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Abstract 

Advanced human-computer interaction (HCI) or human-machine interaction (HMI) aims to help 

humans interact with computers smartly. Biosignal-based technology is one of the most promising 

approaches in developing intelligent HCI systems. As a means of convenient and non-invasive 

biosignal-based intelligent control, myoelectric control identifies human movement intentions from 

electromyogram (EMG) signals recorded on muscles to realise intelligent control of robotic systems. 

Although the history of myoelectric control research has been more than half a century, commercial 

myoelectric-controlled devices are still mostly based on those early threshold-based methods. The 

emerging pattern recognition-based myoelectric control has remained an active research topic in 

laboratories because of insufficient reliability and robustness. This research focuses on pattern 

recognition-based myoelectric control. Up to now, most of effort in pattern recognition-based 

myoelectric control research has been invested in improving EMG pattern classification accuracy. 

However, high classification accuracy cannot directly lead to high controllability and usability for 

EMG-driven systems. This suggests that a complete system that is composed of relevant modules, 

including EMG acquisition, pattern recognition-based gesture discrimination, output equipment and its 

controller, is desirable and helpful as a developing and validating platform that is able to closely emulate 

real-world situations to promote research in myoelectric control.  

This research aims at investigating feasible and effective EMG signal processing and pattern 

recognition methods to extract useful information contained in EMG signals to establish an intelligent, 

compact and economical biosignal-based robotic control system. The research work includes in-depth 

study on existing pattern recognition-based methodologies, investigation on effective EMG signal 

capturing and data processing, EMG-based control system development, and anthropomorphic robotic 

hand design. The contributions of this research are mainly in following three aspects: 

 Developed precision electronic surface EMG (sEMG) acquisition methods that are able to 

collect high quality sEMG signals. The first method was designed in a single-ended signalling 

manner by using monolithic instrumentation amplifiers to determine and evaluate the analog 

sEMG signal processing chain architecture and circuit parameters. This method was then 

evolved into a fully differential analog sEMG detection and collection method that uses 

common commercial electronic components to implement all analog sEMG amplification and 

filtering stages in a fully differential way. The proposed fully differential sEMG detection and 
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collection method is capable of offering a higher signal-to-noise ratio in noisy environments 

than the single-ended method by making full use of inherent common-mode noise rejection 

capability of balanced signalling. To the best of my knowledge, the literature study has not 

found similar methods that implement the entire analog sEMG amplification and filtering chain 

in a fully differential way by using common commercial electronic components. 

 Investigated and developed a reliable EMG pattern recognition-based real-time gesture 

discrimination approach. Necessary functional modules for real-time gesture discrimination 

were identified and implemented using appropriate algorithms. Special attention was paid to 

the investigation and comparison of representative features and classifiers for improving 

accuracy and robustness. A novel EMG feature set was proposed to improve the performance 

of EMG pattern recognition. 

 Designed an anthropomorphic robotic hand construction methodology for myoelectric control 

validation on a physical platform similar to in real-world situations. The natural anatomical 

structure of the human hand was imitated to kinematically model the robotic hand. The 

proposed robotic hand is a highly underactuated mechanism, featuring 14 degrees of freedom 

and three degrees of actuation. 

This research carried out an in-depth investigation into EMG data acquisition and EMG signal pattern 

recognition. A series of experiments were conducted in EMG signal processing and system 

development. The final myoelectric-controlled robotic hand system and the system testing confirmed 

the effectiveness of the proposed methods for surface EMG acquisition and human hand gesture 

discrimination. To verify and demonstrate the proposed myoelectric control system, real-time tests were 

conducted onto the anthropomorphic prototype robotic hand. Currently, the system is able to identify 

five patterns in real time, including hand open, hand close, wrist flexion, wrist extension and the rest 

state. With more motion patterns added in, this system has the potential to identify more hand 

movements. The research has generated a few journal and international conference publications.  
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Chapter 1  

Introduction 

 

Scientific and technological advancements have significantly improved the quality of human daily life. 

Specifically, the methods used for humans to interact with a machine have been largely extended by 

using techniques to enhance human volitional conveyance. Research in this area has grown to a separate 

attractive discipline—the human-computer interaction/interface (HCI) or human-machine interface 

(HMI) [1]. 

Humans can interact with computers in many ways. A crucial point associated with this interaction is 

the interface between humans and computers. The keyboard, mouse and joystick are some of the most 

common HMI devices. However, more efficient and smarter ways to communicate between humans 

and machines are always in pursuit of researchers. Alternative methods that can easily, comfortably and 

independently interact with machines and devices are desired in the future for human daily life. With 

the rapid development in computer science and artificial intelligence, newly emerging HCI technologies, 

such as biosignal-based control, computer vision, and voice recognition, have presented an excellent 

prospect. 

A biosignal is usually referred to as a bioelectric signal that is originated due to the physiological 

processes in living beings and can be measured and monitored continuously. Electroencephalogram 

(EEG), electromyogram (EMG), electrocardiogram (ECG), electrooculogram (EOG) are some 

examples of biosignals originated due to physiological activities in the human body. The research of 

biosignal-based control in recent years has been active. It focuses on studying the characteristics of 

human body physiological electric signals and utilising them to build human-machine interfaces or 

smart control systems. 

This chapter briefs the background of HCI/HMI, especially outlining the control scheme driven by a 

human physiological signal from muscular activity—the surface EMG signal. In addition to providing 

a foundation for further knowledge, the concise prologue sets out the aim and objectives of this research. 

The thesis organisation is also drawn in this chapter to offer readers an overall concept for appreciation.  
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1.1 Background and challenges 

HCI or HMI allows for the control of external supportive or assistive devices by using information 

collected from the human body. Either a “direct” medium—human perceptual modalities such as speech, 

touch, vision and gesture, or an “indirect” physiological signal of brain or muscular activity can serve 

as the data source for deciphering human intentions and generating corresponding external device 

control commands. The use of a HCI system that employs physiological signals is usually to extend 

functionalities of human beings by translating their intents into commands towards external peripherals, 

or to help amputees or disabled people to communicate with the external environment. In recent years, 

smart biosignal-based intelligent systems, which can understand human intentions for autonomous 

control of health assistive devices, have attracted huge attention. Figure 1-1 represents a generic model 

of such systems, which mainly includes two phases, i.e. the physiological signal acquisition and 

processing carried out by the transducer functional block to give a series of logical symbols, and the 

translation of the logical symbol sequences to corresponding commands by the control interface block 

towards an output device [2].  

 

Figure 1-1. A generic model of the HCI system [3]. 

The electroencephalogram (EEG) and electromyogram (EMG) signals are two of the most commonly 

used biosignals in HCI research. Electroencephalography is a means of measuring brain activity and it 

plays a key role in an advanced HCI—the brain-computer interface (BCI) [4], whereas electromyogram 

represents muscular activity. The electrical physiological signal obtained by using electromyography is 

usually referred to as the EMG signal, which is a term that stems more from the historical perspective 

rather than the contemporary. Some researchers use the term ‘‘myoelectric signal (MES)” instead of 

the historical one—“EMG”. The term of “myoelectric control” is thus widely utilised for such control 

systems that involve the interpretation of human intentions from the EMG signal. 

The discovery and use of EMG signals have a long history. Modern research and investigation of EMG 

started in the 1940s. The early 1960s saw a revolutionary advance in this field—myoelectric control of 

externally powered prostheses [5, 6]. It is generally believed that the EMG signal from muscle 

contractions reflects the voluntary intention of the human central nervous system and in turn, the user’s 



Chapter 1    Introduction 
 

3 
 

volition. Therefore, the EMG signal can be used for identification of the user’s intentions to control 

various assistive devices, prostheses, and exoskeletons, or be applied to even more applications such as 

teleoperation of robots and virtual reality. Prosthetics and rehabilitation are currently common 

application areas of myoelectric control. 

The primary types of EMG include surface EMG and intramuscular EMG [7]. Compared to the 

intramuscular EMG, the surface EMG is a convenient and non-invasive method, hence the common 

option in research and clinical usage. Surface EMG signals contain rich information from which the 

user’s intents of muscular contraction can be deciphered. With residual muscles, or muscles to which 

nerves are rewired using targeted muscle reinnervation (TMR) surgery [8], amputees or patients with 

neuromuscular diseases or disability are able to generate repeatable, although gradually varying, EMG 

signal patterns during different levels of either static or dynamic muscle contractions. These patterns 

can then be used to develop smart EMG-based systems for different healthcare applications or automatic 

control systems that mimic human activities. 

Accurate human movement intention discrimination is an important research topic that attracts an 

enormous of attention and effort from many researchers. Most of the publications in myoelectric control 

focus on improving the accuracy of human movement intention discrimination algorithms. However, 

the usability of the myoelectric-controlled devices is not just dependent on the accuracy of software 

algorithms [9]. From the engineering point of view, the development of an EMG-driven system 

primarily integrates EMG acquisition, human movement intention discrimination, and output device 

creation and control [10]. The success of the EMG-driven system is associated to all influential factors 

in these aspects. These will be briefly introduced in sequence from the next section. On the basis of 

investigating the status quo and the challenges in these aspects, the research gaps will be identified to 

propose the research topics of this thesis. 

 

1.2 EMG noises and signal detection  

Although myoelectric control has been a hot research field for several decades, up until now there is no 

standard EMG database used for evaluating and comparing different myoelectric control methods [11]. 

Therefore, researchers have to acquire EMG signals by themselves. In addition, real-time myoelectric 

control experiments or applications also request collecting EMG data at the same time the targeted 

muscular contractions are performing. All these cause the demand of EMG acquisition systems. 

The EMG signal is formed by superposed action electrical potentials resulting from depolarisation and 

repolarisation of physiological variation of muscle fibre membranes. Different methods have been 

developed to detect the EMG signal—the electrical currents created in contracting muscles. Up until 
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now, the biggest problem with EMG signal acquisition is how to remove most of various noises. The 

main sources involved in contaminating the EMG signal include [12]: 

 Inherent noise in electronics equipment 

 Ambient noise 

 Motion artefacts 

 Inherent instability of signal 

 Electrocardiographic (ECG) artefacts 

 Cross talk  

Given the complex noise environment and the difficulty to remove these noises, the design of an 

appropriate EMG signal detection and pre-processing circuit is still by no means trivial despite the 

advances seen in modern electronics. The market provides a wide variety of commercially available 

professional multi-channel EMG systems that are able to record high-quality EMG signals [13]. 

However, they are often very expensive, such as the Delsys® TrignoTM wireless EMG system that is 

priced at about 20,000 US$ [14]. Although some affordable consumer-grade EMG devices are now 

available on the market, their performance is usually limited. A typical example is the Myo armband 

(priced at US$199) [14]. It has a low sampling rate of 200 Hz, which is reported unsuitable to existing 

myoelectric control methods [15].      

Apart from commercial EMG acquisition equipment, an alternative is to develop a specific EMG 

acquisition system using common commercial electronic components. Contrary to the usual expectation, 

only little attention has been devoted to the EMG signal detection and pre-processing in the literature 

of myoelectric control research, compared with the focus on the accuracy of movement intention 

discrimination. Additionally, the existing publications in EMG acquisition available to the public are 

mainly concerned with general principles such as the shape, size, interspace and placement of the 

electrodes [16], or the overall specifications of EMG signal amplification and filtering [12, 17-21]. It is 

hard to find a complete design with details that can be directly referenced or used by others to integrate 

it into different application systems. This might be a consequence of the fact that the utilitarian and 

detailed EMG acquisition system design is a high value asset for potential profits to commercial 

organisations. This also leads to an implication for researchers that it is difficult to theoretically compare 

these proprietary products due to technical confidentiality. 

An economic, yet precision EMG acquisition system for EMG-based control is desired, and it could 

provide a study platform to support research interest in this field, especially for the development of 

EMG-driven smart systems in healthcare applications and robotics. This leads to the necessity of 

research on economic EMG acquisition system design for EMG-based control in this thesis. 
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1.3 Movement intention discrimination 

Except for the effort dedicated to provide more informative EMG signals, another major issue to 

increase the success of myoelectric control is to accurately extract more information contained in EMG 

signals [7]. This is why movement intention discrimination is a central research topic in this area. 

Since the 1960s, a few generations of myoelectric control schemes from the earliest on/off control to 

newly developed regression algorithms, have been proposed, including [6, 9, 22, 23]: 

 On/off control 

 Proportional control 

 Direct control 

 Finite state machine control 

 Pattern recognition-based control 

 Posture control 

 Regression control 

The early developed non-pattern recognition-based control schemes are primarily established on the 

basis of pre-defined thresholds or finite states, using EMG signals from either one or two muscle groups 

to determine an ‘on’ or ‘off’ state, or mapping individual EMG signals to individual functions of a 

myoelectric control device to realise the control purpose. As a result, the number of movements that the 

device can generate is limited by the number of independently controllable EMG channels. This 

limitation prevents implementation of multifunction in such devices. 

On the other hand, regression control is newly developed to overcome the lack of simultaneous 

multifunction and proportional control, which is presented in previous non-pattern recognition-based 

and pattern recognition-based myoelectric control schemes, without giving rise to an increase of device 

complexity or a decrease of control robustness. The regression control algorithms use a mapping 

function that translates the information extracted from the EMG signal into continuous kinematics that 

can be used as control signals. Although the regression method offers great promise, it is nevertheless 

in its early stage. 

In contrast to those early on/off state based methods, pattern recognition-based methods offer a means 

of multifunctional control by classifying different muscle activation patterns. The pattern recognition-

based myoelectric control methods provide more degrees of freedom while using the same number of 

EMG channels as the on/off state based methods. This increases the variety of control functions and 

improves system robustness. The wide use of microprocessors in embedded systems facilitates the 

development of pattern recognition-based myoelectric control schemes. However, pattern recognition 

is only able to classify muscular movements in sequence, resulting in the lack of simultaneous control 
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capability. Although the advances in pattern recognition-based myoelectric control are encouraging, it 

is still largely research-based and confined to the laboratory environment. The reasons why there have 

not been widespread clinical applications are due to several factors: 

 The difference between real-life situations and static laboratory conditions for training and 

testing, 

 The uncertainty in the relationship between device controllability and classification accuracy, 

which is often reported in research studies, and 

 Changes in robustness and reliability over time [9, 24]. 

The function of motion pattern discrimination of a typical pattern recognition-based myoelectric control 

system can be divided into several main steps: data segmentation, feature extraction, dimensionality 

reduction, and classification. Data segmentation is used to window the EMG signals to improve 

classification accuracy and reduce response time. The selection of a longer window length is able to 

improve the stability of the features by reducing the variance to increase classification performance, but 

will incur a longer delay in classification decision. Feature extraction attempts to extract usable 

information from the EMG signals by increasing the information density of the EMG signals. The 

selected or extracted EMG features, instead of raw EMG signals, are fed into a classifier to improve 

classification efficiency. Studies have shown that choosing a feature set that is representative of the data 

is more critical than the choice of the classifier for high classification accuracy. If the resultant feature 

set forms a high-dimensional space, it may be necessary to apply the dimensionality reduction strategy 

before classification. The classifier recognises signal patterns and makes decisions within a pre-defined 

category set which corresponds to device controller commands. 

Notwithstanding the decades of research on pattern recognition-based myoelectric control, there is still 

not a widely accepted and standard method suitable to different kinds of pattern recognition-based 

myoelectric control applications. One difficulty of motion pattern discrimination is that it is subject to 

multiple factors. For instance, specific methods or parameters used for each functional step, intertwine 

to produce influences on the acceptability of pattern recognition-based myoelectric control, by affecting 

accuracy and robustness. More research is necessary to search out better methods or methodologies to 

improve the performance of the pattern recognition-based myoelectric control. 

Another challenge that limits pattern recognition-based myoelectric control in laboratory research is 

validation. Many publications on myoelectric control research use offline classification accuracy as the 

performance criterion. However, high offline performance may not be able to automatically result in 

good controllability in complex tasks [25]. Performance metrics, such as completion rate, throughput, 

completion time, path efficiency, speed and overshoots,  are not possible to be assessed and analysed 

through offline testing [26, 27]. On the other hand, online performance provides more thorough 
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assessment on the controllability than the offline counterpart. Virtual prosthesis control and computer 

games are typical online assessment methods. However, these online virtual testing methods still have 

limitations, e.g. not considering the prosthesis weight that is an important realistic influence factor [28]. 

This implies that a physical validation system is needed to facilitate the transition from the laboratory 

to real-life applications. The use of prosthetic hands is a typical example for this purpose. However, 

commercially available prosthetic hands are very expensive, which are often beyond the reach of many 

researchers. Specifically for this research, an economic physical validation platform is a feasible 

solution to evaluate and justify the proposed pattern recognition-based myoelectric control algorithms 

and methodologies. 

This research aims to propose pattern recognition-based intelligent EMG control methods that can be 

applied to different applications, such as teleoperation of robots, prosthetics, assistance and 

rehabilitation. The human hand is a dexterous part of the human body and it is also a typical and good 

source to get inspiration for bionic design. In addition, the surface EMG signal obtained from the human 

upper limb is an intuitive control signal for a robotic hand. Therefore, it was expected that the proposed 

EMG-based control method by this research could be demonstrated and validated on a robotic hand 

platform in real time. To get round of the high cost barrier, developing an economic anthropomorphic 

robotic hand system became a feasible option for this research. 

 

1.4 Research aim and objectives 

The aim of this research is to investigate feasible and effective EMG signal processing and pattern 

recognition methods that are able to be implemented on an economic platform for general robotic 

system control. This intention is obviously facing the challenge of finding effective methods for 

biosignal capturing, noise removal and bio-data pattern recognition. As the EMG signal is a human 

biosignal and contains human motion intention information, it is selected as the first biosignal this 

research will focus on. The research work includes the investigation on reliable methods and 

methodologies to improve EMG signal capturing precision, and EMG pattern recognition accuracy and 

robustness. To validate and demonstrate the effectiveness of the proposed methods and approaches, an 

economic anthropomorphic robotic hand system will be developed as a physical testing platform, since 

the human hand is a complicated bio-structure that is driven by biosignals and it is a typical and ideal 

imitation target for development and evaluation of biosignal-based intelligent control. To reach the 

expected goals, the following research objectives must be fulfilled: 

 Search for effective surface EMG signal capturing methods with high noise and interference 

rejection, 

 Investigate and develop feasible and robust EMG pattern recognition methods, 
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 Design a feasible real-time robotic control system that uses EMG as the input signals to control 

an economic anthropomorphic robotic hand for the evaluation of the methods, methodologies 

and systems developed by this research.  

 

1.5 Research methodology 

Experiments and testing will first be conducted on the proposed methods and systems for EMG 

acquisition and gesture discrimination. EMG acquisition precision will be analysed in both time and 

frequency domains. The influences of using different classifiers and EMG feature sets will also be 

compared for optimising the movement intention discrimination algorithms. 

Real-time myoelectric control experiments will be carried out on the developed physical robotic 

prototype testing system to validate the methods and methodologies developed by this research, and to 

evaluate the overall performance of the myoelectric-controlled robotic system. 

 

1.6 Thesis organisation  

This thesis consists of 7 chapters. Besides the abstract and the introduction chapter, a brief of the 

remaining chapters is presented below.    

 Chapter 2 is a literature review. It reviews related work and methods, mainly focusing on the 

areas of EMG signal acquisition, pattern recognition-based myoelectric control, and 

anthropomorphic robotic hand construction and control. 

 Chapter 3 presents the research work conducted by this research in EMG acquisition. The first 

contribution of this research proposes a high performance EMG detection, amplification and 

filtering approach with single-ended signalling and a fully differential configuration of EMG 

signal acquisition.   

 Chapter 4 covers the development of a pattern recognition-based real-time human hand motion 

discrimination method, which is the second contribution of this research. 

 Chapter 5 describes the development and integration of an EMG-driven anthropomorphic 

multi-fingered robotic hand and its execution strategy for myoelectric control. 

 Chapter 6 states the experiments. It includes both offline and real-time experiment settings, 

testing, outcomes, and the verification of the proposed methods.  

 Chapter 7 concludes and summarises this research and states the recommendations for further 

research.    
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Chapter 2  

Background and Literature Review 

 

This chapter covers an introduction in the three aspects that relate to the design and construction of an 

EMG-driven robotic system, i.e. surface EMG signal detection and data acquisition, human hand 

gesture discrimination, and anthropomorphic robotic system construction and control. In addition, this 

chapter will review the achievements and advancements of techniques or approaches in precision EMG 

collection, reliable and robust hand gesture identification, and dexterous anthropomorphic robotic hand 

development. The problems of existing approaches will also be highlighted for the purpose of 

improvement. 

 

2.1 Surface EMG signal detection and data acquisition 

2.1.1 Data sources for myoelectric control research 

Researchers of myoelectric control use the EMG datasets provided by others such as the EMG data set 

of the University of Paderborn [29] or obtained by themselves from carefully designed experiments for 

testing their methods. Most of publications in the myoelectric control research area employ specific and 

professional EMG acquisition systems from commercial suppliers, such as Delsys Incorporated [30], 

Motion Lab Systems Inc. [31], or BTS Bioengineering [32], to collect required EMG data sets. The 

commercial professional EMG system method features a very high cost. Therefore, to develop an 

affordable precision EMG acquisition system is often a feasible and realistic option for EMG-based 

intelligent control research. Solutions using specifically designed analog application-specific integrated 

circuit (ASIC) for EMG acquisition are reported in literature [33-36]. However, the ASIC method needs 

a great deal of effort and knowledge for ASIC design, and is not suitable for the majority of myoelectric 

control researchers. Therefore, an economic but high quality EMG system composed of commercial 

electronic components is desirable for the development of an affordable EMG-based robotic control 

system. A few reference designs for different functional parts of EMG acquisition can be found from 

literature [13, 37-40]. They often use an instrumentation amplifier (INA or IA) to implement a biosignal 

analog front end amplifier. However, it is hard to find a complete and detailed solution that can be 

directly applied to such a low-cost EMG-based robotic control system.  
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2.1.2 The biomedical fundamentals of the EMG signal 

The EMG signal is the electrical manifestation of neuromuscular activation during muscular contraction, 

representing the current produced by the ionic flow across muscle fibre membranes and transmitted 

through intervening tissues to the detection site. Despite the fact that EMG signals are measured from 

muscles, it is generally considered that the EMG signal contains similar information to the recordings 

directly attained from the neural cells. The central nervous system and nerve fibre innervation establish 

a sophisticated mechanism bestowed by nature. Figure 2-1 shows a simplified schematic diagram of the 

central motor system and the concept of two motor units [41]. 

 

Figure 2-1. The schematic representation of motor units (a) the basic motor control mechanism of a motor unit; (b) 
two motor units [41]. 

 

Skeletal muscles are made up of many motor units (MUs), each of which consists of a motor neuron, 

its axon, and muscle fibres innervated by the axonal branches [41, 42]. A motor unit is the most 

elementary functional unit that can be activated by volitional effort, which is able to generate a motor 

unit action potential (MUAP) when stimulated by a neural signal. Repeated continuous activation to a 

motor unit from the central nervous system generates a motor unit action potential train (MUAPT). 

Multiple motor unit action potential trains from concurrently active motor units are superimposed to 

form the EMG signal [5]. The MUAP of the nerve-innervated muscle fibres is one-by-one associated 

with the action potential travelling along the axon of each motor neuron. The EMG signal is thus strictly 

associated to the neural signal sent from the spinal cord to the muscles [43]. 

 

2.1.3 The characteristics of the EMG signal 

The amplitude of the EMG signal is stochastic and its distribution can be represented by a Gaussian 

function. The amplitude of EMG signals typically ranges from hundreds of µV to several mV (0–10 
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mVpp or 0–1.5 mVrms) and the useful energy is mainly distributed in the 0–500 Hz frequency range with 

the dominant components limited within 50–150 Hz. An example of the EMG signal and its frequency 

spectrum are presented in Figure 2-2 (a) [19]. 

(a) (b)  

Figure 2-2. The characteristics of the EMG signal: (a) The spectrum of a typical EMG signal [19]; (b) the spectrum of 
the mix of a surface EMG signal and a white noise [16]. 

 

The amplitude, time and frequency properties of the detected EMG signals are influenced by the 

anatomical and physiological characteristics of muscles, the control mechanism of the nervous system 

and the instrumentation of detection. More specifically, they depend on multiple factors such as the 

timing and intensity of muscle contraction, the distance from the electrode to the target muscle, the 

amount of adipose tissue between the skin and the muscle, the properties of the electrode and the 

amplifier, and the quality of contact between the skin and the electrode [17]. 

The detection of the EMG signal is inevitably affected by miscellaneous noise sources. Several major 

types of noise sources are involved in the process of EMG signal acquisition, including [19, 20, 44]: 

 The inherent noise of the electronic parts inside the detection and recording instrumentation 

(thermal noise); 

 The ambient noises from electromagnetic radiation sources in the environment (the dominant 

concern is the power line noise); 

 Two kinds of motion artefacts with electrical signals mainly in the frequency 0-20 Hz range 

from the relative displacement of the electrode-skin contact surface (movement artefact noise) 

and from the motion of the cable which is connecting the electrodes to the amplifier (cable 

motion artefact); 
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 The inherent instability of the EMG signal leading to unstable components in 0-20 Hz due to 

the quasi-random nature of the firing rate of the muscular motor units; 

 The noise at the skin-electrode interface (electrochemical noise). 

These noises can cause significant changes to the mixed signal spectrum, e.g. the substantially increased 

median frequency of the underlying signal when a band-limited white noise is added to a surface EMG 

spectrum, shown in Figure 2-2 (b) [16]. 

As for the stability, the EMG signal waveforms exhibit both transient and steady states. The transient 

state occurs in the transition from rest to a constant muscle contraction level, and the steady state is kept 

in the constant muscle contraction period. Although some publications report that the transient state can 

also be used in myoelectric control, most of the literature work considers the use of steady state EMG 

data because of the benefit of reducing the classification error rates compared with using transient data 

[45]. 

 

2.1.4 Electrodes for EMG signal detection 

The electrode unit is the closest part to the target biosignal source in the signal processing chain and its 

design acts as the most crucial aspect of the biosignal-based application system because it is very 

difficult to improve the quality of the signal beyond this point. Two types of electrodes, the non-invasive 

(surface) electrode and the invasive electrode (inserted wire or needle), are mainly used to detect the 

EMG signal [5, 17]. Most commercially available myoelectric control systems employ the surface 

electrode to detect the EMG signal and this is also the case in circumstances where a surgical technique 

targeted muscle reinnervation (TMR) is used for high-level upper-limb amputees [8, 46, 47]. The 

surface electrode, however, has a limited capacity to detect signals from deeper or smaller muscles. In 

addition, it is influenced by motion artefacts and a significant amount of crosstalk between muscles. To 

overcome the drawback of the surface electrode, the implantable EMG electrode was tried, using the 

intramuscular EMG signal or the combination of the surface and the intramuscular EMG signal instead 

of the surface EMG signal only [7, 48, 49]. The classification performance of using both surface and 

intramuscular EMG signals was compared and the experimental results showed there was no significant 

difference between these two measurement techniques [7].  

The surface electrode can be further identified into two categories, the passive and the active. The 

passive electrode has only a conductive (commonly metal) detection surface touching with the skin, 

while the active electrode contains a differential electronics amplifier in the same housing place as the 

detection surface instead of transmitting the very weak signal to an analog front amplifier on the main 

device through long lead wires. The active electrode arrangement can reduce the effects of capacitance 

coupling between the amplifier input wires and the power line, together with providing very low output 
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impedance [50]. The advantage of the active electrode is that the reduced capacitance coupling and the 

very low output impedance will not introduce significant noises from the power line and the cable 

movement artefact, but such commercially available active electrodes are very expensive [19]. 

The properties of electrodes have a significant impact on the EMG electronics apparatus design. 

Impedance, noise and DC voltage are three important factors of electrodes. Different materials, such as 

noble metals, carbon and silver chloride,  and different technologies, including dry and non-dry or wet 

contact (with a layer of conductive gel), have been used for manufacturing surface EMG electrodes [51]. 

The wet Ag–AgCl electrode is currently preferred for surface EMG applications. Figure 2-3 shows the 

basic modelling concepts of skin electrode interface [52]. In general, the contact electrode-skin 

impedance may range from a few kΩ to a few MΩ, depending on electrode size and skin condition, 

with the characteristics of larger electrodes having lower impedance and noise, but accompanied by  

increased smoothing effects (low-pass filtering) [21, 53]. It is generally considered that the noise level 

of 1–2 μVrms may be contributed by the electronics and 1–4 μVrms by the electrode-skin interface. Two 

kinds of possible sources cause DC voltages generated between a pair of electrodes. One is due to the 

metal-electrolyte interface “battery” effect which can generate DC voltages. The other is attributed to a 

number of physiological reasons that lead to DC or slowly changing voltages presenting between two 

electrodes on the skin. The DC voltage between two electrodes may reach as high as a few hundred mV 

[21]. 

 

Figure 2-3. Basic concepts of skin electrode interface: (a) Ideal situation; (b) a model of the real situation; (c) a model 
of electrode with finite area [52]. 

 

The simplest electrode arrangement for surface EMG acquisitions is to use an electrode to detect 

electrical potential with respect to a reference electrode located in an electrically unrelated area. This 

configuration is called monopolar (Figure 2-4 a). This configuration has the disadvantage of detecting 

all signals (including unwanted noises) in the vicinity of the detection point. On the contrary, bipolar or 

differential configuration, along with a differential amplifier, can be used to record only the potential 
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difference between a pair of electrodes at a fixed distance (Figure 2-4 b). In such an arrangement, either 

DC noise or  AC noise from a more distant place, such as the power line interference and cross talk 

from distant muscles, relative to the localised electrochemical events occurring in the contracting 

muscle fibres, will be regarded as “common-mode” signals and eliminated by the differential amplifier 

[5]. Other more complicated configurations, such as the double differential configuration and the high-

density surface EMG [21, 54-56], can also be utilised for more spatial selectivity or for getting more 

information. 

 

Figure 2-4. Electrode configuration: (a) monopolar configuration, (b) bipolar configuration [5]. 

 

2.1.5 EMG conditioning 

The characteristics of the surface EMG signal and the properties of surface EMG electrodes necessitate 

the EMG amplifier with appropriate specifications, which typically include high common-mode 

rejection ratio, high input impedance, low noise, low input bias current, and flat passband with sharp 

roll-off in transition band. Different amplification chains have been proposed and can be used to develop 

EMG amplifiers and filters with expected performance. Figure 2-5 demonstrates two general 

amplification chains for EMG acquisition, wherein the chain of panel (a) is suitable during either 

voluntary or electrically-elicited contraction whereas the panel (b) is only for voluntary contraction [21]. 
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Figure 2-5. Amplification chain block diagrams for a single channel [21]. 

 

2.1.5.1 Front end amplifier 

The input stage is the most crucial part of an EMG amplification chain. Three critical parameters, input 

impedance, common-mode rejection ratio (CMRR) and input noise, are mainly dependent on this stage. 

