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Abstract

An experimental investigation of a sphere performing torsional oscillations

in a Stokes flow is presented. A novel experimental set up was developed

which enabled the motion of the sphere to be remotely controlled through

application of a magnetic field. The response of the sphere to the applied

field was characterised and good agreement with a theoretical model was

found. The effect of nearby boundaries were investigated in two cases; when

the rotational axis of the sphere was (1) parallel and (2) perpendicular to the

normal to the bounding surface. The interaction between a torsionally oscil-

lating sphere and an otherwise stationary sphere was then studied for various

combinations of spheres. The effect that a tether connecting the spheres had

on the dynamics of two interacting spheres was considered by comparing

tethers of different materials. Finally, a multi-body configuration of spheres

connected by elastic tethers which propelled itself in a Stokes flow when ac-

tuated magnetically was developed. Throughout the investigation Particle

Image Velocimetry, a quantitative flow visualisation technique, was used to

determine the resultant flows and provide insight into the fluid dynamics.
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Chapter 1

Introduction

In his celebrated work ‘On the effect of the internal friction of fluids on pen-

dulums ’ [1], G. G. Stokes considered the motion of a sphere in a very viscous

fluid and provided the foundation for subsequent studies of the motion and

interaction of particulate matter in viscous fluids. Scientific advances in this

field have been numerous and recent technological developments have re-

sulted in increased applications of the laws governing the motion of particles

in viscous fluids. The fluid dynamics of a sphere performing torsional oscil-

lations in a viscous fluid has received little experimental attention, however,

since it was first considered theoretically in 1860 [2]. Furthermore, the ex-

perimental work which has concerned the torsionally oscillating sphere was

performed using a sphere with a supporting rod or fibre, like the work con-

ducted by Stokes was performed using a pendulum, and the effects of the

support on the flow were not considered [3–6].

This thesis presents results from an experimental investigation into the

torsional oscillations of a sphere in a very viscous fluid. The experimental

work presented here was conducted on a free sphere, the motion of which

19



was controlled using an applied magnetic field. The aims of the investigation

were to (a) provide quantitative data from careful experiments which can be

compared with available theoretical predictions concerning the fluid motion

generated by an oscillating sphere, (b) to inspire further theoretical progress

by considering the effect of nearby boundaries and the interaction of pairs

of spheres and (c) to apply knowledge of the interaction of spheres in a very

viscous fluid to the development of an actuated device capable of swimming

at low Reynolds number.

In §1.1, a brief discussion is presented of a dimensionless parameter, the

Reynolds number, and its implications. The literature concerning the tor-

sional oscillations of a sphere in a viscous fluid is reviewed in §1.2. The anal-

ogous example of a steady rotating sphere is discussed in §1.3 and the effects

which arise from close proximity of a rotating sphere to a solid boundary

are considered in §1.4. In §1.5, the propulsion of multi-body configurations

of spherical particles and other synthetic swimmers is used to explore how

locomotion can be achieved in viscosity dominated, low Reynolds number

flows. Finally, in §1.6, a preview is presented of the structure of the thesis.

1.1 Experimental Realisation of a Stokes Flow

The presented results were obtained in an experimental realisation of a Stokes

flow and it is necessary to consider the implications of low-Re fluid dynamics.

The Reynolds number, Re, is a dimensionless parameter which is determined

by the ratio of the inertial to viscous forces in a fluid system. It is defined

as Re = UL/ν where U is the characteristic velocity of the system, L the

characteristic length of the system and ν the viscosity of the fluid. At low
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Re, Re << 1, the inertial term in the governing equations of motion, the

Navier-Stokes equations, becomes negligible and in the limit of Re → 0 the

fluid velocity satisfies the linear Stokes equations. Thus motion is determined

by viscous, not inertial, forces and fluid transport is dominated by viscous

diffusion.

Results were obtained for Reynolds numbers typically < 0.1 so that the

motion is considered primarily as Stokesian, although small departures were

found from Stokes flow and these are discussed. The consequences of Stoke-

sian fluid dynamics on locomotion is revisited later in §1.5 but first the dy-

namics of a spherical particle at low Re will be reviewed.

1.2 Studies of a Torsionally Oscillating Sphere

The torsional oscillations of a sphere immersed in, and also enclosing, a vis-

cous fluid were first discussed theoretically and experimentally by Helmholtz

and Piotrowski in 1860 [2] with regards to the specific application of a vis-

cometer. The viscosity of the fluid can be calculated from the logarithmic

decrement of decaying oscillations of a sphere suspended from a torsion fibre,

a configuration known as a torsion pendulum. The sphere is deflected from

the equilibrium position and subjected to the restoring couple of the fibre

and the surrounding fluid. Using this method, and enclosing the fluid within

a spherical shell, Andrade [7] devised an apparatus capable of determining

the coefficient of viscosity to an accuracy of less than 0.5%. This technique is

suitable for measuring the viscosities of substances which react with air, such

as molten metals, as the fluid is completely encased. Andrade also concluded

that no slip took place between the liquid and the sphere surface, contrary
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to the belief of Helmholtz and Piotrwoski.

In 1891, Buchanan [8] considered the oscillatory motion of a solid spheroid

suspended in a viscous fluid by a torsion fibre. He analytically derived the

solution for the primary velocity field generated by, and the resistive hydrody-

namic torque acting on, a spheroid performing damped rotary oscillations in

an unbound, incompressible, viscous fluid. The solution for a sphere was then

obtained by reducing the ellipticity of the prolate sphere to zero. Buchanan

concluded that, if the fluid is initially at rest, the resulting fluid motion will

be circumferential in annuli around the axis of rotation. Thus the entire fluid

can be thought to move in concentric shells around the oscillating sphere.

Small torsional oscillations of a solid sphere, deflected from the equilib-

rium position in an otherwise quiescent viscous fluid under an elastic restoring

force or couple, were examined by Kestin [9]. This work considered both the

motion of the sphere and the surrounding fluid, including initial transient

motion. Exact solutions of the Navier-Stokes equations were presented af-

ter simplification through omission of the inertial terms, which restricts the

validity of the solutions to small oscillations and negligible secondary fluid

motion. The solutions for the fluid motion were in agreement with the spher-

ical shell solution previously obtained through the method of separation of

variables [10].

Lamb solved the unsteady Stokes equations for concentric spheres, the

inner of which executed rotary oscillations, and obtained a solution as a

series of spherical harmonics. The solution for a single, free sphere performing

torsional oscillations in an infinite mass of incompressible viscous fluid was

then obtained by extending the radius of the outer sphere to infinity whilst
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maintaining constant pressure. The torque on the sphere was also calculated

from the stress components on the surface of the sphere.

Kanwal [11] investigated the oscillatory rotation of rigid axi-symmetric

bodies about an axis of symmetry in a viscous, incompressible fluid using

Stoke’s stream function. A solution was obtained in terms of spheroidal

wave functions of complex arguments and good agreement was found with

the solution of Lamb [12]. This work was later extended to consider the slow

rotary oscillations of a sphere in a fluid bounded by an infinite cylinder, the

axis of which coincides with the axis of rotation of the sphere [13].

Tekasul et al. [14] numerically solved for the torque on a torsionally os-

cillating sphere in an unbound medium using a Green’s function approach

and found a less than 0.1% difference with analytic solutions. This work was

extended to include numerical solutions with slip between the fluid and the

sphere surface, which is of interest in micro- and nano-fluidic conditions [15].

Lei et al. [16] calculated the viscous torque on a spherical particle under

arbitrary rotation and a particle rotating in a velocity field rather than a

still fluid. By considering a characteristic dimension of the body, Zhang and

Stone [17] extended the analysis to the oscillatory translations and rotations

of nearly spherical particles.

The aforementioned studies assumed the fluid moves in concentric circles

around the torsionally oscillating sphere, and the centres of these annuli lie

on the axis of rotation. Carrier and Di Prima [18] used perturbation tech-

niques to solve the nonlinear Navier-Stokes equations which result when the

radial and axial flows are not neglected. Their work uncovered a secondary

circulatory motion in planes containing the axis of rotation: fluid recedes
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from the sphere along the equatorial plane and flows in at the poles. This

inertial effect results from a centrifugal force which is greatest at the equa-

tor. A pressure-gradient counteracts the normal component of the centrifugal

force suppressing separation from the sphere surface. However, the pressure-

gradient cannot counteract the tangential component of the centrifugal force

which instead manifests as a circulatory flow driven by an inflow at the poles

and an outflow at the equator. The secondary flow results in a steady pump-

ing which increases with increasing oscillation amplitude and decreases with

increasing frequency of oscillation [3].

The fundamental circumferential motion and the secondary, circulatory

streaming motion interact and a correction term to the torque acting on a

sphere was calculated by Carrier and Di Prima [18]. However, disagreement

between predicted amplitude effects and experimental measurements by Folse

et al. [4] led to identification of an algebraic error in the original calculation

of the correction to the torque [19]. Folse et al. measured the relative change

in added moment of inertia due to viscous effects, and the relative change in

the logarithmic decrement of a sphere suspended between two rods (a torsion

pendulum constrained in the transverse direction from below by a supporting

rod). The gradual variation of the damping rate was subsequently explained

by the weakly nonlinear theory of Di Prima and Liron [19]. Gopinath [20]

also investigated steady-streaming effects and concluded that the streaming

is generated by viscous-like forces yet is independent of viscosity.

It is of interest to note that relatively few experimental investigations

have been conducted, and all experimental work was performed on a torsion

pendulum: a sphere suspended in the viscous fluid by means of a torsion
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fibre or mechanically driven rod, and at times supported from below to pre-

vent transverse motion [3–6]. The torsion pendulum was either subject to an

initial deflection and then left to approach the equilibrium position through

decaying oscillations [4–6], or was driven by an external motor with oscilla-

tions of constant time-period [3]. The effect of the motion of the supporting

fibre or rod on the resulting flow was neglected in all cases. Furthermore,

the experimental work performed mainly concerned the inertial effects which

occur at Re > 1. For instance, Hollerbach et al. [3] conducted flow vi-

sualisation of the radial jet which results from hemispherically symmetric

circulatory flows colliding at the equator. The radial jet is ejected along the

equator and, for large-amplitude oscillations, generates vortex pairs which

break down into turbulence.

No literature has been uncovered which concerns the influence of bound-

aries on the flow generated by a torsionally oscillating sphere. The impact

of solid boundaries on a sphere rotating with constant angular velocity, how-

ever, has received considerable attention in the literature. The relevant work

on a steady rotating sphere in a viscous fluid is summarised in the following

section to provide insight into the analogous case of the torsionally oscillating

sphere.

1.3 Studies of the Steady Rotation of a Sphere

The steady rotation of a sphere in an infinite, incompressible mass of viscous

fluid was first considered by Stokes [1]. The transversely oscillating sphere,

and a sphere translating in a straight line with uniform velocity, in a viscous

fluid were also discussed. Stokes noted that if the second-order terms in the
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Navier-Stokes equations are taken into account then the motion of a sphere

rotating about a fixed axis generates an inflow parallel to the axis and an

outflow parallel to the equatorial plane, similar to the case of the torsionally

oscillating sphere. Jeffery [21] neglected the second-order, convective terms

and solved for the velocity of a spherical shell of fluid surrounding the sphere.

The resistive torque exerted by the fluid on the sphere was also determined

and found to be an accord with the earlier approximate solution of Kirchoff

[22].

The secondary streaming in the meridional plane was first treated in depth

by Bickley [23] who discovered that the change from inflow to outflow takes

place on the surface at an angle of 54.5◦ from the rotational axis. Bickley

also noted that the secondary flow contributes to the viscous dissipation of

energy and exerts a small secondary torque on the sphere. The coefficient

of torque resulting from the secondary flow was calculated by Collins [24].

Takagi [25] used a power series expansion to calculate the torque up to the

order of Re14 and also calculated the vorticity, skin-friction and pressure

on the surface of the sphere. Determination of the intrinsic hydrodynamic

resistance to rotation was extended to arbitrary particles using tensors which

were dependent on the exterior geometry of the particle [26].

Sawatski [27] conducted a comprehensive investigation of the flow field

in the vicinity of a sphere rotating with constant angular velocity in a vis-

cous fluid over the range 100 < Re < 107, with a focus on the boundary

layer development and the laminar-turbulent transition to a fully developed

boundary layer. A further investigation of the flow around a sphere rotating

in Newtonian and visco-elastic liquids was conducted with the specific aim
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of developing a rotating sphere viscometer [28]. Good agreement was found

between the experimental measurements and theoretical predictions of the

primary flow for radial distances, r, of up to r/a ' 4. The secondary flow

was found to reverse for visco-elastic fluids due to the dominance of elastic

effects over inertial effects.

The unsteady, yet non-oscillatory, rotation of a sphere in an unbound,

viscous fluid was first considered by Basset who examined a sphere set im-

pulsively into rotation [29]. The suddenly-started rotating sphere was inves-

tigated using analytical [30] and numerical methods [31], and the transient

flow pattern caused by an impulsive twist applied to an initially stationary

sphere in a viscous fluid has also been examined [32]. A historic rotational

term in the expression for the torque acting on a sphere when the motion

is unsteady has been derived [33]. Finally, a lift force, which acts orthogo-

nally to the direction of motion and the axis of rotation, was found [34], and

later confirmed [35], to act on a spinning sphere translating through a fluid

for small but non-zero Re flow. This transverse force is in addition to the

drag force experienced by the sphere, and, for small Re, is independent of

viscosity.

1.4 Studies of Boundary Effects on Rotating

Spheres

The presence of nearby boundaries affects the fluid motion generated by the

rotation of a sphere in an otherwise quiescent, Stokes flow. Symmetrical

boundaries, such as a concentric bounding shell, increase the hydrodynamic
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resistance exerted on a sphere and form the basis of rotating sphere viscome-

ters [36] as discussed in §1.4.3. The introduction of planar boundaries break

the symmetry of the system and the no-slip condition of the surface of the

boundaries introduce additional viscous effects. The variation of the Stokes’

drag force on a sphere translating in a fluid, and the rotational equivalent ex-

perienced by a spinning sphere, have been measured as a function of distance

from a solid boundary using optical tweezers to control the particle position

and motion [37]. Understanding of the forces and torques which result from

walls, and their functional dependence on wall-sphere separation, are impor-

tant in microfluidic and biological systems. In particular, the net force which

acts on a spherical entity rotating near a wall results in propulsion and pro-

vides insight into the swimming mechanisms of micro-organisms in bounded

low-Re flows. Two scenarios are to be considered; a sphere rotating about an

axis (a) parallel, and (b) perpendicular, to the surface normal of the planar

boundary, as shown in the schematic diagram in Figure 4.1.

1.4.1 A Parallel Boundary

For a sphere performing steady rotation about an axis which is parallel to

the surface normal of a nearby boundary, an increase in resistive couple due

to viscous-dissipation effects is induced by the boundary and increases as the

sphere approaches the boundary. The dependence of the torque correction

on separation distance changes depending on whether the sphere is very close

to [21] or far from the boundary [38].

In the Stokes regime, this scenario was originally considered by Jeffery [21]

who calculated the increase in hydrodynamic resistance as a function of wall-
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Figure 1.1: Schematic diagram of the orientation of the rotational motion

of the sphere with respect to the bounding plane. The solid boundary is

denoted by the thick line on the left-hand side of the image, the surface

normal to the boundary is denoted by the horizontal dashed line to which

the rotational axis of the sphere is (a) parallel and (b) perpendicular. The

sphere-wall separation distance, h, is measured from the centre of the sphere

to the surface of the boundary. The rotation direction is depicted by the

curved, black arrow and the radius of the sphere, a, is depicted in (a).
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sphere separation. Jeffery discussed the hydrodynamic torque exerted on a

solid sphere rotating in a viscous fluid enclosed by a concentric, and a non-

concentric, spherical shell. Takagi [39] examined the case of steady rotation

around an axis parallel to the surface normal when studying the slow rotation

of a sphere in close proximity to another, free sphere. In the limit of the free

sphere becoming infinitely large, the rotating sphere could be considered to

be close to an infinite planar boundary. Brenner [40] extended the effect of

boundaries on the Stokes resistance to arbitrarily-shaped particles and found

that the magnitude of the wall effect for the translation of a particle was much

greater than for rotation, a result which has been confirmed experimentally

[37].

Liu and Prosperetti [41] used numerical methods to investigate the effects

of inertia in the system for Re up to 100. The parallel boundary inhibits

the poleward flow and radial jet which are produced by the sphere. The

unbalanced momentum results in a net force directed toward the wall parallel

to the surface normal. Both the net force and resistive torque reduce with

increasing wall-sphere separation. For Stokes flow, however, the net wall-

parallel force acting on the sphere is zero, as no circulatory flow exists, and

the resistive couple is significant as viscosity dominates [41].

1.4.2 A Perpendicular Boundary

For a sphere performing steady rotation about an axis which is perpendicular

to a nearby boundary, Dean and O’Neill [42] analytically solved the Stokes

equations for rotation perpendicular to the surface normal using bipolar co-

ordinates. Goldman et al. [43] derived asymptotic, lubrication-like solutions
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for the case where the gap-width approaches zero. The discrepancy between

the obtained theoretical solutions and avaiable experimental data were ex-

plained by considering cavitation, a point which was investigated further by

Ashmore et al. [44]. Chaoui and Feuillebois [45] used numerical methods to

obtain precise expressions for the fluid velocity which allowed calculations of

the fluid trajectories around a sphere close to a wall in a shear flow. As in

the case of a parallel boundary, the presence of the perpendicular boundary

introduces a strong resistive torque because of large viscous effects which di-

verge as the sphere approaches the boundary. This also results in two forces:

a force directed parallel to the boundary and a force directed perpendicular

to the boundary [43].

The force directed parallel to the boundary originates from viscous shear

and causes the sphere to translate. For Re < 1, the direction of translation

is in the direction the sphere would roll down the plane if it were free [41].

This wall-parallel force generated by a sphere rotating near a boundary is

analogous to the torque experienced by a sphere translating near a boundary

[46, 47]. Goldman et al. [43] acknowledged this cross-effect relationship: the

force (per unit angular speed) exerted on a rotating sphere must equal the

torque (per unit translational speed) exerted on a translating sphere.

A build-up of pressure results from fluid being squeezed between the

sphere and the boundary and results in a force directed perpendicular to the

boundary. For Re < 1, viscosity dominates in the gap between the sphere and

the boundary and the wall-normal force is repulsive, forcing the sphere away

from the boundary. This wall-normal force is greater at smaller separations

and decreases rapidly with increasing separation [41]. The wall-normal force
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is less significant than the wall-parallel force, and both effects decrease with

increasing separation.

The analytic solutions of Dean and O’Neill [42] and Jeffery [21] can be

combined to find the increased resistive torque due to the arbitrary orienta-

tion of the rotational axis from the planar boundary. Perkins and Jones [48]

constructed grand resistance and mobility matrices in a general direction and

orientation relative to a hard wall using a function with no divergent part,

and were thus able to find explicit expressions for all gap-widths. Finally,

Cox [49] calculated the hydrodynamic force and torque on a solid sphere at

an arbitrary position from a planar boundary in a general, 2-dimensional

flow at Re = 0. The result was used to describe the motion of spherical,

non-zero size particles across streamlines, which resulted in local changes

in concentration, in a prescribed undisturbed flow; a phenomena which has

been observed experimentally and is entirely due to boundary effects [49].

1.4.3 The Rotating Sphere Viscometer

The case of a sphere performing steady rotation in a viscous fluid has received

far more attention in the literature than the case of a torsionally oscillating

sphere. However, the concept of using a steady rotating sphere to measure the

viscosity of the fluid in which it is submerged was not considered until more

than a century after Helmholtz and Piotrowski discussed the use of torsional

oscillations of a sphere for viscosity measurements [2]. In the 1960s, Walters

and co-workers demonstrated that measurement of the couple exerted on

the sphere could provide a means of measuring the fluid viscosity [36], and

experimental observation of the streamline pattern could provide a simple
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qualitative check on rheogeniometer measurements [50]. A sphere rotating

inside a concentric spherical container filled with viscous fluid where the ratio

of the radii of the two spheres is ∼ 1 : 12 results in the outer sphere having

an effect of < 1% on the couple of the rotating sphere.

With the specific aim of developing a rotating sphere viscometer, Kelkar

et al. [28] conducted an experimental investigation into the primary flow

around a sphere rotating in Newtonian and visco-elastic fluids using a 3-

dimensional particle imaging technique that was the precursor to modern flow

visualization techniques such as Particle Image Velocimetry. Good agreement

was found with the theoretical description of primary flow for radial distances

up to r/a ∼= 4; divergence of experimental results from theoretical predictions

at greater distances was attributed to the influence of the container walls.

More recently, the rotating sphere viscometer has been developed and

adapted for medical, biological and micro-fluidic applications. The advan-

tage of a viscometer based on rotational motion, compared to the more con-

ventional methods based on translational motion, is that a smaller volume of

fluid is probed. This enables the measurement of the rheological properties

of small, micro- to pico-litre, volumes of viscous fluids [51]. Experiments

performed within cells and with eye fluid have demonstrated the suitability

of rotating sphere viscometers for non-invasive, in vivo testing [52]. Further-

more, ingenious methods of non-mechanical control of the sphere rotation

have been developed to eradicate the friction between the rotational axis

of the sphere and the mechanical support, which often restricts the lower

limit of viscosity measurement [53]. Examples of non-mechanical control are

the optical application of a torque to a spherical particle trapped by laser
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tweezers [52]; the electromagnetically spinning sphere viscometer, which uses

a rotating magnetic field to drive the rotation of an aluminum sphere [53];

and the suspension of spherical, ferromagnetic particles in a viscous fluid, the

orientation of which is then be controlled by the application of a magnetic

field [51].

1.5 Life at Low Reynolds Number

At low Re fluid velocity is governed by the Stokes equations which have

no inertial term. This has two significant implications on locomotion at

low Re: the viscous forces which result from the deformation of a body do

not depend on the rate of deformation, and time-reversible deformation of a

body does not result in net displacement of the body [54]. These two factors

contradict our intuitive understanding of swimming (which, for a human in

water, occurs at Re ∼ 103) in which cyclic deformations of a body in a fluid

result in inertial forces, and a momentum, that propels the body through the

fluid.

For propulsion at lowRe, a body must undergo periodic, yet non-reciprocal

deformation in order to generate non-zero net forces [55]. A body which

deforms through a sequence of geometrical shapes may swim in a low-Re

flow, provided the sequence of shapes is not identical when viewed after a

time-reversal transformation. A body, free from external forces and torques,

which self-propels at low Re is known as a swimmer [56]. The small scale of

swimming microorganisms mean that biological examples of swimmers are

plentiful. Examples of artificial, man-made swimmers are less numerous.

However, recent advances in nanotechnology have led to promising methods
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of exploiting low-Re propulsion for in vivo site-specific drug delivery [57].

The propulsive mechanisms of multi-body configurations of spherical par-

ticles have been explored both theoretically and experimentally. A one-

dimensional swimmer consisting of three spheres linked by rigid rods has

been studied extensively [58–62]. An internal engine in the middle sphere

acts as an active element and changes the length of the connecting rods. A

non-zero phase difference in the continuous, periodic motion of the two rods

breaks the time-reversal and the translational symmetry, resulting in loco-

motion in a direction parallel to the arms of the swimmer. Experimental

validation of the three-sphere swimmer design was obtained by controlling

the motion of beads in glycerol using optical tweezers [63]. The modes of

motion were recreated and the flow generated by the pumping action of the

cilia beads proved the configuration could swim. Further studies have shown

that the presence of a nearby solid boundary causes the swimmer to reori-

entate [64] and the interaction between two swimmers is dominated by the

relative phase of their swimming strokes [65]. The motion of the swimmer

has also been considered in a non-stationary flow [66]; if the two end spheres

were made of ferromagnetic material, then the swimmer could be navigated

in a shear flow through application of an external magnetic field.

The dynamics of a collection of swimmers which comprise rotating spheres,

and passive spheres, connected by rigid rods have also been described [67,68]

and studied in the presence of a nearby solid boundary [69]. The dynamic

behaviour of a swimmer consisting of actuated, rotating spheres and rigid

connections has been investigated experimentally [70]. A swimmer consist-

ing of one magnetically hard particle and one magnetically soft particle was
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devised by Ogrin et al. [71]. Application of an elliptically rotating uniform

magnetic field led to the non-reciprocal, periodic motion of the two spheres

and net displacement of the swimmer. The external forces and torques which

arise from application of a magnetic field mean the device is not, by defini-

tion, a swimmer [56]. However, magnetically-driven propellers can provide

insight into the propulsive mechanisms of swimmers.

The buckling of a ferromagnetic filament subjected to an alternating cur-

rent (AC) magnetic field may result in the symmetry-breaking deformation

necessary to achieve locomotion [72]. A flexible magnetic filament attached

to a red blood cell was experimentally demonstrated to swim upon appli-

cation of an AC field [73, 74]. The free end of the filament followed the

field direction and a bending wave propagated along the filament to the end

attached to the red blood cell, propelling the swimmer in the opposite direc-

tion. Magnetically-driven flexible nanomotors provided the first example of

directed delivery of polymeric drug carriers [57]. The nanomotors comprised

a flexible tail, which deformed in a chiral fashion, and a magnetic head that

was actuated by a rotating magnetic field [56].

Numerical simulations have shown that a magnetic dipole attached to

a flexible tail also behaves as a swimmer when subjected to an unsteady

magnetic field [75]. A bending wave propagates from the actuated magnetic

dipole to the tip of the tail. Actuating an elastic filament makes the filament a

function of the fluid flow which breaks the time-reversibility of the motion and

results in locomotion [76]. Synthetic swimmers which exploit the actuation

of a flexible filament have been realised experimentally. Wiggins et al. [77]

oscillated a latex bead using laser tweezers and observed propagating waves of
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displacement along the attached filament. Yu et al. [78] developed a robotic

swimmer which consisted of an actuation device housed inside the swimmer

body and attached to an elastic tail.

Thus, it has been shown that the potential implementation of synthetic

swimmers in future in vivo drug delivery [57], and as pumps in microflu-

idic devices [63], means that the study of low-Re swimmers is of significant

engineering importance as well as of scientific interest.

1.6 Thesis Structure

In Chapter 2, the experimental set-up used to control the torsional oscil-

lations of a sphere in a very viscous fluid is described. Calibration of the

magnetic field used to drive the motion of the sphere is presented, as is the

method used to illuminate and observe the motion of the sphere. The equip-

ment and techniques used to quantitatively visualise the fluid motion are also

described. The dynamic response of a sphere to the applied magnetic field

is detailed in Chapter 3. This includes derivation of a model describing the

torques that act on the sphere. The flow generated by a sphere is measured

and compared to a theoretical prediction of the fluid velocity.

In Chapter 4, the effects of a boundary on the motion of the sphere and

the resultant flow are considered. The modifications to the experimental

set-up are described before results obtained for a parallel boundary and a

perpendicular boundary are presented and discussed. In Chapter 5, the per-

pendicular boundary is replaced by a passive sphere. Results concerning the

interaction between a torsionally oscillating sphere and a passive sphere are

presented for a variety of combinations of pairs of spheres. The combination
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of sphere-pairs include spheres of equal and unequal radii.

The introduction of a tether that connects the two spheres is considered

in Chapter 6. Effects which result from changes in the length and material

properties of the tether are described. A low-Re swimmer comprising a multi-

body configuration of tethered spheres is then detailed. The locomotive

mechanism of the swimmer is also discussed. The work presented in this

thesis is summarised in Chapter 7. Conclusions drawn through interpretation

of the experimental results are highlighted and possible extensions of the work

are proposed.

