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Abstract

Finding the most critical nodes regarding network connectivity has 
attracted the attention of many researchers in infrastructure networks, 
power grids, transportation networks and physics in complex networks. 
Static robustness of networks under intentional attacks analyses the 
ability of a system to maintain its connectivity after the disconnection 
or deletion of a series of targeted nodes. In this context, connectivity is 
typically measured by the size of the remaining largest connected com-
ponent. When targeting these nodes, previous literature has mostly 
used adaptive strategies that sequentially remove central nodes, or cre-
ated heuristics in order to improve the results of the adaptive strate-
gies. The proposed methodology based on mathematical programming 
allows to identify, for every fraction of disconnected or removed nodes, 
the set that minimizes the size of the largest connected component of a 
network, i.e. it allows to calculate the exact (most critical) robustness 
of a network.
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1 Introduction

Static robustness of networks under intentional attacks analyses the ability
of a system to maintain its connectivity after the disconnection or deletion of
a series of targeted nodes. In this context, the connectivity of the resulting
network is typically measured by the size of the largest connected compo-
nent (LCC). Finding the most critical nodes to disconnect a network has at-
tracted the attention of many researchers that analyzed the vulnerability of
the Internet (Cohen et al., 2001), power grids (Albert et al., 2004; Solé et al.,
2008), infrastructure networks (Latora and Marchiori, 2005) and different
transportation networks (Lordan et al., 2014; Feng and Wang, 2013).In-
deed, maintenance and protection of real-world network-based systems can
be performed more efficiently if the most critical nodes of the network are
accurately identified.
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The selection of the critical nodes is typically driven by some node prop-
erties that try to identify the most connected ones (Broder et al., 2000;
Albert and Barabási, 2002; Lordan et al., 2014). Although other procedures
and heuristics have been tested in order to find the most critical path (Ja-
hanpour and Chen, 2013; Lordan et al., 2015; Pullan, 2015; Deng et al.,
2016; Soria et al., 2017), the common procedure for disconnecting the net-
work is to follow an adaptive (greedy) strategy: at each iteration, the most
promising node according to its properties is selected and removed from the
network. The properties of the remaining nodes are recomputed after every
deletion and the process ends when the network is completely disconnected.
The three node attributes that showed the best performance (Lordan et al.,
2015; Petreska et al., 2010) so far are: high damage, high betweenness or high
degree. Recall that, given a network, the damage of a node is the reduction
of the LCC size when it is disconnected, and its betweenness is the sum,
over all pairs of other nodes, of the fraction of shortest paths going through
it.

None of the methods reported above is guaranteed to find the optimal
set of nodes to disconnect a network up to any given percentage of its LCC.
The aim of this paper is to define a methodology for calculating exactly the
robustness of a network by finding, for each number of nodes to remove, the
set that minimizes the size of the LCC or the remaining network. This can
also be interpreted as finding the most critical or important nodes to keep
the cohesion of a network.

Finding the optimal sets of nodes is computationally expensive. In this
work, we will use two ideas in order to be able to deal with medium-sized
and large networks. On the one side, we consider that network managers
are most often not interested in completely disconnecting a network but
disconnecting it only up to a given LCC size (for instance, 5% of the graph
size). On the other hand, we will be able to reduce the graph whenever it
has small communities of nodes that are connected to the rest of the network
through one single node.

The rest of the paper is organized as follows. In Section 2 we give a
complete description of the algorithm, and proof its validity. To illustrate
the use of the algorithm, and the utility of exact algorithms to have precise
information on the performance of the heuristics available in the literature,
we have computed the robustness for several graphs. The obtained results
are reported in Section 3. Finally, Section 4 exposes the conclusions drawn
from our experiments.

2 Exact algorithm

We will consider two auxiliary subproblems related to the detection of crit-
ical nodes in a network:
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Problem P1(L)

Given a connected undirected graph G = (N,E) and an integer L, identify
S1(L) ⊆ N of minimum cardinality that, when removed, decomposes G into
a number of connected components, each containing at most L nodes.

Problem P2(K)

Given a connected undirected graph G = (N,E) and an integer K, identify
S2(K) ⊆ N with |S2(K)| 6 K that minimizes the size of the LCC (L∗K) of
the graph obtained after removing from G the nodes in S2(K).

These problems will be solved by exploiting the integer programming
formulations proposed in Veremyev et al. (2014a) and the following extension
of a result from the same work:

Proposition 1. Given G = (N,E) and u ∈ N that disconnects G, let Su
be the set of nodes different from u not belonging to the LCC when u is
disconnected (see Figure 1).

