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This paper introduces and analyzes some models in the framework of Mean Field Games

describing interactions between two populations motivated by the studies on urban settle-
ments and residential choice by Thomas Schelling. For static games, a large population
limit is proved. For differential games with noise, the existence of solutions is estab-

lished for the systems of partial differential equations of Mean Field Game theory, in
the stationary and in the evolutive case. Numerical methods are proposed, with several

simulations. In the examples and in the numerical results, particular emphasis is put on

the phenomenon of segregation between the populations.
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1. Introduction

The theory of Mean Field Games (MFG, in short) is a branch of Dynamic Games

which aims at modeling and analyzing complex decision processes involving a large

number of indistinguishable rational agents who have individually a very small influ-

ence on the overall system and are, on the other hand, influenced by the distribution

of the other agents. It originated about ten years ago in the independent work of

J. M. Lasry and P.L. Lions, Ref. 41, and of M.Y. Huang, P. E. Caines and R. Mal-

hamé Refs. 37, 36. In the case of independent noises affecting the agents, the main

1
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equations describing MFG are a Hamilton-Jacobi-Bellman parabolic equation for

the value function of the representative agent coupled with a Kolmogorov-Fokker-

Planck equation for the density of the population, the former backward in time

with a terminal condition and the latter forward in time with an initial condition.

Recently the theory and applications of MFG have been growing very fast: we refer

to P.-L. Lions’ courses on the site of the Collège de France http://www.college-de-

france.fr/site/en-pierre-louis-lions/, the lecture notes Refs. 33 and 14, and the books

Refs. 12, 28, and 32. A major recent breakthrough by Cardaliaguet, Delarue, Lasry,

and Lions is the solution of a PDE in the space of probablilty measures, called

master equation, which describes MFGs with a common noise affecting all players

and allows to prove general convergence results of N -person differential games to a

MFG as N →∞, in a suitable sense.

The goal of this paper is to propose some models in the framework of Mean

Field Games to describe some kinds of interactions between two different popula-

tions, each formed by a large number of indistinguishable agents. Such phenomena

arise, for instance, in urban settlements, ecosystems, pedestrian dynamics, see, e.g.,

Refs. 22, 10, and the references therein. We will focus in particular on models of

residential choice possibly leading to segregated neighborhoods. We are inspired by

the pioneering work of the Nobel Prize in Economics Thomas Schelling, Refs. 44,

45, and some of its developments until recently, see, e.g., Refs. 47, 13, 9, 48, 26,

the survey 25, and the references therein. However, different from the sociologic

and economic literature where the models are usually discrete in space and time,

we propose games continuous in space and either static, for which we derive rigor-

ously the large population limit, or in continuous time, with the dynamics of each

player described by a controlled system affected by noise. In the differential game,

the preferences of the players are described by a cost functional integrated in time

that each players seeks to minimise. We consider finite horizon problems as well as

games with long-time average cost (also called ergodic cost).

Our analytic results are on the existence of solutions to the system of the four

PDEs associated to the two-population MFG, with Neumann boundary conditions

modelling the boundedness of the city where the agents live. The PDEs are el-

liptic in the case of ergodic cost, with an additive eigenvalue in each of the two

H-J-B equations; the case of several populations was treated by the second author

and Feleqi with periodic boundary conditions (i.e., the state space of the agents

is a torus, Refs. 7, 23), and by the third author with Neumann boundary condi-

tions, Ref. 20. For finite horizon costs, the PDEs are parabolic (two backward and

two forward in time) and existence is known for a single population and periodic

boundary conditions; we extend it to two populations and Neumann conditions.

Uniqueness of solutions holds for a single population under a restrictive monotonic-

ity condition (Ref. 41) and is not expected to hold for several populations. In fact,

we provide examples of non uniqueness by showing that the same game can have

segregated solutions as well as non-segregated ones, such as uniform distributions

of both populations.
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One of the most interesting issues about these models is the qualitative be-

havior of solutions, in particular whether two initially mixed population tend to

segregate, i.e., to concentrate in different parts of the city. Schelling’s most strik-

ing discovery was that very moderate preferences for same-population neighbors

at the individual level can lead to complete residential segregation at the macro

level. For example, if every agent requires at least half of her neighbors to belong

to the same population, and moves only if the percentage is below this thresh-

old, the final outcome, after a sequence of moves, is almost always complete seg-

regation. Nowadays several softwares freely available on the internet allow such

simulations and show that segregation eventually occurs, with random initial con-

ditions, even with much milder thresholds, i.e., lower than 1/2, see, e.g., NetLogo

(http://ccl.northwestern.edu/netlogo/). Thus Schelling’s conclusion was that the

“macrobehavior” in a society may not reflect the “micromotives” of its individual

members (Ref. 45). His early experiments are considered today among the first

prototypes of artificial societies, see, e.g., Ref. 43.

We study the qualitative behavior of solutions by numerical methods. We use

the techniques introduced in MFG with a single population and periodic boundary

conditions by the first author, Capuzzo Dolcetta, and Camilli in Refs. 4, 2, and 3. We

present finite difference schemes for the stationary PDEs associated to ergodic costs

as well as for the evolutive backward-forward system of the finite horizon problem.

For both cases we show that segregation occurs with low preference thresholds, so

Schelling’s principle is valid also in our MFG models. We also compare the results

for different thresholds, showing that a higher threshold pushes a population to

concentrate in a smaller space, and we also observe the instability arising if both

populations are rather xenophobic, leading to oscillations in time. Finally we present

a 2-d example of pedestrian dynamics with two populations.

More references to the literature on MFG will be given throughout the paper.

The paper is organised as follows. In Section 2, we propose several forms of

cost functionals that reflect the preferences described by Schelling, with variants

and generalizations. In Section 3, we prove a large population limit for the static

game, following the method of Lions and Cardaliaguet, Ref. 14, and give some simple

examples of Mean Field equilibria. In Section 4, we first introduce a dynamics driven

by a stochastic control system, the long-time average cost, and the stationary MFG

PDEs associated to them, followed by an example of coexistence of segregated

and non-segregated solutions. Then we describe the finite horizon problem, the

evolutive MFG PDEs for it, and prove an existence theorem. Section 5 illustrates

the numerical methods for the MFG PDEs. The final Section 6 contains several

simulations for the stationary and evolutive cases, in 1 and 2 dimensions.

2. Static games in continuous space inspired by T. Schelling
Schelling

In this section, we propose a class of static (one-shot) games with two populations of

players whose positions are taken in a bounded set Ω ⊂ Rd. Within each population,
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Fig. 1. The utility function Uk (θk = 2, ak = 0.4). utility_plot
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all players have the same cost functional to minimize. We choose such functionals

in a way that reproduces the main features of the classical models of segregated

neighborhoods by Schelling, Ref. 44 and 45, and of some of their subsequent de-

velopments. We fix a neighborhood U(x) for each point x ∈ Ω and consider the

amount of each population living in such neighborhood, N1(x), N2(x). In the sim-

plest models, the utility Uk (= minus the cost) of an individual of the k-th species

living at the position x depends only on the quantity

sk :=
Nk(x)

N1(x) +N2(x)
(2.1) s_i

and has the shape shown in Figure 1, that is,

Uk(sk) :=

{
θk(sk − ak) if sk < ak,

0 else,
(2.2) utility

where θk > 0 and 0 ≤ ak ≤ 1. Here sk is the percentage of population k living

in U(x) and ak is a threshold of happiness: if sk is below it the player of the k-th

species at the position x has a negative utility, i.e., a positive cost.

In the Schelling’s model and in the differential games of Section 4, the agent then

moves and looks for a location with a higher value of sk, possibly sk > ak. In the

static games of this section, we look for equilibrium distributions of the players that

are Nash equilibria for the game of minimizing the individual costs. In most of the

recent literature the parameter ak is taken to be 1/2 for both populations, but in

Schelling’s original examples it is often below 1/2, therefore modeling populations

that are not xenophobic and that just do not want that their own group be too

small in their neighborhood.

The shape of the utility function (2.2) is “peaked at ak”, as one of those con-

sidered in Ref. 9 and a limit case of those in Ref. 47, 48; for the slope θk very large

it approximates the stair-like utility of Schelling, and for ak = 1 it is the linear

utility of Ref. 13; see Ref. 25 for a survey. References 47, 48, and 9 consider also

utilities decreasing on the right of ak: although we do not consider these cases in the

numerical simulations, they satisfy the same boundedness conditions as our models

and therefore fit into our analysis of Sections 3, 4, and 5.
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We will consider also more general cost functionals that depend on N1(x) and

N2(x) separately, not only via sk, and definitions of N1(x), N2(x) as measures of

the number of individuals weighted by the distance from x. Our assumptions will be

general enough to include examples in fields different from residential segregation,

such as crowd motion and pedestrian dynamics, see Ref. 22 for a general presentation

and Ref. 38 and 39 for Mean-Field Games models with two populations.

2.1. A basic game with two populations of N players.
basic

We consider a one-shot game with 2N players divided in two populations. The

vector (x1, . . . , xN ) represents the positions of the players of the first population

and (y1, . . . , yN ) those of the players of the second one, where xi, yi ∈ Ω and Ω ⊂ Rd
is an open and bounded set. We adopt the conventions and notations of Mean-Field

Games, see Ref. 41, and associate to each player a cost (instead of a utility) that

the player seeks to minimise (instead of maximise), it is denoted with F 1,N
i for the

i-th player of the first population and with F 2,N
i for the i-th player of the second

population. The first kind of cost functionals we propose are

F 1,N
i (x1, . . . , xN , y1, . . . , yN ) =

θ1

(
]{xj ∈ U(xi) : j 6= i}

]{xj ∈ U(xi) : j 6= i}+ ]{yj ∈ U(xi)}+ η1(N − 1)
− a1

)−
, (2.3) F1

where θ1 > 0, 0 ≤ a1 ≤ 1, η1 ≥ 0, ]X denotes the cardinality of the (finite) set X,

U(x) is some neighborhood of x (for example Br(x) ∩ Ω, where Br(x) is the ball

centered at x of radius r, or Sr(x) ∩ Ω, where Sr(x) is the square centered at x of

side length r), and (t)− denotes the negative part of t, i.e., (t)− = −t if t < 0 and

(t)− = 0 if t ≥ 0. As before, a1 ∈ [0, 1] is the “threshold of happiness” of any player

of the first population: his cost is null if the ratio of the individuals of his own kind

in the neighborhood is above this threshold, whereas the cost is positive with slope

θ1 below the threshold. Note that, for η1 = 0 and U1, s1 defined by (2.2), (2.1),

F 1,N
i := −U1(s1), N1(x) = ]{xj ∈ U(xi) : j 6= i}, N2(x) = ]{yj ∈ U(xi)}.