In Appendix A, a discussion is presented of the effects of the background

magnetic field on the dynamic response of the sphere to the applied field.

Appendix B contains details of the pairs of sphere used in Chapter 5. In

Appendix C, a model is outlined which describes the fluid dynamics of a tor-

sionally oscillating sphere interacting with a boundary and a passive sphere.

Throughout his PhD, the author investigated further nonlinear phenom-

ena, including; the transition to turbulence in pipe flow, the highly nonlinear

vortices which form from the interaction of a transverse jet with a Hagen-

Poiseuille crossflow, the buckling of elastomeric and plastic lattices under

dynamic compression, and the radial segregation of granular material in a

rotating drum. In Appendix D, two publications are presented. The au-

thor contributed to these publications during the course of his PhD, however

the work contained within them is not directly related to the investigation

presented in this thesis.
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Chapter 2

Experimental Apparatus and

Techniques

A novel experimental system was developed to investigate the fluid mo-

tion induced by spheres which were forced to oscillate in a very viscous

fluid. A schematic diagram of the experiment is shown in Figure 2.1. Near

neutrally-buoyant spheres, containing neodymium magnets, were submerged

in a very viscous fluid. A magnetic field was applied to the system, using

large Helmholtz coils and oscillation of this field resulted in the periodic

torsional motion of the spheres. The tank containing the viscous fluid was

positioned on a platform of adjustable height in the centre of the Helmholtz

coils. The electromagnet was surrounded by a Mumetal canister which re-

duced the effect of any extraneous magnetic fields. A Hall effect probe was

used to measure the applied magnetic field, while a camera and an optical

arrangement of mirrors enabled observation of the dynamic response of the

spheres.

The individual components of the experimental arrangement are described
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Figure 2.1: Schematic diagram of the experimental apparatus. Near

neutrally-buoyant spheres in a viscous fluid filled tank were imaged using an

optical arrangement of mirrors (M1, M2 and M3) and a computer-controlled

camera. A magnetic field was applied using Helmholtz coils and measured

by a Hall effect probe connected to a PC via an 16-bit analogue-to-digital

signal converter. The current supplied to the Helmholtz coils was modulated

using a waveform generator, amplified by an operational amplifier and passed

through a resistor which acted as a resistive load. The experimental system

was contained within a Mumetal canister to reduce the effects of extraneous

fields.
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in greater detail in the following sections. The spheres, and the positioning

of the magnets within them, are described in §2.1. The dimensions and the

physical properties of the magnets are then detailed in §2.2. Measurements

of the viscosity and density of the viscous fluid, silicone oil, are presented

in §2.3. Section 2.4 details the applied magnetic field and includes a dis-

cussion of the magnetic shielding. Steady (DC) magnetic fields were used

to calibrate the electromagnet and a working region of uniform, consistent

magnetic field was identified, as detailed in §2.4.1. Experiments were per-

formed with alternating (AC) magnetic fields and the range of frequencies

used in the experiments is documented in §2.4.2. The optics which were used

to provide illumination and observation of the spheres are detailed in §2.5.

Also included is an outline of the image analysis process employed to measure

the motion of the spheres. Finally, an adaption of the experimental set-up is

described in §2.6 which enabled the quantitative measurements of the flow

fields generated by the motion of the spheres. The flow visualisation tech-

niques used to conduct flow diagnostics, Laser-Induced Fluorescence (LIF)

and Particle Image Velocimetry (PIV), are then discussed in greater detail

in §2.6.2 and §2.6.3, respectively.

2.1 Spheres

The spherical particles used throughout this investigation were polypropy-

lene spheres, manufactured by Dejay Distribution Limited UK, which had a

density of 941.12 kgm−3. Permanent magnets, described in further detail in

§2.2, were inserted into machined holes in the spheres and small amounts of

glue were used to keep them in place. Application of a magnetic field induced
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a torque which acted to align the magnets with the applied field. Effectively,

the torsional motion of the spheres was driven by an applied magnetic field.

Magnets were embedded into spheres of diameters 15.86± 0.01 mm and

12.70 ± 0.01 mm. In the spheres of diameter 15.86 mm, two magnets were

embedded such that they were flush with the surface and diametrically oppo-

site (±1◦) along an axis through the centre of the sphere as shown in Figure

2.2. The adjacent poles of the two magnets had opposite polarity and the two

magnets therefore acted as a magnetic dipole, the length of which was equal

to the sphere diameter. In the spheres of 12.70 mm diameter, one magnet

was inserted into the centre of the sphere. Polypropylene spheres of diame-

ters 15.86± 0.01 mm, 12.70± 0.01 mm, 9.53± 0.01 mm and 6.34± 0.01 mm

that did not contain magnets were also used in this study. The interaction

between magnetically driven, active spheres and non-driven, passive spheres

is detailed in Chapter 5, and a multi-body configuration of connected spheres

is investigated in Chapter 6.

The spheres contained a small air bubble which was less than 1% of the

volume of the sphere and a result of the manufacturing process. A close

approximation to neutral buoyancy for both magnetic and non-magnetic

spheres was achieved by embedding 0.5 mm diameter bronze spheres into

the surface of the polypropylene spheres. The spheres had a non-uniform

density distribution that introduced a gravitational torque into the system

which is discussed further in §3.4.1. The zero-field orientation of the mag-

netic dipole of the active spheres was controlled by careful positioning of

the embedded weights. Attainment of near neutral buoyancy and approxi-

mately consistent zero-field orientation meant that reproducible results were
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obtained for different spheres. The average density of the spheres used in the

experiments will be specified in the relevant sections.

N NS S N

Figure 2.2: Schematic diagram illustrating the location of the neodymium

permanent magnets within the polypropylene spheres. The magnets were in-

serted into machined holes in the spheres and glued in position. The position

of the magnetic poles of the magnets are indicated on the diagram.

2.2 Neodymium Magnets

The permanent, cylindrical neodymium magnets embedded into the spheres

were 3.00± 0.01 mm in length with a diameter of 2.48± 0.01 mm, occupying

less than 2% of the sphere volume. Magnetically hard neodymium magnets

were used as the effect of the applied magnetic field on their magnetisation

was negligible. The permanent magnets had a remanence of 1.19 ± 0.05 T

and a coercivity ≥ 868 kAm−1 [79]. Remanence is a measure of the re-

maining magnetisation after an applied field is removed, and the coercivity

is the applied field required to reduce the magnetisation to zero after at-

taining magnetic saturation. These values suggest that the strength of the

neodymium magnets is large for their size compared to standard ferromag-
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netic materials such as iron. The magnetic dipole moment of an individual

magnet, µ = 0.0140±0.0006 Am2, was effectively independent of the applied

magnetic field for the range of values used [80].

2.3 Viscous Fluid

Spheres were submerged in a viscous liquid inside a rectangular tank, made

of 5 mm thick perspex with internal width 125 mm, length 115 mm and

height 200 mm. The working fluid was silicone oil (Basildon Chemical Com-

pany Limited, Oxfordshire, UK) with a manufacturers value of the kinematic

viscosity of 1000 cSt at 25 ◦C. The viscosity of the silicone oil was measured

as a function of temperature using a shortened form suspended level vis-

cometer (BS/IP/SL(S) Size 8, Poulton, Selfe and Lee Ltd., Essex, UK) and

a temperature-controlled water bath. A linear dependence of viscosity on

temperature is shown in Figure 2.3, where the experimental data points are

represented by blue circles. The fit to the data was derived using the least-

squares method and has the form ν = (−17.64± 0.37)T + (1.275x103± 7.71)

mm2s−1, where ν is the kinematic viscosity of the fluid, and T is the temper-

ature in degrees Celsius. Experiments were performed in a air-conditioned

laboratory where the room temperature was maintained at 20±1 ◦C to min-

imise variations in the viscosity. The viscosity of the silicone oil at 20.0 ◦C

was calculated from the linear fit to be 922.13 ± 1.01 mm2s−1. The density

of the silicone oil at 20.0 ◦C was measured using a hydrometer (BS718:1991

M100-101/04, Poulton, Selfe and Lee Ltd., Essex, UK), and found to be

975 ± 1 kgm−3. The temperature inside the Mumetal shield was monitored

using a mercury thermometer and the corresponding fluid viscosity was calcu-
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lated for each individual experiment. The mean recorded temperature inside

the shielding canister was found to be T = 19.89 ± 0.30 ◦C. The viscosity

of the fluid was calculated to be 924.14 ± 5.29 mm2s−1 at a temperature of

T = 19.89± 0.30 ◦C.

In §5.4, the fluid was replaced by a more viscous silicone oil (Basildon

Chemical Company Limited, Oxfordshire, UK) with a reported kinematic vis-

cosity of 12, 500 cSt at 25 ◦C. The viscosity of the more viscous silicone oil was

measured as a function of temperature using a rheometer (R/S Plus, Brook-

field Engineering Laboratories, Massachusetts, USA) and a temperature-

controlled water bath, as shown in the inset to Figure 2.3. The fit to the

experimental data has the form ν = (−256.14±9.02)T+(1.8986x104±183.97)

mm2s−1. Using this fit to the data the viscosity of the fluid was calculated

for each experiment using the measured temperature value. The density of

the fluid was also measured using a hydrometer and found to be 975 ± 1

kgm−3. The viscosity of the fluid was calculated to be (1.3976± 0.0036)x104

mm2s−1 at the average measured temperature of T = 19.56± 0.08 ◦C.

2.4 Applied Magnetic Field

Application of a magnetic field resulted in the motion of the active spheres

submerged in the viscous fluid. The interaction of the applied magnetic field

with the magnetic dipole of the sphere produced a magnetic torque which

acted to align the dipole with the field. An alternating applied field could

thus be used to control the torsional oscillations of a sphere containing a mag-

netic dipole. This novel set-up enabled the systematic study of the dynamics

and interactions of spheres in a viscous fluid without the complications intro-
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Figure 2.3: The kinematic viscosity of silicone oil measured as a function of

temperature. A linear fit of the form ν = (−17.64±0.37)T+(1.275x103±7.71)

mm2s−1 was fitted to the data using the least-squares method. Inset: The

kinematic viscosity of the more viscous silicone oil used in §5.4 measured as

a function of temperature. A linear fit was fitted to the data and has the

form ν = (−256.14± 9.02)T + (1.8986x104 ± 183.97) mm2s−1.
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duced by a mechanical forcing mechanism which would require contact with

the spheres. The dynamic response of an active sphere to an alternating field

is documented in Chapter 3, and a suitable range of frequencies for experi-

mentation is presented in §2.4.2. Calibration of the electromagnet and the

Hall effect probes, and identification of a region of uniform magnetic field,

was achieved using a steady field, and is detailed in §2.4.1.

Translational motion of the spheres was removed from the system by

making both the driven and passive spheres neutrally buoyant in the vis-

cous fluid. Furthermore, the magnetic dipole was aligned approximately

horizontally when no magnetic field was applied. This meant that the mag-

netic dipole was initially aligned orthogonally to the applied field and was

subjected to maximum magnetic torque. The sphere oscillated about this

alignment when subjected to an alternating field.

The height and thickness of each Helmholtz coil was 140 mm and 35

mm respectively, and the gap between the two coils was 55 mm. The elec-

tromagnet inductance was 50 mH with a DC resistance of 0.36 ± 0.04 Ω.

Shielding from background magnetic fields, such as the Earth’s magnetic

field, was achieved by placing the experimental system inside a Mumetal

canister. Mumetal is a nickel-iron alloy with a magnetic permeability over

100 times greater than ordinary steel and shields by providing a path of

low reluctance, and thus entraining magnetic flux. The Mumetal shield con-

sisted of a 1.60 ± 0.02 mm thick cylindrical container, diameter and length

of 510 mm and 520 mm respectively, with a lid and a base plate. Both

the lid and base plate contained a centrally-located hole of 70 mm diameter

through which cables could be passed to connect the experimental apparatus
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to control boxes and a PC, and allowing for observations of the motion of

the spheres. The magnetic field inside the Mumetal shield was measured

using a Magnetometer and found to be one order of magnitude less than the

background field in the laboratory. The background field in the laboratory

was comparable to the geomagnetic field which varies from 25 to 65 µT [81],

and the field strength within the shield was consistently found to be less than

5 µT.

2.4.1 DC Magnetic Field

A steady magnetic field was generated within the coils, parallel to the coil

axis, by applying a current from a DC power supply. The power supply was

connected to a DC coupled power amplifier and a 3 Ω resistor in series. The

polarity of the constant magnetic field was altered by reversing the current of

the circuit. A working region in which the generated field was uniform and

the axial field strength was consistent to within 1% was identified using Hall

effect probes. The region was cylindrical with 60 mm radius and height of 60

mm, located concentrically about the centre of the electromagnet. Within

this region, the radial and azimuthal components of the magnetic field were

measured to be consistently ≤ 1.5% of the axial field for typical magnetic

field strengths of 0.2− 2 mT used in experiments.

The magnitude of the magnetic field within the electromagnet was linearly

proportional to the supplied direct current, as shown in Figure 2.4. The

current was measured using an ammeter and the magnetic field strength

in the axial direction was measured using a Gaussmeter. A linear fit was

applied to the data giving B = (0.878 ± 0.001)I − (0.013 ± 0.003) mT. All
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Figure 2.4: The magnetic field strength in the axial direction inside the

Helmholtz coils, and within the uniform working region, measured as a func-

tion of the supplied DC current. The solid line is the least squares linear fit

B = (0.878 ± 0.001)I − (0.013 ± 0.003) mT. Errors on the data points are

less than the size of the data markers.
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reported values of the magnetic field strength refer to the axial component

of the magnetic field, with positive magnetic field being directed vertically

downwards.

Hall effect probes monitored the axial magnetic field strength within the

Helmholtz coils. The Hall effect signal was logged using LabVIEW Signal

Express (2012, National Instruments, Newbury, UK) via a 16-bit analogue-

to-digital converter (NI USB-6212, National Instruments, Newbury, UK) at

a sample rate of 1 kHz, orders of magnitude greater than the frequency of

any alternating magnetic fields used. A second control probe was positioned

outside the coils and shielded inside another smaller Mumetal canister of

diameter 44 mm, height 104 mm and thickness 1.60± 0.02 mm. The signal

from the secondary probe was subtracted from the first to remove background

noise. The calibration of the Hall effect probe signal with the absolute,

axial magnetic field strength is shown in Figure 2.5. The magnetic field was

generated with a direct current and was measured using a Gaussmeter. A

linear fit to the data takes the form B = −(4.255±0.005)D− (0.006±0.002)

mT, where D is the difference in voltage between the Hall effect probe within

the working region of the electromagnet and the shielded, control probe.

This calibration allowed calculation of the absolute magnetic field strength

throughout the investigation.

2.4.2 AC Magnetic Field

Alternating magnetic fields were generated by supplying the Helmholtz coils

with alternating current produced by a waveform generator. The impedance

of the circuit for a signal with frequency ≤ 10 Hz is 3.36±0.05 Ω. The alter-
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Figure 2.5: The magnetic field strength in the axial direction measured as a

function of the Hall probe signal voltage. The solid line represents a linear,

least-squares fit to the data of the form B = −(4.255 ± 0.005)D − (0.006 ±
0.002) mT, where B is the magnetic field strength measured in the axial di-

rection and D is the difference in voltage between the Hall effect probe within

the working region of the electromagnet and the shielded control probe. Er-

rors on the data points are less than the size of the data markers.
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nating magnetic field could be used alone or superposed on top of a constant

magnetic field by summing the DC and AC voltages prior to amplification.

The effect of the frequency on the peak amplitude of the alternating magnetic

field is shown in Figure 2.6. The peak amplitude of the axial magnetic field is

constant for frequencies 0.01 < f < 4.00 Hz and is consistent with the resul-

tant field strength of a DC voltage equal to the AC peak voltage. However,

the magnetic field strength rapidly decays with increasing frequency above 4

Hz.

2.5 Illumination and Observation

The spheres inside the tank were illuminated using two 400 mm strips of

36 Light Emitting Diodes (LEDs). The strips were attached to the inside

surfaces of the upper and lower coils of the electromagnet to illuminate the

working region from above and below. This set-up produced uniform il-

lumination across the observable surface of the spheres. Furthermore, the

rotational plane of the sphere was orientated to align with the observational

plane using a laser-sheet. The motion of the spheres was recorded using a

Genie camera (HM-1400, Teledyne DALSA, Ontario, Canada), with a spatial

resolution of 1400x1024 pixels, which was positioned above the central hole

of the lid of the Mumetal canister, as shown in Figure 2.1. The light leaving

the tank was directed to the camera in a periscope-like manner via three mir-

rors (M1, M2 and M3), of width 76 mm and height 102 mm, positioned in

between the electromagnet and the Mumetal canister. Mirror M1 was placed

at 45◦ with respect to the side of the tank through which the spheres were

observed. Mirrors M2 and M3 were adjusted in order to create an image at
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Figure 2.6: The peak-to-peak amplitude field strength inside the Helmholtz

coils measured as a function of frequency of the field. The alternating mag-

netic field was generated by an AC signal. Measurements were taken for

three different magnetic field amplitudes which corresponded to DC voltages

of 9.0 V (o), 5.0 V (�), and 1.0 V (x). Error bars represent a 95% confidence

limit calculated from a sinusoidal fit to the Hall effect probe signal.
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the camera which was centered on the CCD sensor.

Analysis of the dynamic behaviour of the spheres involved tracking the

motion of the spheres. Spheres used were coloured black with white markings,

using permanent marker pens. Images of the spheres were processed using

MATLAB software (R2011a, MathWorks Inc., Massachusetts, USA). Image

contrast was enhanced to improve the accuracy of the thresholding, and the

images were magnified for sub-pixel resolution. The white markings on the

surface of the spheres were detected within the image using a Canny filter

which initially smooths the image using a Gaussian filter before applying

two thresholds to the image, one to detect and remove noise and one for

edge detection of objects. Identification and labeling of spheres allowed for

the removal of any further noise before the position and orientation of the

spheres was determined. Tracking the motion of spheres throughout image

sequences enabled the construction of a time-series of the dynamic response

of the spheres to magnetic forcing and fluid interactions.

2.6 Flow Visualisation

Visualisation of the flow generated by the motion of the spheres required

an adaptation of the experimental set-up, shown in Figure 2.7. The fluid

was seeded with tracer particles, and a cross-section of the fluid was then

illuminated using lasers and imaged using a high-speed camera. Analysis

of the sequential images enabled determination of the fluid dynamics. The

adaptation of the experimental apparatus is described in further detail in

§2.6.1 prior to a discussion of the two flow visualisation techniques, Laser-

Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV), which
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were used to study the flow generated by spheres.

Flow visualisation was conducted without the shielding Mumetal canister.

The experimental system was therefore subject to the background magnetic

field present in the laboratory. This external field was slowly-varying and

comparable to the geomagnetic field. The dynamical behaviour of a sphere

subject to both fields was similar to the behaviour of a sphere shielded from

external fields and subject only to an applied field, as is discussed in further

detail in Appendix A. The predominant effect of the external field was to

align the magnetic dipole of the sphere in the direction of the external field

and thus define the plane in which the sphere rotated. Observation of the

flow was therefore conducted using a camera positioned orthogonal to this

plane. Furthermore, the resultant fluid velocities were then characterised in

terms of the velocity of the sphere surface, rather than in terms of the applied

magnetic field.

2.6.1 Flow Visualization Equipment

A schematic diagram of the experimental apparatus used for flow visuali-

sation is shown in Figure 2.7. Neutrally-buoyant, spherical microparticles

(Fluostar particles, EBM Corporation, Tokyo, Japan) of 13.9 µm mean di-

ameter were suspended in the viscous fluid and had a Rhodamine B coating

so that they fluoresced under green-light laser illumination of wavelength 532

nm. A cross-section of the tank, corresponding to the rotational plane of the

driven sphere, was illuminated using two green-light lasers. A continuous 50

mW laser sheet illuminated the cross-section from above, whilst a Nd:YAG

pulsed laser illuminated the cross-section from below after being converted
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Figure 2.7: Schematic diagram of the experimental apparatus used for flow

visualisation. Illumination of the rotational plane of the sphere was provided

by lasers and an optical arrangements of mirrors (M1 and M2). A high-speed

camera was positioned orthogonal to the illuminated plane and a low-pass

filter was positioned between the tank and the camera to remove noise from

the signal.
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from a laser dot to a laser sheet by passing through a cylindrical lens. The

Nd:YAG laser was positioned next to the 50mW laser, above the tank, and

illuminated the cross-section from below after reflecting off two 45 degree

mirrors, one positioned within the tank and one outside. A semi-cylindrical

lens was used to reduce the width of the laser sheet to ≈ 1 mm to focus

the illuminated plane on the centreline of the sphere. A low-pass filter was

positioned between the tank and the camera to reduce background noise in

the detected signal. A high-speed camera (pco.1200 hs, PCO AG, Kelheim,

Germany) with a spatial resolution of 1280x1024 pixels was used to image the

region of interest. The camera was positioned orthogonal to the illuminated

plane, synchronised with the Nd:YAG pulsed laser using a pulse generator

(BNC Model 500, Oxford Lasers Ltd., Oxon, UK) and imaged at a rate of 15

Hz, the maximum pulse-rate of the Nd:YAG laser, with an exposure of be-

tween 10 and 20 ms. Images captured by the camera were converted to 8-bit

and a bandpass filter was applied to the images to remove noise and enhance

signal strength. Pairs of consecutive images were then subject to sub-pixel

Particle Image Velocimetry. Erroneous vectors in the resultant vector field

were removed and any missing vectors in the field were interpolated using

Laplace Equation Rearrangement.

2.6.2 Laser-Induced Fluorescence

Incorporating a dye into a fluid can allow visualisation of the flow field. Dilute

fluorescent dye has the advantage that under normal lighting conditions it

appears almost transparent, however, when illuminated by a light source

of appropriate wavelength it fluoresces and becomes visible. Laser-Induced
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Fluorescence (LIF) uses fluorescent dyes and thin laser-sheets to visualize

internal flow structures. Rhodamine B is a fluorescent dye which, when

illuminated by λ ≈ 532 nm green light, emits an orange-coloured fluorescence.

The tracer particles used in the flow visualisation experiments were coated

with Rhodamine B and the observational plane was illuminated using green-

light laser-sheets of λ ≈ 532 nm. A camera positioned orthogonal to the laser

plane observed an illuminated cross-section within the fluid and detected

greater signal strength than would be detected using non-fluorescent tracer

particles and normal lighting conditions [82].

Two types of flow seeding are commonly used in conjunction with LIF

to identify flow structures and obtain measurements of internal flows [83].

Fluorescent tracer particles are often used in conjunction with sequential

image processing to obtain quantitative measurements of the motion of the

fluid. However, fluorescent dye can also be used to identify flow structures

and obtain qualitative measurements from the intensity of the light pattern.

Filters, such as the low-pass filter positioned in front of the camera, are

often used in LIF experiments to reduce the background scatter from the

walls of the experimental apparatus and to enhance the image quality before

processing.

2.6.3 Particle Image Velocimetry

Digital image processing enables information to be extracted from a fluid

flow. Scalar fields, such as the temperature and density of a fluid, and gra-

dients of these fields are deducible from the colours and intensities present

in an image. Observing the displacement of patterns in sequential images
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provides information regarding the motion of a fluid. The motion of con-

tinuous patterns, such as the intensity of a dye, however, do not contain

variations on all scales and therefore do not provide full spatial resolution in,

for example, a turbulent flow. Furthermore, tracking the motion of individ-

ual, discrete particles in consecutive images is time consuming and prone to

erroneous matching of particle-pairs, and is therefore conducted using low-

density particle concentrations which also results in low spatial resolution.

The spatial resolution can be improved by tracking patterns of particles.

The particles are discrete and thus subject to the fluid motion on all scales.

Tracking groups of particles, therefore, means that high-density particle con-

centrations can be used to achieve full spatial resolution without erroneous

matching of particle-pairs. This technique of tracking the motion of parti-

cle patterns is known as Particle Image Velocimetry (PIV) and is used to

“ recover instantaneous 2- and 3-D velocity vector fields from multiple pho-

tographic images of a particle field within a plane or volumetric slab of a

seeded flow, illuminated by a light source” [84], as shown in Figure 2.8.

The flow markers should follow the flow without affecting the physical

properties of the fluid. For this reason, the seeding particles used were ap-

proximately 10 microns in size and had a similar density to the working fluid.

The displacement of groups of flow markers from one image to the next is

then determined to provide instantaneous velocity vectors. Estimates of the

displacement of the particle patterns are determined by matching patterns

in consecutive images.

Pattern-matching was conducted in a statistical sense by calculating the

optimum, discrete cross-correlation between patterns in subsampled windows
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of sequential images. A discrete cross-correlation calculated the sum of the

product of the pixel-intensity in the relevant domain and was a maximum

when a pattern-match occurs. It is formulated using C(i′, j′) =
∑k

i=−k
∑l

i=−l f(i, j)g(i+

i′, j+j′) where f and g are intensity values in sequential image windows, i and

j are identified particle patterns in the original image, and i′ and j′ are their

translated counterparts in the sequential image [84]. Images were divided

into smaller interrogation windows and the cross-correlation was performed

on these windows. The process can be considered to be a system which takes

the particle pattern in the interrogation window of the first image as an in-

put. The system applies a displacement function and a noise function to

this input, and then outputs the particle pattern in the window of the next

image. The displacement function results from the flow, while the noise may

result from the particles exiting the interrogation window or the illumina-

tion plane, or the inherent noise in the images. The cross-correlation peak

was used to identify the best match between input and output windows and

helped locate sub-pixel correlation peaks which improved the accuracy of the

process. The displacement of the particle pattern was estimated, and the in-

stantaneous velocity of fluid within the sample window was calculated. The

cross-correlation process was performed on interrogation windows through-

out the entire image to construct a velocity vector field of the fluid motion

within the illuminated cross-section, an example of which is given in Figure

2.8(a).

The determination of erroneous vectors within this vector field may result

in the calculation of incorrect differential or integrable quantities, such as

shear. Errors result from incorrect correlations, the 3-D motion of particles
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Figure 2.8: The Particle Image Velocimetry method. (a) Sequential image

pairs are subject to a bandpass filter to remove noise and enhance signal

strength. (b) Discrete cross-correlation maps the translation of patterns of

tracer particles between images producing a vector field. The direction and

magnitude of the vectors is denoted by the orientation and colour of the

depicted arrows. (c) Erroneous vectors are removed (and missing vectors are

flagged with blue dots in this instance). (d) Laplace Equation Rearrangement

is used to interpolate the values of missing vectors from neighbouring vectors.
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out of the illuminated plane, and the non-uniform seeding of the flow. To

remove erroneous vectors from the velocity field, each vector was compared

to its nearest neighbours and if the difference exceeded a threshold then the

vector was removed, see Figure 2.8(c). Any resulting holes in the vector field

which resulted from this erroneous vectors removal, or the lack of particles

in the input/output interrogation windows, were filled by interpolating the

surrounding vectors using, for example, Laplace Equation Rearrangement

(LER), as shown in Figure 2.8(d).

