4,556 research outputs found

    Execution Trace Graph Based Multi-criteria Partitioning of Stream Programs

    Get PDF
    AbstractOne of the problems proven to be NP-hard in the field of many-core architectures is the Partitioning of stream programs. In order to maximize the execution parallelism and obtain the maximal data throughput for a streaming application it is essential to find an appropriate actors assignment. The paper proposes a novel approach for finding a close-to-optimal partitioning configuration which is based on the execution trace graph of a dataflow network and its anal- ysis. We present some aspects of dataflow programming that make the partitioning problem different in this paradigm and build the heuristic methodology on them. Our optimization cri- teria include: balancing the total processing workload with regards to data dependencies, actors idle time minimization and reduction of data exchanges between processing units. Finally, we validate our approach with experimental results for a video decoder design case and compare them with some state-of-the-art solutions

    Design-Space Exploration of Stream Programs through Semantic-Preserving Transformations

    Get PDF
    Stream languages explicitly describe fork-join parallelism and pipelines, offering a powerful programming model for many-core Multi-Processor Systems on Chip (MPSoC). In an embedded resource-constrained system, adapting stream programs to fit memory requirements is particularly important. In this paper we present a design-space exploration technique to reduce the minimal memory required when running stream programs on MPSoC; this allows to target memory constrained systems and in some cases obtain better performance. Using a set of semantically preserving transformations, we explore a large number of equivalent program variants; we select the variant that minimizes a buffer evaluation metric. To cope efficiently with large program instances we propose and evaluate an heuristic for this method. We demonstrate the interest of our method on a panel of ten significant benchmarks. As an illustration, we measure the minimal memory required using a multi-core modulo scheduling. Our approach lowers considerably the minimal memory required for seven of the ten benchmarks

    The multi-program performance model: debunking current practice in multi-core simulation

    Get PDF
    Composing a representative multi-program multi-core workload is non-trivial. A multi-core processor can execute multiple independent programs concurrently, and hence, any program mix can form a potential multi-program workload. Given the very large number of possible multiprogram workloads and the limited speed of current simulation methods, it is impossible to evaluate all possible multi-program workloads. This paper presents the Multi-Program Performance Model (MPPM), a method for quickly estimating multiprogram multi-core performance based on single-core simulation runs. MPPM employs an iterative method to model the tight performance entanglement between co-executing programs on a multi-core processor with shared caches. Because MPPM involves analytical modeling, it is very fast, and it estimates multi-core performance for a very large number of multi-program workloads in a reasonable amount of time. In addition, it provides confidence bounds on its performance estimates. Using SPEC CPU2006 and up to 16 cores, we report an average performance prediction error of 2.3% and 2.9% for system throughput (STP) and average normalized turnaround time (ANTT), respectively, while being up to five orders of magnitude faster than detailed simulation. Subsequently, we demonstrate that randomly picking a limited number of multi-program workloads, as done in current pactice, can lead to incorrect design decisions in practical design and research studies, which is alleviated using MPPM. In addition, MPPM can be used to quickly identify multi-program workloads that stress multi-core performance through excessive conflict behavior in shared caches; these stress workloads can then be used for driving the design process further

    Mitosis based speculative multithreaded architectures

    Get PDF
    In the last decade, industry made a right-hand turn and shifted towards multi-core processor designs, also known as Chip-Multi-Processors (CMPs), in order to provide further performance improvements under a reasonable power budget, design complexity, and validation cost. Over the years, several processor vendors have come out with multi-core chips in their product lines and they have become mainstream, with the number of cores increasing in each processor generation. Multi-core processors improve the performance of applications by exploiting Thread Level Parallelism (TLP) while the Instruction Level Parallelism (ILP) exploited by each individual core is limited. These architectures are very efficient when multiple threads are available for execution. However, single-thread sections of code (single-thread applications and serial sections of parallel applications) pose important constraints on the benefits achieved by parallel execution, as pointed out by Amdahl’s law. Parallel programming, even with the help of recently proposed techniques like transactional memory, has proven to be a very challenging task. On the other hand, automatically partitioning applications into threads may be a straightforward task in regular applications, but becomes much harder for irregular programs, where compilers usually fail to discover sufficient TLP. In this scenario, two main directions have been followed in the research community to take benefit of multi-core platforms: Speculative Multithreading (SpMT) and Non-Speculative Clustered architectures. The former splits a sequential application into speculative threads, while the later partitions the instructions among the cores based on data-dependences but avoid large degree of speculation. Despite the large amount of research on both these approaches, the proposed techniques so far have shown marginal performance improvements. In this thesis we propose novel schemes to speed-up sequential or lightly threaded applications in multi-core processors that effectively address the main unresolved challenges of previous approaches. In particular, we propose a SpMT architecture, called Mitosis, that leverages a powerful software value prediction technique to manage inter-thread dependences, based on pre-computation slices (p-slices). Thanks to the accuracy and low cost of this technique, Mitosis is able to effectively parallelize applications even in the presence of frequent dependences among threads. We also propose a novel architecture, called Anaphase, that combines the best of SpMT schemes and clustered architectures. Anaphase effectively exploits ILP, TLP and Memory Level Parallelism (MLP), thanks to its unique finegrain thread decomposition algorithm that adapts to the available parallelism in the application

