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Abstract
One of the problems proven to be NP-hard in the field of many-core architectures is the par-
titioning of stream programs. In order to maximize the execution parallelism and obtain the
maximal data throughput for a streaming application it is essential to find an appropriate actors
assignment. The paper proposes a novel approach for finding a close-to-optimal partitioning
configuration which is based on the execution trace graph of a dataflow network and its anal-
ysis. We present some aspects of dataflow programming that make the partitioning problem
different in this paradigm and build the heuristic methodology on them. Our optimization cri-
teria include: balancing the total processing workload with regards to data dependencies, actors
idle time minimization and reduction of data exchanges between processing units. Finally, we
validate our approach with experimental results for a video decoder design case and compare
them with some state-of-the-art solutions.
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1 Introduction

For several signal processing fields, the use of dataflow programs as a methodology for the imple-
mentation of the processing algorithms constitutes an interesting approach versus the classical
sequential programming methods. Dataflow programming enables to explore a rich variety of
parallel implementation options and also provides more extensive and systematic implementa-
tion analysis [6, 11, 13]. These attractive features rely mostly on the fact that dataflow programs
are highly analyzable, platform independent and explicitly expose the potential parallelism of
the application. Several dataflow computation models are structured as (hierarchical) networks
of communicating computational kernels, called actors. Actors are connected by directed, loss-
less, order preserving point-to-point communication channels, called buffers. As a result the
flow of data between actors in such a network is fully explicit and data sharing is only permitted
by sending data packets, called tokens.

This work considers a very general dataflow Model of Computation (MoC ) called Dataflow
Process Network (DPN ) with firings. A specific property of this MoC is that actors executions
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are performed as a sequence of discrete firings. During each firing an actor can (a) consume a
finite number of input tokens, (b) produce a finite number of output tokens, and (c) modify its
own internal state if it has any. The algorithmic part of a single actor firing is specified inside
the so-called actions. At one time, according to the internal state of the current actor, only one
action can be fired. The resulting absence of race conditions makes the behaviour of a dataflow
program more robust to different execution policies.

The purpose of this work follows the general objective of a dataflow program implementation
onto a many-core architecture, that is, achieving the maximum data throughput exploiting the
smallest possible number of processing units. In such perspective, the problem of optimal
resources allocation and the partitioning problem are explicitly connected. Finding the optimal
assignment of actors or, using the more general terms, tasks to the processing units has been
proven to be an NP complete problem, even when only 2 cores are considered [18]. Additionally,
it strongly affects the opportunities of developing scheduling policies [2, 4].

In the theoretic notation, the partitioning problem under study in this work can be described
as P |prec, groups|Cmax, which is the assignment of a set of tasks T to identical processors under
arbitrary constraints with no pre-emption such that the make-span (total execution time) is
minimized [9]. A further assumption implies that for tasks assigned to the same processing
unit only one can be executed at one time. Following such a problem definition, the state of
the art of partitioning heuristics developed for various platforms is very rich. The approaches
described in literature range from simple, greedy placements, up to integer programming based
methodologies [2] or refinements using genetic algorithms [16]. In all cases, the crucial problem
is to identify the subset of measures and parameters that leads to quality results and good
performance independently from the application of a program. As a dataflow design can be
perceived as a weighted graph, a plenty of classical approaches for graph partitioning can be
applied. The most common optimization criteria for this purpose include either communication
cost minimization [10, 12], workload balance [7, 15] or multiple properties [17, 19].

Transferring the generally formulated partitioning problem to the dataflow programming
paradigm requires applying some further constraints related to the tasks. The most influencing
ones are the intrinsic dependencies between action firings and their affiliation to the specific ac-
tor that cannot be violated during the partitioning process. This property makes the execution
of load balancing more specific regarding the dependencies and yields some modifications of the
objective functions. Furthermore, the approximation of program execution must be thorough
enough to capture the input dependent behaviour within the firings.

