167 research outputs found

    On-Line Optimization of Dual-Fuel Combustion Operation by Extremum Seeking Techniques

    Full text link
    [EN] Dual-fuel combustion engines have shown the potential to extend the operating range of Homogeneous Charge Compression Ignition (HCCI) by using several combustion modes, e.g. Reactivity Controlled Compression Ignition (RCCI) at low/medium load, and Partially Premixed Compression (PPC) at high load. In order to optimize the combustion mode operation, the respective sensitivity to the control inputs must be addressed. To this end, in this work the extremum seeking algorithm has been investigated. By definition, this technique allows to detect the control input authority over the system by perturbing its value by a known periodic signal. By analyzing the system response and calculating its gradient, the control input can be adjusted to reach optimal operation. This method has been applied to a dual-fuel engine under fully, highly and partially premixed conditions where the feedback information was provided by in-cylinder pressure and NOx sensors. The gasoline fraction and the injection timing were selected as control inputs and an extremum seeking controller was designed and verified to optimize brake efficiency by tracking the ideal combustion phasing and to reduce NOx emissions as well.The authors would like to recognize the financial support through Alvin Barbier's grant ACIF/2018/141, Programa Operativo del Fondo Social Europeo (FSE) de la Comunitat Valenciana 2014-2020. The authors also wish to thank Gabriel Alcantarilla for his assistance during the experimental campaign.Pla Moreno, B.; Bares-Moreno, P.; Barbier, ARS.; Guardiola, C. (2021). On-Line Optimization of Dual-Fuel Combustion Operation by Extremum Seeking Techniques. SAE International. 1-10. https://doi.org/10.4271/2021-01-051911