Figure 1: Notation: Example

Then, given a lower bound ` on L∗K , if |Su| < `, there exists an optimal
solution of P2(K) with S2(K) ∩ Su = ∅.
The same result holds for P1(L) and ` = L.

Proof.
Suppose that v ∈ S2(K) ∩ Su. Then, there are two possibilities:

• u 6∈ S2(K): Consider the solution S2(K) ∪ {u} \ {v}.
By including u in the set of interdicted nodes, Su is disconnected from
G, leading to one or more connected components of size smaller than
` 6 L∗K , which include node v. Also, the size of the original connected
component containing u will be now reduced by at least 1. On the
other hand, the sizes of the remaining connected components (those
not intersecting Su ∪ {u}) remain unaltered.

Therefore, the LCC defined by this new solution is not larger than L∗K .
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• u ∈ S2(K):

In this case, by removing v from S2(K) some components might be
merged. However, since u ∈ S2(K), Su is disconnected from the rest
of the graph and, therefore, none of the resulting components can have
size larger than |Su|, which is, in turn, smaller than L∗K .

Taking any other node u′ ∈ N \ (Su ∪ S2(K)) in the solution, the
remaining connected components either keep the same size or become
smaller.

Therefore, again, we can build a solution without node v whose value
is not larger than L∗K .

If |S2(K) ∩ Su| > 1, the previous reasoning can be repeated until all nodes
from Su have been removed from the solution.

Since the above operations do not modify the size of the solution set,
the result also stands for problem P1(L). �

The above result allows to reduce the size of the graphs where the auxil-
iary problems P1 and P2 will be solved, by removing nodes in Su, for nodes
u with maximal |Su| < `. To this end, we will denote wu = |Su|, D the
whole set of removed nodes according to this criterion, and D̄ = N \D and
ED̄, respectively, the set of nodes and the set of edges of the reduced graph.

To formulate P1 and P2 we use binary variables:

• vi for i ∈ D̄. Takes value 1 if node i belongs to the solution, and zero
otherwise.

• uij for i, j ∈ D̄. Takes value 1 if nodes i and j belong to the same
connected component of the graph obtained after removing the nodes
in the solution, and 0 otherwise.
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A formulation of P1 is then:

P1(L) min
∑
i∈D̄

vi (1)

s.t. uij + vi 6 1 i, j ∈ D̄ (2)

uij + vj 6 1 i, j ∈ D̄ (3)

uij + vi + vj > 1 (i, j) ∈ ED̄ (4)

uij −
∑

(i,k)∈ED̄

ukj 6 0 i, j ∈ D̄ (5)

uij + vi −
1

|δ(i)|
∑

(i,k)∈ED̄

ukj > 0 i, j ∈ D̄ (6)

∑
j∈D̄

(wj + 1)uij 6 L i ∈ D̄ (7)

uij , vi ∈ {0, 1} i, j ∈ D̄ (8)

Here, constraints (2) and (3) ensure that the nodes that belong to a solution
are not considered to be in any connected component. Constraints (4) ensure
that, if none of the endpoints of an edge is part of the solution, then they
must belong to the same connected component. Extending this idea, for
each pair of nodes i, j ∈ D̄, constraints (5) prevent i from belonging to the
same connected component as j unless some node adjacent to i does. If this
is the case, then i must either belong to the same component as j or belong
to the solution. This is imposed by constraints (6). Here, |δ(i)| stands for
the degree of node i in the reduced graph. Finally, constraints (7) limit
the size of all connected components to L. Observe that, for any node that
does not remain isolated in the solution, wii will equal 1− vi by constraints
(2) and (6), so that the size of all connected components is well computed.
Finally, note that if an upper bound U is available on the size of S1(L), the
extra constraint ∑

i∈D̄

vi 6 U (9)

can be added to reduce the feasible region of P1(L). In our computational
experiments, we obtained U by applying the three greedy algorithms based
on betweenness, damage and degree analyzed in Lordan et al. (2014), and
taking the minimum of the obtained solution sizes for each value of L. Note
that, by definition, damage gives the optimal result on the first disconnec-
tion.
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Using the same variables as before, P2 can be formulated as:

P2(K) min z (10)

s.t. Constraints (2), (3), (4), (5), (6), (8)∑
j∈D̄

(wj + 1)uij 6 z i ∈ D̄ (11)

∑
j∈D̄

vj 6 K (12)

z ∈ Z+ (13)

The left hand side of (11) computes the size of the connected component
containing node i; therefore, together with the objective function, these
constraints force z to account for the size of the LCC. Constraints in (12)
limit the number of nodes in a solution.