Uncertainties in the cross-correlation technique adopted by PIV result

from the concentration and size of the seeding particle and the size of the

interrogation window used to subsample the original image. A high density

of tracer particles within an interrogation window means more particles con-

tribute to the statistical cross-correlation. A high concentration of seeding

particles, a small particle image size, and a large window size thus reduce

uncertainties in the cross-correlation. The cross-correlation assumes a linear

shift of the particle pattern from the input window to the output window

and does not take into account second order effects, such as the velocity gra-

dient within the window. This velocity gradient within the window may also

produce a bias towards lower velocities as faster-moving particles exit the

window. A optimum window of 50x70 pixels was found to be small enough

to minimise the velocity gradient in the flow but large enough to contain

sufficient particles for a statistically sound cross-correlation.
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Chapter 3

One Sphere

This Chapter contains a description of the dynamic response and the flow

field around a single sphere which is driven by an oscillating magnetic field.

A review of the applications of magnetic spheres driven by external magnetic

fields is presented in §3.1. The torques involved in generating the dynamic

response of a single, neutrally buoyant sphere containing a magnetic dipole

is described in §3.2. In §3.3, the equations of motion governing the dynamics

of a sphere in an oscillating magnetic field are presented. The torsional

response of the sphere to an applied, alternating magnetic field is studied as

a function of the dimensionless magnetic torque, Γ, and the dimensionless

gravitational torque, ε̂, in §3.4. Finally, the results of an investigation using

flow visualisation of the fluid motion generated by the rotary motion of a

sphere are presented in §3.5.

63



3.1 Applications of Driven Magnetic Micro-

Spheres

The fluid flow generated by a magnetic sphere in a viscous fluid subject to

an applied magnetic field has a variety of industrial and biomedical applica-

tions. Although the following applications utilised micro-particles composed

entirely of magnetic material, rather than macro-particles containing mag-

nets, analogies can still be drawn with the system considered in this work

and thus potential applications envisaged.

The rotational fluid flow generated by a magnetic micro-sphere driven

by an external rotating magnetic field can propel passive micro-objects, and

therefore be used for precise non-contact manipulation and long-range trans-

portation of micro-objects. Multiple micro-manipulators in parallel create re-

configurable, virtual micro-fluidic channels for concurrent, non-contact trans-

portation of multiple micro-objects [85]. Similarly, the hydrodynamic flow

generated by paramagnetic colloidal particles subject to an external, rotat-

ing magnetic field has been used as a micro-stirrer to mix colloidal suspen-

sions [86]. The synchronous and asynchronous rotation of a magnetic micro-

sphere subject to an external rotating magnetic field has been studied and

the nonlinear rotation rate, which occurs above a critical frequency of driving

magnetic field, can be used to detect and monitor bacterial growth [87,88].

As well as being used to mix fluids and manipulate micro-objects, the

hydrodynamic forces generated by the motion of a magnetic sphere subject to

an applied magnetic field can also be used to measure rheological properties of

the fluid [53]. This includes non-invasive in vivo viscosity measurements [51].
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Furthermore, with the advent of nanotechnology, magnetic nano-particles

(MNPs) and colloidal suspensions of magnetic particles have been utilised in a

wide range of biomedical applications [89] [90]. The controlled manipulation,

through the application of external magnetic fields, and the size compatibility

of MNPs with biological cells mean they are an important tool in both in

vitro and in vivo applications. In vitro applications include the detection,

separation and monitoring of biological species, and blood purification. In

vivo applications include Magnetic Resonance Imaging (MRI), site-specific

drug delivery and treatment of hyperthermia [91].

3.2 Driven Sphere Dynamics

The dynamic response of a sphere, containing a magnetic dipole, to an ap-

plied magnetic field is considered. A schematic of the coordinate system used

in the development of a model is shown in Figure 3.1(a). The orientation

of the rotational plane of the sphere was controlled to be orthogonal to the

observer so that φ = 0, where φ is the angle between the magnetic-dipole axis

of the sphere and the line-of-sight of the observer - the x-axis. A projection of

the coordinate system in the observed plane is shown in Figure 3.1(b). Figure

3.1(b) also indicates the direction of gravity, g, the direction of the applied

magnetic field, B, and the position of the effective magnetic dipole within

the spheres. The orientation of the magnetic dipole of the sphere with zero

applied field is approximately horizontal in the eyes of the observer, θ ∼ 0

degrees where θ is the angle of the magnetic-dipole axis of the sphere from

the y-axis.

Application of a steady magnetic field introduces a magnetic torque which
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Figure 3.1: (a) A schematic of the coordinate system, and (b) a projection

of the coordinate system onto the observed plane. The projection of the

coordinate system also includes indications of the direction of the applied

magnetic field, B, which induces a magnetic torque on the magnets embedded

in the sphere, and the direction of gravity, g, which induces a torque on the

non-uniform mass distribution within the sphere.
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acts to align the magnetic dipole of the sphere with the applied field. The

torque acting on the dipole causes the sphere to rotate in a clockwise or anti-

clockwise direction depending on the direction of polarity of the magnetic

axis of the sphere. The convention is that application of a magnetic field in

the z-direction acts to align the magnetic dipole of the sphere at θ = 90◦. On

reversal of the applied field, the magnetic torque reverses and acts to align the

magnetic dipole of the sphere in the opposite direction. Through application

of an alternating magnetic field, the sphere can be made to perform torsional

oscillations with an amplitude and a frequency determined by the magnitude

and frequency of the applied field.

3.3 Equations of Motion

The equation of motion for the dynamic response of a sphere subject to an

applied magnetic field can be deduced from a combination of the viscous,

gravitational and magnetic torques acting on the sphere:

8πµa3
dθ

dt
= −ε sin θ +Bm sinωt cos θ, (3.1)

where µ is the dynamic viscosity of the fluid, a is the radius of the sphere, B

is the magnetic field strength, m is the magnetic moment of the magnetic-

dipole of the sphere, ω is the angular frequency, θ denotes the orientation

of the magnetic axis of the sphere in the observational plane and ε is the

gravitational torque which acts to return the sphere towards the zero applied

field orientation at θ ∼ 0. The gravitational torque, ε, results from gravity

acting on the non-uniform distribution of mass within the sphere. A non-

dimensional time, based on the angular frequency ω of the applied oscillatory
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field, can be defined as t̂ = ωt. Equation 3.1 then becomes

dθ

dt̂
= − ε

8πµa3ω
sin θ +

Bm

8πµa3ω
sin t̂ cos θ. (3.2)

Dimensionless parameters which quantify the ratio of the gravitational

torque and the magnetic torque to the viscous torque acting on the sphere

are thus defined by:

ε̂ =
ε

8πµa3ω
, Γ =

Bm

8πµa3ω
, (3.3)

respectively. Γ is therefore the inverse of the dimensionless Mason number

which quantifies the typical ratio of hydrodynamic to magnetic torque [92].

This Ordinary Differential Equation (ODE) for θ can thus be written as

dθ

dt̂
= ε̂ sin θ + Γ sin t̂ cos θ. (3.4)

If the neutrally buoyant sphere had a uniform distribution of mass then

the gravitational torque acting on the sphere would be negligible, ε̂ = 0.

When ε̂ = 0, Equation 3.4 reduces to a separable ODE which can be solved for

the dimensionless parameter Γ as a function of the total angular displacement

∆θ = θmax − θmin. This has the solution

Γ = ln(sec(∆θ/2) + tan(∆θ/2)). (3.5)

When ε̂ 6= 0, as in the experiments, an exact analytic solution is no

longer obtainable and the ODEs need to be solved numerically to find ∆θ as

a function of Γ and ε̂.

A numerical model of the experiment was developed by Dr. Alice Thomp-

son1 and implemented in MATLAB (R2011a, Mathworks, Massachusetts,

1Manchester Centre for Nonlinear Dynamics, University of Manchester, UK.
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USA). The author used the model to solve the boundary value problem and

calculate the total angular displacement of the sphere for dimensionless pa-

rameters which corresponded to the experimental values. A comparison was

then made between the numerical and experimental results. Numerical sim-

ulations enabled the testing of experimentally unobtainable conditions, such

as negligible gravitational torque. When ε̂ = 0, an infinite family of periodic

solutions to the governing equations of motion exists depending on the initial

conditions of the system, such as the initial angle of the magnetic dipole of

the sphere θ0. Whereas, when ε̂ 6= 0, all solutions converge onto a single

stable periodic solution.

When gravity is negligible, and thus ε̂ = 0, parallel alignment of the

magnetic dipole of the sphere with the applied field is attainable. However,

for non-zero ε̂, gravity acts on the non-uniform mass distribution within the

sphere inducing a torque which acts to return the sphere to the zero-field

orientation at θ ∼ 0. A greater magnetic torque is thus required to align the

magnetic-dipole axis of the sphere with the applied field. Large ε̂ implies large

gravitational torque and/or low-frequency applied field, and can significantly

reduce the angular displacement of the sphere. This particular feature of the

system will be discussed in greater depth in §3.4.4.

3.4 Dynamic Response of the Sphere

The dynamical response of the driven sphere was studied both experimentally

and numerically and good agreement was found between the two sets of

results. In the experiments, the sphere was subjected to a gravitational

torque which was measured using the method outlined in §3.4.1. Further
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experimental specifics relevant to the response of a single, free sphere are then

detailed in §3.4.2. The dynamic response of the neutrally buoyant sphere in

a viscous fluid to magnetic and gravitational forcing is discussed in §3.4.3

and §3.4.4, respectively.

3.4.1 Gravitational Torque

The effects of gravity were always present in the experiments and therefore

the gravitational torque acting on the sphere could not be neglected, ε̂ 6= 0.

A non-zero ε̂ meant that a gravitational torque acted on the sphere to return

the driven sphere to the zero-field angle which was θ ∼ 0 through careful

embedding of weights into the sphere. A non-zero ε̂ also meant that greater

magnetic torque was required to align the magnetic-dipole axis of the sphere

with the applied field.

In order to characterise the dynamic response of a sphere to the applied

field an empirical measure of the gravitational torque acting on the sphere

was required. A simple test involved the rate at which the sphere returns to

the zero-field position at θ ∼ 0 when released from a non-zero angle. In the

absence of any forcing, Γ = 0, the equations can be separated. In this case,

the analytic solution to Equation 3.4 is∫ θB

θA

1

sin θ
dθ = − ε

8πµa3
(tB − tA). (3.6)

ε can therefore be determined by introducing a single (dimensional) time-

scale T0 so that ∫ θB

θA

1

sin θ
dθ = −tB − tA

T0
. (3.7)
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Exact integration of the left-hand side of the above equation gives

ln

∣∣∣∣csc θB − cot θB
csc θA − cot θA

∣∣∣∣ =
tA − tB
T0

. (3.8)

This means, if θ is small, the angle should decay exponentially to the

unforced position at θ ∼ 0 according to θ ∝ exp(−t/T0). Once T0 is known,

ε and ε̂ can be calculated according to

ε =
8πµa3

T0
, ε̂ =

1

ωT0
. (3.9)

Empirical estimates of the gravitational torque were obtained by mea-

suring the decay of the angular position of a sphere from an offset position

to the zero-field state on sudden removal of the magnetic forcing. The ap-

proach to the zero-field position was approximated by an exponential decay

from which a time-scale associated with the gravitational torque term could

be extracted.

A large (∼ 2.2 mT) steady magnetic field was applied initially in order

to attain approximate alignment with the applied field. Sudden removal

of the applied field led to the rotation of the sphere back to the zero-field

position under the influence of gravity. The time-scales associated with the

capacitance falling in the electromagnets were orders of magnitude faster than

the time-scale associated with the gravitational torque and were therefore

neglected.

A time-series of the angular position of the sphere was obtained from

an initial angle of . 30◦ to the zero-field orientation, θ ∼ 0, under the

influence of gravity, as shown in Figure 3.2 (top). A least-squares fit to

the data has the form θ = 28.21e(−t/4.56) + 3.09, from which a time-scale

associated with the gravitational torque of 4.56 s was extracted. A decay
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from < 30◦ was considered sufficiently small to validate the use of the small-

angle approximation which determines the decay to be exponential in form.

An accurate estimate of the time-scale associated with the gravitational

torque was obtained by calculating the mean of 20 measurements. The grav-

itational torque term was measured for each sphere used in the investigation

as individual spheres had unique, non-uniform distributions of mass, a result

of the ubiquitous embedding of magnets and weightings, which led to specific

gravitational torque terms.

3.4.2 Experimental Details

The particular sphere used throughout the experiments reported in this

Chapter had a diameter of 15.86 ± 0.01 mm and contained a pair of dia-

metrically opposed neodymium magnets. After the inclusion of the mag-

nets, and the careful embedding of weights, the density of the sphere was

978.53±3.8x10−3 kgm−3 and, when subject to zero-field, the magnetic dipole

axis of the sphere was orientated approximately orthogonal to the applied

field direction; in particular, at an angle of 3.22± 0.77◦ from the horizontal

position. The time-scale associated with the gravitational torque acting on

the sphere was T0 = 4.67 ± 0.03 s, where the quoted error is the standard

deviation of 20 measurements. A uniform, alternating magnetic field was ap-

plied in order to study the angular response of the sphere from this position.

The amplitude and frequency ranges of the applied field were varied from 0

to ∼ 2.5 mT and from 0.01− 4 Hz, respectively.
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Figure 3.2: (top) A time-series of the angular position of the magnetic-dipole

axis of the sphere measured as a function of time as the sphere rotates back to

the zero-field orientation under the sole influence of gravity. A least-squares

fit to the data has the form θ = 28.21e(−t/4.56) + 3.09 and is depicted by

the red line. (bottom) A time-series of the angular position of the magnetic-

dipole axis of the sphere when driven by an applied field with a frequency

f = 0.5 Hz into performing small-amplitude torsional oscillations throughout

four periods of oscillation. A least-squares fit to the experimental data has

the form θ = 6.48 sin(2πft+ 0.32).
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Figure 3.3: Experimental time-series of the angular displacement of the

driven, magnetic sphere over four periods of oscillation, for Γ = 0.21, 0.41,

0.82, 2.07, 4.95 (top-to-bottom). The response of the sphere deviates increas-

ingly from the form of the sinusoidal drive with increasing Γ.

3.4.3 Dynamic Repsonse to Magnetic Torque

In the experiments, the effect of the magnetic forcing was separated from

that of the gravitational forcing by investigating the response of the sphere to

magnetic fields of different amplitude whilst maintaining a constant frequency

of applied field of 0.15 Hz. The gravitational torque term ε̂ was kept constant

yet non-zero (ε̂ = 0.22).

Small Γ resulted in small-amplitude, sinusoidal oscillations of the sphere

which matched the sinusoidal form of the applied field i.e. the response was
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linearly proportional to the drive. The sinusoidal form of the response to

the applied field was validated by fitting a sinusoidal function to the data

using the least-squares method, see Figure 3.2 (bottom). A time-series of the

angular position of the magnetic-dipole axis of the sphere when performing

small-amplitude torsional oscillations throughout four periods of oscillation

is shown. The data shown in Figure 3.2 (bottom) was obtained for an applied

field with a frequency f = 0.5 Hz and a least-squares fit to the experimental

data has the form θ = 6.48 sin(2πft + 0.32). The standard deviation of

the difference between the measured angular position and the fitted function

provides an estimate of the quality of the fit and the deviation of the response

from the sinusoidal form of the drive. For increasing Γ, the amplitude of the

oscillation increased as greater magnetic torque resulted from increased field

strength B. Furthermore, the response of the sphere deviated increasingly

from a sinusoidal form as alignment of the magnetic axis with the applied

field in both directions was approached.

Examples of experimental time-series of the angle of the sphere over four

periods of oscillation are shown in Figure 3.3, for Γ = 0.21, 0.41, 0.82, 2.07

and 4.95 (top-to-bottom), which corresponds to applied magnetic fields of

amplitude 0.112 ± 0.015, 0.224 ± 0.015, 0.448 ± 0.015, 1.122 ± 0.015 and

2.688 ± 0.015, respectively. The phase delay between the response of the

sphere and the applied magnetic field decreased monotonically from π/2

for an frequency of 2 Hz to ∼ π/4 at 0.05 Hz. For oscillations of ampli-

tude less than 19◦, the standard deviation between fitted function and data

was less than 0.1%. Oscillations of amplitude less than 19◦ were therefore

considered to be small-amplitude torsional oscillations of a sinusoidal form.
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However, larger amplitude oscillations were also well-approximated by a si-

nusoidal function; for oscillations of amplitude less than 45◦, the standard

deviation between the data and the least-squares fitted function was less than

1%.

Large Γ resulted in a nonlinear response of the sphere as the magnetic

dipole attained alignment with the applied field, saturating the angular re-

sponse at ±90◦, and remained in that position until the field reversed di-

rection. The slight asymmetry evident in the sphere response for larger Γ,

evident in Figure 3.3, results from the non-zero contribution from the gravita-

tional torque ε̂ which acts to reorientate the sphere from the aligned position

to the zero-field position.

The total angular displacement of the sphere ∆θ was calculated as a

function of the dimensionless magnetic torque parameter Γ for ε̂ = 0.22 from

the time-series of the angle of the sphere and is shown in Figure 3.4. The

blue circles and solid black line represent the experimental data and the

numerical results respectively. The total angular displacement saturates at

∼ 180◦ (depicted by the dashed, red line in Figure 3.4) which represents

the sphere rotating from alignment with the applied field in one equilibrium

position to alignment in the opposite orientation on reversal of the effective

field direction. Below a critical torque Γc, the total angular displacement of

the sphere is attenuated in a manner analogous to the attenuation of a signal

by a high-pass filter [93].

The total angular displacement of the sphere ∆θ was investigated as a

function of both the magnetic torque Γ, and the gravitational torque ε̂, and is

shown as a function of Γ in Figure 3.5 for ε̂ < 0.396. Numerical calculations
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Figure 3.4: The total angular displacement of the sphere measured as a

function of the dimensionless magnetic torque parameter Γ for ε̂ = 0.22.

Experimental data is denoted by the blue circles and the black line represents

numerical calculations, while the dashed, red line depicts a total angular

displacement of 180◦.
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Figure 3.5: The total angular displacement of the sphere measured as a

function of the magnetic torque parameter Γ for ε̂ < 0.396. Blue circles

represent the experimental data and red crosses represent the numerical so-

lutions evaluated at the corresponding parameters. The black line represents

the analytic solution for the case when the gravitational torque acting on the

sphere is zero, ε̂ = 0.
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determined that for ε̂ > 0.396 the dynamics of the sphere were significantly

altered by the gravitational torque acting on it as significantly greater mag-

netic torque was required to attain comparable angular displacement of the

sphere, see §3.4.4. The experimental data is represented in Figure 3.5 by

the blue circles, with corresponding numerical calculations represented by

the red crosses, and the analytic solution to the governing equations of mo-

tion obtained for ε̂ = 0 (see Equation 3.5), depicted by the solid black line.

Error bars on the experimental data points have not been included to aid

visual clarity. There is good agreement between the experimental and nu-

merical findings. Characterising the response of the sphere in this manner

enabled determination of a applied field regime in which the sphere executes

small-amplitude torsional oscillations of a sinusoidal form.

3.4.4 Dynamic Repsonse to Gravitational Torque

A non-zero ε̂ results from the non-uniform distribution of mass within the

sphere and acts to return the sphere to the zero-field orientation at θ ∼ 0.

An increase in ε̂ means that an increase in Γ is required to attain comparable

angular saturation of the sphere. The effect of a non-zero ε̂ is to reduce

the angular displacement at which the sphere response saturates by acting

to return the sphere to the zero-field position. This results in the deviation

of the experimental data and numerical results from the analytic solution,

derived for ε̂ = 0, around an angular displacement of ∼ 180◦, as shown in

Figure 3.5.

The dynamic response of the sphere to changes in ε̂ at constant Γ is

analogous to the response of the sphere to changes in Γ for constant ε̂. When
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Γ is constant, a small ε̂ results in a sinusoidal small-amplitude response of

the sphere. Increasing ε̂ increases the amplitude of the oscillation and the

deviation of the response from the sinusoidal form of the applied field. An

increase in ε̂ represents an increase in the timescale of the oscillating applied

field which means that the induced magnetic torque acts on the sphere for

longer before the field and the rotation direction reverses.

Good quantitative agreement also exists between experimental measure-

ments and numerical calculations for ε̂ > 0.396, as can be seen in Figure

3.6. The results shown in Figure 3.5 have been used to construct Figure 3.6

but now include numerical results obtained as a function of Γ for ε̂ = 1.33

(green line) and ε̂ = 3.34 (magenta line), and experimental data obtained for

Γ > 0.396 and various values of ε̂. The results clearly show that for constant

Γ, a large ε̂ significantly reduces the total angular displacement of the sphere

because gravity acts to return the sphere to the zero-field position. Therefore,

for increasing ε̂, greater magnetic torque is required to attain alignment with

the applied field in both directions. For ε̂ > 0.396, the maximum angular

displacement which the sphere can attain is significantly reduced when com-

pared to a response which attains approximate alignment with the applied

field in both directions. The value of ε̂ = 0.396 was determined by initially

computing the required Γ which ensured ∆θ was within 1% of the maximum

response of 180◦ when ε̂ = 0, this was found to be Γ = 4.85. The ε̂ for which

∆θ was reduced by 5% of the maximum possible displacement of 180◦ was

deemed to be significant, was calculated for Γ = 4.85 and determined to be

ε̂ = 0.396.
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Figure 3.6: The total angular displacement of the sphere measured as a

function of the magnetic torque parameter Γ. Blue circles represent the

experimental data and red crosses represent the numerical solutions evaluated

at the corresponding parameters. The black line represents the analytic

solution for the case when the gravitational torque acting on the sphere is

zero, ε̂ = 0. The green and magenta lines represent to numerical results

obtained with ε̂ = 1.33 and ε̂ = 3.34, respectively
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3.5 Fluid Dynamics

The application of an alternating magnetic field induces torsional oscillation

of a single, active sphere in a viscous fluid. In order to visualise the fluid flow

generated by the motion of the sphere, a camera was positioned parallel to

the axis of rotation and two-dimensional Particle Image Velocimetry (PIV)

was conducted using the equipment and methods documented in §2.6.1. An

instantaneous velocity vector field obtained at 3π/10 in the oscillation cy-

cle of the sphere is shown in Figure 3.7. The sphere was rotating in the

clockwise direction which induced rotation of the surrounding fluid in the

same direction. The velocity vectors are represented by arrows, the colour

of which denotes the magnitude of the velocity which ranges from 0 mms−1

(dark blue) to 8 mms−1 (dark red). The velocity vector field shows that the

velocity of the fluid is greatest close to the surface of the sphere and decreases

with radial distance from the sphere surface.

Instantaneous particle paths were determined from the experimentally

measured flow field using the graphical software Tecplot 360 (2011, Tecplot

Inc., Washington, USA). Furthermore, particle paths were computed from

the analytical solution for the fluid velocity generated by the steady rotation

of a sphere in an unbounded, incompressible viscous fluid [21]:

v =
Ωa3

r2
sinφ (3.10)

where Ω is the angular velocity of the sphere, a is the sphere radius, r is

the radial distance from the centre of the sphere and φ is the angle measured

from pole-to-pole. Measurements were conducted in the equatorial plane and

therefore sinφ = 1. The experimental and analytical instantaneous particle

paths produced at 3π/10 in the oscillation cycle of the sphere are shown in
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Figure 3.7: A typical velocity vector field depicting the flow generated by a

spherical particle rotating, in the clockwise direction, in a viscous fluid. The

instantaneous velocity field was measured using Particle Image Velocimetry

at 3π/10 in the oscillation cycle. The green circle in the centre of the image

denotes the sphere. The vectors are represented by coloured arrows, the

magnitude of which ranges from 0 mms−1 (dark blue) to 8 mms−1 (dark

red).
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Figure 3.8, and good agreement was obtained. Particle paths illustrate the

trajectories particles would follow if placed in the fluid. In the case shown

in Figure 3.8, if the velocity field was steady (i.e. due to a sphere rotating

with constant angular velocity) then a marker placed in the fluid on one of

the particle paths would circle the sphere indefinitely.

The magnitude of the fluid velocity, v, is a function of radial distance

from the sphere centre, r, and was calculated from the experimental vector

fields. The observed symmetry of the flow about the axis of rotation of the

sphere enabled spatial averaging around 360◦ of the vector field. This was

conducted at various points in the oscillation cycle for a sphere oscillating

with a frequency of 0.15 Hz. The fluid velocity was then normalised by the

corresponding instantaneous velocity of the sphere surface, vS. The resultant

dependence of the fluid velocity on radial distance is shown in Figure 3.9,

measured at phase positions of 2π/10, 3π/10, 4π/10, 5π/10, and 6π/10 in the

oscillation cycle. Apart from the weak divergence of the data with increasing

radial distance, which was attributed to a reduction in the amount of resolved

fluid velocities, the collapse of the data onto a single curve indicates that the

flow at any instant corresponds to the case for a body moving uniformly with

the given instantaneous velocity. This provides experimental confirmation

that the observed phenomena occurs in the low-frequency, Stokes flow limit in

which the velocity varies only slowly with time and the flow can be regarded

as steady at any given instant [94]. The fluid velocity resulting from the

torsionally oscillating sphere can therefore be justifiably compared with the

analytical solution of the fluid velocity for a sphere rotating with constant

angular velocity.
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Figure 3.8: Experimental particle paths derived from the instantaneous ve-

locity vector field (top), and analytical particle paths (bottom). The green

circle in the centre of both images corresponds to the sphere.
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Figure 3.9: The fluid velocity measured as a function of radial distance at

2π/10, 3π/10, 4π/10, 5π/10, and 6π/10 in the oscillation cycle. The fluid

velocity has been normalised by the instantaneous velocity of the surface of

the sphere. The collapse of the data onto a single curve confirms that the

phenomena is in the low-frequency, Stokes flow limit.
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The empirically measured fluid velocity resulting from the slow, low-

frequency torsional oscillations of a sphere and the fluid velocity calculated

from the analytical solution for a sphere undergoing steady rotation, given

by Equation 3.10, are both shown in Figure 3.10. The experimental data

points shown in Figure 3.10 were obtained at 3π/10 in the oscillation cycle

and are represented by the blue data points, while the black curve represents

the analytical solution. In both instances, the fluid velocity has been nor-

malised by the velocity of the surface of the sphere. The errors on the data

points represent the standard deviation of the measurements. Good quan-

titative agreement is found between the experimental and analytical fluid

velocity as a function of radial distance. The consistent underestimation of

the measured fluid velocity is attributed to the finite width of the laser-sheet

illumination. The significant deviation of the experimental data from the

analytic solution close to the sphere results from specular reflections by the

surface of the sphere which, prior to diffusing, illuminate tracer particles that

are not on the equatorial plane. The marginal reduction in agreement at a

radial distance & 2a is attributed to the influence of the boundaries of the

tank containing the viscous fluid which were ∼ 8a from the centre of the

sphere. The influence of solid planar boundaries on the flow and the driven

sphere dynamics will be the subject of the following Chapter.
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Figure 3.10: The fluid velocity measured as a function of radial distance. The

fluid velocity has been normalised by the surface velocity of the sphere. The

blue data points represent the experimental velocity, the standard deviation

of which is given by the error bars. The black curve is the analytic solution

for the fluid velocity due to a sphere rotating with constant angular velocity

in an infinite fluid [21].

88



3.6 Summary

A neutrally buoyant sphere with a magnetic-dipole axis and a non-uniform

mass distribution was submerged in a viscous fluid and subject to an un-

steady magnetic field. The dynamic response of the sphere was to perform

torsional oscillations about the zero-field position of the magnetic-dipole axis.

