
A Many-Core Software Framework for Embedded Space

Computing

by

Eugene Yu-Ting Sun

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

@2013 Eugene Yu-Ting Sun, All rights reserved

ARCINVES
AHUSETTS I NSTITUTE

OCT 2 9 2013

R RIES

The author hereby grants to MIT and The Charles Stark Draper Laboratory, Inc.
permission to reproduce and to distribute publicly paper and electronic copies of this

thesis document in whole or in any part medium now known or hereafter created.

Author............. .........
Department of ectrical Engineering and Computer Science

May 21, 2013

C ertified by ...... ...... . ......................... . . . . ....
(1(1 Joseph A. Kochocki

roup Leader, Avionics Architecture, Draper Laboratory, Inc.
Thesis Supervisor

C ertified by.......... ............. ....................
Christopher J. Terman

Senior Lecturer, Department of EECS, MIT
Thesis Co-Supervisor

A ccepted by .................... V.......................,....................
Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee



A Many-Core Software Framework for Embedded Space Computing

by

Eugene Yu-Ting Sun

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 2013, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Space computing has long called for powerful yet power-efficient hardware for on-board
computation. The emergence of many-core CPUs on a single die provides one potential
solution. The development of processors like Maestro strives for the balance between com-
putational power and energy efficiency. However, development in software has not kept up.
Not a single dominant programming framework has emerged to allow developers to easily
write applications to take advantage of the new multi-core paradigm. As a result, in NASA's
technology roadmap, fault management, programmability, and energy management under
the new multi-core paradigm have been listed as top challenges. The goal of this thesis is to
develop a framework that streamlines programming for multi-core processors, in the form
of a programming model and a C++ programming library. A 49-core Maestro Development
Board (MDB) serves as the development and testing hardware platform. The framework's
usability is tested through a software simulation of a vision-based crater recognition algo-
rithm for a lunar lander. A parallel version of the algorithm is written under the framework
and tested, and a performance gain of about 300%, using 21 Maestro cores, is observed over
the RAD750. The uniqueness of this framework lies in the principle that task blocks, not
CPU cores, are the fundamental abstraction for individual processes. Each task block is
allocated an arbitrary number of CPUs, completes one task, and communicates with other
task blocks through message passing. Fault tolerance, power management, and communi-
cation among task blocks are abstracted out so that programmers can concentrate on the
implementation of the application. The resulting programming library provides developers
with the right tools to design and test parallel programs, port serial versions of applications
to their parallelized counterparts, and develop new parallel programs with ease.
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Chapter 1

Introduction

Since the 1950s, the National Aeronautics and Space Administration (NASA) and other

organizations have been launching missions into space. Dozens of Low Earth Orbit (LEO)

and Geosynchronous Orbit (GEO) missions have been conceived and launched to support a

broad range of missions including Earth-based communications, Global Positioning System

(GPS), deep space observation and communications, Earth observation and national secu-

rity. NASA missions typically go well beyond Earth local missions such as the International

Space Station and Hubble Space Telescope to perform missions within the solar system of

general interest to humanity. Much attention has been focused recently on missions to Mars

to study that planet's surface and atmospheric chemistry and to look for signs of water,

and hence signs of life. Missions are already being envisioned to study the asteroid belt and

other planets including Jupiter's moons. Though each mission has its unique requirements,

all of them require spaceborne computing platforms that can meet the mission goals and

deliver the necessary science value back to Earth for investigation.

This thesis inspects the challenges faced by the community of space computing in its efforts

to meet next-generation mission requirements, specifically in the domain of computational

performance. The challenges in the field of embedded space computing are surveyed. A

solution is offered, and the implementation of the solution is attempted, benchmarked, and

analyzed.
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1.1 Motivation

Every ten years the National Research Council conducts the Decadal Survey for NASA. The

latest one reported out in 2011 covers the period from 2013 - 2022. The survey identified

a broad set of 25 planetary mission of interest to the scientific community that include: a

Venus Lander to study that planet's surface and atmospheric composition; a Mars Sample

Return to bring back specimens from the Mars surface to learn more about surface and

atmospheric chemistry and the search for life there; a Trojan Tour of the Asteroid Belt

to examine the potential for landing on an asteroid and future applications (e.g. mining)

there. These missions will require the following capabilities:

" Entry, Descent and Landing

" Small Body Proximity Operations

" Autonomous Landing Hazard Avoidance

" Enhanced Guidance, Navigation & Control

" Autonomous/Goal-Based Mission Planning

" Fast Surface Mobility

" Surface Science during Traverse

" On-board Data Product Generation

" Science Event Detection and Response

Increased computational performance will greatly enhance mission capability and science

value return, particularly in the case of un-manned autonomous missions which, by necessity,

will require little to no ground-based intervention for mission success.

Many current NASA missions incorporate the 1990's era BAE RAD750TM processor into

their technical solutions. The RAD750TM has been a rock-solid processing capability for

near Earth missions as well as planetary missions for nearly two decades, delivering - 240

Dhrystone Millions of Instructions Per Second (MIPS) and 70-80 Mega Floating-point Op-

erations Per Second (MFLOPS). Unfortunately, it cannot supply the computational per-

formance envisioned for many if not most future space missions described above. NASA's

10
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CHAPTER 1. INTRODUCTION

Human Exploration and Operation Missions Directorate (HEOMD) as well as the Space

Missions Directorate (SMD), have established future High Performance Spaceflight Com-

puting needs as documented in the HPSC Avionics Formulation Task Study Report [7].

Some of Key Performance Parameters (KPP) included in that study are dictated by very

stringent system level mission requirements:

" Computational Performance

" Fault Tolerance

" Radiation Tolerance

" Power and Energy Management

" Programmability and Flight Software Applicability

" Flight Software Verification and Validation (V&V)

* Interoperability

" Extensibility and Evolvability

While some existing multi-core processing solutions meet some of these KPPs such as com-

putational performance, they fall far short in other key critical areas important to NASA.

For example, NASA missions often have both severe power restrictions as well as fault toler-

ance requirements needed to endure long space missions. Future NASA missions will go to

new and uncertain environments where system level testing of all possible mission scenarios

is not possible a priori. Deep space missions are too far away for time critical command

and control from Earth, therefore more autonomy will be introduced into future spacecraft

to support these missions. Enhanced spaceflight computing will clearly be a technology

multiplier allowing for many more possibilities over today's existing space-based computing

platforms by expanding on-board capabilities across a wide set of NASA missions.

This thesis addresses a limited set of the KPPs mentioned above including Computational

Performance and Programmability. While some other KPPs were partially addressed such

as Fault Tolerance and Power Management, time limited the scope of this thesis to parallel

processing on the 49-core Maestro processor and the application of such to Vision-based

Navigation (VBN).
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1.1. MOT IVAT ION



1.2 Background

1.2.1 Many-Core Programming

Many-core programming is essentially a synonym with multi-core programming, concurrent

programming, parallel programming, and maybe even distributed programming. These

terms all refer to a method of software programming for the "form of computation in which

many calculations are carried out simultaneously" [2]. The word "many-core programming"

put emphasis on using a large number of CPU cores.

In the world of Graphics Processing Unit (GPU), many-core programming has been in

developers' back pockets for quite a long time. A modern graphics card generally has

hundreds of GPU cores ready to crunch matrix manipulations. However, in the world of

Central Processing Unit (CPU), the state of many-core programming, until recently, can

only be described as stale. If Moore's law didn't force the CPU world into the paradigm of

putting more and more cores onto the board, many-core programming would probably still

be absent from our sight. According to a recent survey conducted by UBM@ TechWeb on

Dr.Dobbs@ readers [18, p.2]:

81 percent of developers surveyed report having at least some parallel com-

puting experience... 82 percent of developers now consider parallel programming

to be important or even critical for the proper functioning of the software they

develop.

Which seems to be a piece of great news. However, in the same survey, 28 percent of

developers responded that they don't use or don't know about any tool that finds memory

defects or does performance tuning, and 66 percent of developers don't use any tool to find

threading defects [18, p.4]. The lack of tool usage may indicate simply personal preferences

of these developers in tool usage, but clearly this is not the case. More than half of the

surveyed developers want tools to "guide them and help them parallelize their code", to

"avoid incorrect use of parallelization" [18, p.5]. In other words, many developers working

on parallel programming are looking for some kind of frameworks that provides both a

12
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model of parallelized thinking and the tools to streamline the coding process.