    Systematic Design Space Exploration of Dynamic Dataflow Programs for Multi-core Platforms

    Get PDF
    The limitations of clock frequency and power dissipation of deep sub-micron CMOS technology have led to the development of massively parallel computing platforms. They consist of dozens or hundreds of processing units and offer a high degree of parallelism. Taking advantage of that parallelism and transforming it into high program performances requires the usage of appropriate parallel programming models and paradigms. Currently, a common practice is to develop parallel applications using methods evolving directly from sequential programming models. However, they lack the abstractions to properly express the concurrency of the processes. An alternative approach is to implement dataflow applications, where the algorithms are described in terms of streams and operators thus their parallelism is directly exposed. Since algorithms are described in an abstract way, they can be easily ported to different types of platforms. Several dataflow models of computation (MoCs) have been formalized so far. They differ in terms of their expressiveness (ability to handle dynamic behavior) and complexity of analysis. So far, most of the research efforts have focused on the simpler cases of static dataflow MoCs, where many analyses are possible at compile-time and several optimization problems are greatly simplified. At the same time, for the most expressive and the most difficult to analyze dynamic dataflow (DDF), there is still a dearth of tools supporting a systematic and automated analysis minimizing the programming efforts of the designer. The objective of this Thesis is to provide a complete framework to analyze, evaluate and refactor DDF applications expressed using the RVC-CAL language. The methodology relies on a systematic design space exploration (DSE) examining different design alternatives in order to optimize the chosen objective function while satisfying the constraints. The research contributions start from a rigorous DSE problem formulation. This provides a basis for the definition of a complete and novel analysis methodology enabling systematic performance improvements of DDF applications. Different stages of the methodology include exploration heuristics, performance estimation and identification of refactoring directions. All of the stages are implemented as appropriate software tools. The contributions are substantiated by several experiments performed with complex dynamic applications on different types of physical platforms

    Mitosis based speculative multithreaded architectures

    Get PDF
    In the last decade, industry made a right-hand turn and shifted towards multi-core processor designs, also known as Chip-Multi-Processors (CMPs), in order to provide further performance improvements under a reasonable power budget, design complexity, and validation cost. Over the years, several processor vendors have come out with multi-core chips in their product lines and they have become mainstream, with the number of cores increasing in each processor generation. Multi-core processors improve the performance of applications by exploiting Thread Level Parallelism (TLP) while the Instruction Level Parallelism (ILP) exploited by each individual core is limited. These architectures are very efficient when multiple threads are available for execution. However, single-thread sections of code (single-thread applications and serial sections of parallel applications) pose important constraints on the benefits achieved by parallel execution, as pointed out by Amdahl’s law. Parallel programming, even with the help of recently proposed techniques like transactional memory, has proven to be a very challenging task. On the other hand, automatically partitioning applications into threads may be a straightforward task in regular applications, but becomes much harder for irregular programs, where compilers usually fail to discover sufficient TLP. In this scenario, two main directions have been followed in the research community to take benefit of multi-core platforms: Speculative Multithreading (SpMT) and Non-Speculative Clustered architectures. The former splits a sequential application into speculative threads, while the later partitions the instructions among the cores based on data-dependences but avoid large degree of speculation. Despite the large amount of research on both these approaches, the proposed techniques so far have shown marginal performance improvements. In this thesis we propose novel schemes to speed-up sequential or lightly threaded applications in multi-core processors that effectively address the main unresolved challenges of previous approaches. In particular, we propose a SpMT architecture, called Mitosis, that leverages a powerful software value prediction technique to manage inter-thread dependences, based on pre-computation slices (p-slices). Thanks to the accuracy and low cost of this technique, Mitosis is able to effectively parallelize applications even in the presence of frequent dependences among threads. We also propose a novel architecture, called Anaphase, that combines the best of SpMT schemes and clustered architectures. Anaphase effectively exploits ILP, TLP and Memory Level Parallelism (MLP), thanks to its unique finegrain thread decomposition algorithm that adapts to the available parallelism in the application.Postprint (published version
    • …
    corecore