A simple balance of the magnetic, gravitational and viscous torques acting on

the sphere enabled identification of two non-dimensional parameters which

determined the behaviour of the sphere: Γ, which resulted from the interac-

tion of the magnetic dipole of the sphere and the applied field and acted to

align the magnetic-dipole of the sphere with the applied field; and ε̂ which

resulted from gravity acting on the non-uniform mass distribution within the

sphere and acted to return the magnetic-dipole of the sphere to the zero-

field position. The zero-field position of the magnetic axis of the sphere was

approximately at θ = 0 because of careful embedding of the weights used

to achieve neutral buoyancy of the sphere. The response of the sphere to

an applied field was investigated experimentally and numerically and good

agreement was found between the empirical data and the numerical results.

The flow generated by the motion of the sphere was then studied in the

equatorial plane and found to move in arcs along a circular trajectory around

the sphere, the direction of which was determined by the rotation of the

sphere. The fluid velocity was found to have a functional dependence on the

radial distance from the sphere, decreasing with increasing radial distance.

Instantaneous measurements of the fluid velocity throughout the torsional os-

cillation cycle confirmed that the phenomena occurred in the low-frequency,

low-Reynolds number regime in which the flow can be regarded as steady at
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any given instant. Good agreement was found between experimental mea-

surements of the fluid velocity around the sphere and the analytical solution

of the functional dependence of the fluid velocity on radial distance from a

sphere performing steady rotational oscillations in an infinite, viscous fluid.

The experiments were, however, conducted in a finite-sized tank filled with

viscous fluid, in which the bounding edges of the container could have in-

fluenced the generated flow and the dynamic response of the sphere to the

applied field. An investigation into the effects which arise when solid, pla-

nar boundaries are introduced into the system is described in the following

Chapter.
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Chapter 4

One Sphere: Boundary Effects

A discussion of the dynamic response of a single sphere in a large volume of

viscous fluid subjected to an unsteady magnetic field, and the flow generated

by the motion of the sphere was presented in the previous Chapter. In

this Chapter, the influence of a nearby solid, planar boundary on both the

flow field and the dynamic response of the sphere to the applied field was

investigated in two cases; when the axis of rotation was (1) parallel to and (2)

perpendicular to the surface normal of the boundary. Experimental details

regarding the measurement of the sphere-wall separation are outlined in §4.1.

The boundary effects, which arose when parallel and perpendicular planar

boundaries were introduced into the system, are then discussed in §4.2 and

§4.3 respectively.

4.1 Experimental Set Up

The orientation of the rotation of the sphere with respect to the boundary

is described using the convention shown in Figure 4.1. When the axis of
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rotation was parallel (perpendicular) to the surface normal of the boundary

then the primary flow generated by the rotation of the sphere was in the plane

parallel (perpendicular) to the boundary. In the experiments reported in this

Chapter, the sphere was made to perform small-angle sinusoidal, torsional

oscillations. The sphere-wall separation distance, h, was measured from the

centre of the sphere to the boundary, along a line normal to the boundary.

The thickness of the Stokes layer on the surface of the sphere, δ ∼ ( ν
ω

)1/2,

was measured radially from the surface i.e. from r = a, where r is the radial

distance from the centre of the sphere and a is the radius of the sphere. The

Stokes layer, also known as an oscillatory boundary layer, gives an estimate

of the penetration depth of the fluid motion generated by the oscillations of

the sphere [94]. The penetration depth is defined as a measure of the distance

over which the amplitude of fluid motion decays exponentially to 1/e = 0.37,

of the initial value.

A Perspex plate of width 109 mm (= 13.8a), height 253 mm (= 31.9a) and

thickness 11 mm (= 1.4a) was placed in the tank containing the viscous fluid

held by a clamp stand. The transparent edges of the plate were blackened

so that they could be detected in images which aided the measurement of

the separation distance. When the rotational axis of the sphere was parallel

to the normal to the surface, the boundary was less easily distinguished

in the plane of illumination. Therefore, to obtain the separation distance,

an image of the system was captured from above using a Nikon D300 SLR

camera, with a spatial resolution of 0.0552 mm/pixel. When the rotational

axis of the sphere was perpendicular to the surface normal, the boundary was

evident in the illuminated plane and the separation distance was measured
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Figure 4.1: Schematic diagram of the orientation of the rotational motion

of the sphere with respect to the bounding plane. The solid boundary is

denoted by the thick line on the left-hand side of the image, the surface

normal to the boundary is denoted by the horizontal dashed line to which

the rotational axis of the sphere is (a) parallel and (b) perpendicular. The

sphere-wall separation distance, h, is measured from the centre of the sphere

to the surface of the boundary. The normal to the surface of the boundary

is depicted by the dashed, black line. The rotation direction is depicted by

the curved, black arrow and the radius of the sphere, a, is depicted in (a).

The same figure is shown in Chapter 1.6 and has been reprinted here.

93



from images captured by the GenieCam/PCO camera used for observation.

The particular sphere used in the experiments in this Chapter was dif-

ferent to that used in the experiments reported in Chapter 3. The density

of the sphere was 986.67 ± 3.8x10−3 kgm−3, the characteristic gravitational

timescale associated with the gravitational torque acting on the sphere was

T0 = 3.14±0.05 s, and the magnetic-dipole axis of the sphere sat at an angle

of ∼ 5.6 degrees from the horizontal for zero applied field. Measurements

of the instantaneous fluid velocity were performed, using the PIV technique

outlined in §2.6.1, at various sphere-wall separation distances in the range

1.3 − 2.5a. The influence of the boundary on the flow are presented in the

following sections and discussed with reference to changes in the dynamic

response of the sphere.

4.2 Parallel Boundary

For oscillations of a sphere about an axis parallel to the surface normal of a

planar wall, PIV measurements were performed in the equatorial plane of the

sphere at sphere-wall separations of h = 2.44a, 2.12a, 1.84a, 1.46a, and 1.31a.

The results were compared with the effectively unbounded case discussed in

Chapter 3 for which the distance between the centre of the sphere and the

container walls was ∼ 8a. For all sphere-wall separations, the flow in the

equatorial plane was qualitatively the same as the unbounded case with fluid

moving in arcs prescribed by concentric circles around the axis of rotation.

The fluid moved in a direction which was determined by the instantaneous

rotation of the sphere and with a velocity which decreases with increasing

radial distance from the sphere. As in the case of the unbounded sphere,
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Figure 4.2: The fluid velocity measured as a function of radial distance from

the centre of the sphere for separation distances h = 8a, 2.44a, 2.12a, 1.84a,

1.46a, and 1.31a from a planar, parallel boundary.

the observed symmetry of the flow around the rotational axis allowed the

velocity to be calculated, as a function of radial distance, by averaging over

360◦ of a velocity vector field.

The instantaneous fluid velocity, v, measured as a function of radial dis-

tance, r, is shown in Figure 4.2 for the aforementioned sphere-wall separation

distances. The fluid velocity was measured at various phases in the oscillation

cycle. The results obtained at 3π/10 in the oscillation cycle were considered

to be typical and are depicted on the Figure. Error bars correspond to the
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standard deviation of the measurements of fluid velocity. The magnitude of

the fluid velocity decreases with decreasing sphere-wall separation which sug-

gests that, in addition to other forces, a resistive hydrodynamic torque was

introduced into the system by the boundary which increased as the sphere

was placed closer to the boundary. The symmetry of the primary flow about

the rotational axis was not broken and therefore the functional dependence

of the measured fluid velocity on radial distance was qualitatively similar for

all separation distances.

The effect of the boundary on the dynamic response of the sphere was

investigated by measuring the amplitude of torsional oscillations, θA, as a

function of separation distance, h, for Γ = Bm
8πµa3ω

= 0.1213 ± 0.0003, ε̂ =

ε
8πµa3ω

= 0.1011±0.0002, and a drive frequency of 0.5 Hz, as shown in Figure

4.3. The red, dashed line indicates the Stokes layer thickness δ ∼ ( ν
ω

)1/2 =

2.16a measured from the sphere surface at r = a. When the boundary was

separated from the centre of the sphere by a distance greater than the Stokes

layer thickness, h > δ + a ∼ 3.16a, the effects of the boundary on the driven

sphere dynamics were negligible and the amplitude of torsional oscillation was

independent of sphere-wall separation distance. For h < δ + a, the planar

boundary intersects the Stokes layer and the effects of the no-slip condition

on the stationary boundary, which ensures that the velocity reduces to zero

at the boundary, become significant. As the sphere was moved towards the

boundary, the amplitude of oscillation decreased until it was approximately 1

degree less than for the unbounded case. The reduction in amplitude results

from increased viscous effects induced by the boundary, which act to oppose

the magnetic torque driving the sphere. Effectively, the sphere has to drag
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Figure 4.3: The amplitude of torsional oscillation measured as a function of

separation distance from a parallel, planar boundary for Γ = 0.1213±0.0003,

ε̂ = 0.1011± 0.0002, and a drive frequency of 0.5 Hz. The error bars denote

the standard deviation of the measurements and the red, dashed line depicts

the extent of the Stokes layer, the thickness of which is δ ∼ 2.16a, measured

from the sphere surface at r = a.
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fluid across the surface of the planar boundary and this viscous shear effect

suppresses the torsional oscillation of the sphere.

The fluid velocity data obtained from the PIV measurements was nor-

malised by the instantaneous surface velocity of the sphere, vS. The func-

tional dependence of the fluid velocity on radial distance is qualitatively the

same for various separation distances, as shown in Figure 4.4. This suggests

both the fluid and the sphere are subject to a hydrodynamic torque which

arises from viscous effects introduced by the boundary. Furthermore, the vis-

cous torque resists the fluid motion and the rotation of the sphere, and the

effect increases with decreasing separation distance. Although all the data

shown in Figure 4.2 collapses on to a single curve, only the data obtained

at sphere-wall separations of 2.44a, 1.46a, 1.31a and the unbounded case,

for which h ∼ 8a, are presented in Figure 4.4 for visual clarity. The error

bars on the experimental data points represent the standard deviation of the

measurements. The effects of the introduction of a perpendicular boundary

into the system are now examined.

4.3 Perpendicular Boundary

When the rotational axis of the sphere was perpendicular to the surface

normal of the planar boundary, the boundary intersects the plane of the

primary flow generated by the motion of the sphere. Therefore, when in close

proximity to the boundary, the flow generated by the sphere was significantly

altered. The fluid velocity was constrained to zero on the surface of the

boundary as a consequence of the no-slip condition and the primary flow

was no longer axisymmetric about the rotational axis of the sphere. The
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Figure 4.4: The normalised fluid velocity measured as a function of radial

distance from the centre of a sphere for separation distances h = 8a, 2.44a,

1.46a, and 1.31a from a parallel, planar boundary. The fluid velocity has

been normalised by the instantaneous velocity of the surface of the sphere.
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trajectories of fluid elements in the primary flow were directed towards, and

away from, the boundary so that there stagnation points developed in the

flow.

An example of the instantaneous flow field produced by the interaction

between a torsionally oscillating sphere and a perpendicular, planar bound-

ary is shown in Figure 4.5. The arrowed lines in the image represent the

instantaneous particle paths, and the colour contours the magnitude of the

fluid velocity which ranges from 0 − 3.25 mms−1. This particular flow field

corresponds to the clockwise rotation of the sphere at 3π/10 in the oscillation

cycle. The centre of the sphere was 1.36a from the solid, planar boundary

which is depicted by the left-hand bounding line of the image. The pri-

mary flow is directed towards and away from the boundary which creates

stagnation points in the flow adjacent to the boundary above and below

the sphere. Good qualitative agreement is found between the instantaneous,

experimental particle paths and numerical stream surfaces generated by a

sphere undergoing steady rotation in proximity of a planar, perpendicular

boundary [41], which are shown in Figure 4.6.

The distribution of fluid velocity across the gap between the sphere sur-

face and the wall was measured along the surface normal joining the bound-

ary and the centre of the sphere. Instantaneous PIV measurements were

performed at 3π/10 in the oscillation cycle of the sphere for sphere-wall sep-

arations of 3.00a, 2.26a, 1.90a, 1.76a and 1.36a and then compared to the

unbounded case where the container walls were ∼ 8a from the centre of

the sphere. The measured fluid velocity effectively gives the velocity profile

across the gap. The measured fluid velocity, v, was normalised by the in-
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Figure 4.5: The instantaneous flow field, in the equatorial plane, generated

by a sphere rotating clockwise, at 3π/10 in the torsional oscillation cycle,

in close proximity to a solid, planar boundary. The separation distance

h = 1.36a and the boundary is depicted by the left-hand bounding line of

the image. The arrowed lines represent instantaneous particle paths and the

colour contours represent the magnitude of the fluid velocity which ranges

from 0 (dark blue) to 3.25 mms−1 (dark red).
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Figure 4.6: Numerically computed stream surfaces, in the equatorial plane,

for a sphere rotating near a wall around an axis perpendicular to the surface

normal and in the clockwise direction for Re = 1 [41]. The boundary is

depicted by the solid line on the left-hand side of the image. The sphere-wall

separation is 3a.
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Figure 4.7: The normalised fluid velocity measured as a function of radial

distance for separation distances h = 8a, 3.00a, 2.26a, 1.90a, 1.76a and 1.36a

from a planar, perpendicular boundary.

stantaneous velocity of the surface of the sphere, vS and is shown in Figure

4.7 as a function of radial distance, r, from the centre of the sphere.

As in the case of the parallel boundary, the fluid velocity at all radial

distances decreases with decreasing sphere-wall separation distance, h. The

dimensionless data does not collapse when scaled, by the instantaneous tan-

gential velocity of the surface onto a single curve. This demonstrates that the

primary flow generated by the motion of the sphere is significantly altered by

the presence of a perpendicular boundary. The no-slip condition applies on
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the surface of the boundary which changes the functional dependence of the

fluid velocity with radial distance. This change in the functional dependence

of the fluid velocity reflects an increase in viscous shear and is particularly

evident for the small separation h = 1.36a.

The amplitude of torsional oscillation, θA, was measured as a function

of separation distance, h, to investigate how the resistance introduced by

a perpendicular, planar boundary affects the driven sphere dynamics. The

results for Γ = 0.1175± 0.0006, ε̂ = 0.0997± 0.0003 and a drive frequency of

f = 0.5 Hz are shown in Figure 4.8. The greater variance of the data points

obtained when the sphere is in intermittent contact with the boundary was

attributed to surface roughness disrupting the otherwise smooth, sinusoidal

oscillation of the sphere. The dashed, red line denotes the thickness of the

Stokes layer on the sphere δ ∼ ( ν
ω

)1/2 = 2.17a, measured from the surface of

the sphere at r = a.

When the sphere-to-wall separation is greater than the thickness of the

Stokes layer, h > δ + a, the effects of the perpendicular boundary on the

driven sphere dynamics are negligible. Once the separation distance is suffi-

ciently small, the boundary intersects the Stokes layer of the sphere, h < δ+a,

and the amplitude of torsional oscillation reduces as the sphere approaches

the wall, as h → a. The amplitude of the torsional oscillation of the sphere

when close to the boundary is reduced by approximately a factor of 2 com-

pared to when far from the boundary, i.e. for h > δ + a. The suppression of

torsional oscillation of the sphere at small separation distances is greater for

a perpendicular boundary than for a parallel boundary.

The greater reduction in amplitude is a consequence of the flow field
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generated by the rotation of the sphere being more significantly modified by

the boundary in this case. The intersection of the boundary layer by the

plane breaks the axisymmetry of the primary flow generated by the sphere

motion and constrains the fluid velocity to zero on the surface of the plane.

The resistance introduced by these viscous layer effects opposes the magnetic

torque acting on the sphere suppressing the torsional oscillation of the sphere,

θA.

In summary, a viscous torque has been observed to oppose the motion of

the driven sphere and a viscous shear has been identified between the mov-

ing and stationary surfaces. A pressure will also be generated as the fluid is

squeezed through the narrowing gap between the surfaces and will become

significant for very narrow gaps. In numerical models of a sphere under-

going steady rotation near a perpendicular boundary, Liu and Prosperetti

observed a pressure-driven force develop which was directed away from the

boundary [41]. No motion of the sphere in a direction parallel to the sur-

face normal of the boundary was resolved in the experiments. However, for

h/a . 1.5, a manifestation of the more significant wall-parallel force was

observed. For small separation distances, the viscous shear induced by the

boundary generates a force which displaced the sphere in the z-direction,

i.e. in the vertical direction parallel to the bounding surface, in accord with

the numerical findings of Liu and Prosperetti for a sphere undergoing steady

rotation [41]. In the experiments, the sphere performed unsteady rotation

hence the induced displacement of the sphere was oscillatory.

The induced translational oscillation of the sphere is sinusoidal in form

and in phase with the torsional oscillation of the sphere. The amplitude of the
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Figure 4.8: The amplitude of torsional oscillation of the sphere measured

as a function of separation distance from a planar, perpendicular boundary

for a frequency of applied magnetic field of 0.5 Hz. The dashed, red line

denotes the Stokes layer thickness (δ ∼ 2.17a) measured from the surface

of the sphere at r = a. Inset: The amplitude of translational oscillation

of the centre-of-mass of the sphere measured as a function of separation

distance from a planar, perpendicular boundary. The data was obtained for

Γ = 0.1175 ± 0.0006 and ε̂ = 0.0997 ± 0.0003. The error bars on the data

points denote the standard deviation of the measurements.
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translational oscillation of the sphere, AA, is shown as a function of separation

distance, h, in the inset to Figure 4.8. The amplitude increases as the sphere

approaches the boundary, as h → a, which suggests that the wall-parallel

force increases as the viscous shear increases. As h → a, the amplitude of

translational oscillation reaches ∼ 40 µm, which is approximately half the

amplitude of the arc length subtended in a torsional oscillation of the sphere.

However for h ∼ a, the amplitude of oscillation reduces to ∼ 25 µm because

of frictional effects which arise when the rough surfaces of the sphere and

boundary are in intermittent contact.

Confirmation that the suppression of torsional oscillation occurred when

the planar boundary intersected the Stokes layer of the sphere, δ, was ob-

tained by changing the frequency of applied magnetic field which changed

the thickness of the Stokes layer. The amplitude of torsional oscillation of the

sphere, θA, measured as a function of separation distance, h, from a planar,

perpendicular boundary is shown in Figure 4.9 for drive frequencies of 1 Hz

(top) and 0.25 Hz (bottom). For a drive frequency of 1 Hz, empirical data

were obtained for Γ = 0.1195±0.0017 and ε̂ = 0.0499±0.0002, and the Stokes

layer thickness (denoted by the dashed, red line) was δ ∼ 1.54a. For a drive

frequency of 0.25 Hz, empirical data were obtained for Γ = 0.1187± 0.0012,

ε̂ = 0.1982± 0.0004 and δ ∼ 3.08a.

The thickness of the Stokes layer varied between the two sets of experi-

mental measurements by a factor of 2, as does the separation distance below

which suppression of torsional oscillation occurs. The data sets therefore sup-

port the hypothesis that the intersection of the Stokes layer on the sphere by

the planar boundary is responsible for the suppression of the torsional oscilla-
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Figure 4.9: The amplitude of torsional oscillation of the sphere measured as

a function of separation distance from a perpendicular planar boundary for

applied magnetic fields of frequency 1 Hz (top) and 0.25 Hz (bottom). The

dashed, red line denotes the Stokes layer thickness (δ ∼ 1.54a) (top) and

(δ ∼ 3.08a) (bottom) measured from the sphere surface at r = a.
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tion of the sphere. The no-slip condition on the planar boundary introduces

a hydrodynamic resistance which opposes the magnetic torque acting on the

sphere, thereby suppressing the torsional oscillation of the sphere. These

viscous layer effects increase as the sphere approaches the boundary.

The slight difference in the amplitude of oscillation when far from the

boundary for different drive frequencies, see Figure 4.8 and Figure 4.9, results

from differences in the dimensionless gravitational torque term, ε̂, and the

magnitude of the magnetic torque, Γ. Furthermore, the scatter in the data

for f = 1 Hz, see Figure 4.9 (top), results from the greater deviation of

dimensionless magnetic torque Γ compared to the data for drive frequencies of

0.5 and 0.25 Hz. The frequency of applied field was limited by the attenuation

of the magnetic field strength which occurred above 4 Hz (see §2.4.2).

4.4 Summary

The viscous effects which arise from the presence of a planar boundary, and

the no-slip condition which applies on the surface of a boundary, introduced

a resistive torque which acted on the driven sphere and the surrounding fluid

when the wall-sphere separation was less than the extension of the Stokes

layer from the surface of the sphere, h < δ + a. The resistive torque experi-

enced by a sphere undergoing steady rotation near a boundary was previously

observed in experiments conducted using optical tweezers [37]. In the exper-

iments reported in this Chapter, the resistive torque induced by a presence

of a boundary was dependent on the angular velocity of the sphere and was,

therefore, time-modulated. The resistance introduced by a perpendicular

boundary was more significant than the resistance introduced by a parallel
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boundary. Furthermore, in both cases, the resistance was dependent on the

sphere-wall separation distance and increased as the sphere approached the

boundary.

The presence of a boundary with its surface normal perpendicular to the

rotational axis of the sphere significantly altered the primary flow generated

by a torsionally oscillating sphere, while a boundary with surface normal par-

allel to the rotational axis had minimal effect. The perpendicular boundary

intersected the plane of the primary flow which broke the axial symmetry of

the system and introduced stagnation points into the flow field. As h → a,

viscous shear effects increased and resulted in the generation of a force which

displaced of the centre-of-mass of the sphere in the vertical direction.

The induced translational motion of the sphere was smaller than the arc

length subtended by the surface of the rotating sphere. The translation

of the sphere was oscillatory in nature and therefore did not result in net

translational motion. In Chapter 5, the results obtained from studying the

hydrodynamic interaction of a torsionally oscillating sphere and a planar

boundary are used to provide insight into the interaction between pairs of

spheres.
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Chapter 5

Two Spheres

In this Chapter, the hydrodynamic interaction between a sphere performing

torsional oscillations and a second, stationary sphere is discussed. The spe-

cific methods used and other experimental details will be described in §5.1.

The predominant dynamic behaviour which resulted from the interaction of

an active sphere performing small-amplitude torsional oscillations in a vis-

cous fluid and a non-magnetic, passive sphere of equal radius is discussed in

§5.2. This includes a description of the effects which only occur for small

separation distances, in §5.2.2. In §5.3, the results outlined in §5.2 are gen-

eralised for particle-pairs of unequal radii and for driven spheres performing

large-amplitude torsional oscillations. Finally, in §5.4, the possibility of in-

ertial effects in the system was investigated by significantly reducing the Re

of the system.
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5.1 Experimental Details

The experiments concerned the dynamic interaction of an active sphere with

a nearby passive sphere. An active sphere is a neutrally buoyant sphere with

a magnetic dipole axis that is aligned approximately horizontally with zero

applied magnetic field. When subjected to an alternating field, applied in

the vertical direction, the sphere performed torsional oscillations about its

centre generating a flow in the viscous fluid. A neutrally buoyant passive

sphere was placed at various distances from the oscillating sphere and was

observed to be driven by the flow.

The centre of the passive sphere was positioned in the plane of the primary

flow of the active sphere, i.e. in the equatorial plane of the driven, active

sphere. The centres of the spheres were aligned using a laser sheet which

was positioned above the fluid filled tank. Observations were made along a

line parallel to the rotational axis of the active sphere as shown in Figure

5.1. Figure 5.1 also includes indications of the modes of oscillatory motion

of the two interacting spheres. The separation between the spheres, h, was

measured from the centres of each sphere so that, when the spheres were

very close to contact, the separation distance was the sum of the radii of

the spheres, i.e. for spheres of equal radii the minimum separation distance

hmin = aA + aP , where aA is the radius of the active sphere and aP is

the radius of the passive sphere. Previous measurements of polypropylene

spheres indicated that the surface roughness of the spheres was of the order

of tens of µm [95]. Markings were present on the surface of all of the spheres

which enabled the tracking of the translational and rotational motion of the

active and passive spheres in image sequences.
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Figure 5.1: Schematic diagram of the two-sphere system, as viewed by the

observer, indicating the position and direction of rotation of the active sphere

and the position of the passive sphere in the y − z plane. The magnetic-

dipole axis of the active sphere is depicted in the diagram, as is the radii of

the active and passive spheres, aA and aP respectively, and the separation

distance between the centres of the spheres, h. The solid, arrowed lines

indicate the modes of rotational, θA and θP , and translational, AA and AP ,

motion of the active and passive spheres, respectively.
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In the following section, §5.2, the hydrodynamic interaction between an

active sphere performing small-amplitude torsional oscillations and a passive

sphere of equal diameter, 15.86 ± 0.01 mm, will be presented. The results

will then be extended, in §5.3, to the interactions between:

• An active sphere of diameter 15.86 ± 0.01 mm and passive spheres of

diameter 12.70± 0.01 mm, 9.53± 0.01 mm, and 6.34± 0.01 mm.

• An active sphere of diameter 12.70 ± 0.01 mm and passive spheres of

diameter 12.70± 0.01 mm and 15.86± 0.01 mm.

• An active sphere of 15.86 ± 0.01 mm performing large-amplitude tor-

sional oscillations and passive spheres of 15.86± 0.01 mm and 12.70±
0.01 mm.

The physical properties of the spheres are outlined in Table B.1 for each

of the two-sphere combinations, see Appendix B. Table B.1 includes the

following information: the radii of the active sphere (aA) and the passive

sphere (aP ), the average density of the spheres, the fluid viscosity, the mag-

netic and gravitational torque parameters to which the active sphere was

subjected, the time-scale associated with the gravitational torque acting on

the active sphere, the approximate amplitude of torsional oscillations of the

active sphere when solitary in the fluid and subjected to the applied field,

and the angle at which the magnetic-dipole axis of the active sphere resides

when subjected to zero applied field. The frequency of the applied field was

chosen to be 0.5 Hz and observations were made at 50 frames per second so

that the motion of the spheres was sampled at 100 times the drive frequency.
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5.2 Spheres of Equal Radii

This section describes the dynamic behaviour which results from the hydro-

dynamic interaction between an active sphere performing small-amplitude

torsional oscillations and a passive sphere of equal radius, aA = aP = a = 7.93

mm. The minimum separation distance between the spheres was hmin = 2a.

The primary effects which were observed for all separation distances are

detailed in §5.2.1. Secondary effects, which occurred for small separation

distances, are described in §5.2.2. The secondary effects will be discussed

with reference to the influence of a perpendicular boundary on the dynamic

behaviour of a torsionally oscillating sphere in a viscous fluid, as outlined in

§4.3.

5.2.1 Primary Effects

The dominant effect which resulted from the hydrodynamic interaction of an

active sphere and a passive sphere, both of diameter 15.86 ± 0.01 mm, was

that the rotary motion of the active sphere generated a flow which displaced

the passive sphere. The displacement of the passive sphere was in a straight

line orthogonal to a line joining the centres of the sphere, i.e. in the vertical

direction if in the configuration the particles were separated horizontally. By

way of contrast, a tracer particle in the fluid executed a oscillatory trajectory

along an arc defined by a circular path which is concentric to the rotational

axis of the sphere, see §3.5. Passive spheres subjected to the flow generated

by larger diameter active spheres were also observed to follow arc-like trajec-

tories, see §5.3. The change in trajectory between tracer particles and larger

passive spheres is discussed further in §5.3.
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Figure 5.2: The instantaneous flow field resulting from the interaction be-

tween a rotating sphere (on the right-hand side) and a passive sphere at

∼ 10π/6 in the torsional oscillation cycle. The particle paths are depicted by

the black, arrowed lines and the magnitude of the fluid velocity by the colour

contours (where blue = 0 mms−1 and red = 9.98 mms−1). The separation

distance, h, between the two spheres is 2.25a, where a is the radii of the

spheres.
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Instantaneous flow visualisation of the interaction between the driven and

passive spheres of equal radii was conducted using the PIV technique outlined

in §2.6.1. A flow field obtained at ∼ 10π/6 in the oscillation cycle is shown in

Figure 5.2. The grey circles correspond to the spheres, with the active sphere

on the right-hand side of the image and the separation distance between the

spheres is h = 2.25a. The magnitude of the fluid velocity is represented

by the colour contours (where dark blue = 0 mms−1 and dark red = 9.98

mms−1) and the arrowed lines in the image depict particle paths. Particle

paths, the trajectories which particles in the fluid would follow, were shown

to be concentric circles around a single unbounded rotating sphere in §3.5 but

here are found to be affected by the presence of the nearby passive sphere.