1.2.2 RAD750TM: The Current Standard

The RAD750TM developed by British Aerospace Engineering (BAE) Systems in the 1990s,

is the current industry standard for space computing. BAE's original paper details the

development of first generation RAD750TM below [3]:

BAE SYSTEMS has developed the RAD750TM, a fully licensed radiation

hardened implementation of the PowerPC 7 5 0 TM microprocessor, based on the

original design database. The processor is implemented in a 2.5 volt, 0.25 mi-

cron, six-layer metal Complementary Metal-Oxide Semiconductor (CMOS) tech-

nology. Employing a superscalar Reduced Instruction Set Computing (RISC)

architecture, processor performance of 260 million Dhrystone 2.1 instructions

per second (MIPS) at 133 MHz is provided, while dissipating less than six watts

of power. The RAD750TM achieves radiation hardness of 1E-11 upsets/bit-day

and is designed for use in high performance spaceborne applications. A new

companion Application Specific Integrated Circuit (ASIC), the Power Periph-

eral Control Interconnect (PCI), provides the bridge between the RAD750TM,

the 33 MHz PCI backplane bus, and system memory. The Power PCI is im-

plemented in a 3.3 volt, 0.5 micron, five-layer metal CMOS technology, and

achieves radiation hardness of <lE-10 upsets/bit-day.

Since this thesis deals mainly with the software aspect of many-core programming, the focus

is placed much more on the computational performance aspect of the processor, rather than

the mechanism behind the radiation hardening process.

An improved second generation RAD750TM was also produced, and its features, in com-

parison to first generation RAD750TM, are listed below [10]:

13
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CHAPTER 1. INTRODUCTION 1.2. BACKGROUND

Feature 1" Generation 2"" Generation
RAD750 RAD750

Technology 250nm RHBD 180nm RHBP

Foundry Commercial Rad-Hard

Clock Frequency 133MHz 200MHz

Performance 260MIPS 400MIPS

Vdd (Core/I/O) 2.5/3.3V 1.8/3.3V
Power (Full) 38mW/MHz 25mW/MHz
Power (Doze) 17mW/MHz 12mW/MHz
Power (Sleep) 3.4mW/MHz 1.5mW/MHz

Operating Temp. -550 to 1250 -550 to 1250

Total Ionizing Dose 200krd(Si) 2Mrd(Si)
Natural Space High Dose Rate

Single Event Rate l1E-10e/b-d ~1E-11e/b-d
(90% Geo)
Latch-Up immune Immune

Table 1.1: RAD750T1" Feature Comparison by Generation

1.2.3 Requirements of Space Computing

NASA space missions require both a flight segment and a ground segment. Both work hand-

in-hand to accomplish mission goals. As NASA probes deeper into space, the communication

time increases, necessitating increased spacecraft autonomy. The resulting trend is thus to

move computational power from the ground to the spacecraft.

The requirement for each segment has been summarized in NASA's Space Technology

Roadmap as below 1 :

Pinpoint landing, hazard avoidance, rendez-vous-and-capture, and surface

mobility are directly tied to the availability of high-performance space-based

computing. In addition, multi-core architectures have significant potential to

implement scalable computing, thereby lowering spacecraft vehicle mass and

power by reducing the number of dedicated systems needed to implement on-

board functions.

'NASA's Space Technology Roadmaps have been in development since 2010, and was finalized early in

2012. In the report, agency specialists outlined the top technical challenges within 14 different areas of space

technologies. Computer architecture, including the development of multi-core systems, was included in the

report for technology area 11, by the title of Modeling, Simulation. Information Technology and Processing.

14
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CHAPTER 1. INTRODUCTION

Flight Computing requires reliable, radiation-hardened platforms which, un-

til recently, have been costly and limited in performance. Ground Comput-

ing requires supercomputing or other high-performance platforms to support

petabyte-scale data analysis and multi-scale physical simulations of systems and

vehicles in unique space environments. [6, p.1]

NASA would like to develop flight computing systems that are powerful enough to offload

computation from the ground, or more importantly, to have a platform that strikes a balance

in computing performance and energy consumption. This requirement is where multi-core

computing comes into play. In NASA's words:

Multi-core architectures have significant potential to implement scalable com-

puting, thereby lowering spacecraft vehicle mass and power by reducing the

number of dedicated systems needed to implement on-board functions... In

addition, multi-core enables numerous system architecture options not feasible

with single-core processors. [6, p.9]

Yet, building an effective multi-core hardware system is hardly the main problem. Listed

under Top Technical Challenges, six out of ten challenges are in the domain of software,

with the remaining four being about simulation, modeling, and system architecture. [6, p.5].

Within the software challenges, the top two are Eliminate the Multi-core "Programmability

Gap" and System Software for Multi-Core Computing. The former has to do with the

programming method, while the latter has to do with the architecture and guidelines of

parallelization. To explain these challenges in NASA's words:

Eliminate the Multi-core "Programmability Gap": For all current

programming models, problem analysis and programming choices have a direct

impact on the performance of the resulting code. This leads to an incremen-

tal, costly approach to developing parallel distributed-memory programs. What

has emerged today is a "Programmability Gap", the mismatch between tradi-

tional sequential software development and today's multi-core and accelerated

computing environments. New parallel languages break with the conventional

15
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1.3. SOLUTION OVERVIEW

programming paradigm by offering high-level abstractions for control and data

distribution, thus providing direct support for the specification of efficient par-

allel algorithms for multi-level system hierarchies based on multi-core architec-

tures.

System Software for Multi-Core Computing: The first multi-core com-

puting chips for space applications are emerging and the time is right to develop

architecturally sound concepts for multi-core system software that can use the

unique attributes of multi-core computing: software-based approaches to fault

tolerance that complement radiation hardening strategies, energy management

approaches that account for the energy costs of data movement, and programma-

bility and compiler support for exploiting parallelism. [6, p.6]

It can be seen that in the realm of space computing, moving towards a multi-core archi-

tecture demands an immediate breakthrough in the area of software engineering, both in

the domain of programming methodology and system architecture. Programmers working

in the domain of parallel programming need an effective tool to guide them through the

parallelization of applications, not only in designing programs, but also in coming up with

parallelization strategies.

1.3 Solution Overview

In order to streamline parallel programming, we have identified several choices to find the

ideal tool for programmers working in the domain. This section summarizes and analyzes

these design choices.

Building and using a new language may prove to be more costly than necessary. There have

already been quite a complete selection of different languages to choose from in the market,

ranging from newly developed languages like Erlang, or rediscovered gems such as Haskell.

The similarity all these languages share is their close tie to Lisp, and their root in functional

programming. Though the ideas in functional programming are extremely helpful in solving

multi-core programming problems, the syntax of Lisp is unfamiliar to programmers versed



in mainstream languages. The lack of adoption of such languages means less testing, less

reliability, and hence less robustness.

Compiler-level auto-parallelization is not a mature technology yet, and its current incar-

nation imposes many restrictions on the way programs are written. One problem with

existing tools such as R-Stream and pMatlab is the constraint auto-parallelization places on

the code. Pointer operations and nested arrays induce errors that break the parallelization

paradigm. Also, as high level compilers, they transform serial C code into quite unreadable

parallel code. The lack of readability can generate high maintenance cost, little room for

further optimization, and the dependency on the auto-parallelization tools.

NVIDIA@'s Compute Unified Device Architecture (CUDA) and Intel@'s Threading Build-

ing Blocks (TBB) are currently two of the most well-known names in the world of user-level

libraries written for the purpose of parallelization. One problem with both libraries is

their platform dependency, the former restricted to NVIDIA@ graphics cards and the lat-

ter chained to Intel@ CPUs. The other problem is that both in essence simply provide

low-level function calls for programmers to use. The issue of how programmers can best

structure their programs is unresolved. This approach opens up the freedom of building

from the ground-up, but is not helpful in teaching parallel programming methodologies, or

in streamlining the coding process of parallellization.