    In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion

    Full text link
    [ES] La actual crisis climática ha instado a la comunidad investigadora y a los fabricantes a brindar soluciones para hacer que el sector del transporte sea más sostenible. De entre las diversas tecnologías propuestas, la combustión a baja temperatura ha sido objeto de una extensa investigación. La combustión premezclada dual-fuel es uno de los conceptos que abordan el compromiso de NOx-hollín en motores de encendido por compresión manteniendo alta eficiencia térmica. Esta combustión hace uso de dos combustibles con diferentes reactividades para mejorar la controlabilidad de este modo de combustión en un amplio rango de funcionamiento. De manera similar a todos los modos de combustión premezclados, esta combustión es sensible a las condiciones de operación y suele estar sujeta a variabilidad cíclica con gradientes de presión significativos. En consecuencia, se requieren estrategias de control avanzadas para garantizar un funcionamiento seguro y preciso del motor. El control en bucle cerrado es una herramienta eficaz para abordar los desafíos que plantea la combustión premezclada dual-fuel. En este tipo de control, para mantener el funcionamiento deseado, las acciones de control se adaptan y corrigen a partir de una retroalimentación con las señales de salida del motor. Esta tesis presenta estrategias de control basadas en la medición de la señal de presión en el cilindro, aplicadas a motores de combustión premezclada dual-fuel. En ella se resuelven diversos aspectos del funcionamiento del motor mediante el diseño de controladores dedicados, haciéndose especial énfasis en analizar e implementar estas soluciones a los diferentes niveles de estratificación de mezcla considerados en estos motores (es decir, totalmente, altamente y parcialmente premezclada). Inicialmente, se diseñan estrategias de control basadas en el procesamiento de la señal de presión en el cilindro y se seleccionan acciones proporcionales-integrales para asegurar el rendimiento deseado del motor sin exceder las limitaciones mecánicas del motor. También se evalúa la técnica extremum seeking para realizar una supervisión de una combustión eficiente y la reducción de emisiones de NOx. Luego se analiza la resonancia de la presión en el cilindro y se implementa un controlador similar a aquel usado para el control de knock para garantizar el funcionamiento seguro del motor. Finalmente, se utilizan modelos matemáticos para diseñar un modelo orientado a control y un observador que tiene como objetivo combinar las señales medidas en el motor para mejorar las capacidades de predicción y diagnóstico en dicha configuración de motor. Los resultados de este trabajo destacan la importancia de considerar el control en bucle cerrado para abordar las limitaciones encontradas en los modos de combustión premezclada. En particular, el uso de la medición de presión en el cilindro muestra la relevancia y el potencial de esta señal para desarrollar estrategias de control complejas y precisas.[CA] L'actual crisi climàtica ha instat a la comunitat investigadora i als fabricants a brindar solucions per a fer que el sector del transport siga més sostenible. D'entre les diverses tecnologies proposades, la combustió a baixa temperatura ha sigut objecte d'una extensa investigació. La combustió premesclada dual-fuel és un dels conceptes que aborden el compromís de NOx-sutge en motors d'encesa per compressió mantenint alta eficiència tèrmica. Aquesta combustió fa ús de dos combustibles amb diferents reactivitats per a millorar la controlabilitat d'aquest tipus de combustió en un ampli rang de funcionament. De manera similar a tots els tipus de combustió premesclada, aquesta combustió és sensible a les condicions d'operació i sol estar subjecta a variabilitat cíclica amb gradients de pressió significatius. En conseqüència, es requereixen estratègies de control avançades per a garantir un funcionament segur i precís del motor. El control en bucle tancat és una eina eficaç per a abordar els desafiaments que planteja la combustió premesclada dual-fuel. En aquesta mena de control, per a mantindre el funcionament desitjat, les accions de control s'adapten i corregeixen a partir d'una retroalimentació amb els senyals d'eixida del motor. Aquesta tesi presenta estratègies de control basades en el mesurament del senyal de pressió en el cilindre, aplicades a motors de combustió premesclada dual-fuel. En ella es resolen diversos aspectes del funcionament del motor mitjançant el disseny de controladors dedicats, fent-se especial èmfasi a analitzar i implementar aquestes solucions als diferents nivells d'estratificació de mescla considerats en aquests motors (és a dir, totalment, altament i parcialment premesclada). Inicialment, es dissenyen estratègies de control basades en el processament del senyal de pressió en el cilindre i se seleccionen accions proporcionals-integrals per a assegurar el rendiment desitjat del motor sense excedir les limitacions mecàniques del motor. També s'avalua la tècnica extremum seeking per a realitzar una supervisió d'una combustió eficient i la reducció d'emissions de NOx. Després s'analitza la ressonància de la pressió en el cilindre i s'implementa un controlador similar a aquell usat per al control de knock per a garantir el funcionament segur del motor. Finalment, s'utilitzen models matemàtics per a dissenyar un model orientat a control i un observador que té com a objectiu combinar els senyals mesurats en el motor per a millorar les capacitats de predicció i diagnòstic en aquesta configuració de motor. Els resultats d'aquest treball destaquen la importància de considerar el control en bucle tancat per a abordar les limitacions trobades en la combustió premesclada. En particular, l'ús del mesurament de pressió en el cilindre mostra la rellevància i el potencial d'aquest senyal per a desenvolupar estratègies de control complexes i precises.[EN] The current climate crisis has urged the research community and manufacturers to provide solutions to make the transportation sector cleaner. Among the various technologies proposed, low temperature combustion has undergone extensive investigation. Premixed dual-fuel combustion is one of the concepts addressing the NOx-soot trade-off in compression ignited engines, while maintaining high thermal efficiency. This combustion makes use of two fuels with different reactivities in order to improve the controllability of this combustion mode over a wide range of operation. Similarly to all premixed combustion modes, this combustion is nevertheless sensitive to the operating conditions and traditionally exhibits cycle-to-cycle variability with significant pressure gradients. Consequently, advanced control strategies to ensure a safe and accurate operation of the engine are required. Feedback control is a powerful approach to address the challenges raised by the premixed dual-fuel combustion. By measuring the output signals from the engine, strategies can be developed to adapt and correct the control actions to maintain the desired operation. This thesis presents control strategies, based on the in-cylinder pressure signal measurement, applied to premixed dual-fuel combustion engines. Various objectives were addressed by designing dedicated controllers, where a special emphasis was made towards analyzing and implementing these solutions to the different levels of mixture stratification considered in these engines (i.e., fully, highly and partially premixed). At first, feedback control strategies based on the in-cylinder pressure signal processing were designed. Proportional-integral actions were selected to ensure the desired engine performance without exceeding the mechanical constraints of the engine. Extremum seeking was evaluated to track efficient combustion phasing and NOx emissions reduction. The in-cylinder pressure resonance was then analyzed and a knock-like controller was implemented to ensure safe operation of the engine. Finally, mathematical models were used to design a control-oriented model and a state observer that aimed to leverage the signals measured in the engine to improve the prediction and diagnostic capabilities in such engine configuration. The results from this work highlighted the importance of considering feedback control to address the limitations encountered in premixed combustion modes. Particularly, the use of the in-cylinder pressure measurement showed the relevance and potential of this signal to develop complex and accurate control strategies.This thesis was financially supported by the Programa Operativo del Fondo Social Europeo (FSE) de la Comunitat Valenciana 2014-2020 through grant ACIF/2018/141.Barbier, ARS. (2022). In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18327

    CLEAN COMBUSTION CONTROL IN A COMPRESSION IGNITION ENGINE

    Get PDF
    The primary objective of this dissertation is to develop combustion control strategies, that can reduce the thermal efficiency penalty associated with clean combustion in modern compression ignition engines. The clean combustion targets of simultaneously low oxides of nitrogen (NOX) and smoke emissions are selected as the platforms for demonstrating the dynamic control strategies on a single cylinder research engine. First, parametric analyses, including exhaust gas recirculation (EGR) calculations, are performed using a zero-dimensional engine cycle simulation model. Thereafter, two combustion strategies are experimentally investigated, namely the single-shot diesel strategy and the dual-fuel strategy. The single-shot diesel combustion strategy employs a single direct injection of diesel with the use of moderate levels of EGR. In the dual-fuel combustion strategy, port injection of ethanol is utilized in addition to the direct injection of diesel and the application of EGR. The results of parametric analyses and engine experiments provide guidelines for the development of a systematic control strategy. Closed-loop combustion control systems are implemented for regulating the fuel injection commands, by which the combustion phasing is effectively controlled on a cycle-by-cycle basis in both the diesel and dual-fuel combustion strategies. The fuel injection control is integrated into the systematic control strategy for simultaneously controlling the air and fuel systems. The intake boost pressures, EGR rates, and fuelling strategies are dynamically selected, depending on the engine load level. By implementing the systematic control, both the NOX and smoke targets are achieved over a wide engine load range, while retaining the thermal efficiency of conventional diesel combustion