The deformation of the particle paths as they pass close by the passive sphere

shows that the fluid displaced the passive sphere in the vertical direction.

Lateral motion of the passive sphere, along a line joining the centres of the

spheres, was not resolved in the experiments. Even for small separations, for

which the pressure generated between the spheres may have been thought to

be significant, the passive sphere was only observed to translate in the vertical

direction. The functional dependence of the amplitude of the translational

oscillation of the passive sphere on separation distance is shown in Figure

5.3. The amplitude, AP , decreases with increasing separation distance, h,

more rapidly than a inverse square relationship. A least-squares fit to the

experimental data (blue markers) has the form AP = 0.1488h−2.5340 + 0.0007

and is depicted by the red line. Deviation of the experimental data from the

fitted curve occurs for small separations, h ≈ hmin, and may be understood

by considering the induced motion of the active sphere which occurs for
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h→ hmin and is discussed further in §5.2.2.

The decay of the amplitude of the motion of the passive sphere with in-

creasing separation distance allows an estimate of the penetration depth to

be made. The penetration depth was calculated from the fit to be 1.02a. In

other words, at a sphere-sphere separation distance of h = 3.02, the ampli-

tude of motion of the passive sphere was ∼ 0.37 of its value at hmin = 2a.

A sphere-sphere separation of 3.02a is approximately equal to the calculated

extent of the Stokes layer from the surface of the active sphere into the fluid,

δ + a = 3.16a. Furthermore, this separation distance between spheres was

comparable to the sphere-wall separation distance below which the torsional

oscillations of an active sphere were suppressed by boundary effects, see §4.3,

for an applied field of 0.5 Hz.

The small phase difference, σ, between the torsional oscillations of the

active sphere and the translational oscillations of the passive sphere increases

linearly with increasing separation distance, h, and is shown in the inset to

Figure 5.3. A linear least-squares fit to the experimental data (blue markers)

has the form σ = 0.2182(h/a) − 0.2942 and is depicted by the red line. A

passive sphere which is further away from the active sphere is displaced by

the generated flow at a later time. This phase lag between the motion of the

active sphere and the response of the passive sphere was believed to arise

from the unsteady motion of the active sphere generating a wave in the fluid

and is discussed further in §5.4.

The flow generated by the rotational motion of the active sphere forced

the passive sphere to perform small-amplitude rotational oscillations. The

passive spheres rotated with an amplitude that approached 5% of the am-
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Figure 5.3: The amplitude of the translational oscillation of the passive

sphere measured as a function of separation distance from an active sphere

performing torsional oscillations of amplitude θA ∼ 6◦. The blue markers de-

note the experimental data, the standard deviation of which is represented by

the error bars, and the red line corresponds to the least-squares fit to the data

which has the form AP = 0.1488h−2.5340+0.0007. Inset: The phase difference

between the torsional oscillations of the active sphere and the translational

oscillations of the passive sphere measured as a function of separation dis-

tance. The red line represents a least-squares fit to the experimental data

(blue markers) which has the form σ = 0.2182(h/a)− 0.2942. Error bars are

not included for visual clarity.
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Figure 5.4: The amplitude of the torsional oscillation of the passive sphere

measured as a function of separation distance from an active sphere per-

forming torsional oscillations of amplitude θA ∼ 6◦. Inset: The amplitude

of the torsional oscillation of the passive sphere measured as a function of

separation distance from an active sphere performing torsional oscillations

of amplitude θA ∼ 54◦. The blue markers denote the experimental data, the

standard deviation of which is represented by the error bars.

120



plitude of rotation of the active sphere as the spheres were positioned very

close to one another. The direction of rotation of the passive sphere was

counter-clockwise to the torsional motion of the active sphere and the oscil-

lations were approximately in antiphase. The torsional motion of the passive

sphere was induced by a shear which resulted from the no-slip condition on

the surface of the sphere and the velocity gradient acting across the finite size

body. The velocity gradient is a consequence of the generated fluid velocity

decreasing with radial distance from the surface of the active sphere. The

amplitude of the torsional oscillations of the passive sphere, θP , decreased

with increasing separation distance, h, because of the non-linear decay of the

fluid velocity with distance from the active sphere, see Figure 5.4. The devi-

ation of results for h→ hmin is attributed to the induced motion of the active

sphere which occurs at small separation distances, as is discussed further in

§5.2.2.

For h > 3.5a, the small rotary response of the passive sphere to torsional

oscillations of the active sphere could not be resolved in the experiments.

However, this phenomenon did not only occur at small separations distances.

For large-amplitude torsional oscillations of the active sphere, the rotary re-

sponse of the passive sphere was observed for separation distances greater

than 3.5a. The amplitude of torsional oscillations of the passive sphere, θP ,

was measured as a function of separation distance, h, for large-amplitude

torsional oscillations of the active sphere (θA ∼ 54◦), see the inset to Figure

5.4. The relative magnitude of θP , and the decrease in θP with increasing sep-

aration distance, is consistent with the results obtained for small-amplitude

oscillations of the active sphere. The results obtained for large-amplitude
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torsional oscillations of the active sphere are discussed further in §5.3. In the

following section, the phenomena which occur for small separation distances

h < δ + a, where δ is the thickness of the Stokes layer on the surface of the

active sphere, are discussed.

5.2.2 Secondary Effects

For large separation distances, the amplitude of the torsional oscillation of

the active sphere, θA, was independent of the separation distance from the

passive sphere. In other words, for h > δ + a, the presence of the passive

sphere does not affect the dynamic response of the active sphere to the applied

field. However, for h < δ+a, viscous effects introduce a resistance to motion

which reduces the amplitude of torsional oscillation of the active sphere.

This effect is similar to that of a perpendicular boundary in close proximity

to an active sphere, which was described in §4.3. The surface of the passive

sphere intersected the plane of the primary flow generated by the torsionally

oscillating sphere, breaking the axisymmetry of the flow field, and constrained

the fluid velocity to the local velocity on the surface of the passive sphere.

For h < δ+ a, the amplitude of the torsional oscillation of the active sphere,

θA, decreases as the minimum separation distance is approached, as h→ 2a,

see Figure 5.5. However, the suppression of the torsional oscillation of the

driven sphere is not as significant as the suppression which results from the

interaction of a active sphere and a planar, perpendicular boundary because

of the curvature and finite size of the passive sphere.

Furthermore, for small separation distances, the viscous shear which de-

velops between the two spheres generates a force which displaces the active
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Figure 5.5: The amplitude of torsional oscillation of the active sphere mea-

sured as a function of separation distance from the passive sphere. The

error bars on the data markers denote the standard deviation of the mea-

surements. The dashed, red line denotes the thickness of the Stokes layer

(δ ∼ 2.16) measured from the surface of the active sphere at r = a.
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sphere in a direction perpendicular to a line joining the centres of the spheres,

i.e. in the vertical direction. This induced motion of the active sphere is ob-

served for h < 3a, in accord with the wall-parallel force which develops

between a steady rotating sphere and a perpendicular boundary [41]. The

displacement of the active sphere is in a direction opposite to that in which

the passive sphere is displaced, orthogonal to the line joining the centres of

the spheres. The amplitude of translational oscillation of the active sphere,

AA, increases with decreasing separation distance, see Figure 5.6. The sub-

stantial increase in the translational motion which occurs as h→ hmin = 2a

is attributed to the hydrodynamic slip which results when the separation

distance is small enough that a lubrication layer forms between the two

spheres. As h → 2a, the active sphere moves approximately a quarter of

the distance that the passive sphere moves because of the actively generated

flow. This phenomena is analogous to the translational displacement of an

active sphere which occurs for small separation distances from a planar, per-

pendicular boundary. In fact, the displacement of an active sphere in close

proximity to a passive sphere is greater than the displacement of an active

sphere when in close proximity to a perpendicular boundary. This suggests

that a feedback mechanism exists between the two dynamic spheres which is

not present in the interaction of a sphere and a stationary boundary.

The normalised amplitudes of translational oscillation of both the pas-

sive sphere, AP , and the active sphere, AA, are shown in the inset to Figure

5.6 for comparison. The amplitude of the translational oscillation has been

non-dimensionalised by the amplitude of arc length subtended by an active

sphere subject to the corresponding drive parameters in an unbounded fluid.
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Figure 5.6: The amplitude of the induced translation oscillation of the ac-

tive sphere measured as a function of separation distance from the passive

sphere. The standard deviation of the data is represented by the error bars

on the markers and the dashed, red line denotes the extent of the Stokes

layer from the surface of the active sphere. Inset: The non-dimensionalised

amplitude of translation oscillation of the passive sphere (�) and the active

sphere (o) measured as a function of separation distance. The amplitude of

translational oscillation has been non-dimensionalised by the amplitude of

arc length subtended by an active sphere subject to the corresponding drive

parameters in an unbounded fluid. The amplitude of torsional oscillation of

such a sphere was numerically calculated to be θ∗A = 6.74◦ which corresponds

to an amplitude of arc length of s = aθ∗A = 0.93 mm.
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The amplitude of torsional oscillation of such a sphere was calculated numer-

ically, using the model described in §3.3, to be θ∗A = 6.74◦ which corresponds

to an amplitude of arc length of s = aθ∗A = 0.93 mm. Although this non-

dimensionalisation provides a measure of the translational oscillation of the

spheres relative to the arc length subtended by an active sphere, it does

not account for the suppression of torsional oscillation which occurs at small

separation distances. Therefore, to include the suppression of torsional os-

cillation, further measurements, presented in §5.3, of the amplitude of the

translational motion of the passive sphere, AP , will be non-dimensionalised

by the corresponding, empirical measurement of the amplitude of arc length

subtended by the active sphere s = aAθA. Non-dimensionalisation of the

amplitude of translational motion in this manner enables the primary inter-

action effects observed for spheres of equal radii to be generalised to spheres

of unequal radii and thus unequal curvature.

5.3 Spheres of Unequal Radii

In this section, the results are reported for an investigation of spheres of

unequal radii and for active spheres performing large-amplitude torsional

oscillations. A list of the size combinations used is outlined in Table 5.1.

The observed dynamics were qualitatively the same for all of the investi-

gated combinations of particle-pairs. The following behaviour was observed

regardless of whether the active sphere was larger than the passive sphere,

aA > aP , or vice versa, and whether the active sphere performed small-

amplitude torsional oscillations of θA ∼ 6◦ or torsional oscillations of ampli-

tude θA ∼ 50◦. The predominant effect was the displacement of the passive
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aA (mm) aP (mm) θA (degrees) marker

7.93 7.93 ∼ 6 o

7.93 4.77 ∼ 6 x

7.93 3.17 ∼ 6 �

6.35 6.35 ∼ 5 M

7.93 4.77 ∼ 30 /

7.93 7.93 ∼ 54 .

6.35 7.93 ∼ 6 O

Table 5.1: Details of the particle-pair combinations studied in §5.3, includ-

ing; the radii of the active and passive spheres, aA and aP , respectively; the

approximate amplitude of torsional oscillation of the active sphere, θA, when

far from the passive sphere; and the corresponding data marker used in Fig-

ures 5.7 and 5.8. The dimensionless parameters associated with the applied

magnetic field, which result in differences in θA, are documented in Appendix

B.

sphere by the flow generated by the rotary motion of the active sphere.

The amplitude of translational motion of the passive sphere decreased expo-

nentially with increasing separation distance between the two spheres. The

phase difference between the torsional oscillations of the active sphere and the

translational motion of the passive sphere increased linearly with increasing

separation distance. As well as translating, the passive sphere was observed

to rotate, a consequence of the velocity gradient acting across its finite-sized

body.

For small separation distances, the torsional oscillations of the active
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sphere were suppressed because the no-slip condition on the surface of the

passive sphere introduced viscous effects that opposed the magnetic torque

acting on the active sphere. For separation distances approaching h ≈ aA +

aP , the active sphere performed translational oscillations in antiphase to the

motion of the passive sphere. The translational motion of the active sphere

changed the flow field from that produced by a purely rotating sphere.

The following distinction in dynamics was apparent for passive spheres

of various sizes. The radius of curvature of the arc-like trajectory that the

passive spheres followed when displaced by the flow increased with increases

in the radius of the sphere. In §3.5, tracer particles of 13.9 µm mean diameter

were shown to follow a circular arc around the active sphere. However,

passive spheres of diameter 15.86 mm were found to follow a straight line

when in the presence of an active sphere of equal diameter performing small-

amplitude torsional oscillations. This change in trajectory was attributed to

the deformation of particle paths as they come into contact with the surface

of the passive sphere. As the radius of the passive sphere increases this

deformation effect increases and results in the increased radius of curvature of

the translational trajectory of the passive sphere. In summary, the trajectory

of a displaced passive sphere was dependent on how much the flow field

generated by the active sphere was deformed by the presence of the passive

sphere itself. The arc-like trajectories of passive spheres were not attributed

to a repulsive force which could have resulted from a build up of pressure

between the two spheres.

For all combinations of active and passive spheres, the amplitude of

the translational oscillation of the passive sphere decreased with increasing
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Figure 5.7: The amplitude of translational oscillation of the passive sphere

measured as a function of the separation distance for various combina-

tions of spheres. The amplitude of translational oscillation has been non-

dimensionalised by the arc length subtended by the active sphere in a tor-

sional oscillation, and the separation distance between the centres of the

spheres has been non-dimensionalised by the radius of the active sphere. For

each combination, the radii of the spheres, the approximate amplitude of

torsional oscillation of the active sphere and the corresponding data marker

are detailed in Table 5.1.
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sphere-sphere separation distance. The amplitude of the translational oscil-

lation of the passive sphere, AP , was non-dimensionalised by the amplitude

of the arc length subtended by the active sphere in a torsional oscillation,

s = aAθA. This gave collapse of the experimental data onto a single curve, as

shown in Figure 5.7, when plotted as a function of the separation distance,

h, non-dimensionalised by the radius of the active sphere, aA. For each of

the combinations of spheres, the radii of the spheres, the approximate ampli-

tude of torsional oscillation of the active sphere and the corresponding data

marker are detailed in Table 5.1. Non-dimensionalisation of AP by s incor-

porates the suppression of θA which occurs for small separation distances.

Collapse of the data onto a single curve indicates that the generated flow is

qualitatively the same for all particle-pair interactions.

A least-squares fit to the experimental data has the form:

AP
aAθA

= 1.1917(
h

aA
)−2.2548 − 0.0060 (5.1)

and is depicted by the black line in Figure 5.7. As the separation increases the

motion of the passive particle decays more rapidly than the flow generated

by a solitary active sphere which follows an inverse square relationship with

distance, see §3.5. The fit suggests that a passive particle of negligible size in

contact with the surface of the active sphere would be translated a distance ∼
18% greater than the arc length subtended by the active sphere (if frictional

and lubrication effects are ignored). Deviations from the exponential curve

occur for separation distances h ≈ aA+aP for which translational oscillations

of the active sphere are observed. The combined translational and rotational

motion of the active sphere results in a significantly different flow field to that

of an active sphere performing rotary motion alone. The change in flow field
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and the interaction between the two translating spheres leads to a complex

dynamic behaviour which is not captured by the scaling used in Figure 5.7.

The phase difference, σ, between the torsional oscillations of the active

sphere and the translational oscillations of the passive sphere increases lin-

early with increasing separation distance, h, as shown in Figure 5.8. A linear

fit to the data has the form σ = 0.2075(h/aA)− 0.2577. The fit to the data

suggests that, within experimental error, there would be zero phase lag be-

tween the torsional oscillations of a sphere and the translational oscillations

of a particle of negligible size adjacent to the surface of the rotating sphere.

An explanation of the phase difference was provided by a theoretical model

of the system that is described in Appendix C. The model is based on a

oscillating rotlet singularity and shows that the phase difference is a conse-

quence of the unsteady motion of the active sphere which generates a wave in

the fluid. As in the case of a wall oscillating in a semi-infinite fluid [94], the

generated wave decays exponentially in space and has an associated phase.

However, the small non-zero phase difference may also be an inertial effect

as the experiments were conducted in the range 0.01 . Re . 0.1 and hence

were only an approximation to the idealisation of Stokes flow. An investiga-

tion into the possible influence of inertial effects is presented in the following

section.

5.4 Reduced Reynolds Number

In order to investigate the influence of inertia in the experiments, the Re of

the system was reduced. The reduction in Re was achieved by increasing the

viscosity of the fluid in which the spheres were submerged.
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Figure 5.8: The phase difference between the torsional oscillations of the

active sphere and the translational oscillations of the passive sphere measured

as a function of the separation distance for various combinations of spheres.

For each combination; the radii of the spheres, the approximate amplitude of

torsional oscillation of the active sphere and the corresponding data marker

are detailed in Table 5.1. Error bars are not included for visual clarity.
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The experiments were performed with the equal diameter active and pas-

sive spheres which were of diameter 15.86 ± 0.01 mm, as used in §5.2. The

fluid was silicone oil (Basildon Chemical Company Limited, Oxfordshire,

UK). The temperature inside the Mumetal canister was measured to be

19.56 ± 0.08 ◦C. At 19.56 ◦C, the viscosity of the fluid was found to be

ν = (1.3976± 0.0036)x104 mm2s−1 and the density was found to be 975± 1

kgm−3.

The increase in viscosity meant that the time-scale associated with the

gravitational torque, which acted on the sphere to return it to the zero-field

position, increased to T0 = 39.43 ± 0.31 s. Furthermore, an applied field

of greater strength (∼ 2.7 mT) was required to produce small-amplitude

torsional oscillations of the active sphere. For a frequency of applied field

of 0.5 Hz, Γ = 0.0995 ± 0.0002, and ε̂ = 0.0081 ± 0.0001, the active sphere

performed torsional oscillations of amplitude 6.5◦ in the more viscous fluid.

The maximum Re of this system was calculated to be ≈ 5x10−4.

Lowering the Re resulted in a change in the dependence of the phase lag

on separation distance as shown in Figure 5.9. The red line denotes the least-

squares linear fit to the low-Re experimental data (represented by the blue

markers) and has the form σ = 0.0558(h/aA)−0.0954. The black line has the

form σ = 0.2075(h/aA) − 0.2577 and denotes the least-squares linear fit to

the data presented in Figure 5.8 for which 0.01 . Re . 0.1. The reduction in

phase lag that occurred for a reduction of Re suggests that inertial effects are

present in the experiments. This is because, although the oscillatory motion

of the sphere results in a phase difference that is dependent on distance, the

phase difference is not dependent on viscosity and should not, therefore, be
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Figure 5.9: The phase difference between the torsional oscillations of the

active sphere and the translational oscillations of the passive sphere measured

as a function of the separation distance for Re < 5x10−4. The red line

denotes the least-squares linear fit to the low-Re data (represented by the

blue markers) and has the form σ = 0.0558(h/aA) − 0.0954. The black line

denotes the least-squares linear fit to the data presented in Figure 5.7 which

has the form σ = 0.2075(h/aA)− 0.2577.
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altered by a reduction in Re. The non-zero phase difference obtained in the

experiments may also, however, be attributed to the spheres drifting in the

fluid because of convection in the tank or slight differences in density which

result in buoyancy effects.

Although the reduction in Re suppressed inertial effects in the system,

the flow field which resulted from the interaction of the two spheres remained

qualitatively the same. The amplitude of the translational oscillations of the

passive sphere, AP , was shown to decrease with increasing separation dis-

tance, h, as shown in Figure 5.10. The low-Re experimental data is denoted

by the blue markers and the black line denotes the fit to the data presented

in Figure 5.7 for which 0.01 . Re . 0.1. When non-dimensionalised ac-

cordingly, the low-Re data collapses onto the curve obtained in §5.3 which

suggests that the flow field is qualitatively the same for both scenarios. This

indicates that although not negligible, inertial effects are small.

5.5 Summary

The interaction between an active sphere performing torsional oscillations

and a passive sphere in a viscous fluid has been studied. Qualitatively sim-

ilar behaviour was observed for spheres of equal and unequal radii and this

behaviour was independent of whether the active sphere was larger or smaller

than the passive sphere. The motion of the passive sphere was determined

by the flow field of the actively rotating sphere.

The active sphere executed rotary oscillations which resulted in trans-

lational and rotational oscillations of the passive sphere. The translational

motion of the passive sphere followed an arc-like trajectory, the radius of
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Figure 5.10: The amplitude of translational oscillation of the passive sphere

measured as a function of the separation distance for Re < 5x10−4. The

amplitude of translational oscillation has been non-dimensionalised by the

arc length subtended by the active sphere in a torsional oscillation, and

the separation distance between the centres of the spheres has been non-

dimensionalised by the radius of the active sphere. The amplitude of the

torsional oscillations of the active sphere was ∼ 6◦. The experimental data

is denoted by the blue markers and the black line denotes the fit to the data

presented in Figure 5.7.
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curvature of which increased with the radius of the passive sphere until, for a

sphere of diameter 15.86± 0.01 mm, oscillations were only observed along a

straight line in the vertical direction. The amplitude of the translational mo-

tion of the passive sphere, AP , decreased with increasing separation distance

between the spheres. A phase lag between the torsional oscillations of the

active sphere and the translational oscillations of the passive sphere was de-

tected and shown to increase with increasing separation distance. The phase

difference was attributed to a wave that forms in the fluid because of the

unsteady motion of the active sphere. Small inertial effects, however, may

also contribute to the phase lag. The amplitude of rotation of the passive

sphere was smaller than that of the active sphere and also decreased with

increasing separation distance.

For small separation distances, a suppression of the amplitude of rotation

of the active sphere was observed and comparable in magnitude to that found

when a perpendicular boundary was in close proximity to an actively rotating

sphere. The suppression was a consequence of the viscous effects which arise

because of the no-slip condition on the surfaces of the two spheres. As the

spheres were brought even closer together so that they were almost in contact,

h → hmin, the active sphere was observed to perform small translational

oscillations in the direction perpendicular to the line joining the centres of the

two spheres. The force driving the motion of the active sphere was thought to

arise from the viscous shear which develops between the two spheres at small

separations. The induced translation of the active sphere was greater when

nearby a passive sphere than a stationary, planar boundary which suggests

that the motion of the two dynamic spheres was closely coupled.
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Non-dimensionalisation of AP by the arc length subtended by the active

sphere, s = aAθA, led to a collapse of the experimental data onto a single

curve. This suggested the flow field was similar for spheres of equal and

unequal radii. Deviation from this curve occurred for small separation dis-

tances at which the active sphere performed translational oscillations as well

as torsional oscillations. In these instances, the flow field was different to

that produced by an active sphere solely rotating in a viscous fluid. Having

generalised the dynamic behaviour of an active and a passive sphere inter-

acting in a viscous fluid, the effect of tethering the two spheres together on

the dynamics of the system is investigated in Chapter 6.
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Chapter 6

Tethered Spheres

In this Chapter, results are presented for an investigation of spheres con-

nected together by thin tethers. In §6.1, the dynamics of a pair of teth-

ered spheres is studied by comparing and contrasting tethers of different

lengths and materials. In §6.2, a specific arrangement of connected spheres

is described that comprises two active spheres and one passive sphere con-

nected by elastic tethers of unequal length. When subjected to an applied,

alternating magnetic field this multi-body configuration of spheres was ob-

served to propel itself through a viscous fluid. The complex behaviour of this

magnetically-actuated swimmer is detailed and its locomotive mechanism is

described.

6.1 Two Tethered Spheres

Experiments on tethered spheres were conducted using an active and a pas-

sive sphere of equal diameter, 12.70 mm, tethered together by glass, elastic

or cotton connectors. The rigid glass rods were of circular cross-section, of
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diameter 1.8 ± 0.1 mm and lengths 2.8 ± 0.1, 6.9 ± 0.1 and 12.7 ± 0.1 mm.

The elastic struts were segments of silicone rubber which had a cross-section

of 1.2± 0.1 mm x 1.2± 0.1 mm and lengths 3.2± 0.1, 6.1± 0.1, 10.0± 0.1,

15.0± 0.1, 21.0± 0.1 and 25.2± 0.1 mm. The flexible cotton string had an

approximately circular cross-section of diameter 1.4 ± 0.1 mm and lengths

3.4± 0.1, 6.5± 0.1, 12.2± 0.1 and 19.7± 0.1 mm were used. The two ends of

each connection were glued to the surfaces of the two spheres such that the

major axis of the connecting tether was approximately parallel to the axis of

magnetic dipole of the active sphere. The tethered spheres were submerged

in the fluid with ν ∼ 922 mm2s−1 and subjected to an applied magnetic field

of frequency 0.5 Hz, for which Γ = 1.1521± 0.0070 and ε̂ = 0.0357± 0.0001.

A striking consequence of linking the spheres was that the reaction to

the actuation of the tether caused the reorientation and displacement of the

active sphere. Hence, rather than performing rotational oscillations about a

fixed position, the active sphere oscillated whilst moving through the fluid.

Thus, both spheres prescribed a periodic trajectory and the fluid motion

was a consequence of the coupled motion of the spheres. The period of the

trajectories was determined by the frequency of the applied field. The tra-

jectories traced out by the spheres were determined by tracking the positions

of the centres of mass of the individual spheres in y-z coordinates. The glass

rods, elastic struts and cotton tethers are studied individually as a function

of length in §6.1.1, §6.1.2 and §6.1.3, respectively, prior to a discussion of

the effect of the material of the tether on the collective behaviour of the two

spheres in §6.1.4.
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Figure 6.1: The trajectories of the active (left) and passive (right) spheres,

connected by a rigid glass rod of length 2.8 mm, throughout 8 periods of

oscillation.

6.1.1 Glass Connector

The simplest orbits were exhibited by the spheres connected by rigid glass

rods. The magnetic torque acting on the magnet embedded in the active

sphere caused the spheres to pivot about their collective centre of mass which

was located approximately half-way along the rod connecting the spheres.

Hence, the two spheres performed a see-saw motion about this fulcrum, each

sphere prescribing an arc-like orbit through the fluid. The qualitative shape

of the trajectories of the spheres was found to be independent of the length

of the tether connecting the spheres. The trajectories shown in Figure 6.1

are the positions, in y-z coordinates, of the respective centres of mass of the

active and the passive sphere through 8 periods of oscillation when connected

by a glass rod of length 2.8 mm.

141



6.1.2 Elastic Tether

The flexibility and resistance to curvature introduced by the elastic tether led

to both the active and the passive spheres prescribing more complex trajecto-

ries than those observed for the spheres tethered by glass rods. Furthermore,

the trajectories were qualitatively different for short and long elastic tethers.