In the following, however, we will assume η1 > 0 (and small) in order to avoid the

indeterminacy of the ratio s1 (2.1) as N1(x) +N2(x)→ 0. This assumption makes

the cost continuous, and it has the following interpretation: suppose that a player

is surrounded just by individuals of his own kind, i.e. ]{yj ∈ U(xi)} = 0, then the

cost he pays is null as long as

N1(x) = ]{xj ∈ U(xi) : j 6= i} ≥ a1η1

1− a1
(N − 1).

But if N1(x) becomes too small he pays a positive cost (tending to θ1a1 as N1(x)→
0). This means that it is uncomfortable to live in an almost desert neighborhood.

We introduce the notation

G(r, s; a, t) :=

(
r

r + s+ t
− a
)−

, (2.4) eqG
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and observe that G : [0,+∞) × [0,+∞) × [0, 1] × (0, 1) → [0,+∞) is a continuous

and bounded function of r, s for each a, t fixed. We rewrite

F 1,N
i (x1, . . . , xN , y1, . . . , yN )

= θ1G(]{xj ∈ U(xi) : j 6= i}, ]{yj ∈ U(xi)}; a1, η1(N − 1)),

The cost for each player of the second population is

F 2,N
i (x1, . . . , xN , y1, . . . , yN )

= θ2G(]{yj ∈ U(yi) : j 6= i}, ]{xj ∈ U(yi)}; a2, η2(N − 1)),

where a2 ∈ [0, 1] represents the threshold of happiness of this population and

θ2, η2 > 0. It has the same form as F 1,N
i , but the three parameters a2, θ2, η2 can be

different from a1, θ1, η1.

We note that the costs depend on the position of the players only via the empir-

ical measures of the two populations. As usual in the theory of Mean-Field Games

they can be generated by maps over probability measures as follows

F 1,N
i (x1, . . . , xN , y1, . . . , yN ) = V 1,N

 1

N − 1

∑
i 6=j

δxj ,
1

N

∑
δyj

 (xi), (2.5) eqwithmass

where V 1,N : P(Ω)× P(Ω)→ C(Ω) is defined by

V 1,N [m1,m2](x) := θ1G

(
(N − 1)

∫
U(x)

m1, N

∫
U(x)

m2; a1, η1(N − 1)

)
, (2.6) Vbase1

where P(Ω) denotes the set of all probability measures over Ω. In the same way,

F 2,N
i (x1, . . . , xN , y1, . . . , yN ) = V 2,N

 1

N

∑
δxj ,

1

N − 1

∑
i 6=j

δyj

 (yi)

= θ2G

(N − 1)

∫
U(yi)

1

N − 1

∑
i 6=j

δyj , N

∫
U(yi)

1

N

∑
δxj ; a2, η2(N − 1)

 . (2.7) Vbase2

In the rest of the paper, we will assume

θ1 = θ2 = 1.

This is done merely for simplifying the notations, all the results and proofs of the

paper remain valid for any positive values of θi.

2.2. Overcrowding and family effects
family

In the discrete model of Schelling, there is a structural impossibility of overcrowding:

every player occupies a position in a chessboard, and every slot can host at most

one player. In our continuous model, there is no constraint on the local density and

the individuals may even concentrate at a single point of the domain. In order to
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avoid this unrealistic phenomenon, we shall introduce an overcrowding term in the

costs F k,Ni :

F̂ 1,N
i (x1, . . . , yN ) = F 1,N

i + C1[(]{xj ∈ U(xi)}+ ]{yj ∈ U(xi)})/(2N)− b1]+,

F̂ 2,N
i (x1, . . . , yN ) = F 2,N

i + C2[(]{xj ∈ U(yi)}+ ]{yj ∈ U(yi)})/(2N)− b2]+,

for every i = 1, . . . , N , so every player starts paying a positive cost when the total

number of players in his neighborhood overcomes the threshold bk2N ; thus bk ≥ 0

represents the maximum percentage of the whole population that is tolerated at

no cost. Here Ck are positive constants, possibly large: when the concentration of

players is too high in some regions, the discomfort might be due to overcrowding and

not necessarily to an unsatisfactory ratio between the total number of individuals

of the two populations (the F k,Ni term).

The maps over probability measures that generate these costs are

V̂ 1[m1,m2](x) := V 1[m1,m2](x) + C1

[∫
U(x)

m1 +m2

2
− b1

]+

,

V̂ 2[m1,m2](x) := V 2[m1,m2](x) + C2

[∫
U(x)

m1 +m2

2
− b2

]+

for the two populations.

Next we take into account that an individual may be influenced also by the

opinions of other individuals living around him. A first attempt to model this is

adding to the cost of each player the costs paid by the players of his own kind and

very close to him, e.g., by his family, leading to

F
1,N

i (x1, . . . , xN , y1, . . . , yN ) =
1

N

∑
l : xl∈V(xi)

F 1,N
l (x1, . . . , xN , y1, . . . , yN ),

F
2,N

i (x1, . . . , xN , y1, . . . , yN ) =
1

N

∑
l : yl∈V(yi)

F 2,N
l (x1, . . . , xN , y1, . . . , yN ),

where V(x) is a neighborhood of x in Ω. This can be refined by assuming that the

opinion of other neighbors is weighted by a function that depends upon the distance

from the individual

F
k,N

i (x1, . . . , xN , y1, . . . , yN ) =
1

N

N∑
l=1

F k,Nl (x1, . . . , xN , y1, . . . , yN )W (xi, xl),

(2.8) costimedi

k = 1, 2, where W : Ω× Ω→ R is nonnegative and such that W (xi, ·) has support

in V(xi). Hence, combining (2.5) and (2.7) with (2.8), we arrive at

F
k,N

i (x1, . . . , xN , y1, . . . , yN ) =

∫
Ω

W (xi, z)V
k,N (z)

1

N

N∑
l=1

δxl(dz), (2.9)
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where

V 1,N (z) := V 1,N

 1

N − 1

∑
i 6=j

δxj ,
1

N

∑
δyj

 (z),

V 2,N (z) := V 2,N

 1

N

∑
δxj ,

1

N − 1

∑
i 6=j

δyj

 (z).

2.3. More regular cost functionals
more

The cost functionals proposed so far involve the amount of individuals in a neigh-

borhood of x that can be written as∫
U(x)

dmk(y) =

∫
Ω

χU(x)(y)dmk(y),

where mk is the empirical measure of the k-th population and χU(x)(·) is the indi-

cator function of the set U(x), i.e., χU(x)(y) = 1 if y ∈ U(x) and χU(x)(y) = 0 other-

wise. It is useful to consider regularized versions of such integrals where χU(x)(x, y)

is approximated by a nonnegative smooth kernel K(·, ·) such that K(x, y) = 1 if

y ∈ U(x) and K(x, y) = 0 for y out of a small neighborhood of U(x). The cost

functionals of Section 2.1 are modified to

V 1,N [m1,m2] (x) :=

G

(
(N − 1)

∫
Ω

K(x, y)dm1(y), N

∫
Ω

K(x, y)dm2(y); a1, η1(N − 1)

)
, (2.10) V1reg

V 2,N [m1,m2] (x) :=

G

(
(N − 1)

∫
Ω

K(x, y)dm2(y), N

∫
Ω

K(x, y)dm1(y); a2, η2(N − 1)

)
. (2.11) V2reg

As we will see in the next section, these new functionals are continuous on P(Ω)

endowed with a suitable notion of distance between measures.

In the present continuous-space setting, they are also more realistic, because

individuals near the boundary of U(x) still count in the cost but with small weights.

More generally, K can be a suitable decreasing function of the distance between x

and y.

3. Static Mean-Field Games with two populations
staticMF

In this section, we derive a pair of equations in P(Ω) that describe the one-shot

Mean-Field Game with two populations of players. They are obtained by taking the

limit as N →∞ of Nash equilibria in the game with N +N players. They are the

natural extension to two populations of the equation proposed by Lions for a single

population in his lectures at the College de France, see Ref. 14.
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In the sequel, we consider P(Ω) as a metric space with the Kantorovich-

Rubinstein distance between two measures µ, ν that we denote with d(µ, ν), whose

topology corresponds to the weak∗ convergence of measures (see, e.g., Ref. 14).

3.1. The large populations limit
largepop

Let F 1,N
1 , . . . , F 1,N

N , F 2,N
1 , . . . , F 2,N

N : Ω
2N → R be the cost functions of a game with

two populations of N players each. Suppose that there exist continuous V 1, V 2 :

P(Ω)× P(Ω)→ C(Ω) such that, for all N and i = 1, . . . , N ,

F 1,N
i (x1, . . . , xN , y1, . . . , yN ) = V 1

 1

N − 1

∑
i 6=j

δxj ,
1

N

∑
δyj

 (xi) + o(1) (3.1) FV

F 2,N
i (x1, . . . , xN , y1, . . . , yN ) = V 2

 1

N

∑
δxj ,

1

N − 1

∑
i6=j

δyj

 (yi) + o(1), (3.2) FV2

where o(1)→ 0 as N →∞ uniformly with respect to xi, yj .

For (x̄N1 , . . . , x̄
N
N , ȳ

N
1 , . . . , ȳ

N
N ) ∈ Ω

2N
, denote the empirical measures with

m̄N
1 :=

1

N

N∑
j=1

δx̄Nj , m̄N
2 :=

1

N

N∑
j=1

δȳNj .