The solution, we propose, is a software framework that includes both a set of practices

and a user-level programming library, tailored towards many-core programming. For the

purpose of this thesis, the framework's name is Many-core Programming Library for Em-

bedded Space Computing (MAPLES). The vision of how one takes advantage of such a

framework is as follows. By adhering to the principles and restrictions of the framework,

the programmers always know what the next step is to build a parallel application. They

can quickly transform their ideas of a parallel program unto running code with the li-

brary, without knowing from the get-go every detail of the underlying design choices. This

framework contains the functional thinking prevalent in parallel programming languages,

provides more control than high-level compilers either outputting unreadable code or hiding

the parallel nature of the program, and guides the programmers throughout the process of

17
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writing applications for a multi-core platform. The underlying hardware architecture is also

quintessential for the working of the framework. The 49-core processor called Maestro is

used as the development and testing platform, and serves as the type of processors for which

MAPLES is designed. Each core on the Maestro processor is capable of single and double

precision floating point operations, runs its own instance of Symmetric Multi Processor

(SMP) Linux, and communicates with each other using an underlying connection network

called iMesh Network. The details about the hardware platform will be discussed later in

Chapter 2.

1.4 Thesis Structure

Chapter 2 discusses the many-core hardware platform used to develop MAPLES, namely

the Maestro processor. The background behind Maestro's development is inspected, along

with its hardware specification, the Maestro development environment, and how the board

is set up for the development of MAPLES.

Chapter 3 inspects the details of MAPLES, the software framework built for this thesis.

The design principles essential to the framework and the features of the library is discussed.

Chapter 4 discusses the test case used to test MAPLES, specifically, a vision-based crater

recognition algorithm developed at Draper. The working of the algorithm, and the paral-

lelization efforts with and without MAPLES, and the benchmarks of its performance are

discussed. The framework's effectiveness is showcased here.

Chapter 5 concludes the thesis by discussing the contribution the thesis makes in the world

of space computing and parallel programming. Future work to expand the research effort

in this thesis is also discussed.

Throughout this thesis, mono-space and italic font types are used for emphasis. A default

Latex mono-space typewriter font like this is used for names of classes and functions. Italic

font like this is used for names of programs, languages or products.

Boxes are used to enclose code chunks.
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The reader is referred to the appendix for a list of grammar terms used in this thesis.
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Chapter 2

Maestro Development Board: The

Hardware Platform

The Maestro processor is the result of the On-board Processing Expandable Reconfigurable

Architecture (OPERA) program funded by the National Reconnaissance Office (NRO).

In 2007, National Reconnaissance Office (NRO) purchased the intellectual property of

TILE64TMfrom Tilera Inc. for the development of Maestro, contracted out the hardware

development to Boeing, and the software design to Information Sciences Institute (ISI).

The purpose of the program is to "produce a radiation-hardened, state of the art, general

purpose processor that's 100x more capable than current space qualified general purpose

processors" [1]. The Maestro processor was designed solely for space computing purposes.

Its capability is currently being evaluated by NASA and other organizations.

In the following sections, the different aspects of the processor are discussed, including both

the board specification for the hardware and the development environment for the software.

The purpose of this chapter is not to explain every aspect of the processor, but to provide

an understanding of the development platform, and the sort of hardware platform MAPLES

supports.

Figure 2-1 shows an overview of the Maestro Development Board (MDB) [4].
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Figure 2-1: A Diagram of the Maestro Processor

2.1 Processor Specification

From OPERA's program overview presentation [1], it can be seen that the Maestro processor

is a modified version of the Tilera TLB26480 processor (TILE64TM), tailored for the purpose

of space computing. The number of cores is reduced from 64 to 49 in the process of

radiation hardening, and the clock speed is reduced from 600-900 Mega Hertz (MHz) to 440

MHz to save power. An IEEE 754-compliant, single-and-double-precision Floating Point

Unit (FPU) is added to every core on the board. The resulting chip is a product of a

90 nm CMOS process, radiation hardened to avoid radiation damages in space, with the

computation speed of 65 Giga Operations Per Second (GOPS) and 10 Giga Floating-point

Operations Per Second (GFLOPS). Benchmarks have been done by ISI East to showcase

Maestro's performance [17] [15].
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2.1.1 Tile Specification

In Tilera's terminology, each CPU core on the board is called a "tile". Figure 2-2 shows

the components of a single tile [5]. Each tile runs its own instance of SMP Linux, and

Figure 2-2: Detailed View of a Single Maestro Tile

is composed of a processor, a cache, and a switch engine [20]. According to the OPERA

program overview, each tile's CPU clock frequency is 440 MHz. However, due to thermal

clock instability, the clock speed had to be dialed down to 260 MHz.

The processor engine is a conventional three-way Very Long Instruction Word (VLIW)

processor with three instructions per bundle and full memory management, protection,

and Operating System (OS) support. The Tile Processor includes special instructions to

support commonly-used embedded operations in Digital Signal Processing (DSP), video

and network packet processing, including:

" Sum of Absolute Values (SAD)

" Hashing and checksums

" Instructions to accelerate encryption

" Single Instruction Multiple Data (SIMD) instructions for sub-word parallelism

The cache engine of each tile contains the tile's Translation Lookaside Buffer (TLB), caches,
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and cache sequencers. For the MDB, each tile has 16 Kilo-Bytes (kB) Li Cache (8 kB

instruction cache and 8 kB data cache), 64 kB L2 cache, and a virtual L3 cache across the

board for a total of 5 MB of on chip cache. The Cache Engine also contains a 2D Direct

Memory Access (DMA) engine that orchestrates memory data streaming between tiles and

external memory, and among the tiles.

The switch engine allows data to be transferred in-between tiles in five independent com-

munication networks. These communication networks are named the iMesh Network.

2.1.2 iMesh Network: Inter-Tile Communication

Inter-tile communication is achieved through the board's iMesh Network, an essential design

behind all the Tilera family processors. In this network, tiles are interconnected to each

other via five independent networks: Static Network (STN), Tile Dynamic Network (TDN),

User Dynamic Network (UDN), Memory Dynamic Network (MDN), and the I/O Dynamic

Network (IDN). Every tile can send a 32-bit word every cycle [4] to any other tile through any

of the five network links. Each network's functionality is discussed in the Tilera Processor

Architecture Overview [20].

STN comprises the interconnect fabric of the Tilera iMesh, and allows extremely low latency

transfer of data between tiles. This network is used by the internal software system to

efficiently transfer operands from tile to tile, such as user-generated inter-process socket-

like streams. STN is not used to move user data.

The other four networks are dynamic networks that transfer user data:

" Tilera user-level APIs are built on the UDN. User applications directly link in C

library routines to provide a variety of convenient access modes. The UDN supports

efficient streaming through a register-level FIFO interface.

" The IDN is used primarily for transfers between tiles and Input/Output (I/O) devices

and between I/O devices and memory. A privilege-level protection mechanism limits

access to OS-level code.
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" The MDN is used for memory data transfer (resulting from loads, stores, prefetches,

cache misses or DMA) between tiles themselves, and between tiles and external mem-

ory. Only the Cache Engine has a direct hardware connection to the MDN.

" The TDN use is similar to the MDN and supports memory data transfer between

tiles. Only the Cache Engine has a direct hardware connection to the TDN.

At user level, UDN is the only network actively used by the application to transfer data

between threads running on different tiles. The user-level APIs provide functions to send

data between any given pair of tiles. The standard procedure for using UDN requires two

phases described below (taken and summarized from Tilera's programming guide [19]).

First, the tmcudninit() function reserves a rectangle of tiles (referred to as a "UDN

hardwall") for use by the calling application. This function should be called by the first

task in the application, before creating any child tasks. It takes a cpu-sett* parameter

specifying all the CPUs that will access the UDN and allocates the minimum rectangle of

tiles that contains those CPUs. If the cpu.set.t* is NULL, the routine allocates a rectangle

that contains all the CPUs in the calling task block's affinity set. For example, the parent

process does the following to create a UDN hardwall:

if (tmcudn_init(NULL) != 0)

tmc_taskdie( "Failure in 'tmcudninit ('.");

After creating the UDN hardwall, the application can create threads or fork processes as

necessary and bind them to particular CPUs using tmccpussetmycpu(. Once a task

is bound to a single CPU, it should call tmcudnactivate () to enable that CPU to send

and receive packets within the previously created UDN hardwall. For example:

if (tmccpussetmycpu(mycpu) < 0)

tmc_taskdie("Failure in 'tmc_ cpussetmycpu' .1);

if (tmcudnactivate() < 0)

tmctaskdie ("Failure in 'tmcudnactivate('. ");

Once the UDN has been activated, the application can use tmc_udn_header_from-cpu()
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to create packet headers and send packets via the tmc_udn_send_<N> () functions. For

example, the following code sends a five word data packet to demux queue #2 at destcpu:

DynamicHeader header = tmc-udn-header-from-cpu(dest-cpu);

tmcudnsend_5(header, UDN2_DEMUXTAG, dataO, datal, data2, data3, data4);

When this packet arrives at the destination core, the UDN hardware strips off the header

and tag words and places the five data words into demux queue 2. To receive those five

data words, do the following:

dataO = tmcudn2_receive(;

datal = tmcudn2_receive(;

data2 = tmcudn2_receive(;

data3 = tmcudn2_receive(;

data4 = tmcudn2_receive);

2.1.3 Memory Architecture

Memory for the Maestro processor is composed of two parts: the on-board cache and

external memory. The on-board cache is located at each tile's cache engine, as shown in

Figure 2-2. The external memory, as shown in Figure 2-1, is placed on two sides of the

board, inside the Double Data Rate (DDR) chips.

