to 140±50 µs and 350±50 µs 

respectively. Previous experiments in [41] demonstrated that stimulation with these 

parameters allowed good perception and modulation of the elicited tactile sensations. 

 

Fig. 4.2 Experimental setup for the system 



Testing methodology 

The stimulation parameters were chosen to maximize the differences in the intensities of 

the stimuli. The pulse widths for the low (LE), medium (ME) and high (HE) electrotactile 

stimuli were: LE = 1.2×ST, ME = LE+0.3× (HE-LE) and HE = 0.8×PT, respectively. The 

sketch shown in fig. 4.3 illustrates the mapping of tactile information into stimulation 

patterns. Each subject received 9 different configurations of stimulation shown in Table 4.1. 

Where electrode F corresponds to patch Finger, electrode P1 corresponds to patch Palm1, 

and electrode P2 corresponds to patch Palm2.  Each experimental session was divided into 

three phases: pre-training, reinforced learning, and validation. During the three phases, each 

trial consisted of 2-second of continuous stimulation. 

Phase 1: subjects were instructed to focus on the stimulation and build a tactile mental 

map between sensation, level of stimulation, and the position of the activated electrode. The 

subjects were introduced to the nine configurations. The experimenter announced to the 

subject the electrode/patch that will be activated and the level of touch, then started the 

stimulation by touching the corresponding patch. In total 18 stimulations trails were 

presented (two repetitions per configuration).  

Phase 2: one of the stimulation configurations was randomly selected and delivered to 

the subject (three repetitions per configuration). The subjects were asked to guess the 

configuration, and verbal feedback about the correct response was provided by the 

 

Fig. 4.3 Mapping of tactile information into stimulation patterns at the subject side. 



experimenter. 

Phase 3: the protocol of phase 2 was repeated, except that each stimulation configuration 

was delivered five times (45 stimulation trials in total) and the subjects did not receive the 

verbal feedback about the correct answer.  

The Recognition Rate (RR) has been selected as a metric to recognize the ability of the 

subject in identifying the touch positions and the value of the applied pressure.  RR is 

defined as:  

         𝑅𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑡𝑟𝑎𝑖𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑖𝑙𝑠
× 100     (9) 

 

Table 4.1 NINE DIFFERENT STIMUALTION CONFIGURATIONS 

Categories 
Pressure Levels 

Low (L1) Medium (L2) High (L3) 

Touch 

Position 

Palm 1 (P1) P1. L1 P1. L2 P1. L3 

Palm 2 (P2) P2. L1 P2. L2 P2. L3 

Finger (F) F. L1 F. L2 F. L3 

4.4 Experimental results 

4.4.1 Recognition Rate 

Three subjects took an experiment on recognition of touch position and applied pressure. 

The average RR has been calculated using the following equation: RR = mean ± standard 

deviation was 86.66 ± 2.22 %. The confusion matrix presented in fig. 4.4 is used to evaluate 

the overall performance and identify prevalent classification errors. The confusion matrix 

demonstrates a visible diagonal line standing for a correct class (position) recognition. 

Whereas typical errors were observed due to the misjudgments of the level of the stimulus at 

electrodes P1 and P2 (the 2×2 squares along the main diagonal) and less frequently of the 

electrical stimulus at electrode F (the parallel diagonals above and below the main diagonal) 

for one level up or down from the presented (correct) level. The subject's answers were 

therefore distributed within several levels around the correct stimulus. Subjects were 

significantly better in discriminating low and high levels of pressure i.e. pulse width values 

with respect to the intermediate level. One reason is the small difference between two 

consecutive levels of pulse width. Which in turn depends on the PT and DT of each electrode 

separately. These results indicate the ability of the system in delivering meaningful 

information to the subjects. The high accuracies in discriminating different touch positions 

and levels demonstrate the feasibility of an embedded system in coding different touch 



modalities for example light and strong touches. 

 

Fig. 4.4 Confusion matrix for the RR of 9 configurations in the validation phase. The matrix demonstrates the superior 

performance in recognizing touch positions. 

4.4.2 System time latency 

The total delay from the applied pressure to the stimulation is the summation of the delays 

starting from the sensor, to the IE different tasks until the activation of the stimulation. A 

2.2 kΩ load resistor was connected between the stimulator electrode and the oscilloscope 

probe to visualize the stimulation signal. Fig. 4.5 shows the setup and the response of the 

system when a touch is applied to one of the sensor arrays. The total time latency is around 

32 ms. This indicates that the response of the system is fast enough to transmit the desired 

signal without a perceivable delay. 

  

(a) (b) 

Fig. 4.5 (a) Picture of the system responding to a contact on one sensor array; (b)  CH1 signal represents a touch event 



on the sensor array; CH2 signal is the corresponding electrical stimulation waveform. 

4.5 Summary 

A portable sensory feedback system has been proposed incorporating tactile sensors, 

interface electronics, and a programmable electro-cutaneous stimulator. The purpose is to 

demonstrate the functionality of the IE in the feedback system, showing its potential in 

providing tactile information to the user. The power consumption and time latency of the 

system have been measured. The proposed system operates in real-time with 32 ms delay 

(from touch to stimulation) and low power consumption of 300 mW. Although more 

extensive experimentation is needed to fully evaluate our system, the preliminary 

demonstration on three healthy subjects showed an accuracy of 86.66% recognition rate. The 

results of this study are important for sensory feedback design. They have shown the 

effectiveness of using a real-time embedded feedback system to extract and deliver tactile 

information to the users. The system is an important step toward integrating a distributed 

sensing system into a prosthetic hand and deliver tactile information to the user. In the next 

chapter we will introduce a tensorial-based machine learning algorithm that can extract from 

the acquired tactile data the type of touch modality applied on the sensor array. Then, we will 

study the performance of the algorithm on embedded hardware and propose an optimization 

method to reduce the algorithm complexity for efficient embedded implementation. 

  



  



 

 

 

 

 

 

 

Chapter 5 Embedded Machine Learning 

Algorithm for Tactile Data Processing 

 

 

 

 

5.1 Introduction 

Employing Machine learning algorithms in tactile sensing systems have emerged recently 

to recognize/classify touch patterns. The high computational complexity of the ML 

algorithms makes challenging the embedded implementation of tactile data processing. The 

requirements for embedding ML into hardware devices vary according to the complexity of 

each algorithm. Thus, hardware designers compromise between hardware complexity and 

classification accuracy of the ML algorithms in order to achieve efficient embedded 

implementations.  

