216 research outputs found

    Experimental and numerical analyses of flow-limited chemical reactions in laminar and turbulent regimes

    Get PDF
    Aquesta tesis es divideix en tres blocs on s’analitza l’efecte de diferents règims de flux en reaccions químiques. El primer bloc analitza una base de dades obtinguda a partir de simulació numèrica d’un flux reactiu i turbulent en una canal a baix nombre de Reynolds. Un dels reactius es alliberat al llarg del centre del canal i l’altre prop de les parets. Aquesta distribució produeix dues capes de barreja reactiva. Les fluctuacions de la concentració de les especies químiques es processen per determinar la contribució de les fluctuacions a petita i a gran escala en les capes de barreja. L’anàlisi s’estén per explicar les estructures de flux obtingudes. El segon bloc estudia un flux laminar i reactiu en una cavitat cilíndrica amb la paret superior rotativa. L’efecte de les diferents estructures de flux, obtingudes a diferents nombres de Reynolds en una reacció irreversible àcid-base, es mesura experimentalment amb les tècniques de PIV i PLIF, i numèricament a través de simulació on s’utilitzen volums finits. Les estructures de flux observades, les bombolles de recirculació en els trencaments de vòrtex així com els perfils numèrics de velocitat, estan d’acord amb els resultats experimentals i amb estudis previs. La comparació entre els contorns experimentals i numèrics de concentració de base a Re=1000 i 1500 es troben en concordança. A nombres de Reynolds més elevats, aquests contorns dintre del trencament del vòrtex difereixen. El tercer bloc analitza la taxa de partícules magnètiques depositades en les parets d’un microcanal. Un imant permanent es col•loca fora del canal per induir la deposició de les partícules que s’introdueixen a diferents caudals. S’utilitza un model matemàtic per simular la deposició de les partícules paramagnètiques i s’observa que a caudals elevats, els resultats numèrics i experimentals són consistents.Esta tesis se divide en tres bloques donde se analiza el efecto de diferentes regímenes de flujo en reacciones químicas. El primer bloque analiza una base de datos obtenida a partir de simulación numérica de un flujo reactivo y turbulento en un canal a bajo número de Reynolds. Uno de los reactivos se libera a lo largo del centro del canal y el otro cerca de las paredes. Esta distribución produce dos capas de mezcla reactiva. Las fluctuaciones de la concentración de las especies químicas se procesan para determinar la contribución de las fluctuaciones a pequeña y a gran escala en las capas de mezcla. El análisis se extiende para explicar las estructuras de flujo obtenidas. El segundo bloque estudia un flujo laminar y reactivo en una cavidad cilíndrica con la pared superior rotativa. El efecto de las diferentes estructuras de flujo, obtenidas a diferentes números de Reynolds en una reacción irreversible ácido-base, se mide experimentalmente con las técnicas PIV y PLIF, y numéricamente a través de simulaciones que utilizan volúmenes finitos. Las estructuras de flujo observadas, las burbujas de recirculación en los rompimientos de vórtice así como los perfiles numéricos de velocidad están de acuerdo con los resultados experimentales y con estudios previos. La comparación entre los contornos experimentales y numéricos de concentración de base a Re=1000 y 1500 están en concordancia. A números de Reynolds más elevados, estos contornos dentro del rompimiento de vórtice difieren. El tercer bloque analiza la tasa de partículas magnéticas depositadas en las paredes de un microcanal. Un imán permanente se coloca fuera del canal para inducir la deposición de las partículas que se introducen a diferentes caudales. Se utiliza un modelo numérico para simular la deposición de partículas paramagnéticas y se observa que a caudales elevados, los resultados numéricos y experimentales son consistentes.This thesis is divided in three blocks where the effect of different flow regimes in chemical reactions are analysed. First block analyses a database obtained from a direct numerical simulation of the turbulent reacting flow in a plane channel at low Reynolds number. One reactant is released along a line source at the center of the channel and the other near the walls. This distribution produces two reacting mass transfer mixing layers. The fluctuations of the concentration of the chemical species are processed to determine the contribution of the large and the small-scale fluctuations in the reacting mass transfer mixing layers. The analysis is extended to educe flow structures obtained. The second block analyses a laminar reactive flow in a cylindrical cavity with a rotating end wall. The effect of the different flow structures obtained at different Reynolds numbers on the irreversible fast acid-base neutralization is measured with a simultaneous PIV and PLIF techniques and simulated numerically with a finite volume code. The observed flow structure, the recirculation bubbles in the vortex breakdown regions as well as the numerical velocity profiles are in agreement with the measurements and with previous studies. The comparison between the experimental and numerical contours of concentration of base at Re=1000 and 1500 are in general agreement. At larger Reynolds numbers, the experimental and numerical contours of concentration of base inside the vortex breakdown differ. The third part analyses the rate of deposition of magnetic particles on the walls of microchannel. A permanent magnet is placed out of the channel to induce the deposition of the particles which are introduced at different flow rates. Additionally, a numerical model to simulate the deposition of the paramagnetic particles is studied and it is observed that, at high flow rates, the experimental and numerical results are consistent