Exact algorithms have been proposed in the literature for solving P1, P2
or similar problems (Di Summa et al., 2012; Veremyev et al., 2014b) but, to
the best of our knowledge, they have never been extended to find the exact
robustness of a network. Taking advantage of all the above definitions and
results, the optimal robustness of a given network can be then obtained by
solving a sequence of P2(K) problems, with decreasing values of K.

As mentioned above, only those K values leading to LCCs of a minimum
size Lmin have practical interest. Consequently, the starting value of this
sequence will be determined by solving first P1(Lmin). Note that, by using
a decreasing sequence of K values, each solution provides a lower bound on
the size of the LCC for the following ones, that allows to take advantage of
Proposition 1. The procedure is depicted in Algorithm 1.

Algorithm 1 Computation of the optimal robustness

1: Input G = (N,E), Lmin

2: Initialize L := Lmin, ` := 1
3: Reduce G using Proposition 1 −→ (D̄, ED̄), w = {wi}i∈D̄
4: Solve P1(L) −→ S1(L)
5: Set K := |S1(L)|, Kmax := K
6: while K > 0 do
7: Solve P2(K) −→ S2(K), L∗K
8: Set ` := L∗K and update D̄, ED̄, w accordingly
9: K:=K-1

10: Return {L∗1, . . . , L∗Kmax
}

The input of the algorithm (line 1) is a graph G = (N,E) and the
smallest LCC size to be attained, Lmin; and the output is the sequence
of sizes of the smallest LCCs attainable by removing 1, 2, . . . ,Kmax nodes,
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where Kmax is the minimum number of nodes that need to be removed to
get a LCC of size at most Lmin.

The first problem solved is P1(Lmin). Since no lower bound on |S1(Lmin)|
is available, we start taking the trivial value ` = 1. Before solving this first
problem, the graph reduction provided by Proposition 1 is applied for this
case (line 3). This yields the largest K value that needs to be evaluated.
Starting from this value, the algorithm proceeds backwards, solving P2(K)
for a smaller K value at each iteration.

Note that L∗K can be a very tight lower bound on |S2(K − 1)|, there-
fore, we can further reduce the graph at each iteration, taking advantage of
Proposition 1 and this new bound (line 8).

3 Obtained results

We next analyze and compare the results of the previous methods among
them and with the exact robustness. To this end, we show the analyses on
four real networks and on a generated network that shows greater differences
between exact and adaptive methods. The four real networks have different
sizes in order to observe to what extent the observed results scale. The
chosen networks were:

1. The Dolphins network presented in Lusseau et al. (2003), with 62
nodes and 159 edges,

2. the network Les Miserables as described in Knuth (1993) with 77 nodes
and 254 edges,

3. the Southwest Airlines airport network (WN) Lordan et al. (2016) with
91 nodes and 580 edges, and

4. the co-authorships network built in Newman (2006), with 379 nodes
and 914 edges.

In the cases where the original graph was not connected, the robustness of
their LCC has been studied. For those graphs, the reported numbers of
nodes and edges already correspond to this LCC. The corresponding results
can be seen in Figures 2, 3, 4 and 5, respectively.

Last, the simulated network (with 90 nodes and 136 edges) has been
generated adding randomly 1 and 2 edges in each time step according to the
Barabasi-Albert model (Barabási, 1999) with γ = 0.2. Figure 6 shows the
robustness results for the modeled (BA) network.

The results obtained on the Dolphins network show that, although the
greedy algorithm based on the betweenness of the nodes is much more accu-
rate than those based on the other criteria, there is still room for improve-
ment, especially for central K values, where the smallest LCC sizes are still
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Figure 2: Exact and estimated robustness for the Dolphins network.

overestimated. These differences are quite relevant, given the small size of
the graph.

Les Miserables network and the WN network –which was already found
to be really robust in Lordan et al. (2016)– yield close results for different
measures. The same thing seems to happen with the optimal results that
are not far from the adaptive ones (see 3 and 4). However, if we look at
the BA network (see 6), we can see that the results given by the adaptive
strategies differ a lot from the optimal result, giving the wrong impression
that the network is more robust than actually is. These large differences
illustrate the need for an exact procedure for finding the optimal solutions.

We can observe now that in the case of these three networks, the greedy
solution based on the node betweenness was quite accurate for much values
of K, although in all cases there are K values where even this method
(which, in general, outperforms the other two) overestimates the network
robustness. Note that the use of the valid inequality from (9) was quite
helpful in these cases thanks to the quality of the upper bound provided by
the greedy methods.