The main novelty of the presented partitioning approach is to handle the mentioned earlier
properties of dataflow programs execution. First of all, an Execution Trace Graph (further
referenced as ETG) is generated for a given input stimulus to capture the complete behaviour
of the design. Secondly, the execution is profiled in order to obtain the clock-cycles required for
each action to proceed. Finally, information related to actions executions, their influence and the
communication volume is being extracted and used as a metric for the partitioning algorithm.
The proposed algorithm aims at achieving the general balance of the workload, however with
regards to the dependencies. The algorithm also makes an attempt to find a trade-off between
the program performance and resources utilization. It defines metrics capable of establishing
the number of units which is optimal from the processor occupancy balance perspective.

The paper is structured in the following way: first, Section 2 gives an overview of the basic
properties of the execution trace graph. Then, Section 3 describes details of the partitioning
heuristic with an emphasis put on the, mentioned earlier, trade-off estimation. Next, Section 4
describes the experiments and results obtained by the performance simulation and a direct
platform execution. Finally, conclusions are drawn in Section 5.

Stream Programs Partitioning Michalska, Casale-Brunet, Bezati and Mattavelli

1444



2 Execution Trace Graph

The execution of a DPN program with firings can be represented as a collection of action exe-
cutions called firings as described in the introduction. Consequently, it is possible to explicitly
characterize the intrinsic dependencies between two firings. For example, if a firing consumes
tokens, it must depend on the execution of the actor that produces those tokens. The same
can be stated if an execution firing makes use of a state variable that was previously modified
by another firing. Different types of dependencies can be identified and used to characterize
the execution of a dataflow program (i.e. Finite State Machine dependencies, State Variable
dependencies, Guard dependencies, Port and Tokens dependencies [5]). Defining dependencies
between executed firings establishes precedence orders: if firing f2 depends on firing f1, then
f1 has to be executed and completed before f2 can be started. The transitive hull of the de-
pendencies is the precedence relation ≺, so the precedence constraint among f1 and f2 can
be expressed as f1 ≺ f2. The set of firings F and dependencies D can be represented with a
directed and acyclic graph G(F ,D) called ETG, where each single firing is represented by a
node and each dependence by a directed arc. It is possible to group different dependency types
into two categories: (a) the internal dependencies (i.e. Finite State Machine, State Variable,
Guard and Port) and (b) the token dependencies. The first group describes the relations be-
tween two firings of the same actor, while the second one describes the relation between the
firings that respectively produce and consume at least one token. It must be noted that in the
domain of dynamic dataflow programs the size of G could vary according to the execution input
stimulus. For systems which implement several classes of signal processing applications (e.g.
video or audio codecs, packet switching in communication networks), probabilistic approaches
are meaningful representations of the underlying processing model. In order to generate statis-
tically representative ETGs it is essential to be able to provide such sets of input stimuli that
sufficiently cover the whole span of the application behaviour.

3 Trace-based partitioning approach

The proposed partitioning approach requires delivering the ETG of a dataflow program obtained
for a specific input stimulus. A complementary information that is necessary to model the
program execution on the target platform is the number of clock-cycles required for each action
to execute. This information (further referenced as weights) is being profiled and incorporated
into the ETG as described in [5]. All information being used for the partitioning heuristic is
extracted from the trace by analysing the properties of the firings, such as their number, load,
precedence/succession relation, token exchange volume.

3.1 Assumptions

The most important assumption made in this work is the predefinition of the scheduling policy.
We assume a simple Round Robin strategy to be used on every processing unit to perform the
scheduling of the subnetwork of actors that is mapped on it, if it contains multiple. Although the
close-to-optimal scheduling solution that might be identified can be different from the Round
Robin scheduling used here, we assume the solution of the partitioning problem dominant. It
is supported by experimental observations and some previous works on identifying quasi-static
scheduling policies [3].

Another important assumption of the approach presented is that in a first stage the costs
of data exchange between processing units are neglected. Therefore the weights assigned to the
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firings contain only the computational load of their algorithmic part. In order to consider the
data exchange costs in a further stage of the algorithm, we analyse number of tokens that need
to be exchanged between partitions. Additional measures related to data transfers, such as, for
instance, read/write overhead are not considered.

The partitioning algorithm provides two different use cases. First, when the target number
of available identical processing units is fixed and the mapping can span on them. This process
is depicted in Fig. 1. In the second case, in order to establish the most optimal number of
units, the heuristic algorithm proceeds until certain conditions on execution time and resources
utilization are fulfilled.