Table 2.1 shows TILE64TM's cache specification. Same as TILE64TM, Maestro's execu-

tion engine does not stall on load or store cache misses. Rather, execution of subsequent

instructions continue until the data requested by the cache miss is actually needed by an-

other instruction. This cache subsystem is non-blocking and supports multiple concurrent

memory operations.

DMA is implemented as part of the iMesh network and the Tilera programming Application

Programmer Interface (API).

One thing to note is that since the tiles transfer all data using the underlying iMesh net-
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Cache Features LII Cache LID Cache L2 Cache

Size 8KB 8KB 64KB

Associativity Direct-mapped 2-way 2-way

Line Size 64B 16B 64B

Contents Instructions Data Instructions and data

Addressing Virtually indexed, Physical Physical
physically tagged

Allocate Policy Allocate on read miss Allocate on load miss Allocate on miss

Write Policy N/A Write through, Writeback
Store update on hit

Minimum Write Width 16B 1B 1B

Error Protection 64-bit parity 8-bit parity 8-bit parity

Total On-Chip Cache Size is 5.12MB

Table 2.1: TILE64TM /Maestro Cache Specifications

work, tiles closer to the edge of the board are closer to DDR chips, and hence faster at

memory accesses. This difference in communication latency should also be considered when

programming applications that access all the I/O networks.

2.1.4 Power Usage

The power usage of a Maestro board, with all cores turned on, is around 31 Watts (W)

at peak and 20 W on average, which is less than ideal in the context of space computing,

especially after comparing to the power consumption of 5 W by RAD750T"'. There are,

however, two ways to justify its use. We can (1) lower the power usage, or (2) raise the

performance.

To lower the power output of the board, we can set tiles to enter into sleep mode in software

in order to save power. Shutting down each tile will reduce the power usage by 270 mW [1].

Because Maestro uses four to six times the power of a RAD750TM, to match RAD750TI's

power efficiency, its performance needs to be at least four to six times of RAD750T1I. In

NASA Office of the Chief Technologist (OCT)'s technology roadmap, the following goal has

been stated [6]:

NASA should seek to concurrently advance the state of the art of two metrics
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(sustained throughput and processing efficiency) of high-performance radiation-

hardened processors. Goals are throughput greater than 2000 MIPS with effi-

ciency better than 500 MIPS/W.

For a processor that uses about 30 W at peak, this means a throughput of 500 MIPS/W x

30 W = 15 GOPS. By advertisement Maestro exceeds this figure (65 GOPS and 10

FLOPS). However, how this theoretical computational throughput translates to execution

time in real-world applications is yet unknown.

2.2 Maestro Development Environment (MDE)

The Maestro Development Environment (MDE) is "the multi-core development environ-

ment customized for MAESTRO" [12]. It is a suite of applications designed to write code,

compile programs, and deploy programs to the MDB. The development environment is

based on the Tilera Development Environment. ISI East made the behind-the-scene ad-

justments for it to work on the Maestro platform. There are three main components of the

development environment: the programming Integrated Development Environment (IDE),

the compiler and the runtime monitor that connects the MDB and the host machine. For

this thesis, the build version Reservoir.1 for tile64 (2010-01-13) was used.

2.2.1 tile-eclipse: the IDE

tile-eclipse is a modified version of Eclipse, the popular programming IDE. The interface

looks the same as a regular version of Eclipse, except for the addition of the Tilera plugins.

Figure 2-3 shows a screenshot of the MDE.
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Figure 2-3: A Screenshot of MDE

The notable part about the MDE is the Grid View tab on the right side of the User Interface

(UI). The tab part of Tilera's UI plug-ins. The Grid View shows a visual representation of

processes running on tiles, either from simulation runs or actual runs on the MDB. A closer

look at a running program is shown below:
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Grid view 2

Figure 2-4: A Closer Look at the Grid View Tab

From the figure we can see there are two processes running on tile(0, 1) on the board. The

number 607 and 614 on top of tile(0, 1) are the Process Identification (PID) numbers of

the running processes, and the letter D indicates that the application is running in debug

mode. The PID indicator appears when the process is running, and disappears when the

processes finish running. When thinking about parallelization strategies and debugging,

having a tool like this to visualize tiles' start and stop functionality is a very helpful.

2.2.2 tile-monitor: the Runtime Monitor

tile-monitor is the communication software used by the host machine to talk to the Maestro

board. For board simulations, it simulates the ROM images, uploads program files to the

image instance, runs them in a virtual environment, and displays the output to the host

machine's command line. For actual board runs, it uploads program files to the board

through the physical PCI-E connection, runs them on the board, and displays the output

to the host machine's command line. The program can be run on the command line with

the following syntax:
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<target option> indicates whether the program is being run on the physical processor

board or on the simulated virtual machine. To run the program on the actual board,

<target option> is substituted by -- pci -- resume, in which pci indicates that the pro-

gram will be transferred via PCI connection, and resume indicates that after the program

finishes running, the environment is switched back to the host machine instead of staying in

the virtual environment. Similarly, to run the program in simulation, <target option> is

substituted by -- simulator -- image <path to image f ile>, with the path to the ROM

image provided on the command.

<preparation commands at target> indicates preparation commands that will be exe-

cuted before the program is run. Typically its role is to create folders to contain the

program files and upload the program files from the host machine to the target location.

Commands are entered line-by-line, with every line being preceded by the argument sign

<debugging option> indicates whether the program will be run with debugger, and to

which core is the debugger attached. Typical options include -- debug-on-crash and

debug-tile <x,y>, with <x,y> indicating the x and y coordinate of the core on the board.

<run option> is usually the last argument in a tile-monitor command, as it simply gives

the final go-ahead to run programs, in the format of -- run <path to program>.

A sample program may look like this:

/usr/bin/tile-monitor \

--simulator \

--image-file /home/sun/OPERA-MDE-2.1.0/lib/boot/7x7.image \

--mkdir /home/sun/workspace/tests \
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tile-monitor \

<target option>

<preparation commands at target>

<debugging option>

<run option>

--quit

2.2. MDECHAPTER 2. MDB: THE HARDWARE PLATFORM



--cd /home/sun/workspace/tests \

--upload /home/sun/workspace/tests/start-all-cores.exe /home/sun/workspace/tests/

start-all-cores.exe

--debug-on-crash \

--debug-tile 0,0 \

--run -+- /home/sun/workspace/tests/start-all-cores.exe -+- \

--quit

This sample script shows how one might simulate a run of the test program startall_ cores .exe

for a 7 x 7 Maestro board Read Only Memory (ROM) image.
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Chapter 3

MAPLES: The Framework

MAPLES, the Many-core Programming Library for Embedded Space Computing, is de-

scribed in this chapter. MAPLES is both a many-core programming methodology and a

software programming library, thus it has requirements on both the design and implemen-

tation of general-purpose software programs. Such requirements not only lead to a clean

and usable library, but also limit MAPLES' functionality. The sections below will discuss

under what condition is the framework relevant, what's the principle behind its workings,

what are the things that it can do, and what are some of its limitations.

3.1 Programming Model

Designs usually revolve around a problem to solve and a vision of the solution. The vision of

the MAPLES framework was to make programming for multi-core platforms easy. Specif-

ically, MAPLES was designed to pursue a vision of a single board capable of executing an

entire space mission:
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Figure 3-1: Multiple Applications Running on the Same Board

The diagram shows an MDB running different tasks at the same time. Each task block

utilizes a block of CPUs, and communicates with other task blocks. An application can

use any number of CPU cores, and can be composed of any number of parallelizable tasks.