The next result is the large population limit of Nash equilibria.

nashlimits Proposition 1. Assume (3.1), (3.2), and that, for all N , (x̄N1 , . . . , x̄
N
N , ȳ

N
1 , . . . , ȳ

N
N )

is a Nash equilibrium for the game with cost functions F 1,N
1 , . . . , F 1,N

N ,

F 2,N
1 , . . . , F 2,N

N . Then, up to subsequences, the sequences of measures (m̄N
1 ), (m̄N

2 )

converge, respectively, to m̄1, m̄2 ∈ P(Ω) such that∫
Ω

V k[m̄1, m̄2](x)dm̄k(x) = inf
µ∈P(Ω)

∫
Ω

V k[m̄1, m̄2](x)dµ(x), k = 1, 2. (3.3) MFoneshot

Proof. By compactness, m̄N
k → mk as N → ∞ (up to subsequences); we need to

prove that m̄k satisfy (3.3). Let ε > 0, for all N ≥ N̄ = N̄(ε) we have that for all

z ∈ Ω, i = 1, . . . , N ,

V 1

 1

N − 1

∑
i 6=j

δx̄Nj ,
1

N

∑
δȳNj

 (x̄Ni ) ≤ V 1

 1

N − 1

∑
i 6=j

δx̄Nj ,
1

N

∑
δȳNj

 (z) + ε

by definition of Nash equilibrium and (3.1), so the measure δx̄Ni satisfies for all
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µ ∈ P(Ω)

∫
Ω

V 1

 1

N − 1

∑
j 6=i

δx̄Nj ,
1

N

∑
j

δȳNj

 (x)dδx̄Ni (x) ≤

∫
Ω

V 1

 1

N − 1

∑
j 6=i

δx̄Nj ,
1

N

∑
j

δȳNj

 (x)dµ(x) + ε.

Since d
(

1
N−1

∑
j 6=i δx̄Nj , m̄

N
1

)
→ 0, by continuity of V 1

∣∣∣∣∣∣V 1

 1

N − 1

∑
j 6=i

δx̄Nj ,
1

N

∑
j

δȳNj

 (x)− V 1[m̄N
1 , m̄

N
2 ](x)

∣∣∣∣∣∣ ≤ ε
for all x ∈ Ω and N ≥ N̄ , so∫

Ω

V 1[m̄N
1 , m̄

N
2 ](x)dδx̄Ni (x) ≤

∫
Ω

V 1[m̄N
1 , m̄

N
2 ](x)dµ(x) + 3ε.

Then we take the sum for i = 1, . . . , N and the infµ, divide by N and get∫
Ω

V 1[m̄N
1 , m̄

N
2 ](x)dm̄N

1 (x) ≤ inf
µ∈P(Ω)

∫
Ω

V 1[m̄N
1 , m̄

N
2 ](x)dµ(x) + 3ε.

Using again that continuity of V 1, by passing to the limit as N → ∞ and then

ε → 0 we obtain (3.3) for k = 1. The argument for k = 2 is analogous, by using

(3.2) instead of (3.1).

Remark 2. The two equations (3.3) define a Mean-Field equilibrium (m̄1, m̄2) for

any game with two populations associated to the functionals V 1, V 2. They are easily

seen to be equivalent to the equations

∀x ∈ supp m̄k V k[m̄1, m̄2](x) = min
z∈Ω

V k[m̄1, m̄2](z), k = 1, 2, (3.4) MFoneshot2

see Ref. 14, Section 2.2, for the case of a single population.

mixed Remark 3. The assumption of existence of a Nash equilibrium for the N + N

game in the previous theorem may look restrictive because Nash equilibria may

not exist without further assumptions. However, the classical Nash Theorem guar-

antees that Nash equilibria exist if we allow players to use mixed strategies, i.e.,

to minimise over elements of P(Ω). Moreover, all players of the same population

use the same cost function, so one can consider Nash equilibria in mixed strategies

that are symmetric within each population, as in Section 8 of Ref. 14. Then one

can derive the equations (3.3) and (3.4) via the large population limit by assuming

(x,m1,m2) 7→ V k[m1,m2](x) both Lipschitz continuous, but not the existence of a

Nash equilibrium in pure strategies, following Section 2.3 of Ref. 14.
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3.2. Examples
Exa

Here we show that the models of Section 2 satisfy the assumptions of Proposition 1

or Remark 3 as soon as the the amount of players in a neighborhood is regularized

as in Section 2.3. This is based on the next simple result.

liplip Lemma 4. If K : Rd×Rd → R is Lipschitz continuous, then the map Ω×P(Ω)→
Rd, (x,m) 7→

∫
Ω
K(x, y)dm(y) is Lipschitz continuous.

Proof. The Lipschitz continuity in x is immediate. For the Lipschitz continuity in

m we observe that, if L is a Lipschitz constant for K(x, ·), then y 7→ K(x, y)/L has

Lipschitz constant 1, so by the very definition of Kantorovich-Rubinstein distance∣∣∣∣∫
Ω

K(x, y)d(m(y)− µ(y))

∣∣∣∣ = L

∣∣∣∣∫
Ω

K(x, y)

L
d(m(y)− µ(y))

∣∣∣∣ ≤ Ld(m,µ).

exabas Example 5 (The basic game). We consider the game with N +N players and cost

functions

F 1,N
i (x1, . . . , xN , y1, . . . , yN ) = V 1,N

 1

N − 1

∑
i6=j

δxj ,
1

N

∑
δyj

 (xi),

F 2,N
i (x1, . . . , xN , y1, . . . , yN ) = V 2,N

 1

N

∑
j

δxj ,
1

N − 1

∑
j 6=i

δyj

 (yi),

where V k,N are the regularized functionals (2.10) and (2.11) with K ≥ 0 and

Lipschitz, and G is defined by (2.4). Since G(γr, γs; a, t) = G(r, s; a, γ−1t) for all

γ 6= 0,

V k,N [m1,m2] (x) = G

(∫
Ω

K(x, y)dmk(y),
N

N − 1

∫
Ω

K(x, y)dm−k(y); ak, ηk

)
.

Moreover, for ηi > 0, G is Lipschitz continuous in the first two entries, so we can

pass to the limit as N →∞ and get (3.1) and (3.2) with

V k [m1,m2] (x) := G

(∫
Ω

K(x, y)dmk(y),

∫
Ω

K(x, y)dm−k(y); ak, ηk

)
, (3.5) Vk

where m−1 = m2 and m−2 = m1. Furthermore, (x,m1,m2) 7→ V k[m1,m2](x) are

Lipschitz continuous by Lemma 4. Then Proposition 1 applies to this example if

there are Nash equilibria in pure strategies for the N + N game, and in general

Remark 3 applies.

exafamily Example 6 (Games with family effects). Here we take the cost functionals with

“family effects” of Section 2.2 and we regularize them as in Section 2.3, i.e., V k,N (x)

are the regularized functionals (2.10) and (2.11) as in the preceding example and

we consider

F
k,N

i (x1, . . . , xN , y1, . . . , yN ) =
1

N

N∑
l=1

V k,N (xl)W (xi, xl), (3.6)
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where W : Rd × Rd → R is Lipschitz continuous. In this case, (3.1) and (3.2) are

satisfied by

V
k
[m1,m2](x) :=

∫
Ω

W (x, z)V k[m1,m2](z)dmk(z) (3.7) Vbarsmoothened

and (x,m1,m2) 7→ V
k
[m1,m2](x) are Lipschitz continuous as in the previous ex-

ample.

Note that the functionals V k and V
k

have a remarkably different behavior in

areas where both populations are rare. In fact, assume that at some point x̄ both∫
Ω
K(x̄, y)dmk(y) = 0 and, e.g,

∫
Ω
W (x̄, z)dm1(z) = 0. Then

V 1[m1,m2](x̄) = a1 = maxG, V
1
[m1,m2](x̄) = 0 = minG.

3.3. Some explicit Mean-Field equilibria

In this section, we give two simple examples of pairs (m̄1, m̄2) ∈ P(Ω)×P(Ω) that

satisfy the Mean-Field equations (3.4) (or, equivalently, (3.3)) for the basic game

of Example 5.

Example 7 (Uniform distributions). In addition to the assumptions of Example 5,

suppose that ∫
Ω

K(x, y) dy = c does not depend on x. (3.8) Kconst

This says that the kernel K gives the same total weight to the neighborhood U(x) :=

suppK(x, ·) of x, for all x ∈ Ω. Consider the uniform distributions

m̄1(x) = m̄2(x) = 1/|Ω| ∀x ∈ Ω,

where |Ω| denotes the measure of Ω. Observe that, by (3.8), V k[m̄1, m̄2](x) is con-

stant. Then the pair (m̄1, m̄2) solves (3.4) and therefore it is a Mean-Field equi-

librium. Note that this occurs for all values of the parameters ak, ηk, and that the

“value of the game” V k[m̄1, m̄2](x) is not necessarily 0 (e.g., for ak ≥ 1/2, ηk > 0).

Example 8 (Fully segregated solutions). In addition to the assumptions of Example

5, we suppose now that, for some r > 0,

suppK(x, ·) ⊆ {z : |z − x| ≤ r} (3.9) suppKt

and a1, a2 < 1. We consider two sets Ω1,Ω2 ⊆ Ω such that

dist(Ω1,Ω2) ≥ r,
∫

Ωk

K(x, y) dy ≥ ck > 0 ∀x ∈ Ωk, k = 1, 2.

The second condition means that Ωk has enough weight near x for all x ∈ Ωk. We

consider the distributions

m̄1(x) =

{
1/|Ω1| if x ∈ Ω1,

0 else,
m̄2(x) =

{
1/|Ω2| if x ∈ Ω2,

0 else.
(3.10) segreg
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In order to check (3.4), we first pick x ∈ supp m̄1 = Ω1. By (3.9) and the first

property of Ωk we have∫
Ω
K(x, y) dm̄1(y)∫

Ω
K(x, y) dm̄1(y) +

∫
Ω
K(x, y) dm̄2(y) + η1

= 1/

(
1 +

η1|Ω1|∫
Ω1
K(x, y) dy

)
,

and the right-hand side is above or equal to the threshold a1 if and only if

η1|Ω1| ≤
∫

Ω1

K(x, y) dy

(
1

a1
− 1

)
,

which is true for all x ∈ Ω1 if

η1|Ω1|
a1

1− a1
≤ c1.

Then for such values of the parameters V 1[m̄1, m̄2](x) = 0, so the first equation

(3.4) is satisfied. Similarly, if η2|Ω2|a2/(1− a2) ≤ c2, for x ∈ supp m̄2 = Ω2 we

have V 2[m̄1, m̄2](x) = 0 and also the second equation (3.4) is verified. Therefore we

have a large set of parameters for which any segregated solution of the form (3.10)

is a Mean-Field equilibrium.

3.4. Models with myopic players
locallimits

In connection with the differential Mean-Field games of the next sections, it is

interesting to consider models where the cost functionals V k[m1,m2](x) depend

only on (m1(x),m2(x)). This makes sense only if the measures mk have a density,

and it is a limit case that does not meet the regularity conditions of Section 3.1.

We derive such local versions of the cost functionals by letting the size of the

neighborhoods U(x) tend to 0. This corresponds to individuals who compute their

cost functional by looking only at a very short distance, that we call myopic players.