A tactile sensing system comprises three main parts: 1) tactile sensors array, 2) interface 

electronics (IE), and 3) processing unit, as presented in Fig. 5.1. The sensors array – 

connected to the IE – generates electrical charges after applying a touch on its surface. The 

IE acquires and digitizes these charges and sends them for further processing. Then, the 

processing unit runs a ML algorithm to process and extract structured information e.g. 

classifying touch modalities from raw tactile data. 

 

 

Fig. 5.1 Block diagram of the tactile sensing system 

 



Many researches have focused recently on optimizing the machine learning algorithms due 

to the need in enabling intelligent tasks in embedded hardware platforms. Support Vector 

Machine (SVM) method is a widely used classifier and has gained momentum for its 

efficiency in various application domains. An optimized SVM approach is proposed in [80] 

to solve the global parameters optimization problem for ship systems state estimation. In the 

problem of the SVM classification of imbalanced datasets, authors in [81] suggested an 

approach to optimal parameters selection for the synthetic minority over-sampling 

technique algorithm. Authors in [82] proposed an improved version of the Whale 

Optimization Algorithm aiming to choose the best model for SVM by looking for the 

optimal parameter values. In [83], authors proposed a bio-inspired optimization tool for 

SVM for hyperparameters tuning demonstrating better results in terms of speed and 

simplicity compared to state of art works. An optimized linear-kernel SVM  is proposed in 

[84] to deal with the key issue in smart grids i.e. to reduce the gap between generation and 

consumption of electricity. However, these optimization techniques were proposed for 

linear SVM and in some cases for improving the classification accuracy and not targeting 

the hardware implementation.  

Tactile sensors deal with 3-dimension tensor structure data i.e. similar to videos, in which 

the first two dimensions are defined the area of tactile sensors while the third dimension 

represents the time. A tensorial SVM approach is proposed in [10] and has proven its 

effectiveness in classifying input touch modality. Ibrahim et al. [56] has presented the 

hardware architectures and implementation of the tensorial SVM presented in [10]. The 

system has achieved a peak performance of 302 G-ops and demonstrated the feasibility for 

real-time classification. However, the complexity of the implementation in terms of 

hardware resources and power consumption was dramatically increasing when the system 

scales up. 

This chapter proposes an efficient tensorial-based Support Vector Machine (SVM) 

machine learning algorithm for embedded tactile data processing. The main contributions of 

this work are summarized as follows:  

- It introduces a novel method for data organization of the tensors produced from a 

tactile sensing array.  

- It achieves, with respect to state of art [55], a reduction in the complexity of the 

tensorial-based algorithm in terms of number of operations per inference by 96.6% and 

the memory storage by 96.7%.  

- It demonstrates the feasibility of the proposed algorithm for real-time tactile data 

classification by providing a prediction speedup of 43× compared to [6] with an 



accuracy loss less than 2%. 

5.2 Tensorial Based Data Processing Algorithm 

This section presents the architecture of the tensorial-based machine learning algorithm for 

touch recognition proposed in [10]. Tactile data are acquired in 3-dimensional 

representation known as tensor. The first two dimensions of the tensor represent the sensor 

array, while the third one represents the time. Gastaldo et al. [10] proposed a tensorial-based 

ML approach for touch modality classification. The ML model is based on support vector 

machine method that was trained to discriminate between three classes: “sliding”, “rolling” 

and “brushing”. Fig. 5.2 depicts the algorithm block diagram. It is composed of three main 

processes: 1) Tensor unfolding, 2) Jacobi process, and 3) SVM classification. 

 

Fig. 5.2 Tensorial based machine learning algorithm 

5.2.1 Tensor unfolding 

The Tensor Unfolding process converts the tensor T (m1 × m2 × m3) to three matrices: A1 

(m1 × m2.m3), A2 (m2 × m1.m3) and A3 (m3 × m1.m2), where mi < mj.mk e.g. m1 < 

m2.m3. The first 2 matrices A1 and A2 stack the information of the tensor rows and 

columns, respectively. The third matrix A3 stacks the row and columns of the third 

dimension. 

5.2.2 Jacobi process 

The Jacobi process computes the singular values of the three unfolded matrices (A1, A2, 

and A3). It constitutes two subprocesses: symmetrization and singular value decomposition. 

Equation (1) is used to symmetrize the unfolded matrices: 

𝐴xsym  =  𝐴𝑥
𝑇  ×  𝐴𝑥 (1) 

Where 𝐴𝑥
𝑇
 is the transpose matrix of 𝐴𝑥 and x ∈ {1, 2, 3}. 

Symmetrization outputs three matrices 𝑨𝟏𝐬𝐲𝐦= 𝑨𝟏
𝑻𝑨𝟏 (m2.m3 × m2.m3), 𝑨𝟐𝐬𝐲𝐦= 𝑨𝟐

𝑻𝑨𝟐  

(m1.m3 × m1.m3) and 𝑨𝟑𝐬𝐲𝐦= 𝑨𝟑
𝑻𝑨𝟑 (m1.m2 × m1.m2). 

The Asym eigen vectors and eigen values are calculated using the singular value 

decomposition method. Matrix 𝐴sym is decomposed into a multiplication of three matrices: 



two matrices contain the left and right singular vectors (U and V) and diagonal matrix (S) 

contains the singular values. The mathematical representation of this process is expressed as 

follow: 

𝐴sym  =  𝑈𝑆𝑉𝑇 (2) 

The singular value decomposition method is based on one sided Jacobi algorithm. The 

Jacobi algorithm iterates to diagonalize matrix 𝐴sym until the convergence point is reached. 