These tasks execute at the same time, and work together to provide the functionality of a

complete program in a modular way.

3.1.1 Types of Targeted Problems

Ideally, programmers working on both embarrassingly parallel programs and non-embarrassingly

parallel programs should be able to take advantage of the framework. To provide some back-

ground knowledge, an embarrassingly parallel problem is one for which little or no effort

is required to separate the problem into a number of parallel tasks. This is often the case
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where there exists no dependency (or communication) between those parallel tasks[8]. An

embarrassingly parallel problem can be further broken down into data parallel and task

parallel problems, with the difference being:

" Data parallel problems are solved by distributing the data across different parallel

computing nodes. The parallelism is achieved when each processor performs the same

task on different pieces of distributed data.

" Task parallel problems are solved by distributing execution processes (threads) across

different parallel computing nodes. The parallelism is achieved when each processor

executes a different thread (or process). Sometimes each processor executes on the

same data, sometimes not.

Non-embarrassingly parallel problems are problems that do not exhibit obvious data or task

parallelism. They are composed of sequential parts that depend on one another. In other

words, the input of one sequential part depends on the output of another. This dependency

creates a problem for the parallelization process and affects the resulting performance for the

parallel version of the program. According to Amdahl's law, formulated by Gene Amdahl in

the 1960s, a small portion of the program which cannot be parallelized will limit the overall

speed-up available from parallelization[2]. The maximum possible speed-up is offered by

the following formula:

S = lim (3.1)
P-oo i + a

with S being the maximum speed-up factor, a the fraction of running time the program

spends on sequential (non-parallelizable) parts, and P being the number of running threads.

Of course Amdahl's law doesn't take into account various details of the parallelization's

implementation, but it provides a mathematical upper bound on the performance gain, and

can serve as a good intuition during parallel programming.
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3.1.2 Planned Solutions to the Problems

Embarrassingly parallel problems are usually solved in a straight-forward way. An illustra-

tion of the solution is as follows:

Embarrassingly Parallel Problem

Embarrassingly Parallel Part

Embarrassingly Parallel Part

Split Combine Solution

Embarrassingly Parallel Part

Embarrassingly Parallel Part

Figure 3-2: Illustration of How an Embarrassingly Parallel Problem is Solved

The embarrassingly parallel problem during the "Split" step is split up into replicated

execution threads working on split data chunks. During the "Combine" step those replicated

threads end, leaving the master thread with the solution. This illustration is reminiscent of

the MapReduce model (shown below):

Map Stage Reduce Stage

Worker 1 Worker 1

Mp Partiin Reduce

Merge

II Map Parttion ** Reduce *
0. Split

Map Parbtion Reuc

Merge

map RPaitione

Worker N Worker M

.5
Mefge

/0

Figure 3-3: Illustration of How an Parallel Problem is Solved in a MapReduce Way [14]

Indeed the MapReduce model is an effort directed at solving embarrassingly parallel prob-

lems, with Apache Hadoop being its most successful implementation. In summary, the
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execution of MapReduce is based on the "map" and "reduce" steps:

0 "Map" step: The master node takes the input, divides it into smaller sub-problems,

and distributes them to worker nodes. A worker node may do this again in turn,

leading to a multi-level tree structure. The worker node processes the smaller problem,

and passes the answer back to its master node.

0 "Reduce" step: The master node then collects the answers to all the sub-problems

and combines them in some way to form the output, the answer to the problem it was

originally trying to solve.

Computations working on large datasets naturally follow this programming model, and thus

the proposed solution should make it easy for programmers to write code for embarrasingly

parallel problems, following this MapReduce programming model. In the solution, for the

purpose of solving embarrasingly parallel problems, each parallelized task needs to have a

clear abstraction of the master node in charge of mapping out inputs and collecting answers,

and the worker nodes doing the heavy computation.

However, most real world problems are not embarassingly parallel. Oftentimes the solution

requires a combination of data and task parallelism, along with some sequential parts. This

poses many open-ended questions to the programmers: how to write the program differently

to handle both the data and task parallelism; how to connect the sequential parts with the

parallel parts; how the cores communicate within the same task; how they communicate

in-between tasks; how many cores to use for each task; how much of a performance gain

should be expected; and so forth. To answer these questions programmers need a guideline,

essentially a cookbook, of how to parallelize a problem. The recipe needs to maintain a

sequential workflow and contain multiple parallelized parts that can either run simultane-

ously or in a sequential fashion. The sequential operation can ideally be run in a pipelined

fashion to increase throughput, and the number of cores can be easily adjustable for perfor-

mance benchmark and optimization. The recipe, in MAPLES, centers around converting

programs into pipelines of task blocks.
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3.1.3 Task-Block Abstraction Design

Below summarizes the requirements MAPLES needs to have in order to facilitate parallel

programming. Based on these requirements, MAPLES revolves around the concept of task

blocks.

" Have a clear abstraction of master node in charge of mapping out inputs and collecting

answers, and worker nodes doing the heavy computation

* Maintain a sequential workflow and contain multiple parallelized parts that can either

run simultaneously or in a sequential fashion

" Ideally have the sequential operation run in a pipelined fashion to increase throughput

" Have easily adjustable number of cores allocation for tasks in order to help benchmark

and optimize performance

Semantically, a task block is defined as a block of CPU cores that work together to achieve

a common goal. Programmatically, a task block is defined as an instance of the class

TaskBlock, and the fundamental abstraction within this framework. The class diagram in

Figure 3-4 defines, at a high level, what MAPLES is.
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App
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0 ...MAX 0...MAX
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Figure 3-4: Class Diagram for MAPLES

An Application is composed of several TaskBlocks. Each TaskBlock runs one Task and

parallelizes it to execute different data, on different cores., in a more-or-less MapReduce way.

Each TaskBlock can contain as many cores as the underlying platform allows. Among the

CPU cores, one becomes the Leader core, in charge of the "map" and "reduce" functions.

The other cores become the Worker cores, in charge of computation and execution of the

assigned function. Any unused core is initialized to be an Available core, ready to be

integrated into any task block, as either a leader or a worker core.

A pseudo code of how an application can be defined and run using MAPLES' programming

library is as follows:

// For each task block,

task = new Task(function, dataArray)

taskBlock = new TaskBlock(tId, leaderCore, workerCoreArray)

taskBlock.task = task
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taskBlocks.append(taskBlock)

// When it's time to start running the application,

application.taskBlocks = taskBlocks

application.run()

3.1.4 Communication Scheme

The communication protocol is abstracted out as an interface function ready to be popu-

lated. For data sharing inside each task block, according to what the programmer deems fit,

either a shared memory model or a message passing scheme can be employed. For data shar-

ing in-between task blocks, message passing is enforced as the only way of communication in

order to generalize the MAPLES framework to the realm of distributed networking among

multiple processor boards. This generality leads naturally to task blocks communicating

across processor boards to engage in a more complex task network, for more complex space

missions. Redundant task blocks running on different boards also provides the capability

of board-level fault management.

However, since this thesis was developed on a single Maestro processor, communication

among cores is a trivial software endeavor under this platform. Message passing between

cores has already been implemented as function calls to utilize the UDN channel. Leader

cores will be set up for passing UDN messages at the beginning of programs, sending and

receiving UDN messages to and from other leader cores.

3.1.5 Program Run-Time Behavior

Using MAPLES requires an initialization process to set up the task block abstraction. The

process is composed of four steps:

1. Booting and configuring each core

2. Setting up task blocks

3. Assigning tasks to all the task blocks
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4. Kicking off the execution of the applications on board

The sequence of which the steps run can be summarized by the sequence diagram in Figure 3-

5.

Boot

During the step of booting (represented by boot in the diagram), a start signal is sent to

every desired core on board. An AvailableCore object is initialized for every core, waiting

to be incorporated into task blocks. After each core is done initializing, it's ready to be

added to any task block.

Setup Task Blocks

During the step of setting up task blocks (represented by setupTaskBlock), task blocks will

be initialized according to the specification in the code. AvailableCores will be transformed

to LeaderCore objects and WorkerCore objects, and added to the initialized TaskBlocks.