Suppose that the kernel K in Section 2.3 takes the form

K(x, y) = ρ−dϕ

(
x− y
ρ

)
where ϕ is a mollifier (i.e., a smooth nonnegative function Rd → R with support the

unit ball centered at 0 and
∫
Rd ϕ(z)dz = 1). If m ∈ L1(Ω), limρ→0

∫
K(x, y)dm(y) =

m(x) for a.e. x.

Consider first the functionals V k associated to the basic game (in the large

population limit) defined by (3.5) in Example 5. Then

lim
ρ→0

V k[m1,m2](x) = G(mk(x),m−k(x); ak, ηk)

=

(
mk(x)

mk(x) +m−k(x) + ηk
− ak

)−
=: V k` [m1,m2](x).

Next we consider the game with family effects of Example 6 and assume the

kernel W in (3.7) is also of the form

W (x, y) = r−dψ

(
x− y
r

)
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where ψ is a mollifier. In the functionals V
k

defined by (3.7), we let first r → 0 and

get

lim
r→0

V
k
[m1,m2](x) = mk(x)V k[m1,m2](x).

This a partially local model that can be interesting in some cases, but we do not

study it further in this paper. Finally, we let ρ→ 0 and obtain the local version of

V
k
:

lim
ρ→0

lim
r→0

V
k
[m1,m2](x) = mk(x)V k` [m1,m2](x) =: V`

k
[m1,m2](x).

4. Mean-field differential game models of segregation
differential

4.1. Long-time average cost functionals

In the last section, we designed some one-shot mean field games inspired by the

original ideas of the population model by T. Schelling. We obtained the averaged

costs V k, V
k

by taking the limits as N → ∞ of Nash equilibria of one-shot games

with 2N players, and then the local limits V k` , V
k

` by shrinking the neighborhoods

to points. We shall now investigate dynamic mean field games with the same cost

functionals in a differential context. We consider the state of a representative agent

of the k-th population governed by the controlled stochastic differential equation

with reflection

dXk
s = αksds+

√
2ν dBks − n(Xk

s )dlks , (4.1) sdeXk

where Bks is a standard d-dimensional Brownian motion defined on some probability

space, αks is a control process adapted to Bks , n(x) is the outward normal to the

open set Ω at the point x ∈ ∂Ω, and the local time lks =
∫ s

0
χ∂Ω(Xk

s )dlks is a non-

decreasing process adapted to Bks . The term n(Xk
s )dlks in the stochastic differential

equation prevents the state variable Xk
s to escape from Ω by reflecting it when it

reaches the boundary.

The goal of a player of the k-th population is minimizing the long-time average

cost, also called ergodic cost,

Jk(Xk
0 , α

1, α2,m1,m2) = lim inf
T→+∞

1

T
E

[∫ T

0

L(Xk
s , α

k
s ) + V k[m1,m2](Xk

s )ds

]
,

(4.2) longtimeJ

wheremk are the distributions of the two populations and L is a Lagrangian function

(smooth and convex in its second entry) which represents the cost paid by the player

for using the control αks at the position Xk
s .

The equilibrium distributions mk satisfy, together with λk ∈ R and the func-

tions uk, the stationary MFG system of two Hamilton-Jacobi-Bellman and two
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Kolmogorov-Fokker-Planck equations
−ν∆uk +H(x,Duk) + λk = V k[m1,m2](x) in Ω, k = 1, 2

−ν∆mk − div(DpH(x,Duk)mk) = 0,

∂nuk = 0, ν∂nmk +mkDpH
k(x,Duk)) · n = 0, on ∂Ω,

(4.3) MFGstat

where the Hamiltonian H is the Legendre transform of L with respect to the 2nd

entry, λk is the (constant) value of the representative agent of the k-th population,

and the solutions uk of the H-J-B equations provide the optimal strategies in feed-

back form −DpH(·, Duk(·)). Here the costs V k might be replaced by V
k

or by the

local versions V k` and V
k

` defined in the previous section. The connection between

systems like (4.3) and stochastic differential games with N players having the same

dynamics and individual costs, as N →∞, was discovered by Lasry and Lions Ref.

41 in the periodic setting for a single population, and extended to several popula-

tions and more general data in Ref. 23 and to Linear-Quadratic problems in Ref. 8,

see also Ref. 37 for related results by different methods.

Existence for (4.3) can be proved by means of fixed-point arguments when the

cost functionals are bounded.

statexistence Theorem 9. Let Ω be a convex domain. Suppose that H(x, p) = R|p|γ − H0(x),

where R > 0, γ > 1, H0 ∈ C2(Ω) and ∂nH0 ≥ 0 on ∂Ω. Then, there exists at least

one solution (uk, λk,mk) ∈ C1,δ(Ω)×R×W 1,p(Ω) to (4.3) with costs either V k, or

V
k
, or V k` , k = 1, 2.

Proof. See Ref. 20, Theorem 6.

The case of local costs V
k

` in dimension d > 1 does not fit into the existence

theorem because V
k

` is unbounded and a-priori estimates on solutions might fail in

general. For space dimension d = 1 see Ref. 19, Proposition 4.6. We do not expect

uniqueness of the solution to the system (4.3).

For non-local V k, V
k

solutions can be proved to be classical and existence holds

under weaker assumptions (see Theorem 4 in Ref. 20), provided the negative part

(·)− in G is replaced by some smooth regularization. We are interested in qualitative

properties of m1,m2, but no methods in this direction are known so far for solutions

of PDE systems like (4.3). For such a reason, a numerical analysis will be carried

out in Section 6.

4.1.1. The deterministic case in one space dimension
deterministiccase

In order to convince ourselves that segregation phenomena might occur also in our

differential MFG models, we briefly analyze the deterministic case ν = 0 in space

dimension d = 1. Suppose that the state space is a closed interval Ω = [a, b] ⊂ R and

that there is no Brownian motion perturbing the dynamics of the average players



July 4, 2016 14:29 WSPC/INSTRUCTION FILE segreg˙mfg10

16 Achdou, Bardi, Cirant

(ν = 0). Suppose also that H(x, p) = |p|2/2. Then, (4.3) simplifies to
(u′
k)2

2 + λk = V k[m1,m2](x) in Ω, k = 1, 2

(u′kmk)′ = 0,

u′k = 0, u′kmk = 0 on ∂Ω,

(4.4) deterministicsys

where the Neumann boundary conditions must be interpreted in the viscosity sense,

as it is natural when taking the limit as ν → 0.

It is possible to construct explicit solutions for this system. For simplicity, we

will consider the non-smoothened costs

V k[m1,m2](x) = G

(∫
U(x)

mk,

∫
U(x)

m−k; ak, ηk

)
,

where G is defined in (2.4) and m−1 = m2,m−2 = m1.

Example 10 (Uniform distributions).

mk =
1

b− a
, uk = 0, λk = V k[m1,m2], k = 1, 2

provides a solution: the two populations are distributed uniformly and the cost

functions are everywhere zero if the two thresholds ak are not large (say, below .5

if η is negligible).

Example 11 (Segregated solutions). A family of fully segregated solutions may be

written down explicitly. Suppose that U(x) = (x− r, x+ r)∩ [a, b] with r > 0 small,

and let a = x0 < x1 < x2 < x3 < x4 < x5 = b such that xk+1 − xk > r for

k = 0, . . . , 4. Set

m1(x) =
1

x2 − x1
χ[x1,x2](x), m2(x) =

1

x4 − x3
χ[x3,x4](x) ∀x ∈ [a, b].

Then,
∫
U(x)

m1 and
∫
U(x)

m2 are continuous functions which have support in (x1 −
r, x2 + r) and (x3 − r, x4 + r), respectively. V 1[m1,m2](·) is also continuous, and

vanishes in [x1, x2] (if a1 < 1 and η1 is small enough); indeed,
∫
U(x)

m2 = 0, so∫
U(x)

m1/
∫
U(x)

(m1 +m2) = 1. The same is for V 2, so we define

λk = 0, uk(x) =

∫ x

a

(2V k[m1,m2](σ))1/2dσ, ∀x ∈ [a, b], k = 1, 2.

It is easy to see that the functions (u1, u2) verify the two HJB equations of (4.4).

Moreover, they satisfy the Neumann boundary conditions u′k(a) = u′k(b) = 0 in the

viscosity sensea (but not in classical sense, as (u′k)2 = 2V k 6= 0 on the boundary

of [a, b]); indeed, suppose that φ is a test function such that u1 − φ has a local

aA function u ∈ C([a, b]) satisfies the homogeneous Neumann boundary conditions in the viscosity
sense in a if, for all test functions φ ∈ C2 such that u − φ has a local maximum at a, then

min{(φ′(a))2 − 2V 1[m1,m2](a), φ′(a)} ≤ 0, and for all φ ∈ C2 such that u − φ has a local
minimum at a, then max{(φ′(a))2 − 2V 1[m1,m2](a), φ′(a)} ≥ 0.
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maximum at x = b. If we set s = (2V 1[m1,m2](b))1/2 it follows that φ′(b) ≤ s. If

φ′(b) ≥ −s then (φ′(b))2 ≤ s2, so

min{(φ′(b))2 − 2V 1[m1,m2](b), φ′(b)} ≤ 0.

Similarly, if u1 − φ has a local minimum at x = b,

max{(φ′(b))2 − 2V 1[m1,m2](b), φ′(b)} ≥ 0,

and in the same way it also holds that u′1(a) = u′2(a) = u′2(b) = 0 in the viscosity

sense.

It remains to check that mk are (weak) solutions of the two Kolmogorov equa-

tions. To do so, we notice that m1 is zero outside [x1, x2]; in [x1, x2], however,

V 1[m1,m2](x) = 0, hence u′1(x) = 0. Similarly, m2(x) or u′2(x) vanishes, so

(u′kmk)′ = 0.