Traditionally, an instrumentation amplifier (INA or IA) can be used as the front end amplifier, which is 

also known as the pre-amplifier, for each EMG signal processing channel [37, 39, 57-59]. Since the 

impedance of the EMG amplifier must be at least 100 times greater than the largest expected electrode-

skin impedance which can reach 1MΩ in the case of small dry electrodes, INAs with input impedance 

lower than 100 MΩ are not recommended. The CMRR of INAs indicates the ability of rejecting a 

common-mode signal with respect to a differential signal. Ideally, the CMRR should be infinite but it 

is not the case in reality. The common-mode voltage presenting between the electrode pair can reach to 

the order of few volts; therefore, a CMRR greater than 100 dB is necessary to limit the power line 

interference to a level which can be considered negligible with respect to the useful surface EMG signal. 

In addition to the finite CMRR, the unbalance of the electrode-skin impedances and the finite INA input 

impedances can convert part of the common-mode signal to a differential signal at the INA inputs, 

which is usually considered the main source of power line interference. Low and balanced electrode-

skin impedances and high INA input impedances are required to reduce this effect. The input noise 

performance of INAs also need to be carefully selected because the input noise of the first stage 

amplification determines the smallest detectable EMG signal [21]. 

In order to increase the capability of the front end amplifier rejecting the common-mode interference, 

various technologies have been proposed in the literature, including the use of active electrodes, 

“guarding”, the driven right leg (DRL) circuit, the virtual ground and the digital adaptive filter [21, 44]. 
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2.1.5.2 EMG filters 

Due to the limited bandwidth of the surface EMG signal, filtering frequency components outside the 

band of interest is possible and also required to increase the signal-to-noise ratio and to provide anti-

aliasing for A/D conversion. Corresponding to the useful frequency band of 20–500 Hz of the surface 

EMG signal, the filter cut-off frequencies are usually selected between 10–20Hz for the high-pass filter 

and between 400–500 Hz for the low-pass filter [52]. The surface EMG signal is spectrally overlapped 

at the low frequency end with several types of noise sources, especially the movement artefact which 

is the most troublesome one. Removal of these components renders the surface EMG signal more useful 

for practical applications. As a result, more research effort has been seen in the determination of the 

high-pass filter specification. Different cut-off frequencies including 5 Hz, 10 Hz, 10–20 Hz, 20 Hz, 

and 15–28 Hz, and different roll-off rates including -12dB/Octave, -18dB/Octave, and -24dB/Octave 

were investigated or employed in literature [20, 38, 60]. However, the selection of these parameters is 

application and muscle dependant. This requires careful investigation and determination on these 

parameters for a specified application. 

Both analog and digital filters can be used to remove the components out of the surface EMG signal 

frequency band. In the analog solution, a high-pass filter should be implemented directly following the 

front end amplifier to remove low frequency components mainly due to the movement artefacts and the 

instability of the electrode-skin interface. An alternative strategy is to implement an AC-coupled front 

end amplifier, without immediately introducing the high-pass filter [37, 61, 62]. The voltage offset 

introduced by the cascaded amplification stages can be removed by an additional high-pass filter placed 

along the signal processing chain [13, 21]. In the digital solution, with a high resolution analog-to-

digital converter (ADC), the low frequency and the offset removal can be done by a computer or 

microcontroller using a high-pass digital filter or a moving average filter [21, 33]. In both analog and 

digital solutions, however, a low-pass analog filter is necessary to remove high frequency components 

for anti-aliasing immediately before the ADC. 

Conventionally, a notch filter at 50 Hz (or 60 Hz) is employed to clean the power line noises. However, 

the majority energy of the EMG signal is within the 30–150 Hz range, and there is no notch filter that 

can perform to the ideal level to only eliminate 50 Hz (or 60 Hz) noises without leading to the loss of 

the neighbouring EMG signal components. The use of the notch filter suppresses the power line 

interference. At the same time, however, it causes the loss of useful information of the EMG signal. 

Therefore, the notch filter is not recommended for EMG data acquisition circuitry [5, 7, 20]. As an 

alternative approach, various adaptive filter techniques have been proposed for the power line noise 

cancellation [63-65] and have shown the potential for specific EMG signal processing, but with much 

more complexity and computational cost. 
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There are different active filter realisation topologies detailed in analog filter design textbooks. Among 

these filter configurations, the Sallen-Key [38] and the multiple feedback (MFB) [39] topologies are 

two of the most widely used in EMG applications. 

 

2.1.5.3 EMG A/D conversion 

The analog signals are sampled and transformed to digital “levels” represented in binary code by analog-

to-digital converters (ADCs). The most critical properties of the ADCs are the sampling rate and the 

resolution, which impact significantly on the overall system performance. 

The useful surface EMG signal is limited below 500 Hz. Nyquist theorem dictates that the sampling 

rate must be at least twice the signal’s highest useful frequency for no loss of information. Apart from 

the finite bandwidth, the selection of the sampling rate involves taking into account more issues, such 

as the anti-aliasing filter design and the computational cost of data processing. Different sampling rates, 

e.g., 400–500 Hz [66], 1000 Hz [24, 54, 67, 68], 1024 Hz [69, 70], 2000 Hz [71] and 4000 Hz [72], 

were found in the literature for the surface EMG A/D conversion. 

The minimum resolution of the ADC is determined by the ADC input range and the number of binary 

digits of the output code. The principle is that the number of chosen binary output code bits renders at 

least the same order of magnitude of the noise level. With an input voltage range of 10 V and a binary 

digital code of 12 bits, the distance between two adjacent codes is 10V/(212-1) = 2.441 mV. This distance 

along with an amplification gain of 1000, provide a minimum input-referred resolution of 2.441 μV 

which is the same order of magnitude of the noise level [21]. However, a 16 or more bit ADC can 

provide better accuracy and flexibility to the amplifier with different gains [18]. 

 

2.1.6 Review outcome 

The trend towards smart, compact and lightweight equipment promotes the research on biosignal 

application, especially on the biosignal-based human machine interface (HMI). The EMG signal is a 

suitable candidate for developing a HMI control system. As a type of biosignals, the surface EMG signal 

is the electrical activity of underlying muscles. It is a very weak, non-stationary biosignal, stochastic in 

nature. The detection of EMG signals is affected by multiple inherent and external factors such as 

muscle anatomy, physiological process and different types of noises.  Therefore, a specifically designed 

precision EMG system is necessary for the success of an EMG-driven robotic system. Commercially 

available EMG systems can provide high quality recording of EMG signals but with the drawback of 

high cost. The lack of a complete and ready-to-use EMG acquisition system design suggests further 

research on low-cost and customised EMG acquisition. This section reviews the research work on the 
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characteristics of the EMG signal, the electrode for EMG detection and the electronics design for EMG 

detection and signal conditioning. Special emphasis is placed on electrode configuration, the design of 

the front end amplifier, and filter design. 

 

2.2 Human gesture discrimination   

Amongst various myoelectric control schemes, the classical methods are based on on/off or proportional 

techniques that usually do not allow the user to simultaneously control more than one degree of freedom. 

In contrast, the pattern recognition-based approach offers the multifunctional control ability, hence 

regarded as the current preferred method for myoelectric control of prosthetic or rehabilitation devices. 

The key point of pattern recognition-based methods is to apply an appropriate classifier to discriminate 

different EMG signal patterns which correspond to the user’s motion volition in a limited period. To 

this end, the pattern recognition-based motion pattern discrimination module needs more functional 

components or stages than the basic steps—feature extraction and classification which are essential to 

a classifier—to increase the recognition accuracy and speed. It is generally considered that the 

instantaneous value of the EMG signal is of little use because of its stochastic nature. Therefore, the 

EMG data must be segmented into windows from which a representative feature set can extract useful 

information of the data. In addition, muscle activity onset detection is needed to activate the subsequent 

classification process [10], and post-processing methods are usually applied after classification to make 

a smooth output. If the feature set is too high in dimension, dimensionality reduction techniques are 

necessary before it is fed to the classifier [6, 24]. 

In summary, the pattern recognition-based motion pattern discrimination module usually consists of 

motion activity detection, data segmentation, feature extraction, dimensionality reduction, classification, 

and post-processing. This section will review previous research work on these aspects. 

 

2.2.1 Activity Onset Detection 

Onset time is one of the most commonly used temporal characteristics of EMG signals in biomechanical 

analysis of human movement and myoelectric control [73]. To apply a myoelectric control method, the 

first problem is the correct detection of the onset of the movement. In fact, because of the stochastic 

characteristic of the surface EMG, onset detection is a challenging task, especially when surface EMG 

response is weak. Visual inspection and various computer-based methods that usually compare a 

variable related to the rectified EMG signals with a pre-set threshold have been employed as the means 

of onset detection. 
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Different computer-based onset detection methods were categorised into the single- and double-

threshold methods. The single-threshold method compares rectified raw signals with a threshold, 

whereas the double-threshold  method applies single-threshold detection a number of times [74]. 

Hodges and Bui compared twenty-seven computer-based methods for onset detection by a standard of 

visual EMG onset determination of an experienced examiner. They found that the most accurate criteria 

for methods with sliding window, threshold and low-pass filter techniques are 25 ms/3 SD/50 Hz, 50 

ms/1 SD/50 Hz, and 10 ms/1 SD/500 Hz, where the three parameters are window length, the threshold 

that is a multiple of standard deviation (SD), and the low-pass cut-off frequency respectively [75]. 

To improve the onset detection performance, several novel algorithms have been proposed, e.g. the 

maximum value detection (MVD) method [73],  the sample entropy analysis method [71], the maximum 

likelihood (ML) with an adaptive threshold technique method [76], the Teager–Kaiser energy (TKE) 

operator method [77], and the method combining Teager-Kaiser Energy (TKE) operator with 

morphological close operator (MCO) and morphological open operator (MOO) [78].  

 

2.2.2 Data Segmentation 

The instantaneous values of the EMG signal is generally considered to be unsuitable for pattern 

recognition due to its stochastic nature. Therefore, features are usually extracted from segmented EMG 

data analysis windows. Either the disjoint or the overlapped windowing schemes (shown in Figure 2-6) 

can be used for segmentation. In addition, the length of the analysis window must be appropriate, that 

is, neither too long to introduce an excessive controller delay (more than 300 ms), nor too short to bring 

about an unreliable decision [74].  

 

Figure 2-6. Windowing schemes (a) disjoint windowing technique (b) overlapped windowing technique [68]. 

 

Oskoei and Hu pointed out a segment with a length of 200 ms contains enough information to determine 

a motion state of the hand since the minimum interval between two distinct contractions is 

approximately 200 ms. A length more than 200 ms may demand overlapped windowing technique in 

order to avoid an excessive controller delay [68].   
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Farrell and Weir investigated the required trade-offs when considering both controller delay and 

classification accuracy for multifunctional prostheses. They found that the optimal controller delay 

ranges approximately from 100ms to 125 ms [79]. They also studied the relationship  between controller 

delay and analysis window length for both the disjoint and the overlapped windowing schemes 

with/without majority voting (MV) (as shown in Table 2-1) [80].  

Table 2-1. Controller delay equations for four configurations [80]. 

 

Smith et al. explored the relationship between classification error, controller delay, and real-time 

controllability using pattern recognition of EMG signals. A target achievement control (TAC) test was 

performed in a virtual reality environment to inspect controllability. EMG data sequences were 

collected using two or four bipolar electrodes on the proximal forearm for seven motions. Four time 

domain features (MAV, ZC, WL and SSC) were extracted within different analysis window lengths and 

fed into a classifier with a linear discriminant analysis algorithm. A linear mixed-effects model in SPSS 

software was used to determine the relationship between windows length and classification error. They 

found that the optimal window length ranges from 150 ms to 250 ms [60]. 

 

2.2.3 Feature Extraction 

Feature extraction is a method to obtain useful information from the EMG signal through the 

development of a feature set which is selected to preserve class separability. In fact, it has been shown 

that classification accuracy is more affected by the choice of feature set than by the choice of classifier 

[7]. Improper feature set selection is prone to the failure of the whole system design whereas a carefully 

selected feature set is possible to make the classifier directly achieve high performance. Thus, various 

features used in EMG signal classification  were proposed in literature and their properties were widely 

studied in the past decades [74]. 
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Most EMG features can be grouped into four categories according to the domain wherein they are 

calculated: time domain (TD), frequency domain (FD), time-scale or time-frequency domain (TFD), 

and spatial domain (SD) [81]. 

Hudgins et al. developed five time-domain features, i.e. mean absolute value (MAV), mean absolute 

value slope (MAVS), zero crossing (ZC), slope sign changes (SSC), and waveform length (WL), and 

applied them to a multilayer perceptron (MLP) neural network classifier that uses transient myoelectric 

signals for classification [82]. This successful application of time domain features in real-time 

environment incited a multitude of ensuing research efforts invested in myoelectric control research. 

Du et al. proposed a combination of six time domain features, including integral of the EMG (IEMG), 

waveform length (WL), variance (VAR), zero crossing (ZC), slope sign changes (SSC), and Willison 

amplitude (WAMP) [83]. There are also many other feature sets proposed in literature, such as the 

combination of the autoregressive (AR) and the root mean square (RMS), and the combination of mean 

absolute value (MAV)+ZC+SSC+WL+AR+RMS [84]. 

Considering that conventional approaches only use features in the time domain and/or frequency 

domain for EMG pattern recognition, Phinyomark et al. conducted a review of thirty-seven features of 

both time and frequency domain proposed in literature, including 26 time domain features and 11 

frequency domain features. Three criteria were suggested in quantitative evaluation of these features, 

i.e. maximum class reparability, robustness and complexity. They found that several features are more 

suitable for pattern recognition-based myoelectric control [85]. 

The mathematical definitions of the 26 features in time domain that Phinyomark et al. reviewed are 

summarised as follows: 

1. Integrated EMG (IMEG) 

IMEG is usually used to detect the beginning of EMG signal, namely used as an onset detection index. 

 
1

N

i
i

IEMG x


  (2.1) 

where ix  stands for the thi  point of the EMG segment and N  is the length of the EMG segment. These 

symbols have the same meaning in the following EMG feature definitions. 

2. Mean absolute value (MAV) 

MAV is one of the most popular EMG signal features and also used as an onset index. 
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This feature is also called the other names in previous literature, such as average rectified value (ARV), 

averaged absolute value (AAV), integral of absolute value (IAV), and the first order of -Orderv   

features (V1). 

3. Modified mean absolute value type 1 (MAV1) 
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where iw  represents the weighted window function. MAV1 is an extension of MAV with a weighted 

window function to improve robustness. 

4. Modified mean absolute value type 2 (MAV2) 
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MAV2 that is similar to MAV1 is also an extension of MAV but with a continuous function to improve 

smoothness of the weighted function.  

5. Simple square integral (SSI) 
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6. Variance of EMG (VAR) 
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7. Absolute value of the 3rd (TM3) 
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8. Absolute value of the 4th (TM4) 
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9. Absolute value of the 5th (TM5) 
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10. Root mean square (RMS) 
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11. -O rderv  (V) 

  i i ix m n  (2.11) 

 

where im  is the muscle contraction force, while   and   are constants, and in  is a class of the ergodic 

Gaussian processes. 
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It is reported the optimal value for v  is 2 and this results in the same definition with RMS. 

12. Log detector (LOG) 
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13. Waveform Length (WL) 
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14. Average amplitude change (AAC) 
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15. Difference absolute standard deviation value (DASDV) 
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16. Amplitude of the first burst (AFB) 

AFB is the first maximum point of the squared and filtered EMG signal. 

17. Zero crossing (ZC) 
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18. Myopulse percentage rate (MYOP) 
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19. Willison amplitude (WAMP)  
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20. Slope sign change (SSC) 
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21. Mean absolute value slope (MAVS or MAVSLP) 

MAVSLP is simply the difference between sums in adjacent segments k  and 1k  : 

 1 ;         =1, , -1k k kMAVSLP MAV MAV k K    (2.21) 
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where kMAV  is the M AV  of the 
thk  segment, and K  is the total number of segments over the entire 

sampled signal. 

22. Multiple hamming windows (MHW) 

  
1 2

0

,       1, ,
k

N

k i i i
i

MHW x w k K





    (2.22) 

where w   is the Hamming windowing function. 

23. Multiple trapezoidal windows (MTW) 
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where w   is the trapezoidal windowing function. 

24. Histogram of EMG (HIST) 

HIST is an extension version of ZC and WAMP. 

25. Auto-regressive coefficients (AR) 

The coefficients pa  of the auto-regressive (AR) model have been used as EMG features. The AR 

model is expressed as: 
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where P  is the order of the AR model, and iw  is a white noise error term.  

26. Cepstral coefficients (CC) 

Coefficients of the Cepstral analysis have been used as EMG features. The Cepstral coefficients can 

be derived from the AR model. 
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where a  represents the coefficients of the AR model.  

The 11 features in frequency domain that Phinyomark et al. reviewed are defined as follows: 

1. Mean frequency (MNF) 
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where jf  is frequency of the spectrum at frequency bin j  , jP  is the EMG power spectrum at 

frequency bin j , and M  is length of the frequency bin. The same meanings are applied to 

subsequent definitions. 

2. Median frequency (MDF) 
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3. Peak frequency (PKF) 

 max( ),          1, ,jPKF P j M    (2.28) 

4. Mean power (MNP) 
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5. Total power (TTP) 

Zero spectral moment (SM0) is another name for it. 
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6. The 1st spectral moments (SM1) 
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7. The 2nd spectral moments (SM2) 
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8. The 3rd spectral moments (SM3) 
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9. Frequency ratio (FR) 
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where ULC and LLC are the upper- and lower-cutoff frequency of the low frequency band and 

UHC and LHC are the upper- and lower-cutoff frequency of the high frequency band, respectively. 

10. Power spectrum ratio (PSR) 

 
0

0

0
f n

j j
j f n j

P
PSR P P

P

 

  

     (2.35) 

where 0f  is a feature value of the PKF and n  is the integral limit. 

11. Variance of central frequency (VCF) 
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In the experiment of Phinyomark et al., two data sets were collected and the dataset 1 was used to 

evaluate redundancy of EMG feature sets. The scatter plot was used as the evaluation method for 

redundancy evaluation. Based on the results of scatter plots and mathematical properties, time domain 

features were further separated into four groups, i.e. energy and complexity information methods that 

are calculated based on amplitude values of the EMG signal, frequency information methods that are 

calculated in time domain but contain frequency information, prediction model methods, and time-

dependence methods. There is much redundancy in these four groups of time domain features. 

Frequency domain features were found not suitable for EMG pattern recognition. Moreover, the dataset 

2 was utilised for finding optimal representative EMG feature sets. Linear discriminant analysis (LDA) 

classifiers were used for searching the optimal features. The recommended features are MAV and WL 

in energy and complexity information group, WAMP in frequency information group, AR in prediction 

model group, and MAVS in time-dependence group respectively. All of these EMG features are in time 

domain. Frequency domain features were found not as good as time domain features in EMG pattern 

recognition. However, MNF and PSR were recommended to be used for increasing classification 

accuracy [85]. Furthermore, two EMG feature sets were investigated for redundancy. The first set 

(MAV, WL, ZC and SSC) used by Hudgins et al. [82] was recommended to keep MAV, WL, and SSC 

whereas in the second feature set (IEMG, VAR, WL, ZC, SSC, and WAMP) which is used by Du et al. 

[83], IEMG and WAMP were recommended [85]. 

Except for the time domain and the frequency domain, EMG features in time-scale or time-frequency 

domain have also attracted much attention. Signal processing has a long history of using various 
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transformation techniques. The Fourier transform (FT) represents a signal by a sum of continuous 

sinusoids that last for all the time, thus being inefficient to transient signals. Wavelet transform (WT) 

represents a signal by the sum of a series of weighted, shifted and scaled versions of a “mother wavelet” 

function, enabling better representation of signals that includes fast changing components. Many 

biomedical electrical signals such as the EMG signal are non-stationary and with transient 

characteristics. Therefore, WT methods have potentials for better performance when applied to EMG 

applications. Phinyomark et al. studied the usefulness of wavelet transform (WT) to extract features 

from partial wavelet components for the EMG signal. The assessment of class separability is based on 

two criteria, i.e. scatter graph, and the ratio of a Euclidean distance to a standard deviation index (RES). 

The seventh order of Daubechies wavelet and the forth-level wavelet decomposition were found to be 

the optimal wavelet decomposition (Figure 2-7). Experiment results showed that only the EMG features 

extracted from the first-level and the second-level detailed coefficients or their reconstructed EMG 

signals facilitate class separability in feature space [69, 86]. 

 

Figure 2-7. Discrete wavelet transform decomposition tree from the decomposition level 4 [86]. 

Khushaba et al. proposed a new feature extraction method that extracts a set of power spectrum 

characteristics directly from the time-domain  to reduce the impact of limb position on EMG pattern 

recognition [87]. 

There are also researchers using discrete wavelet transform (DWT) or wavelet packet transform (WPT) 

combined with other techniques for feature extraction, such as  [45, 88]. Xing et al. extracted time and 

frequency information using wavelet packet transform (WPT) and selected the node energy of the WPT 

coefficients as the EMG feature. They developed a supervised feature selection method based on a depth 

recursive search algorithm to reduce the high dimension of features [89]. 

Higher order statistics or higher order spectra (HOS) can detect deviations from linearity, stationarity 

or Gaussianity in the signal. HOS was also used in myoelectric control research for feature extraction 

[90-93]. Other techniques of feature extraction that have been tried to use include fractal analysis, the 

first difference of EMG time series [94, 95] etc. 

Another progress area in EMG is that the advances in electronics provide the possibility of high-density 

EMG measurement to collect not only temporal and spectral but also spatial information, which can be 

used for feature extraction in EMG motion identification tasks [56, 96]. 
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2.2.4 Dimensionality Reduction 

The dimensionality problem, i.e. the “curse of dimension”, arises when increasing EMG features or the 

number of EMG channels. Therefore, dimensionality reduction is an essential technique in EMG 

applications with high dimensional feature sets, especially when using time-frequency domain features 

or high-density EMG. 

In general, two categories of dimensionality reduction methods exist in literature, i.e. feature selection 

and feature projection [45, 97]. Feature projection utilises specified transformation to obtain a new 

dimension-reduced feature space from the original one, whereas feature selection picks out a subset of 

the features available from the original set. 

Compared to other dimensionality reduction techniques, feature projection has reported exhibiting 

better performance, thus becoming a popular way to reduce the dimensions of the EMG feature vector. 

Linear discriminant analysis (LDA) and principal component analysis (PCA) [98] are two main linear 

methods used for feature projection. LDA linearly transforms a high-dimensional feature vector to a 

lower-dimensional vector space, meanwhile minimising the within-class distance and maximising the 

between-class distance. LDA is more efficient due to its less computational complexity but with the 

still comparable classification performance relative to nonlinear discriminant analysis (NLDA) [99]. 

Phinyomark et al. compared a total of seven methods, including six LDA-based feature projection 

methods and a PCA method, with a baseline (BS) system that uses all features without any 

dimensionality reduction. It is reported that orthogonal LDA (OLDA), uncorrelated LDA (ULDA), and 

orthogonal fuzzy neighbourhood discriminant analysis (OFNDA) are able to achieve good performance 

with an optimal feature set (RMS, IEMG, MAV, SKW, WL, SSC, ZC, and 6th-order AR). Their 

experiments showed the reduced feature vector with five elements caused only slight loss of 

classification accuracy [100]. 

On the other hand, Liu reported a filter-based feature selection approach which is independent of the 

type of classification algorithms and features. This means it is possible to perform EMG feature 

dimensionality reduction without any change to existing classification algorithms [97]. Mesa et al. 

developed a multivariate variable selection filter method to find the most informative and least 

redundant combination of EMG channels and features that is able to provide an accurate classification 

rate in a static-hand task of 14 different gestures [101]. 

 

2.2.5 Classification 

Pattern recognition attempts to assign each input value to one of a given set of categories or classes. 

Most of modern statistical classification algorithms have been applied to myoelectric control 

applications, e.g. decision tree algorithm [88], Gaussian mixture models [84], artificial neural networks 
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[102, 103], discriminant analysis, K-nearest neighbour (KNN) and Support Vector Machine (SVM). 

Discriminant analysis uses training data to determine the parameters of discriminant functions of the 

classifier [7, 99]. KNN is a special case of instance-based learning and also an example of a lazy 

learning technique. KNN finds a group of k nearest neighbours of the test pattern in the training set, 

then assigning the test pattern to the class with the maximum number of samples in the group of k 

nearest neighbours [104]. SVMs are “a system for efficiently training linear learning machines in 

kernel-induced feature spaces, while respecting the insights of generalisation theory and exploiting 

optimisation theory” [105]. SVMs combine three important ideas, that is, optimisation algorithms, 

implicit feature transformation using kernels, and control of over-fitting by maximising the margin 

[105]. 

Alkan and Günay implemented classifiers using five different discriminant analysis methods, including 

linear, diaglinear, quadratic, diagquadratic and Mahalanobis discriminant analysis, along with support 

vector machine (SVM) respectively. These classifiers were applied to the EMG signals generated by 

biceps and triceps muscles for four different movements. Mean absolute value (MAV) were employed 

to extract the feature vectors. The classification accuracy rate was tested by using 10-fold cross 

validation. They found the SVM classifier achieved a very good average accuracy rate (99%) and 

discriminant analysis classifiers gave a range of accuracy rate from 98% to 96% in the experiment [106]. 

Oskoei and Hu introduced and evaluated a SVM-based classification scheme to classify five limb 

motions and a rest state using four-channel EMG data collected from four locations on a forearm. They 

found that the SVM performed exceptional accuracy, robustness, and low computational load, 

compared to LDA and multilayer perception (MLP) [68]. 

Hargrove et al. proposed a novel multiple binary classifier (MBC) scheme for improved controllability 

of a powered prosthesis based on the ULDA algorithm. ULDA results in at most C-1 discriminatory 

dimensions, where C is the number of classes. Consequently, when feeding multidimensional feature 

data from only two classes to the ULDA algorithm, the output feature vector has a single dimension. 

Then it is able to be separated using a threshold. The threshold could be computed automatically based 

on certain criteria; however, it is left to let users or clinicians configure the class threshold in order to 

improve controllability. For the discrimination of more than two classes, MBC is used to form the final 

class decision through recombination in some way. A clothespin usability test in a virtual environment 

showed the proposed control system using MBC had more controllability but with a higher 

classification error. It suggested that false activations were an important factor of system controllability 

[24]. 

Liu presented an adaptive unsupervised classifier based on support vector machine (SVM) to provide a 

self-correction mechanism for improving classification performance [107]. 
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2.2.6 Post-processing 

Overlapped segmentation offers a dense stream of decisions. Postprocessing is used to remove spurious 

misclassification in the decision stream, producing more reliable and smooth decisions. 

Majority voting (MV) is a conventional postprocessing technique. A majority voting is performed using 

the current decision and decisions made in previous windows [74, 108]. MV improves the robustness 

of the controller by producing more stable output during classification. However, it does not consider 

the actual probabilities of misclassification. Instead of MV, Khushaba et al. proposed a novel Bayesian 

fusion postprocessing method to improve effectiveness by maximising the probability of correct 

classification [72]. 

Another post-processing approach is to remove the decisions made from the EMG data windows 

acquired during movement transition periods [45]. For real-time applications, however, this method 

requests real-time transition detection, resulting in more complexity. 

 

2.2.7 Review outcome 

A reliable movement intention discrimination method is one of the key points for the success of a 

biosignal-based HMI control system. Pattern recognition-based myoelectric control is a promising 

method for such a HMI system. The research to develop appropriate algorithms for different modules 

of pattern recognition-based myoelectric control has attracted many scientists devoting their effort to it 

for several decades. Most of publications in this area concentrate their interest on the study of 

representative classification feature sets, high accurate classifiers and effective dimensionality 

reduction methods. Some pay attention to other relevant techniques, such as activity detection or 

postprocessing technology. The majority of endeavours carry out the development of individual 

approaches based on classification accuracy in offline tests that use EMG data sets recorded beforehand. 

Some papers attempt to use surface EMG data acquired in real-time and verify the proposed methods 

in a virtual reality environment. However, accuracy cannot directly imply reliability and robustness. A 

reliable pattern recognition-based multifunctional myoelectric control system with acceptable 

robustness over time and condition changes still has a long way to go. Therefore, more research is 

needed to seek such a system.  

 

2.3 Anthropomorphic robotic system design and control  

Since the early 1970s, a large amount of effort and attention has been paid by many researchers to issues 

related to the construction and control of anthropomorphic robotic systems such as robotic arms, legs, 

humanoids etc.  Examining the human body and comparing the construction of legs, arms, feet and 
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hands, the human hand with five fingers has dexterous joints and is a complicated system to mimic and 

control. This could be the reason why many researches in literature focus on the human hand, which is 

widely studied and imitated for robotic system design, control methodology study and testing. This 

section presents a study on robotic hand construction and control, to give a clear picture of the current 

status of robotic hand design, and provides useful information for anthropomorphic robotic hand design. 

 

2.3.1 The development of robotic hands and exoskeletons 

Many robotic hand devices such as prosthetic hands and anthropomorphic exoskeletons have been 

developed for research or commercial purposes over several decades. A group of researchers published 

a few review articles that summarise the advances in this area. 

The authors of [109] investigated both common commercial prostheses and anthropomorphic research 

devices from a perspective of performance characteristics. Five prosthetic hands and eleven research 

hands were reviewed. Table 2-2 and Table 2-3 summarise their generic characteristics. 

Table 2-2. General characteristics of five current prosthetic hands [109]. 
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Table 2-3. General characteristics of eleven research hands [109]. 

 

Similarly, six commercially available myoelectric prosthetic hands (Figure 2-8), including Vincent 

hand by Vincent Systems, iLimb hand by Touch Bionics, iLimb Pulse by Touch Bionics, Bebionic hand 

by RSL Steeper, Bebionic hand v2 by RSL Steeper, and Michelangelo hand by Otto Bock, were 

reviewed in the aspects of mechanical design and performance [110]. Moreover, 13 prototype research 

prosthetic hands from publications were also surveyed in the same paper by collecting their general 

characteristics to help compare, analyse and find recommended design specifications. 

 

Figure 2-8. Six commercial myoelectric prosthetic hands [110]. 

The review article [111] proposed some design considerations based on the analysis of kinematical 

structures, actuators, and sensing technologies used in relevant robotic hand research projects. A task-

based design process was then established and recommended. 
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The authors of [112] presented an anthropomorphic prosthetic hand with a design explicitly providing 

both precision and conformal grasp capability, as shown in Figure 2-9. A total of four motor units are 

incorporated for nine degrees of freedom (DoFs). The precision grasps are fully actuated (DOA 1 – 

DOA 3), while the conformal grasp is performed by using only one motor for three fingers with six 

DoFs.  