In the context of Maestro architecture, UDN will also be initialized for the LeaderCores.

Assign Tasks

During the step of assigning tasks (represented by assignTasks), task functions are assigned

to each task block, ready to be executed. Each TaskBlock object will be given a Task object,

which includes a function definition and pointer and input data to be parallelized. The

LeaderCore will pass the task function along with the divided data to each WorkerCore.

Run Application

During the step of kicking off application (represented by runApp), task blocks are given

the go-ahead to start executing. For each task block, a runTaskBlock command will be

executed, which starts the threads situated at every core. The program starts running.
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Figure 3-5: Sequence Diagram for MAPLES
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Message listeners based at the UDN channel are running in every one of the LeaderCores,

waiting for commands and alterations of tasks in real time. Task functions can be re-

assigned, a core role can be changed, and cores can be taken in or out of task blocks. The

operation of the program will keep executing until the point of termination defined in the

code.

3.1.6 Space Computing Considerations

In the context of software engineering for space computing, two areas that demand great

attention are:

1. Fault tolerant and real time operations

2. Effective power management

One key to achieving both is the ability to move programs and data around without inter-

rupting the system [9], and MAPLES was designed with this idea in mind. Each level on

the class diagram is mutable, in the sense that the role of each core, each task block, and

hence each application can be altered in real time.

A core's role and a task block's task functions are assigned at compile time. However, both

can be re-assigned during run time. This flexibility allows for the ability to not only move

programs and data across different parts of the multi-core processor, but in extension also

allows the replication of task blocks for fault tolerance purposes, and dynamic shutdowns of

cores for power management purposes, a key requirement for long endurance space missions.

3.2 Intended Platforms

MAPLES's framework is designed for a general multi-core platform. A program expected to

run on multi-core platforms should be able to benefit from being designed with MAPLES's

methodology in mind. However, there are still certain limitations and assumptions made

on the underlying platforms.
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With the programming library, we try to make the platform as general as possible. We

made all the abstractions necessary to ensure that the library is platform agnostic. All the

platform dependent functions were put into wrappers and placed in a separate file. The

library was implemented in C++. In terms of the operating system, the library is developed

and compiled on SMP Linux.

However, the library does make assumptions about the underlying software and hardware

platform. Although MAPLES has been designed with generality in mind, the library has

only been compiled by tile-cc and tested on a MDB. Therefore, in order to use the library,

a few Maestro like assumptions need to be true about the development platform:

" There is an underlying message passing scheme present among cores. In the Maestro

architecture, the iMesh network provides application-level message passing capability

through UDN and its Message Passing Interface (MPI)-style API written in C.

" There is support for the gcc-like compiler. Portable Operating System Interface

(POSIX)-standard, GNU's Not Unix (GNU)-style Makefiles can be used for the build

process. In the Maestro architecture, the compiler tile-cc, a derivative of the stan-

dard gcc compiler, is used.

" There is an underlying scheduling implementation to ensure that processes can meet

their deadlines under real-time environments. In the Maestro architecture, SMP Linux

runs on each core of the board managing task scheduling on each tile.

" There is a benchmark toolkit available to help with task and core allocation. In the

Maestro architecture, the tile-eclipse IDE contains such a widget for monitoring

and profiling program executions.

" There is a way to shut down cores to save power. Maestro CPU tiles can be put into

sleep mode to save power.

In summary, the ideas in the framework of MAPLES has been thought out to be applicable

to all types of many-core platforms, even though the implementation of the programming

library contains certain restriction and assumptions for the underlying development plat-
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form. The same ideas in MAPLES can very well be implemented in C, Java, C#, and of

course, all variants of the Lisp dialects for their emphasis on functional programming.
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Chapter 4

Test Case: TRN Crater

Recognition

In 2006, in response to NASA's Constellation program "Back to the Moon and Beyond",

Draper Laboratory invested in Research and Development (R&D) aimed at improving lunar

landing navigation accuracy for manned and unmanned (autonomous) landers [11] [16]. This

vision guided, feature-based navigation algorithm integrated absolute navigation concepts

including image feature extraction and matching to a database, with relative navigation

including feature flow and tracking. The approach uses an Extended Kalman Filter (EKF)

for vehicle navigation to integrate the two methodologies and thus capture the advantages

of both techniques. This methodology was specifically developed for navigation in lunar

orbiting or landing applications. Crater fiducial markers from the lunar surface are identified

in an image and associated to a database. These markers are tracked across the image plane

as the lunar lander moves in its orbit. Images used in this research to develop and analyze

the algorithms were obtained from NASA's Clementine lunar mapping mission

The Terrain Relative Navigation (TRN) algorithm was developed and tested through simu-

'Clementine (officially called the Deep Space Program Science Experiment (DSPSE)) was a joint space
project between the Ballistic Missile Defense Organization (BMDO) and NASA. Launched on January 25,
1994, the objective of the mission was to test sensors and spacecraft components under extended exposure
to the space environment and to make scientific observations of the Moon and the near-Earth asteroid 1620
Geographos.
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lation using Matlab. The crater recognition component of TRN was ported to C for testing

on a RAD750TM platform. With the Maestro many-core architecture available, the lab has

been actively looking for a way to parallelize the algorithm to take advantage of the new

platform's computing power, and test the architecture's capability.

4.1 Algorithm Overview

The main components of the TRN algorithm are summarized in the following diagram [13]:

Image Generation Image Processing

(ui, vi, ri)
Camera Image Crater Location

in the Image
and its radius

Crater Matching (u v, x,y,z) Pose Estimation Filtering
(uv, x,y,z) Position

(u,v, x,y,z) Measurement

Crater Location
in the Image

and Inertial frame

Crater Database

Figure 4-1: An Overview of the TRN Algorithm

During the image generation phase of TRN, a photo of the moon's surface is taken. The

image is passed to the image processing phase, which detects the locations, sizes and shadow

directions of the craters on the image. The information for all the craters is passed to the

crater matching phase shown above, then combined with the inertial frame of the spacecraft,

and compared to the crater database. The information is used to estimate the pose of the

spacecraft, during the pose estimation phase. After the filtering phase, the pose is fed into

other parts of the system where it is utilized to navigate the spacecraft. The algorithm then
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goes back to the image generation phase to restart the process for the next image.

The core of the TRN algorithm lies in the image processing phase. Crater recognition,

the real-time recognition of the locations, sizes and shadow directions of the craters, is a

computationally intensive function. In order to take advantage of the many-core hardware

architecture, along with the MAPLES software framework, we needed a basic understanding

of the application. The TRN crater recognition algorithm is composed of the following parts:

Threshold 30 Apply Gradient Blobify Correlate 30 Ellipse Fit

Figure 4-2: An Overview of the TRN Crater Recognition Algorithm

The algorithm is of a sequential nature, and contains five parts: threshold, apply gradient,

blobify, correlate, and ellipse fit. A high-level description of what each part does is as

follows:

1. During Threshold, a pre-determined threshold value is applied to the gray-scaled

camera image. Pixels with brightness value above the upper threshold are separated

into a high-threshold image, and pixels with values below the lower threshold are

separated into a low-threshold image. Two image matrices are generated. Together

with the original image matrices, the camera image is effectively transformed into a

trinary (black, white, and gray) image.

2. During Apply Gradient, the angle of the Sun (pre-determined from the lander's in-

ertial state) provides the basis for a directional gradient, which is 2D cross correlated

with the image matrices to find the edges of possible craters in the image.

3. During Blobify, edges detected in the images are grouped together. Edges in the

low-threshold image are grouped together to form dark edges of possible craters, and

edges in the high-threshold image are grouped together to form bright edges of possible

craters.

4. During Correlate, all possible pairs of dark and bright edges are correlated to see if

together they form a circular crater.
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5. During Ellipse Fit, for every one of the resulting circles in the Correlate phase,

the (x,y) position and the radius r of the crater is computed.

The code for the crater recognition algorithm, written both under C and Matlab, serves as

the basis for the parallelization.