4.2. Finite horizon problems

When the the cost paid by a single player has the form (4.2), which captures the

effect of the mk long-time average, the mean field system of partial differential equa-

tions (4.3) which characterizes Nash equilibria is stationary, i.e. no time dependance

appears. Suppose, on the other hand, that a time horizon T > 0 is fixed, and the

cost paid by the average player of the k-th population is of the form

Jk(Xk
0 , t, α

1, α2,m1,m2) = E

[∫ T

t

L(x, αks ) + V k[m1,m2](Xk
s )ds+GkT [m(T )](Xk

T )

]
,

(4.5) fixedtimeJ

where t is the initial time and GkT [m(T )] represents the cost paid at the final time

T . Then, the time variable t enters the Mean Field Game system, which becomes


−∂tuk − ν∆uk +Hk(x,Duk) = V k[m](x), in Ω× (0, T ),

∂tmk − ν∆mk − div(DpH
k(x,Duk)mk) = 0 in Ω× (0, T ),

∂nuk = 0, ν∂nmk +mkDpH
k(x,Duk) · n = 0 on ∂Ω× (0, T ),

uk(x, T ) = GkT [m(T )](x), mk(x, 0) = mk,0(x) in Ω

(4.6) MFGnons

We observe that (4.6) has a backward-forward structure: the Hamilton-Jacobi-

Bellman equation for the value functions V k is backward in time, being the repre-

sentative agent able to foresee the outcome of his actions, while his own distribution

mk evolves forward in time. The final cost GkT and the initial distributions mk,0 are

prescribed as final/initial boundary data.

For one population with periodic boundary conditions, the rigorous derivation

of such a system from Nash equilibria of 2N -persons games in the limits as N →∞
was proved very recently in the fundamental paper by Cardaliaguet, Delarue, Lasry,

and Lions Ref. 15 on the so-called Master Equation of MFG. For related results by

probabilistic methods, see Ref. 24 and the references therein. The fact that from a

solution of (4.6) one can synthesize ε-Nash equilibria for the 2N -persons game, if N
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is large enough, is due to Huang, Caines and Malhamé Ref. 37 (for one population)

and to Nourian and Caines for problems with major an minor agents, Ref. 42.

We also point out that the system (4.3) captures in some circumstances the

behavior of (4.6) as T →∞. In particular, for a single population, if the cost V is

monotone increasing with respect to m, then solutions of (4.6) converge to solutions

of (4.3) (see Ref. 16). It is not clear whether a similar phenomenon can be rigorously

proved in our multi-population systems, since monotonicity fails, but we show in

Section 6 that it is likely to occur by providing some numerical evidences.

Existence of classical solutions for non-stationary Mean Field Games systems

like (4.6) can be stated under rather general assumptions. In Ref. 14 a detailed

proof is provided for the single-population case with periodic boundary conditions.

Next we state a precise existence result for our system (4.6) and outline its proof,

whose main modifications are due to the presence of Neumann boundary condi-

tions. Nevertheless, the general lines of the argument are the same: the fixed point

structure of the system is exploited and the regularizing assumptions on V k, GkT
assure that suitable a-priori estimates hold.

We recall that the space of probability measures P(Ω) can be endowed with the

Kantorovitch-Rubinstein distance, which metricize the weak∗ topology on P(Ω).

The assumptions on V k, GkT ,mi,0 we require are

(1) V k, GkT are continuous in Ω× P(Ω)2.

(2) V k[m], GkT [m] are bounded respectively in C1,β(Ω), C2,β(Ω) for some β > 1,

uniformly with respect to m ∈ P(Ω)2.

(3) Hk ∈ C1(Ω× Rd) and it satisfies for some C0 > 0 the growth condition

DpH
k(x, p) · p ≥ −C0(1 + |p|2).

(4) mi,0 ∈ C2,β(Ω).

(5) The following compatibility conditions are satisfied:

∂nG
k
T [m(T )](x) = 0, ∀m ∈ P(Ω)2, x ∈ ∂Ω,

∂nmi,0(x) +mi,0DpH
k(x,Duk(x)) · n = 0 on ∂Ω.

The assumptions (1) and (2) are satisfied by the non-local costs V k, V k defined by

(3.5) and (3.7) in Section 3.2 if the negative part function (·)− in G is replaced by

a smooth approximation b.

nonstat_ex Theorem 12. Under the assumptions listed above there exists at least one classical

solution to (4.6).

Proof. Step 1. We start by an estimate on the Fokker-Planck equation. Suppose

that b is a given vector field, continuous in time and Hölder continuous in space (on

bFor example, ϕε(t) = 1
2

(
√
t2 + ε2 − t), ε > 0 small, or Ψ−,ε(·) as in (6.1).
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Ω), and m ∈ L1(Ω× (0, T )) solves in the weak sense
∂tm− ν∆m+ div(bm) = 0 in Ω× (0, T ),

ν∂nm(x)−mb · n = 0 on ∂Ω× (0, T ),

m(x, 0) = m0(x) in Ω.

(4.7) genericFP

Then, m(t) is the law of the following stochastic differential equation with re-

flection

Xt = X0 +
∫ t

0
b(Xs, s)ds+

√
2νBt −

∫ t
0
n(Xs)dls Xt ∈ Ω

lt =
∫ t

0
χ∂Ω(Xs)dls

l(0) = 0 l is nondecreasing,

(4.8) reflectedsde

where Bt is a standard Brownian motion over some probability space, Xt, lt (the

so-called local time) are continuous processes adapted to Bt and the law of X0 is

m0. This can be verified by exploiting the results of Ref. 46, where it is proved that

for all ϕ ∈ C2(Ω) such that ∂nϕ = 0 on ∂Ω,

Mt := ϕ(Xt)−
∫ t

0

[ν∆ϕ(Xt) + b(Xt, t) ·Dϕ(Xt)]dt (4.9) marting

is a martingale with respect to Bt. As a consequence, taking expectations in (4.9)

shows that the law of Xt is the (unique) solution of (4.7).

This kind of stochastic interpretation of (4.7) allows us to derive the following

estimate:

d(m(t),m(s)) = sup

{∫
Ω

φ(x)(m(x, t)−m(x, s))dx : φ is 1-Lipschitz continuous

}
≤ sup {Ex|φ(Xt)− φ(Xs)| : φ is 1-Lipschitz continuous} ≤ Ex|Xt −Xs|

≤ Ex
[∫ t

s

|b(Xτ , τ)dτ |+
√

2ν|Bt −Bs|
]
,

for all s, t ∈ [0, T ], where the last inequality follows from Ref. 6. We can then

conclude that

d(m(t),m(s)) ≤ c0(1 + ‖b‖∞)|t− s| 12 (4.10) timeest

for some c0 which does not depend on t, s.

Step 2. We set up now the existence argument, which is based on a fixed-point

method. Let C be the set of maps µ ∈ C0([0, T ],P(Ω)) such that

sup
s6=t

d(µ(s), µ(t))

|t− s|1/2
≤ C1, (4.11) supnormC

for a constant C1 large enough that will be chosen subsequently. The set C is convex

and compact. To any (µ1, µ2) ∈ C2 we associate the (unique) classical solution

(u1, u2) of

− ∂tuk − ν∆uk +Hk(x,Duk) = V k[µ1, µ2](x), (4.12) hjbmap
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satisfying the Neumann boundary conditions ∂nuk = 0 on ∂Ω, and then define

m = (m1,m2) = Ψ(µ) as the solutions of the two Fokker-Planck equations

∂tmk − ν∆mk − div(DpH
k(x,Duk)mk) = 0. (4.13) fpmap

A fixed point of Ψ is clearly a solution of (4.6). Such a mapping is indeed well-

defined: existence for the HJB equation (4.12) is guaranteed by Theorem 7.4, p.

491 of Ref. 40 and the well-posedness of (4.13) is stated in Theorem 5.3, p. 320 of

Ref. 40. These results incorporate also the Schauder a-priori estimates, that together

with (4.10) make Ψ continuous and a mapping from C2 into itself, provided that the

constant C1 in (4.11) is large enough. The existence of a fixed point for Ψ follows

from the application of the Schauder fixed point theorem.

While existence of smooth solutions of (4.6) with costs V k, V k can be established

through standard methods, the local versions V k` , V
k

` are not regularizing, so the

ideas of Theorem 12 cannot be applied directly; in this case, existence of solutions

is a much more delicate issue.

A well-established workaround is to smoothen the costs by convolution with

kernels, and pass to the limit in a sequence of approximating solutions (which are

obtained by arguing as in Theorem 12); this procedure requires a-priori bounds,

that strongly depend on the behavior of the Hamiltonian at infinity, the cost, and

the space dimension d. It is not the purpose of this paper to present theoretical

results on existence of smooth solutions in full generality. We believe that, under

suitable assumptions, solutions can be obtained without substantial difficulties by

extending known results for one-population MFG on the torus to the case of two

populations with Neumann boundary conditions. Next we briefly explain how.

Suppose that Hk(x, p) behaves like c|p|γ as p → ∞ (c > 0, and γ > 1).

In our setting, the couplings V k` , V
k

` are non-negative, and a-priori bounds on∫
|Duk|γmk dxdt and

∫
V k` mk dxdt (quantities that are somehow related to the en-

ergy of the system) can be easily proved. To carry out the approximation procedure,

it is crucial to have a-priori bounds on ‖mk‖L∞(Ω).

Example 13. In the purely quadratic case, namely, Hk(x, p) = |p|2/2, the Hopf-

Cole transformation can be used to transform (4.6) into a system of two couples of

semilinear equations of the form{
−∂tφk − ν∆φk + 1

2νV
k
` (φ1ψ1, φ2ψ2)φk = 0,

∂tψk − ν∆ψk + 1
2νV

k
` (φ1ψ1, φ2ψ2)ψk = 0,

where φk = e−uk/2ν and ψk = mke
uk/2ν , with the corresponding initial-final data

and Neumann boundary conditions. Bounds on ‖mk‖L∞(Ω) = ‖φkψk‖L∞(Ω) can be

derived by arguing as in Ref. 16, where a Moser iteration method is implemented.

Example 14. If 1 < γ < 1 + 1/(d + 1), so that H grows almost linearly, it is

known that existence of smooth solutions can be established, see the discussion in

Ref. 30. In particular, the basic estimate for
∫
|Duk|γmk implies that the drifts
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DpH
k entering the Fokker-Planck equations belong to Lp(mk), where p > d + 2.

It is known that this kind of Lebesgue regularity on the drifts is strong enough to

guarantee Hölder bounds for mk.

Example 15. For other values of γ, we observe that V k` are uniformly bounded.

Therefore, at least in the subquadratic case (namely, when γ ≤ 2), one might exploit

the classical Lipschitz bounds for viscous HJ equations and Hölder estimates for the

Fokker-Planck to achieve a-priori regularity for mk, see Ref. 40.

The setting with the costs V
k

` is more delicate, as V
k

` is a-priori unbounded

in L∞. Here, one might reason as in Ref. 30, or Ref. 31 in the superquadratic

case (see also Ref. 32), and finely combine regularity of the HJB equation and the

Fokker-Planck equation to prove existence of solutions of (4.6), at least if the space

dimension is sufficiently small (d = 1, 2). We leave these extensions to future work.