Figure 1: Example of partitioning.

3.2 Load Balancing Algorithm

The heuristic defines some parameters evaluated directly from the weighted ETG. These are
the following:

1. Actor Workload (AW ) is the sum of weights assigned to each action firing belonging
to a given actor A:

∑
wfi ∈ A;

2. Actor Preceding Workload (APW ) is defined as the maximal sum of weights of each
firing of each actor that precedes the given actor A in the network in terms of topological
order: max

∑
wfi∈AjAj ≺ A. An example of calculation is presented in Figure 2;

3. Actors Common Predecessors (ACP) number is evaluated for each pair of actors and
denotes number of actors appearing on the topological list of predecessors for both from
the pair.

The initial assumption places all actors on separate processing units. A reduction applied
iteratively (Algorithm 1) involves removing units one-by-one by attaching them to those with
most appropriate values of APW and ACP. Our goal is to join units where overall APW is
small with those with big APW so that the actors about to fire at the similar time within
the execution do not block each other. Additional criterion favours a high ACP value between
actors inside one unit, as most likely there is a kind of pipeline between them that would disable
their parallelisation anyway.

After each reduction the ETG is processed in order to simulate the new execution time.
Although this operation might be time consuming, especially for big traces, it helps to keep
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Figure 2: Simple example of preceding workload calculation for actor D. The weight of each
actor is indicated in the picture. A branch with the maximal sum of weights goes through
actors E, F and G, therefore preceding workload for D = 15.

track on the performance decrease and adjust a further phase of the algorithm. Once the close-
to-optimal execution time cannot be maintained any more, we expect the value of increase to
exceed the iLIMIT and further reductions are performed on a different basis. This stop condi-
tion could be reached at different numbers of units, depending on the granularity of the dataflow
design. As for the analysed networks and the experiments that have been carried out, we have
set those factors to 66% (remains of 1/3 of uINITIAL - initial number of processing units) and
10% (allowed increase for each reduction). When this point is reached, some partitions usually
have a remarkable workload. In such case, joining them is not profitable any more, because it
contributes to a greater workload imbalance. Therefore, a further reduction involves a separate
reassignment of actors from the partition with lowest utilization to other units, using the same
ACP criterion as previously.

Data: INPUT: Trace, Weights; OUTPUT: Mapping
while units number > uLIMIT AND increase < iLIMIT do

take partition with lowest average APW;
find partition with highest average ACP;
join partitions;
if units number new < uINITIAL/3 OR user condition then

while units number > uLIMIT AND decrease < dLIMIT do
take partition with lowest average workload;
while actors remaining do

find partition with highest ACP;
attach actor;

end

end

end

end

Algorithm 1: Basic partitioning procedure

Defining the stop condition of the algorithm requires emphasising its two modes. In the first
one, that is, when the target number of units (uLIMIT ) is given, the reduction simply proceeds
till the expected number is achieved. For the second application case, when the optimal number
of units is unbounded and needs to be established by the algorithm, we introduce two additional
parameters. These are: (a) the Average Partitioning Occupancy (APO), calculated as an
average value of processing time of each unit expressed in percent; (b) the Standard Deviation
of Occupancy (SDO), calculated as a statistical standard deviation for the population of units
processing times expressed in percent. These parameters are calculated after each iteration.

Our observations lead to characterize the balanced workload of a partitioning configuration
with a high value of average occupancy and, at the same time, a low value of standard devi-
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ation. With such distribution of values, in the ideal case, all partitions should be equally and
maximally occupied. Therefore, we use the ratio of APO to SDO as an evaluation of partition-
ing configuration. As the reduction procedure continues, this ratio quite naturally increases.
If the opposite occurs, it usually means that with a reduction we have introduced a strong
inequality of the workload among units. Small decreases are, however, acceptable as verified
experimentally. Hence, if the decrement exceeds the allowed value (dLIMIT ) the algorithm
reaches its stop point. Just like other tuning parameters of the algorithm the value of allowed
decrement may vary from application to application basing on its granularity properties. After
some experimental work it has been observed that this parameter can be appropriately set in
the range of a few %.