 

Figure 2-9. A prosthetic hand providing both precision and conformal grasps [112]. 

As with the common prosthetic or research robotic hands, other types of hand-like devices, such as soft 

robotic hands [113-115] and exoskeletons [116, 117] are also reported in literature.  

 

2.3.2 Anthropomorphism and kinematics 

2.3.2.1 Anthropomorphism 

It is broadly accepted that the human hand is a reward of nature to human beings, and a result of a long 

period of evolution. In robotic hand design, one of the most useful methodologies is to obtain inspiration 

from human hand biomechanical studies. Anthropomorphism refers to the capability of a device to 

mimic the human hand in general aspects, such as size, weight, degrees of freedom (DoFs), shape etc. 

The term dexterity reflects the ability of the device to perform highly precise operations using all of the 

DoFs with feedback information from sources such as vision, perception, and/or tactility. Although 

anthropomorphism is not necessary to achieve a high dexterity level, it is desirable in rehabilitation, 

prosthetics, or other human-oriented environments [118]. 
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The human hand is a complex biomechanical structure, composed of bones, joints, muscles, ligaments 

etc. Its skeletal structure is shown as Figure 2-10. Each of the four fingers consists of three phalanges, 

whereas the thumb has only two phalanges. The distal interphalangeal (DIP) joint and the proximal 

interphalangeal (PIP) joint of each finger are able to exercise flexion or extension, but only the 

metacarpophalangeal (MCP) joint can also move with abduction or adduction in addition to flexion or 

extension. The thumb, which has the most complex structure in all five digits, shows the versatile 

movement abilities of flexion/extension, abduction/adduction, and rotation around the axis of the 

metacarpal joint on the metacarpal phalange.  

 

Figure 2-10.  Human hand skeletal structure [119]. 

The primary aspects involving anthropomorphic robotic hand design include [118]: 

 The presence of the main hand’s morphological features, such as the palm, the opposite thumb, 

and the number of phalanges. 

 The way in which contact is made with objects over the entire hand surface. 

 The robotic hand size resemblance to the human hand real size and the correct size ratio between 

all hand links. 

These can be depicted as Figure 2-11.   
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Figure 2-11. Robotic hand anthropomorphism level [118]. 

 

2.3.2.2 Kinematics 

The human hand operations can be generally classified into two different types: grasping and 

manipulation. The purpose of grasping is to hold an object in a static state with respect to the palm. 

Manipulation can be regarded as a generalisation of grasping and it is a kind of dynamic grasping to 

manipulate the object within the hand using collaborative finger movements [120]. Most grasping types 

further fall within two groups: power grasp and precision grasp. The power grasp holds the object 

between the finger surfaces and the palm mainly for force, while the precision grasp holds the object 

with the tips of the fingers and the thumb for high precision and less force [119]. 

The authors of [121] pointed out that anthropomorphic kinematics should simulate the human hand in 

four aspects: 

 Joint arrangement 

 Finger link length and length ratio 

 Opposable thumb workspace 

 The palm and fingers on a plane 

From a kinematic point of view, the minimum number of fingers in a robotic hand is three for grasping 

operation, while a minimum of four fingers are needed if targeting manipulation with repeated grasping 

motions [120]. The level of redundancy and flexibility of the fourth and fifth fingers can increase the 

chances of a stable contact with the gripped object in an unstructured environment, even though 

effective manipulation can be conducted with only three digits [122].  

The opposable thumb is one of the most critical features that contribute to the human hand dexterous 

manipulation ability. It is estimated that the loss of the thumb corresponds to a loss of 40% of hand 

functions [109, 119]. A review of research work on biomechanics of the human thumb to understand 

the evolution and morphology of the human thumb was presented in [119], which also investigated the 



Chapter 2    Background and Literature Review 

37 
 

robotic thumb design in some of the biologically inspired anthropomorphic robotic hands developed so 

far. It was found that the kinematic model of the thumb was one of the main variation sources of the 

robotic hand kinematic model, the total DoFs of which could vary from 15 to 25. It is necessary to 

incorporate an opposable thumb and a desired number of DOFs to successfully enhance the preferable 

features of a robotic hand. Various robotic thumb models with different design and control strategies 

found in the literature were summarised in [119], mainly in four groups of anthropomorphic robotic 

hand design: 

 Multi-fingered robotic hand 

A total of 10 selected robotic thumb designs were outlined. Thumb kinematics adopted in this 

group vary based on thumb base inclination towards the palm, joint axis orientations and 

locations, number of actuated DOFs, etc. 

 Prosthetic hand 

The thumb implementation in 11 prosthetic hands was discussed. It is more than a challenge to 

design a prosthetic hand with dexterity and at the same time making sure that its weight is 

comparable to the human hand (the average weight of a human hand varies from 0.4 kg to 0.6 

kg [109, 119, 121]). Therefore, existing prosthetic hands are mainly designed only for grasping 

objects, but not for manipulating these objects, in order to reduce the number of active DoFs 

and avoid mechanical complexity. However, present prosthetic hands are considered not to be 

dexterous enough mainly due to the lack of functional thumbs. A thumb kinematics design 

having more than one DoF can significantly improve hand functionality.  

 Adaptive/soft hand 

Four characteristic thumb mechanisms in adaptive/soft hands were investigated. Soft robotic 

hands outperformed their conventional rigid counterparts by their adaptability in unstructured 

environments. The concept of kinematic synergy was adopted in developing soft hands. The 

human hand can grasp using coordinated time-varying muscle activation patterns (synergies). 

These muscular synergies can be identified and modelled to implement hardware synergies for 

a robotic hand. The synergy-based models can contribute to less sophisticated robotic hand 

design by providing better understanding of force distribution and control.  

 Exoskeleton/hand assistive device 

Only a few thumb-assistive mechanisms were found, and most of them included only thumb 

flexion-extension motion. 

According to the allowed kind of motions, the hand configuration can be classified into four types as 

shown in Figure 2-12. 



Chapter 2    Background and Literature Review 

38 
 

 

Figure 2-12. Kinematic configuration of artificial hands [123]. 

Figure 2-13 shows the anatomical structure of the human index finger. The motion of the PIP and DIP 

joints are interdependent as the lateral bands of the natural finger couple the rotation of the DIP to that 

of the PIP joint. The ratio of the DIP joint rotation angle with respect to the PIP joint is approximately 

a constant, 2:3 [124-126].  

 

Figure 2-13. Anatomy of the index finger [125]. 

A four-bar linkage or a tendon coupling mechanism can be utilised to achieve the passive rotation 

interdependence of the DIP and PIP joints. Therefore, the kinematic architecture of an artificial finger 

can be illustrated as in Figure 2-14. 
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Figure 2-14. Kinematic architecture of an artificial finger [125]. 

A mechanical design approach of a prosthetic compliant underactuated finger was proposed in [127]. It 

was based on the idea of human hand synergy from neuroscience. Principal components analysis (PCA) 

was used to decompose human hand movements into two groups—primary and secondary motion. In 

the anthropomorphic robotic hand design, actuators were only used for the primary motion, while the 

secondary motion was implemented with mechanical compliance. In this way, the number of actuators 

could be greatly reduced, and the control strategy could be simplified as shown in Figure 2-15. 

 

Figure 2-15. A finger design with one actuator and embedded mechanical compliance [127]. 

 

2.3.2.3 High biomimicry design 

Effort has also been made to better understand the intrinsic features of biomechanics and control 

mechanisms in the human hand by developing anatomically correct [128] or highly biomimetic [129] 

anthropomorphic robotic hands for achieving dexterous, versatile, and robust operations in robotic hand 

design. 
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In the paper [128], an anatomically correct testbed (ACT) hand was constructed to identify the critical 

factors that lead to dexterity in the human hand for a better understanding of functionality towards 

human-like robotic hand dexterity. The ACT hand closely imitated the biomechanical features of the 

human hand, including bone structures and tendon arrangements. The ACT control was also inspired 

by the human hand neuromuscular control system. The robotic finger bones were built using laser-

scanned 3D models of human left-hand bones to replicate the biological shapes of the human finger 

bones, providing accurate moment arms for the tendons. The finger joints were implemented as one or 

two carefully aligned hinge joints that can approximate complex human joint motion. A tendon string 

system along with DC motors were used to mimic the human hand muscular structure. 

 

Figure 2-16. The anatomically correct testbed hand [128]. 

Xu et al. designed a two degree of freedom matacarpophalangeal (MCP) joint of an index finger that 

consists of three parts: a ball joint which directly deploys unique articulated shapes of human joints, 

crocheted ligaments to limit the range of motion of the MCP joint, and a silicon rubber sleeve to 

replicate passive compliance of the musculoskeletal structure (Fig. 2-1). The MCP joint has 

demonstrated that its dynamic characteristics are similar to that of human index finger [130]. 

 

Fig. 2-1 Compliant artificial finger joint with true to life bone shapes [130]. 
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In the paper [129], artificial joint capsules, crocheted ligaments and tendons, laser-cut extensor hood, 

and elastic pulley mechanisms were used to closely mimic the human hand counterparts instead of the 

hinge or gimbal type joints used in [128]. 

 

Figure 2-17.  The highly biomimetic robotic hand [129] 

Despite higher imitation to the human hand anatomical structure and kinematic mechanism, the high 

biomimicry approach requires more actuators to drive joint movements. This makes it difficult to 

implement using current actuation technologies in practical applications.  

 

2.3.3 Actuation and transmission 

Since 1980s, actuation technology has been acknowledged to be the main limit to dextrous robotic hand 

development. This is still true although novel technologies or materials, such as various artificial 

muscles, have thrown some light on prospective solutions.  

2.3.3.1 Level of actuation 

According to the number of actuators and the number of DoFs, a robotic hand can be implemented as: 

 Fully actuated (with the same number of actuators and DoFs) ; 

 Redundantly actuated (with more actuators than DoFs); 

 Underactuated (with fewer actuators than DoFs). 

In most development cases, a redundant actuation mechanism is neither desired nor useful and hence 

usually not considered [118]. 

The technological limitation of artificial actuation approaches has always been the main barrier to a 

lightweight dextrous robotic hand design. Two solutions can be used when a bulky hand is unacceptable. 

The first one utilises fewer actuators than the actual number of degrees of freedom of the hand, i.e. an 

underactuated hand, whereas the other uses actuators placed in the forearm where a tendon system is 

routed from the actuators to the hand joints to transmit motion [120]. Some reported research hand 

platforms have used a tendon motion transmission system having a part of its driving muscles in the 

forearm [129, 131], just like the human hand. For a prosthetic hand, however, this may be impractical 

due to different levels of forearm loss in individual patients. A device constructed in this way is more 
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appropriately referred to as an anthropomorphic robot rather than a prosthesis, and thus of little clinical 

use or significance [122]. This leads to the underactuated solution more desirable under some 

circumstances. A theoretical analysis of underactuated hands was conducted with a focus on force 

distribution for the establishment of the underactuated grasping theory [123]. The grasping stability was 

analysed mainly in terms of the contact force distribution and the overall grasp stability. 

Two different kinds of underactuation can be identified in the robotic hand design: the inter-phalange 

underactuation within a finger, and the inter-finger underactuation between fingers [118]. It is worth 

noting here: if the motion of all phalanges of a finger is coupled in such a way that the trajectory can be 

entirely predetermined, then the finger has only one DoF and is not an underactuated device but a fully 

actuated one because a single actuator suffices to follow it [123]. The same philosophy happens to the 

entire hand design. With the help of underactuation mechanical intelligence, a single actuator was 

designed to be able to drive an anthropomorphic robotic hand with 15 DoFs [132].  

Underactuation can be obtained through the use of coupling mechanisms including passive mechanical 

devices, usually springs and mechanical limits, within a finger or between fingers for grasping [132]. 

This approach can lead to a mechanical adaptation of the hand to the shape of the grasped object. 

Therefore, the hand can be named as a shape adaptive hand [118]. 

Three classes of underactuated mechanisms have been proposed, i.e. differential mechanisms, 

compliant mechanisms, and triggered mechanisms [123, 133]. Xu and Liu also pointed out in their paper 

[134] that instead of the differential mechanism, other configurations such as spring-biased linkage, 

biased cable routing, biased gear transmission, and compliant structures can be used to design 

underactuated grippers or hands. 

Differential mechanism is the most common element used in underactuation. According to the IFToMM 

terminology (IFToMM 1991), a differential mechanism may resolve a single input into two outputs and 

vice versa. Typical structures of differential mechanisms include [134, 135]: 

 pulley-based forms; 

 linkage-based forms; 

 gear-based forms; 

 fluidic T-pipe-based forms. 

The common mechanical mechanisms that can be employed in the finger movement coupling for the 

use of the underactuation concept include [118, 136, 137]: 

 Linkage-driven Mechanism 

The principle of a linkage-driven mechanism can be shown using a two-phalange underactuated 

finger. Figure 2-18 illustrates the closing sequence of the two-phalange underactuated finger. 
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There exist two DoFs but only one actuator and one elastic element (a spring), along with a 

mechanical limit used to drive the closing sequence to adapt to the shape of the object. 

 

Figure 2-18. The closing sequence of an underactuated finger with two phalanges [136]. 

 Cable-driven mechanism 

Most prototype robotic hands aiming at the imitation of human hand functionality have used 

the combination of tendons and pulleys for propagating the actuation to the joints. However, 

very few of them were successfully commercialised [123]. The pulleys share the same axis with 

corresponding phalanx joints. In order to make the finger underactuated, the pulleys can freely 

rotate around the respective axis without transmitting this rotation to the phalanges [118, 137, 

138]. This kind of mechanism can be very effective for small forces, and the elasticity and 

friction from tendons can be compensated with appropriate control.  It is useful for lightweight 

prosthesis development. 

Figure 2-19 demonstrates the mechanism of a three-phalanx underactuated finger using either four-bar 

linkage or tendon-pulley coupling mechanism without the indication of springs for legibility. The 

equivalence between the four-bar linkage and tendon-pulley coupling mechanism has been proven in 

[139]. 

(a) (b)  

Figure 2-19. A three-phalanx finger (a) using linkages; (b) using tendons [136]. 
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Mechanisms in a similar form to the four-bar linkage were found in commercial prosthetic hands [110], 

as shown in Figure 2-20. 

 

Figure 2-20. Commercial finger images (top) and kinematic models of finger joint coupling (bottom): (a) Vincent 
(Vincent Systems), (b) iLimb and iLimb Pulse (Touch Bionics), (c) Bebionic v2 and Bebionic (RSL Steeper), and (d) 

Michelangelo (Otto Bock). θ1 = angle of MCP joint, θ2 = angle of PIP joint [110]. 
A soft gripper that can conform to objects of any shape and hold them with uniform pressure was 

proposed in [140]. The connected differential mechanism of this soft gripper (Figure 2-21) was 

employed by different robotic hand applications for inter-phalange underactuation [138, 141-144]. 
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Figure 2-21. Soft gripper mechanism modified from [138]. 

Two types of tendon-pulley configurations can be used for the soft gripper mechanism, as depicted in 

Figure 2-22.  
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Figure 2-22. Two types of tendon-pulley configurations for the soft gripper mechanism [140]. 

The inter-finger underactuation can be achieved by using a compliantly coupled differential mechanism 

as shown in Figure 2-23 [145]. A linear slider pulls or releases three tendons by means of three 

compression springs, thus obtaining adaptive grasp via the adoption of the compression springs. 

 

Figure 2-23. Differential mechanism with compression springs [145]. 

 

2.3.3.2 Type of actuation 

Biological muscles offer a means of linear actuation and have advantages for providing intermittent 

displacements and adaptable stiffness, although they can be outperformed in many respects by artificial 

actuators. The main characteristics of mammalian skeletal muscles are summarised in Table 2-4 and 

can be used for comparison with other technologies. 
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Table 2-4. Mammalian skeletal muscle characteristics [146]. 

 

The actuation system exerts forces in a robotic system by converting a type of energy, such as electric, 

hydraulic or pneumatic, to the kinetic energy of rotational or linear movement. The different types of 

actuators that have been used as energy sources in robotics can be classified in two groups as per the 

motion generation principle [118]: 

 Conventional actuators 

Electric motors, hydraulic actuators, and pneumatic actuators are categorised into this group 

because of their broad use and relatively longer history. The advantages and disadvantages of 

each of these actuator types are summarised in Table 2-5. 

Table 2-5. The characteristics of conventional actuators [118]. 

Features\types Electrical Hydraulic Pneumatic 

Working Principle 

Electricity. 

Application of 

magnetic fields to a 

ferrous core and 

thereby inducing 

motion. 

 

By changes of 

pressure in High 

Quality Oil Base 

with Additives, 

Water Based 

Solutions, and 

Synthetic liquids. 

Use a compressible 

gas as the medium for 

energy transmission. 

Basic System 

Solid State Logic, 

Power Amplifiers, 

DC motors (brushed 

and brushless, low 

inertia, geared and 

direct drive, 

permanent magnet) 

or AC motors, Gear 

Pump, Sump, 

Regulators, Filters, 

Heat Exchangers, 

Servo Valves, 

Motors, Actuators, 

Accumulators 

Compressor, 

interstage Coolers, 

Pressure Controls, 

Filter, Dryers, 

Mufflers, valves, 

Actuators, Snubbers. 



Chapter 2    Background and Literature Review 

47 
 

Boxes, Ball Nuts, 

Coolers. 

Efficiency 
Over 90 % for Large 

Systems 
Seldom over 60 % Seldom over 30 % 

Advantages 

Energy easily stored 

and re-supplied. 

Control flexibility of 

the mechanical 

system. Easy to 

install and clean. 

Lower cost. 

Very quick 

movements with 

great force. Low 

noise level. 

Cleaner and non-

flammable. Easy 

installation, operation 

and maintenance. 

Lower cost. Light 

weight. 

Disadvantages 

Produce very small 

torques compared to 

their size and weight. 

Susceptibility to 

Contamination, 

High Temperature 

Sensitivity due to 

viscosity changes 

Less force capability 

than hydraulic 

actuators. Lower force 

and speed. 

Principal Applications 

The most common 

choice with a huge 

number of 

applications in the 

robotic industry. 

Nuclear and 

underwater 

applications, remote 

operated vehicles 

Walking machines 

and haptic systems 

 

 The non-conventional actuators 

Advances in material sciences have resulted in the advent of smart materials that have similar 

behaviours to biological muscles. Although the natural muscle functionality and working 

process cannot be exactly reproduced, such smart materials can replicate part of natural muscle 

functions [147]. Artificial muscle is a generic term used for materials that have muscle-like 

properties of reversibly contracting, expanding, or rotating. The most common types of 

artificial muscles include shape-memory alloys (SMAs), electroactive polymers (EAPs) etc. 

SMAs and EAPs have been the most promising materials, which exhibit functional 

characteristics similar to biological muscles. There are also other types of artificial muscles, 

such as the ones mentioned in [146] and [148]. 
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EAPs are a type of polymers that exhibit a change in size or shape when stimulated by an 

electric field. EAPs are able to emulate the features of biological muscles, offering resilience, 

toughness, large actuation strain and inherent vibration damping. EAPs can be used as actuators, 

especially for the situation of large deformation and low forces [147]. EAP actuators are the 

least developed technology,  and are still too far away from the mature stage [149]. 

Shape memory alloys (SMAs) are a group of metallic alloys that can return to their original 

form (shape or size) when subjected to certain stimulus such as thermomechanical or magnetic 

variations. This phenomenon is known as the shape memory effect (SME). SMAs can be found 

existing in two different phases associated with three different crystal structures, a total of three 

combined states, i.e. twinned martensite, detwinned martensite, and austenite. There exist six 

possible solid-solid transformations between them [150, 151]. The behaviours of SMAs can be 

characterised by three shape change effects, i.e. one-way shape memory effect, two-way shape 

memory effect, and pseudoelasticity (PE) or superelasticity (SE). In the one-way shape memory 

effect, the material can be deformed by applying an external force, and then retains the 

deformed shape after the removal of the external force. It contracts or recovers to its original 

form when heated beyond a certain temperature either by internal (Joule or resistive heating) 

or external heating. Usually, the one-way shape memory effect can be applied commercially in 

developing actuators. Amongst SMAs, nickel–titanium (NiTi) alloys are the most preferable 

for the majority of applications. Table 2-6 shows the typical properties of thermal shape 

memory alloys. The advantages of SMA are the features of large forces per unit area, very high 

strain rates, relatively large deformations, high peak energy density, and high power per unit 

mass. However, the practical usage of SMA is limited by its several characteristics: the 

difficulty of controlling the length, a limited cycle life, and the low efficiency [146]. 

Table 2-6. Properties of thermal shape memory alloys [146]. 
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2.3.3.3 Transmission 

The approaches employed in robotic hands to transmit actuation power to the joints can be roughly 

categorised into two groups [121]: 

 Rigid connection 

Different gear or articulated mechanisms, such as harmonic drive, spur and worm gears, flexible 

shafts, and leverages, have been adopted. This kind of rigid transmission mechanism can render 

better performance in terms of friction but with increased weight to the device. In cases where 

the actuators can be placed in the palm or in the fingers, a classical gear mechanism can be an 

appropriate method due to the short power transmission distance needed. However, high cost 

custom miniaturised gears and parts may be necessary because of the limited housing space. 

Figure 2-24 shows an example of gears used in power transmission. 

 

Figure 2-24. Internal structure of the actuator module [152]. 

 Flexible transmission 

Tendons and pulleys or sheaths can be used to create flexible transmission in robotic hand 

development. A benefit from the flexible transmission is that the actuators can be placed 

remotely and the number of the required linkage components can be reduced. In addition, the 

flexible transmission can offer some compliance due to the elasticity of the tendon. Pulleys or 

sheaths are used to guide the tendon routes. There can be many solutions of the tendon route 

configuration that can drive the robotic hand performing required tasks. However, it is by no 

means trivial to get an optimised tendon route network.  
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As a means of flexible transmission, tendon-based mechanisms have long been researched and utilised 

in the power transmission of robotic manipulators or robotic hands. The number of tendons per joint is 

one of the measures used to categorise tendon transmission systems, as schematically depicted in Figure 

2-25: 

 n-tendon system, as shown by Figure 2-25 (a) and Figure 2-25 (b); 

 2n-tendon system, as shown by Figure 2-25 (c); 

 (n+1)-tendon system, as shown by Figure 2-25 (d). 

 

Figure 2-25. Kinematics of tendon systems: (a) One tendon-actuator against extension spring, (b)Two opposed 
tendons and one actuator, (c) 2n-tendon system and (d) n+1-tendon system [120]. 

The n-tendon system can be implemented using two different structural approaches, as shown by Figure 

2-25 (a) and Figure 2-25 (b). The principles of both of them were employed in [112] and called the 

unidirectional tendon configuration and the bidirectional tendon configuration respectively, as 

illustrated in Figure 2-26. 

 

Figure 2-26. The tendon-driven configurations: (a) the bidirectional tendon configuration; (b) the unidirectional 
tendon configuration [112]. 

There is one difference between Figure 2-25 (a) and Figure 2-26 (b). The n-tendon system structure of 

the Figure 2-25 (a) uses a tension spring in series, while the unidirectional tendon configuration in 

Figure 2-26 (b) employs a torsion spring in parallel at the joint. 
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In [153], the 2n- and (n+1)-tendon configurations of robotic finger tendon driving (as in Figure 2-27, n 

is the number of DoFs of the finger) were explored to investigate the optimisation method for force 

transmission capability to achieve the same range of forces as the human finger. 

 

Figure 2-27. The 2n- and (n+1)-tendon configurations of robotic finger tendon driving [153]. 

For tendon routing, there can be indefinite solutions. Figure 2-28 and Figure 2-29 depict two of them 

for tendon-pulley transmission found in literature. 

 

Figure 2-28. Diagram of the finger showing pulleys and cable routing [154]. 

 

Figure 2-29. Layout of sliding wheel and tendon [155]. 
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A underactuated prosthetic hand prototype developed in [124] uses tendon-pulley underactuation, joint 

coupling, and a series of joint locking mechanisms. The transmission and joint coupling mechanism of 

the four fingers and the thumb are illustrated in Figure 2-30 and Figure 2-31, respectively. 

 

Figure 2-30. The finger subsystems (1) tendon-pulley transmission; (2) joint locking mechanism; (3) four-bar 
coupling; (4) tactile sensor array [124]. 

 

Figure 2-31. The thumb subsystems (1) tendon-pulley actuation; (2) tendon coupling; (3) urethane rubber tip [124]. 

Tendon-sheath transmission systems are another type of tendon-based systems and are also found 

applied in research. A conference paper [156] presents a soft prosthetic research hand using an 

embedded tendon driven underactuated mechanism and compliant joints to make up one continuous 

part that can deform similarly to a deflected spring as shown in Figure 2-32. Synovial sheaths of the 

flexible plastic tubing Tygon from Saint-Gobain Performance Plastics were embedded inside 

phalanges to route tendon networks. A DC motor with a gearbox and a power-off brake housed in the 

palm offers actuation power by pulling five tendons, one for each finger. The adaptive grasping is 

achieved through a simple cable-based differential mechanism. Only two sensors were used: one for 

monitoring the displacement of the tendon and the other for the DC motor current. 
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Figure 2-32. The cosmetic prosthetic hand with tendon-driven underactuated mechanism and compliant joints [156]. 

The UB Hand 3, an anthropomorphic robot hand as in Figure 2-33, was developed using coil springs as 

elastic hinge joints [157]. It is actuated by sheath-routed tendons. This five-fingered robotic hand has 

20 degrees of freedom (DoFs) but only 16 actuators, i.e. 16 degrees of actuation (DoAs. The remaining 

4 Dofs are locked or coupled using mechanical mechanisms. Two types of sensors, i.e. strain gaged-

based load cells and position sensors, are exploited for the measurement of tendon forces and joint 

angles respectively. 

 

Figure 2-33. The UB Hand 3 [157]. 

The transmission characteristics of a tendon-sheath driving system that considers both compliance and 

friction effects, were investigated in [158], and then a control strategy that is able to remove the direct-

dependent response was introduced. Also, the force transmission characteristics of tendon-sheath 

transmission were analysed in [159, 160]. Tendon-sheath transmission can reduce structure size and 

mechanical complexity, thus increasing the reliability of the overall system compared to tendon-pulley 

transmission. However, the tendon compliance and the friction between tendon and sheath may cause 

some side effects in force control, such as direction-dependent behaviour, hysteresis and dead zone. A 

lumped parameters tendon model was used in simulation for the analysis of tendon compliance and 
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friction, with the consideration of a static friction model (Coulomb friction) which can be corrected by 

a dynamical friction model (Dahl model). A simple force control algorithm with feedforward friction 

compensation was described for addressing the nonlinear behaviour of tendon-sheath transmission. The 

lumped parameters tendon model of tendon-sheath transmission was further experimentally validated 

by comparing the measured tendon tension data with the theoretical tension distribution given by the 

mathematical model in [161], and then a control scheme based on a sliding-mode controller with a 

boundary layer for the compensation of the nonlinear friction effect was proposed. 

A new type of actuation mechanism was proposed in [126] for driving robotic finger joints. Two strings 

were twisted on each other to produce a pulling force on a driven object. Figure 2-34 shows the principle 

of two twisted strings converting rotation to linear motion. Obviously, the electrical motor is still 

necessary in such an actuation system that uses two twisted strings to drive the object. 

 

Figure 2-34. The principle of twisted strings [126]. 

A five-fingered robotic hand prototype (Figure 2-35) was constructed to demonstrate the concept of the 

twisted string actuation mechanism. 

 

Figure 2-35. The five fingered robotic hand prototype [126]. 

Similarly, two sets of the twisted string actuation mechanism, referred to as “Twist Drive”, are inserted 

into a finger directly to drive the MCP and PIP joints independently, while the DIP joint is coupled with 
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the PIP joint by using a four bar linkage type coupling that is particularly designed using a string instead 

of a classical rigid link, as shown in Figure 2-36 and Figure 2-37.  

 

Figure 2-36. Schematic drawing of finger’s cross-section [126]. 

 

Figure 2-37. PIP and DIP coupled joint design [126]. 

Research found that the DIP and PIP joints of a human finger usually move in a coupled manner when 

without any constraint and special effort. The ratio of the DIP and PIP joint coupling seems linearly in 

their most range of motion and is to be approximately a constant coupling ratio, mostly in the range of 

1.5 to 2. By adjusting the attachment points of the string of the four bar linkage coupling mechanism, it 

is possible to closely approach a constant value of coupling. This way, the DIP and PIP joint motion of 

the robotic finger can simulate that of a human one [126].  

A similar twisted string actuation was developed in [162] and [163]. Instead of using two strings twisted 

on each other in the aforementioned “Twist Drive”, the twisted string actuation reported in [162] and 

[163] uses a very thin long string with two or more parallel strands. One end of the string is directly 

connected to a rotational electrical motor without a mechanical speed reducer such as a gearhead, and 

the other end is connected to the load to be actuated. The basic concept and schematic configuration of 

the twisted string actuation system is shown in Figure 2-38. This twisted string actuation allows for the 
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use of very small and lightweight high-speed electrical motors due to its high speed reduction ratio, 

suitable for applications where space and weight are of crucial importance. 

 

Figure 2-38. The basic concept and schematic representation of twisted string actuation [162]. 

The kinetostatics of the twisted string actuation was proposed to take the elasticity of the string into 

account, while its dynamic model was simplified by assuming the use of rigid strings. An algorithm for 

controlling the force applied by the twisted string actuation system was developed on the basis of these 

models and its effectiveness was proven by both simulation and experiments [162, 163]. The twisted 

string actuation was used in the development of the DEXMART hand robotic finger [164], as shown in 

Figure 2-39. 

 

Figure 2-39. The finger actuation module of the DEXMART hand [164]. 

The finger structure of the DEXMART hand was built using 3D printing technology and integrated 

with position, force and tactile sensors. Four active and one passive transmission tendons are utilised 

for driving and coupling a total of four DoFs in the three joints [165], as shown in Figure 2-40. 
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Figure 2-40. The (n+1)-type tendon network of the finger [164]. 

A similar transmission tendon network arrangement (Figure 2-41) was applied to the further 

development of the UB Hand 3, i.e. the UB Hand IV, which has a total of 20 DoFs, 4 DoFs for each of 

the 5 identical fingers. 

 

Figure 2-41. The tendon network of the UB Hand IV [166]. 

 

2.3.3.4 Non-conventional actuation and transmission 

Compared to conventional actuators, such as electrical motors, the artificial muscles, including shape 

memory alloy (SMA) and Electroactive Polymers (EAPs), can play the role of both actuator and 

transmission mechanism at the same time due to their direct linear motion characteristics, eliminating 

the necessity of power transfer from mechanical rotation to linear motion.  

Matsubara et al. developed a prosthetic hand using the shape memory alloy (SMA) type artificial muscle 

(AM). Figure 2-42 shows the configuration of a prosthetic finger that mimics a human index finger. 
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Two SMA type AM wires are installed inside the finger to generate effective torque for joint movement; 

a spring with a wire allows extension of the  finger [167]. 

