5 research outputs found

    Development of a Nanosatellite Software Defined Radio Communications System

    Get PDF
    Communications systems designed with application-specific integrated circuit (ASIC) technology suffer from one very significant disadvantage - the integrated circuits do not possess the ability of programmability. However, Software Defined Radio’s (SDR’s) integrated with Field Programmable Gate Arrays (FPGA) provide an opportunity to update the communication system on nanosatellites (which are physically difficult to access) due to their capability of performing signal processing in software. SDR signal processing is performed in software on reprogrammable elements such as FPGA’s. Applying this technique to nanosatellite communications systems will optimize the operations of the hardware, and increase the flexibility of the system. In this research a transceiver algorithm for a nanosatellite software defined radio communications is designed. The developed design is capable of modulation of data to transmit information and demodulation of data to receive information. The transceiver algorithm also works at different baud rates. The design implementation was successfully tested with FPGA-based hardware to demonstrate feasibility of the transceiver design with a hardware platform suitable for SDR implementation

    Obtaining performance and programmability using reconfigurable hardware for media processing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2002.Includes bibliographical references (p. 127-132).An imperative requirement in the design of a reconfigurable computing system or in the development of a new application on such a system is performance gains. However, such developments suffer from long-and-difficult programming process, hard-to-predict performance gains, and limited scope of applications. To address these problems, we need to understand reconfigurable hardware's capabilities and limitations, its performance advantages and disadvantages, re-think reconfigurable system architectures, and develop new tools to explore its utility. We begin by examining performance contributors at the system level. We identify those from general-purpose and those from dedicated components. We propose an architecture by integrating reconfigurable hardware within the general-purpose framework. This is to avoid and minimize dedicated hardware and organization for programmability. We analyze reconfigurable logic architectures and their performance limitations. This analysis leads to a theory that reconfigurable logic can never be clocked faster than a fixed-logic design based on the same fabrication technology. Though highly unpredictable, we can obtain a quick upper bound estimate on the clock speed based on a few parameters. We also analyze microprocessor architectures and establish an analytical performance model. We use this model to estimate performance bounds using very little information on task properties. These bounds help us to detect potential memory-bound tasks. For a compute-bound task, we compare its performance upper bound with the upper bound on reconfigurable clock speed to further rule out unlikely speedup candidates.(cont.) These performance estimates require very few parameters, and can be quickly obtained without writing software or hardware codes. They can be integrated with design tools as front end tools to explore speedup opportunities without costly trials. We believe this will broaden the applicability of reconfigurable computing.by Ling-Pei Kung.Ph.D

    Architectures for dependable modern microprocessors

    Get PDF
    Η εξέλιξη των ολοκληρωμένων κυκλωμάτων σε συνδυασμό με τους αυστηρούς χρονικούς περιορισμούς καθιστούν την επαλήθευση της ορθής λειτουργίας των επεξεργαστών μία εξαιρετικά απαιτητική διαδικασία. Με κριτήριο το στάδιο του κύκλου ζωής ενός επεξεργαστή, από την στιγμή κατασκευής των πρωτοτύπων και έπειτα, οι τεχνικές ελέγχου ορθής λειτουργίας διακρίνονται στις ακόλουθες κατηγορίες: (1) Silicon Debug: Τα πρωτότυπα ολοκληρωμένα κυκλώματα ελέγχονται εξονυχιστικά, (2) Manufacturing Testing: ο τελικό ποιοτικός έλεγχος και (3) In-field verification: Περιλαμβάνει τεχνικές, οι οποίες διασφαλίζουν την λειτουργία του επεξεργαστή σύμφωνα με τις προδιαγραφές του. Η διδακτορική διατριβή προτείνει τα ακόλουθα: (1) Silicon Debug: Η εργασία αποσκοπεί στην επιτάχυνση της διαδικασίας ανίχνευσης σφαλμάτων και στον αυτόματο εντοπισμό τυχαίων προγραμμάτων που δεν περιέχουν νέα -χρήσιμη- πληροφορία σχετικά με την αίτια ενός σφάλματος. Η κεντρική ιδέα αυτής της μεθόδου έγκειται στην αξιοποίηση της έμφυτης ποικιλομορφίας των αρχιτεκτονικών συνόλου εντολών και στην δυνατότητα από-διαμόρφωσης τμημάτων του κυκλώματος, (2) Manufacturing Testing: προτείνεται μία μέθοδο για την βελτιστοποίηση του έλεγχου ορθής λειτουργίας των πολυνηματικών και πολυπύρηνων επεξεργαστών μέσω της χρήση λογισμικού αυτοδοκιμής, (3) Ιn-field verification: Αναλύθηκε σε βάθος η επίδραση που έχουν τα μόνιμα σφάλματα σε μηχανισμούς αύξησης της απόδοσης. Επιπρόσθετα, προτάθηκαν τεχνικές για την ανίχνευση και ανοχή μόνιμων σφαλμάτων υλικού σε μηχανισμούς πρόβλεψης διακλάδωσης.Technology scaling, extreme chip integration and the compelling requirement to diminish the time-to-market window, has rendered microprocessors more prone to design bugs and hardware faults. Microprocessor validation is grouped into the following categories, based on where they intervene in a microprocessor’s lifecycle: (a) Silicon debug: the first hardware prototypes are exhaustively validated, (b) Μanufacturing testing: the final quality control during massive production, and (c) In-field verification: runtime error detection techniques to guarantee correct operation. The contributions of this thesis are the following: (1) Silicon debug: We propose the employment of deconfigurable microprocessor architectures along with a technique to generate self-checking random test programs to avoid the simulation step and triage the redundant debug sessions, (2) Manufacturing testing: We propose a self-test optimization strategy for multithreaded, multicore microprocessors to speedup test program execution time and enhance the fault coverage of hard errors; and (3) In-field verification: We measure the effect of permanent faults performance components. Then, we propose a set of low-cost mechanisms for the detection, diagnosis and performance recovery in the front-end speculative structures. This thesis introduces various novel methodologies to address the validation challenges posed throughout the life-cycle of a chip

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000

    A many-core software framework for embedded space computing

    Get PDF
    Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 66-67).Space computing has long called for powerful yet power-efficient hardware for on-board computation. The emergence of many-core CPUs on a single die provides one potential solution. The development of processors like Maestro strives for the balance between computational power and energy efficiency. However, development in software has not kept up. Not a single dominant programming framework has emerged to allow developers to easily write applications to take advantage of the new multi-core paradigm. As a result, in NASA's technology roadmap, fault management, programmability, and energy management under the new multi-core paradigm have been listed as top challenges. The goal of this thesis is to develop a framework that streamlines programming for multi-core processors, in the form of a programming model and a C++ programming library. A 49-core Maestro Development Board (MDB) serves as the development and testing hardware platform. The framework's usability is tested through a software simulation of a vision-based crater recognition algorithm for a lunar lander. A parallel version of the algorithm is written under the framework and tested, and a performance gain of about 300%, using 21 Maestro cores, is observed over the RAD750. The uniqueness of this framework lies in the principle that task blocks, not CPU cores, are the fundamental abstraction for individual processes. Each task block is allocated an arbitrary number of CPUs, completes one task, and communicates with other task blocks through message passing. Fault tolerance, power management, and communication among task blocks are abstracted out so that programmers can concentrate on the implementation of the application. The resulting programming library provides developers with the right tools to design and test parallel programs, port serial versions of applications to their parallelized counterparts, and develop new parallel programs with ease.by Eugene Yu-Ting Sun.M. Eng
    corecore