5.2.3 Classification 

The support vector machine classifier finds the maximum and best gap (hyperplane) 

between two set of classes, linearly or non-linearly separable [85]. Tensor-based models 

cannot be separated by a hyperplane; thus, a nonlinear classifier is required. The designed 

classifier is based on a nonlinear kernel function of Gaussian distribution. The kernel for the 

two tensors (𝑋𝑖, 𝑌𝑖) is formulated as follow: 

𝐾 (𝑋𝑖 , 𝑌𝑖) =  ∏ 𝑘𝑛(𝑋𝑖 , 𝑌𝑖)

𝑁

𝑛=1

 (3) 

Where the kernel factor 𝑘𝑛(𝑋𝑖, 𝑌𝑖) is defined as: 

𝑘𝑛(𝑋𝑖 , 𝑌𝑖) = 𝑒𝑥𝑝 (−
1

2𝜎2
(𝐼𝑚 − 𝑡𝑟𝑎𝑐ⅇ(𝑍𝑇𝑍))) (4) 

Z =  𝑉𝑥
𝑇𝑉𝑦    (5) 

Where 𝑉𝑥 is the SVD eigen vector right matrix during the prediction phase, and 𝑉𝑦 is the 

eigen vector right matrix obtained during the training phase. Now, the classification 

function would be expressed as: 

𝑐𝑙𝑎𝑠𝑠 = 𝑓(𝑥) = ∑ 𝑊𝑖𝐾(𝑋𝑖 , 𝑌𝑖)

𝑁

𝑖=1

+ 𝑏 (6) 

Where class is the predicted category and 𝑊𝑖 are the weights obtained during the 

training phase.  

5.3 Implementation and optimization 

5.3.1 Data set and pre-processing 

The dataset obtained in [48] was used to train the model and to perform classification 

between two different modalities, labeled “rolling” and “sliding”. The dataset collection is 

expressed by a 3-D tensor – extracted from the 4×4 tactile sensors array. The tensor size (T) 



is 4×4×30000 which corresponds to 10s acquisition at 3 KSps sampling rate [48]. In fact, 

with such large number of elements represented by the 3rd component of the tensor 

(30000), the computation of the SVD matrix is impractical. For that, preprocessing methods 

[10] were applied to reduce the size of the tensor to be T (4×4×20). 

5.3.2 Training phase 

Prior implementation, the algorithm has been trained and used as a benchmark to test the 

proposed optimized algorithm. For fair comparison, the cross-validation method was used 

during training phase: the dataset composed of 260 samples was divided into five folds, 

each fold is partitioned into training and test sets; where 80% of the dataset represents the 

training set (208 samples) and 20% for the test set (52 samples).  

5.3.3 Hardware configuration 

The Zed-board hardware platform was chosen to run the algorithm. It contains a Xilinx 

Zynq XC7Z020 SoC which is composed of processing system together with programable 

logic. The processing system includes a dual ARM cores of A9 family with standard 

peripheral interfaces. The programable logic contains logic units that are accessible and can 

be configured. These features enable the Zed-board to run an operating system (OS) host 

and to perform tasks in real-time. 

The implementation steps are as follows: first, the Zynq has been configured to boot an 

Ubuntu Linux-based operating system; second, the algorithm C code has been installed and 

compiled into the OS; third, the C code was executed to predict the output modality class of 

the test set (five folds each of 52 samples); finally, the model accuracy and prediction time 

have been recorded. Results show that for every input sample, the algorithm requires around 

1.2 seconds to classify a touch modality. 

5.3.4 Code profiling 

The Linux provides a profiling tool that allows to extract detailed information about the 

execution of a program (execution time, number of function calls, etc.). This tool was used 

to profile the algorithm code and to record the execution time of every single process in the 

code. Table 5.1 reports the time required by the main functions to predict the output touch 

modality for 52 input samples. Results show that the Jacobi process dominates around 96% 

of the total run time of the code. Hence, this process is computationally expensive and 

should be optimized to speed up the inference time. 



Table 5.1 CODE PROFILE AFTER PREDICTING 52 SAMPLES ON ZYNQ 

Function Name Time % seconds 

Jacobi 96.06 63.33 

KernalTrace 3.52 2.32 

5.3.5 Algorithm optimization 

Fig. 5.3 illustrates the four steps needed to compute the tensorial SVM algorithm. The 

number of iterations required by the SVD process to compute the diagonal matrix depends 

on two parameters: the matrix size (mj.mk × mj.mk) and the convergence factor k. The code 

profiling results show that the SVD is the computational bottleneck. For that, reducing the 

computational load of the SVD process should be addressed. 

The subsampling method applied in [10] reduced the elements of the third component of 

the tensor. This method has reduced the number of iterations required by the algorithm and 

the iterations required by the SVD. However, this method is customized to the specified 

application where the subsampling factor is dependent on the datasets. This motivates the 

development of a generalized method for all data dimensions that can significantly reduce 

the computational complexity of the algorithm. 

 

Fig. 5.3 Sketch of the proposed method for data organization of the tensorial SVM approach. 

In the original algorithm, the unfolded Ax ∈ Rmi ⊗ Rmj.mk (mi, mj and mk are the 

tensor 3-dimensional components); Asym ∈ Rmj.mk ⊗ Rmj.mk, where AxT ∈ Rmj.mk ⊗

 Rmi. In the optimized algorithm, after flipping the symmetrization multiplication elements, 

the new matrix A’sym ∈ Rmi ⊗ Rmi where A’sym matrix size is smaller than Asym 

because mi < mj.mk is always valid. This method optimizes the algorithm whatever is the 

tensor data size. Fig. 5.3 shows a reduced number of iterations (mi*k < mj.mk*k) after 

optimization compared to the original algorithm. 



5.4 Experimental Results 

5.4.1 Computational analysis 

The algorithm is implemented on Zynq which deals with an input tensor T (4 × 4 × 20). 

After unfolding T into three matrices (A1 (4×80), A2 (4×80), and A3 (20×16)), For the 

obtained symmetric matrices, SVD operates on three matrices (A1sym (80×80), A2sym 

(80×80), and A3sym (16×16)). Then the same implementation was repeated by applying the 

optimization method where SVD operates on three matrices (A’1sym (4×4), A’2sym (4×4), 

and A’3sym (20×20)). Table II shows the complexity of SVD function in terms of matrices 

size and the corresponding number of iterations required to operate them (number of 

samples × k × size of symmetrized matrices). Results show that the optimized algorithm 

performs the same task as the original one with 30× reduction in number of iterations. 