 

Figure 2-42.Human finger and prosthetic finger [167]. 

Bundhoo et al. proposed and evaluated a new biomimetic tendon-driven actuation system which 

combines compliant tendon cables and one-way shape memory alloy (SMA) wires [125]. A set of 

agonist–antagonist artificial muscle pairs was formed for flexion/extension and abduction/adduction. 

The novel contribution was that they used a spring-slack element connected to each SMA wire to mimic 

the nonlinear stiffness of the natural tendon. The modelling and control of the proposed tendon-driven 

actuation system was further studied in a companion paper by Gilardi et al. [168]. A biomimetic 

artificial finger was constructed to demonstrate its actuation mechanism as shown in Figure 2-43.  

 

Figure 2-43. Artificial finger with six tendon cables routing through the finger core and attached to the 
corresponding six remotely placed SMA actuators [125]. 

Price, Jnifene and Naguib developed a nine-DoF SMA-based robot hand (Figure 2-44) [169]. Finger 

links are built using Teflon® due to its high melting point and electrical insulation properties, given the 

high value of electrical current supplied to the SMA wires when actuating. Precision steel shafts and 

miniature ball bearings were used to construct low-friction revolute joints. The range of motion of the 
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PIP and DIP joints is precisely limited in their fully extended position using adjustable stops installed 

within the distal end of the proximal and middle phalanges.         

 

Figure 2-44. A SMA actuated artificial hand [169]. 

Unlike the traditional tendon network arrangement that is only on one side of all links as Figure 2-45 

(a), the SMA wires used in the SMA-based robot hand are fixed at one end near the anterior distal end 

of each link, then pass along the link surface (toward the base of the finger) and across the 

interphalangeal joint where they are fixed to the posterior proximal end of the next link, as shown in 

Figure 2-45 (b). The first advantage is that this arrangement minimises the artificial muscle interference 

within the work envelope compared to the traditional tendon arrangement. Additionally, the maximum 

joint deflection for a given strain is increased as a longer SMA wire is needed to cross through the 

interphalangeal joint, meaning that a larger contraction length can be obtained at the same contraction 

rate. 

 

Figure 2-45. SMA routing in (a) a traditional linear arrangement and 

(b) the implemented joint traversing arrangement [169] 
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Electroactive Polymers are another promising type of artificial muscles. Jain et al. designed an ionic 

polymer metal composite (IPMC) artificial muscle-based finger that is controlled using EMG signals 

from a human index finger (Figure 2-46). Electrodes were located on the index finger skin to collect 

EMG signals that were amplified and filtered, and then directly sent to a proportional-integral-derivative 

(PID) controller to produce stable signals for controlling the IPMC-based finger [53]. 

 

Figure 2-46. Control of IPMC based artificial muscle finger through EMG signal [53]. 

 

2.3.4 Robotic hand operation control 

2.3.4.1 Sensing technology in robotic hand operation control 

Humans have the capability of performing spontaneous and rapid hand operation planning and 

execution, even in an unstructured environment, which come from the fusion of feedback information 

from sensory systems such as tactile, visual and thermal sensors, along with an active intention. The 

tactile sensors of the skin covering the hand can offer feedback on the amount of applied force and the 

contact region on the target objects, while the skin’s thermal sensors may help to identify the objects, 

especially in an environment without visual information. Visual feedback from human eyes is essential 

for image scene segmentation, object and obstacle recognition, object distance estimation, movement 

tracking etc. 

Motion control of anthropomorphic robot hands is one of the active research fields. The reactive 

planning and execution of robotic hand operation in a certain environment, necessitate closed loop 

control on finger actuation and drive mechanisms, supported by the measurements of finger joint 

position, torque, velocity etc.  

The sensor types having been used in robotic hand operation control incorporate [121]: 

• motor torque sensor 

• motor position sensor 

• joint torque sensor 
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• joints position sensor 

• tactile sensor 

• camera 

• temperature sensor 

The integration of tactile, force, temperature, texture or other types of sensors and the combination of 

information acquired using these sensors for the hand and individual finger action control are still a 

challenge of current research. Compliance or stiffness control schemes can be further implemented to 

improve force control algorithms [120]. In some cases, a different measurement, instead of a variable 

with a direct link to the controlled target state, can be utilised as an implicit control parameter. Motor 

current sensing, for instance, is a method to imply finger grip strength [144]. There is a growing demand 

for sensors due to the development of prosthetic or research anthropomorphic hands with multiple 

degrees of freedom that require finger coordination in different postures [170]. The autonomous control 

of these hands entails the sensing of position, force, temperature, object-slip etc. 

Position and torque are the most frequently used feedback information for robotic hand motion control. 

There are usually two kinds of solutions that integrate sensors into the mechanical structure; one, 

directly couples the sensors with the joint mechanisms, and the other, places the sensors at the actuator 

side and then decouples the effects of transmission to reconstruct the desired measurements [121]. The 

major restriction to obtain kinematic information like position or velocity in a robotic hand is associated 

with the limited mounting space for the sensors and wires. Hall Effect sensors and encoders can be 

utilised as compact, precise and reliable alternatives in the case of remote actuation. 

The literature study found that strain gauges, optical components, current sensing, and tactile sensors 

were typical choices to measure forces or torques in robotic hands, whereas motor encoders were the 

simplest and most often utilised tool for gathering position information. 

The authors of [171] conducted a survey of different force or pressure sensor techniques, including load 

cell, pressure indicating film, and tactile pressure mapping in robotic hand applications. The underlying 

physical transduction principles, namely piezoresistive, capacitive, and piezoelectric effect, were also 

discussed. They found that piezoresistive and polymer transducers held the potential to improve the 

sensing sensitivity for grasping mechanisms. 

Tactile sensors are employed to detect and measure various parameters of an object or contact event 

through physical touch between the object and the tactile sensors. Typical measured parameters include 

pressure, temperature, normal and shear forces, vibrations, slip, and torques. Tactile sensing, which 

emulates the human skin sensory characteristics, is considered as an important constituent part for 

robotic applications. The article [149] reviews some recent bio-inspired developments that are useful 

for articulated robotic hands in terms of hand tactile sensing. One example proposed by Takahashi T. 
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et al, is a new robust force and position control method for property-unknown objects during grasping 

using information from a tactile sensor in coordination with a 6-axis force sensor [172]. 

Tactile sensing can be based on different physical principles. Typical types of tactile sensor are 

summarised in Table 2-7. A recent review of tactile sensing technologies with applications in 

biomedical engineering can be found in [173]. 

Table 2-7. Tactile sensor types [118]. 

Modality  Sensor type  Advantages  Disadvantages 

Normal Pressure Piezoresistive array 

Simple signal 

conditioning design 

and suitable for mass 

production 

Temperature sensitive, 

fail and signal drift 

Capacitive Array  Good sensitivity Complex circuitry  

Optical  
No interconnects to 

break 

Requires PC for 

computing applied 

forces 
 

Skin 

Deformation 
Optical 

Compliant membrane 

and no electrical 

interconnects to be 

damaged 

Complex 

computations and 

hand to customise 

Magnetic  
Array to hall-effect 

sensors 

Complex computations 

and hand to customise  

Resistive 

Tomography  
Robust construction 

Posed inverse 

problems  

Piezoresistive 

(curvature)  

Directly measure 

curvature 

Frailty of electrical 

interconnects  

Dynamic Tactile 

Sensing 

Piezoelectric (stress 

rate) 
High bandwidth 

Frailty of electrical 

junctions 

Skins 

Acceleration  
Simple 

No spatially 

distributed content  
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2.3.4.2 Application of typical sensing technology  

The sensing techniques presented in the previous section are reported to apply to robotic hand control 

at different levels using different sensor combinations. Some examples of typical applications found in 

literature are listed below. 

The UB Hand 3 prototype in [157] has a total number of 20 degrees of mobility, 16 of which are actively 

actuated. Each actuator is composed of a very low-cost DC-brushed motor equipped with a position 

sensor and a tendon force sensor that are based on the strain gauge sensing principle. Experiments were 

conducted to demonstrate the capability of the robotic hand to perform both grasping operations and 

manipulation tasks by developing suitable control strategies with information from these sensors. 

A miniaturised optical force sensor was proposed to measure tendon tension using optoelectronic 

components [174]. Experiments of a robotic joint position control loop on a tendon-driven mechanism 

similar to the one used in the UB hand 3 or UB hand IV showed that the optical sensor was suitable to 

replace traditional strain gauge-based load cells for the measurement of tendon forces, and that the 

optoelectronic component-based load cell was better at rejecting electromagnetic noise. 

The control of the developed prosthetic hand prototype in [124] required finger position and force 

information. Position information was provided by a set of angle sensors placed on each joint, and the 

forces applied to the fingers were measured by a tactile sensor array that was integrated into the fingertip. 

An anthropomorphic artificial hand with three articulated underactuated fingers was designed in [142]. 

The control of this artificial hand was supported with incremental encoders, three-component force 

sensors, and Hall effect switches that are used for the encoder calibration.  

The anthropomorphic 16 degrees of freedom, 4 degrees of mobility prosthetic hand of [145] is equipped 

with 15 Hall effect sensors integrated in all the joints, with 5 cable tension sensors measuring the 

grasping force of each finger, 4 current sensors each of which is for one driving motor, and 4 optical-

based tactile/pressure sensors in the intermediate and proximal phalanxes of the thumb and index. 

The control of a shape memory alloy based robot hand relies on the joint deflections measured by 

flexible bend sensors installed at each joint [169]. A sigmoid based control algorithm for the position 

control of SMA elements has been proposed and evaluated, minimising overshoot to avoid the slow 

time response inherent to the passive cooling of SMA. 

 

2.3.5 Material selection and manufacturing consideration 

There are two categories of materials that can be used in the construction of an artificial hand, i.e. metals 

and composite materials. The constraints pertaining to the selection of materials for artificial hand 



Chapter 2    Background and Literature Review 

64 
 

construction are mainly cost, availability, strength, durability, weight, manufacturing approach etc. 

Aluminium, steel and titanium are common metal materials used in robotic hand designs. Titanium has 

the best mechanics performance, but it is the most expensive option and also very difficult to 

manufacture with required shapes. Therefore, aluminium or steel is more often the choice due to their 

low cost, high availability and moderate performance. Alternatively, different composite materials, such 

as nylon, Teflon and ABS plastic, can be used in artificial hand structural construction, but usually with 

less strength and durability. 

Conventional manufacturing processes incorporate milling, turning, boring, drilling, sawing, shaping, 

broaching, reaming, tapping etc., using cutting tools to remove material from a stock to achieve a 

desired geometry. In contrast, 3D printing [164], also known as additive manufacturing (AM) [175], 

refers to processes in which material is solidified or joined to create a three-dimensional object under 

computer control. 3D printing can almost create objects with any desired shape or geometry by 

successively adding or fusing material layer by layer, and has been a popular method of creating 

prototypes since the 1980s. It is quickly becoming the fastest, most affordable way to create customised 

consumer goods. The producing processes are controlled using digital model data from a 3D model or 

another electronic data source, such as an additive manufacturing file (AMF) (usually in sequential 

layers). Fused deposition modelling (FDM) or fused filament fabrication (FFF) is now the most popular 

process of 3D printing, using a thermoplastic filament which is heated to its melting point and then 

extruded, layer by layer, to create a three-dimensional object. 

Thermoplastics can endure mechanical stress, heat, and chemicals, which makes them an ideal material 

for printing prototypes that must withstand testing. FDM is also commonly used by engineers who need 

to test parts for form and fit since it can print highly detailed objects. 

 

2.3.6 Review outcome 

A physical testing environment is critical for the development of a biosignal-based HMI control system. 

Specifically, an anthropomorphic robotic hand is an ideal control target for demonstrating and 

evaluating a HMI system based on the human upper limb surface EMG signal. This section examines 

the state-of-the-art robotic hands developed for both commerce and research. Reported research work 

in anthropomorphic robotic hand development focuses on issues related to the imitation of size and 

kinematics, the actuation level and type, the transmission mechanisms, feedback sensing, and 

manufacturing material and method. Each issue involves different techniques and considerations. Many 

parallel methods can be used to build an anthropomorphic robotic hand. However, there is no 

established guide for anthropomorphic robotic hand construction. Trade-offs must be made for a 

specific application scenario. This is the motivation to carry out a deep research on anthropomorphic 

robotic hand design to build a physical testing prototype for the EMG-based HMI system. 
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Chapter 3  
Research on EMG acquisition for EMG-based 
robotic hand control 

 

This chapter starts with an introduction to the framework of EMG acquisition systems and possible 

implementation configurations. Then, it proceeds to a detailed investigation in each of technical aspects 

of EMG acquisition, particularly for electrode placement, analog front end amplifier construction, and 

filter layout and parameter determination. As a result, a single-ended signalling approach that utilises 

instrumentation amplifiers to capture EMG signals for the applications of EMG-driven robotic systems 

is first proposed to determine proper analog EMG signal processing chain structure and specifications. 

The EMG acquisition design finally evolves into a fully differential EMG detection and conditioning 

method. 

The literature review shows that obtaining accurate EMG signals is still a challenging research topic 

although many attempts are reported in literature. Many of researchers in myoelectric control use 

commercial multi-channel surface EMG systems available on the market, such as the products from 

DelSys Incorporated [30], to obtain the targeted EMG data sets. However, their extremely high cost is 

often beyond the reach of many other research peers or laboratories. To specifically design a system 

using common commercial electronic components for collecting targeted surface EMG signals is a 

feasible and affordable option. Therefore, complete and detailed precision surface EMG acquisition 

system designs are useful and desirable to EMG-driven system development. However, only a few 

designs [13, 37-39], which can be used as reference for certain parts of the surface EMG acquisition, 

were found by the literature study. Most of the publications concern various aspects of electrode such 

as shape, size, interspace and placement, or circuit parameters such as the filter cut-off frequency, filter 

roll-off rate, and sampling rate. The lack of ready-to-use and low-cost precision surface EMG 

measurement solutions has motivated this thesis to conduct an in depth research of EMG acquisition.   

 

3.1 EMG data acquisition framework and configuration 

Based on the outcome of the literature study, this research proposes an EMG data acquisition module. 

The block diagram of the proposed EMG system is illustrated in Figure 3-1. 
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Amplification & 
Filtering Circuit

ADC Microcontroller PCElectrodes

Detection and conditioning of the sEMG signal sEMG data collection and transmission  

Figure 3-1. Block diagram of the EMG data acquisition module. 

The surface EMG data acquisition module is usually composed of two parts jointed with a mixed-signal 

device, namely an analog-to-digital converter (ADC).  The first part is the analog EMG signal detection 

and conditioning circuit, followed by the digital part for EMG data collection and transmission.  

The analog surface EMG signal detection and conditioning circuit can be implemented by using three 

configurations:  

 The discrete monolithic instrument amplifier (INA or IA) configuration 

This method uses discrete monolithic INAs as the analog front end. Its drawback is that the 

INA converts differential input signals to single-ended outputs that are more likely subject to 

external noise coupling which can be more easily rejected in a differential configuration, thus 

compromising the ability of noise rejection. 

 

 The fully differential configuration 

In this configuration, all stages including the front end, subsequent amplification and filtering 

sections are completely constructed by using discrete op-amps in a symmetrical manner, thus 

leading to the advantage of this approach—relatively remote external noise sources can be 

regarded as common-mode signals and rejected as much as possible.  

 

 The integrated analog front end configuration 

An integrated analog front end monolithic chip such as ADS1292 and RHA2216 [176] for 

biopotential measurements can greatly simplify the design process of an EMG data acquisition 

system. The ADS1292 offers an integrated front end PGA, a DRL amplifier, internal test 

functions, lead off detection, and an ADC for every input channel. By using a high-resolution 

ADC, a lower gain provided by the PGA is able to guarantee the same noise-free dynamic range 

at the ADC output as the combination of a high gain and a low-resolution ADC. There is no 

need for a second amplification stage, which may give rise to the saturation problem by 

magnifying the DC voltage between electrodes too much.  Therefore, the high-pass filter 

immediately following the front end is no longer necessary [177]. Compared to the preceding 

two approaches, however, this method lacks the ability to customise power, sampling, and 

filtering characteristics in the ADC driver circuit based on certain system requirements. 
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The drawback of the integrated analog front end solution is that it relies much more on digital signal 

processing techniques, such as digital filtering, which require a larger computational capacity. 

Therefore, the following sections will present the investigation on the first and second proposals. The 

next section will start to delineate the research work on the first proposed solution—a discrete 

monolithic INA EMG data acquisition approach, followed by the description of the second proposed 

solution—a fully differential configuration in the subsequent section.  

 

3.2 Proposed solution 1: the discrete monolithic INA approach for surface EMG 

signal detection and conditioning 

3.2.1 System framework 

EMG detection and conditioning circuit design is the key element of the EMG acquisition.  The quality 

of an EMG signal from the electrodes is partially dependent on the properties of the amplifiers. Because 

of the weak amplitude of the EMG signals typically in the order of tens to thousands µV, it is necessary 

that the gain of the amplifiers used in EMG applications is in the range from a few hundreds to several 

thousands and even more. Consequently, the amplification process commonly incorporates several 

stages. Figure 3-2 illustrates the block diagram of the amplification and filtering for a single channel 

implemented in this research. The most important stage, namely the first stage which is most close to 

the electrodes, is conventionally called pre-amplifier or front end amplifier. The consideration to 

incorporate a pre-amplifier  is to  have a high common-mode rejection ratio (CMRR), a high input 

impedance, a short distance to the signal source, and a strong direct current (DC) signal suppression 

[17]. The driven right leg (DRL) and the “shielding” techniques are used with the pre-amplifier for 

common-mode voltage and interference reduction. There is also a low-pass filter before the inputs of 

the pre-amplifier for common-mode and differential mode electromagnetic interference (EMI) or radio-

frequency interference (RFI) rejection. The output from the pre-amplifier is then processed by a high-

pass and a low-pass filter before entering into the second amplification stage that amplifies signals again 

to attain an expected EMG signal level. The second amplification stage is a simple inverting or 

noninverting amplifier and its gain is easily adjusted by choosing different resistor values. To further 

suppress high frequency noises introduced by the previous circuit stages and provide anti-aliasing, a 

low-pass filter follows the second amplification stage. Finally, the output signal from the amplification 

and filtering circuit is fed into an ADC. 
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Figure 3-2. Block diagram of the amplification and filtering for a single channel. 

 

3.2.2 The surface EMG electrode 

3.2.2.1 Electrode selection 

As mentioned in Section 2.1.4, the selection of electrodes is one of the most critical aspects in EMG 

electronics design [51]. The wet Ag–AgCl electrode with conductive gel is currently preferred for 

surface EMG applications. There are three configuration methods for using electrodes: monopolar, 

differential or high-density [21]. For the sake of reducing or eliminating common-mode noise and 

simplicity, a single differential configuration was used in this research. The pairs of electrodes were set 

with an inter-electrode spacing about 3-4 cm [178]. The sEMG snap cable with three protected pin snap 

style leads (1 positive, 1 negative and 1 ground) and the pre-gelled disposable sEMG electrodes both 

from Thought Technology (Figure 3-3) were completely satisfactory for the requirement of this research. 

 

Figure 3-3. The sEMG snap cable and electrodes. 

 

3.2.2.2 Electrode placement 

Electrode placements directly affect the quality of the EMG signals. This research aims to successively 

collect two channels of EMG signals from two pairs of electrodes placed on the flexor carpi radialis 

muscle and the extensor carpi radialis longus muscle respectively as illustrated in Figure 3-4. 
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(a)

Electrodes

(b)

Electrodes

 

Figure 3-4. The placement of electrodes. (a) the anterior view of the left forearm with the flexor carpi radialis visible 
in blue; (b) the posterior view of the left forearm with the extensor carpi radialis longus visible in blue (modified from 

[179]). 

3.2.2.3 Electrode-skin impedance model 

During all processes of circuit design, an analog electronic circuit simulator such as TINA-TITM SPICE 

can be used for the analysis of signal integrity, transient response, stability or noise characteristics [180]. 

It is common to use an electrical equivalent circuit of the electrode-skin impedance when using an 

analog electronic circuit simulator such as TINA-TITM SPICE to check the integrity of circuit design 

and to predict circuit behaviour, especially for circuit stability examination. This research used an 

impedance model presented in Figure 3-5. The Vdc voltage can reach ±300mV over time and with 

varying external conditions [181]. 

 

Figure 3-5. The impedance model used in the TINA-TITM SPICE circuit analysis. 

 

3.2.3 The EMI/RFI rejection filter 

A differential signal represents the difference between two physical quantities. In a strict sense, all 

voltage signals are differential, as a voltage can only be measured with respect to another electric 

potential level, i.e. a voltage. “Balanced signal” is a more accurate term of the traditional terminological 

form—“differential signal”. For the single differential electrode configuration adopted in this research, 

the electrode voltage model can be represented as Figure 3-6, where pV  and nV are the voltages of the 

positive and negative electrode with respect to the reference electrode, respectively.     
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Figure 3-6. Differential signaling model. 

The differential signal value is the difference between the individual voltages of pV  and nV  : 

 dm p nV V V   (3.1) 

and the average voltage of pV  and nV   is refered to as the common-mode component: 
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Therefore the voltages of pV  and nV  can be represented as : 
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For better noise performance, low-pass filters are added before the analog inputs of the front-end 

amplifiers to provide high frequency electromagnetic interference (EMI) or radio-frequency 

interference (RFI) attenuation. Figure 3-7 shows the first-order low-pass RC filter used in this research 

for both differential and common-mode voltage signals [182, 183]. 
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Figure 3-7. A first-order low-pass filter for EMI/RFI rejection, where capacitances 1 2C C . 

The Ve+ and Ve- are connected to the positive and negative leads of the sEMG snap cable respectively, 

and Vin+ and Vin- are similarly connected to the positive and negative input pins of the pre-amplifier 

respectively. For the common-mode signal, the voltages at the two ends of C3 are at the same potential 

level, thus there is no common-mode current flowing through C3. When determining the common-mode 

cut-off frequency, C3 can be thought of as being removed; therefore the common-mode cut-off 

frequency can be expressed as 

 
1 1 2 2

1 1

2 2cmf
RC R C 

   (3.5) 

On the other hand, for the differential mode signal, the C3 can be thought of as two separate capacitors 

C3
’ and C3

’’ with the same value of 2C3 as shown in Figure 3-8. The differential mode cut-off frequency 

can be calculated by 

 
1 1 3 2 2 3

1 1

2 ( 2 ) 2 ( 2 )dmf
R C C R C C 

 
 

 (3.6) 

 

Figure 3-8. Differential mode low-pass filter equivalent circuit. 

To prevent any capacitive mismatch between C1 and C2 from reflecting itself as an in-band signal error, 

the value of C3
' or C3

'' is usually at least 10 times larger than the value of C1 or C2. Meanwhile, in order 
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to keep useful EMG frequency information, the differential mode cut-off frequency should be at least a 

decade greater than the highest component of interest, which is 500 Hz in this research. Furthermore, in 

the low-pass EMI/RFI rejection filter, the resistors R1 and R2 act also as a means of protection to 

minimise the amount of current that can be delivered from the electric circuitry back into the patient 

body in a failure mode. The value of R1 and R2 is usually 100 KΩ. In this research, the value of C1 and 

C2 is selected at 10 pF, C3 at 100 pF. The differential mode and common-mode cut-off frequencies are 

about 7.5 kHz and 159 kHz respectively, as computed in Equation (3.7) and (3.8), which are safe enough. 

 
1 1

1 1
159 kHz 7.5 kHz

2 2 100kΩ 10pFcmf
RC 

  
 

  (3.7) 

 
1 1 3

1 1
7.5 kHz 500 Hz

2 ( 2 ) 2 100kΩ (10pF 2 100pF)dmf
R C C 

  
    

  (3.8) 

3.2.4 The surface EMG front end amplifier 

The nature of surface EMG signal acquisition requires a biosignal front-end amplifier, i.e. an 

instrumentation amplifier—a differential amplifier with a fixed differential gain, a high input 

impedance, a high common-mode rejection ratio (CMRR) and low noise [184-186]. As mentioned in 

Section 2.1.5.1, high input impedance, high CMRR, and low noise are the essentials for the surface 

EMG front end amplifier. The input impedance of the surface EMG amplifier is recommended greater 

than 100 MΩ, but 1000 MΩ is preferable in case of small dry electrodes. This requirement leads to the 

choice among only three basic types of circuit configuration [52]: 

 Op-amps in voltage follower configuration 

 The classic three op-amp instrumentation amplifier configuration 

 The classic two op-amp instrumentation amplifier configuration  

Additionally, the finite CMRR and the unbalance of impedance at two inputs of the front end amplifier 

can generates a differential voltage due to the common-mode voltage. Instead of costing much higher 

in increasing CMRR and impedance balance performance, reducing the common-mode voltage on the 

subject is a better choice. This technique is initially designed for ECG recordings, referred to as “driven 

right leg” (DRL), and later applied to other biopotential recordings. Another technique, “shielding”, can 

be further applied to minimise the coupling noise induced into the electrode wires. The proposed front 

end amplifier in this research employs the three op-amp configuration instrumentation amplifier 

INA128 (Texas Instrument, Inc.) and the coupling-reducing techniques DRL and “shielding”, as shown 

in Figure 3-9. INA128 is a low power, general purpose instrumentation amplifier offering excellent 

accuracy with very low offset voltage, drift and high common-mode rejection. The gain is adjustable 

from 1 to 10,000 according to the Equation (3.9): 
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where RG is an external resistor [187]. 

Since the DC or slowly changing voltages presented between two electrodes can reach as high as ±300 

mV, the DC gain of the front end amplifiers must be limited to prevent saturation [21]. This can be done 

by setting the INA gain resistor to get a small gain or by using the AC coupled approaches [13, 61, 62].  

For the pre-amplifier designed in this research, the gain was calculated using Equation (3.9) and set at 

6.3: 

 
50 50
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4.7 4.7G

k k
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R k k

 
    

 
 (3.10) 

 

 

Figure 3-9. The two channel surface EMG front end amplifier with the DRL and guarding circuit. 

The positive and negative inputs of INA128 are connected to the corresponding Vin+ and Vin- of the 

first-order low-pass EMI/RFI rejection filter for each channel. Except for three pins connected to the 

three electrodes, there is an extra pin in the sEMG snap cable connector for the use of “shielding”. In 

this research, a method called “guarding” is implemented, which involves driving a shield with a 

potential essentially equal to the common-mode voltage on the signal wire that is enclosed within the 

shield [188]. The common-mode voltage of each EMG channel can be obtained from the midpoint of 

the gain resistor which is formed by two equal-valued resistors connected to the Rg pins of the INA128. 

All common-mode voltages from two channels are buffered to prevent any influence to the 

instrumentation amplifier and then averaged to drive the lead wire shields [37]. An electrode located on 
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the wrist is connected to the DRL circuit to provide the reference. The common-mode voltages are fed 

back to the trial subject after being inversely amplified and summed. The DRL circuit creates a negative 

feedback loop which restricts the common-mode voltage to a narrow range, depending on the loop gain. 

The resultant common-mode voltage can theoretically be reduced by an amplification factor not greater 

than 100 [21]. 

3.2.5 The EMG filtering 

As mentioned in Section 2.1.5.2, the limited frequency bandwidth of the surface EMG signal make 

filtering out of band noises possible and necessary to get high fidelity. According to the  

recommendation of De Luca et al., 20 Hz and 500 Hz were selected as the cut-off frequencies of high-

pass and low-pass filter respectively [20]. 

Once the frequency selectivity characteristics are decided, the next task of the filter design is to make 

the choice between the analog and digital implementation. The digital filter is much easier to get better 

passband flatness, roll-off, stopband attenuation and linear phase response, whereas its analog 

counterpart is advantageous in term of response speed,  amplitude and frequency dynamic range [189].  

Theoretically, both analog and digital filter formats can fulfil certain required specifications. The digital 

filter, however, is more dependent on the digital computational and storage capacity, which are both 

limited on an embedded microcontroller in any practical apparatus such as a prosthetic hand. On the 

other hand, the analog filter approach uses analog hardware to carry out filtering at the expense of a 

more complicated analog configuration. Although analog implementation uses more components, the 

software computation for a digital filter may consume more power than that for hardware components. 

Therefore, this research is inclined to the analog approach. 

3.2.5.1 The determination of the analog EMG filter topology 

Inspired by the literature reviewed, the Sallen-Key and the multiple feedback (MFB) topologies were 

investigated for the purpose of eliminating the out-of-band noises. The Sallen-Key configuration, also 

known as a voltage control voltage source (VCVS), was first introduced in 1955 by R. P. Sallen and E. 

L. Key of MIT’s Lincoln Labs. It is one of the most widely used filters, mainly because of it having the 

least dependence of filter performance on the performance of the op-amps. This is due to the fact that 

the op-amp is configured as an amplifier, as opposed to an integrator, which minimises the gain 

bandwidth requirements of the op-amp. Another advantage of this configuration is that the low ratio of 

the largest component value to the smallest component value is a benefit for manufacturability. On the 

contrary, the MFB filter uses an op-amp as an integrator, thus resulting in more dependence on the op-

amp parameters and requiring higher ratios of the maximum to minimum component value than in the 

Sallen-Key realisation [190]. Therefore, the Sallen-Key filter is preferable to the MFB topology due to 

these advantages, and it becomes the first candidate in this thesis if possible. 
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One of the most important specifications that should be initially considered when selecting an op-amp 

for active filters is the gain bandwidth product (GBWP) of the op-amp. For the Sallen-Key configuration, 

the GBWP should be equal to or greater than 100*GCLN*fC, where GCLN is equal to the non-inverting 

closed-loop gain of the filter and fC is the cut-off frequency; whereas the GBWP should be equal to or 

greater than 100*(-GCLI + 1)*fC for the MFB configuration, where GCLI is equal to the inverting closed-

loop gain [191].  

3.2.5.2 High-pass filter design 

The complexity of the filter, defined by its “order”, is related to the number of energy storage elements 

such as capacitors or inductors used in filter design. The order of the filter defines the asymptotic roll-

off rate of the amplitude response with respect to frequency. A simple first-order filter has a standard 

roll-off rate of -20 dB/decade or -6 dB/octave and the nth order filter subsequently has a roll-off rate of 

-20n dB/decade or -6n dB/octave. An octave is a doubling or halving of the frequency whereas a decade 

is a tenfold increase or decrease of frequency. Higher-order filters are usually formed by cascaded first-

order and second-order filter sections because of the fact that the sensitivities to component values and 

the interaction effects of the components on the frequency response will increase dramatically when a 

three-order or higher-order filter is built within a single active stage [192]. 