3.3 Idleness Optimization

The representation of execution provided by the ETG enables the analysis of different states
of the actors taken during the execution. Analysis of these states may provide us with some
useful indications on the search for more efficient configurations. The following actor states
consider the occurrences for which an actor is not processing and has not yet terminated: (a)
the Blocked writing takes into account the situation where the actor could fire, but the buffer
it is expecting to write to is full. Therefore, it is necessary that the actor waits for the available
space; (b) the Blocked reading considers the situation where the actor has not yet received
the required input tokens and therefore cannot be executed; (c) the Idle finally corresponds to
the situation where even though the actor has necessary tokens and required space in a buffer,
it cannot be fired due to the limitations of the scheduling policy (another actor on the same
unit is currently processing).

With the currently used model of simulation, the most urgent state to handle and elimi-
nate/reduce is the Idle one. Therefore, a further stage of the optimization procedure focuses
on moving actors with the highest overall idle time to the least occupied unit. If a move did
not decrease the idle time of an actor or it increased the idle time of any actor of the target
unit it joined in, the move is reversed and the actor is labelled as unmovable. This procedure
continues until all actors are either moved or unsuccessfully attempted to move. For the anal-
ysed networks, we consider the idleness of an actor to be reducible, if it is among 10% of actors
with the longest idle time.

3.4 Communication Volume Optimization

The second optimization strategy attempts to conform in a simple way with the initially ne-
glected cost of token exchange. Processing the information about token dependencies within
the trace, we calculate how many tokens need to be exchanged between each pair of partitions.
If for a certain actor on any processing unit, the number of tokens to exchange with an actor
on another unit takes a remarkable part of overall token exchange between these two units, the
actor is moved to the corresponding unit in order to cancel this cost out. Granularity of the
applications that were analysed lead this level to be set experimentally to 2%.

4 Experimental Results and Discussion

The testbench we have used to test the partitioning approach consisted of two different dataflow
network designs: RVC CAL [8, 14] implementations of JPEG and MPEG4-SP decoder. While
the first one is a small network of only 6 actors, that has been used mostly to validate the
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algorithm, the second one consists of 34 actors and is a relatively large design, challenging
from the partitioning perspective. The ETGs have been generated using the TURNUS co-
exploration environment [1], developed by the authors. The weights assigned to each firing
have been obtained using C generator retrieving the clock-cycles by the hardware counters of
the processor [20]. The platform used for experiments was the 4-cores Intel i7-3770 3.4 GHz.
The first part of the results is based on the simulation of the execution times expressed in
clock-cycles obtained for the mappings spanned between 6 to 1 unit. These results (normalized
values) are presented in Tables 1 and 2. Additional information calculated for each configuration
is the average occupancy (APO) and the standard deviation (SDO), that follow the definitions
introduced in the previous Section. Finally, the last column presents a calculated speed-up vs
the monocore configuration.

Table 1: JPEG Decoder: Simulation
No. of units Execution Time [clc] APO SDO Speed-up

6 1054 21% 35% 1.27
5 1057 25% 38% 1.27
4 1057 32% 40% 1.27
3 1057 42% 41% 1.27
2 1058 63% 36% 1.27
1 1340 100% 0% 1

Table 2: MPEG4-SP Decoder: Simulation
No. of units Execution Time [clc] APO SDO Speed-up

6 4368 31% 31% 1.87
5 4368 37% 32% 1.87
4 4368 47% 32% 1.87
3 4368 62% 29% 1.87
2 4514 90% 6% 1.8
1 8148 100% 0% 1

Figure 3: Schematic representation of the experiment procedure.

The measure of performance in case of platform execution experiments is the number of
displayed frames per second. The throughput achieved has been compared with the mappings
generated with different strategies provided by Orcc [21] (Fig. 3). Special attention was paid to
partitioning configurations spanned on up to 4 units, as enforced by the properties of the used
machine. Table 3 contains performances for the mappings generated by the algorithm with and
without applying additional optimization approaches for JPEG Decoder. Table 4 comprises
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performances for mappings generated by different Orcc strategies for the same design. In the
same way, Tables 5 and 6 present results for MPEG4-SP Decoder. Missing values in the tables
denote strategies the experiments were not possible for due to various uncertainties on the
software side.