    Flow and Temperature Fields Generated by a Thermally Activated Interventional Vascular Device

    Get PDF
    Concern for the nonphysiologic energy required to actuate medical devices utilizing “smart material” properties of shape memory polymer (SMP) compels a rigorous investigation into the flow and temperature fields surrounding a thermally activated catheter device. Multiple analyses include the theoretical approaches of exact analytical solutions and finite difference modeling combined with the experimental techniques of particle image velocimetry (PIV) and laser-induced fluorescence (LIF). The attained velocities and temperatures related to the convective heat transfer impact the potential for blood or tissue damage caused by intravascular heating. The clinical scenario involving a catheter device receiving heat within an artery is modeled in its simplest form as a cylindrical metal cap on the tip of a hollow glass rod placed inside of a long straight tube of constant cross-sectional area. Using a working fluid with properties comparable to blood, flow rates and energy input is then varied to determine their effects on velocity fields and temperature gradients. Analytical solutions for both the straight tube and concentric annulus demonstrate the two velocity distributions involved, as flow moves past the gap between the catheter and artery wall and then converges downstream to the Poiseuille solution for steady pipe flow of an incompressible fluid. To solve for the transition between the velocity profiles, computational fluid dynamics software simulates a finite volume model identical to the experimental setup used for intravascular heating experiments. PIV and LIF, both experimental techniques making use of similar hardware, determine velocity fields and temperature distributions, respectively, by imaging fluid seeding agents and their particular interaction with the light sheet. The velocity and temperature fields obtained experimentally are matched with the analytical and finite volume analysis through fluid properties, flow rates, and heating rates. Velocities determined during device heating show a small increase in local velocity, due to temperature dependent viscosity effects. When the device is centered in the model, flow patterns constrain the heat flow near the center axis and away from the channel walls. Increasing flow rate consequently decreases temperature rise, as the heat is carried more quickly downstream and away from the heat source. Using multiple analyses, fluid velocity and temperature distributions are first theorized with analytical and finite element methods and then validated through experimental imaging in a physical model

    Annual Report 2008 - Institute of Safety Research

    Get PDF

    Experimental Study of Free Surface Mixing in Vortical and Chaotic Flows

    No full text
    The free surface mixing properties of a scalar advected by a quasi-steady or unsteady electromagnetically forced flow are investigated. The scalar statistics are related with the topology of the velocity fields stirring them. The benefits and consequences of topologically folding a scalar to enhance homogenization are discussed, identifying how this process may lead to the attenuation of diffusion in vortical and chaotic flows. A pair of magnets, whose attitude is controlled during the experiment, is employed to generate a wide range of velocity fields in a shallow layer of conductive stratified brine. The simplicity of the system makes it possible to analyze the basic properties of the flows generated, relating them with more complex geometries found in literature. The concentration measurements characterizing the scalar field are based on LIF, for which a novel experimental procedure (including calibration, error management and statistical estimators) is presented. Special attention is paid to the relation between the variance decay rate and the mean gradient square, identifying several mechanisms that reduce the fidelity of Q2D experiments in reproducing some features of the transport equation. Evidence of the scalar spiral range is presented in the wavenumber and physical spaces for particular quasi-steady samples. When required, the system unsteadiness is generated by modifying the body forcing geometry throughout the experiment, producing chaotic advection regardless of the flow Re. The periodic nature of the forcing oscillations leads to an exponential variance decay dominated by a strange eigenmode. It is shown that such a system contains recurring temporal patterns and becomes independent of the scalar initial condition