To further assess the feasibility of the proposed approach and its impact on the scalability 

of the system, different tensor sizes have been analyzed. The complexity analysis presented 

in [12] for the tensorial kernel approach has been adopted to compute the number of 

operations required for each algorithm. Fig. 5.4 shows how the proposed approach 

decreases dramatically the number of operations even when the number of operations in the 

original algorithm have been normalized to 1:1000. Moreover, the percentage reduction in 

the number of operations is reduced of 99% which will reduce as consequences the 

hardware complexity, time latency, and energy consumption of the system. 

 

Fig. 5.4 Scalability analysis for the original versus optimized approach 

5.4.2 Case study 

The algorithm has been implemented on Zynq platform and the accuracy and inference 



time have been analyzed. Table 5.2 compares the average results of the original algorithm 

[55] with the proposed optimized version for five data folds each with 52 input samples. 

Results show that after optimization, the algorithm can predict faster by 43× with an 

accuracy loss less than 2%. The optimized algorithm achieves around 28 ms in predicting 

one output class enabling real time classification. Compared to the recent works [55], the 

proposed method significantly reduces the number of operations per inference from 545 M-

ops to 18 M-ops when dealing with an input tensor. In addition, the required memory size to 

store the tensor data is reduced as shown in Table 5.3.  

Table 5.2 PERFORMANCE ASSESSMENT 

 Original Algorithm [55] Proposed Approach 

SVD number of iterations 5,431,296 179,712 

Accuracy % 72.884 70.961 

Time latency (sec) 65.930 1.473 

 

 

Table 5.3 COMPARISON RESULTS FOR INPUT TENSOR (4 × 4 × 20) 

 [55] This work 

Number of Operations (M-OPS) 545 18 

Memory size (kB) 52.2 1.7 

Inference time 3.3 sec 28 ms 

5.5 Summary 

This chapter proposed an optimized tensorial-based machine learning algorithm for touch 

modality classification. Aiming to reduce the algorithm complexity, the proposed 

optimization technique has been applied and implemented on Zynq SoC to confirm the 

validity of the approach. Achieved results demonstrate that the proposed approach has 

reduced the computational complexity with respect to the original algorithm presented in 

the state of the art. First, the number of operations is decreased from 545 M-ops to 18 M-

ops. This has affected the time latency achieving a prediction speedup of 43×. Moreover, 

the needed amount of memory storage has been minimized from 52.2 KB to 1.7 KB; These 

results have been reached at a 2% of accuracy loss with respect to the literature [55]. The 

results have been compared with recent implementations and showed a performance 

superiority of our proposed approach. 

  



  



 

 

 

 

 

 

 

Chapter 6 Tactile Data Communication 

 

 

 

 

6.1 Introduction 

The main target of the tactile sensory feedback system in prosthetics and robotics is to 

enable the delivery of tactile data/information to the user/controller end [59]. These tactile 

data aggregate as the number of sensors in the system increases, thus, placing some 

constraints on the system related to data transmission. The path of data from the sensing 

elements towards the user/controller could goes through several communication 

channels/buses of different protocols. Where the choice of these channels is mainly affected 

by several factors such as the desired transmission speed, noise, data reliability, amount of 

wires and most importantly channel bandwidth and power consumption. Therefore, 

providing the sensory system with a wide-bandwidth and low power consumption channel 

would allow an effective utilization of tactile data for sensor arrays that are distributed over 

prosthetic/robotic body. 

Several communication protocols have been used for tactile data transfer (check chapter 

2) either wired buses or wireless channels. For wired buses, serial communication protocols 

(e.g. I2C, SPI, CAN) are used for short distances and less wiring, such as collecting data 

from sensor arrays. However, they suffer from low bandwidth which not suitable for the 

data transmission of many sensors. While the wireless data transmission, in addition to the 

low bandwidth, has some power disadvantages with some safety issues that can’t be 

bearable by critical applications working with human such as robots and prosthetics. 

This chapter demonstrates the implementation of a novel architecture based on the use 

of an optical fiber communication link for data transmission in the tactile sensory feedback 

systems for the prosthetic applications. The proposed solution, implemented on FPGA 



boards, is capable of acquiring data coming from a sensor array and transmitting them 

through the optical communication channel to a prosthetic user through an electrotactile 

stimulation after coding the data by a UWB-inspired pulsed modulation technique [86], 

[87]. The sensory system with the advantage of this channel, can acquire, process and 

transmit the information of 32 sensors with 100 Mbps transmission data rate while 

consuming 50 pJ/bit. Compared to the standard communication protocols [88], [89] such as 

Bluetooth, CAN bus, SPI and UART, the presented architecture provides higher 

transmission rate and lower power consumption.  

The chapter includes a description of the sensory system with additional details on each 

block. In addition, the communication protocol is fully explained, and a prototype that 

transmits data information measured from real sensors to the electrotactile stimulator has 

been experimentally validated. Chapter is organized as follows: Section 5.2 introduces 

sensory feedback systems blocks with the architecture of the proposed communication 

channel protocol. The implementation of the communication channels is presented in 

Section 5.3. Section 5.4 describes the experimental setup used to evaluate the overall system 

and present the test results. Finally, Section 5.5 summarizes the chapter. 

6.2 System Architecture and Communication Protocol 

The proposed feedback system architecture based on the optical communication channel is 

shown in Fig. 6.1. The system mainly consists of a transmitter and a receiver connected 

through an optical communication link. The transmitter board is connected to a data 

acquisition system that interfaces the tactile sensors. On the other side, the receiver board is 

connected to an electrotactile stimulator. Interfacing multiple tactile sensors is challenging 

since continuous sampling is required. This challenge is addressed by adopting a data 

acquisition circuit that integrates, converts and stores charge measurements of all input 

sensors simultaneously as detailed in the following subsections. The transmitter is designed 

to perform a data coding by a UWB-inspired pulsed modulation technique. Whereas, the 

receiver communicates directly with the prosthetic user through the electrotactile 

stimulation by means of a direct connection through a USB port translating the tactile 

sensor data into stimulator commands. The receiver has a shared global data buffer to store 

the decoded/recovered data and can send the processed data also to a PC (through a UART 

INTERFACE) and/or an oscilloscope for visualization. 

In the following sub-sections, we will describe, more in detail, each part composing the 

complete system. 



 

Fig. 6.1 Block diagram of the overall sensory feedback system based on optical communication channel. 

6.2.1 Tactile sensors 

A PVDF-based sensory array was used to demonstrate the proposed system architecture. 