The literature study found the determination of the high-pass filter characteristics has been a focus of 

attention in conditioning surface EMG signals. Regarding the roll-off rate of the high-pass EMG filter, 

-12dB/Octave, -18dB/Octave, and -24dB/Octave were employed by different previous work. To 

determine an appropriate high-pass filter roll-off rate for making a trade-off between complexity and 

performance, a second-order Sallen-Key high-pass filter (Figure 3-10) and a fourth-order Sallen-Key 

high-pass filter, which is built by cascading two second-order Sallen-Key filters (Figure 3-11), were 

studied and compared. The former has a slope of -12dB/Octave and a 20 Hz corner frequency, whereas 

the latter has a slope of -24dB/Octave and the same corner frequency.  

 

Figure 3-10. The 2nd-order Sellen-Key high-pass active filter with a corner frequency of 20 Hz. 
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Figure 3-11. The 4th-order Sellen-Key high-pass active filter with a corner frequency of 20 Hz. 

The corner frequency and the passband gain of the second-order Sellen-Key high-pass filter are given 

by Equation (3.11) and (3.12) respectively [193]: 

 
1 2 1 2

1

2
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R R C C
  (3.11) 

 4

3

1pass

R
G

R
   (3.12) 

where cf  is the corner frequency and passG  is the passband gain. 

3.2.5.3 Low-pass filter design 

Since the noises coupled into the circuit from electromagnetic radiation are mainly in the high frequency 

band, in this research, every amplification stage is followed by a second-order Sallen-Key low-pass 

filter (Figure 3-12). The corner frequency and the passband gain can also be calculated using Equation 

(3.11) and (3.12), similar to high-pass filter design. The two second-order low-pass filters have the same 

properties and are placed immediately before and after the second amplification stage (Figure 3-2). The 

total frequency response of these two second-order low-pass filters is equivalent to a fourth-order low-

pass filter with a corner frequency of 500 Hz. 

 

Figure 3-12. The 2nd-order Sellen-Key low-pass active filter with a corner frequency of 709 Hz. 
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An issue related to low-pass filter design is the selection of the sampling rate that is of importance in 

data acquisition systems. There is not an identical sampling rate which is exclusively recommended in 

literature. It has been found that different sampling rates, e.g., 400-500 Hz [66], 1000 Hz [24, 67, 68], 

1024 Hz [69, 70], 2000 Hz [71] and 4000 Hz [72] were used to convert analog EMG signals to digital 

data. 

It is true that using a high sampling rate could reduce the requirements on analog anti-aliasing filter, but 

at the expense of increasing the computational workload and processing time. According to the 

Nyquist–Shannon sampling theorem, when digitising a band-limited signal, the sampling rate has to be 

two times higher than its band-limit otherwise aliasing may happen. Theoretically, as the highest useful 

frequency component of the EMG signals from an upper limb is less than 500 Hz, a 1000 Hz sample 

rate is sufficient. The issue, however, is more complicated than it looks since the suitable sampling rate 

is also dependent on the roll-off rate of the anti-aliasing filter [194, 195]. Only when using an ideal low-

pass anti-aliasing filter with a brick wall response, there happens to be a sampling rate of 1000 Hz that 

is sufficient for collecting the EMG signals with the maximum frequency less than 500 Hz. In other 

words, the low-pass anti-aliasing filter must have an ideal property, that is, an infinite roll-off rate. In 

reality, however, this is impossible. As a result, the selection of the sampling rate has to consider also 

the roll-off rate of the anti-aliasing filter, which is determined by the order of the low-pass filter. 

In the first version of circuit design, two low-pass filters with a corner frequency of 709 Hz and a slope 

of -12dB/Octave were cascaded to form a fourth-order low-pass filter with a 500 Hz corner frequency 

and a slope of -24dB/Octave. The two low-pass filters are able to remove the noises above 500 Hz. 

Meanwhile, the two low-pass filters also work as an anti-aliasing filter for analog-to-digital conversion 

[196]. As shown in Figure 3-13, the fourth-order low-pass filter (Line C) has a higher possibility of 

using a lower sampling rate fs1 than the second-order low-pass filter (Line D), by achieving the same 

attenuation to spectral alias at 500 Hz or even higher attenuation within 0-500 Hz, without causing 

aliasing. In other words, if the same sampling rate fs2 is used, the fourth-order low-pass filter (Line E) 

can introduce a lower amplitude of spectral alias in the spectral baseband (0-500 Hz) than the second-

order low-pass filter (Line D). Figure 3-13 also reveals that, when using a Nyquist rate ADC for 

converting signals with the maximum 500 Hz component, a sampling rate of 1000 Hz may not provide 

the necessary aliasing rejection from the fourth-order low-pass filter (Line F). 

In an experiment to verify the filtering circuit design, a sampling rate of 2000 Hz was chosen to avoid 

aliasing. The detailed configuration of the design validation experiment is described later. The 

experimental results show that the fourth-order low-pass filter along with the 2000 Hz sampling rate 

attenuate effectively the components above 500 Hz to alias back into the signal bandwidth. However, 

the size of the dataset is increased as the sampling rate gets higher. Therefore, in real applications, the 

selection of a high sampling rate may pose more storage and computation burden to hardware. 
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Figure 3-13. The amplitude responses and spectral replications of Sellen-Key low-pass filters: 
Line A – the amplitude of the second-order low-pass filter; 
Line B – the amplitude of the fourth –order low-pass filter; 

Line C – the replication of the fourth-order low-pass filter at sampling rate of fs1; 
Line D – the replication of the second-order low-pass filter at sampling rate of fs2; 
Line E – the replication of the fourth-order low-pass filter at sampling rate of fs2. 

Line F – the replication of the fourth-order low-pass filter at sampling rate of 1 kHz 
 

3.2.6 Amplification and filtering design validation 

3.2.6.1 Experiment configuration 

In order to validate the preliminary amplification and filtering circuit design, an experiment was devised 

and conducted. The high-pass filter roll-off rate is one of the important parameters awaiting 

determination. To compare the effect of a fourth-order and a second-order high-pass filter on the low 

frequency components, the experimental circuit was implemented as showed in Figure 3-14. The EMG 

signal from the detective electrodes first get pre-amplified and then separated into two paths, obtaining 

filtering and further amplification before being fed to a SCB-68 connector (National Instrument). The 

difference between the two approaches is in the high-pass filter section. The first approach uses a 

second-order high-pass filter as in Figure 3-10, whereas the other is a fourth-order high-pass filter 

(Figure 3-11). The amplified and filtered EMG signals from the two approaches were simultaneously 

sampled and recorded. Hence, the two EMG signals fed into the connector SCB-68 are actually the 

same signal from the same original source and in the same period of time, until separated to get through 

different filtering and amplification paths. 
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Figure 3-14. Block diagram of the amplification and filtering. 

The two paths of EMG signals from SCB-68 were digitalised and collected using a PCI-6229 (National 

Instrument) data acquisition card and the software platform LabView (National Instrument). The 

amplified and filtered EMG signals were fed into the 68-pin shielded connector SCB-68 which is 

connected to the 16-Bit PCI-6229 DAQ card plugged into a computer (Figure 3-15). A programme was 

developed in LabView to log the EMG data. The EMG signals were recorded at a sampling rate of 2000 

Hz. Matlab (MathWorks Inc.) was employed to analyse the spectra of the EMG signals. 

 

Figure 3-15. Experiment configuration. 

In the experiment, the high-pass and low-pass corner frequency of the amplification and filtering circuit 

were set as follows: 

 The high-pass corner frequency is 20 Hz; 

 The low-pass corner frequency is 500 Hz. 

The human upper limb is able to perform sophisticated movements due to the multiple degrees of 

freedom it has. However, it is still a challenge for researchers to model and control human hand 

movement. In most cases, only certain hand gestures are studied. In this experiment, two upper limb 

movements were used to analyse and test the proposed amplification and filtering design. The first one 

is ball squeezing, which is the spherical grasping from the six basic hand grasping proposed by N. 

Fukaya [197], and another one is forearm flexion from two common movements in everyday life as 

illustrated in Figure 3-16. 

 



Chapter 3    Research on EMG acquisition for EMG-based robotic hand control 

80 
 

 

Figure 3-16. Hand and forearm motions (a) six types of hand grasping; and (b) two forearm motions. 

The spherical grasping is tested to squeeze a rubber ball and the forearm flexion to hold a bottle of water 

suspended from the hand. For each hand movement, the test was repeated five times with five sets of 

data collected. Each test run had a 2-second rest at the beginning followed by a 2-second activation and 

then a further 2-second rest pattern. The experimental data was stored in datasheet files using LabView 

and then transferred to Matlab to carry on the time-frequency analysis. 

3.2.6.2 Experiment results and discussions 

The analysis of the experimental data and the evaluation of the proposed EMG amplification and 

filtering circuit were performed in the Matlab environment. First the EMG signal waveforms were 

graphically displayed in Matlab. Then the activating EMG data segments of the two upper-limb 

movements, that is, the recorded EMG data subsets in the contracting period of the target muscles, were 

manually identified from the graphics. As shown in Figure 3-14, each test had two sets of data.  One is 

the result of using a fourth-order high-pass filter, while the other is the output from the second-order 

high-pass filter. 

1) Experimental results of ball squeezing 

Spectral analysis was conducted for activating EMG data segments using Fourier transformation. Figure 

3-17 and Figure 3-18 show the amplitude response of a randomly selected activating EMG data segment 

of the two channels of EMG data on the same graph with the same scale for comparison. 
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Figure 3-17. The amplitude response of the EMG signal of ball squeezing (0-500 Hz): 

(a) using the fourth-order high-pass filter; (b) using the second-order high-pass filter. 

 

 

Figure 3-18. The amplitude response of the EMG signal of ball squeezing (zoomed in 0-50 Hz): (a) using the fourth-
order high-pass filter; (b) using the second-order high-pass filter. 
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2) Experimental results of forearm flexion 

Similar to the ball squeezing movement, the amplitude response of the forearm flexion motion is 

presented in Figure 3-19 and Figure 3-20. 

 

Figure 3-19. The amplitude response of the EMG signal of forearm flexion (0-500 Hz): (a) using the fourth-order 
high-pass filter; (b) using the second-order high-pass filter. 

 

Figure 3-20. The amplitude response of the EMG signal of forearm flexion (zoomed in 0-50 Hz): (a) using the fourth-
order high-pass filter; (b) using the second-order high-pass filter. 

As can be seen from Figure 3-17, Figure 3-18, Figure 3-19 and Figure 3-20, there is only little 

improvement in terms of suppression of low frequency noises within the range of 0-20 Hz, when the 

high-pass roll-off rate was doubled from -12dB/Octave to -24dB/Octave. This suggests that the second-
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order high-pass filter can almost perform as well as the fourth-order high-pass filter in the tested EMG 

filtering circuit design. 

 

3.2.6.3 The first version of amplification and filtering design 

Based on the aforementioned experiments and analyses, the first version of the EMG amplification and 

filtering circuit consists of a pre-amplifier, a second-order high-pass filter, a second-order low-pass 

filter, an inverting amplifier, and another second-order low-pass filter. Figure 3-21 is the schematic of 

the circuit. The EMG signals collected from ball squeezing and forearm flexion movements using this 

circuit are presented in Figure 3-22.  
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Figure 3-21. The first version of the amplification and filtering circuit. 
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Figure 3-22. The EMG signal waveforms in time domain: (a) ball Squeezing; (b) forearm flexion. 
 

The experiments also showed that, even when the limb keeps completely relaxed, the signal collected 

from the EMG circuit has some obvious noise signals. The frequency spectrum of the noise signals is 

displayed in Figure 3-23, which clearly reveals that the noise from the power line interference includes 

a base component of 50 Hz and its harmonics. These kind of noises from the power line coupling or 

radiation are usually the primary noise source. As described in the literature review chapter, a notch 

filter at 50 Hz (or 60 Hz) can be employed to clean the power line noises. At the same time, however, 

some important adjacent components of 50 Hz (or 60 Hz) in the surface EMG frequency range could 

be suppressed as well. In addition, the notch filter at 50 (or 60) Hz is still unable to attenuate its 

harmonics introduced by the nonlinearity of electronic components. Therefore, the notch filter was not 

used in this research. 

 

Figure 3-23. The amplitude response of the noise signals acquired using the proposed amplification and filtering 
circuit when the limb in the completely relaxed status. 
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3.2.7 Analog-to-digital conversion design 

To integrate an EMG acquisition module into an EMG-controlled robotic hand, it is necessary to 

develop an analog-to-digital conversion circuit with the performance of multichannel and simultaneous 

sampling, instead of using a commercial data acquisition card such as the PCI-6229 used previously. 

The selection of a proper ADC plays a key role in analog-to-digital conversion design for a particular 

application. During this process, the main considerations include ADC architecture, sampling rate, 

resolution, latency, power consumption, power supply voltage, cost, etc. As mentioned in the literature 

review, the ADC architecture, sampling rate and resolution are essential properties to first be determined. 

Among miscellaneous methods of implementing an ADC, the most common ways fall within three 

categories, that is, successive-approximation (SAR), sigma-delta (Σ-∆), and pipelined ADCs. Figure 

3-24 shows in a general way how the three most popular architectures and four typical types of 

contemporary application scenarios, relate to the ADC sampling rate and resolution.  

 

Figure 3-24. ADC architectures, applications, resolution, and sampling rates [198]. 

As can be seen from this figure, the best choice of EMG application appears to be the sigma-delta (Σ-

∆) ADC architecture, which applies oversampling and digital filtering techniques, given the 20–500 Hz 

useful bandwidth of the EMG signal and the recommendation of using a 16 or more bits of resolution 

as described in the literature review chapter. 

Unlike conventional Nyquist rate ADC, the sigma-delta (Σ−∆) ADC uses oversampling, noise-shaping, 

decimation and digital filtering technologies [199]. At the analog input end, a sampling rate, which is 

much greater than the Nyquist rate, is used. Through decimation and digital filtering, the sampling rate 

is reduced down to the Nyquist rate at the digital output end. Sigma-delta (Σ−∆) conversion technology 

minimises the size of the dataset and simultaneously reduces the requirements on the analog anti-
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aliasing filter. It means that using a sigma-delta (Σ−∆) ADC, EMG signals with the highest useful 

frequency component of 500 Hz can be recorded at an output sampling rate of 1000 samples per second 

(SPS). 

ADS1292 is an integrated monolithic analog front end for biopotential measurements from Texas 

Instruments Inc. It incorporates 2-channel, simultaneous sampling, 24-bit, sigma-delta (Σ-Δ) ADCs 

with a built-in programmable gain amplifier (PGA), internal reference, and an on-board oscillator [200]. 

The ADS1292 can operate at data rates up to 8000 SPS which will be more than enough for the surface 

EMG application, when considering it employs the oversampling and decimation technology. The input 

is internally sampled at 128 kHz by a sigma-delta modulator of the ADS1292, and this means that when 

a 1000 SPS of output sampling rate is used, the oversampling ratio is 128, which significantly reduces 

the noise level and the complexity of the analog anti-aliasing filter. Due to its high levels of integration 

and exceptional performance, the ADS1292 was selected to serve as the ADC in this research. 

To match the input range of the built-in ADC of the ADS1292, a PGA gain of 3 can be used together 

with a gain of 333 provided by aforementioned two amplification stages and three filter sections, that 

is, a total gain of about 1000 was utilised to amplify the raw EMG signal. 

Following the ADS1292, an Arduino UNO board which includes an 8-bit AVR microcontroller is used 

to collect and transmit the EMG data to a computer through a USB Virtual COM Port. Experiments 

proved that the Arduino UNO board using the USB Virtual COM Port was able to transmit 2 channels 

of EMG signals which were simultaneously sampled by a rate up to 4000 SPS yet without losing any 

data when the ADS1292 using its internal oscillator. As a result of using oversampling and digital 

filtering technology by the ADS1292, the sampling rate was set at 1000 Hz which can fulfil all tasks 

well in this research [18]. Moreover, the digital part of the ADS1292 operates at a voltage of 3.3 V 

whereas the Arduino UNO runs at 5 V; therefore, a bidirectional logic level translator ADG3308 

(Analog Devices Inc.) is necessary between them. Figure 3-25 shows the configuration of the analog-

to-digital conversion design.  
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Figure 3-25. Analog-to-digital conversion and collection configuration. 

On the computer side, a program was developed in Microsoft Visual Studio environment to store the 

EMG data, perform offline training and execute real-time myoelectric control tasks. 

 

3.2.8 The modification of filtering design 

In Section 3.2.5, inspired by [38, 201], the electronic component values of both low and high pass filters 

are calculated according to Equation (3.11) and (3.12). The experiments described in Section 3.2.6 

verified the effectiveness of this method for the selection of filter component values. The further 

literature study, however, revealed that the filter with component values calculated in this way was not 

guaranteed to be optimised in terms of any individual specification. The ideal filter is with the 

characteristics of a brick wall amplitude and linear phase response that are physically unattainable. 

Practical filters in either analog or digital format can only approach the ideal attribute, and there are a 

variety of methods of approximation based on different criteria. Trade-offs must be made to maximise 

the performance on one specific aspect of the filtering characteristics but only at the expense of some 

other. The most popular and commonly-used methods include Butterworth, Bessel, Chebyshev and 

Elliptic approximation function, so are called the Butterworth, Bessel, Chebyshev and Elliptic filter 

respectively [202, 203]. 

A non-linear phase response can cause phase distortion by introducing different amounts of phase delay 

to different spectral components. In some circumstances, where phase distortion becomes a problem, 

the Bessel filter with the best phase linearity may be the choice [21]. For the surface EMG signal, 

however, the non-linear phase response is usually not a concern compared to the amplitude response, 
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since the nature of the surface EMG detection process does not allow for phase preservation. The 

Butterworth filter, which is with a maximally flat amplitude response in the passband and also a very 

smooth phase response at the expense of a relatively wide transition region from pass band to stop band 

and average transient characteristics, is best suited for applications requiring preservation of passband 

amplitude linearity, thus making an ideal candidate for conditioning the EMG signal [18]. 

Analog filter design is generally a two-step process to individually determine the filter transfer function 

and the circuit implementation topology. The analog filter theory has developed a set of systematic 

design approaches which are based firmly on long-established and arduous equations and tables of 

theoretical results; however the filter design and verification process can be tedious and time-consuming. 

Fortunately, there are computer programs developed to aid in the design of active filters. FilterPro™ 

from Texas Instruments Incorporated is one of them. It should be also noted that a 4th-order Butterworth 

filter cannot be obtained simply by calculating the components for a 2nd-order filter and then cascading 

two such stages as the Figure 3-12 in Section 3.2.5. So the component values of the two stages of the 

4th-order low-pass Butterworth filter should be calculated in one design of FilterPro™. The Butterworth 

filters designed by using FilterPro™ are shown in Figure 3-26 and Figure 3-27. 

 

Figure 3-26. The Butterworth 2nd-order Sellen-Key high-pass active filter with a corner frequency of 20 Hz. 

 

Figure 3-27. The Butterworth 4th-order Sellen-Key low-pass active filter with a corner frequency of 500 Hz. 
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The experiments also found that a certain level of DC voltage offset was introduced into the EMG signal 

chain by the cascaded amplification and filtering stages. Therefore, in the final design shown as Figure 

3-28, a capacitor of 10 µF is placed in front of the input resistor of the 2nd amplification stage to form a 

first-order high-pass filter for removing the DC offset, the cut-off frequency of which is calculated as 

per: 

 1 1
3.12 Hz

2 2 5.1kΩ 10μFcf RC 
  

 
 (3.13) 

The cut-off frequency of 3.12 Hz is much less than 20 Hz, leading to little effect on the high-pass 

filtering characteristics of the whole signal chain.  
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Figure 3-28. The modified amplification and filtering circuit using Butterworth filters. 

 

3.3 Proposed solution 2: The fully differential approach for surface EMG signal 

detection and conditioning 

Differential signalling has many attractive attributes such as common-mode rejection from a balanced 

signal path and matched filter response, immunity from single-ended component parasitic effects, 

decoupling the signal from requiring a ground reference, twice the output swing for a given voltage 

limit when compared to single-ended systems, and rejection of even-order harmonics. It is commonly 
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used for implementation of differential biopotential amplifiers [204, 205]. As described in the 

introduction section of this chapter, the discrete monolithic INA approach converts differential signals 

to single-ended outputs, compromising the overall performance. Therefore, it is desirable to utilise a 

fully differential EMG signal detection and conditioning circuit that can take advantage of the inherent 

ability of balanced signalling. However, the literature study has not found any easily-used solution that 

implements all amplification and filtering stages of the EMG signal processing chain using fully 

differential methods, although some ASIC-based EMG acquisition methods were reported in [33-36]. 

This is also the reason that a single-ended approach using the classical instrumentation amplifier 

configuration was first designed to determine and evaluate an appropriate EMG signal amplification 

and filtering architecture and suitable parameters. Actually, in this research, a fully differential EMG 

signal detection and conditioning solution has a similar block structure to the discrete monolithic INA 

one shown as Figure 3-2, except for the two amplification and three filter stages that need to use 

differential design instead. This is based on the fact that the EMG detection electrode configuration, the 

EMI/RFI rejection filter and the ADC ADS1292 employed in the discrete monolithic INA approach, 

are all differential design. Figure 3-29 depicts the circuit structure that is suitable for fully differential 

EMG signal detection and conditioning. 

 

Figure 3-29. Block diagram of the fully differential version of the amplification and filtering for a single channel. 

 

3.3.1 The fully differential front end amplifier 

Two options can be used to realise an amplifier with both differential input and output, that is, 

 The dual op-amp configuration; 

 The integrated fully-differential amplifier (FDA) configuration. 

Figure 3-30 and Figure 3-31 show the basic configuration of these two methods respectively. 
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Figure 3-30. Differential-in and differential-out front end amplifier topology [181]. 

 

 

Figure 3-31. Fully differential amplifier (FDA) [206]. 

Although either of the two methods can be used in the design of fully differential amplification, there 

are differences between them. While the dual op-amp configuration can also serve as an analog front 

end in addition to an ordinary amplifier because of its high impedance provided by setting the two op-

amps in a voltage follower manner, the integrated FDA method can only be used in further amplification 

or filter sections. Therefore, the dual op-amp configuration was used to implement the fully differential 

EMG front end amplifier as shown in Figure 3-32. As described in Section 3.2.4, the gain of the front 

end amplifier is set in such a way that the electrode DC offset does not saturate the front end itself so 

that 150kΩ and 56kΩ have been decided to be the values of the gain resister RF and RG, respectively. 

This means that the front end amplifier has a low gain of 6.36 which is hardly to cause the saturation 

problem. 
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Figure 3-32. Fully differential EMG front end amplifier and DRL circuit of two channels. 

The same guarding and DRL principle as the single-end INA approach described in Section 3.2 can 

also be applied to the dual op-amp fully differential design, except that the common-mode voltage is 

obtained by averaging all positive and negative outputs of two channels, instead of averaging the 

midpoint voltages of the gain resistors. 

 

3.3.2 The second differential amplification stage 

The second stage of differential amplification can be converted from its single-ended counterpart as 

Figure 3-28, by using the fully differential amplifier configuration as Figure 3-31. The same frequency 

and amplitude characteristics as the single-ended can be obtained with the design as Figure 3-33.  

 

Figure 3-33. The fully differential AC-coupled second amplification stage. 
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3.3.3 The fully differential filter design 

It seems that the fully differential filter design is daunting at first. However, a differential filter can be 

obtained by converting from the corresponding single-ended filter in a few steps [183, 207-209]: 

 First mirror the single-ended filter design around GND and removing the GND; 

 Then combine the circuit element and its mirror that connect to GND and recalculate these 

circuit component values; 

 Finally, for the active filter, replace the op-amp and its mirror with a fully differential 

operational amplifier. 

The inverting input end is usually used as the return point of a negative feedback path in most of op-

amp applications, including active filter implementation. This leaves the only choice of the noninverting 

input end for establishment of a common-mode voltage, between an op-amp and its mirror, but not for 

signal input or positive feedback return. The converting process indicates only certain double pole 

topologies are suitable to implement a differential active filter, excluding those topologies with both 

positive and negative feedback, or those with only negative feedback but employing the noninverting 

end for signal input. This leads to only few utilitarian options [210]: 

 Multiple feedback (MFB) filter (using one op-amp) 

 Akerberg Mossberg filter (using two op-amps) 

 Biquad filter (using two op-amps) 

The MFB configuration is a simple and commonly used topology that is ready to support fully 

differential active filter design. The software program FilterPro can be used for differential MFB filter 

design in a similar way as for single-ended filter design. The schematics of the proposed fully 

differential high-pass and low-pass filter are presented in Figure 3-34 and Figure 3-35 respectively. 

 

Figure 3-34. The fully differential MFB Butterworth 2nd-order high-pass active filter with a corner frequency of 20 
Hz. 
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Figure 3-35. The fully differential MFB Butterworth fourth-order low-pass active filter with a corner frequency of 
500 Hz. 

The other differences from the single-ended approach are the ADS1292’s IN1N and IN2N pins that are 

connected to Vout- pins of their corresponding channel low-pass filter instead of being led to GND as 

shown in Figure 3-25. At this point, all circuit blocks shown in Figure 3-29 are designed and 

implemented in the fully differential design manner, thus forming a complete fully differential surface 

EMG signal detection and data acquisition system. 

The fabricated EMG signal acquisition circuit PCB is shown in Figure 3-36. All schematics are attached 

in appendices. 

 

Figure 3-36. The fabricated EMG signal acquisition circuit PCB. 
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Chapter 4  
Pattern recognition-based hand gesture discrimination 

 

This chapter focuses on robust pattern recognition-based real-time myoelectric control schemes that 

could be applied to drive a robotic hand with fingers, which will be discussed in next chapter. The 

overall framework of myoelectric control algorithms will be studied first, followed by the elaborations 

of the approaches and methods for myoelectric control. 

 

4.1 Myoelectric control framework 

As mentioned in Chapter 1, various schemes have been researched for the implementation of 

myoelectric control. The early approaches work only on one or two degrees of freedom (DOFs), usually 

mapping an estimated parameter such as the amplitude or the change rate of the EMG signal to a 

targeted DoF of a prosthetic hand. In contrast to these primitive methods, pattern recognition has the 

potential to be used for more DOFs. Indeed, pattern recognition has been the preferred method for multi-

functional myoelectric control. Up until now, however, research in myoelectric control systems based 

on pattern recognition is still mainly limited to the laboratory environment. Very few products based 

on EMG pattern recognition are commercially available. The flexibility, reliability and robustness of 

such systems still remain as challenging issues. As a result, these products are facing a considerable 

rejection rate especially in real-life applications. 

The pattern recognition-based myoelectric control can consist of different functional stages or steps, 

including data segmentation, feature extraction, dimensionality reduction, classification, and post-

processing. For real-time applications, EMG activity detection is a necessary step added at the 

beginning to trigger the running of following steps. On the contrary, dimensionality reduction and post-

processing can be ignored from the myoelectric control scheme, determined by specific system design 

specifications. The overall framework can be illustrated as in Figure 4-1, where occurrence of the blocks 

enclosed in dashed rectangles is dependent on applications. From the next section, the methods for each 

step of the pattern recognition-based real-time myoelectric control scheme developed by this research 

will be presented. 
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Figure 4-1. Framework of pattern recognition-based myoelectric control. 

 

4.2 Muscle activity detection via EMG signal recognition 

Despite the usefulness of the manual visual inspection method that is used in activity detection for EMG 

offline analysis and algorithm testing result comparison, a real-time control scheme necessitates 

automatic EMG onset and duration detection. Onset detection is a challenging task due to the stochastic 

characteristic of the EMG signal, especially when considering the weak surface EMG response. 

To use EMG signals to automatically and precisely identify muscle activity starting and ending point, 

the basic idea involves the comparison between certain specific parameters calculated from the signal 

data and one or two pre-defined thresholds. Various computer-based methods have been proposed for 

muscle activity detection. Most of them are related to EMG signal amplitude. Although the activity 

detection methods associated with the amplitude of EMG signals are sensitive to noises, the algorithmic 

implementation of these methods is straightforward and computationally efficient. To improve the 

detection accuracy, there are different novel algorithms proposed in literature, e.g. the maximum value 

detection (MVD) method [73], the sample entropy analysis method [71], the maximum likelihood (ML) 

method [76], the approximated generalized likelihood ratio (AGLR) method [211],  and the Teager–

Kaiser energy (TKE) operator method [77]. However, these novel approaches are more complex and 

time-consuming than those amplitude-related counterparts. 

The literature study has shown that amplitude-based methods are the most utilised choice for activity 

detection due to their simplicity and low computational cost. A simple moving average method that 

calculates energy using signal amplitude values [212] is a feasible option for this research. The average 

signal energy is computed in windows with a certain length and then compared with a predefined 

threshold that is chosen beforehand. The threshold is set as the value of average energy calculated at 

the activity starting point of EMG data recorded in offline experiments with the same setting as the real-

time test. The activity starting point of offline EMG data is determined by using the manual visual 

inspection method. 

In this research, the average amplitude value of the EMG signals from two channels is first calculated, 

and then the square of the average is regarded as the instantaneous energy of the EMG signal. Two 

adjacent windows (leading and trailing) slide through the EMG instantaneous energy data series to 

evaluate the average energy in these two sliding windows. The calculation process of the average energy 

in either window consists of three steps as follows:  
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1) Calculate the average of the EMG signals from all channels   
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C
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C 

   (4.1) 

where ( )cs t  is the c -th channel EMG signal; C  is the total number of the EMG channels and in this 

research 2C  . 

2) Compute the transient signal energy 

 2( ) ( )E t s t  (4.2) 

3) Evaluate the average of the transient signal energy in moving windows 
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where W  is the width of the moving windows. 

Once the average energy is determined in the leading and trailing windows, they are compared with a 

predefined threshold to detect the start point or end point of the EMG signal. Starting from a rest state, 

when the energy averages in both the leading window and the trailing window are greater than the 

predefined threshold, the EMG activity is considered started. On the contrary, when the energy averages 

in both the leading window and the trailing window are less than the predefined threshold and the EMG 

is previously active, it begins to stop activity. 

The advantage of using two adjacent moving windows is that this method can prevent spurious start or 

end point detection when a pulse noise signal is mainly distributed in only one of them. It is worth 

noting that the minimum interval between two distinct human muscle contractions is approximately 200 

ms [68]. This also suggests that the duration of any muscle contraction may not likely be less than 200 

ms. Therefore, if the interval between any pair of detected start point and end point is less than 200 ms, 

this period of signal is most likely caused by noise or artefacts and should be discarded. 

The length of the moving average windows in this thesis was set as 25 ms, leading to an activity 

detection response time of 50 ms that is two times the moving average window length due to the two 

adjacent sliding windowing scheme. 
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4.3 Data segmentation 

Because of the stochastic nature, it is generally acknowledged that the instantaneous values of the 

myoelectric signal do not contain proper information that can be directly used in pattern recognition. 

Instead, EMG data segments are usually used to estimate features for classification, based on the 

statistical parameters from each segment. 

Three points must be carefully considered during EMG data segmentation, i.e. segment length, the state 

of data, and the data windowing technique [6, 68]. 