    Model-Guided Data-Driven Optimization and Control for Internal Combustion Engine Systems

    Get PDF
    The incorporation of electronic components into modern Internal Combustion, IC, engine systems have facilitated the reduction of fuel consumption and emission from IC engine operations. As more mechanical functions are being replaced by electric or electronic devices, the IC engine systems are becoming more complex in structure. Sophisticated control strategies are called in to help the engine systems meet the drivability demands and to comply with the emission regulations. Different model-based or data-driven algorithms have been applied to the optimization and control of IC engine systems. For the conventional model-based algorithms, the accuracy of the applied system models has a crucial impact on the quality of the feedback system performance. With computable analytic solutions and a good estimation of the real physical processes, the model-based control embedded systems are able to achieve good transient performances. However, the analytic solutions of some nonlinear models are difficult to obtain. Even if the solutions are available, because of the presence of unavoidable modeling uncertainties, the model-based controllers are designed conservatively

    Characterization and Control of Multi-Cylinder Partially Premixed Combustion

    Get PDF
    In the last decade diesel combustion has developed in a new direction. Research has been carried out trying to prolong the ignition delay and enhance fuel/air premixing to avoid diffusion combustion as well as lowering the combustion temperature through use of EGR. One of these new combustion concepts is Partially Premixed Combustion (PPC). PPC is aimed to provide combustion with low smoke and NOx without sacrificing fuel consumption. This thesis presents the development of a multi-cylinder PPC concept. It reaches from the basic characterization of this new combustion strategy to the demands on hardware, control and fuels for a realizable PPC solution. In summary it contains a thorough PPC characterization where the results suggest that high EGR, early injection PPC strategies are to prefer over late injection approaches or smokeless rich diesel combustion. Further, a strong connection between mixing period, defined as the period between end of injection and start of combustion, and PPC has been ascertained. Based on this knowledge a combustion controller with feedback control of mixing period was derived. The operating range of multi-cylinder diesel PPC was then evaluated. The study showed that the PPC load range was limited covering only 25% of the operating region for conventional combustion. In order to reach higher loads for PPC the EGR system was rebuilt to a low pressure system. This system improves EGR/air mixing and cooling and enables high EGR and boost pressure simultaneously. Additionally, gasoline fuels were introduced to extend the ignition delay and mitigate soot formation. An extensive fuel comparison was carried out to find the most suitable fuel for PPC operation. With the improved set-up the operating range was reevaluated. By combining the use of a low pressure EGR system and standard gasoline the operating region of PPC has been extended to cover 50% of the engine nominal operating region. The final part of this thesis is dedicated to a novel method of cylinder individual efficiency estimation based on the cylinder pressure trace. With this method, control strategies aiming directly at fuel consumption optimization can be developed. An extremum seeking control algorithm was applied. The results show that the controller manages to find the maximum brake torque region both with and without external excitation. Finally, the estimation error in accumulated fuel consumption from the experiments is around 1% which shows the potential of using the absolute value of the efficiency estimation in other control concepts

    Model predictive emissions control of a diesel engine airpath: Design and experimental evaluation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163480/2/rnc5188.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163480/1/rnc5188_am.pd

    Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges

    Get PDF
    Organic Rankine cycle systems are suitable technologies for utilization of low/medium-temperature heat sources, especially for small-scale systems. Waste heat from engines in the transportation sector, solar energy, and intermittent industrial waste heat are by nature transient heat sources, making it a challenging task to design and operate the organic Rankine cycle system safely and efficiently for these heat sources. Therefore, it is of crucial importance to investigate the dynamic behavior of the organic Rankine cycle system and develop suitable control strategies. This paper provides a comprehensive review of the previous studies in the area of dynamic modeling and control of the organic Rankine cycle system. The most common dynamic modeling approaches, typical issues during dynamic simulations, and different control strategies are discussed in detail. The most suitable dynamic modeling approaches of each component, solutions to common problems, and optimal control approaches are identified. Directions for future research are provided. The review indicates that the dynamics of the organic Rankine cycle system is mainly governed by the heat exchangers. Depending on the level of accuracy and computational effort, a moving boundary approach, a finite volume method or a two-volume simplification can be used for the modeling of the heat exchangers. From the control perspective, the model predictive controllers, especially improved model predictive controllers (e.g. the multiple model predictive control, switching model predictive control, and non-linear model predictive control approach), provide excellent control performance compared to conventional control strategies (e.g. proportional–integral controller, proportional–derivative controller, and proportional–integral–derivative controllers). We recommend that future research focuses on the integrated design and optimization, especially considering the design of the heat exchangers, the dynamic response of the system and its controllability
    corecore