5. Numerical methods
sec_numstrategies

Numerical methods for approximating mean field game systems are an important

research issue since they are crucial for applications. The finite difference methods

described below are reminiscent ot the method first introduced and analyzed in

Ref. 4 for mean field games with a single population, which, to the best of our

knowledge, remains the more robust and flexible technique. The numerical scheme

basically relies on monotone approximations of the Hamiltonian and on a suitable

weak formulation of the Kolmogorov equation. It has several important features:

• existence and possibly uniqueness for the discretized problems can be obtained

by similar arguments as those used in the continuous case

• it is robust when ν → 0 (the deterministic limit of the models)

• it can be used for finite and infinite horizon problems

• bounds on the solutions, which are uniform in the grid step, can be proved

under reasonable assumptions on the data.

A first result on the convergence to classical solutions was contained in Ref. 4. The

method was used for planning problems (the terminal condition is a Dirichlet like

condition for m) in Ref. 2. Ref. 3 contains a further analysis of convergence to

classical solutions and very general results on the convergence to weak solutions are

supplied in Ref. 5. In Ref. 1, similar computational techniques are applied to MFG

models in macro-economics.

Discrete time, finite state space mean field games were discussed in Ref. 27. We also

refer to Ref. 34, 35 for a specific constructive approach when the Hamiltonian is

quadratic. Semi-Lagrangian approximations were investigated in Ref. 17, 18. Finally,

augmented Lagrangian methods for the solution of the system of equations arising

from the discrete version of a variational mean field game was proposed in Ref. 11.
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5.1. Stationary PDEs
s:stat_approx

To approximate (4.3), we will implement the strategy proposed in Ref. 4, that

consists of taking the long-time limit of the forward-forward MFG system
∂tuk − ν∆uk +Hk(x,Duk) = V k[m1,m2](x) (0, T )× Ω

∂tmk − ν∆mk − div(DpH
k(x,Duk)mk) = 0,

∂nuk = 0, ν∂nmk +mkDpH
k(x,Duk) · n = 0, (0, T )× ∂Ω

uk(t = 0) = uk,0, mk(t = 0) = mk,0, k = 1, 2.

(5.1) ffsys

This method is reminiscent of long-time approximations for the cell problem in

homogenization theory: we expect that there exists some λk ∈ R such that uk(·, T )−
λkT and mk(·, T ) converge as T → ∞, respectively, to some ūk(·), m̄k(·) solving

(4.3). Although this has not been proven rigorously in general in the MFG setting,

Guéant studies some single-population examples where the coupling V (m) is not

increasing with respect to the distribution m (so there is no uniqueness of solutions,

as in our framework) and justifies the approach (see Ref. 33). Very recently, a proof

of the long-time convergence for a class of forward-forward one dimensional MFG

has been proved in Ref. 29. We are going to present numerical experiments, even if no

rigorous proof of any convergence is available at this stage in our multi-population

setting.

We mention that if the Hamiltonians Hk are quadratic, it is possible to simplify

(4.3) through the Hopf-Cole change of variables and reduce the number of unknowns

(see Ref. 34).

We will develop a finite-difference scheme for (5.1) in space dimension d = 2 as

in Ref. 4, assuming for simplicity that the Hamiltonians are of the form

Hk(x, p) = W k(x) +
1

γk
|p|γk , γk > 1, W k ∈ C2(Ω). (5.2) modelH

In space dimension d 6= 2, analogous schemes can be set up. Consider a square

domain Ω = (0, 1)2, and a uniform grid with mesh step h, assuming that 1/h is an

integer Nh; denote by xi,j a generic point of the grid. Let ∆t be a positive time

step and tn = n∆t. The values of uk and mk at xi,j , tn will be approximated by

Uk,ni,j and Mk,n
i,j respectively, k = 1, 2, i, j = 1, . . . , Nh and n ≥ 0.

We introduce the usual finite difference operators

(D+
1 U)i,j =

Ui+1,j − Ui,j
h

, (D+
2 U)ij =

Ui,j+1 − Ui,j
h

,

and the numerical Hamiltonians gk : Ω× R4 → R of Godunov type defined by

gk(x, q1, q2, q3, q4) = W k(x) +
1

γk

[
[(q1)−]2 + [(q3)−]2 + [(q2)+]2 + [(q4)+]2

]γk/2
.

Denoting by

[DhU ]i,j = ((D+
1 U)i,j , (D

+
1 U)i−1,j , (D

+
2 U)i,j , (D

+
2 U)i,j−1),



July 4, 2016 14:29 WSPC/INSTRUCTION FILE segreg˙mfg10

Mean Field Games models of segregation 23

the finite difference approximation of the Hamiltonian function Hk will be

gk(x, [DhU
k]i,j).

We choose the classical five-points discrete version of the Laplacian

(∆hU)i,j = − 1

h2
(4Ui,j − Ui+1,j − Ui−1,j − Ui,j+1 − Ui,j−1).

The non-local couplings V k[m1,m2], V
k
[m1,m2] involve terms of the form∫

Ω
K(x, y)mk(y)dy; we approximate them via

h2
∑
r,s

K(xi,j , xr,s)M
k,n
r,s .

On the other hand, local couplings V k` and V
k

` will be simply evaluated at xi,j , i.e.

(V k` [M1,n,M2,n])i,j = V k` (M1,n
i,j ,M

2,n
i,j ).

In order to approximate the Kolmogorov equations in (5.1), we consider their

weak formulation. Given any test function φ, the divergence term involved can be

rewritten as

−
∫

Ω

div(mkDpH
k(x,Duk))φ =

∫
Ω

mDpH
k(x,Duk) ·Dφ,

which is going to be approximated by (boundary terms disappear by Neumann

conditions)

h2
∑
i,j

Mk,n
i,j Dqg

k(x, [DhU
k,n]i,j) · [DhΦ]i,j ,

where Φ is the finite difference version of φ. By introducing the compact notation

Bki,j(U,M) =
1

h


Mi,j∂q1g

k(x, [DhU ]i,j)−Mi−1,j∂q1g
k(x, [DhU ]i−1,j)

+Mi+1,j∂q2g
k(x, [DhU ]i+1,j)−Mi,j∂q2g

k(x, [DhU ]i,j)

+Mi,j∂q3g
k(x, [DhU ]i,j)−Mi,j−1∂q3g

k(x, [DhU ]i,j−1)

+Mi,j+1∂q4g
k(x, [DhU ]i,j+1)−Mi,j∂q4g

k(x, [DhU ]i,j)

 ,

we can finally write the discrete version of (5.1)
Uk,n+1
i,j −Uk,ni,j

∆t − ν(∆hU
k,n+1)i,j + gk(x, [DhU

k,n+1]i,j) = (V k[M1,n+1,M2,n+1])i,j ,
Mk,n+1
i,j −Mk,n

i,j

∆t − ν(∆hM
k,n+1)i,j − Bki,j(Uk,n+1,Mk,n+1) = 0, k = 1, 2.

(5.3) ffdiscrsys

The system above has to be satisfied for internal points of the grid, i.e. 2 ≤ i, j ≤
Nh − 1. The finite difference version of the homogeneous Neumann boundary con-

ditions for U is, for all n, k,

Uk,n1,j = Uk,n2,j , Uk,nNh−1,j = Uk,nNh,j , ∀j = 2, . . . , Nh − 1

Uk,ni,1 = Uk,ni,2 , Uk,ni,Nh−1 = Uk,ni,Nh , ∀i = 2, . . . , Nh − 1

Uk,n1,1 = Uk,n2,2 , Uk,nNh,1 = Uk,nNh−1,2,

Uk,n1,Nh
= Uk,n2,Nh−1, Uk,nNh,Nh = Uk,nNh−1,Nh−1.
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In a similar manner, boundary conditions will be imposed on Mk,n (note that, in

view of the particular choice of the Hamiltonian, ∂nmk = 0 on the boundary); The

scheme guarantees that Mk,n
i,j ≥ 0.

In Ref. 4 it is proven that (5.3) has a solution in the case of a single population

and periodic boundary conditions, (see Theorem 5). We expect that it is true also

with Neumann boundary conditions and two populations, since similar arguments

can be used.

The present scheme is implicit, since each time iteration consists of solving a

coupled system of nonlinear equations for Uk,n+1,Mk,n+1, given Uk,n,Mk,n. This

can be done for example by means of a Newton method, increasing possibly the time

step when the asymptotic regime is close to be reached. It has been indicated in Ref.

4, Remark 11, that in order to have a good approximation of the system of nonlinear

equations, it is sufficient to perform just one step of the Newton method: indeed, it

has been observed that in general one step reduces the residual substantially.

Finally, the discrete version of (5.1) that will be implemented for numerical

experiments reads
Uk,n+1
i,j −Uk,ni,j

∆t − ν(∆hU
k,n+1)i,j + gk(x, [DhU

k,n]i,j)

+Dqg(x, [DhU
k,n])i,j · ([DhU

k,n+1]i,j − [DhU
k,n]i,j)

= (V k[M1,n,M2,n])i,j ,
Mk,n+1
i,j −Mk,n

i,j

∆t − ν(∆hM
k,n+1)i,j − Bki,j(Uk,n+1,Mk,n+1) = 0, k = 1, 2.

(5.4) ffdiscrsystwo

In this formulation, at each time iteration one needs to solve a coupled system of

linear equations. Note that (5.4) consists of an implicit scheme for the (forward) Kol-

mogorov equation (i.e. implicit with respect to m and u), coupled with a linearized

semi-implicit scheme for the (forward) Hamilton-Jacobi equation (i.e. implicit with

respect to u and explicit with respect to m).

We choose the initial data

Uk,0 = 0, Mk,0 = Mk
0 ,

with

h2
∑
i,j

(Mk
0 )i,j = 1, k = 1, 2.

We expect that there exists some real number λh,∆t, such that Mk,n and Uk,n −
λh,∆tn∆t tend to some stationary configuration as n tends to infinity.