For elastic tethers of length lT ≥ 10.0 mm, the projection of the trajectory

of the active sphere in the y-z plane contained a cross-over point where the

sphere appeared to cross over the path it had already traced, as shown in

Figure 6.2. The trajectories shown in Figure 6.2 are the positions of the

centres of mass of the active and passive spheres, connected by an elastic

strut of length 25.2 mm, over 10 periods of oscillation. The cross-over arose

because the increased flexibility of the longer elastic strut introduced a small

3D component into the periodic trajectory of the sphere. For short, less

flexible elastic connections, lT ≤ 6.1 mm, the sphere orbits are very similar to

that of the rigid connection; the cross-over in the orbit of the active spheres

was not observed, as shown in Figure 6.3 for a elastic strut of length 3.2

mm. The distance travelled by the passive sphere in one orbit increased as

the length of the connecting tether was reduced because it experienced less

viscous drag. The asymmetry in the orbits shown in Figures 6.2 and 6.3 was

thought to arise because the zero field orientation of the magnetic-dipole axis

of the active sphere was not precisely orthogonal to the applied field, θ0 6= 0,

and the tether was not precisely parallel to the magnetic-dipole axis.
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Figure 6.2: The trajectories of the active (left) and passive (right) spheres,

connected by an elastic strut of length 25.2 mm, throughout 10 periods of

oscillation.
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Figure 6.3: The trajectories of the active (left) and passive (right) spheres,

connected by an elastic strut of length 3.2 mm, throughout 8 periods of

oscillation.
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6.1.3 Cotton Tether

The flexibility of the cotton tether resulted in trajectories of the active sphere

which were qualitatively similar to those observed for an active sphere teth-

ered by an elastic strut. However, since there was no elastic restoring force

acting to separate the spheres this resulted in orbits of the passive sphere

which were unlike those exhibited by passive spheres tethered by an elastic

strut.

The trajectories shown in Figures 6.4 and 6.5 are for spheres connected

by flexible, cotton tethers of length 19.7 mm and 3.4 mm, respectively. For

a long cotton tether, lT ≥ 12.2 mm, the projection of the orbit of the ac-

tive sphere contains a cross-over point. Whereas, for short cotton tethers,

lT ≤ 6.5 mm, the cross-over was not observed in the trajectory of the active

sphere. The orbit of the passive sphere was approximately in a straight line

for both short and long tethers. This behaviour was a consequence of the

one-sided constraint present in the system: the tether was not extensible

and the separation between the spheres could not exceed the length of the

tether, however no restoring force acted to maintain the separation between

the spheres.

Though initially taut, because of the one-sided constraint the tether may

have momentarily slackened and effects of the flow on the motion of the

passive sphere may have become more significant. The noise in the trajectory

data of the passive sphere was attributed to tightening and slackening of the

tether, and the competition between the effects of the tether and the flow on

the motion of the passive sphere.
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Figure 6.4: The trajectories of the active (left) and passive (right) spheres,

connected by a cotton tether of length 19.7 mm, throughout 10 periods of

oscillation.

−0.5 0 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y
A

 (mm)

z A
 (

m
m

)

−0.5 0 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y
P
 (mm)

z P (
m

m
)

Figure 6.5: The trajectories of the active (left) and passive (right) spheres,

connected by a cotton tether of length 3.4 mm, throughout 10 periods of

oscillation.
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6.1.4 Discussion

The introduction of a tether connecting two interacting spheres alters the

dynamics of two interacting spheres. The reaction forces which arose from

the actuation of the tether caused the displacement of the active sphere

such that it prescribed a periodic trajectory whilst simultaneously performing

torsional oscillations. The passive sphere was dragged through the fluid by

the actuated tether. Contributions to the motion of the passive sphere from

the flow were small compared to the effects of the moving tether, except for

a momentarily slackened cotton tether which allowed a greater contribution

to result from the flow.

Interestingly, the total distance travelled in one orbit by both the active

and the passive sphere, C, increased with decreasing length of connecting

tether, lT , as shown in Figure 6.6. This suggests longer connections were

subjected to greater viscous drag and/or bent more (in the case of non-rigid

connections). A manifestation of the viscous drag acting on the tether and

passive sphere was the reduction of the torsional motion of the active sphere.

All connections reduced the torsional response of the active sphere to the

applied field by at least a factor of two compared to a single, free sphere

subjected to the same applied field. A rigid connection reduced the torsional

response of the active sphere most significantly, and an elastic tether reduced

the torsional motion more than a flexible cotton tether, which suggests that

increases in flexibility of the connecting material allowed greater rotary mo-

tion of the active sphere. Furthermore, the torsional motion executed by the

active sphere reduced with decreasing length of the connecting tether.

The bending of a non-rigid connection resulted in the active and passive
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Figure 6.6: The total distance travelled by the active and passive sphere in

one orbit measured as a function of length of the connection between the two

spheres. Data shown for cotton tethers (x), elastic struts (o) and rigid glass

rods (�).

sphere prescribing more complex orbits than was observed for the spheres

connected by glass rods. For non-rigid tethers, a qualitative change in the

dynamic behaviour of the active sphere was observed for lT . a and lT & a,

where a is the radii of the two spheres. For lT & a, a cross-over point was

observed in the projection of the orbit of the active sphere and attributed to

the increased flexibility of the longer struts causing out-of-plane motion of

the active sphere.

The flexibility of the non-rigid connections also introduced a phase dif-

ference between the actuation of the active sphere and the response of the

passive sphere. The phase difference increased with increasing length of

tether and was greater for the elastic tethers than for the cotton tethers of

the same length. Furthermore, the increased flexibility of the longer tethers
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caused the passive sphere to orbit a smaller trajectory as the tether would

bend more. Struts with lT . a were less flexible and the collective motion of

the spheres was more similar to that of spheres connected by rigid tethers.

The motion of two tethered spheres was found to be reciprocal and would

not, therefore, result in the propulsion of the configuration at low Re [55].

Although it must be noted that if two spheres were connected by a sufficiently

long and flexible tether then, on actuation of the active sphere, bending waves

would propagate along the tether towards the passive sphere [76]. The non-

reciprocal motion of such a tether, and the flow it would induce, may result

in the propulsion of the configuration.

In §6.2, the understanding gained from studying the interaction of teth-

ered, and untethered, active and passive spheres in a viscous fluid is used

to provide insight into the locomotive mechanism of a magnetically-actuated

swimmer developed by Endao Han during the course of his MPhys project

[96]. The swimmer consisted of an arrangement of active and passive spheres

tethered with elastic struts and was observed to self-propel itself in an exper-

imental realisation of a Stokes flow. Elastic struts were deemed to be suitable

connections because they were flexible yet resisted curvature and therefore

introduced a restoring force which acted to maintain the separation between

the spheres.

6.2 Swimmer

For a body to swim in a Stokes flow it must deform in a periodic, non-

reciprocal manner [55]. The non-reciprocal motion of multi-body configura-

tions of moving spheres has been studied extensively in mathematical models
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and provided simple designs for synthetic swimmers [58–62]. Generally, how-

ever, such designs have relied on internal motors that control the motion of

the constituent spheres and have, therefore, proved difficult to realise experi-

mentally. The potential for in vivo applications means that the development

of synthetic swimmers is of bio-engineering importance, as well as of scientific

interest [57]. A novel method of fabricating and actuating the non-reciprocal

motion of a multi-body configuration of connected spheres is detailed §6.2.1.

In §6.2.2, measurements are presented of the motion of the spheres and the

generated flow field. A discussion of how the motion of the spheres results

in locomotion in a Stokes flow is presented in §6.2.3.

6.2.1 Experimental Design

The swimmer comprised three 12.7 mm diameter spheres which were con-

nected to each other by two thin, silicone rubber struts in the configuration

shown in Figure 6.7. The elastic struts had a cross-section of 1.2 ± 0.1 x

1.2 ± 0.1 mm and were 3.0 ± 0.2 and 6.0 ± 0.2 mm long. The inequality of

the strut lengths introduced a geometrical asymmetry into the configuration

which was the source of the non-reciprocal deformation of the swimmer. Both

the end spheres contained a single, cylindrical neodymium magnet and the

middle sphere was passive but weighted with copper wire, as shown in Figure

6.7, so it had the same average density as the end spheres. The density of the

swimmer was finely adjusted by gluing a few 0.5 mm stainless steel balls to

the surface of each sphere so that it was horizontally balanced and neutrally

buoyant in the viscous fluid. The walls of the tank were sufficiently far from

the swimmer that they had negligible effect on the motion of the swimmer.
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The results were mainly obtained using a fluid of viscosity ν ∼ 922

mm2s−1 in which the swimmer was observed to move with a speed of 1.8

mm per minute when subjected to an applied field of strength 1.1 mT and

frequency 0.5 Hz. The swimmer was also observed to self-propel itself in fluid

of viscosity ν ∼ 1.4x104 mm2s−1 at a rate of 0.08 mm per minute when sub-

jected to an applied magnetic field of strength 2.8 mT and frequency 0.1 Hz.

Observation of the self-propulsion of the swimmer at Re ∼ 10−4 indicated

that the locomotive mechanism was maintained when the configuration was

a close approximation to a Stokes flow.

The magnetic-dipole axes of the two active, end spheres were aligned

orthogonal to the applied field and the dipole moments of the two magnets

were opposite to each other such that the torque induced by the applied field

resulted in the rotation of the spheres in opposite directions. Rotation of the

end spheres caused the middle sphere to be displaced in the vertical direction.

However, the end spheres did not just perform rotary oscillations about a

fixed point in the fluid when subjected to an applied field. As a consequence

of the interaction between the actuated spheres and the connecting struts,

the two end spheres prescribed a trajectory in the fluid whilst simultaneously

performing torsional oscillations. The orbits were periodic, with a period

equal to that of the torsional oscillations.

The combined result of the motion of the two active, end spheres and the

displaced middle sphere was the buckling of the swimmer. When subjected to

a sinusoidally-alternating magnetic field, the swimmer buckled periodically in

a non-reciprocal, spatially asymmetric manner which propelled the swimmer

in the direction of the longest strut. The buckling cycle is depicted in the
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Figure 6.7: Schematic diagram of the swimmer consisting of three spheres

connected by elastic struts of unequal length. Permanent magnets were em-

bedded in the active, end spheres (I and III) and the passive, middle sphere

(II) was weighted with copper wire. The vertical and horizontal directions

of sphere motion were defined to be orthogonal to the observational plane.

Eight stages of the non-reciprocal buckling cycle of the swimmer are shown

below. The large, white arrow in the centre of the images denotes the direc-

tion of the velocity of the swimmer [96].
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sequence of images in Figure 6.7. The swimmer in this image was subjected to

an alternating field with a frequency of 0.5 Hz and the time interval between

images was 0.25 s. The white arrow in the centre of the image denotes the

direction of the travel of the swimmer.

6.2.2 Results

The flow fields produced by the rotation of the end spheres and the defor-

mation of the swimmer at π/2, π and 3π/2 in the non-reciprocal buckling

cycle are shown in Figure 6.8. The top and bottom images correspond to the

maximum buckling of the swimmer body, and the middle images shows the

swimmer in an intermediate state. The individual spheres are depicted by

the grey circles and the longer strut connects the middle sphere to the right-

hand sphere, as in the schematic shown in Figure 6.7. The black arrowed

lines represent the instantaneous particle paths in the fluid and the magni-

tude of the fluid velocity is represented by the colour contours which range

from dark blue (0 mms−1) to dark red (21.5 mms−1). The spatial asymmetry

in the flow field is evident throughout the buckling cycle of the swimmer. In

the top and bottom images, in particular, more particle paths are directed

towards the sphere connected by the longer strut (sphere III). Furthermore,

the magnitude of fluid velocity is consistently greater on the longer-strut side

of the middle sphere throughout the buckling cycle.

A set of time-series of the amplitude of the applied magnetic field and the

individual sphere motion in the horizontal and vertical direction are shown

in Figure 6.9. The motion of the spheres are denoted by the blue, red and

green data points, in the convention depicted in Figure 6.7. The time-series
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Figure 6.8: Flow visualization of the swimmer at π/2 (top), π (middle) and

3π/2 (bottom) in the buckling cycle. The spheres are depicted by the grey

circles. The black arrowed lines represent the instantaneous particle paths

and the colour contours represent the magnitude of the velocity which ranges

from 0 (dark blue) to 21.5 mms−1 (red).
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were obtained for an applied magnetic field with a frequency of 0.5 Hz, the

magnitude of which is depicted by the black line.

The horizontal motion of the two active, end spheres are in antiphase

(and delayed with respect to the applied field by ∼ π/4) which suggests a

longitudinal compression and relaxation of the swimmer about its centre.

The horizontal motion of the middle sphere was not time-reversible. The

longitudinal motion of the multi-body configuration of sphere was, therefore,

non-reciprocal. This is best understood by considering the peak amplitude

of the motion of each sphere. After the sphere connected to the shorter strut

(sphere I) reaches its maximum positive horizontal displacement, the middle

sphere (sphere II) then reaches its maximum positive horizontal displace-

ment and then the sphere connected to the longer strut (sphere III) reaches

its maximum1. However, after sphere III reaches its maximum negative dis-

placement, spheres I and II reach their maximum negative displacement al-

most simultaneously.

The vertical motion of the end spheres delays the applied field by ∼ π/4.

However, the vertical motion of sphere III has a time-varying phase. The

vertical motion of the middle sphere is approximately in antiphase to the

other two spheres which confirms that the end spheres react to the applied

field and rotate, the rotation of the end spheres then drags the middle sphere

through the fluid because of the connecting tethers. The trajectories of the

individual spheres in y-z coordinates, through two periods of the buckling

cycle, are shown in Figure 6.10. This data was taken with a frequency of

applied magnetic field of 0.5 Hz. The spatial asymmetry in the motion of the

1Convention is that positive displacement in the y-direction is in the direction of the

longer strut.

154



0 1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

y 
(m

m
)

 

 

0 1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

t (s)

B
 (

m
T

)

 

 

0 1 2 3 4 5 6 7 8
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

z 
(m

m
)

 

 

0 1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

t (s)

B
 (

m
T

)

 

 

Figure 6.9: Time-series of the horizontal (top) and vertical displacement

(bottom) of the three spheres. The motion of active sphere I is denoted

by the blue circles (o), passive sphere II by the red squares (�) and active

sphere III by the green triangles (M). The applied magnetic field strength is

represented by the black line.
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Figure 6.10: The trajectories of sphere I (blue), sphere II (red) and sphere

III (green) over two periods. This data was taken with a frequency of applied

magnetic field of 0.5 Hz.

individual spheres is evident and determined the direction of the swimmer

motion, towards the longer strut and sphere III.

Considering the increased complexity of the arrangement of the three

tethered spheres, striking similarities can be made to the simpler arrangement

of two spheres tethered by an elastic strut. The projection of the trajectory

of the end sphere connected by the longer strut (sphere III) contains a cross-

over point and is qualitatively similar to the trajectory of an active sphere

connected to a passive sphere by a long, elastic strut. Furthermore, the

trajectory of the end sphere connected by the shorter strut (sphere I) is

similar to the trajectory exhibited by an active sphere tethered to a passive
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sphere by a short elastic strut. The contrasting trajectories emphasise the

increased flexibility of the longer strut.

6.2.3 Discussion

The inequality in the length of the connecting elastic struts was the source

of the geometrical asymmetry in the configuration and the source of the

non-reciprocality in the periodic deformation of the swimmer. Kinematic

reversibility broke down because the motion of the middle sphere induced by

sphere III was delayed with respect to the motion induced by sphere I. The

periodic sequence of shapes displayed by the swimmer did not, therefore,

satisfy kinematic reversibility and nor did the generated flow. Two contri-

butions to the phase difference between the effects of the end spheres on the

middle sphere have been identified:

1. The motion of both end spheres contributes to the dragging of the

middle sphere through the fluid. The increased flexibility of the longer

strut connecting sphere III, however, results in a phase delay in the

dragging of the middle sphere by sphere III compared to the dragging

of the middle sphere by sphere I.

2. In the case of two, non-tethered, interacting spheres, the translational

oscillations of a passive sphere lag the torsional oscillations of an active

sphere that generates the displacing flow, as shown in §5.3. The phase

difference was found to be a function of separation distance which im-

plies that the middle sphere responds to the flow generated by sphere

I prior to the flow generated by sphere III.
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The middle sphere, therefore, experiences the combined effects of the motion

of the sphere connected by the shorter strut (sphere I) before the effects of

the motion of the sphere connected by the longer strut (sphere III). The

phase difference between the effects of the end spheres on the middle sphere

is not, however, the only effect introduced by the unequal strut lengths.

The difference in strut length has several consequences for the dynamic

buckling of the swimmer. As a result of the increased stiffness of the shorter

connecting strut, sphere I rotated less and attained a lower angular veloc-

ity than sphere III. This suggests the surrounding fluid was displaced with

greater speed by the rotation of sphere III than sphere I. However, the in-

creased flexibility of the longer connecting strut resulted in the middle sphere

being pulled through the fluid less by sphere III. Furthermore, the separation

distance between sphere I and sphere II was small enough that the motion

of the passive middle sphere may have induced translational motion of the

active end sphere (sphere I); a feedback effect that was observed for two

non-tethered interacting spheres at small separations and discussed in §5.2.

Finally, the motion of an end sphere has an indirect effect on the bending

of the elastic strut to which it is not connected and the motion of the other

end sphere. Therefore, the relative phases of the bending of the individual

struts vary as a function of time throughout one period of oscillation. The

combination of these effects introduce net geometrical asymmetries into the

motion of the spheres, the flow field and the buckling cycle of the swimmer.

One can envisage a swimmer comprising three spheres connected by elas-

tic struts of equal length. The bending amplitude and phase of each strut

would be equal and the middle sphere would be driven simultaneously and
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equally by the two end spheres. Furthermore, the flow generated by the rota-

tion of the two end spheres would be equal and symmetric about the middle

of the configuration, and the middle sphere would be forced in the vertical di-

rection only. This would lead to periodic, reciprocal and spatially symmetric

motion throughout the buckling cycle, which would not result in propulsion.

Attempts at fabricating a symmetrical swimmer were made, however small

asymmetries in the configuration remained and resulted in swimming but at

a greatly reduced velocity.

In conclusion, the application of a magnetic field generated a torque which

acted on the magnets embedded in the end spheres of a linked chain. The

orientation of the magnets was set so that the spheres rotated in opposite

directions. The motion of the end spheres transfered a force along the con-

necting struts and generated a flow which combined to displace the middle

sphere. As a consequence of the different lengths of connecting struts, the

motion of the two end spheres and their respective displacement of the mid-

dle sphere were different. This was a source of net spatial asymmetry in the

periodic buckling cycle of the swimmer which determined the directionality of

the swimmer motion. The middle sphere responded to the effects of the two

end spheres at difference phases in the oscillation cycle. This was a source of

non-reciprocality in the periodic buckling cycle of the swimmer which broke

the time-reversal symmetry and resulted in self-propulsion. Viewed contin-

uously, a bending wave travelled along the swimmer body from sphere I to

sphere III through one period of the buckling cycle. The propagation of

this bending wave was in the same direction as the self-propulsion of the

swimmer. In other words, the swimmer dragged itself through the fluid.
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6.3 Summary

The results of an investigation into the effects of tethering together active

and passive spheres have been presented. For the case of a pair of interact-

ing spheres, the introduction of a tether reduced the amplitude of torsional

oscillation of the active sphere but also caused the active sphere to prescribe

a trajectory in the fluid instead of oscillating about a stationary point in the

fluid. The passive sphere also prescribed a trajectory in the viscous fluid.

The simplest trajectories were exhibited by spheres connected by rigid teth-

ers. The flexibility of non-rigid tethers introduced a phase delay between the

actuation of the active sphere and the response of the passive sphere. Longer

non-rigid tethers bent more and thus the passive sphere would prescribe a

smaller orbit yet the phase difference between actuation and passive sphere

motion was greater.

A swimmer which consisted of an arrangement of tethered active and

passive spheres was then studied. The swimmer comprised three spheres

connected by elastic struts of unequal length. The two end spheres were

active and the middle sphere was passive. On application of an alternat-

ing magnetic field the swimmer was observed to buckle in a non-reciprocal

manner and self-propel itself through the viscous fluid in the direction of the

longest strut. The flow field generated by the swimmer was obtained using

PIV and the motion of the individual spheres was detailed. The geometrical

asymmetry in the configuration, introduced by the tethers of unequal length,

was shown to be the source of net spatial asymmetry and non-reciprocality

in the buckling cycle of the swimmer that resulted in propulsion. This novel

approach to swimmer design enables the development of a range of multi-
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body configurations of oscillating spheres. Furthermore, as the actuation of

the swimmer is controlled completely by the interaction of hard magnets and

an external field, it would be possible to reproduce the swimmer design at

the microscale.
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Chapter 7

Summary and Outlook

This study has been concerned with a sphere performing torsional oscil-

lations in a Stokes flow. A systematic experimental investigation was con-

ducted using a novel approach where motion was induced using a non-contact

method. Systems of increasing complexity were considered beginning with

a single sphere in an effectively unbounded fluid and culminating in the de-

velopment of a swimmer comprised of an arrangement of connected spheres.

The knowledge gained from studying the viscous effects which result from

the introduction of nearby boundaries, from asymmetrical systems and from

interactions with otherwise stationary spheres provided insight into the loco-

motive mechanism which propelled the swimmer. In this Chapter, the results

are summarised and ideas for future research are outlined.

7.1 One Sphere

A novel experimental set up was developed which enabled the control of

the torsional oscillations of a neutrally buoyant sphere in a viscous fluid
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through application of an alternating magnetic field. Permanent magnets

were embedded into the surface of the sphere and acted as a magnetic-dipole

axis which experienced a magnetic torque when subject to an applied field.

This magnetic torque acted to align the magnetic-dipole of the sphere with

the applied field resulting in the rotational motion of the sphere. Application

of a alternating magnetic field resulted in the sphere performing torsional

oscillations in the fluid.

This novel experimental approach gives distinct advantages over the use

of other methods, such as a torsion pendulum, as it removes from the flow

field the uncharacterised effects which are introduced by the motion of the

supporting fibre or rod [3–6]. Having developed an experimental technique

that enables the control of the torsional oscillations of a free sphere in a

viscous fluid, it would be instructive to conduct an investigation of the flow

field at high Re and compare the results to the work of Hollerbach et al. [3] in

order to determine what effect, if any, the connecting rod has on the resulting

flow field.

A model of a a single sphere subjected to an applied field, developed from

a balance of the torques acting on the sphere, was described and quantitative

agreement was found between the theory and experiments. Two dimension-

less parameters were identified that determined the response of the sphere:

(1) the magnetic torque term Γ = Bm
8πµa3ω

, where B is the magnetic field

strength, m is the magnetic moment of the sphere, µ is the dynamic viscos-

ity of the fluid, a is the radius of the sphere and ω is the angular frequency;

and (2) the gravitational torque term ε̂ = ε
8πµa3ω

, where ε is the gravitational

torque that acts to return the sphere towards the zero applied field orienta-
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tion. The gravitational torque term was a consequence of the non-uniform

mass distribution within the sphere. Individual spheres had different mass

distributions and the model incorporated this accordingly. The angular dis-

placement of any sphere could thus be characterised in terms of Γ and ε̂.

Instantaneous measurements of the flow generated by a sphere performing

small-amplitude torsional oscillations showed the fluid to move along concen-

tric, circular trajectories around the sphere, and the fluid velocity to decrease

with radial distance from the sphere surface. The functional dependence of

the fluid velocity on radial distance was compared with the analytical so-

lution for a sphere undergoing steady rotation in an infinite viscous fluid.

The quantitative agreement found validated the system as an experimental

realisation of a Stokes flow with which previously unstudied flow phenomena

could be investigated.

7.2 Boundary Effects

The influence of solid, planar boundaries on the flow field and the motion

of the sphere were investigated. Two scenarios were considered: when the

normal to the bounding surface is (1) parallel to and (2) perpendicular to

the rotational axis of the sphere.

The presence of a parallel boundary in the system did not break the axial

symmetry of the system about the rotational axis of the sphere. The no-slip

condition on the surface of the boundary introduced a resistive viscous torque

which became significant for sphere-wall separation distances h < δ+a, where

δ is the thickness of the Stokes layer on the surface of the sphere and a is the

radius of the sphere. The viscous torque increased as the sphere approached
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the parallel boundary and resulted in the reduction of the velocity of the

primary flow and the suppression of amplitude of oscillation of the sphere.

In effect, fluid was dragged across the planar surface of the boundary.

The perpendicular boundary intersected the plane of the primary flow

generated by the sphere and thus broke the axial symmetry of the system.

The primary flow was directed towards and away from the surface of the

boundary, where the fluid velocity was constrained to be zero, which resulted

in the generation of stagnation points in the flow field. Such stagnation

points have been reproduced numerically at Re = 1 which indicates the

robustness of the flow feature [41]. For sphere-wall separations less than

δ + a, the sphere was subjected to a greater viscous torque than in the case

of a parallel boundary. For situations where h→ a, a viscous shear developed

in between the sphere and the boundary and resulted in a wall-parallel force

that displaced the sphere in the vertical direction. No evidence was seen for

a wall-normal force which may result from a build-up of lubrication pressure

and act to separate the sphere from the wall [41]. Frictional effects, however,

were observed and resulted from intermittent contact of rough surfaces. This

suggests that the effects of surface roughness dominated before a lubrication

layer, or a cavitation bubble [44], formed.

The results obtained on the interaction of a torsionally oscillating sphere

and a bounding surface could be further investigated by considering a sphere

in close proximity to a free surface or a deformable elastic surface. The

flow-induced deformation of an interface may led to locomotion driven by

the reciprocal motion of the sphere [97]. A viscometer could be developed

which comprises a torsionally oscillating sphere in a viscous fluid enclosed by
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a concentric spherical shell. This would remove the effects of the mechanical

rod or torsion fibre used in similar viscometer designs [7]. When subject to

an applied magnetic field, the angular deflection of the sphere would provide

an estimate of the viscosity of the fluid.

7.3 Two Spheres

The interaction of a torsionally oscillating sphere and a non-magnetic, pas-

sive sphere was studied for combinations of spheres and the observed dynam-

ics were qualitatively similar, independent of whether the active sphere was

larger than the passive sphere or vice versa.

The flow generated by the active sphere caused the passive sphere to move

along an arc-like trajectory. The distance travelled by the passive sphere

was comparable to the length of the arc subtended by the active sphere and

decreased with increasing sphere-sphere separation distance, h. Appropriate

non-dimensionalisation led to the collapse of the data onto a single curve from

which the following scaling was obtained: AP/aAθA ∼ (h/aA)−2.25, where AP

is the amplitude of the translational oscillation of the passive sphere, aA is the

radius of the active sphere and θA is the amplitude of torsional oscillation of

the active sphere. This generalisation of the motion of the spheres indicates

that the flow field was qualitatively similar for the various combinations of

sizes of spheres. The gradient in the velocity field induced a shear which

resulted in the relatively small rotational motion of the passive sphere in a

direction opposite to the torsional motion of the active sphere. Furthermore,

the wave induced by the oscillatory motion of the active sphere causes the

translational oscillations of the passive sphere to lag the torsional oscillations

166



of the active sphere.

For small separation distances, h < δ + a, the torsional motion of the

active sphere was suppressed by the resistive torque that resulted from the

no-slip condition on the surface of the passive sphere. The suppression of

rotation increased with decreasing separation distance but was less signifi-

cant than the reduction in rotation observed in the case of an active sphere

near a perpendicular boundary because of the finite size and curvature of

the passive sphere. However, the induced translational motion of the active

sphere found when the spheres were almost in contact was greater than was

observed in the case of the interaction between an active sphere and a per-

pendicular boundary. This suggests the motion of the passive sphere induced

a flow which disturbs the flow field created by the torsional oscillations of the

active sphere. This feedback effect rapidly decays with increasing separation

and is reminiscent of the higher-order effects which occur in hydrodynamic

interactions between pairs of cells [76]. The deviations from the above scaling

that occur at very small separations may be attributed to the disturbance

flow induced by the passive sphere altering the flow field of the active sphere.