Normally two states can be observed in recorded EMG signals, i.e. the transient state emanating from 

a burst of fibres when a muscle goes from rest to a voluntary contraction level, and the steady state 

emanating during a constantly maintained contraction in a muscle. Although the transient state shows 

a capability for classification [82], higher classification accuracy can be obtained from the steady state 

[213]. In addition, given the weakness of a request to start a motion from rest for transient state 

classification, the steady state is preferred in myoelectric control.  

The first consideration of designing a real-time robotic control system is the real-time constraint—with 

a delay less than 300 ms between muscle contraction and physical robotic system movement. A smaller 

segment length is helpful to reduce the response delay, which depends mostly on the segment length. 

On the other hand, classification error increases as the segment length declines because of the raised 

deviation and variance of features in accordance with the decreased segment length.  

The controller delay can be calculated by using equations in Table 2-1 for different system 

configurations in connection with the selection of segmentation windowing scheme and postprocessing 

technique. The difference of the real-time constraint 300 ms and the computation processing time, is 

the longest permissible time period that can be used for segmentation and postprocessing. Considering 

the computational capacity of modern microprocessors or CPUs such as ARM Cortex-M3 or Cortex-

M4 series, 50 ms is much more than the necessary time for finishing the computational task of a segment. 

This means at least 250 ms can be left for segmentation, postprocessing and other factors such as a short 

time of mechanical inertia.  

Two windowing techniques, i.e. the disjoint and the overlapped windowing, were proposed for data 

segmentation in literature. Disjoint windowing has only one variable parameter—segment length, 

whereas overlapped windowing is determined by length and increment. The increment is the time 

interval between two adjacent segments. It should be less than the segment length, and more than the 

computational processing time for a segment. The use of a segment length longer than 200 ms requires 

overlapped segmentation in order to avoid failure in real-time. Research shows that real-time 

controllability is dependent not only on classification accuracy but also on controller delay, and in turn 
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on the segment length, the windowing scheme and the post-processing technique, as detailed in the 

literature review section 2.2. It is found that the optimal controller delay ranges approximately from 

100 ms to 125 ms [79], and the optimal window length is between 150 ms and 250 ms for the 

overlapping window technique [60]. 

Aiming for a real-time myoelectric control system, the overlapped windowing scheme was considered 

and selected in this research. The delay of the hand gesture discrimination module relates to multiple 

factors, which also includes the post-processing technique used, such as majority voting, rather than 

simply analysis window parameters and computation processing time. Therefore, the analysis window 

length and increment were determined accordingly with the majority voting scheme in the experiments. 

 

4.4 Feature extraction 

The success of EMG pattern recognition is heavily dependent on the choice of discriminative features 

that are used to represent the corresponding pattern categories [82]. It is widely accepted that the choice 

of a representative feature set is more effective and efficient than the attempt to design a complicated 

classifier that could theoretically achieve higher accuracy. It is reported that a carefully selected EMG 

feature set is possible to make a classifier directly achieve high performance [85]. 

Many EMG feature sets have been proposed and studied due to the important role they play in pattern 

recognition-based myoelectric control. The majority can be divided into four groups: time domain (TD) 

features, frequency domain (FD) features, time-scale or time-frequency domain (TFD) features, and 

spatial domain (SD) features [81]. Three indicative measures, i.e. class separability, robustness and 

complexity, can be used to evaluate feature performance. 

EMG features in time domain are usually easy to implement and computationally efficient since their 

calculation is based on raw EMG data time series—the digital discrete EMG signal amplitude values, 

without the necessity of any type of mathematical transformation. A disadvantage of time domain 

features is that they cannot capture the non-stationary property of the EMG signal, which may lead to 

situations in which some statistical parameters of the analysis window change over time. Additionally, 

more interference may be introduced because their calculation is only based on EMG signal amplitudes 

that are more likely affected by noise. However, features in this group can reach acceptable 

classification performance in low noise environments, hence being widely used in both medical and 

engineering researches and practices. Time domain features can be further grouped into four subsets: 

energy and complexity information, frequency information, prediction model, and time-dependence. 

Features from the same subset often result in redundancy [85]. 
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Frequency domain features are computed based on statistical parameters of power spectral density (PSD) 

and are mostly used to study muscle fatigue, force production, and changes in motor unit recruitment 

and firing patterns [81]. Although some frequency domain features show similar separability to time 

domain features, features in frequency domain are considered unsuitable for EMG recognition 

application. However, specified frequency domain features may be combined with successful time 

domain features to improve system robustness.  

Modern signal processing technology has developed new mathematical transformation techniques, 

including short time Fourier transform (STFT), continuous wavelet transform (CWT), discrete wavelet 

transform (DWT), wavelet packet transform (WPT) and stationary wavelet transform (SWT). 

Coefficients of these transformations can be selected or combined as time-frequency domain (TFD) 

features for classification.  TFD features can constitute a high-dimensional feature vector that 

necessitates dimensionality reduction to increase the speed and accuracy of the classification. 

Spatial domain (SD) features come from the spatial information that high-density surface EMG (HD-

sEMG) measurements can provide. SD features can be used to provide information about the spatial 

distribution of the MUAPs and the load-sharing between muscles. 

Literature study found recommended EMG features in myoelectric control including: 

1) MAV, WL, WAMP, AR, CC, RMS and MAVS from the time domain; 

2) MNF and PSR from the frequency domain; 

3) Sample entropy (SampEn) [29]. 

Based on the extensive preceding work in literature, given the consensus of the effectiveness and 

efficiency of the time domain features, together with concerns about the effect of long-term usage, five 

features were considered in this research for the proposed real-time myoelectric control system 

development. The mathematical expressions of these features are listed below. The parameter values 

used in this research for feature computation are also pointed out. 

1) Root mean square (RMS) 

RMS is a measure of the signal energy in a time segment. 

 2

1

1
RMS

N

i
i

x
N 

   (4.4) 

where ix  stands for the EMG signal instantaneous amplitude voltage and N is the length of a signal segment [85]. 

2) Waveform length (WL) 
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WL is a measure of complexity of the myoelectric signal, representing the cumulative length of the 

EMG waveform over a data window [85]. 
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3) Cepstral coefficients (CC) 

CC is the coefficient set of the inverse Fourier transform of the logarithmic power spectrum magnitude 

of the signal data, and can be calculated from the parameters of the auto-regressive (AR) model for the 

same signal data [85]. 
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where 
pc  is the -thp  order coefficient of Cepstral analysis and 1 l P   ; P  is the order of the AR 

model; 
1

a  and 
pa  are the coefficients from AR model: 
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The fourth-order AR and in turn the fourth-order CC were suggested in previous studies [85], thus 

selected and implemented in this research. 

4) Sample entropy (SampEn)  

SampEn represents the complexity and regularity of a system [214]. It is defined as: 

 SampEn( , , ) ln[ ( ) / ( )]m mm r N A r B r   (4.9) 

where ( )mB r  and ( )mA r  are the probability that two series will match for m and 1m  points, 

respectively [29]; m  was set as 2 in this research [214]; and r  is the global tolerance, set as c  , 

where   is the standard deviation of the EMG time series for all non-rest states of each subject, and 

c  is an adjustable coefficient for finding a proper global tolerance to avoid the occurrence of  ln(0) . 

The computational algorithm implemented in [215] was employed to determine sample entropy values.  

5) Willison amplitude (WAMP) 
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The threshold can be selected from a series of candidates through experiments such that a classifier can 

reach the highest accuracy when using a single WAMP feature. The suitable threshold value is normally 

in a range corresponding to an input-referenced EMG signal voltage variation span between 10 – 100 

µV [216]. Since the total gain value of the EMG signal recording circuit was set as 1000 in this research, 

the typical threshold value of WAMP is between 10 – 100 mV. A threshold of 5 mV would correspond 

to an input signal of 5 µV, which is close to the system noise level that is about a few µV. An experiment 

was conducted to chosen a suitable threshold in this research. The experiment employed the single 

WAMP feature of two channels of EMG signals and a built-in LDA classifier function Classify from 

Matlab. The threshold was chosen based on the experimental results. Figure 4-2 shows the classification 

error rates produced in the WAMP threshold examination experiment. The 10 mV of threshold 

corresponds to the least error rate and thus was selected as the threshold of WAMP in this research. 

 

Figure 4-2. WAMP threshold examination experiment results. 

The final feature set for classification in this research is composed of 8 quantities, i.e. RMS, WL, 

SampEn, WAMP, and four CC coefficients ( 1c , 2c , 3c , and 4c ). A total of 8 scalar parameters can be 

calculated from each channel of EMG signals. Taking account of two channels of EMG signals used in 

this research, a total of 16 parameters can be obtained. These 16 parameters can be concatenated as a 

feature vector fed into the pattern recognition classifier in the next processing step. The feature vector 

dimension in this research is 16 and can be considered unable to cause the high dimensionality problem. 

This eliminates the necessity of further dimension reduction before classification. Therefore, dimension 

reduction methods are not studied and implemented in this research. 
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4.5 Classification 

Classification is the process to identify the category that a new observation belongs to, within a set of 

categories, on the basis of a set of observations whose category membership is known. There are two 

phases in classification, i.e. training to determine classifier parameters using the membership-known 

specimen set, and testing to predict the membership of new instances. 

Previous studies on myoelectric control have made comparisons on most modern classification methods 

[24]. In principle, all classifiers similarly use a set of training data to define a decision boundary in the 

feature space, but with different boundary shapes allowed and with different ways the boundary is 

placed on the basis of the training data [217]. Literature study shows that support vector machine (SVM) 

[68] and linear discriminant analysis (LDA) [29] have been considered the most robust and thus the two 

most popular classifiers for myoelectric control. 

4.5.1 Linear discriminant analysis (LDA) 

Linear discriminant analysis assumes linear decision boundaries between classes and uses training data 

to determine the weights of discriminant functions of the classifier so as to optimally discriminate two 

classes with the equal-covariance Gaussian distribution attribute. 

A general idea for supervised classification is to use a discriminant function to lead to a classification 

rule. A linear discriminant function is defined as 

 0( ) Tg w x w x  (4.12) 

where w  is a weight vector and 0w  is a threshold; x  is one of the training patterns  ,  1,  ,  i i nx  . 

In the binary classification problem, the discriminant function approach of classification is to seek a 

weight vector w  and a threshold 0w  such that 
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w x x  (4.13) 

Thus, all training patterns can be correctly classified if 

 0( ) 0  for all T
i iy w i w x  (4.14) 

In this research, the LDA classifier function classify—a built-in function implemented in Matlab  

Statistics and Machine Learning Toolbox for discriminant analysis [218], as shown in Equation (4.15), 

was selected for offline experiments to compare classification accuracy with the SVM classifier. 
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 )  ,( , , ' 'class classify sample training group type  (4.15) 

Where type is ‘linear’ to fit a multivariate normal density to each group, with a pooled estimation of 

covariance (this means each group with an equal variance). 

4.5.2 Support vector machine 

SVM is a kernel-based machine learning approach, which has increasingly become popular since the 

1990s. SVM trains linear learning machines in high-dimension linearly separable feature spaces that 

are implicitly transformed from low-dimension linearly inseparable spaces using kernels in order to 

maximise the margin by applying optimisation algorithms to control over-fitting [3, 99, 105, 219]. 

The idea behind SVM requires not only that the training patterns are subject to Equation (4.14), but also 

that the margin is maximised for a better generalisation capability, i.e. 

 0( )    where  is a constant and  0T
i iy w b b b  w x  (4.16) 

Without loss of generality, a value 1b   may be taken, thus 
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The seperating hyperplane is defined by Equation (4.18). 

 0 0T
i w w x  (4.18) 

Equation (4.19) defines two canonical hyperplanes. 
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The distance between the two canonical hyperplanes, i.e. the margin, is 2 w . Therefore, maximising 

the margin is equivalent to seeking a solution that minimises w  subject to the constraints: 

 0( ) 1    1,  ,  T
i iy w i n  w x   (4.20) 

The objective function of the above optimisation problem can be written as:  

 
1

( )
2

J w w w  (4.21) 
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For nonlinear separable two-class data, constraints (4.17) can be relaxed by introducing a slack variable 

i , leading to a soft margin: 
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 (4.22) 

If ix  is correctly classifed, then 0i  ; otherwise  i
w

 is the distance of ix  from the corresponding 

canonical hyperplane. 

The objective function (4.21) can be replaced by (4.23) to incorporate the additional cost due to 

nonseparability: 

 
1

( )
2 ii

J C   w w w  (4.23) 

where C is a regularisation parameter to adjust the penalty term in the objective function. A large value 

of C will lead to a lower misclassification rate on training data and a smaller margin thus a lower 

generalisation capability, while a small value of C will result in a better generalisation capability by a 

larger margin but misclassifying more training samples. 

By introducing the slack variables, the classification margin of SVM is softened and thus this method 

is called soft margin SVM or C-SVM, which is the standard configuration for a typical SVM 

classification problem. There is also another implementation of the soft margin SVM, called ν-SVM. 

The soft-margin SVM classifiers are sensible for EMG application since EMG signals are often 

contaminated by artefacts and noises thus with high levels of outliers. The possibility to have adjustable 

margins is beneficial to consider the effect of outliers [3]. 

The choice of C is critical in that a too high value of C will lead to overfitting whereas a too low value 

of C will result in underfitting. No optimal criteria exist to select a value for C, but a method of “grid-

search” using cross-validation can be considered [3, 220]. 

Soft-margin allows for an acceptable misclassification level so as to obtain a linear approach for non-

linearly separable problems. For circumstances inherently nonlinearly separable, however, a nonlinear 

method may lead to a better outcome. Except for being applied to the original variables, the algorithms 

developed for using linear discriminant functions can also be utilised in a transformed feature space 

defined by nonlinear transformations of the original variables. The discriminant function can be 

rewritten from Equation (4.12): 
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 0( ) ( )Tg w x w x  (4.24) 

with decision rule 
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The objective function optimisation and subsequent classification can be deduced only by relying on 

dot products ( ) ( )T
i j x x  between transformed feature vectors and it can be replaced by a kernel 

function 

 ( , ) ( ) ( )TK  x y x y  (4.26) 

In this way, explicitly computing the transformation ( ) x  can be avoided and the dot product can be 

replaced with ( , )K x y  instead. The whole procedure is referred to as the kernel trick. 

The most used kernel functions include: 

 Radial Basis Function (RBF), 

2
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x x

x x  

 Polynomial, ( , ) ( 1) ,   0d
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 Sigmoidal, ( , ) tanh( )i j i jK k   x x x x  

 Cauchy,
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 Logarithmic, ( , ) log( ,   >0
d

i j i jK c d   x x x x  

As with the regularisation parameter C, kernel function parameters can also be set using a grid-search 

approach. 

SVMs are stable classifiers due to the SVM decision rule prescribed by a simple linear function in the 

kernel space. SVMs also consist in low variance that reflects the low sensitivity of the classifier to the 

training data. Low-variance classifiers, such as SVM, can deal with non-stationary signals, such as 

EMG, with features that change over time, better than others [3]. In general, it is found SVM is a more 

robust technique for classification than the LDA-based method. The SVM focuses on the data at the 

boundary of the classes for extracting group differences that are less perceivable on the original space, 
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but more important for classification. Conversely, the LDA-based method can capture variations within 

each group which is useful for extracting discriminative information [221].  

Multiclass SVM classifiers can be converted from binary classifiers either in a one-against-all or in a 

one-against-one manner. In one-against-all (OAA), M binary classifiers are constructed for M-class 

problem. The k-th classifier is trained to separate instances in class ωk from all the others.  A new 

observation is classified to the class whose corresponding classifier generates the highest score. 

Similarly, in one-against-one (OAO) for M-class problem, M*(M − 1)/2 classifiers are built. Each 

classifier discriminates one class from another. A new observation is assigned according to a majority 

voting result of all classifiers’ responses. 

LibSVM [222] is one of the most famous software libraries of SVM algorithm implementation. In this 

research, the source codes of LIBSVM in C/C++ programming language were utilised for the 

implementation of SVM classifier in both offline and real-time situations. The RBF is the first option 

of kernel functions. The RBF kernel function of LIBSVM is described in a form of  

 
2

( , )K e   x yx y  (4.27) 

Scaling is an important data preprocessing step before applying SVM for avoiding features in greater 

numeric ranges dominating those in smaller numeric ranges and also avoiding numerical difficulties 

during calculation [220]. In this research, each feature of training EMG data was linearly scaled to the 

range [−1, +1] or [0, 1] according to Equation (4.28). 

 min
max min

( ) upper lower
new lower old

B B
f B f f

f f


   


 (4.28) 

where 

upperB  and lowerB  are the upper and lower boundaries of each feature after scaling respectively 

and they are -1, 1 or 0 in this research; 

maxf  and minf  are the maximum and minimum of each feature before scaling, respectively;  

oldf  and newf  are the values of each feature before and after scaling, respectively. 

In addition, the scaling factor 
max min

upper lowerB B

f f




 calculated using the training data set must be applied to 

the testing data set and real-time application for getting a better accuracy. 
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Unlike LDA, the SVM classifier demands several mathematical model parameters determined 

beforehand. As used in [72], C-SVM was also selected as the SVM classifier type in this research. For 

C-SVM, the required parameters consist of the regularisation parameter C and the RBF kernel 

parameter . The best values of C and  can be found by a grid-search method using cross-validation 

(CV) [220]. A parameter selection tool grid.py using Python programming language is provided in the 

LIBSVM package for C-SVM classification using the RBF kernel. It uses cross-validation technique to 

estimate the accuracy of each parameter combination in a specified range and helps to decide the best 

parameters for a specific problem. In this research, these two parameters were chosen to be the same as 

used in [72], i.e. 8C  , and  = 12/(number of features). As stated in the segmentation section, the 

number of features in this research, namely the dimension number of the classification feature vector, 

is 16. Therefore,  = 12/(number of features) = 12/16 = 0.75. 

 

4.6 Post-processing 

The density-increased decision stream due to the overlapping windowing scheme, provides possibility 

and also necessitates post-processing to reduce the number of commands sent to the output device. 

Majority voting (MV) is a conventional post-processing method used after classifier outputting 

decisions. MV has shown that it can eliminate spurious classification results and smooth the output 

decision stream [108], avoiding abrupt device movement changes. The number of decisions utilised in 

a MV queue can be determined by the acceptable control delay, analysis window length and increment, 

and the computational processing time [60, 79, 80]. 

For the overlapped windowing scheme with majority voting, the average decision-making delay can be 

calculated according to Equation (4.29) from Table 2-1. In this research, a variable was purposely 

designed in the software program to allow the adjustment of the decision number in majority voting. 

 
1

( )
2 2a new

n
D T T     (4.29) 

Where   ;D Controller Delay   ;T Analysis Window Lengtha   ;Processing Time 

   ;Analysis WiT ndow In en mew cr ent    .Number of Man jority Votes  

To utilise more information in a window, a longer window length is preferable but may lead to a 

unacceptable delay according to Equation (4.29). The same logic happens to the analysis window 

increment and the number of votes in majority voting. Trade-offs must be made between these three 

parameters to get balanced performance. In this research, the analysis window length and increment 

were selected as 200 ms and 25 ms respectively; the typical number of votes in a majority voting queue 
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can be 5, 7, and 9 corresponding to an average delay value of 163, 188, and 213 ms respectively, given 

the negligible processing time demanded on a modern desktop computer [80]. An example of 

calculating the controller delay for using 7 votes in majority voting is shown in Equation (4.30). 

 
1 1 7

( ) 200 ( ) 25 188 ms
2 2 2 2a new

n
D T T            (4.30) 

 

4.7 Final structure of the real-time hand gesture discrimination module 

The proposed pattern recognition-based real-time hand gesture discrimination module is finally 

composed of five blocks: EMG activity detection using a moving average method, overlapped 

windowing segmentation, feature extraction (5 features), SVM classifier, and majority voting, as shown 

in Figure 4-3. 

EMG Activity
Detection

Overlapped 
Windowing

Feature 
Extraction

SVM 
Classifier

Majority
Voting

Hand Gesture Discrimination Module

 

Figure 4-3. Block diagram of the real-time hand gesture discrimination module. 

The activity detection for triggering the running of following function steps uses an amplitude-based 

method because of its computational efficiency. Once it detects targeting muscles on a rest state, all 

other functional blocks except activity detection, terminate execution to reduce computational 

consumption. Overlapped windowing segmentation combined with majority voting is conducive to 

using more information in a longer data window, but at the same time generates an acceptable delay 

and smooths the output decision stream. The feature set consists of EMG features mainly from the time 

domain for low computational demand, low dimension, and in turn, the elimination of dimension 

reduction. The SVM classifier is utilised in real-time application because of better robustness and the 

convenience of the LIBSVM C/C++ library. 
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Chapter 5  

EMG-driven robotic hand construction and control 

system design 

 

The EMG acquisition and hand gesture discrimination methods proposed in previous chapters can be 

used to build a novel human-machine interface—a myoelectric control system that can be used for 

various applications. Without a physical testing device, the performance of the myoelectric control 

system can merely be evaluated using those criteria, such as the offline classification accuracy and 

online virtual prosthesis control, that are unable to consider the coupling influence with output devices. 

However, many factors from the combination with output equipment, such as weight and inertia, have 

a significant impact on the controllability and reliability of the entire system. Therefore, a physical 

device, which is close to a practical application, is needed for the evaluation of the myoelectric control 

method.    

Among available options, a robotic hand is a suitable choice of output equipment for myoelectric control 

since the human hand gestures and the corresponding robotic hand responses can be directly compared 

visually. Robotic hand design has a long history. Various robotic hands, ranging from the simplest 

robotic manipulators used in an industrial environment to the one as complex as a dexterous 

anthropomorphic hand, have been developed for the purposes of industrial task, tele-manipulation, 

prosthesis, or domestic service [121]. The industrial manipulators largely focus on the customised end 

effectors that are capable of autonomously performing specific manufacturing and handling tasks. They 

have greatly increased productivity, but lack the ability of performing general object manipulation. 

Inspired by the dexterity and versatility of the human hand, however, an anthropomorphic multi-

fingered robotic hand is likely to be applied to applications beyond mass production, such as a compact 

yet fully functional prosthetic hand used by an amputee in everyday life, and a complex tele-manipulator 

used by an operator in health or dangerous or other remote applications [169]. Therefore, it was decided 

to develop an anthropomorphic robotic hand for myoelectric control validation in this research. 

Issues relevant to the development of dexterous robot hands generally include kinematics, mechanisms, 

actuation, sensing etc. This chapter presents the development of an anthropomorphic robotic hand 

driven by biosignal control. The design work started with the palm and finger structure construction of 
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the robotic hand, followed by the development of an actuation and transmission system based on the 

analysis of available approaches for robotic finger movement. Then, a robotic hand controller was 

designed with feedback using electric current and position sensing techniques. A prototype physical 

anthropomorphic robotic hand was finally built. 

 

5.1 Anthropomorphic robotic hand design 

One of the early aims of robotic hand design was for disabled people. This is why prosthetics is one of 

the most important application areas of robotic hands. Despite the desire for dexterity in prosthetics, the 

most commonly used prosthetic hand is still a mechanically controlled hook-like prosthesis as shown 

in Figure 5-1, a design dating from over a century ago. It is quite possible that such a design surviving 

until now is because of the relatively higher effectiveness, robustness and simplicity of the prosthetic 

hook. However, the hook-like prosthesis brings patient convenience at the cost of a conspicuous stigma, 

and thus is undesirable in some circumstances. In addition, multifunction and dexterity are always 

desired for a robotic hand. Human hand structure and functionality are the result of a long evolutionary 

period involving the use of tools. The human hand is therefore the best source to imitate the human-like 

grasp and manipulation capability. Moreover, the target objects being grasped or manipulated by 

prosthetic hands in daily life are usually made for use by human beings. Although a hook-like hand, or 

a hand with three digits, is able to perform basic grasp tasks, one or two extra fingers can provide 

supplemental stability and flexibility. Therefore, most of the developmental effort for multifunctional 

terminal devices has been towards creating fully anthropomorphic hands [122]. This means that the 

robotic hand will possess five digits and the shape, size and mass of this device need to be constructed 

as similar to a natural human hand as possible. The development of an anthropomorphic robotic hand 

with five fingers was thus the choice of this research.  

 

Figure 5-1. A body-powered prosthetic hook. 

As described in Section 2.3.2, the human hand skeletal structure is composed of the palm and five 

digits—four fingers and a thumb. The palm and digits are further constituted by separate bones or 

phalanges. Using contemporary technologies and materials, however, it is hard to build a robotic hand 
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that is thoroughly same as the human hand. Therefore, for simplicity, the robotic hand was built using 

different strategies for palm and digit design. 

 

5.1.1 Robotic hand palm design  

The human palm is composed of thirteen bones including eight carpals and five metacarpals, providing 

a base to hold the fingers. It is impossible to completely mimic the anatomical structure of the human 

palm for an artificial hand. Anthropomorphism in robotic hand palm design largely means an imitation 

of the shape and dimensions of the human palm. 

The palm is a vital part of the human hand. It offers an articular surface to share forces with fingers, 

constituting one of the three distinctive force-sharing pairs identified in object grasping. The other two 

force-sharing pairs are between the pads of the fingers and the thumb, and between the thumb and the 

side of the index finger respectively. Studies also reveal that the foldable palm, along with the human 

thumb, contribute to making oblique arches that help to stabilise orientations and positions of the fingers 

during in-hand object manipulation [119].  

For the sake of an aesthetic purpose, an anthropomorphic palm with the same shape as the human one 

would be the better choice to mimic human hand structure and link with the fingers. To obtain a real 

human hand shape, a 3D laser scanner can be used to scan a human hand and import the geometric data 

into a CAD system to establish a model of the palm. 

In this research, an existing 3D scanned human right hand palm model in the STL format downloaded 

from the internet [223], as shown in Figure 5-2, was utilised as the origin of work. This model is 

permitted under a license that allows free sharing and adaptation for any purpose. 

(a) (b) (c)  

Figure 5-2. The STL model of a right human hand palm in the (a) isometric view; (b) front view, (c) back view. 

Through the investigation on the available materials and corresponding manufacturing technologies, 

additive manufacturing, also known as 3D printing process, was identified as the suitable way to 

produce the prototype because of the advantages stated in Section 2.3.5. The final decision of this 
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research was made to use FDM 3D printing in ABS plastic for construction of the hand architecture. 

The process to create objects with an FDM printer starts from building computer-aided design (CAD) 

files. These CAD files must then be converted to a format that a 3D printer can understand, usually the 

STL format, before an object can be printed. 

The first step of 3D printing is to build the 3D model of a target object in a specific software program.   

SolidWorks® (Dassault Systems SolidWorks Corporation) is a popular CAD system used in industry 

and educational organisations and was used for hand modelling in this research. SolidWorks is a 

parametric CAD modelling tool with both solid and surface modelling capability. The underlying 

technology of its surface modelling is based on non-uniform rational b-spline (NURBS). NURBS 

modelling is great at combining shapes via Boolean and feature operations, as well as at refining shapes 

with operations such as filleting, blending and face editing [224]. However, it is not the best choice to 

create 3D models such as a human palm with irregular curved surfaces.  

There are other alternative technologies to NURBS surface modelling, i.e. T-splines, subdivision 

surfaces, and polygon meshes. The strength of subdivision (Sub-D) modelling is at producing and 

modifying complex freeform or organic shapes with smooth surfaces, which is the weakness of NURBS 

modelling. Power Surfacing is a plugin product that adds Sub-D modelling capability to SolidWorks in 

addition to its native NURBS modelling paradigm. The demo version of Power Surfacing can be 

downloaded from the website www.npowersoftware.com. Being able to use both modelling paradigms 

together in the modelling process provides huge productivity advantages in both the design and revision 

process. 

Starting from the palm STL file imported as a reference mesh, reverse engineering work was conducted 

by using PowerSurfacing RE tools to convert the STL file to a revisable 3D solid palm CAD model. 

Resurfacing an existing model by using quad-based subdivisions (Sub-Ds) is the method of choice to 

reverse engineer non-mechanical freeform or organic shapes in Power Surfacing RE. The resurfacing 

procedure of the palm STL mesh was done as follows: 

 Import the palm STL file as a reference mesh; 

 Create the new Sub-Ds on top of the palm mesh; 

 Interpolate to maintain the reference mesh details; 

 Convert the result to CAD. 

Figure 5-3 shows the Sub-Ds created on the top of the STL reference mesh after the second step. Figure 

5-4 is the final 3D CAD model revisable in the SolidWorks history tree, which can be modified for 

further functional usage such as cutting the palm into a few parts, and digging a housing cavity to mount 

actuators or other mechanisms inside the palm that are able to be assembled from these separated parts 

or units. 
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(a) (b) (c)  

Figure 5-3. The Sub-Ds on the top of the STL reference in the (a) isometric view; (b) front view, (c) back view. 

 

(a) (b) (c)  

Figure 5-4. The 3D CAD model of the palm in the (a) isometric view; (b) front view, (c) back view. 

 

5.1.2 Digit design 

To study and resemble the human hand kinematics, an effective method is to imitate its natural 

anatomical structure. Besides an anthropomorphic palm design coming from a 3D scanned human hand, 

all digits of the robotic hand, i.e. the four fingers and thumb, need to be designed with an anthropometric 

size and anthropomorphic shape to mimic human finger movement as close as possible. 

5.1.2.1 Finger design 

Each of the four human fingers is designed by following the three intercalated bony segments, i.e. the 

proximal, middle, and distal phalanges. These three phalanges along with the metacarpal bones create 

the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints 

from the proximal to the distal end in order. 

The fingers of the robotic hand were designed referencing the dimensions related to the index finger 

obtained from [125], as shown in Table 5-1 and Table 5-2. The whole data set describing the kinematics 

of the human hand is available in [225]. 
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Table 5-1. Phalangeal length estimates 

Phalange Length (mm) 

Proximal 44.8 

Middle 26.2 

Distal 17.7 

 

Table 5-2. Phalangeal depth and breadth estimates 

Joint Depth (mm) Breadth (mm) 

MCP 22.3 19.8 

PIP 16.0 17.4 

DIP 13.5 16.0 

 

Since the joint contacting surface is composed of the convex and concave topologies of bone extremities, 

the human finger joint can be regarded as a ball-type joint, which can have a 6 degrees of freedom 

motion in space. However, the muscles, tendons and ligaments that span the finger joints introduce 

constraints to the range of motion, resulting in simplified kinematic models that can be replicated using 

common mechanical components. A universal joint is usually used to realise the 2 degrees of freedom 

(DoFs) motion of abduction/adduction and flexion/extension for the MCP joints, while a hinge joint, 

also called a pin joint or revolute joint, is an appropriate choice for the 1 degree of freedom (DoF) 

flexion/extension of the PIP and DIP joints. 