    Artificially generated turbulence: A review of phycological nanocosm, microcosm, and mesocosm experiments

    Get PDF
    Building on a summary of how turbulence influences biological systems, we reviewed key phytoplankton-turbulence laboratory experiments (after Peters and Redondo in Scientia Marina: Lectures on plankton and turbulence, International Centre for Coastal Resources, Barcelona, 1997) and Peters and Marrase (Marine Ecology Progress Series 205:291-306, 2000) to provide a current overview of artificial turbulence generation methods and quantification techniques. This review found that most phytoplankton studies using artificial turbulence feature some form of quantification of turbulence; it is recommended to use turbulent dissipation rates (epsilon) for consistency with physical oceanographic and limnological observations. Grid-generated turbulence is the dominant method used to generate artificial turbulence with most experiments providing quantified epsilon values. Couette cylinders are also commonly used due to the ease of quantification, albeit as shear rates not epsilon. Dinoflagellates were the primary phytoplanktonic group studied due to their propensity for forming harmful algal blooms (HAB) as well as their apparent sensitivity to turbulence. This study found that a majority of experimental setups are made from acrylate plastics that could emit toxins as these materials degrade under UV light. Furthermore, most cosm systems studied were not sufficiently large to accommodate the full range of turbulent length scales, omitting larger vertical overturns. Recognising that phytoplankton-turbulence interactions are extremely complex, the continued promotion of more interdisciplinary studies is recommended

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals

    Multi-Scale Experiments in Turbulent Subcooled Boiling Flow Through a Square Channel with a Single Heated Wall

    Get PDF
    In this work, visualization experimental techniques that provide whole-field and multi-scale measurements of the liquid turbulence parameters, liquid and heater wall temperatures, and gas phase local parameters, were used to study subcooled boiling flow through a square channel. The explored visualization techniques were: 1) Particle tracking velocimetry (PTV), which provides velocity measurements of the liquid phase, 2) High-speed shadowgraphy (HSS) which is used to study the dispersed phase dynamics. 3) Laser induced fluorescence thermometry (LIF) to measure whole-field liquid temperature fields. 4) High-speed infrared thermometry (IR-T), to study the impact of the boiling level on the heated wall temperature. A series of sensitivity studies were performed with which, knowledge for the optimal implementation of each technique was gained. Identification and quantification of uncertainties allowed to optimize the experimental conditions to achieve reliable and accurate liquid velocity measurements with the PTV technique. New procedures were designed to measure the average bubble velocity, bubble size, and void fractions. The single-nucleation site experiments provided optimal characteristics for the study of the bubble and liquid dynamics by means of PTV-shadowgraphy technique. This experiment simplified the quantification of the relationship that exist between the vapor and liquid parameters. From these results, new relationships and correlations are proposed to describe the near-wall liquid velocity behavior depending on local two-phase flow parameters. For the LIF thermometry, sensitivity studies were performed to evaluate the effects of excitation wavelength, dyes concentration ratios, solution pH, and selected emission bands on the temperature sensitivity of the two-color two-dye LIF thermometry technique. Temperature sensitivities of about 4% per °C were obtained, which is better than the traditionally used RhB-Rh60 solution which provides sensitivities of about 2% per °C. The present study is intended to lay down the experimental and data analysis foundations required to improve the understanding of subcooled flow boiling. This study also provides reliable and accurate experimental information for development and validation of two-phase flow computational models
    corecore