5.2. Evolutive PDEs

The discrete scheme used for (4.6) is obtained by adapting the methods proposed

and studied in Ref. 4 to the multi-population case. For simplicity, let us focus on

the case when the terminal cost for the agents of type k does not depend on m(T ),

so the terminal condition on uk becomes

uk(x, T ) = uk,T (x) in Ω,
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and on Hamiltonians given by (5.2). The time-step ∆t is assumed to be of the form

T/N , for a positive integer N . Using the same notations as in § 5.1, the approximate

version of (4.6) reads: for any 0 ≤ n < N , 1 < i, j < Nh,
Uk,n+1
i,j − Uk,ni,j

∆t
+ ν(∆hU

k,n)i,j − gk(x, [DhU
k,n]i,j) = −(V k[M1,n,M2,n])i,j ,

Mk,n+1
i,j −Mk,n

i,j

∆t
− ν(∆hM

k,n+1)i,j − Bki,j(Uk,n,Mk,n+1) = 0, k = 1, 2,

(5.5) eq:1

with the initial and terminal conditions: for 1 ≤ i, j ≤ Nh,

Mk,0
i,j = mk,0(xi,j), Uk,Ni,j = uk,T (xi,j). (5.6) eq:2

It can be supplemented with discrete Neumann conditions as in § 5.1 or with period-

icity conditions. Note that (5.5) consists of a semi-implicit scheme for the (forward)

Kolmogorov equation (i.e. implicit with respect to m and explicit with respect to u)

coupled with a semi-implicit scheme for the (backward) Hamilton-Jacobi equation

(i.e. implicit with respect to u and explicit with respect to m). When dealing with

one population only, it was shown in Ref. 4 that the discrete scheme preserves the

structure of the continuous problem, which makes it possible to prove existence,

and uniqueness/stability under additional assumptions. In the multi-population

case also, existence of solutions of the discrete system can be obtained by using

a Brouwer fixed point method. Then, assuming that h2
∑
i,jM

k,0
i,j = 1 for k = 1, 2,

mass conservation, i.e. h2
∑
i,jM

k,n
i,j = 1 for any n, k = 1, 2, is a consequence of the

definition of Bk. Using the monotonicity of g, we also obtain the nonnegativity of

Mk,n for any n, k = 1, 2, see Ref. 4.

We briefly describe the iterative method used in order to solve (5.5)-(5.6). Since

the latter system couples forward and backward (nonlinear) equations, it cannot be

solved by merely marching in time. Assuming that the discrete Hamiltonians are

C2 and the coupling functions are C1 allows us to use a Newton-Raphson method

for the whole system of nonlinear equations (which can be huge if d ≥ 2).

More precisely, we see (5.5)-(5.6) as a fixed point problem. We first define the map-

ping Ξ which maps the pair of grid functions
(
Y 1,n
i,j , Y

2,n
i,j

)
i,j,n

to the pair of grid

function
(
(V 1[M1,n,M2,n])i,j , (V

2[M1,n,M2,n])i,j
)
i,j,n

, where n takes its values in

{1 . . . , N} and i, j take their values in {1 . . . , Nh}, and (M1,n
i,j ,M

2,n
i,j ) is found by

solving the following system of discrete Bellman and Kolmogorov equations: for any

0 ≤ n < N , 1 < i, j < Nh,
Uk,n+1
i,j − Uk,ni,j

∆t
+ ν(∆hU

k,n)i,j − gk(x, [DhU
k,n]i,j) = −Y k,n+1

i,j ,

Mk,n+1
i,j −Mk,n

i,j

∆t
− ν(∆hM

k,n+1)i,j − Bki,j(Uk,n,Mk,n+1) = 0,

(5.7) eq:3

supplemented with (5.6) and discrete Neumann conditions. Finding a fixed point of

Ξ is equivalent to solving (5.5)-(5.6).
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Note that in (5.7) the discrete Bellman equations do not involve Mk,n+1. There-

fore, one can first solve the Bellman equations for Uk,n 0 ≤ n ≤ N , k = 1, 2 by

marching backward in time (i.e. performing a backward loop with respect to the

index n). For every time index n, the two systems of nonlinear equations for Uk,n,

k = 1, 2 are themselves solved by means of a nested Newton-Raphson method. Once

an approximate solution of the Bellman equations has been found, one can solve the

(linear) Kolmogorov equations for Mk,n 0 ≤ n ≤ N , k = 1, 2, by marching forward

in time (i.e. performing a forward loop with respect to the index n). The solutions

of (5.7)-(5.6) are such that Mk,n are nonnegative and h2
∑
i,jM

k,n
i,j = 1 for any n,

k = 1, 2.

The fixed point equation Ξ

((
Y 1,n
i,j , Y

2,n
i,j

)
i,j,n

)
=
(
Y 1,n
i,j , Y

2,n
i,j

)
i,j,n

is solved nu-

merically by using a Newton-Raphson method. This requires the differentiation of

both the Bellman and Kolmogorov equations in (5.7).

A good choice of an initial guess is important, as always for Newton methods. To

address this matter, we first observe that the above mentioned iterative method

generally quickly converges to a solution when the value of ν is large. This leads us

to use a continuation method in the variable ν: we start solving (5.5)-(5.6) with a

rather high value of the parameter ν (of the order of 1), then gradually decrease

ν down to the desired value, the solution found for a value of ν being used as an

initial guess for the iterative solution with the next and smaller value of ν.

6. Numerical simulations
sec_numresults

6.1. Stationary PDEs

In this section, we will show some results obtained by implementing the long-time

procedure presented in Section 5.1. Here, we choose d = 1, Ω = (0, 1) and Hamilto-

nians of the form (5.2), with W ≡ 0. The mesh step is h = 1/200; at each time step

n we define the approximate ergodic constant λnk = h(
∑
i U

k,n
i )/tn and the relative

errors errnm = maxk=1,2 ‖Mk,n −Mk,n−1‖∞/∆t, errnλ = maxk=1,2 |λnk − λ
n−1
k |. As

mentioned before, we expect that as tn grows, λnk converges to some constant value;

we stop the simulation when the two relative errors become smaller than a fixed

threshold, and denote by ukh,m
k
h the approximate solutions Uk,n,Mk,n respectively

at the last time iteration.

The initial data are set to be (unless otherwise specified)

Uk,0 ≡ 0, M1,0
i = χ[0,0.5](xi), M2,0

i = χ[0.5,1](xi),

while the time step is ∆t = 0.02 as long as the relative error is large, namely when

errm > 1 (this happens during the first time iterations), and it is linearly increased

to ∆t = 2 as soon as the relative error errm reaches 0.001. In our simulations,

stability in the long-time regime always occurs; in Figure 3 (right) it is shown a

typical behavior of the relative errors as the number of time iterations increases.

We will show various tests with different values of H, ν, and different choices of
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the cost functionals (see Table 1). Note that if ν is large (say, greater than 0.1), the

constant solution only is achieved in the long-time regime, namely Mk,n → 1 as n

increases; in this situation the mixing effect of the Brownian noise prevails on the

individual preference of players. A richer structure of approximate solutions shows

up as ν approaches zero.

Table 1. The data in the tests. tests

Test γ ν a1 a2 Couplings

1 2 0.05, 0.0005 0.3 0.4 V`
2 2 0.05 0.4 0.8 V `, V`
3 2 0.001 0.8, 0.3 0.8, 0.3 V

4 8, 4
3 0.005 0.3 0.3 V`

Test 1. Here, we obtain two monotone configurations, and observe that segre-

gation between the two populations appears; moreover, it becomes more evident

as the viscosity ν goes to zero, see Figure 2. In other words, we find two disjoint

intervals Ωk, k = 1, 2 such that mk
h > 0 on Ωk and m3−k

h → 0 as ν → 0 on Ωk.

Note that segregation occurs even if the two “happiness” thresholds ak are small:

the cost paid by a player can be zero even if the distribution of his own population

is less than half of the distribution of both the populations. The optimal feedback

control −Dhu
k
h vanishes on Ωk in the small viscosity regime, because in this region

the cost V k` is identically zero; −Dhu
k
h acts substantially only on the complement

of Ωk, forcing mk
h to be close to zero.

Note that if ν is very small, the free boundary between Ω1 and Ω2 becomes a

point, which varies upon the choice of ak (see also the other tests); in general, if

a1 > a2 this boundary shifts closer to x = 0 if 0 ∈ Ω1, or to x = 1 if 1 ∈ Ω1: the

more xenophobic population concentrates more, while the other one is distributed

over a bigger subset of the domain.

The asymptotic behavior of
∫
m1m2 dx with respect to ν appears to be power-

like, that is
∫
m1m2 dx ≈ cν4 for some positive c, depending on the “branch” of

solutions. For this test, numerical values can be found in Table 2.

We finally mention that if one changes the initial distributions M1,0,M2,0, then

the approximate solution mk
h may vary; in the one dimensional case monotone

configurations are likely to occur, but it is possible to obtain solutions with more

than one stationary point (see Figure 3) by a suitable choice of Mk,0 (see also

Remark 16).

Test 2. In this test, we show how the “family effect” affects the behavior of

the two populations, and compare the approximate solutions of (4.3) with local

couplings V ` and V`. In general, the presence of the family effect discourages seg-

regation, and the two distributions appear to be a bit more “mixed” in this case,

see Figure 4. Nevertheless, full segregation still occurs as ν approaches zero. Note



July 4, 2016 14:29 WSPC/INSTRUCTION FILE segreg˙mfg10

28 Achdou, Bardi, Cirant

Fig. 2. mh (left), uh (right) at different values of ν: ν = 0.05 is marked with circles, ν = 0.0005 is

marked with triangles; solid/red lines are used for (u1,m1), while dashed/blue lines are used for
(u2,m2). fig_test1
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Fig. 3. Another configuration, ν = 0.001, with relative errors. fig_test1_2
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Table 2. The value of
∫
m1m2 dx versus ν nu_vs_int

ν h
∑
im

1
h,im

2
h,i

0.05 0.09100195573

0.01 0.00017126474

0.005 0.00000811663

0.0005 0.00000000068

that V k` is positive where mk
h is close to zero, while V ` is proportional to mk

h: what

happens is that V ` is different from zero only in a (very) small region around the

free boundary between m1, m2, that still is sufficient to trigger segregation if the

viscosity is small.

Test 3. In the previous tests, we used the local versions of the costs, namely

we considered myopic players. Here, we show the results obtained considering the
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Fig. 4. The family effect. V `, left. V`, right. fig_test2
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Fig. 5. The non-local case: m1 and m2 in the subinterval [0.35, 0.65]. a1 = a2 = 0.8, left. a1 =

a2 = 0.3, right. fig_test3
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non-local versions of the cost functionals as in (3.5), with kernel

K(x, y) =
1

|[x− δ, x+ δ] ∩ Ω|
χ[x−δ,x+δ]∩Ω(y), δ ∈ (0, 1).

