86,906 research outputs found

    Exact calculation of network robustness

    Get PDF
    Finding the most critical nodes regarding network connectivity has attracted the attention of many researchers in infrastructure networks, power grids, transportation networks and physics in complex networks. Static robustness of networks under intentional attacks analyses the ability of a system to maintain its connectivity after the disconnection or deletion of a series of targeted nodes. In this context, connectivity is typically measured by the size of the remaining largest connected component. When targeting these nodes, previous literature has mostly used adaptive strategies that sequentially remove central nodes, or created heuristics in order to improve the results of the adaptive strategies. The proposed methodology based on mathematical programming allows to identify, for every fraction of disconnected or removed nodes, the set that minimizes the size of the largest connected component of a network, i.e. it allows to calculate the exact (most critical) robustness of a network.Peer ReviewedPostprint (author's final draft

    Network robustness and fragility: Percolation on random graphs

    Full text link
    Recent work on the internet, social networks, and the power grid has addressed the resilience of these networks to either random or targeted deletion of network nodes. Such deletions include, for example, the failure of internet routers or power transmission lines. Percolation models on random graphs provide a simple representation of this process, but have typically been limited to graphs with Poisson degree distribution at their vertices. Such graphs are quite unlike real world networks, which often possess power-law or other highly skewed degree distributions. In this paper we study percolation on graphs with completely general degree distribution, giving exact solutions for a variety of cases, including site percolation, bond percolation, and models in which occupation probabilities depend on vertex degree. We discuss the application of our theory to the understanding of network resilience.Comment: 4 pages, 2 figure

    The Influence of Canalization on the Robustness of Boolean Networks

    Full text link
    Time- and state-discrete dynamical systems are frequently used to model molecular networks. This paper provides a collection of mathematical and computational tools for the study of robustness in Boolean network models. The focus is on networks governed by kk-canalizing functions, a recently introduced class of Boolean functions that contains the well-studied class of nested canalizing functions. The activities and sensitivity of a function quantify the impact of input changes on the function output. This paper generalizes the latter concept to cc-sensitivity and provides formulas for the activities and cc-sensitivity of general kk-canalizing functions as well as canalizing functions with more precisely defined structure. A popular measure for the robustness of a network, the Derrida value, can be expressed as a weighted sum of the cc-sensitivities of the governing canalizing functions, and can also be calculated for a stochastic extension of Boolean networks. These findings provide a computationally efficient way to obtain Derrida values of Boolean networks, deterministic or stochastic, that does not involve simulation.Comment: 16 pages, 2 figures, 3 table

    Self-similarity, small-world, scale-free scaling, disassortativity, and robustness in hierarchical lattices

    Full text link
    In this paper, firstly, we study analytically the topological features of a family of hierarchical lattices (HLs) from the view point of complex networks. We derive some basic properties of HLs controlled by a parameter qq. Our results show that scale-free networks are not always small-world, and support the conjecture that self-similar scale-free networks are not assortative. Secondly, we define a deterministic family of graphs called small-world hierarchical lattices (SWHLs). Our construction preserves the structure of hierarchical lattices, while the small-world phenomenon arises. Finally, the dynamical processes of intentional attacks and collective synchronization are studied and the comparisons between HLs and Barab{\'asi}-Albert (BA) networks as well as SWHLs are shown. We show that degree distribution of scale-free networks does not suffice to characterize their synchronizability, and that networks with smaller average path length are not always easier to synchronize.Comment: 26 pages, 8 figure

    Genetic networks with canalyzing Boolean rules are always stable

    Full text link
    We determine stability and attractor properties of random Boolean genetic network models with canalyzing rules for a variety of architectures. For all power law, exponential, and flat in-degree distributions, we find that the networks are dynamically stable. Furthermore, for architectures with few inputs per node, the dynamics of the networks is close to critical. In addition, the fraction of genes that are active decreases with the number of inputs per node. These results are based upon investigating ensembles of networks using analytical methods. Also, for different in-degree distributions, the numbers of fixed points and cycles are calculated, with results intuitively consistent with stability analysis; fewer inputs per node implies more cycles, and vice versa. There are hints that genetic networks acquire broader degree distributions with evolution, and hence our results indicate that for single cells, the dynamics should become more stable with evolution. However, such an effect is very likely compensated for by multicellular dynamics, because one expects less stability when interactions among cells are included. We verify this by simulations of a simple model for interactions among cells.Comment: Final version available through PNAS open access at http://www.pnas.org/cgi/content/abstract/0407783101v
    corecore