Table 3: JPEG Decoder: Platform Execution
No. of units Basic [fps] + Min-Idle [fps] + Min-Communication [fps]

1 2217 2217 2217
2 3631 2239 3462
3 3843 2085 3298
4 3481 3498 3448

Table 4: JPEG Decoder: ORCC
No. of units KLR [fps] MR [fps] RR [fps] WLB [fps]

1 2217 2217 2217 2217
2 2229 2208 2258 3767
3 - 2634 2641 3396
4 - 3082 3419 3358

Considering the speed-up relative to the maximal speed-up achievable for an application for
certain number of units, simulation proved the results to be on the way to close-to-optimal. As
for the platform execution, a speed-up of 1.9 for 2 units and 2.5 for 3 units has been achieved.
Moreover, the algorithm along with its optimization procedures outperformed the state-of-the
art solutions provided by Orcc, although the communication minimization seemed to improve
the performance in a pretty selective way. The major strength of the developed approach over
the referenced one is the stability of the solution, as the analysis of execution trace does not
introduce any notion of randomness. On contrary, for the referenced Orcc strategies it could be
easily noticed when running the same procedure several times for the identical input stimuli,
that the resulting configuration could differ from the one competitive to the proposed algorithm
to the one way less efficient than a simple Round Robin placement. A good example of this
occurrence is for example the MKEC strategy run for 3 units, where the rate spanned from
1303 fps (the best result, as presented in Table 6) to only 857 fps.

It can be clearly observed that for the simulation results a saturation of speed-up occurs,
so the execution time does not decrease any more as we increase the number of available units.
This phenomenon is most likely due to the limit of parallelism achievable for an application.
It also falls on the point where a proportion of APO and SDO is relatively good. It could
correspond to the mentioned earlier trade-off of performance and resources utilization that
the algorithm aims at, in general. On the other hand, platform execution experiments point
the decrease of performance beyond the saturation level what reveals an additional cost that
outstrips the potential parallelism of an application. To make the simulation fully resemble
the platform execution it would be necessary to extend the assumed model by communication
cost and possible further overheads (due to i.e. scheduling within a partition). A model fully
corresponding to the platform would enable getting rid of most of the fixed tuning parameters
and replace them with dynamic boundaries obtained directly from platform simulation.

Some values in the tables also reveal border effects of the optimization procedures. For
example, for the platform execution of JPEG, Idle Optimization decreases the throughput for
2 and 3 units. It might be a corner case of the optimization, when although we reduce the idle

Stream Programs Partitioning Michalska, Casale-Brunet, Bezati and Mattavelli

1450



time of a partition, we affect the execution of some critical actors what in the end contributes to
a decrease in the performance. A similar situation might occur for the Communication Volume
Optimization, where a move may reduce one heavy communication channel, but increase other
at the same time. These limitations definitely need to be overcome in next versions of the
algorithm.

Table 5: MPEG4-SP Decoder: Platform Execution
No. of units Basic [fps] + Min-Idle [fps] + Min-Communication [fps]

1 536 536 536
2 868 984 1015
3 1327 1332 1075
4 1130 1222 1036

Table 6: MPEG4-SP Decoder: ORCC
No. of units KLR [fps] MKCV [fps] MKEC [fps] MR [fps] RR [fps] WLB [fps]

1 536 536 536 536 536 536
2 997 995 979 985 729 968
3 - 1191 1303 1309 887 1195
4 - 1145 1212 1145 873 1214

5 Conclusion

Partitioning is an indispensable element of porting dataflow programs onto many-core architec-
tures. This work proposed an efficient methodology based on the analysis of the execution trace.
It has been validated by means of two design examples and the results obtained experimentally
visibly outperformed currently available solutions. The proposed choice of optimization mea-
sures and functions the heuristic relies on appeared to follow the correct line of investigation.
The future work involves 2 different directions. First, a research should be continued on the
exploration of the partitioning search space. It should lead to development of further heuristics
that would guarantee stronger improvement of the performance independently from the appli-
cation type. Its complementary aspect is an extension of the design case classes. On the other
hand, a work should be continued on the model side, especially on the introduction of further
target functions related to the extensive cost model of the data exchanges among processing
elements. Other model extension could also involve simulation of memory accesses and shared
caches.
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