In Figure 5 the solutions mh are plotted; here, δ = 0.2. If a1 = a2 = 0.8, players

prefer regions of Ω with prevalent presence of their own population. In this case,

one may observe that the set where both the distributions vanish as ν → 0 is an

interval with non-empty interior; this is a consequence of the fact that the cost at

position x paid by a player depends on an entire neighbourhood of x. Nevertheless,

if the happiness thresholds are sufficiently low (say, less than 0.5, as in Figure 5

(right)), the free boundary becomes a point, as in the local case V`.

Test 4. In this test, we choose different parameters for the Hamiltonians. The

value of γ affects the shape of the distributions on their support, as shown in Figure

6. Still, different values of γ produce segregation to the same extent.

rem_CV Remark 16. Numerical simulations suggest the presence of a wide variety of so-

lutions of (4.3) even in space dimension d = 1. In Ref. 21, a similar system MFG

is considered, where γ = 2 and V k(m1,m2) are just increasing functions of m3−k;
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Fig. 6. The non-quadratic case. γ = 8, left. γ = 4/3, right. fig_test4
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with respect to our models, segregation is even more encouraged, as players aim at

avoiding the other population in any case. In their framework, some numerical phe-

nomena arising here have been proven rigorously: existence of branches of solutions

having one ore more critical points, and segregation as ν → 0, namely∫
Ω

m1m2 → 0.

Moreover, in the vanishing viscosity limit, uniform bounds on m are shown, in-

dicating that concentration of the distribution is not likely to happen (therefore,

anti-overcrowding terms in the costs as in Section 2.2 might be unnecessary), and

segregated configurations can be characterized by optimal partition problems. We

believe that such features of (4.3) can be proven also for our Schelling models.

6.2. Evolutive PDEs

Let us discuss the numerical simulations of some finite horizon problems.

6.2.1. A one-dimensional case
sec:one-dimensional-case

Here, we choose d = 1, Ω = (−0.5, 0.5) and the horizon T = 4. The parameter ν will

take the two values 0.12 and 0.045. The value functions and the densities satisfy

Neumann conditions at the two endpoints. The Hamiltonian is H(x, p) = |p|2.

The terminal cost is 0 and the coupling terms are of the form V 1[m1,m2](x) =

Vε(m1(x),m2(x)) and V 2[m1,m2](x) = Vε(m2(x),m1(x)), with

Vε(m,n) = Ψ−,ε

(
m

m+ n+ ε
− 0.7

)
+ Ψ+,ε(m+ n− 8)

where

Ψ−,ε(y) =

{
−y + ε

2 (e
y
ε − 1) if y ≤ 0

ε
2 (e−

y
ε − 1) if y ≥ 0

and Ψ+,ε(y) =

{
ε
2 (e

y
ε − 1) if y ≤ 0

y + ε
2 (e−

y
ε − 1) if y ≥ 0,

(6.1) approx_pnpart
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and ε = 10−5. The function Vε is a regularized version of

V (m,n) =

(
m

m+ n
− 0.7

)−
+ (m+ n− 8)

+
.

In this case, the two populations are symmetric to each other. The first part of the

coupling term stands for xenophobia: an agent located at x pays a cost if at x, the

proportion of agents of its own type is less than 70%. The second part models the

aversion to overcrowded locations: an agent located at x pays a cost if the density

of agents of both types at x is greater than 4. The initial densities are m1,0(x) =

3/4 + 1/2χ[−1/2,−1/4]∪[0,1/4](x) and m2,0(x) = 3/4 + 1/2χ[−1/4,0]∪[1/4,1/2](x). Since

the initial distributions are symmetric to each other and the population have sym-

metric characteristics, the distributions should remain symmetric for all times.

The spatial grid step is h = 1/50 and the time step is ∆t = 1/100.

For ν = 0.12, the evolution of the distributions of agents is displayed on Figure 7,

which contains nine snapshots corresponding to different dates between 0 and T .

We easily see that the distributions of the two types of agents remain symmetric to

each other. The distributions seem to keep oscillating between two configurations

in which the populations are segregated and grouped in opposite sides of the do-

mains. A possible explanation of this behavior may be as follows: in that rather

particular situation when the two populations are symmetric to each other and

strongly xenophobic, a rather high level of noise makes it difficult to reach a global

steady equilibrium. We expect that there exists another solution which comes close

to a steady equilibrium for times not too close to 0 and T (see the next case with

ν = 0.045), but this solution has not been selected by our numerical method.

For ν = 0.045, the evolution of the distributions is displayed on Figure 8. Here

again, the two distributions of agents remain symmetric to each other, but this

time, we see that the populations are very close to a steady equilibrium when t is

not too close to 0 and T . The latter equilibrium is a configuration in which the two

populations occupy disjoint subdomains.

6.2.2. Two bidimensional cases
sec:two-dimensional-case

Case a) Here the domain Ω is obtained by removing a crossed-shaped set from the

unit square (−0.5, 0.5)2. We consider two types agents bound to stay in Ω, both

with “threshold of happiness” ai below 1/2. More precisely, the model is as follows:

the Hamiltonians are H1(x, p) = H2(x, p) = |p|2. We take ν = 0.038; the value

functions and the densities satisfy Neumann conditions at ∂Ω.

The terminal cost is 0 and the coupling terms are of the form

V 1
ε [m1,m2](x) = 2Ψ−,ε

(
m1(x)

m1(x) +m2(x) + ε
− 0.5

)
+ Ψ+,ε(m1(x) +m2(x)− 8),

V 2
ε [m1,m2](x) = Ψ−,ε

(
m1(x)

m1(x) +m2(x) + ε
− 0.4

)
+ Ψ+,ε(m1(x) +m2(x)− 8),
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Fig. 7. Evolution of mh for ν = 0.12: solid/red (respectively dashed/blue) lines are used for m1,

(respectively m2). fig_ya_test1
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where Ψ−,ε and Ψ+,ε are defined in § 6.2.1 and ε = 10−5. These coupling terms are

regularized versions of

V 1[m1,m2](x) = 2

(
m1(x)

m1(x) +m2(x) + ε
− 0.5

)−
+ (m1(x) +m2(x)− 8)

+
,

V 2[m1,m2](x) =

(
m2(x)

m1(x) +m2(x) + ε
− 0.4

)−
+ (m1(x) +m2(x)− 8)

+
.

Note that the first population is less tolerant than the second one.

The agents of the first (respectively second) type are initially uniformly distributed

in the top half part (right half part) of the domain, with a density of 2. Therefore, in

the top-right corner of the domain, the two populations are initially mixed and the

less tolerant agents are in an uncomfortable state. Moreover, the cost for staying in

that part of the domain is higher for the first population of agents (by the factor 2

multiplying the term (...)−).

In the simulation, the spatial grid step is 1/64 and the time step is 1/100.

The evolution of the distributions is displayed on Figure 9: we see that the first

population leaves the top-right corner and moves toward to the top-left corner of
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Fig. 8. Evolution of mh for ν = 0.045: solid/red (respectively dashed/blue) lines are used for m1,

(respectively m2). fig_ya_test2
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the domain. The second population, which is more tolerant, remains in the top-right

corner, evolves in a slower manner, and tends to occupy a larger part of the domain

than the first one.

Note the Schelling’s phenomenon: segregation occurs even if both thresholds a1 =

0.5, a2 = 0.4 are not xenophobic.

Case b) Here, we consider a case when the two types of agents move in order

to reach two different targets: the strategy of the agents consists of reaching the

targets while avoiding the agents of the other population. Hence, the dynamics of

the agents is not only motivated by xenophobia.

The domain is the unit square Ω = (0, 1)2 and the horizon is T = 1.

The agents of the first (respectively second) type are initially distributed in the

top-left (respectively bottom-left) corner of the domain, but are attracted toward

the bottom-right (respectively top-right) corner to avoid the running costs. There-

fore, the strategy of the agents will be obtained as a trade-off between two opposite

tendencies: on the one hand, the agents would like to quickly reach the opposite

corner, taking paths which cross each other, but on the other hand the two popu-
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Fig. 9. Evolution of mh for ν = 0.038: red (respectively blue) colors are used for m1, (respectively

m2). fig_ya_test4
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lations try to avoid each other.

More precisely, the model is as follows: the Hamiltonians are

H1(x, p) = |p|2 − 1.4χ[0,0.7]×[0.2,1](x),

H2(x, p) = |p|2 − 1.4χ[0,0.7]×[0,0.8](x)),

which means in particular that the first (respectively second) type of agents is

attracted to the rectangle [0.7, 1] × [0, 0.2] (respectively [0.7, 1] × [0.8, 1]). We take

ν = 0.03; the value functions and the densities satisfy Neumann conditions at ∂Ω.

The terminal cost is 0. The coupling terms are

V 1[m1,m2](x) = 2

(
m1(x)

m1(x) +m2(x) + ε
− 0.8

)−
+ (m1(x) +m2(x)− 8)

+
,

V 2[m1,m2](x) =

(
m2(x)

m1(x) +m2(x) + ε
− 0.6

)−
+ (m1(x) +m2(x)− 8)

+
.

The first population is more xenophobic than the second one. The initial distribu-

tions of the agents are given by

m1,0(x) = 4χ(0,0,2)×(0.6,1) + 0.02,

m2,0(x) = 4χ(0,0,2)×(0,0.4) + 0.02.

In the simulation, the spatial grid step is 1/64 and the time step is 1/100.

The evolution of the distributions is displayed on Figure 10: we see that in the

beginning (before t = 0.2), a significant part of the first population (the more

xenophobic agents) quickly moves to the opposite corner: even if those agents pay an

important cost for quickly moving to the opposite corner, this cost is compensated

by their quickly reaching a location where there are no agents of type 2. By contrast,

for t ≤ 0.2 the second population is more uniformly distributed. At time t = 0.2,

the first population is split into two groups: the first group has almost reached the

desired corner, whereas the second group has not moved. Next, for 0.2 ≤ t ≤ 0.6,

this latter group of agents of the first type still does not move, while the whole

second population moves to its favorite corner, occupying the center of the domain.

Indeed, since the density of the agents of the second type in the middle of the

domain has become too important, the agents of the first type prefer waiting rather

than meeting them. At t = 0.6, most of the second population has reached the

desired corner, and the first population can finish crossing the domain.
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Fig. 10. Evolution of mh for ν = 0.03: red (respectively blue) colors are used for m1, (respectively

m2). fig_ya_test3
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