7.4 Tethered Spheres

The effect of linking active and passive spheres was studied using various

tethers. As well as being subject to the flow caused by the motion of the ac-

tive sphere, the passive sphere was dragged through the fluid by the moving

tether. The interaction between the actuated sphere and the tether caused

the reorientation and displacement of the active sphere. Hence, when teth-

ered together, both spheres prescribed trajectories in the fluid. Elastic teth-
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ers were found to be suitable for magnetically-actuated swimming devices as

they were flexible yet acted to maintain a separation distance between the

spheres by resisting curvature. Furthermore, the bending of elastic tethers

introduced a phase delay between the actuation of the active sphere and the

response of the passive sphere.

An understanding of the hydrodynamic interaction of untethered and

tethered spheres provided insight into the locomotive mechanism of a swim-

mer which comprised three spheres connected by elastic struts of unequal

length with two active end spheres and a passive middle sphere. When sub-

jected to an alternating magnetic field, the swimmer buckled as the two end

spheres rotated in opposite directions and displaced the middle sphere in the

vertical direction. The buckling cycle of the swimmer was non-reciprocal

and a net spatial asymmetry was observed in the generated flow field. The

non-reciprocality and net spatial asymmetry were attributed to the unequal

strut length and resulted in the self-propulsion of the swimmer.

A more comprehensive investigation into the effects of tethering spheres

together is required for better understanding how the length, material prop-

erties and geometry of the tether change the complex dynamics of the in-

teracting spheres. It would be informative to study the fluid-structure in-

teraction of a single, active sphere connected to a rod or tether prior to the

inclusion of a second, passive sphere. A simple swimmer comprised of an

active sphere attached to an elastic filament and subjected to an alternating

magnetic field may result. Numerical studies [75] showed that a magnetic

dipole with a flexible tail behaves as a swimmer when subject to AC mag-

netic fields. The torsional oscillations of the swimmer body would actuate
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the elastic tail, generating a bending wave that propagates along the elastic

filament and propels the swimmer through the fluid [76]. Previously, syn-

thetic swimmers of a similar design have developed by Wiggins et al. [77] and

Yu et al. [78].

Finally, an investigation into the optimal difference in the strut length,

and/or material, which results in maximal locomotion of the swimmer is de-

sirable. Furthermore, assembly of a magnetically-actuated swimmer from an

arrangement of active and passive spheres leaves opportunities for the devel-

opment of new swimmers from different configurations of tethered spheres.

As a proof of the principle, a second swimmer was produced which swam

at a slower rate than the swimmer reported in §6.2. The second swimmer

consisted of three spheres connected by elastic struts of equal length. One

end sphere and the middle sphere contained magnets, whilst the other end

sphere contained no magnet. This meant that the geometrical asymmetry

in the configuration resulted from the positioning of the active spheres. The

flow field produced at two points in the buckling cycle of the swimmer was

obtained using the PIV technique and is shown in Figure 7.1. The spheres

are depicted by the grey circles. The sphere on the left-hand side of the image

was passive while the other two spheres were active. Net displacement of the

swimmer was observed in the direction of the active end sphere i.e. towards

the right-hand side in Figure 7.1. The black arrowed lines represent the in-

stantaneous particle paths and the colour contours represent the magnitude

of the velocity which ranges from 0 (dark blue) to 9.5 mms−1 (red). The

asymmetry in the flow field is evident in the direction of net displacement

suggesting that the swimmer pulled itself through the viscous fluid. Devel-
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opment of a second swimmer constructed from active and passive spheres

suggests a multitude of swimmers could be produced using asymmetrical

arrangements of connected spheres.
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Figure 7.1: Flow visualisation of the second swimmer at π/2 and 3π/2 in

the oscillation cycle. The spheres are depicted by the grey circles. The black

arrowed lines represent the instantaneous particle paths and the colour con-

tours represent the magnitude of the velocity which ranges from 0 (dark blue)

mms−1 to 9.5 mms−1 (red). Development of a second swimmer constructed

from active and passive spheres suggests a variety of swimmers could be

produced using asymmetrical arrangements of connected spheres.
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Appendix A

Background Magnetic Field

This appendix concerns a comparative study of the dynamic response of an

active sphere with a magnetic-dipole axis to an applied magnetic field with

and without magnetic shielding. The background field inside the laboratory

was measured and found to be appreciable in direction and magnitude to the

geomagnetic field which varies from 25 to 65 µT [81] and, in Manchester,

is orientated towards magnetic North and inclined at ≈ 70◦ [98] from the

vertical. The Mumetal canister used to shield the experimental system from

the background field is described in §2.4 and consistently reduced the strength

of this magnetic field by an order of magnitude to less than 5 µT. The

strength of the applied fields used in the experiments were typically 0.2− 3

mT. All measurements were performed inside the Mumetal canister except

flow visualisation measurements because of the technical difficulties involved

in simultaneously illuminating and imaging the experimental system whilst

the shielding canister was in place. An investigation into the effects of the

background field on the dynamic response of the sphere is therefore required

to validate the quantitative flow visualisation measurements.
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The most significant effect of the background field on an active sphere

was to induce a torque which acted to align the magnetic-dipole axis of

the sphere parallel to the background field and hence define the plane of

rotation. With reference to the coordinate system detailed in Figure 3.1 of

§3.2, the background magnetic field perturbed the magnetic-dipole axis of

the sphere in the φ-direction and the θ-direction. The perturbation in the

φ-direction resulted from the component of the background field orthogonal

to the applied field direction and could be accounted for by positioning the

observing camera orthogonal to the component of the background field in the

φ-direction such that φ = 0. In contrast, when shielded the orientation of the

magnetic-dipole axis in the φ-direction could be controlled and the sphere

was positioned orthogonal to the observation point prior to experimentation

such that φ = 0. An orientation of φ = 0 was required in order to image the

rotational plane of the sphere. When shielded and subject to zero applied

field, a neutrally buoyant sphere sat in the viscous fluid with its magnetic-

dipole axis at some angle θ0 because of the gravitational torque acting on

the non-uniform distribution of mass within the sphere. In contrast, when

unshielded the initial angular orientation of the sphere in the θ-direction

would be a result of the combined gravitational and perturbing, magnetic

torque acting on the sphere.

As a consequence of the differences in initial angular orientation of the

sphere, a comparative investigation of the response of the sphere to the ap-

plied magnetic field required attaining an initial state which was reproducible

with and without the magnetic shield. The reproducible initial state was at-

tained by application of a constant, non-zero magnetic field, BDC (of ∼ 0.4
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mT), in the vertical direction which induced a magnetic torque that resulted

in approximate alignment of the spheres magnetic axis with the applied field.

Through the superposition of the two magnetic fields, B = BAC + BDC ,

it was then feasible to study the angular response of an active sphere, from

the aligned position, as a function of amplitude and frequency of applied,

alternating magnetic field.

The angular displacement of the sphere as a function of the frequency of

the applied magnetic field was thus measured in both cases, and the results

are shown in Figure A.1. The amplitudes of the applied magnetic fields were

BDC = 0.3681±0.0064 mT and BAC = 1.759±0.0095 mT for the unshielded

case, and BDC = 0.3952±0.0084 mT and BAC = 1.7194±0.0062 mT for the

shielded case.

The agreement between the results for the shielded and unshielded cases

suggests that, provided the observing camera was positioned such that φ = 0,

the components of the perturbing background field which induced or opposed

the rotation of the sphere were small enough to be considered negligible and

neglected. This validates conducting flow visualisation measurements with-

out the magnetic shield. Provided an appropriate magnetic field was applied

to ensure small-angle, sinusoidal oscillations of the sphere then direct com-

parisons between the two systems is justified. Furthermore, throughout the

thesis flow visualisation measurements are presented in terms of the instan-

taneous surface velocity or angular displacement of the sphere, rather than

the applied magnetic field strength of frequency so that the mechanism re-

sponsible for driving the sphere need not be considered.
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Figure A.1: The total angular displacement of the sphere from the aligned

position measured as a function of the frequency of the applied, alternating

magnetic field with (o) and without (x) magnetic shielding.
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Appendix B

Two Sphere Data

In §5.3, various combinations of equal and unequal radii spheres were stud-

ied. The results regarding the motion of the passive sphere and the phase

difference between it and the torsional motion of the actively driven sphere

were presented in Figures 5.7 and 5.8, respectively. The physical properties

of the system are detailed in Table B.1, below, for each of the combinations of

spheres. Table B.1 includes the following information: the radii of the active

sphere (aA) and the passive sphere (aP ), the density of the spheres, the fluid

viscosity, the magnetic and gravitational torque parameters to which the ac-

tive sphere was subjected, the time-scale associated with the gravitational

torque acting on the active sphere, the approximate amplitude of torsional

oscillations of the active sphere when solitary in the fluid and subjected to

the applied field, and the angle at which the magnetic-dipole axis of the

active sphere resides when subjected to zero applied field.
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aA (mm) aP (mm) ρA (kgm−3) ρP (kgm−3) ν (cSt) Γ ε̂ T0 (s) θA (degrees) θ0

7.93 7.93 986.7 983.3 920.11±1.70 0.1191±0.0002 0.1010±0.0002 3.14±0.05 ∼ 6 ∼ 5.6

7.93 4.77 986.7 975.7 920.13±2.53 0.1247±0.0011 0.1010±0.0003 3.14±0.05 ∼ 6 ∼ 5.6

7.93 3.17 986.7 984.5 924.07±2.79 0.1152±0.0199 0.1006±0.0003 3.14±0.05 ∼ 6 ∼ 5.6

6.35 6.35 972.5 977.1 933.85±4.35 0.1257±0.0006 0.0355±0.0002 8.80±0.50 ∼ 5 ∼ 7.9

7.93 4.77 986.7 975.7 922.28±1.59 0.5923±0.0014 0.1008±0.0002 3.14±0.05 ∼ 30 ∼ 5.6

7.93 7.93 986.7 983.3 919.49±2.11 1.2241±0.0024 0.1011±0.0002 3.14±0.05 ∼ 54 ∼ 5.6

6.35 7.93 972.5 983.3 927.68±1.22 0.1655±0.0004 0.0358±0.0001 8.80±0.50 ∼ 6 ∼ 7.9

Table B.1: A table outlining the the physical properties of the particle-pair combinations studied in Chapter 5.

The table includes the following information: the radii of the active sphere (aA), the radii passive sphere (aP ), the

density of the active sphere (ρA), the density of the passive sphere (ρP ), the fluid viscosity (ν), the dimensionless

magnetic torque parameter (Γ) and the dimensionless gravitational torque parameter (ε̂) to which the active sphere

was subject, the time-scale (T0) associated with the gravitational torque acting on the active sphere, the approximate

amplitude of torsional oscillations of the active sphere (θA) when subject to the applied field and far from the passive

sphere, and the angle at which the magnetic-dipole axis of the active sphere resides when subject to zero field (θ0).
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Appendix C

Model

As intended, the experimental results inspired theoretical collaborations. The

author worked with Dr. Kiran Singh1 who developed a model of the tor-

sionally oscillating sphere interacting with nearby boundaries and passive

spheres. The model is based on an oscillating rotlet singularity as is de-

scribed in §C.1. In §C.2, the the model is developed to include the effects

of nearby boundaries and compared with the experimental results presented

in Chapter 4. Finally, in §C.3, the modelling process used to compute the

interaction between two spheres is described and the predictions of the model

are compared with experimental findings presented in Chapter 5.

1Oxford Centre for Collaborative Applied Mathematics, University of Oxford, UK.
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C.1 Model of an Unsteady Body in a Viscous

fluid

A particle oscillating in a fluid is subject to unsteady hydrodynamic forces,

and therefore knowledge of the time history of the complete system is required

in order to find solutions to the governing equations of motion. If the rate

of change of fluid motion compared to the diffusion of vorticity is small,

however, the particle may be considered to be oscillating in a quasi-steady

manner and analytical progress can be made through linearisation of the

Navier-Stokes equations [99].

To linearise the system of equations, it is required that the acceleration

forces in the fluid dominate over the nonlinear inertia term. Defining an

effective frequency parameter β = a2ω/ν, the requirement is that β >>

Re = UL/ν, or U/(aω) < 1. The linearisation assumption requires that

the maximum excursion of the fluid particle over a single period of motion

must be less than the characteristic particle size, a. Therefore, if a convective

tangential speed is defined as U = ωθ0a, the linearisation condition gives θ0 <

1 ≈ 57◦. Recalling that all the experimental results presented in Chapter

4, and virtually all the experimental results presented in Chapter 5, were

performed at much smaller amplitudes of oscillation, the linearity assumption

is valid for modelling purposes.

Following the approach developed by Pozrikidis [100], the quasi-steady

linearised Stokes equations are given by

∂u

∂t
= −∇p+

νL2

T
∇2u, ∇ · u = 0 (C.1)

where u and p are the dimensionless flow speed and pressure respectively,
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L is a characteristic length scale (L ≡ a) and T a characteristic time scale

(T ≡ 1/ω).

The main benefit of the quasi-steady assumption is that many of the

tools used to study steady Stokes flows can be applied. For instance, flow

reversibility, reciprocal identities and uniqueness properties extend to the

quasi-steady case [101].

The rotary oscillations of a sphere in a viscous fluid may be modelled

using an unsteady rotlet rotating with angular speed Ω0e
iω̃, where Ω0 = ω̃θ0

and ω̃ is the dimensionless frequency [100]. The flow speed induced in the

fluid at position r = (r1, r2, r3) from the rotlet is given as

Uu = Us
1 + λr

1 + λ
exp(λ(1− r) + iω̃t), (C.2)

where

Us =
Ω0a

3

r3
(−r2e1 + r1e2) (C.3)

is the expression for a steady flow generated by a spinning rotlet.

C.2 Rotating Sphere near a Solid Boundary

The experiments indicated that as the sphere was brought closer to a planar

boundary, the flow in its vicinity was modified. In particular, the direction of

rotation with respect to the wall normal modifies the resulting interactions.

Blake et al. [102, 103] considered a similar problem of modified Stokes flows

in the vicinity of a rigid boundary using a combination of singularities and

an image system which enabled the flow field in the vicinity of the wall and

the far-field to be established.
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(a) (b)

Figure C.1: Schematic diagram illustrating the model with rotlet singularity

and corresponding image system for rotation about an axis (a) parallel and

(b) perpendicular to the wall normal. In both cases the wall is the (x1, x2, x3)

plane [103].

When the oscillating rotlet, representing the sphere, is bought near a

no-slip wall the flow field is modified, and the system of image singularities

depends on the orientation of the the rotlet rotation axis with respect to the

boundary, as shown in the schematic in Figure C.1. The experiments consid-

ered two particular cases, rotation about an axis (1) parallel and (2) perpen-

dicular to the wall normal. Using the image system proposed by Blake [103]

and including the oscillatory contribution of an unsteady rotlet the nature

of the flow field in each case was established.

Case 1: rotlet with axis parallel to the wall normal

In this case the rotlet located in space at y = (0, 0, h) rotates about the

e3 axis so Ω = Ωeiω̃te3. The image of reflections yields an image rotlet at
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ỹ = (0, 0,−h) rotating in the opposite sense, so ΩI = ΩIe
−iω̃te3.

Ω = Ω0
1 + λr

1 + λ
exp[λ(1− r)], (C.4)

ΩI = −Ω0
1 + λIr

1 + λI
exp[λI(1− r)], (C.5)

where λ = (1− i)ω̃a2/2ν, λI = (1 + i)ω̃a2/2ν.

The velocity field at an arbitrary point r from such an image system is

u|| = (
Ω

r3
− ΩI

R3
)(−r2e1 + r1e2), (C.6)

where ri = xi − yi, Ri = xi − ỹi, r = (
∑3

i=1 r
2
i )

1/2, and R = (
∑3

i=1R
2
i )

1/2.

Case 2: rotlet with axis perpendicular to the wall normal

When the axis of rotation is perpendicular to the wall normal Ω = Ωe1,

the flow field, given by

u⊥ = (0, u2, u3), (C.7)

where

u2 = −(
r3Ω

r3
− ΩIR3

R3
)− 2hΩI(

1

R3
− 3R2

2

R5
)− 6ΩI

R2
2R3

R5
(C.8)

u3 = (
r2Ω

r3
− ΩIR2

R3
) + 6hΩI

R2R3

R5
− 6ΩI

R1R2R3

R5
(C.9)

is no longer symmetric in the equatorial plane. In this case the image system

at ỹ = (0, 0,−h) comprises not only an oppositely rotating rotlet, but a

source doublet and a stresslet which dominates in the far-field.

Contour maps are shown in Figure C.2b of the instantaneous velocity field

in the equatorial plane of a rotlet with its centre a distance h/a = 1.36 from

the wall rotating about an axis parallel (a) and perpendicular (b) to the wall

normal. These snap-shots of the flow field qualitatively capture the same

flow phenomena observed experimentally for a sphere performing torsional

oscillations nearby solid boundaries.
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Figure C.2: Contour map of the instantaneous velocity field in the equato-

rial plane of a rotlet rotating about an axis (a) parallel (along e3) and (b)

perpendicular (along e1) to the wall normal, where the wall normal is along

e3. For both, the rotlet is a distance h/a = 1.36 from the wall, and for the

oscillatory rotlet ω = 2π(0.15) rads−1.
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C.2.1 Wall Induced Suppression of Rotation

As found in the experiments, boundary effects influenced the amplitude of

rotation of the sphere when the sphere was moved closer to the wall. For a

fixed applied magnetic field, the amplitude of rotation, θ0, reduced as the wall

was approached. The model of the sphere as a rotlet renders it independent

of a length scale. In order to account for finite size effects, the flow field

is interrogated around the sphere at a unit radial distance from the centre

which is equivalent to a measurement on the surface of the sphere. The flow

field is treated as a linear superposition of the velocity field generated by

the rotlet, v∞, far away from the wall, with a perturbation velocity field, v

generated by the sphere rotation in the vicinity of the wall. The net velocity

vector is ṽ(h) = v∞ + v(h). Correspondingly, if θ∞ is the amplitude of

rotation when the sphere is far from the wall, the tangential velocity of the

sphere far from the wall is vs = θ∞ωa. As the wall is approached this surface

velocity is modified to

ṽs(h) = ωaθ̃0 = vs + 〈v(h; r = a)〉 (C.10)

θ̃0(h) = θ∞ + 〈v(h; r = a)〉 /ωa (C.11)

where 〈v〉 is the average velocity perturbation measured around the circum-

ference of the sphere, in the equatorial plane, and θ̃0 is the effective amplitude

of rotation of the sphere, where θ̃0/θ∞ → 1 as v→ 0.

In Figure C.3, the effect of the walls parallel and perpendicular to the

rotation axis are compared. For both cases a reduction in θ̃0 as h → 1 is

observed. Qualitatively consistent with the experiments, in the perpendicular

case the wall has a stronger influence in reducing the rotation amplitude and

the velocity of the surface.
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Figure C.3: The predicted, normalised amplitude of torsional oscillation and

surface velocity of a sphere, measured as a function of separation distance

from a wall, with its axis of rotation parallel (o) and perpendicular (�) to

the wall normal.

C.2.2 Fluid Velocity Modified near the Wall

In the experiments spheres were positioned at varying distances, h, from the

wall and measurements of the fluid velocity were taken in the equatorial plane

of the sphere. The expression for the rescaled flow velocity from equations

C.6-C.7 for x ∈ (0, h− 1) is

U|| =
u||(0, x, h)

ṽs
(C.12)

U⊥ =
u⊥(0, 0,−x+ h)

ṽs
. (C.13)

In Figure C.4 the flow velocity variation with distance predicted by the

model and the experimental findings as compared for the two cases. The

agreement suggests that the linearised flow assumption was valid.
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Figure C.4: Fluid velocity variation with distance from the sphere centre

with axis of rotation (a) parallel and (b) perpendicular to the wall normal,

for a sphere with centre h/a away from the wall. Symbols correspond to

experimental data, solid curves indicate the oscillatory model.

Figure C.5: Schematic diagram illustrating the active sphere (in grey) with

radius Ra near a spherical boundary wall of radius Rp. When the centres of

the spheres are aligned the rotlet to wall distance is h+Ra, if the centres are

offset by Yr, then the rotlet-wall distance increases by an amountRp(1−sin θ),

where θ = cos−1(Yr/Rp).
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C.3 Two Sphere Interactions

The modelling of the coupled motion of the passive sphere and the active

rotlet comprises three steps. First the passive sphere is treated as a curved

moving boundary and its effects on the active sphere are computed. For

reference, a sketch of the two sphere interaction is shown im Figure C.5.

The rotating sphere (radius Ra) is positioned with its centre aligned with a

spherical wall of radius Rp. The distance between the rotlet centre and the

boundary wall (rescaled by Ra) is 1+h. The horizontal distance of the rotlet

from a passive sphere of radius Rp with its centre at (0, Yp, Zp) is given by

zr = 1 + h+
Rp

Ra

(1− sin θ) + Zp/Ra, (C.14)

where

θ = cos−1(
Yr − Yp
Rp

). (C.15)

The instantaneous position of the rotlet is determined by applying the

approach in the boundary element method [101], where a force free system

with finite walls is treated as composed of a system of infinitesimal elements

that respond to the applied external flow field. Interrogating the flow field

where the surface of the sphere would be, and integrating the velocity of the

sphere surface in time, determines the instantaneous position of the sphere.

The instantaneous position is given by:

xr(t) =

∫ t

0

∫ 2π

0

u(0, sin θ, zr + cos θ; t′)dθdt′ (C.16)

where u = (0, u2, u3) is found from equations C.8-C.9, assuming zero initial

conditions.

The location of the passive sphere is then determined by treating it as

a tracer particle moving under the influence of the rotlet, so its velocity is
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given by

up =
Ω

r3p
(0,−rp,3, rp,2), (C.17)

where rp is the vector distance between passive and active sphere centres,

and Ω is given by equation C.4. The updated position of the passive tracer

(Yp, Zp) is determined by integrating equation C.17 in time, the rotlet posi-

tion is recomputed and the process is iterated until convergence.

This iterative process was repeated for various separation distances, h,

and experimental combinations of active and passive sphere radii, Ra and Rp

respectively, and applied rotation angle θ∞. The prediction of the model are

compared with the experimental results for two-sphere interactions in Figure

C.6 and Figure C.7. A legend denoting the data markers used in the Figures

is given in Table C.1.

The translational motion of the passive sphere measured as a function of

separation distance is shown in Figure C.6. The translational motion is scaled

by the characteristic amplitude of the torsional oscillation of the active sphere

in Figure C.6a. The unsteady rotlet model is in good quantitative agreement

with the experimental findings. The agreement breaks down at very small

separations for which, in the experiments, the disturbance flow generated

by the motion of the passive sphere caused the active sphere to perform

translational oscillations. Inclusion of lubrication effects in the model is

currently underway in an attempt to resolve the discrepancy between theory

and experiments at very small separations. Also note that as the amplitude

of oscillation increases the linearisation assumption starts to break down

at large inter-sphere distances, as can be seen more clearly in the unscaled

Figure C.6b. A possible explanation for these discrepancies observed at large
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Figure C.6: Active-passive pair: Translational motion of the passive sphere

as a function of separation distance. (a) Scaled by the characteristic ampli-

tude of the torsional oscillation of the active sphere Raθ∞ (symbols indicate

experiments). The curves are the predictions of the oscillatory rotlet model.

Note the outliers at larger distance correspond to large amplitude cases as

may be seen more clearly from the unscaled data in (b).

distances is that the amplitude of the oscillation approaches that which forms

the condition for validity of the quasi-steady assumption, θ0 < 57◦.

Another feature of the two-sphere interaction captured by the unsteady

rotlet model is the suppression of torsional oscillation of the active sphere

which occurs as it approaches the passive sphere, as shown in Figure C.7a.

Furthermore, the linear dependence on distance of the phase difference be-

tween the torsional oscillations of the rotlet and the translational oscillations

of the passive sphere agrees with the experimental finding, as shown in Fig-

ure C.7b. This suggests that the phase difference reported in §5.3 may not

be solely an inertial effect. Instead it results from the unsteady behaviour of

the active sphere which generates a wave in the fluid.
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Figure C.7: Active-passive pair: (a) Suppression of rotational oscillations

of the rotlet given by θa/θ∞ for varying h and the various combination of

parameters as indicated in the legend, are compared with the theoretical

model (solid curves). (b) The experimentally measured phase difference, φ,

scaled by δ/a, for various 2-sphere experiments collapse onto the predicted

curve (solid, black line).
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aA (mm) aP (mm) θA (degrees) marker

7.93 7.93 ∼ 6 ·
7.93 4.77 ∼ 6 ·
7.93 3.17 ∼ 6 ·
6.35 6.35 ∼ 5 ·
7.93 4.77 ∼ 30 ◦
7.93 7.93 ∼ 54 �

6.35 7.93 ∼ 6 ·
7.93 7.93 ∼ 6 O

Table C.1: Details of the particle-pair combinations studied in and the cor-

responding data markers used in Figure C.6 and Figure C.7. Note that the

data markers denoted by ‘O’ correspond to the experiments performed in

fluid of viscosity 1.4x104 mm2s−1.
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Appendix D

Publications

This appendix contains two publications to which the author contributed

during the course of his PhD. The publications concern a global pattern

switch which occurs in cellular materials under compression. First demon-

strated in a elastomeric structure, the reversible pattern switch results from a

buckling instability and transforms a square array of circular holes into a set

of orthogonal ellipses [104]. For the first publication, which demonstrates the

robustness of the pattern switch in a variety of soft cellular solids, the author

fabricated the visco-elastic sample, performed experiments on the sample and

contributed to the writing of the manuscript. The second publication demon-

strates that the pattern switch can occur in plastic structures provided the

compression is performed above a critical strain rate. The buckling instabili-

ties present in elastic and plastic lattices are then compared and contrasted.

For this publication, the author conducted all the experimental work and

analysis, and contributed significantly to the writing of the manuscript.

192



Pattern switching in soft cellular solids under
compression

T. Mullin,* S. Willshaw and F. Box

It is becoming increasingly recognized that nonlinear phenomena give an opportunity to provide robust

control of the properties of soft metamaterials. A class of elastic instabilities are discussed which arise

when a soft cellular material is compressed. The global nature of the induced pattern switch makes it a

prime candidate for controlling macroscopic photonic and auxetic properties of the material. We

demonstrate the robustness of the phenomena using a range of soft materials and show how the

shape of the repeat unit of the periodic pattern can be used to influence the global characteristics of

the soft solid.

1 Introduction

Low density cellular solids are common in nature with
examples ranging in scale from cancellous bone with high
strength-to-weight ratio1 to the intricate structures on the
wings of butteries which give them their iridescent colours.2

Man has exploited these features in the design of complex
structures ranging from spacecra to photonic crystals.3

When they are so, cellular solids can be compressed using
small strain elds and exhibit structural instabilities above a
critical value of the applied strain.1 The inuence of insta-
bilities on global material properties are important4 in
broadening the functionality of materials in terms of their
wetting and photonic properties. A specic example of this is
provided by a novel instability uncovered when a two-
dimensional elastomer with a square lattice of holes is
compressed.5 The pattern switch which is involved is robust
and has now been found at the nanoscale6 and applied to the
control of photonic devices.3

The purpose of this article is to report on a number of
observations at the macroscale which demonstrate that the
pattern switch is a robust geometrical effect which is indepen-
dent of the details of the material properties of the matrix. The
central idea being advanced here is that it is the symmetry of the
geometry of the cellular structure which is key to the pattern
switch. Specically, the strong coupling of the square geometry
forces a simple bifurcation so that details of the material
properties of the matrix are of secondary importance. The
geometrical theme is explored using a range of so materials
and the review is concluded by reporting on the inuence of
hole shape on the pattern switch.