4.2 Single-Core Benchmark

A benchmark of the single-core TRN crater recognition algorithm was done on BRAD750

and the MDB to gain a performance comparison of the hardware architecture. The result

is attached below:
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Figure 4-3: Benchmark Comparison of Unparallelized TRN Crater Recognition

The benchmark data is shown in the following table to allow mathematical analysis in the

discussion:

(in mllseconds) Imace I Image 2 image 3 Image 4 Image 5 Total

Maestro 1231 942 732 1247 1690 5542
RAD750 1505 1260 1150 1590 1900 7405

Runtime Ratio 0.818 0.748 0.637 0.784 0.889 0.789
Peformance Ratio 1.223 1.337 1.571 1.275 1.124 1.268

Table 4.1: Unparallelized Benchmark Comparison Table
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Through the benchmark, it can be seen that for the TRN crater recognition algorithm, each

Maestro core performs roughly as 1.3 of a RAD750.

4.3 Pre-MAPLES Efforts

In this section the preliminary efforts to parallelize the TRN crater recognition algorithm

are shown. These results were obtained prior to the development of MAPLES.

In the original C implementation, everything was written in a single master function. A

natural extension and improvement over the written code was to separate each part of

the algorithm into a different function. Code in the master function was split up into five

sub-functions, each covering one part of the algorithm. Afterwards, a benchmark of the

algorithm was done to see how much time has been spent on each part:

Threshold --- Apply Gradient --- Blobify -- + Corlate --- Ellipse F it

3.27% 17.1% 15.7% 34.3% 28.5%

Figure 4-4: Execution Time Ratios of the TRN Crater Recognition Algorithm

The numbers show how much time each function spends relative to the entire algorithm.

This benchmark information will help determine how many CPU cores are needed for each

part of the algorithm.

The next step was the parallelization of the algorithm. A crude parallelization strategy

was employed to emulate a baseline sequential-to-parallel porting processes. For each of

the sub-functions, the data is split up and provided to a given number of cores to be

computed. A global mutex lock and barrier are used to maintain thread consistency. At

the beginning of each parallel function, data is split up into chunks, and given to different

threads to be processed. Each thread is attached to a tile on the Maestro board, and all

the threads execute concurrently. At the end of each thread's execution of the sub-function,

the thread stops at the global barrier and waits for all the other threads to finish. After all
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the threads join at the barrier, the algorithm proceeds to the next sub-function. Figure 4-

5 below illustrate the parallelization scheme. Since Threshold only takes 3.27% of the

Apply Gradient Blobify Correlate Ellipse Fit

Threshold -+ Apply Gradient -+ Blobify -+ Correlate -+ Ellipse Fit

Apply Gradient - Blobify + Correlate -> Ellipse Fit

Figure 4-5: Crude Crater Recognition Parallelization, Design 1

runtime, it was left out of the parallelization process, as its parallelization was insignificant

and actually increased the runtime because of the additional "splitting" and "combining"

steps (see Figure 3-2). Each of the other sub-functions were spread across several cores,

and the timing performance was benchmarked. Benchmark data showed that for many of

the sub-functions, the cost of communication between cores can outweigh the benefit of

parallelization as the number of utilized cores increases. Hence, after some redesign, the

following parallelization scheme was employed:

Blobify - Correlate Ellipse Fit

Threshold 3o Apply Gradient -+ Blobify 10 Correlate -C Ellipse Fit

+ Blobify 0 Correlate --- I Ellipse Fit

Figure 4-6: Crude Crater Recognition Parallelization, Attempt 2

Parallelization of the first two parts of the algorithm (Threshold and Apply Gradient)

was eliminated, because Apply Gradient's code was structured in a sequential way that

was unfit for easy parallelization. Blobify, Correlate and Ellipse Fit were combined
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together, to save the splitting and combining costs between the three parts.

Expressed using an MDB core diagram on MDB, the program executed at each step like

the following:

Net, tEl Dpia nube Fof CP Foe tl 0s fF th paaEeato was determined.

-1" U, -A - - -- E -

Elt Cmr (HEl E) gE dE bE T fE ma ar all f izE x D 1 i

DDDDDDD El 11 D DDDWEZMZD11 l

DDDDDD[] lElE l0 lE 1E DDD 11 LZ

Figure 4-7: Crude Crater Recognition Parallelization on MDB Diagram

Next. the optimal number of CPU cores to use for the parallelization was determined.

Numbers from 1, 2, 4, 9, 16, 25, 36. and 49 were used, and the parallelized algorithm was

run for each case over five sample moon surface images taken from the Clementine's High-

Resolution Camera (HIRES) image database. The five images are all of size 512 x 512 pixels,

translated from Portable Network Graphics (PNG) format to 2-D arrays of gray-scale, with

values from 0 to 255.
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Figure 4-8: Sample Lunar Images used for Benchmarking

The result of the benchmark is summarized in Figure 4-9.
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Figure 4-9: Benchmark Results with Varied Number of Cores

The runtime is calculated by dividing the number of cycles by the frequency of Maestro's

CPUs (260 MHz). Initially, the runtime dips as the number of cores used increases. However,

the runtime starts to increase after a certain threshold is passed (at nine cores). As the

number of threads increases, there is more associated cost for core-to-core communication
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and the creation of localized objects within each thread. If the computation gain is less than

the cost of expanding threads, the performance diminishes. According to the benchmark

results, the optimal number of cores used for the parallelization was determined to be nine.

Benchmarks were also done for the five sample images on RAD750TM , and the results

were compared to the Maestro result. The graph showing the comparison is attached in

Figure 4-10:
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Figure 4-10: Benchmark Comparison between Crude Parallel Run on Multi-Core Maestro

and Sequential Run on RAD750TI

On average, over the five images, the optimal configuration of nine-core parallelization

decreases the runtime by 30% to 40%, which translates to a performance gain of about 40%

to 60%.

4.4 MAPLES Implementation

With MAPLES, the code was reconstructed to make use of task blocks. Each component

of the TRN algorithm was declared to be a task block, and the code within each sub-

function was re-written to exhibit its functional nature, to be made stateless, and to be

made independent from other functions in the algorithm. The allocation of the task blocks
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over the cores on the board is shown below:
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Figure 4-11: Core Diagram of Task Block Allocation for Crater Recognition

A Boolean value controls whether the task blocks are executed in a pipelined fashion or

not. If pipelining is enabled, once the Threshold task block finishes its work with the first

image, it immediately starts to work on the second image without waiting for the latter task

blocks to finish. With pipelining enabled, greater performance gain is achieved. However,

this makes predicting the runtime deadline for executing one image harder, since images

are bundled together in the pipeline to be processed.

Most of the master mutex locks were removed from the code, and message listeners were

installed within the LeaderCore of each task block to regulate thread consistency and the

program flow. The sequential nature of the algorithm was preserved in the pipeline, and

the parallel nature of each sub-function was utilized inside each task block.

The output from one block is passed to the next task block as the input, prior to its
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execution. When there are no more images available for processing, the first task block

in the pipeline (Threshold) sends a kill signal to the next task block (Apply Gradient),

which puts the task of ending the threads onto the task queue, sends out a kill signal to the

next task block, waits until the current operation on all worker cores ends, and ends the

task block's operation.

Each task block now executes a part of the algorithm that has an explicit input and output:

1. For Threshold, the input includes the gray-scaled camera image. The output in-

cludes the two generated image matrices. The binary matrices are passed on to

Apply Gradient. If pipelining is enabled, the threshold task block immediately starts

executing the next image.

2. For Apply Gradient, the input includes the two generated image matrices, and the

angle of the Sun. The output includes the edges of possible craters in the image,

passed on to Blobify.

3. For Blobif y, the input includes edges detected in the images. The output includes

the dark and bright edges of possible craters, passed on to Correlate.

4. For Correlate, the input includes the dark and bright edges. The output includes

the matched edges of craters.

5. For Ellipse Fit, the input includes the matched edges and resulting craters. The

output includes the positions and radii of the detected craters.

The transformed algorithm is free of locks, but relies on the underlying iMesh network to

transfer large amount of data. The success of this parallelization now depends on the speed

of the communication network.

The resulting code is a mix of C++ and C, since the library was written in C++, and

the original algorithm was written in C. The compiler tile-cc compiled the code without

warnings.
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4.5 Parallelization Result

The pipelined parallelized algorithm and unpipelined algorithm were compiled into two

executables, and transferred to the MDB. The MDB was reset between each run to ensure

empty cache in each core before each algorithm is run. Benchmarks were obtained twice

for each setting, and averaged for analysis.