Their structure and fabrication process are described in chapter 3, section 3.2.1. Noting that 

these sensors have been exposed to a validation process where an electromechanical test has 

been performed on a set of sensing patches [90]. Continuous indentation has been applied 

on the sensor taxel for the whole frequency range of interest for tactile applications [65] (< 

1 Hz - 1 kHz). Then, the (d33) coefficient has been estimated to define the behavior of the 

sensor. Results show an average value of the d33 that matches with the literature values and 

thus allowing our proposed system to be tested with real sensor data. 

6.2.2 Data Acquisition system 

The data acquisition design mainly consists of two components: an offset circuit and 

DDC232 [71] as a current input analog-to-digital converter. The architecture of both 

components has been demonstrated in chapter 3, section 3.2.2. However, the mechanism of 

acquiring, digitizing and retrieving data is controlled by an FPGA controller, which will 

also host the transmission block of the system and apply its protocol. 

6.2.3 Optical communication link 

Fig. 6.2 shows the block scheme diagram of the Optical Communication Link composed 

by two sub-systems: the transmitter board and the receiver board that are linked together 

through the optical fiber-based communication channel. 

The Transmitter board is composed of two blocks: TX MODULE and ANALOG UNIT. 

In the TX MODULE, the ADC INTERACE subblock controls the Data Acquisition System 

and generates from the acquired data a Data Package. Once the acquisition is accomplished, 

Serial Data Package bit stream is transmitted, and the Data Coding block is enabled 

performing the UWB pulsed coding of the data. Fig. 6.3 presents the coding technique, 

where it always generates a “synchronism pulse” (used for the clock recovery operation in 

the RX module) in correspondence to the rising edge of a clock signal (synchronous with 

the data to be transmitted) and a “data pulse” on the falling edge of the same clock signal 



only if the bit to be coded from the serial data is equal to “1”. Thus, the output of this block 

is an aperiodic sequence of voltage pulses (i.e., the Transmitted Pulsed Signal) that contains 

also a synchronization clock signal needed to properly receive the information/data 

contained in the signal generated by the sensors. 

 

(a) 

 

(b) 

Fig. 6.2 Block scheme of the Optical Communication Link; (a) Transmitter board; (b) Receiver board 

The second block in the Transmitter board, named ANALOG UNIT, is composed by a 

Vertical Cavity Surface Emitting Laser (VCSEL) and a LASER DRIVER that receives in 

input the sequence of the coded pulses and transforms them in a sequence of current pulses. 

This sequence of current pulses must have an amplitude greater than the threshold level to 

activate the VCSEL laser action (i.e., the amplitude of each current pulse of the sequence 

must exceed the value of the VCSEL threshold current). The generated laser pulses are 

coupled to the optical fiber.  

On the other hand, the Receiver board includes two main blocks: ANALOG UNIT and 

RX MODULE. The first one (Analog Unit) is composed by an analog conditioning circuit 

and an optoelectronic device, the Photodiode (PD). The PD has a frequency bandwidth 

equal or larger than that one of the VCSEL and generates current pulses that follow the 

same temporal shape of the transmitted laser pulses with amplitudes proportional to their 

intensities. Starting from the incoming pulsed current, the CONDITIONING CIRCUIT 

generates a sequence of voltage pulses and transmits the Received Pulsed Signal to another 

block of the Receiver board (RX MODULE) that performs the decoding operation. Once 

the Data Package has been regenerated by the DATA DECODING sub-block, it is sent to 

the STIMULATOR INTERFACE that is able to establish an UART communication with 

the Electrotactile Stimulator. 



 

Fig. 6.3 Example of the timing diagram of the optical UWB-based pulsed data coding technique. 

6.2.4 Electrotactile stimulation 

The WESP stimulator, fabricated by Tecnalia Serbia, is a battery-powered device that 

offers 24-programmable channels. The stimulator generates current pulses in the range of 0-

10 mA of intensity and 1-400 Hz of frequency with pulse width of range from 50ms to 

500ms. This allows the stimulator to produce electrotactile pulses with different parameter 

combinations. The stimulator is controlled by the stimulator interface block of the RX 

MODULE. When the system detects a touch, the receiver delivers the information to the 

stimulator by transmitting the corresponding commands. These commands order the 

stimulator to generate electrotactile pulses at given parameters. 

6.3 System Implementation 

This section presents the implementation details of the optical communication link 

blocks of the transmitter, optical channel drivers and the receiver. 

6.3.1 Transmitter module 

The TX MODULE architecture has been implemented in a Spartan6 FPGA (SP601 by 

Xilinx), as shown in Fig. 6.4. It works at a main clock frequency (i.e., Clock) equal to 100 

MHz. The ADC INTERFACE is the first subblock that activates after the Start signal goes 

high and it generates a proper Clock ADC signal connected to the DCLK pin of the 

DDC232 previously described. 

Every time the ADC INTERFACE toggles the signal Start Conv, the external A\C 

simultaneously scans and convert the analogue signals generated by the array of sensors. 

The converted signals are shifted out to the acquisition module (i.e., the ADC INTERFACE 

block) through the Digital Data port at 2 kS/s every time the Data Valid signal, connected to 

the DVALID pin of the acquisition module, is set to a logic state low. Thus, when the data 

are stored in the BUFFER, the ADC INTERFACE generates a Data Package containing the 

data that must be transmitted (16 bits for each one of the 32 channels) and a fixed sequence 



used as HEADER (i.e. the begin of the package). Then, the signal Enable_Cod goes high 

enabling the Data Coding block to perform the coding of the BUFFER data into a digital 

pulsed signal. The coding process and the composition of the Transmitted Pulsed signals are 

shown in Fig. 6.5. Its upper part shows the Serial Data Package, which consists of an 

orderly sequence of samples (each one corresponding to the related sensor of the input 

array) packed with a header used to detect the beginning of this package. While, the lower 

part of Fig. 6.5 reports the coding of the Serial Data Package into the Transmitted Pulsed 

Signal which are received by the ANALOG UNIT block of the transmission board. Only 

when a Serial Data Package has been transmitted, another acquisition can be performed. All 

the control signals of the ADC INTERFACE block are managed by a CONTROL UNIT 

that uses the ALU unit for the timing operations. 