2 Pattern switching in soft cellular solids

The original experiments5 were performed using elastic speci-
mens with circular holes which were accurately cut out of an
elastomer sheet using water jets. The sample comprised a
microstructure of a 10 � 10 square array of circular holes of
8.67 mm diameter with 9.97 mm center-to-center spacing, verti-
cally and horizontally. The periodic lattice microstructures were
cut from9.4mmthick sheets of the photoelastic elastomer PSM-4
using water jets and the samples were approximately 100 mm by

Fig. 1 Experimental results in the form of nominal stress versus nominal strain
curves for a 10 � 10 square array of holes in a sheet of PSM-4 elastomer under
compression. The dependence is approximately Hookean at small strains and all
holes deform slightly as indicated in image (a) (here strain is applied uniaxially and
is defined as 3 ¼ Dh/h where h is the original height of the sample and Dh is the
displacement). The departure from linearity is the result of an elastic buckling
instability in the microstructure that triggers a pattern transformation to an array
of orthogonal ellipses (b). The material is photoelastic and concentrated regions
of stress are indicated by the light colouring.

Manchester Centre for Nonlinear Dynamics, The University of Manchester, Oxford Rd,

Manchester M13 9PL, UK. E-mail: tom@reynolds.ph.man.ac.uk; Fax: +44 (0)161 275

4056; Tel: +44 (0)161 275 4070

Cite this: Soft Matter, 2013, 9, 4951

Received 20th November 2012
Accepted 19th March 2013

DOI: 10.1039/c3sm27677e

www.rsc.org/softmatter

This journal is ª The Royal Society of Chemistry 2013 Soft Matter, 2013, 9, 4951–4955 | 4951

Soft Matter

OPINION

193



100 mm. The material has a shear modulus of 3.25 MPa and is
photoelastic so that the colour variation seen in Fig. 1(b) gives an
indication of the stress eld. The sample was held vertically
between two close tting 5 mm thick polymethylmethacrylate
(PMMA) sheets to minimise out-of-plane buckling. An Instron
compression testing machine was used to apply a quasi-static
uniform displacement to the sample and record its response.

The results shown in Fig. 1 provide a typical example of a
stress–strain response for cellular materials1 where stress is
approximately proportional to strain for small displacements
and compression within the material is taken up by fore-
shortening of interstitial vertical ligaments in the structure.
Above a critical values of the strain (here �4%), buckling of the
ligaments occurs and stress becomes approximately indepen-
dent of strain. The buckling is coincident with the onset of the
pattern switched state shown in Fig. 1(b). The new state appears
rapidly and the transition is reversible and repeatable. Its global
nature is a result of the coupling of the buckling throughout the
square lattice and involves the counter-rotation of neighboring
interstitial four pointed star-shaped ligatures between the holes
and is predicted from theory.7

The patterned switched state exhibits a negative value of the
Poisson's ratio8,9 which is sometimes called ‘Auxetic’ behaviour.
This is illustrated in the image shown in Fig. 2 where a square
lattice of circular holes in a nominally two-dimensional silicone
rubber elastomer has been compressed with a nominal strain of
3¼ 0.25. A clear indication of negative Poisson's ratio is that the
lateral boundaries of the sample bend inwards under
compression whereas a solid rubber sample will bulge. Indeed
the results of a detailed numerical and experimental investi-
gation are in good accord for this auxetic property.9 A limitation
is that the auxetic response only occurs under compression but
it is robust, it is created in a controlled way by a simple modi-
cation to the material and it will work at the nanoscale.

A moulding process was also used to create samples con-
taining 10� 10 circular holes of diameter�10 mm in a set jelly.
This material has Young's modulus of �103 Pa (ref. 10) and
deforms in plane under its own weight when held between two
chalk dusted PDMS sheets as shown in Fig. 3. As can be seen, a
pattern switched state where the original square array of

circular holes was transformed into an array of orthogonal
ellipses. The switch occurred as soon as the sample was
oriented vertically.

Specic anisotropy was introduced into the jelly in a
controlled yet simple manner. This is illustrated in the images
shown in Fig. 4 where 8 mm long by 1 mm diameter aluminum
rods were placed as shown in Fig. 4(a). They were positioned
during the setting phase of the jelly. As in the case of the pure
jelly, the material again deformed under its own weight but now
two qualitatively different buckling modes are evident in
Fig. 4(b and c). The pattern switch is clear in Fig. 4(b) where the
rods are initially aligned in the direction of gravity (‘g’). On the
other hand, when the sample was rotated through ninety
degrees so that the rods were in a direction orthogonal to ‘g’, the
pattern switch was not found and instead shear bands formed
under compression as in the example shown in Fig. 4(c). In this

Fig. 2 Two dimensional silicone rubber sample under vertical compression at 3¼
0.25. The sample was held between two loose fitting PDMS plates which pre-
vented out of plane buckling. The sidewalls of the initial rectangular sample
moved inwards under compression indicating negative Poisson ratio behaviour.

Fig. 3 Pattern switched state in a jelly which has deformed under its own
weight. The initial state was a square lattice of circular holes which switched
rapidly to the shown array of orthogonal ellipses when the sample was turned
from lying horizontal to standing vertical.

Fig. 4 Jelly samples where additional anisotropy has been introduced into the
sample using a set of 8 mm long, 1 mm diameter aluminium (Young's modulus �
70 GPa) rods which were placed above each hole during the moulding process.
The initial undeformed state where the sample was laid flat and unstrained is
shown in (a). (b) A patterned switched state which was formed when the sample
was oriented with gravity (‘g’) parallel with the rods. (c) A shear band forms when
the sample is oriented such that ‘g’ lies in a direction orthogonal to the rods.
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case buckling was conned within the layers of rods and was
not a global effect but remained localised.

A combination of two materials was used to manufacture the
so cellular solid shown in Fig. 5. It comprised a 10� 10 square
array of holes in a silicone rubber sheet where the holes were
lled with jelly. Filling the holes with a more rigid material than
the matrix does not lead to any signicant results.7 However,
when a far weaker material was placed in the holes, a pattern
switch was observed above a critical strain of 3 � 0.04 i.e. very
close to the value found for the case of air holes discussed
above. Hence inclusion of a material which has a Young's
modulus of #1% of the bulk does not suppress the pattern
switch and has an insignicant effect on the critical strain.

A sample which contained a 5 � 5 array of circular holes was
manufactured using a visco-elastic uid which is sold as Ditt-
man's therapeutic putty. The material is essentially a stiff
variant of the viscoelastic material ‘silly putty’. It has a very high
viscosity of �105 Pa s and hence ows slowly over periods of
hours. On the other hand it is an elastic solid if strained on
short timescales. The sample was produced by refrigerating for
�3 hours which aided removal from the mould. The material
has a shear modulus of �260 kPa and hence buckled under
compression. It was positioned horizontally on the lubricated
surface of a compression rig and strained uniaxially at a rate of 1
s�1 for 5 mm. It was found that the sample was sufficiently rigid
to maintain it's original structure for �1 hour if unstrained and
pattern switched above a critical strain as shown in Fig. 6.

The results obtained for the square array of circular holes
suggests that other periodic elastomeric structures with
appropriate symmetry will have similar properties. This is
highlighted using the uniaxial compression of a rectangular
array of elliptical holes and the results are shown in Fig. 7. In
this case compression was applied in a direction perpendicular
to the major axis of the constituent elliptical holes. The nominal
stress–strain behaviour is shown in Fig. 7. As for circular holes,
the relationship is initially linear with homogeneous compres-
sion up to a strain of 0.03. At this strain there is a pattern
transformation and the stress plateaus. The transformation is a
result of a local elastic buckling instability of the vertical liga-
ments with rotation of interstitial ligatures in opposite direc-
tions. The collective behaviour results in a reversible and
repeatable pattern transformation to an alternating array of
high and low aspect ratio ellipses where the aspect ratio

contrast increases with increasing macroscopic strain and the
low aspect ratio ellipses become nearly circular. The nal
pattern which emerges is independent of the direction of the
applied strain and the ratio of the critical strain required for the
pattern transformation is approximately proportional to that of
the major to minor axes indicating that it is the stiffness ratio of
the repeat unit which sets this global property.

The effect of cell shape was also investigated using 2D
cellular structures with square and diamond-shaped voids
shown in Fig. 8(a) and (b). The 4 � 4 square array with 10 mm
sided voids with a void fraction of �0.45 were moulded in sili-
cone rubber. The buckled states display qualitatively different
features as shown in Fig. 2 although it can be seen that the
stress–strain plots are qualitatively similar to each other. The
diamond shaped lattice is clearly weaker than the square one as
it buckles at �0.75 of the applied strain and supports �2.5�
smaller stress than the square one. The pattern which develops
when the diamond geometry sample was compressed above the
critical strain is shown in Fig. 8(d) and a pattern switch was
found which is qualitatively similar to the elliptical patterns
observed with circular holes. Instead of ellipses, the diamond
shaped voids form rhombi which are oriented orthogonally to

Fig. 5 Silicone rubber sample with jelly filling each of the holes. N.B. The jelly
adhered to the rubber and retained contact with it throughout the pattern switch.

Fig. 6 Pattern switch in the deformation of a visco-elastic fluid. This image (of
the central region of the sample) was taken �1 minute after the sample con-
taining a 5 � 5 square array of circular holes which had been laid on a lubricated
flat bed and compressed.

Fig. 7 Uniaxial compression of a rectangular array of ellipses. The sample was
133.2 � 102.5 mm by 6.9 mm thick, containing a 12 � 17 rectangular array of
elliptical holes of size 5.01 mm (major axis) by 2.67 mm (minor axis) with hole
spacing of 5.99 mm vertically and 11.02 mm horizontally. The direction of
compression was orthogonal to the minor axes of the ellipses. Compression in the
orthogonal direction results in the samepattern at a valueof 3which is�0.5 smaller
than required for the transformation shownhere i.e. approximately the sameas the
axis ratio of the ellipses. An experimental stress–strain plot is shown in (c).
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their neighbours. This example can be considered as a practical
realization of the model problem of rotating tessellated squares
which has a Poisson's ratio of �1.11,12 Hence the material
shrinks laterally by the same amount it is compressed by. The
second example shown in Fig. 8(a) and (c) is a lattice of squares
which does not show a pattern switch but simply buckles so that
there is localized shearing of the voids. This is perhaps a
surprising result since a simple strut model of a square lattice
does show coupled buckling13 as discussed below.

3 An elemental mechanism

The mechanism which gives rise to the pattern switch can be
understood using a simpliedmodel shown in Fig. 9. In this the
rubber matrix has been replaced by a skeleton of elastic

classical Euler struts14 shown in white. The pattern switch
which results from the compression of the array is shown in
Fig. 10. The initial square array in Fig. 10(a) loses stability above
a critical load to a pair of buckled states shown in Fig. 10(b) and
(c) when it is compressed uniaxially. In the buckled states it can
be seen that elastic ‘waves’ have travelled across the array from
top to bottom and side-to-side and that each of the interstitial
points has rotated in alternate directions.

A measure of this bifurcation event was made in experiments
on 10 � 10 arrays of holes in an elastomer. The measure of the
bifurcation is the ratio of the vertical to horizontal dimension of
the holes which were averaged over the central 36 holes of the 10
� 10 array. A xed set of reference holes was used in each case
and averaging was performed in pairs. A pitchfork bifurcation is
uncovered where a circular array of holes (ratio ¼ 1) is replaced
by an array of orthogonal ellipses with increasing (or
decreasing) ratios. A simple model for the buckling of a single
Euler strut is given by15

_x ¼ lx � x3 (1)

where l is the load parameter and x is the deection of the
middle of the beam. x ¼ 0 is a solution of the equation for all l
but it can easily be shown that there are two more real stable
solutions x ¼ �Ol for l > 0 together with the unstable trivial
x¼ 0 state. In the case of the pattern switch the array of coupled

Fig. 8 Images of the compression of an array of square (a and b) and diamond (c
and d) holes in a silicone rubber matrix. Both have the voidage fraction of 0.45
and the images were taken at 3 ¼ 0.03 (a and b) and 3 ¼ 0.1 (c and d). Experi-
mental stress–strain plots for the respective cases are shown below the images.

Fig. 9 A schematic diagram illustrating how a skeletal arrangements of Euler
struts (shown in white) can be used to represent the full elastomer sample.

Fig. 10 The compression of the skeletal sample (a) results in buckling of the
Euler struts above a critical load to produce two buckled states (b) or (c).13 An
experimental bifurcation diagram is given in (d) where the measure of the state is
the ratio of the vertical to horizontal dimension of the holes averaged over the
central 36 holes of 10 � 10 array of circular holes. The hole dimension ratios were
measured w.r.t. the same preselected hole.

4954 | Soft Matter, 2013, 9, 4951–4955 This journal is ª The Royal Society of Chemistry 2013
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Euler struts gives a single global pitchfork bifurcation because
of the strong coupling which is present in the square array. An
interesting feature which is evident in the experimental bifur-
cation diagram is that the bifurcation is sharp despite the
inevitable presence of imperfections. This is perhaps an indi-
cation that the imperfections are in some sense ‘averaged out’
in the square array.

4 Discussion

In conclusion, we have shown that pattern switching is a robust
phenomenonwhen a so cellular solid containing a square array
of circular holes is compressed. The effect does not depend on
the details of the properties of the elastic matrix. The robustness
is striking and perhaps surprising since only approximately
square geometries can be made in practice. Hence the presence
of manufacturing imperfections are relatively unimportant. Of
greater importance than either the material properties or the
presence of imperfections is the symmetry of the lattice and its
repeat unit. While square lattices may be weak structures from
an engineering perspective, they have important optical prop-
erties at the nanoscale and the nonlinear features discussed here
persist to very small scales.4 Hence, these observations at the
macroscale open the door for exploring novel metamaterials at a
convenient laboratory scale and they in turn provide insights
into mechanisms which control properties at the nanoscale.
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Dynamic compression of elastic and plastic cellular solids
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We report the results of an experimental investigation into buckling in elastic and plastic cellular

materials under dynamic compression. The buckling instabilities are in the form of a global pattern

switch where the square array of circular holes is transformed into a set of orthogonal ellipses.

Properties of the instabilities in the elastic and plastic cellular materials are compared and contrasted.

The case of the elastic structure is considered as a delayed pitchfork bifurcation. On the other hand,

the response of the plastic lattice is complex, and an irreversible global instability is only found above

a critical compression rate. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824845]

Low density cellular solids are common in nature with

examples at the macroscale of cancellous bone1 with high

strength-to-weight ratio to the intricate micro-structures on

the wings of butterflies which give them their iridescent col-

ours.2 The strength-to-weight ratio and optical properties of

such materials have been exploited in the design of complex

technologically important structures ranging in scale from

spacecraft to photonic crystals. When these materials are

compressed they may undergo elastic instabilities where the

cell walls of the matrix bend or buckle. The influence of this

on the global properties of the material is a current area of

research. Applications include energy absorption by the

crushing of layers3 to the control of bandgaps of photonic

crystals4 and the wetting of surfaces.5

An interesting example of an elastic instability in a

cellular material is provided by the compression of a

two-dimensional elastomer with a square lattice of holes.

The phenomenon is the main focus of this paper and is illus-

trated in Fig. 1 where it can be seen that the initially square

array of circular holes is transformed into a set of orthogonal

ellipses under 8% vertical compression. Note that the sides

of the sample shown in Fig. 1 move inwards under compres-

sion which is a feature of the negative Poisson ratio of this

cellular material.6,7 This instability was predicted theoreti-

cally3 and realised experimentally8 and has been shown to

exist in a variety of soft materials under compression.9 The

aim of this study was to investigate the effects of dynamic

compression on the buckling instabilities present in elastic

and plastic cellular lattices. In elastic lattices, the switch in

states is reversible, repeatable, and global and has now been

found at the nanoscale.4,10 Euler buckling is central to the

instability and is of current interest in other aspects of nano-

materials.11 Since the pattern switch is reversible in the

elastic lattice, one sample was used for all compressive test-

ing conducted throughout this investigation. The global pat-

tern switch also occurred in plastic samples; however,

different samples had to be used for each experiment as the

plastic deformation process was irreversible. The occurrence

of the pattern switch in plastic materials suggests that similar

buckling instabilities may result from the dynamic compres-

sion of other hard materials.

The buckling of an elastic cellular material with a square

array of circular holes can be considered as an example of a

pitchfork bifurcation9 where in the case of the pattern switch

the two branches of the pitchfork are buckled states which

are shifted in phase by half a wavelength. When a parameter

is swept through such a bifurcation there is a delay in the

onset of the instability12 and the amount of the delay will

scale as the square root of the sweep speed13 over a small

range of the parameters.

The elastomer sample was made from the addition cur-

ing silicone rubber Sil AD Spezial (SADS), supplied by

Feguramed GmbH. The cured material has the manufac-

turer’s quoted value of the Young’s modulus of Es

’ 400 kPa which is in accord with measured values.14 The

manufacture of the sample involved mixing equal measures

of two fluids, placing the individual component fluids under

vacuum to remove dissolved gases and allowing the mixture

to set for an hour to ensure full curing. The mixture was

poured into a purpose-built mould of machined cylindrical

pillars arranged on a square lattice. The cured sample was

removed from the mould, and the two side walls were cut

from the sample, leaving seven columns of eight holes,

flanked by a column of eight semi-circles on either side. The

elastomer sample comprised a lattice of circular holes of di-

ameter 8.79 6 0.09 mm arranged on a square. The void frac-

tion was 0.65. The height of the sample was 77 6 0.1 mm,

width 77 6 0.1 mm, and thickness 7 6 0.1 mm.

The plastic samples were fabricated using a commercial

3D printer (3D Touch triple head, Bits From Bytes) using ac-

rylonitrile butadiene styrene (ABS) plastic. This is a light-

weight rigid polymeric material with a Young’s modulus of

2.3 GPa which is a factor of �5750 stiffer than the silicone

rubber. The printer forms plastic objects by a process known

as fused filament fabrication; in essence, a bead of molten

thermoplastic is extruded from a hot nozzle which is moved

under computer control in the horizontal direction with

defined steps in the vertical to build up the object, layer by

layer. It is based on the open-source RepRap project.15 A

base layer of polylactic acid was used to help prevent the

printed object sticking to the print bed. Since the sample isa)tom@reynolds.ph.man.ac.uk
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built up in horizontal layers, the material properties are ani-

sotropic; specifically, the joins between layers are weaker

than the layers themselves. However, as we are primarily

interested in 2D distortions of the structures, printing the

samples with the plane of interest horizontal ensured that the

material properties were homogeneous in the plane of inter-

est for our experiment.

The plastic samples comprised 5� 5 lattices of

9 6 0.02 mm diameter holes arranged on a square array.

The samples had a void fraction of 0.64. They were

60 6 0.02 mm high, 60 6 0.02 mm wide, and 10 6 0.02 mm

thick. The side, top, and bottom boundaries were all flanked

by semi-circles, i.e., the samples consisted of 5� 5 lattices

bounded by semi-circles as shown in Fig. 4. The testing of

the plastic samples was irreversible, and a new sample was

used in each experiment.

The samples were tested on two Instron machines, a

twin arm model 5569 for the plastic and single arm model

3345 for the rubber. Each of the samples was placed in a

housing and compressed with a Perspex loader of width

100.10 6 0.05 mm, thickness 9.68 6 0.09 mm attached to

an aluminium clamp. The housing ensured the samples

remained upright and consisted of an aluminium U-shaped

frame and base, which was attached to each Instron, and a

front and back plate both made from Perspex with a spacing

of 10.1 6 0.1 mm. The front and back plates enabled visual-

ization, prevented out-of-plane buckling and were removable

to allow access to the experimental sample. There was a

clearance of 0.7 6 0.1 mm between the loader and the hous-

ing when the setup was assembled.

Compression tests were performed on both machines

using 1 kN load cells. The sample faces were dusted with

flour for the elastomeric structure and coated with vaseline

for the plastic lattices to reduce frictional effects. All surfa-

ces were made parallel to ensure even loading of the sample

and prevent the loader touching the outer plates of the hous-

ing. The load associated with the displacement was recorded

once every 100 ms and used to produce a stress-strain curve

for the compression process.

The stress-strain data for the elastic lattice shown in Fig.

2(a) has the same characteristic form for all strain rates. The

elastic regime where stress increases in proportion to applied

strain is followed by a stress plateau where stress is inde-

pendent of strain. Buckling of the ligaments of the cellular

structure is initiated at the turnover point and grows as the

square root of the strain in accord with the generic behaviour

of pitchfork bifurcations.9 These curves contain the generic

features found in cellular materials under compression of a

FIG. 1. The pattern switch in a two-

dimensional elastomer. (a) Initial state

(b) at 8% compression. The global na-

ture of the transformation is evident

apart from edge effects at the top and

bottom surfaces.

FIG. 2. (a) Plot of the stress-strain diagram for an 8� 7 elastic lattice for lin-

ear compression rates at 0.005, 0.001, 0.05, 0.1, 0.5, and 1 mm s�1. The

stress plateau increases monotonically with strain rate. (b) Differences

between the quasistatic critical point and the stresses at onset of the instabil-

ity at the strain-rates used in (a). The solid line is the least squares fit of a

square root function to the data. The quasistatic value was measured at a

strain rate of 0.0001 mm s�1 which has been shown previously8 to give a

good approximation to the quasistatic limit.

FIG. 3. (a) Stress strain datasets for the ABS plastic material which were

taken at 1: 0.016 mm s�1, 2: 0.05 mm s�1 (no stress plateau), 3: 1.0 mm s�1,

4: 5.0 mm s�1, and 5: 8.5 mm s�1 (single stress plateau). (b) Inset of peak

stress for cases where the pattern transformation occurred plotted as a func-

tion of the log of the strain rate. The fitted line in (b) has a slope of 0.427.

N.B. The stress strain datasets taken at 0.5 mm s�1 have been omitted from

(a) to clarify the diagram.
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linearly elastic region followed by a stress plateau above a

critical strain.1 In the case of a square lattice of holes, a pat-

tern switch from an array of circular holes to one of orthogo-

nal ellipses as shown in Fig. 1 occurs at the onset of the

stress plateau.

The linear relationship between macroscopic stress and

strain results from the collective microscopic elastic bending

of individual ligaments. As can be seen in Fig. 2(a) there is

very weak dependence of the slope on strain rate over the

range investigated. This result is in accord with those

reported in Ref. 16 where independence of this slope was

found over a much wider range of strain rates than investi-

gated here. The elastic lattice has the characteristics of a

type I material17 such that there is a gradual onset of the

instability with increasing load which is typical of columnar

buckling. Hence the plateau corresponds to buckling of the

cell walls which occurs above a critical strain.

We show in the inset to Fig. 2(b) a plot of the difference

between the values of the critical stress at the onset of the

pattern switch, i.e., the values of the stress at the turning

points in Fig. 2(a), and the quasi-static case for the strain rate

range 0.005 mm s�1 to 1 mm s�1. The solid line is the least

squares fit of a square root function to the data. This result is

consistent with the generic delay in pitchfork bifurcations

found when the control parameter is swept through the bifur-

cation point at increasing speeds.13

The stress-strain results shown in Fig. 3(a) were

obtained using the plastic material. Dynamic compression

above a strain rate of 0.5 mm s�1 results in a pattern

switch comparable to that of the elastomeric structure. An

example of a plastic lattice before and after compression

at a strain rate of 1 mm s�1 is shown in Fig. 4 and corre-

sponds to stress-strain dataset labelled 3 in Fig. 3.

Compression at a strain rate below 0.5 mm s�1 results in

localized collapse of the plastic structure and the forma-

tion of a shear band (see Fig. 5). Although distinct

dynamic regimes exist above and below a strain rate of

0.5 mm s�1, the threshold exhibits sensitivity to imperfec-

tions; one sample compressed at 0.5 mm s�1 pattern

switched whereas a second sample compressed at the

same rate displayed localized buckling. The sensitivity to

imperfections means that it is difficult to give a sharp esti-

mate of the critical strain rate. Intriguingly, previous work

on the compression of elastic lattices showed that the

effect of imperfections on the quasistatic onset of the pat-

tern switch to be surprisingly small.14

Above the critical strain rate, the global pattern switch is

a robust phenomenon which results from a highly nonlinear

event. The pattern switch is caused by plastic collapse and is

hence irreversible. The stress-strain data obtained from

samples compressed with a strain rate above 0.5 mm s�1

(see lines labelled 3–5 in Fig. 3) have the characteristics of a

type II material with a linear elastic region and a pronounced

peak at a catastrophic buckling transition,17 followed by a

subsequent stress plateau. The peak stress increases with

strain rate as shown in Fig. 3(b) where the straight line fit to

the logarithmic data indicates that the scaling is �0.427,

i.e., significantly faster than the values of 0.25 found for the

elastomer, i.e., the plastic switch is not an example of a sim-

ple pitchfork bifurcation. The stress plateau appears to be in-

dependent of strain rate, as the level attained by different

samples compressed at different rates is the same to within

experimental error, which suggests that the pattern switching

process is a robust feature of the dynamic compression of

plastic lattices and that the energy absorbed by the material

is independent of strain rate.1

The location of the shear band which forms for compres-

sive strain rates below 0.5 mm s�1 is dependent on local

imperfections in the sample. The stress-strain results obtained

FIG. 4. Images of the compression of a

plastic sample. (a) Initial state (b) after

compression by 10% at 1.0 mm s�1. In

this case the Poisson’s ratio was found

to be ’ 0. Small (�0.8 mm diam.)

holes can be seen at the center of each

interstitial. These are features of the

prototyping process, and their location

was set to the centers of the interstitials

to minimize their effect on the strength

of the material.

FIG. 5. An image of a localized shearband formed in an ABS sample at a

compression rate of 0.0033 mm s�1. The location of the band is dependant

on local imperfections in the sample.
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for strain rates less than 0.5 mm s�1 have complicated forms

and lack the stress plateau indicative of a pattern switch; two

datasets, obtained at strain rates of 0.016 mm s�1 and

0.05 mm s�1, are included in Fig. 3.

In conclusion, a global pattern switch occurs for all

strain rates in an elastic cellular solid which contains a

square array of circular holes. The linear section of the

stress-strain relationship does not depend on strain rate, but

the amplitude of the stress plateau formed when the pattern

switch that occurs increases in proportion to the square root

of the strain rate. This finding is in accord with generic fea-

tures of dynamic pitchfork bifurcations.12 Geometrically

equivalent cellular structures made from ABS plastic have a

global pattern switch above a critical strain rate. An interest-

ing feature which emerges is that the plateau stress is inde-

pendent of the strain rate indicating that the energy absorbed

by the material is also independent of strain rate. This result

suggests that other rigid materials may undergo a pattern

switch under dynamic loading. Several attempts were made

with a copper cellular material and partial success was

achieved. However, we were unable to reach large dynamic

strains with the available testing machines and encourage

others to test this possibility with more appropriate

apparatus.
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