A single pin joint structure along the flexion/extension axis was implemented for all finger PIP and DIP 

joints in this research. Although a universal joint can offer more flexibility to the artificial finger MCP 

joints, the same single pin joint structure as the PIP and DIP joints was used in MCP joint design for 

simplicity. The fingers’ 3D models were built in SolidWorks. Figure 5-5 shows the assembly 3D model 

of the index finger without a fingertip. 

DIP

PIP
MCP

 

Figure 5-5. The 3D model of the index finger. 
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5.1.2.2 Thumb design 

The human thumb has two phalanges and one metacarpal bone forming three joints, i.e. the 

carpometacarpal (CMC), metacarpophalangeal (MCP), and interphalangeal (IP) joints. It has the ability 

of performing more complicated movements than the other four fingers. Research on human hand 

movement indicates that the opposable thumb is the key point of performing most everyday life 

grasping and manipulation functions [119, 226].  

In most of the anthropomorphic artificial hand mechanical designs reported in literature, the thumb is 

actuated along thumb flexion and circumduction rotation axes. The circumduction rotation of the thumb 

is to alternate between a lateral grasp and a power or precision grasp. By angling the axis properly, 

however, the two rotation axes can be jointly approximated in a single DoF, i.e. a single joint axis [110]. 

This can be conducive to achieving desired thumb functional movements while still keeping complexity 

low. 

In this research, the robotic hand thumb was implemented with IP and MCP joints and both of them 

have only 1 DoF around the flexion/extension axis. The thumb base that corresponds to the human 

thumb metacarpal bone was mounted in a fixed offset angle to the palm plane for the resemblance of 

the opposable thumb. Figure 5-6 shows the final 3D hand assembly model and the 3D printed and 

fabricated robotic hand including the palm and all digits. 

(a) (b)  

Figure 5-6. The proposed robotic hand (a) the 3D assembly model; (b) the printed and fabricated robotic hand. 

 

5.2 Actuation and transmission design 

The design of a proper actuation and transmission system is regarded as one of the most critical and 

challenging issues in the mechanical design of an articulated robotic hand. It is especially crucial when 

considering the installation of pertinent mechanisms and components into a small space with 

constrained and limited dimensions. 
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Fundamental issues in relation to the mechanical design of actuation and transmission for an artificial 

hand generally include: 

 the type of actuators 

 the actuation architecture or the level of actuation, i.e. the number of directly or indirectly 

driven joints and the organisation of the actuators 

 the location of the actuators 

 the type of transmission systems 

In following sections, the issues pertaining to the development of an effective actuation and 

transmission system for the proposed anthropomorphic robotic hand will be discussed in detail. 

5.2.1 Actuator selection 

The functionality of an actuator is to convert energy from an input modality such as electricity or 

chemical fuel into a useful mechanical motion to deliver work in a certain amount of time according to 

a signal or stimulus in a controllable manner [227]. Selecting actuators is currently no trivial task, given 

the diversity of actuation technologies and the large amount of actuators with different configurations 

available. A series of studies have developed and recommended actuator selection and evaluation 

methods to accommodate task requirements [227-230]. To develop an actuator selection method, the 

ways that actuators may be categorised are first considered. One of the most common approaches is to 

classify actuators according to the working principles. Generally speaking, two categories, i.e. the 

conventional and non-conventional types, of actuators can be found in artificial hand applications 

reported in literature. The former includes electromagnetic motors, hydraulic, and pneumatic actuators, 

whereas the latter consists of shape memory alloy (SMA) actuators, ultrasonic motors (USM), 

pneumatic artificial muscles (PAM), and flexible fluidic actuators (FFA) [230, 231]. Recently emerging 

materials have provided the possibility of the promising human muscle-like linear actuators, e.g. the 

ionic polymer metal composite (IPMC) artificial muscle [53]. Among all these available options, SMA 

actuators and electromagnetic motors are representative of the two categories of actuators, hence being 

examined in the following sections for making use of one of them to deliver the energy conversion. 

5.2.1.1 Shape memory alloy (SMA) actuator 

Aiming at developing an anthropomorphic hand, the biological muscle-like non-conventional actuators 

were the first to be investigated in this research. The SMAs and the EAPs are two types of the most 

common artificial muscles. Despite the attractive features that the EAPs can offer, the EAP actuators 

are the least developed technology and their application is still in a premature stage. Therefore, only the 

SMA actuators were researched in detail for their applicability in the proposed artificial hand. 
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Since the 1980s, SMA actuators have been used in robotics. Examples can be found in [125, 146, 151, 

167, 169, 231-233]. In the development of artificial hands, the advantages and limitations of SMA 

actuators can be summarised below. 

Advantages: 

 direct-drive configuration, eliminating the demand for complex transmission systems 

 a high power to weight ratio, leading to the design of compact, lightweight systems  

 silent operation because only using phase transformation for actuation 

Limitations: 

 activation is relatively fast but relaxation governed by the cooling rate of the SMA wire which 

is a passive process dependent on external heat transfer parameters, limiting the actuator 

bandwidth 

 limited life cycle 

 low efficiency 

 nonlinear operation due to hysteretic behaviour 

 low actuation strains 

To better understand the characteristics of SMA actuators, an SMA-based artificial muscle, BMX150 

from TOKI Corporation, was tested in the Mechatronics Laboratory of Massey University for 

developing biomimetic prosthetic fingers [234]. BMX150 elongates at room temperature and contracts 

to its original length when an electrical current is fed through it. The details about BMX150 are attached 

in appendices. As BMX150 is a micro coil-type linear actuator with a wire diameter of 0.15 millimetres 

and a coil diameter of 0.62 millimetres, it can produce a small practical force only up to 30 gram-force, 

which is not large enough for the use in the robotic hand application of this research. In addition, 

compared to conventional electric motors, the high cost of BMX150 is another concern that may prevent 

its use in low-cost robotic hand systems, such as the one developed in this research. 

Given the shortcomings of SMAs outweighing the advantages they can provide, SMA actuators were 

regarded as an undesirable solution in the robotic hand development of this thesis. Instead of SMAs, 

conventional electric motors were investigated for their feasibility in providing actuation to robotic 

finger movements. 

5.2.1.2 Electrical motor 

Electrical motors, hydraulic and pneumatic actuators have long been power sources, thus being 

considered conventional actuators. In prosthetics today, the most common choice of externally-powered 

actuators is the electrical direct current (DC) motor, mainly due to its practicality. An example of its 

practicality is the easily rechargeable energy source, the batteries, for DC motors. This advantage has 
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increased over recent decades in the wake of the continuous advance of technology. With increased 

capacity and peak power output from batteries, miniature DC motors are lightweight and small-sized 

and can be housed inside the artificial hand or forearm, whereas other alternative actuation technologies 

remain less practical. The functionality of electric motors can be enhanced by using various mechanisms. 

Gearing may be needed in order to reduce the speed and increase the output torque from motors. Non-

backdriveable or locking mechanisms can be employed to maintain grip on an object without motors 

continuously drawing current from the battery and creating heat [109, 110, 154].  

There are also drawbacks with motors, one being that electrical motors are most efficient with rotation 

at a constant rate and maintaining one direction. However, frequent or repeated start and stop, and slow 

motion are more often found in biological systems. Hence a motor is not the best choice from the 

perspective of efficiency in a biological sense [122]. Another known issue related to permanent magnet 

DC motors is the cogging torque, which manifests torque and speed ripples at very low speeds. The 

effect of cogging torque can result in jerky finger motions and finger position errors, especially during 

low speed operations. A method to reduce the effect of cogging torques is known as magnet step 

skewing [128, 235].  

Taking into account all considerations such as availability, cost, easiness and feasibility, the electrical 

motor becomes most practical and in turn the most preferable solution in this research. The low cost 

micro high power brushed DC motor with a 298:1 metal gearbox and an extended motor shaft from 

Pololu Corporation, as shown in Figure 5-7, was selected to provide actuation for moving mechanisms 

of the proposed robotic hand. 

 

Figure 5-7. The micro high power brushed DC motor with a 298:1 metal gearbox and an extended motor shaft. 

At the rated voltage 6 V, the motor can output a torque up to 5 kgcm with a 1.6 A current at stall, and 

a speed 100 RPM by a 120 mA current with no load. Considering the constrained space for housing 

motors, a total of three motors were mounted inside the hand cavity, one of them for the thumb, another 

for the index and middle fingers, and the remaining one for the ring and little fingers. The micro DC 

motor can be fixed in position by using mounting bracket as shown in Figure 5-8. 
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Figure 5-8. The motor mounting bracket. 

5.2.2 Actuation architecture 

For a hand with m actuators and n joints, the three alternative implementation schemes of the actuation 

architecture include: 

 The underactuated approach (m<n) where some joints are passive, or kinematically coupled in 

a fixed or variable way to a controlled joint; 

 The fully-actuated approach (m = n) where each joint has its own actuator; 

 The overactuated approach (m>n) where more than one actuator acts on a joint [230]. 

A redundant actuation mechanism is neither necessary nor desired in development [118]. Therefore, 

only fully-actuated or underactuated methods can usually be found in literature. Most commercially 

available prosthetic hands have used fully-actuated finger designs, such as Vincent (Vincent Systems), 

iLimb and iLimb Pulse (Touch Bionics), Bebionic v2 and Bebionic (RSL Steeper), and Michelangelo 

(Otto Bock), mentioned in Chapter 2. The finger joints of these hands are actuated neither independently 

nor in an underactuated and compliant manner, but they have a fixed movement relative to each other. 

A mechanism in a similar form to the four-bar linkage described in Chapter 2 but distinct for each of 

these hands, is used to couple the motion of the PIP to the motion of the MCP joint, defining the fixed 

relationship between the joint motions. 

Despite the usefulness of the fully-actuated methodology, building fully-actuated multi-finger hands 

requires multiple actuators, one for each degree of freedom. This would lead to a design with increased 

complexity, weight and cost. A probable solution is to reduce the degree of freedom while keeping 

essential hand functions. This is implemented by the six commercial hands aforementioned. Five of 

them were designed with two joints for each finger, unlike the human one with three joints, whereas the 

remaining one, the Michelangelo (Otto Bock) hand, has only one joint for each finger. 

Another solution to reducing actuator numbers is the use of the underactuated approach, i.e. using less 

actuators than the degrees of freedom. An extra benefit in addition to actuator quantity reduction is that, 

when applied to artificial hands, the underactuated mechanisms lead to an adaptive grasp of the finger 
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to accommodate to the shape of the target object, in a manner closer to the human grasping than the 

independent actuation solution [136, 156]. Compared with rigidly linked hands, underactuated adaptive 

fingers can interact with the grasped object over more locations and thereby distribute the grasping 

force on more contact points, leading to the joint torques comparable with the joint torques of human 

hands. They can also adapt to various grasp patterns for the same number of actuators [110, 119]. 

The concept of underactuation presented in robotic systems usually means a manipulator with one or 

more unactuated joints. Different from this, however, underactuation in robotic fingers is usually 

implemented by using elastic or passive elements, e.g. springs and mechanical limits, to kinematically 

constrain the finger and ensure the shape adaptation of the finger to the grasped object [133, 139]. It is 

more suitable to consider the joints of underactuated fingers uncontrollable or passively driven rather 

than unactuated. The actuation is transmitted to joints through proper mechanical design, e.g. four-bar 

linkages, pulley-tendons, and gears, in which the elastic or passive elements are incorporated. The 

equivalence between the four-bar linkages, pulley-tendons, and gears has been proven in [139]. The 

tendon-pulley actuation may be preferable than linkage actuation due to suffering less from mechanical 

singular configurations, but it may leads to smaller forces applied with tendons than with linkages. 

In this research, the underactuated method became the choice to build the actuation and transmission 

system for the proposed hand, given the advantage of the underactuated approach along with the 

constrained space for electrical motor mounting. 

5.2.3 Transmission design 

As described in previous sections, the proposed hand has a total of 14 degrees of freedom, 3 for each 

of four fingers and 2 for the thumb. The actuation system was decided to use 3 brushed electrical DC 

motors. This results in a highly underactuated hand, 14 degrees of freedom (DoFs) versus 3 degrees of 

actuation (DoAs). Therefore, an effective transmission system is critical for the proposed robotic hand. 

The transmission system in robotic hand design can be roughly categorised into two parts according to 

functionality, the main transmission that deliver forces or torques from the power sources to active 

joints, and the mechanism that couple passive joints to active joints. Of the thirty-six robotic hand 

projects reviewed in [230], the majority utilise gears or tendons for the main transmission, while the 

most common methods for the coupling mechanism include rigid linkages, tendon-pulleys, and tendon-

pulley-springs. The article [128] and [110] also list some examples of robotic hands driven by gears or 

tendons. Considering the constraints on construction, especially the limited space for installation, the 

methods to build a transmission system using tendons, pulleys and springs were scrutinised. On this 

basis, the transmission mechanism for joint movement of the proposed robotic hand was created. 
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5.2.3.1 Tendon transmission 

The human hand movements are controlled by two types of muscles, the intrinsic muscles located in 

the palm, and the extrinsic muscles located in the forearm. As with the anatomy of the index finger 

demonstrated in Figure 2-13, muscle contractions are transmitted to fingers through long tendons that 

pass over the joints and terminate at the insertion points on the finger bones, resulting in hand movement 

and force generation. The tendons are restricted by sheaths (biologically called retinacula) that act as 

pulleys and maintain a moment arm from the joint axis [169]. The tension of a small displacement in 

the tendons can induce a moment to actuate the joint. Similarly, actuators can be placed remotely from 

the fingers or the hand by using tendon transmission in robotic hand design. The use of tendon sheaths 

can also reduce interference between the transmission medium and the work envelope. In addition to 

the imitation of the human anatomy, tendon-driven transmission can simplify control by providing zero-

backlash compliant transmission [120]. Additional advantages for tendon transmission systems are low 

inertia, low friction, high flexibility, and low cost. 

Tendon-based transmission is an appropriate solution for the proposed robotic hand, considering the 

advantages of the tendon-driven system and the inspiration from human hand anatomy. Both tendon-

pulley and tendon-sheath transmission can be found in literature. However, a tendon-sheath 

transmission mechanism, where cables running in synovial sheaths,  channels or tunnels work as the 

Bowden cable [143, 236], may suffer more from friction, requiring more analytical efforts on friction 

and its compensation [159, 160]. Therefore, tendon-pulley transmission was the preferable option in 

this research.  

5.2.3.2 Tendon configuration 

As described in Chapter 2, tendon systems can be classified into three types according to the number of 

tendons per joint: 

 n-tendon system, including unidirectional and bidirectional configuration; 

 2n-tendon system; 

 (n+1)-tendon system. 

All 2n-tendon and (n+1)-tendon systems are bidirectional. One of the advantages of the bidirectional 

tendon configuration is that full kinematic controllability can be obtained by incorporating it for a finger 

with only one joint. Different from bidirectional tendon systems, the unidirectional n-tendon 

configuration needs to use passive springs to provide reverse forces. Either parallel or series springs 

can be utilised for this purpose. Compared to the unidirectional tendon configuration, the bidirectional 

tendon configuration can eliminate the demand for parallel or series springs, thus being able to generate 

greater maximum grasp forces. 
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In this research, the bidirectional n-tendon configuration was used to implement transmission for all 

five digits due to its least use of tendons and better controllability. The flexion tendon and the extension 

tendon are wound on two pulleys that are mounted onto the same motor output shaft, but in the opposite 

winding directions. 

5.2.3.3 Tendon transmission for inter-phalange underactuation 

There are two types of underactuation in the proposed robotic hand, i.e. the inter-phalange 

underactuation within a finger because of the multiple joints driven by one motor, and the inter-finger 

underactuation between fingers due to motor sharing between two pairs of digits (the pair of the index 

and middle fingers, and the pair of the ring and little fingers for the proposed robotic hand design). 

The proposed robotic hand implements a connected differential mechanism, the soft gripper mechanism 

[138, 140-142] as shown in Figure 2-21, sometimes called moment isotropy [143, 144], to resolve inter-

phalange underactuation. In this mechanism, links that represent finger phalanges are connected with 

joints in series. Pulleys which can freely rotate around the joint are mounted on these joint axes. A 

tendon is fixed on the distal link tip at one end and then wound around pulleys mounted on every joint 

in the same winding direction, extending to the proximal end of the finger. When pulling the proximal 

end of the tendon, a torque proportional to the radius of the pulley at a joint is applied to the joint, 

causing the link rotation around the joint axis. In this way, the traction of tendons is transferred to the 

torques of all the joints. An advantage of this mechanism is that it only introduces a small degree of 

friction, especially when the pulleys are supported by miniature ball bearings, since the mechanism only 

consists of rotational motion and doesn’t include any sliding motion. 

The pulleys of the soft gripper mechanism play two roles. One drives the rotational motion of the 

phalanges with their proximal end mounted on the same joint as the driving pulley, and the other rotates 

freely around the joint axis and delivers tension along the tendon after the phalanges have conformed 

to the grasped object. Since the rotational friction of pulleys is negligible, all forces can be regarded as 

equivalent.  

According to the theory of belt friction in the statics of engineering mechanics, the relationship between 

the forces on two sides of a driven pulley can be determined by Equation (5.1).   

 1

2

T
e

T
  (5.1) 

where 

T1 = Force in the belt on the tight side, 

T2 = Force in the belt on the slack side, 

µ = Coefficient of friction, 
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θ = Angle of contact in radians, i.e. the angle subtended by the arc formed by the tendon 

segment that contacts the surface of the driven pulley. 

In the soft gripper mechanism, the tendon is wound around every pulley by at least one circle in the 

configuration of Figure 2-22 (a). This means that the smallest value of  is 2 in this configuration. The 

typical static friction coefficient between polythene and steel is 0.2.  
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Therefore, the torque produced by the static friction force between the tendon and the pulley groove 

surface would be much greater than the torque caused by the rotational friction force between the 

contact surfaces of the pulley and the pin joint, especially when supporting the pulleys using miniature 

ball bearings. This eliminates the slipping motion between the tendons and pulleys, only allowing for 

rotational motion for both pulleys and phalanges around joint axes. 

When the soft gripper mechanism is applied to the bidirectional tendon configuration, two groups of 

pulleys are necessary, one for flexion and the other for extension. This might lead to a bulky and clumsy 

design unsuitable to the limited space. Therefore, a modified mechanism from the soft gripper 

mechanism, as shown in Figure 5-9, is used for the proposed robotic hand in this research.   
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Figure 5-9. Tendon routing configuration. 

The bidirectional tendon configuration in this research uses two tendons that are routed in a symmetrical 

manner along phalanges as in Figure 5-9, where the tendon in the red colour is for flexion and the tendon 

in the green colour is for extension. The pins between the adjacent two joints are used as idlers to guide 

and tension the tendon. The first version of tendon routing design in this research did not employ the 

idlers between joints, leading to unmatched tendon path lengths for flexion and extension. This in turn 

caused tendon tension loss at the side of the slave driving pulley that was mounted on the same motor 

output shaft as the master driving pulley. The roles of these two driving pulleys alternate for flexion 

and extension. 

The desired finger motion is a cascading joint movement pattern, as in the movement of the human 

finger. This means the MCP joint moves first, followed by the PIP and then DIP joint. This cascading 

joint movement pattern can be achieved by designing pulleys at these three joints with different radii, 
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i.e. the MCP joint with the largest radius and the DIP joint with the smallest one [112]. Calculated by 

using the equation rf  , the torque acting at the MCP joint will greater than at other joints even when 

not considering the loss of tendon force induced by pulley friction, causing the MCP joint to rotate first. 

Then the PIP and DIP joint rotate in the expected sequence based on the same principle.  

5.2.3.4 Tendon transmission for inter-finger underactuation 

The inter-finger underactuation is achieved by using a compliantly coupled differential mechanism. The 

mechanism coming from [145], as shown in Figure 2-23, uses a linear slider to pull or release three 

tendons by means of three compression springs, thus obtaining adaptive grasp via the adoption of the 

compression springs. 

Instead of using compression springs at the proximal end, the proposed robotic hand finger employs 

compression springs at the distal end for inter-finger underactuation, as shown in Figure 5-9. At the 

same time, the compression springs maintain a pre-tension on the tendons and eliminate backlash by 

imposing series elasticity. A simplified schematic is depicted in Figure 5-10. 

Distal Proximal

DIP PIP MCPSprings

 

Figure 5-10. Schematic of compliantly coupled differential mechanism. 

A simplified system using one electrical motor to actuate two fingers was built for verifying the design 

concept, as shown in Figure 5-11. This system showed the feasibility and effectiveness of the proposed 

tendon-pulley underactuation transmission mechanism. 

 

Figure 5-11. The underactuated tendon-pulley mechanism. 
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5.3 Sensory system and control 

Once the user’s hand moving intention is deciphered by the hand gesture discrimination module 

described in previous chapter, a device controller is necessary to convert the intention to device control 

commands, according to the specific configuration of the motor driving scheme. To perform grasping 

or manipulation reactively to the environment, a control scheme that can act according to real-time 

feedback is needed. This means the device controller will yield specified action commands based on 

the feedback information from a certain types of sensors. The parameters acquired from these sensors, 

about position, torque, pressure, temperature, or shape, reveal the state the targeted object is holding. 

As mentioned in the literature review chapter, both direct and indirect sensing approaches are useful for 

control variable measurement. The advantage of the indirect method is based on its simplicity and 

convenience to implement. 

A control scheme, where two of the most common feedback measurements—position and torque—are 

measured indirectly, is implemented in this research. The block diagram of the control unit is illustrated 

in Figure 5-12. 
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Figure 5-12. The hand control unit diagram. 

5.3.1 Motor driver 

The rotational direction and speed of the motor are controlled by adjusting the current through it. This 

is usually achieved by feeding a pulse-width modulated (PWM) voltage across the motor using an H-

bridge circuit. There can be various solutions for the motor driver circuitry at different integration levels, 

e.g. a microcontroller directly coupled with an integrated H-bridge such as NJM2670; a microcontroller 

working with an integrated monolithic motor driver such as TB6612FNG;  or a microcontroller working 

with an H-bridge PWM motor driver that features current-control PWM circuitry such as DRV8829. A 

higher integration level may be able to considerably reduce the burden on the microcontroller and the 

workload of control logic implementation. 

In this research, a compact motor controller board, the Pololu Qik 2s9v1 Dual Serial Motor Controller 

as shown in Figure 5-13, was selected for its convenience. This motor controller can receive motor 

movement commands from a microcontroller through an UART module to drive two small, brushed 

DC motors with full direction and speed control. A total of two Pololu Qik 2s9v1 controllers were used 

for driving three brushed DC motors. 
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Figure 5-13. Pololu Qik 2s9v1 Dual Serial Motor Controller. 

Main features of the Qik 2s9v1 include: 

 simple bidirectional control of two DC brush motors 

 logic-level, non-inverted, two-way serial control for easy connection to microcontrollers 

 a robust, high-speed communication protocol with user-configurable error condition response 

 optional automatic baud rate detection from 1200 bps to 38.4 kbps 

 variable speeds achieved with 7-bit or 8-bit pulse width modulated (PWM) outputs at a 

frequency of 31.5 kHz, 15.7 kHz, 7.8 kHz, or 3.8 kHz 

The highest achievable PWM frequency of 31.5 kHz is ultrasonic, which can result in quieter motor 

control at the expense of more power losses due to switching. 

5.3.2 Torque sensing 

The torque of motors was measured in an indirect manner, i.e. by sensing the electrical currents feeding 

through these motors. The actuation module of the proposed robotic hand is backdriveable, which helps 

torque control with current sensing. Also, these current values can serve as a measurement for protecting 

the motors from damage caused by overcurrent. 

Current sensing is widely used in power electronic applications such as dc-to-dc power converters and 

adjustable-speed motor drives [237-239]. Most of the current measurement approaches can be classified 

as a resistive-based or an electromagnetic-based technique. 

The most common method of resistive-based current sensing is to use an external sense resister 

(sometimes called shunt resistor) added in series with the motor to measure the current through it. The 

sense resistor functions as a current-to-voltage converter. The current is measured by sensing the 

voltage across the sensing resistor. Sense resistors are selected on the criteria related to accuracy, cost, 

voltage drop, power dissipation, efficiency, and parasitic inductance. The shunt resister current sensing 

method is widely used due to its low cost, simplicity and accuracy. The drawbacks of this technique are 
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associated with the power loss incurred by the sense resistor, the lack of measurement isolation from 

transient voltage potentials on the load, and the requirement for a noise filter to reduce the noise in the 

output signal. 

Three options are available for current sensing according to where the sense resistor is placed: 

 between the supply voltage and load (high-side current sensing),as shown in Figure 5-14 (a); 

 between the load and ground (low-side current sensing), as shown in Figure 5-14 (b); 

 on the motor (output current sensing), as shown in Figure 5-14 (c). 

(a) (b) (c)
 

Figure 5-14. Current sensing configuration, (a) high-side current sensing, (b) low-side current sensing, (c) output 
current sensing. 

The low-side approach is desirable with a near ground common-mode voltage. However, it lacks the 

diagnostic ability to detect high load current caused by short circuit, and adds extra resistance in the 

ground path, disturbing the system load’s ground potential. High-side sensing is capable of detecting 

high load current caused by a short-to-ground fault but its input common mode voltage may be in excess 

of the load’s power supply voltage, necessitating the use of amplifiers that allow for common-mode 

voltages outside their voltage supply range. Output current sensing is convenient for bidirectional 

sensing with only one sense resistor. The challenges for output current sensing are related to dealing 

with the input common-mode voltages that swing all the way from ground to the power supply voltage, 

and high frequency accuracy when used in PWM applications. This entails stringent performance 

constraints on the current-sense amplifier, i.e. a high range of input common-mode voltage and an 

excellent CMRR at the switching frequency and at its harmonics. 

The voltage across the sense resistor can usually be measured by using differential amplifiers including 

operational amplifiers (op-amps), instrumentation amplifiers (IAs), difference amplifiers (DAs), and 

current shunt monitors (CSMs). However, the requirement of a high range input common-mode voltage 

excludes the use of op-amps and IAs that demand an input common-mode voltage within their power 

supplies, since only the output current sensing technique is available in this research due to the use of 

the Pololu Qik 2s9v1 Dual Serial Motor Controller that exposes only the H-bridge output pins to access. 
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A high-accuracy, wide common-mode range and bidirectional current shunt monitor, INA282, has 

become the final solution for the current sensing amplifier. INA 282 features a wide common-mode 

voltage range from –14V to +80V, which is independent of the supply voltage, a gain of 50V/V, and a 

CMRR of 140dB, making it an excellent candidate. 

For making more accurate measurements, the current sensing solution of this research uses a 20 mΩ 

precision current sense resistor with Kelvin terminals (four wires) that uses separate pairs of current-

carrying and voltage-sensing electrodes. Kelvin-connection, i.e. using short and balanced input traces, 

as shown in Figure 5-15, was also implemented between the sense resistor and INA282 input pins for 

PCB layout since parasitic resistances either in series with the sense resistor, or in series with the input 

pins of INA282, can induce measurement errors. 

 

Figure 5-15. Kelvin-connection. 

The torque and speed of a motor are dependent on the average current through it. A typical waveform 

of the motor current is depicted in Figure 5-16 if the motor torque and speed are controlled by using 

PWM. 

 

Figure 5-16. The motor current waveform of a PWM controlled motor. 

The current mean can be obtained by using a first-order low-pass filter, provided that the filter’s time 

constant   is much longer than the PWM switching period T . For example, the output fluctuation in 

a PWM period will be limited in a range of 9.52% of the peak value when 10T  . This can be 

explained below. 

For a first-order linear time-invariant (LTI) system, the output response to a step input can be described 

by Equation (5.3).   
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where 

V (t) = output; 

t = time (generally t > 0); 

V0= initial value; 

τ = time constant; 

A = step input amplitude. 
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as a first-order LTI system, the output fluctuation of the first-order filter can be regarded negligible in 

one PWM period, subject to 10T  . The cut-off frequency of the first-order low-pass filter used to 

get the average current value must meet Equation (5.5). In addition, it is worth noticing that the selection 

of the low-pass filter cut-off frequency should retain the capability of reacting sensitively to the desired 

current changing. 
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This research is inclined towards using the 31.5 kHz PWM frequency for quieter operation. Therefore, 

the low-pass filter should have a cut-off frequency 

 
1 1

 =  31.5 kHz = 501 Hz
20 20c PWMf f
 

   (5.6) 

The first-order low-pass filter can be implemented by either analog or digital means. When using the 

digital option, a digital infinite-impulse-response (IIR) first-order low-pass filter in the form of 

1(1 )i i iy x y     , or a simple moving average method can be used to calculate the average current 

value from measured samples. Instead of the simple moving average method, there is also a modified 

moving average method for reducing the overheads of computation [240]: 

   1   1

1
( )i i i iMA MA P MA

n     (5.7) 

where 
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n = number of samples, 

MAi = current moving average value, 

MAi-1 = previous moving average value, 

Pi = current sample. 

This research, however, prefers a first-order low-pass analog filter to average the current in order to 

lower the computational demand. This filter is composed of a 16 kΩ resistor and a 0.22 µF capacitor 

and its cut-off frequency is computed as: 

 
1 1

45.2 Hz
2 2 16kΩ 0.22μFcf RC 

  
 

 (5.8) 

Current changing rates less than 45 Hz can be well detected, which is fast enough considering the 

mechanical inertial property of the Pololu brushed DC motor. 

5.3.3 Position sensing 

As with torque sensing, position sensing was also carried out indirectly for simplicity in this research. 

The revolution numbers measured by using motor encoders were used to represent the finger positions. 

A quadrature motor encoder from Pololu using a magnetic disc and two Hall Effect sensors, as shown 

in Figure 5-17, was attached to a brushed DC motor, providing 12 counts per revolution of the motor 

shaft. 

 

Figure 5-17. The magnetic encoder from Pololu attached to a Pololu brushed DC motor. 

Since the motor rotation direction is controlled by the device controller actively, one of the two 

quadrature signal channels provided by the Pololu quadrature encoders is adequate for position sensing. 

5.3.4 Device controller 

An Arduino Mega 2560 board was used as the device controller to translate the recognised user’s 

intentions to corresponding motor driver commands, while the device controller performs the overall 

control law according to information provided by motor current sensors and motor encoders. There will 

be a calibration process each time the robotic hand is switched on. All five digits will go to their most 

extended positions, which can be regarded as the zero positions, until the motors are stalled by 
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geometrical limits, which are intentionally designed as mechanical stops for finger movement, and this 

in turn causes a motor current over a predefined threshold detected by current sensing. When motors 

rotate forward or backwards, the Arduino Mega 2560 obtains the number of counts generated by the 

motor encoders. In this way, the device controller is always aware of the rough position information for 

each finger. The ultimate torque control of fingers was achieved by comparing the current values of 

three motors with predefined thresholds, which were determined through experiments for appropriate 

contact forces on objects. 

The fabricated motor driving and current sensing circuit PCB and the Arduino Mega 2560 board are 

shown in Figure 5-18. The schematic of the motor driving and current sensing circuit are attached in 

appendices. 