According to Fig. 6.4, the DATA CODING block has been implemented by using a 

Phase-Locked Loop (PLL) and few logic gates. The PLL, already realized as a basic block 

inside the FPGA, generates two pulsed signals starting from the input Clock signal. The first 

pulse at the PLL terminal A is generated in correspondence of the rising edges of the Clock 

signal, and the second pulse at the PLL terminal B is generated synchronized with the 

falling edges of the Clock signal. These two pulsed signals have the same frequency of 100 

MHz with a relative phase difference of 180° and a selectable duty-cycle in order to 

guarantee the desired pulse width (about 1 ns in this application). Combining the Serial 

Data Package with the signals A and B, the DATA CODING block is able to send the 

Transmitted Pulsed Signal at 100 Mbps. 

 

Fig. 6.4 Block scheme of the TX MODULE. 

 



 

Fig. 6.5 Structure/composition of the Serial Data Package. 

6.3.2 Optical link drivers 

On the Transmitter board, the Analog Unit has been composed by a driver circuit (i.e., 

LASER DRIVER) that converts the voltage digital pulses into current pulses to drive the 

VCSEL (OPV314AT by TT Electronics) emitting at λ = 850 nm with a response time lower 

than 100 ps. In this way, the laser pulses are the optical replica of the current pulses. Fig. 

6.6 shows the schematic circuit of the Laser Driver based on a simple current-mirror 

topology. The variable resistors R1 and R2 (i.e., 470  trimmers) allow for the regulation of 

the current pulses DC level and AC amplitudes, respectively. The devices Q1, Q2 and Q3 

are BFT92 5 GHz wideband PNP BJT transistors while R3=R5=R6=33 Ω and R4=100 Ω. 

The VCSEL is coupled to one end of a 1 m length 50/125 µm multi-mode optical fiber 

while the other end is coupled to a high-speed Si-based photodiode (PD, DET025AFC/M by 

Thorlabs) with rise/fall times of about 150 ps. This photodiode, inside the Receiver Board, 

detects the laser pulses and generates their replica as photocurrent pulses. The PD is finally 

interfaced with a signal conditioning circuit that converts current pulses into voltage pulses 

(i.e., Received Pulsed Signal) to be decoded by the RX MODULE. Its schematic circuit, 

based on a transimpedance amplifier configuration, is reported in Fig. 6.7. It employs 

BFG520 9 GHz wideband NPN BJT transistors (i.e., Q1-Q5) while R1=R2=1.2 kΩ, 

R3=390 Ω, R4=470 Ω, R5=680 Ω, R6=2.7 kΩ. It provides a suitable amplification of the 

pulsed signal to reach amplitudes matching with the logic threshold levels of the standard 

I/O LVCMOS25 considered and employed for the transmitter and the receiver module. 



 

Fig. 6.6 Schematic circuit of the LASER DRIVER. 

 

 

Fig. 6.7 Schematic circuit of the CONDITIONING CIRCUIT. 

6.3.3 Receiver module 

In the Receiver board, the RX MODULE has been implemented on a Virtex6 FPGA 

(ML605 by Xilinx) and shown in Fig. 6.8. The main Clock signal in this block is equal to 

100 MHz. Starting from the Received Pulsed Signal provided by the CONDITIONING 

CIRCUIT, the CLOCK RECOVERY sub-block recovers and regenerates the 100 MHz 

clock signal starting from the received “Synchronism Pulses”. Simultaneously, the 

IDELAYE3 primitive block processes the same Received Pulsed Signal to start the data 

recovery procedure. This is a programmable time delay line implemented into the I/O 

blocks of the FPGA that provides a finite and discrete time delay to be added to the input 

pulsed signal. Consequently, the IDDR primitive block allows to achieve the Recovered 

Data Package starting from the Data Pulses, acquired at the falling edge of the Recovered 

Clock, of the properly delayed Received Pulsed Signal. 

At the starting time of the DATA DECODING block, the control unit DECOD (C.U. 

DECOD) gradually increases the time delay introduced by IDELAYE3 until the rising edge 

of the Recovered Clock is in-phase (i.e., synchronous) with the Synchronism Pulses. In this 

way, the falling edge of the Recovered Clock allows to recover the bit stream from the 

received Data Pulses. Furthermore, in order to perform a compensation of the time delay 
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variations of the IDELAYE3 due to supply voltage and/or operating temperature drifts, the 

C.U. DECOD properly enables and controls also the IDELAYCTRL block that is a further 

primitive used for this specific purpose implemented on the FPGA. The Recovered Data 

Package provided by the IDDR is stored in a specific buffer (BUFFER) when the HEADER 

sequence is correctly detected/recognized by the HEADER DETECTOR block. Thus, the 

Data Ready signal is set to a high logic state so indicating that the operation has been 

correctly performed and the data package has been acquired. At this time the Data Package 

is acquired by the STIMULATOR INTERFACE that suitably process and sent it to a 

stimulator and/or to a PC monitor through a standard UART communication protocol. 

 

Fig. 6.8 Block scheme of the RX MODULE. 

In particular, the data are processed to provide proper control commands to the 

stimulator device together with the generation of stimuli corresponding to the touch 

detected by the input tactile sensors. Once the UART transmission is accomplished, the 

CONTROL UNIT of the STIMULATOR INTERFACE block enables the acquisition of the 

subsequent Data Package with the signal Enable Decod. Moreover, the control commands 

carry out the parameters related to the stimulations to be generated (e.g., stimulation pulse 

intensity, frequency and electrode channel position, etc.) that could change according to the 

type and the force intensity of the touch of the sensing elements (i.e., their physical 

stimulation). 

6.4 Experimental Setup and Results 

The experimental setup was implemented as shown in Fig. 6.9. It incorporates an array of 

32 tactile sensors (taxels) along with the ADC INTERFACE. The TX and RX modules are 

implemented on two FPGA boards with the optoelectronic devices (laser driver and 

conditioning circuit) and circuits of the optical communication link. The overall system, 

operating at 100 Mbps transmission data rate through the Optical Communication Link, is 

connected to a PC through USB cable to 1) to collect the sensor’s data and plot them using 

MATLAB and 2) to display the touch information onto a graphical user interface (GUI). 

The GUI interface layout has the structure of the sensor array, which allows to easily 



identify the location of touch on the screen. 

