49,174 research outputs found

    Existence of Solutions for a Second Order Discrete Boundary Value Problem with Mixed Periodic Boundary Conditions

    Get PDF
    In this talk, a second order discrete boundary value problem with a pair of mixed periodic boundary conditions is considered. Sufficient conditions on the existence and multiplicity of solutions are obtained by using variational methods. A particular Banach space and an associated functional are presented to overcome the asymmetry of the mixed periodic boundary conditions. Examples are also given to illustrate the applications of the main result

    Multiple and particular solutions of a second order discrete boundary value problem with mixed periodic boundary conditions

    Get PDF
    In this paper, a second order discrete boundary value problem with a pair of mixed periodic boundary conditions is considered. Sufficient conditions on the existence of multiple solutions are obtained by using the critical point theory. Necessary conditions for a particular solution subject to pre-defined criteria are also investigated. Examples are given to illustrate the applications of the results as well

    Breathers in oscillator chains with Hertzian interactions

    Full text link
    We prove nonexistence of breathers (spatially localized and time-periodic oscillations) for a class of Fermi-Pasta-Ulam lattices representing an uncompressed chain of beads interacting via Hertz's contact forces. We then consider the setting in which an additional on-site potential is present, motivated by the Newton's cradle under the effect of gravity. Using both direct numerical computations and a simplified asymptotic model of the oscillator chain, the so-called discrete p-Schr\"odinger (DpS) equation, we show the existence of discrete breathers and study their spectral properties and mobility. Due to the fully nonlinear character of Hertzian interactions, breathers are found to be much more localized than in classical nonlinear lattices and their motion occurs with less dispersion. In addition, we study numerically the excitation of a traveling breather after an impact at one end of a semi-infinite chain. This case is well described by the DpS equation when local oscillations are faster than binary collisions, a situation occuring e.g. in chains of stiff cantilevers decorated by spherical beads. When a hard anharmonic part is added to the local potential, a new type of traveling breather emerges, showing spontaneous direction-reversing in a spatially homogeneous system. Finally, the interaction of a moving breather with a point defect is also considered in the cradle system. Almost total breather reflections are observed at sufficiently high defect sizes, suggesting potential applications of such systems as shock wave reflectors

    Mean Field Games models of segregation

    Full text link
    This paper introduces and analyses some models in the framework of Mean Field Games describing interactions between two populations motivated by the studies on urban settlements and residential choice by Thomas Schelling. For static games, a large population limit is proved. For differential games with noise, the existence of solutions is established for the systems of partial differential equations of Mean Field Game theory, in the stationary and in the evolutive case. Numerical methods are proposed, with several simulations. In the examples and in the numerical results, particular emphasis is put on the phenomenon of segregation between the populations.Comment: 35 pages, 10 figure

    An Energy-Minimization Finite-Element Approach for the Frank-Oseen Model of Nematic Liquid Crystals: Continuum and Discrete Analysis

    Full text link
    This paper outlines an energy-minimization finite-element approach to the computational modeling of equilibrium configurations for nematic liquid crystals under free elastic effects. The method targets minimization of the system free energy based on the Frank-Oseen free-energy model. Solutions to the intermediate discretized free elastic linearizations are shown to exist generally and are unique under certain assumptions. This requires proving continuity, coercivity, and weak coercivity for the accompanying appropriate bilinear forms within a mixed finite-element framework. Error analysis demonstrates that the method constitutes a convergent scheme. Numerical experiments are performed for problems with a range of physical parameters as well as simple and patterned boundary conditions. The resulting algorithm accurately handles heterogeneous constant coefficients and effectively resolves configurations resulting from complicated boundary conditions relevant in ongoing research.Comment: 31 pages, 3 figures, 3 table

    Mean field games models of segregation

    Get PDF
    This paper introduces and analyzes some models in the framework of mean field games (MFGs) describing interactions between two populations motivated by the studies on urban settlements and residential choice by Thomas Schelling. For static games, a large population limit is proved. For differential games with noise, the existence of solutions is established for the systems of partial differential equations of MFG theory, in the stationary and in the evolutive case. Numerical methods are proposed with several simulations. In the examples and in the numerical results, particular emphasis is put on the phenomenon of segregation between the populations. </jats:p

    Mixed finite elements for numerical weather prediction

    Full text link
    We show how two-dimensional mixed finite element methods that satisfy the conditions of finite element exterior calculus can be used for the horizontal discretisation of dynamical cores for numerical weather prediction on pseudo-uniform grids. This family of mixed finite element methods can be thought of in the numerical weather prediction context as a generalisation of the popular polygonal C-grid finite difference methods. There are a few major advantages: the mixed finite element methods do not require an orthogonal grid, and they allow a degree of flexibility that can be exploited to ensure an appropriate ratio between the velocity and pressure degrees of freedom so as to avoid spurious mode branches in the numerical dispersion relation. These methods preserve several properties of the C-grid method when applied to linear barotropic wave propagation, namely: a) energy conservation, b) mass conservation, c) no spurious pressure modes, and d) steady geostrophic modes on the ff-plane. We explain how these properties are preserved, and describe two examples that can be used on pseudo-uniform grids: the recently-developed modified RT0-Q0 element pair on quadrilaterals and the BDFM1-\pdg element pair on triangles. All of these mixed finite element methods have an exact 2:1 ratio of velocity degrees of freedom to pressure degrees of freedom. Finally we illustrate the properties with some numerical examples.Comment: Revision after referee comment
    • …
    corecore