For the unpipelined runs, the result is summarized below by the X-Y graph:

Imagel Image2 Image3 Image4

Image Number

n MAPLES Parallelization
m Orginal Parallelization

RAD750

Image 5

Figure 4-12: Benchmark Comparison of the Un-Pipelined MAPLES Performance

For the pipelined runs, because images were bundled together, the result is better summa-

rized in Figure 4-13:
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Pipelined Parallelization Original Parallelization

m Total runtime

RAD750

Figure 4-13: Benchmark Comparison of the Pipelined MAPLES Performance

All the benchmark data is shown in the following table

the discussion:

to allow mathematical analysis in

Table 4.2: Benchmark Comparison Table

The Runtime Ratio is the runtime of the pipelined version divided by the respective par-

allelization runtimes, and the Performance Ratio is 1/Runtime Ratio. The pipelined algo-

rithm running on Maestro performed better than the original RAD750TM by 3.95 - 1

2.95 = 295%.
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4.6 Discussion

Though Table 4.1 shows that each Maestro core is about 1.3 of a RAD750, the TRN crater

recognition parallelization to 21 cores did not yield a linear performance gain in the order

of 1.3 x 21 = 27.3 = 2730%. Aside from the imperfect parallelization design and the cost

that comes with parallelization, the sequential and non-embarrassingly parallel nature of

the algorithm was also part of the problem.

Amdahl's law provides an upper limit on the performance gain of parallelization. A se-

quential run of the TRN crater recognition algorithm was benchmarked, showing the time

ratios between its functional blocks (see Figure 4-4). Using the time ratio and the Am-

dahl's law in Equation 3.1, we can infer the maximum performance gain. In the final

version, Blobify, Correlate, and Ellipse Fit are parallelized. Therefore, the sequen-

tial part of the algorithm contains Threshold and Apply Gradient, which constitutes

aCR = 3.27% + 17.1% = 20.37% of the total runtime. Plugging aCR into the formula

yields:

1
S = lim ±

P-+oo-cg '

1

=Plim 1-20. 37% ±20.37%
P

4.91

Since S is defined as the speed-up factor, the corresponding time ratio is 1/4.91 = 0.204.

The time ratios observed during experiments are 0.253 for the pipelined version, and

2950/7405 = 0.398 for the unpipelined version. This difference between the Amdahl's

prediction and actual parallelization benchmark shows that the parallelization performed

in the thesis is not yet optimal. The reason for this difference lies most likely in the number

of cores mapped to each task block. The decision on exactly how many cores to map to

each of the task blocks were made in an arbitrary way, and did not go through an extensive

testing of different combinations.

When running this algorithm, a Performance/Power comparison between Maestro and
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RAD750TMshould also be considered. For Maestro, the average power output is 20 W, and

shutting down each core saves 270 mW. For RAD750TM, the average power output is 5 W

(see Chapter 2). The parallelization for the crater recognition algorithm only used 21 cores

on the MDB. Therefore, the rest of 28 cores can be shut down to lower the power usage of

the board to 20 W - 270 mW x 28 = 12.4 W. By taking into account of the performance

ratios, we see that for the pipelined parallelization, the Performance/Power (written as P)

ratio is:

3.95 1
Pmaestro : Prad750 2.45 W

12.4 W 5 W

= 1.56: 1

For the parallelization of the TRN crater recognition algorithm, a processor switch from

RAD750TM to Maestro is thus justified. Even though the performance is not as much as

we expected from the difference in the numbers of CPU cores between the processors, we

do acknowledge that the speed-up of the algorithm through parallelization is effective.
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Chapter 5

Conclusion

This chapter summarizes the contributions of this thesis, and suggests future work for

improvements.

5.1 Contributions

Through the design, implementation and testing of MAPLES, this thesis has made three

significant contributions.

This thesis proposed a software framework for general purpose many-core programming. It

provided both a model to guide application parallelization, and a software programming

library to use for application implementation. The framework's effectiveness was proven

through a parallelization of a sample application, in this case, a TRN algorithm for crater

recognition.

Through the work done in this thesis, the Draper-developed crater recognition algorithm

was parallelized and benchmarked (See Table 4.2). Master mutex locks were removed, and

functions were placed in task blocks using the MAPLES library. Compared to the base-

line performance of the algorithm on RAD750TM, the MAPLES parallelization running on

Maestro performed faster by 151% without pipelining. If pipelining was allowed, the perfor-

mance gain processing the five sample images, over the baseline performance on RAD750TM,
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was 295%. The parallelization used 21 Maestro cores.

This thesis also included one of the first applications written for the Maestro processor.

Benchmarks were done to evaluate the capability of Maestro, and the process of program-

ming and running software on the Maestro architecture was documented. Although a

significant speed-up on the order of the number of cores was not observed in the com-

parison between the test application running on Maestro and on RAD750TM, this thesis

justified Maestro's usage through a Performance/Power comparison with RAD750TM, and

suggested a direction for future development of many-core applications.

5.2 Future Work

A number of directions can be pursued in terms of expanding the work done in this thesis.

Some are related to the MAPLES framework, others related to the TRN algorithm and the

Maestro architecture.

Although the feature of dynamic task allocation was planned for MAPLES, it has not been

implemented and tested due to time constraints. Being able to dynamically change cores'

tasking at runtime is essential for effective fault management, and should be pursued in the

future.

The lack of automatic configuration for optimal number of cores used in each task blocks

is dissatisfactory as well. To enable more effective parallelization, automatic profiling,

benchmarks and dynamic core-count configuration should be added to the features of this

framework.

The crater recognition and TRN algorithms tested so far work on sample image files. Mae-

stro provides high-speed I/O ports for connection with high data rate sensors such as cam-

eras. Real-time image input (or simulated real-time image input) can be used to test (1)

the vision-based navigation Algorithm, and (2) the Maestro board's I/O communication

capabilities.

Also, parallelization has currently only been done to the crater recognition part of the TRN.
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Other parts of TRN can be ported over to Maestro and run on the same board. because

only then can the vision of "single board, entire mission" seen in Figure 3-1 be realized.

62

CHAPTER 5. CONCLUSION 5.2. FUTURE WORK



CHAPTER 5. CONCLUSION 52 UUEWR

63

5.2. FUTURE WORK



Acronyms

API Application Programmer Interface
ASIC Application Specific Integrated Circuit

BAE British Aerospace Engineering

CMOS Complementary Metal-Oxide Semiconductor
CPU Central Processing Unit
CUDA Compute Unified Device Architecture

DDR Double Data Rate
DMA Direct Memory Access
DSP Digital Signal Processing

EKF Extended Kalman Filter

FPU Floating Point Unit

GEO Geosynchronous Orbit
GFLOPS Giga Floating-point Operations Per Second
GNU GNU's Not Unix
GOPS Giga Operations Per Second
GPS Global Positioning System
GPU Graphics Processing Unit

HEOMD Human Exploration and Operation Missions
Directorate

HIRES High-Resolution Camera

I/O Input/Output
IDE Integrated Development Environment
IDN I/O Dynamic Network
ISI Information Sciences Institute

kB Kilo-Bytes
KPP Key Performance Parameters

LEO Low Earth Orbit
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Acronyms Acronyms

Many-core Programming Library for Embed-
ded Space Computing
Maestro Development Board
Maestro Development Environment
Memory Dynamic Network
Mega Floating-point Operations Per Second

Mega Hertz
Millions of Instructions Per Second
Message Passing Interface

National Aeronautics and Space Administra-
tion
National Reconnaissance Office

OCT Office of the Chief Technologist
OPERA On-board Processing Expandable

urable Architecture
OS Operating System

Reconfig-

Peripheral Control Interconnect
Process Identification
Portable Network Graphics
Portable Operating System Interface

Research and Development
Reduced Instruction Set Computing
Read Only Memory

Sum of Absolute Values
Single Instruction Multiple Data
Space Missions Directorate
Symmetric Multi Processor
Static Network

Threading Building Blocks
Tile Dynamic Network
Translation Lookaside Buffer
Terrain Relative Navigation

User Dynamic Network
User Interface

Vision-based Navigation
Very Long Instruction Word

Watts
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MDB
MDE
MDN
MFLOPS
MHz
MIPS
MPI

NASA

NRO

PCI
PID
PNG
POSIX

R&D
RISC
ROM

SAD
SIMD
SMD
SMP
STN

TBB
TDN
TLB
TRN

UDN
UI

VBN
VLIW

W

A cronymsAcronyms
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