 

Fig. 6.9 Photo of the experimental set-up showing the two FPGA boards and the optical communication link composed by the 

optoelectronic devices and circuits together with the optical fiber. 

Three tests have been conducted. The first was a preliminary test of the designed 

communication architecture, where a package of 512 bits made by a repeated sequence of 

{0,1} has been employed to verify the correctness of the data transmission and, so, of the 

overall Optical Communication Link. All the signals have been evaluated and acquired 

through the 6 GHz bandwidth digital oscilloscope LeCroy Master 8600A. Fig. 6.10 shows 

the initial part of the transmitted bits of the Serial Data Package, generated starting from the 

chosen repeated sequence {0,1}, and the related pulsed coded sequence measured at the 

output of the PD. In this way it is possible to mainly observe the correct functionality of the 

DATA CODING block and of the LASER DRIVER block. In the lower part of the Fig. 

6.10, it is also possible to observe the Received Pulsed Signals generated by the 

Conditioning Circuit that are subsequently read by the RX MODULE. As shown, the 

Conditioning Circuit are able to correctly amplify the signal coming from the PD. 
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Fig. 6.10 Experimental measurement: Serial Data Package related to a repeated {0,1} bit serial sequence and the 

subsequent Transmitted Pulsed Signal operating at 100 Mbps. The Transmitted Pulsed Signal is observed at the output of 

the PD and at the output of the Conditioning Circuit (i.e., Received Pulsed Signal). 

The second test was carried out to evaluate the correctness of the decoding process of 

the transmitted serial data operated by the RX MODULE and to verify the Uart 

Communication Output. A package of 512 bits containing the samples of a ramp voltage 

signal has been assembled and periodically sent from the transmitter to the receiver. After 

the data decoding and processing was performed by the receiver module, the recovered data 

have been transmitted through a UART communication protocol, implemented on the 

receiver FPGA, to the PC. As shown in Fig. 6.11, MATLAB environment has been used to 

receive the decoded data package and to plot the corresponding samples.  

Finally, Fig. 6.12 shows an example of measurement results achieved by the third test 

which was conducted on the complete proposed system. The green channel is the 

Transmitted Pulsed Signal generated starting from the data coming from the Tactile Sensors 

(digitalized and collected into the Serial Data Package). The purple and blue channels show 

the clock and the data recovered by the DATA DECODING block, respectively. Moreover, 

in the magnified sections of Fig. 6.12 the HEADER and the begin of the Serial Data 

Package are highlighted, while in the lower part are shown the last bits acquired and the 

signal that indicates the correct detection of the HEADER. 
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Fig. 6.11 Example of samples of a periodic ramp voltage signal that has been coded, transmitted via optical fiber, decoded, 

sent to a PC through a UART communication protocol (implemented in the RX MODULE on FPGA) and plotted in 

MATLAB environment. 

 

 

Fig. 6.12 Experimental measurement of the overall system operating at 100 Mbps: the green channel is the Transmitted 

Pulsed Signal related to the data coming from the Tactile Sensors; the purple and blue channels are the Recovered Clock 

and the Recovered Data Package, respectively; the yellow channel is the detection signal of the header. 
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Table 6.1 PROPOSED TACTILE SENSORY FEEDBACK SYSTEM: MAIN SPECIFICATIONS, 

PERFORMANCES AND CHARACTERISTICS 

Number of tactile sensors 32 

Sensor data sampling rate 2 kHz 

Optical transmission data rate 100 Mbps 

Optical link power consumption 5 mW 

Transmission power efficiency 50 pJ/bit 

FPGA LUTs for the Tx + Rx 1420 + 1320 

FPGA FFs for the Tx + Rx 2230 + 2860 

 

6.5 Summary 

A tactile sensory feedback system based on an optical fiber communication link for the 

prosthetic application was described and implemented. The UWB-based pulsed data coding 

technique of the optical channel allows the system to operate with high data rate while 

showing low power transmission. The assembled system is composed of both digital 

transmitter and receiver block, and an acquisition circuit which interfaces 32 piezoelectric 

sensors. The transmitter acquires, encodes and sends sensor data via the optical channel. 

Whereas, the receiver decodes, recovers and translate the sensor data into commands. These 

commands control an electrotactile stimulator, conveying the tactile information to the user 

as electrotactile stimulations. The transmission performances have been evaluated by 

emulating the data coming from 32 sensors sent to an external apparatus (i.e., PC and/or 

oscilloscope) that represents a possible stimulator. A summary of the main overall system 

specifications, performances and characteristics is reported in Table 6.1. Results showed a 

correct functionality of the proposed system and validated that the system can transfer large 

number of data at 100 Mbps while low power consumption 50 pJ/bit. Moreover, thanks to 

the higher bandwidth obtained with the combination of the optical link and data coding 

used, a larger number of tactile sensors can be easily employed for the proposed sensory 

feedback system while maintaining a real-time operation. 

 

  



  



 

 

 

 

 

 

 

Chapter 7 Summary and Future 

Perspectives 

 

 

 

 

7.1 Summary 

The main target of the tactile sensory feedback system in prosthetics and robotics is to 

deliver tactile information to the user and controller respectively. The tactile information 

represents touches that usually occur during object manipulation and exploration tasks. 

However, utilizing tactile information effectively requires a tactile sensing system that 

fulfils the prosthetic system requirements in terms of portability and functionality. Tactile 

sensors are the main block of the tactile sensing system, where in most cases should cover 

wide areas of prosthetic/robot surface. Thus, developing tactile sensing system is quite 

challenging due to set of issues related to hardware and algorithmic levels. For hardware 

requirements, the electronic circuits of the sensing system should be capable of interfacing 

large number of tactile sensors; acquiring sensors data with minimum delay and at high 

sampling rate; processing and transmitting large amount of data through reliable 

communication channels/buses. The algorithmic requirements include tactile data 

processing algorithms that can extract meaningful information from data. The algorithm 

structure and complexity should provide the desired processing task with minimum 

hardware resources at which will be employed. 

This thesis focused on developing a tactile sensing system, taking into consideration 

most of the mentioned requirements. This work paves the way toward embedding the tactile 

sensing system in prosthetic/robotic allowing the user to restore sense of touch in real-life. 

In this regard, three approaches have been proposed.  