 

Figure 5-18. The fabricated motor driving and current sensing circuit PCB and the Arduino Mega 2560 board. 

 

5.4 Hand prototype fabrication 

The 3D palm model was divided into 3 pieces. Then the mechanical structures for housing actuators 

and installing the driving mechanisms were built internally as shown in Figure 5-19. 

(a) (b) (c)  

Figure 5-19. The split palm part 3D models. 

Figure 5-20 shows the 3D printed palm parts along with the fabricated actuation and transmission 

system and fingers. 
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Figure 5-20. The 3D printed palm parts and fabricated actuation and transmission system. 

The final assembly of the five-fingered robotic hand is presented in Figure 5-21. This robotic hand has 

the following features. 

 The hand control can be easily integrated with different control systems driving by EMG or 

other types of signals  

 Can perform hand gestures and hold objects with different shapes  

 Individual fingers can move adaptively to the shape of the grasped object 

 Can grasp objects using different finger configurations, i.e. three or more fingers. 

 

 

Figure 5-21. The EMG real-time pattern recognition-based five-fingered robotic hand system. 
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Chapter 6  

Experimental design, testing and discussion 

 

To evaluate the proposed EMG signal capturing and data processing methods, control methodologies 

and the robotic system, two types of experiments were designed. One is offline and the other is in real 

time. This chapter covers the experiment set up, testing, data analysis, and discussions. 

 

6.1 Offline experiment 1 

The purpose of this thesis is to investigate the approaches and algorithms of myoelectric control and to 

construct a robotic system that could be driven by myoelectric signals. Such a robotic system has 

potential to evaluate or test the proposed EMG signal processing methods and EMG-based control 

methodologies. It can also serve as a platform for learning and designing biosignal-driven robotic 

systems, or even for prosthesis design evaluation and design. The offline experiment was the first step 

to validate the effectiveness and suitability of the methods proposed by this research for pattern 

recognition-based myoelectric control. Then a real-time myoelectric control experiment was conducted 

on the five-fingered robotic hand designed in Chapter 5. 

6.1.1 Experimental setting 

6.1.1.1 EMG data collection 

In this offline experiment, all EMG data were collected in static states. The subjects were asked to sit 

on a chair and put their arms on a desk, keeping relaxed. Electrodes were placed on the positions 

described in Section 3.2.2. When the subjects heard the operator’s instruction, the subjects performed 

corresponding movements in sequence with an interval. The EMG system operator controlled the 

system to collect EMG data during the period that a specific gesture was constantly kept. This was 

repeated several times and all EMG data sets were stored in data files for further analysis of individual 

gestures. EMG data for all other gestures were obtained in the same way. Collecting EMG data in this 

way eliminates the need to detect the start and end of EMG activity and is suitable for offline 

experiments. It is actually equivalent to the visual EMG activity inspection mentioned in Section 2.2.1.   
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The experiment was designed to collect data from six subjects, three females and three males including 

a male amputee. In the experiment, each subject was asked to perform five upper limb movements: 

hand open (HO), hand close (HC), wrist extension (WE), wrist flexion (WF), and rest state (RS). Each 

movement was held for 5 seconds and repeated for six times. A relaxed interval of about 5 seconds was 

arranged between two hand movements. 

Figure 6-1 shows an example of the experiments collecting EMG data from an amputee’s residual 

forearm. 

 

Figure 6-1. Collecting EMG data from an amputee’s residual forearm. 

Figure 6-2, Figure 6-3 and Figure 6-4 present two channels of EMG data segment examples collected 

from an able-bodied male, an able-bodied female and a male amputee, respectively, when performing 

these five hand gestures. Each segment consists of 1000 EMG data points. All EMG data segments of 

the five hand gestures are displayed on the same horizontal axis to obtain an amplitude comparison. It 

can be clearly seen that there are some apparent interrupts within the amputee’s EMG signals when he 

was imagining performing and keeping these gestures. Perhaps, this is because he has not performed 

these movements for a long time after amputation. This suggests that some difficulties may exist in 

gesture recognition for amputees when acquiring EMG data from their residual arms. Therefore, it is 

possible that the training process for amputees using a myoelectric-controlled device needs to take 

longer than for someone who is able-bodied.  
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Figure 6-2. Two-channel EMG segments of the five hand gestures from an able-bodied male 
(the horizontal axis represents data points). 

 

Figure 6-3. Two-channel EMG segments of the five hand gestures from an able-bodied female 
(the horizontal axis represents data points). 

 

 

Figure 6-4. Two-channel EMG segments of the five hand gestures from a male amputee 
(the horizontal axis represents data points). 
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Figure 6-5 shows the two channels of EMG signals lasting 2.5 seconds for all five gestures from the 

able-bodied male subject. All subplots in this figure are depicted in the same proportion to give a unique 

impression in signal amplitude.    

 

Figure 6-5. EMG signals from an able-bodied male subject. 

 

Figure 6-6 is the spectra of the EMG signals displayed in Figure 6-5, showing the relative relationship 

of amplitude for different frequency components. 

 

Figure 6-6. Corresponding spectra of the EMG signals displayed in Figure 6-5. 

To evaluate the data finally obtained by this research is a challenge as there are very limited data and 

information available in literature. Pizzolato et al. published a paper in 2017 [14].  It provides a 
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comparison between professional EMG acquisition systems and the Myo armband. Their outcome was 

used to judge the result of this research. Figure 6-7 is the comparison between a professional EMG 

system, the Delsys Trigno, and the Myo armband produced by Pizzolato et al. It shows the spectra of 

EMG signals obtained by the Delsys Trigno and Myo armband. It is clear that the signals obtained by 

these two systems have big differences. The Myo armband has a sampling rate of 200 Hz. This means 

it cannot detect information contained in signal frequency components higher than 100 Hz. Therefore, 

its usage may be limited. Although the Myo armband was used in research [241-244], it was pointed 

unsuitable to existing myoelectric control methods [15, 245]. 

 

Figure 6-7. The acquired EMG signal spectra of the Delsys Trigno and the Myo armband [14]. 

Figure 6-8 shows EMG signal frequency spectrum comparison between the Delsys Trigno and the 

system developed by this research. It clearly exhibit that the spectra of the EMG signals obtained using 

the system developed by this research are very similar to the EMG signals obtained by Delsys Trigno. 

 

Figure 6-8. The acquired EMG signal spectra of the Delsys Trigno and the system developed by this research. 

 



Chapter 6    Experimental design, testing and discussion 
 

139 
 

6.1.1.2 Hand gesture discrimination configuration 

The four steps of the pattern recognition-based hand gesture discrimination developed in Chapter 4 are 

involved and validated in the offline experiment, i.e. overlapped windowing segmentation, feature 

extraction (5 features), LDA or SVM classifier, and majority voting, as shown in Figure 6-9. The EMG 

data were imported from the data files that were stored in the computer hard drive as described in the 

Section 6.1.1.1. The decision results were exported to files for hand gesture identification and 

comparison. 

Overlapped 
Windowing

Feature 
Extraction

LDA or SVM 
Classifier

Majority
Voting

EMG data files Decision result files 

 

Figure 6-9. Steps involved in the offline experiment. 

The hand gesture discrimination module itself was entirely implemented using software on a Windows 

platform computer using C++, C# and C in Visual Studio. The final Visual Studio program solution 

implementing hand gesture discrimination contains three program aspects. 

1) The native C++ project, including LIBSVM library, SampEn calculation algorithm, and AR 

parameter estimation algorithm source codes; 

2) The C++/CLI project, as a intermediate project to compute and construc all data structures that 

the native C++ codes need and to call corresponding C++ algorithms; 

3) The C# project, as the startup entry of the program for front end coding. 

6.1.2 Experimental results and discussions 

6.1.2.1 Classification accuracy 

In the experiment for testing offline classification accuracy, EMG data were manually selected from 

the collected data and then divided into two sets for each subject: the first four trials for classifier 

training and the remaining two trials for accuracy testing. This process was repeated for all possibilities 

of selecting two trials from the six trial collection. In this way, a method similar to the k-fold cross 

verification [219] could be performed. The number of 2-combinations from a six element set is 

calculated as per Equation (6.1). 

 
! 6!

15
!( )! 2!(6 2)!

n n

k k n k

 
      

 (6.1) 

Therefore, for each of the six subjects, total 15 testing trial combinations were considered. 
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The data segmentation and feature extraction were carried out by algorithms implemented in Visual 

Studio and the calculated EMG features of RMS, WL, WAMP, SampEn and CC were stored in files 

for the comparison of SVM and LDA — the two of the most popular classifiers in myoelectric control. 

A renowned SVM algorithm implementation using C/C++ programming language, the LIBSVM [222] 

library, was selected in this research because it has been validated and recommended by many other 

researchers in this area. Based on the similar consideration of ensuring the algorithm implementation 

correctness, a Matlab built-in function Classify was utilised for LDA, as described in Section 4.5.1. 

As an effective means to smooth the output decisions and decrease the time delay for overlapped 

windowing scheme, the majority voting technique is recommended. In this research, the number of 

decisions in majority voting is 7 and both the approach with majority voting and the one without 

majority voting were computed for evaluations.   

Figure 6-10 shows the classification error rates obtained individually using each of the five features and 

the result obtained by combining the five features for both SVM and LDA classifiers without using MV.  

 

Figure 6-10. Classification Error Rates of individual features and the combination feature set using SVM and LDA 
without the contribution of MV, where “ALL” stands for the combination of five features. 

Figure 6-11 shows the outcomes of the same system configuration with the contribution of MV 

including seven decisions in the MV queue. 
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Figure 6-11. Classification Error Rates of individual features and the combination feature set using SVM and LDA 
with the contribution of MV (the decision number of MV queue is 7), where “ALL” stands for the combination of five 

features. 

6.1.2.2 Discussion 

Both Figure 6-10 and Figure 6-11 clearly show that combining the five features could make both SVM 

and LDA classifiers produce higher accuracy, in particular for LDA. The experimental results also 

revealed that using MV with the seven decisions could only achieve slightly higher accuracy. As the 

response time delay is also affected by the decision number of MV queue, the selection of the decision 

number could be considered after the window length/increment is determined, which might not 

significantly degrade system performance. Therefore, a proper decision number in MV queue can be 

examined for an acceptable response delay before finalising the system configuration in a real-time 

situation. 

The offline classification accuracy experimental result also showed that SVM had better performance 

when it was used with each single EMG feature of RMS, WL, WAMP, SampEn and CC, whereas LDA 

achieved slightly higher accuracy when using the combined feature set (RMS + WL + WAMP + 

SampEn + CC). This might be because that when using the combined feature set, as the dimensionality 

grows, the degree of nonlinearity between class boundaries diminishes. Therefore, the linear algorithm 

of LDA can get similar or even better performance under certain circumstances than the nonlinear 

algorithm of SVM that uses a RBF kernel function [45]. 

Based on analysing the experiment results, this research was decided to use the five EMG feature set 

(RMS, WL, WAMP, SampEn and CC) for feature extraction. In addition, the overlapped windowing, 

SVM classifier, and majority voting were selected for respective steps.  
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6.2 Offline experiment 2 

This offline experiment was carried out to compare the proposed methods with other available methods. 

Two renowned EMG feature sets reported in literature, the Hudings’ feature set and Du’s feature set 

[85], were used in this experiment to make a comparison with the methods proposed by this research. 

The Hudings’ feature set includes four EMG features, i.e. mean absolute value (MAV), waveform 

length (WL), zero crossing (ZC), and slope sign changes (SSC). The Du’s feature set consists of six 

EMG features, i.e. integral of the EMG (IEMG), variance (VAR), WL ZC, SSC, and Willison amplitude 

(WAMP). The EMG feature set proposed by this research is composed of RMS, WL, WAMP, SampEn 

and CC. 

The same overlapped windowing, SVM classifier, and majority voting methods were implemented for 

hand gesture discrimination in this experiment. 

6.2.1 Experimental setting 

In this experiment, the EMG data was recorded in two consecutive days and two times each day, in the 

morning and afternoon respectively. Electrodes were detached during the lunch time and night. In each 

morning or afternoon, two sessions with a resting interval of at least 30 minutes were conducted. Each 

session includes six trails as the previous offline experiment. 

Unlike the previous offline experiment, this experiment involved only one subject and nine hand 

gestures, including hand open (HO), hand close (HC), wrist extension (WE), wrist flexion (WF), rest 

state (RS), ulnar deviation (UD), radial deviation (RD), pronation (PN), and supination (SN). 

6.2.2 Experimental results and discussions 

A cross validation method similar to the one used in the previous experiment was first performed to 

compare the classification error rates produced by using the three EMG feature sets. The outcome is 

shown in the Table 6-1. The proposed feature set obtained better performance than the other two. 

Table 6-1. Classification error rates in cross validation 

EMG data 
collected in 

Hudgins’s set Du’s set The proposed set 
Error rate SD* Error rate SD* Error rate SD* 

2 days 9.20% 4.52% 7.16% 3.36% 5.92% 3.58% 
First day 7.77% 3.61% 5.87% 2.90% 3.69% 2.66% 

First morning 6.38% 3.62% 4.77% 2.74% 2.03% 1.29% 

First afternoon 5.54% 4.27% 4.52% 3.75% 3.85% 3.40% 
Second day 7.16% 3.36% 6.27% 2.96% 5.28% 3.59% 

Second morning 6.77% 4.53% 6.89% 4.45% 6.24% 4.40% 
Second afternoon 5.87% 2.98% 4.91% 2.83% 3.42% 2.18% 

 

*SD stands for standard deviation. 
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Table 6-2 shows the classification error rates for prediction, namely using EMG data recorded in the 

previous time frame for training and in the next time frame for testing. The proposed feature set also 

got better outcome compared with the other two. 

Table 6-2. Classification error rates for prediction 

Training data 
collected in 

Testing data set 
collected in 

Hudgins’s set 
error rate 

Du’s set 
error rate 

Proposed set 
error rate 

First day Second day 17.11% 15.82% 13.36% 
Frist morning First afternoon 25.23% 23.75% 19.12% 

Second morning Second afternoon 16.98% 14.86% 13.19% 
First session in the 

first morning 
Second session in the 

first morning 
13.75% 12.43% 8.34% 

First session in the 
first afternoon 

Second session in the 
first afternoon 

22.52% 24.01% 21.11% 

First session in the 
second morning 

Second session in the 
second morning 

25.71% 25.26% 14.18% 

First session in the 
second afternoon 

Second session in the 
second afternoon 

9.43% 7.65% 6.57% 

 

As can be seen from the Table 6-1 and Table 6-2, the classification accuracies computed by using the 

cross validation method are generally better, sometimes with a large difference, than that in prediction. 

This suggests that using the cross validation method may not be able to evaluate the actual performance 

of the pattern recognition-based myoelectric control method. 

It can also be seen from the Table 6-2 that the classification accuracies vary significantly when using 

different EMG data set combinations for training and testing respectively. This is perhaps caused by 

different variations, such as the contract force level change, electrode shift and arm posture change. 

This also implies the necessity of further research to improve the robustness of the pattern recognition-

based myoelectric control method in varying conditions. 

 

6.3 Real-time experiment 

6.3.1 Experimental setting 

The real-time experiment was conducted on the anthropomorphic robotic hand designed in Chapter 5 

to evaluate the proposed myoelectric control methodologies as well as the software and hardware 

developed for this real-time myoelectric-controlled robotic system. Different from the offline 

experiment, the real-time experiment demands connecting the hardware and software units in a chain, 

as shown in Figure 6-12. In the offline experiment, the EMG data was recorded in a static period when 

a certain gesture was being held. In the real-time experiment, however, the trial subjects could randomly 

perform the five hand gestures. The system will obtain required EMG data and identify corresponding 

gestures dynamically with only an acceptable time delay. Therefore, the hand gesture discrimination 
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algorithm needs to automatically detect the moment the muscle begins to start or to stop contractions, 

without manual intervention. This leads to an activity detection step being placed before the step 

segmenting EMG data into windows. 

Only the SVM classifier was employed in the real-time experiment due to its higher robustness and the 

convenience of integrating the ready-to-use LIBSVM library into the main program developed in the 

Visual Studio environment. For the experiment, the SVM classifier was first trained using previously 

recorded and stored EMG data. The computed supporting vectors of SVM were stored and used for 

real-time pattern recognition afterwards. 
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Figure 6-12. Real-time experiment configuration. 

Prior to the EMG activity detection is a data transmitter, which uses an Arduino Uno board to obtain 

digitalised EMG signal data from a SPI serial interface of the analog-to-digital converter and then 

transfers the EMG data to the following computer through a USB serial port. The traditional RS-232, a 

serial communication protocol, is convenient for programming, even though it is actually on top of a 

hardware USB connection. Similarly, an Arduino Mega board is connected to the Windows computer 

via another USB serial port to generate control instructions to the actuator control circuit, by receiving 

the recognised hand motion intentions from the majority voting program. 

At the same time, the recognised hand gestures’ names were displayed on the computer screen for 

observing the presence or absence of any mechanical delay. The success of performing desired gestures 

and the behaviour of the robotic hand were observed to evaluate the effectiveness of the myoelectric 

control system proposed by this research. The integrated system configuration is shown in Figure 6-13.  

 

Figure 6-13. The pattern recognition-based real-time EMG-driven five-fingered robotic hand system. 
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6.3.2 Experiment result and discussion 

The real-time experiment showed that the developed EMG acquisition and myoelectric control system 

was able to identify these five hand gestures and to control the robotic hand manipulations in real-time. 

Figure 6-14 shows some examples of the system used to hold various objects.  

 

Figure 6-14. The robotic hand was controlled to hold objects with different shapes. 

The experiment also observed a phenomenon that the transition period between two hand gestures had 

huge influence on the recognised decision outcomes. During transition periods, the gesture 

discrimination algorithm is more likely to generate misclassified results because the transition states do 

not actually belong to any class of gestures. Although transition periods are often a short time compared 

to activity durations, the accordingly generated device commands by misclassification induce the 

robotic hand movement hesitation. This suggests that further research in myoelectric control is 

necessary to improve EMG-driven system reliability. 
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Chapter 7  

Conclusion and future research 

 

This chapter summarises the research work conducted by this research, concludes the major 

contributions of this research and gives the recommendations for further research in this area. 

 

7.1 Conclusion 

This thesis proposed a novel biosignal-based human-machine interface (HMI) system—a pattern 

recognition-based myoelectric control system for biosignal-driven robotic systems. To verify and 

demonstrate the effectiveness of the proposed myoelectric control methods, an anthropomorphic robotic 

hand was developed as a testing platform that is close to a practical application environment for 

improving myoelectric control reliability and robustness.    

Contributions of this research have been made in the fields of EMG data acquisition, hand gesture 

identification and the development of robotic systems driven by biosignals such as EMG. Specifically, 

two surface EMG capturing and recording methods, a pattern recognition-based real-time gesture 

discrimination method, and an approach of anthropomorphic robotic hand construction and control for 

myoelectric control validation, as described below, were developed. 

 EMG data acquisition 
A single-ended signalling method using discrete monolithic instrument amplifiers (INAs) and 

a fully differential biosignal acquisition approach were proposed in Chapter 3. 

Despite the research on individual signal conditioning functional blocks in literature, it is hard 

to find a complete EMG data acquisition reference design that can be easily applied to 

myoelectric control applications. Therefore, this research first proposed a surface EMG signal 

detection and data collection method based on the discrete monolithic INA configuration. The 

proposed method uses EMI/RFI rejection low-pass filters to remove both common-mode and 

differential-mode noises, and wet Ag–AgCl electrodes to detect surface EMG signals. The 

amplification chain includes a three op-amp instrumentation amplifier INA128 for extracting 

and amplifying the differential signal between each pair of electrodes and translating it to a 
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single-ended signal, a filtering and amplification block with a bandwidth from 20 Hz to 500 Hz 

for de-noising and further amplification. Then, after the EMG signal is digitised, via an analog-

to-digital converter, the EMG data is transferred to a computer for conducting pattern 

recognition-based hand gesture discrimination algorithms. 

However, in the above EMG acquisition method, the differential or balanced EMG signal 

between a pair of electrodes is translated to a single-ended signal, compromising the ability of 

noise rejection that is otherwise inherent in a fully differential or balanced design. Therefore, a 

fully differential EMG acquisition method is also proposed in Chapter 3 for making full use of 

its inherent noise rejection capability. 

Instead of using a classical three op-amp instrument amplifier INA128, the symmetrical 

discrete dual op-amp configuration is the only option for the differential-in and differential-out 

analog front end amplifier. Additionally, the subsequent filtering and amplification stages used 

in the aforementioned single-ended signal approach are substituted with their fully differential 

counterparts converted from corresponding single-ended filters or amplifiers. Different from 

the single-ended signal approach that utilises the Sallen-Key active filter, the multiple feedback 

(MFB) topology becomes the preferable choice in the fully differential solution, since the MFB 

configuration is the simplest among a few topologies that are ready to support fully differential 

active filter designs. Finally, the differential ability of the ADC, which is popular for almost all 

modern analog-to-digital converters, can be totally realised in the fully differential design. To 

the best of my knowledge, the literature study has not found similar methods that implement 

the entire analog sEMG amplification and filtering chain in a fully differential way by using 

common commercial electronic components. 

 Pattern recognition-based real-time gesture discrimination 
The interpretation of the user’s intention is the key point for various human machine interfaces, 

and this is also true in myoelectric control of robotic hand application where an effective, 

reliable and robust method is necessary to discriminate specific hand motions from collected 

surface EMG data of particular muscles. A pattern recognition-based real-time hand gesture 

discrimination approach is proposed in Chapter 4 for the purpose to control an anthropomorphic 

robotic hand. 

This approach consists of different functional steps, including EMG activity detection, data 

segmentation, feature extraction, classification, and post-processing. An amplitude-related 

algorithm is utilised to detect the EMG signal activity start and end point, using two moving 

adjacent windows to calculate the average energy and compare it with a predefined threshold. 

The data segmentation employs an overlapped windowing technique with a window length of 

200 ms and an increment of 25 ms for getting a real-time output decision flow. A novel feature 

set, consisting of four features from the time domain and the sample entropy, is proposed for 

effectiveness, efficiency and long-term usage in feature extraction. The SVM and LDA 
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classifiers are compared in classification accuracy of EMG hand gesture identification in this 

research using the proposed EMG feature set. The SVM classifier is finally realised using the 

LIBSVM toolbox for real-time control application due to SVM’s better generalisation 

capability, versatility and robustness with non-stationary data. As a post-processing technique, 

the majority voting (MV) is used to eliminate spurious classification and smooth the output 

decision stream. 

 Anthropomorphic robotic hand construction and control 
A real-time myoelectric control system, using the proposed EMG acquisition and hand gesture 

discrimination methods, can be used as a research base for evaluating robotic systems with hand 

manipulating functions, or integrating it with automatic systems requiring robotic grippers 

driven by biosignals such as EMG. To validate the proposed real-time myoelectric control 

method, a physical testing platform—a five-fingered anthropomorphic robotic hand is proposed 

in Chapter 5. Experiments show the feasibility of the proposed system, the effectiveness of the 

human machine interface and the good response of the robotic hand.  

This robotic hand features 14 degrees of freedom and 3 degrees of actuation, thus being a highly 

underactuated mechanism. To resemble the human hand kinematically, the robotic hand is 

designed to imitate the human hand anatomical structure in an anthropomorphic manner. The 

mechanism of the human hand finger joints is simplified and implemented by using a hinge 

joint in the robotic hand design. A comparison of actuation methods is made between the 

classical electric motor and the non-traditional shape memory alloy (SMA) artificial muscle. 

The actuation and transmission system is implemented by using electric DC motors and the 

combination of tendons and pulleys. A soft gripper technique and a compression spring 

mechanism are used for realising the inter-phalange and inter-finger underactuation 

respectively. For simplicity, motor encoders and current sensors are employed for indirect 

position and torque sensing, which constitutes the whole control loop for the robotic hand.   

 

This research also produced some publications both in journal and international conferences such as: 

J. Wang, L. Tang, and J. E. Bronlund, "Surface EMG Signal Amplification and Filtering," 

International Journal of Computer Applications, vol. 82, pp. 15-22, November 2013, dio: 

10.5120/14079-2073. 

J.Wang, L. Tang, and J. E. Bronlund, "A pattern recognition system for myoelectric based 

prosthesis hand control," IEEE Explore, doi: 10.1109/ICIEA.2015.7334225. 

J.Wang, L. Tang, and J. E. Bronlund, "Pattern recognition-based real time myoelectric system for 

robotic hand control," IEEE Explore, ICIEA 2019. 



Chapter 7    Conclusion and future research 
 

149 
 

7.2 Recommendations for further research 

It is obvious there is a long way to go before having a robust, accurate and fast biosignal-driven robotic 

system. However, based on the knowledge and experience gained from this research, five aspects could 

be considered for further research to improve the performance of myoelectric control. 

 The EMG feature set selection is most important for classification and in turn for pattern 

recognition-based myoelectric control. The research of other novel feature extraction methods 

or feature combinations is still very attractive, which may be capable of offering a more reliable, 

robust and usable EMG-driven robotic control scheme in the future. 

 The lack of simultaneous control and proportional control is a major limitation of pattern 

recognition-based myoelectric approaches. The research on proportional and simultaneous 

control using pattern recognition methods, or using other newly developed algorithms such as 

regression, is worth further investigation in the future. 

 To facilitate the algorithm research of myoelectric control, a good method is to establish a 

standard EMG database for offline algorithm performance testing and comparison. The Ninapro 

database is an example of this attempt [14]. 

 This research only studied a simple sensory system for robotic system control. However, the 

fusion of multiple modalities of feedback such as tactile or visual information to the device 

controller or to the user’s central nervous system, would provide great potential for further 

improvement on device controllability. 

 The robustness of pattern recognition-based myoelectric control is affected by different 

variations. Using representative samples from varying conditions for training is a means to 

improve system robustness [11]. In addition, integrating this method with other sensing 

technologies, such as inertial measurement units (IMUs) [246] and computer vision, is a 

promising approach to increase system reliability. 
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Appendix A      Low risk notification 
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Appendix B      EMG acquisition circuit 
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Appendix C   Current sensing and motor driving circuit 
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Appendix D      Guide for hardware and software set-up 

and data capturing 

 

The entire system developed is shown below. Following is a brief guide to set up and run the system. 

1

2

8

4

1 PC
2 DC power supply
3 Arduino Uno
4 Arduino Mega 2560 
5 Pololu Qik 2s9v1 
6 EMG acquisition board
7 Current sensing and motor driving board
8 Robotic hand

3

5
5

6

7
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1. Preparing hardware devices 

 One PC installed Windows 7 or later version 

 One DC power supply such as Agilent E3631A Triple Output DC Power Supply  

o +6V (current limit 3A) 

o +9V (current limit 0.5A) 

 One Arduino Uno board 

 One Arduino Mega 2560 board  

 Two Pololu Qik 2s9v1 dual serial motor controller  

 One EMG acquisition board developed by this research (described in Chapter 3) 

 One current sensing and motor driving board developed by this research (described in Chapter 

5). 

 One robotic hand developed by this research (described in Chapter 5)  or use other similar robot 

hand 

 

2. System set up 

Connect the hardware devices as instructed below and check carefully before running.  

Note: the Arduino Uno board and Arduino Mega 2560 board provide +5V DC voltage for the EMG 

acquisition board and the current sensing and motor driving board respectively. If the Arduino boards 

are powered through USB cables, the total current drawn from a computer USB port may exceed its 

maximum current limit. This may cause computer USB port damage. Therefore, it is recommended to 

use a separate DC power supply to provide the Arduino boards with +9V voltage through their Vin and 

GND pins and then connect the Arduino boards to computer USB ports. When shut down the system, 

detach the USB cables from computer USB ports first before switching off the separate DC power 

supply. 
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+9VCOM

Power Supply

Arduino Uno

USB Port

Computer

Connect to a 
computer 
USB port 

after 
Arduino 

getting +9v 
power 
supply 

 

+9VCOM

Power Supply

Arduino Mega 2560

USB Port

Computer

Connect to a 
computer 
USB port 

after 
Arduino 

getting +9v 
power 
supply 
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GND
5V
3.3V

Pin 13
Pin 12
Pin 11

Pin 9

Pin 7

Pin 10

Pin 2

Pin 8

Arduino Uno

EMG Acquisition Board

Arduino Uno

 

A0

A1

A2

5V

GND

Pin 52
Pin 18
Pin 53

Pin 16

Arduino Mega 2560

+6V COM

Power Supply

VMOT

GND

GND
M0 +

M0 -

M1 +

M1 -

ERR

RST

TX

RX
VCC

Pololu Qik 2s9v1 

VMOT

GND

GND
M0 +

M0 -

M1 +

M1 -

ERR

RST

TX

RX
VCC

Pololu Qik 2s9v1 Arduino Mega 2560

Current Sensing and Motor Control Board

H3 connecting to Motor 0
H4 connecting to Motor 1
H5 connecting to Motor 2
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3. Preparing software programs 

 The EMG data collection program 

This program was developed in Arduino IDE and downloaded to Arduino Uno board. 

 The motor control program 

This program was developed in Arduino IDE and downloaded to Arduino Mega 2560 board. 

 The main program 

This program was developed in Visual Studio 2012 environment. The Visual Studio solution 

file includes three projects: 

1)  The C# project, as the start-up entry of this program for front end coding; 

2)  The C++/CLI project, as an intermediate project to construct and compute all data structures 

that the native C++ code needs and to call corresponding C++ algorithms; 

3)  The native C++ project, including LIBSVM library, SampEn calculation algorithm, and AR 

parameter estimation algorithm. 

 

4. Software environment set up 

Before starting experimental operation, configure execution parameters on the main program GUI:   

 File location 

The base folder storing experimental data and result files, e.g. C:\EMG_Data. 

 Subject 

The name of the current trial subject, e.g., James.  

 Port to Arduino Uno  

The name of the virtual USB port connecting to Arduino Uno, e.g., COM4. 

 Port to Arduino Mega 2560  

The name of the virtual USB port connecting to Arduino Mega 2560, e.g., COM6. 

EMG data and training result files will be stored in the folder “File location\Subject\”, e.g., 

“C:\EMG_Data\James\”. 

5. Running the system 

For each trial subject, the experiment is conducted in three steps, i.e. training data acquisition, training 

and real-time robotic hand control.  

 Training data acquisition 

Collecting and saving EMG data of five gestures, i.e. hand open (HO), hand close (HC), wrist 

extension (WE), wrist flexion (WF), and rest state (RS), according to instructions displayed on 

the main program GUI. The process is described in Chapter 6 in detail. 



Guide for hardware and software set-up and data capturing 
 

162 
 

 Training 

Using the stored EMG data to train the SVM classifier and save training results for further use. 

 Real-time robotic hand control 

Using the training results to control the robotic hand in real-time. 
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Appendix E      BMX150 artificial muscles 
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