In the first approach we developed low power and real-time interface electronics for 

tactile sensing system for prosthetic application. The IE design is miniaturized and suitable 

to carry up to 32 PVDF-based piezoelectric tactile sensors. The design has been 

implemented including component-off-the-shelf DDC232 converter for signal conditioning 

and data acquisition with low-power ARM-Cortex M0 microcontroller. This 

implementation allowed the IE to perform simultaneous sampling, which is suitable for 

achieving real-time operation. Moreover, we conducted two types of tests to evaluate the 

behavior of the IE.  

In the first test, real sensing array has been connected to the IE, together held on an 

experimental setup where a shaker instrument has been used to generate normal forces 

indentation. We analyzed the charges acquired by the IE, where results show that the IE can 

measure range of charge related to normal manipulation tasks and stresses (forces up to 100 

kPa) at 56 dB signal-to-noise ratio and 14 bits of effective number of bits (ENOB). For the 

second test, we integrated the IE in a sensory feedback system to demonstrate the 

functionality of the IE in the feedback system, showing its potential in providing tactile 

information to the user. The proposed system operates in real-time with 32 ms delay (from 

touch to stimulation) and low power consumption IE for 300 mW. Although more extensive 

experimentation is needed to fully evaluate our system, the preliminary demonstration on 

three healthy subjects showed an accuracy of 86.66% recognition rate. 

Furthermore, enhancement methods have been implemented toward improving the IE 

behavior by reducing the effect of noise in the design. Two filters, decimation and finite 

impulse response has been used and their results have been discussed. The results of this 

approach are important for sensory feedback design. They have shown the effectiveness of 

using a real-time embedded feedback system to extract and deliver tactile information to the 

users. The system is an important step toward integrating a distributed sensing system into a 

prosthetic hand and deliver tactile information to the user. 

In the second approach, we have implemented a touch modality classification 

algorithm on embedded hardware platform. The algorithm is a tensorial-based machine 

learning algorithm based on support vector machine classifier (SVM). Then, we analyzed 

the performance of the algorithm (classification time, accuracy, number of operations) and 

studied the complexity and its effects on the hardware. In this regard, we proposed an 

optimized version of algorithm aiming to reduce the its complexity and improve the 

algorithm performance on the hardware. The proposed optimization technique has been 

applied and implemented on Zynq SoC to confirm the validity of the approach. Achieved 

results demonstrate that the proposed approach has reduced the computational complexity 



with respect to the original algorithm presented in the state of the art. First, the number of 

operations is decreased from 545 M-ops to 18 M-ops. This has affected the time latency 

achieving a prediction speedup of 43×. Moreover, the required amount of memory storage 

has been minimized from 52.2 KB to 1.7 KB; These results have been achieved at a 2% of 

accuracy loss with respect to the literature [6]. The results have been compared with recent 

implementations and showed a performance superiority of our proposed approach. This 

approach allows the tactile sensing system to acquire, process data and extract touch 

modality on embedded hardware near the sensor and in real-time. 

In the third approach we proposed a tactile sensory feedback system based on an 

optical fiber communication link for the prosthetic application. The optical communication 

protocol is based on UWB-based pulsed data coding technique which allows the system to 

operate with high data rate while showing low power transmission. The assembled system is 

composed of both digital transmitter and receiver block, and an acquisition circuit which 

interfaces 32 piezoelectric sensors. The transmitter acquires, encodes and sends sensor data 

via the optical channel. Whereas, the receiver decodes, recovers and translate the sensor 

data into commands. These commands control an electrotactile stimulator, conveying the 

tactile information to the user as electrotactile stimulations. We implemented the system 

including the data acquisition circuit and the communication channel. Then we evaluated 

the transmission performances by emulating the data coming from 32 sensors sent to an 

external apparatus (i.e., PC and/or oscilloscope) that represents a possible stimulator. 

Results showed a correct functionality of the proposed system and validated that the system 

can transfer large number of data at 100 Mbps while low power consumption 50 pJ/bit. 

Moreover, among the standard communication protocols (I2C, CAN, Bluetooth) this 

approach allows the tactile sensing system to employ large number of tactile sensors and 

transfer their data in the system through high bandwidth and low power communication 

channel while maintaining a real-time operation. 

7.2 Future Perspectives 

The aforementioned approaches contribute to the tactile sensing system where the first 

approach deals with the sensors and the interface electronics (data acquisition) block. This 

approach allows employing large number of sensors with low-power and real-time 

operation. These results motivate the integration of the proposed IE design in a prosthetic 

hand where sensor array will be connected to the IE mounted on the hand. On the other 

hand, the IE will be extended to handle 64 sensors and then will be implemented in a 

sensorized glove which will be used in an experimental campaign on a post-stroke patient. 

With respect to the power consumption aspect, the DDC232 circuit architecture would be 



modified and implemented on ASIC design to operate in event-driven mode. This allows 

the chip to scan all input channels with consuming minimal energy. 

The second approach is related to the processing unit of the sensing system where tactile 

information are extracted from the acquired sensor data. The approach introduces an 

optimized touch modality classification algorithm that can be embedded on hardware and 

execute the output classification with minimum delay and minimum hardware resources. 

From co-design perspective, a future approach would improve the performance of the 

algorithm by adding hardware accelerators and proposing new architectures (parallel 

computations) for several blocks of the algorithm. For instance, adding hardware IPs (i.e. 

Support Vector Decomposition) on the FPGA field of the Zynq SoC, which would speed up 

the classification task. Furthermore, storing the algorithm parameters requires enough 

storage which in embedded sensing system would be challenging due the limited memory 

storage. In addition to the high memory accesses that are required during the algorithm run-

time imposing additional burden in terms of power consumption. Therefore, approximate 

memory approaches could be applied to reduce the memory read/write accesses and thus 

improving the power requirements of the sensing system. 

The last approach is proposed to deal with the transmission of tactile data in the sensing 

system, especially in case of large amount of data received from large number of sensors. 

The communication channel allowed the system to transfer tactile data with low power 

consumption and wide bandwidth transfer. These results motivate the integration of the 

communication channel (ASIC design) which can be embedded in the tactile sensing 

system. Finally, combining the above three approaches in one system could paves the way 

toward an efficient embedded electronic system for tactile sensing system that could be 

integrated in electronic-skin applications (i.e. prosthetic). 
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