Note also that we were able to compute the exact robustness of the co-
authorships network, which is much larger than the other ones (379 nodes).
This was attained, to a large extent, thanks to its particular structure, that
allows to take advantage of Proposition 1.

Lastly, we want to analyze the accuracy of the greedy methodologies; i.e.
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Figure 3: Exact and estimated robustness for the network Les Miserables.
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Figure 4: Exact and estimated robustness for the SW network.
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Figure 5: Exact and estimated robustness for the co-authorships network.
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Figure 6: Exact and estimated robustness for the BA network.
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we want to have a global comparison of the solutions they provide with the
optimal solution. To this end, we will adapt the unique robustness measure
defined in (Schneider et al., 2011). This measure requires to disconnect all
nodes of the network. Since we want to analyze the robustness only to a
given LCC size Lmin, we redefine the unique robustness measure as:

R =
1

|N |

|S1(Lmin)|∑
k=1

L∗k
|N |

(14)

where |S1(Lmin)| is the minimum number of nodes that need to be inter-
dicted to obtain a LCC of size Lmin, and L∗k/|N | represents the fraction of
nodes in the LCC after removing k nodes. Using the normalization factor
1/|N | ensures that we can compare the robustness of different sized net-
works. As we want to compare the accuracy of different attacks with the
optimal one, we define the accuracy of a method as:

accmeth = 1− Rmeth −Ropt

Rmax −Ropt
(15)

where Rmeth and Ropt are the R estimate given by the analyzed method
and the optimal R value, respectively. Rmax is the upper bound on R
associated with having a complete graph (for every disconnected node the
size of the LCC decreases by exactly one). 1 shows the accuracy of the
different methods on the five analyzed networks. Here we can see that, as

BA SW Dolphins Miser. Co-auth.

Betw. 0.773 0.906 0.897 0.967 0.891
Damage 0.693 0.765 0.538 0.906 0.669
Degree 0.751 0.870 0.515 0.907 0.084

Table 1: Accuracy of the greedy methods on the five studied networks

already suggested by the above figures, among the tested greedy methods,
the one based on the betweenness is the most effective one. Greedy removals
based on damage and degree show different performances depending on the
network, although damage gives us valuable information (usually giving the
optimal result further from the first node disconnection) in the removal of
small numbers of nodes, as shown in Figures 2-6. Note also that, despite
the quality of the betweenness-greedy approach, it still provides rather poor
accuracy values for some of the networks.

No simple network characteristic such as density, average degree, aver-
age betweenness, etc. yielded a significant correlation with the accuracy of
any of the greedy methods. To further illustrate this fact, we generated
four more networks according to the Barabasi-Albert model with the same
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parameter setting as for the BA network used above (BA2, . . . ,BA5). The
number of edges of the obtained networks ranges between 121 and 139. As
before, we applied the exact and the sequential methods to these four new
networks. The sequential method accuracies for these networks are given in
Table 2. This table shows that the accuracy of the sequential methods has

BA BA2 BA3 BA4 BA5

Betw. 0.773 0.826 0.894 0.946 0.968
Damage 0.693 0.732 0.688 0.827 0.806
Degree 0.751 0.680 0.686 0.841 0.816

Table 2: Accuracy of the greedy methods on five BA networks

a high variability even if the considered graphs have been generated with
very similar structures. Therefore, we believe that there is no natural graph
measure that can be used to predict the accuracy of greedy methods and
decide when it is convenient to use the exact method instead.

A factor that is clearly related with this accuracy is the relationship
among the sets of critical nodes of different sizes. By construction, each of
the sets obtained with a greedy method contains all the sets of smaller size,
which does not necessarily happen with the optimal solutions. Indeed, if this
was the case, the sequence of sets provided by the damage-based method
would be optimal. Although being relevant, these differences between suc-
cessive optimal sets of critical nodes could neither explain completely the
different accuracies obtained for the different graphs. In any case, these
differences cannot be used as a predictive tool to avoid applying the exact
method when the sequential ones are accurate enough.

4 Conclusions

In this work we have presented a general methodology that allows comput-
ing the exact robustness of a graph and tested it on five graphs of different
dimensions and with different structures. In the computational experiments,
we also compared the exact robustness with the estimates obtained by some
commonly used greedy adaptive methods based on alternative node charac-
teristics (betweenness, damage, and degree). The results obtained on these
graphs allow to draw the following conclusions.

On the one hand, despite some previous works exist concerning the op-
timal detection of critical nodes of a graph, this is the first time that the
optimal robustness of networks is computed in the literature. This has al-
lowed us to evaluate to what extent the adaptive methods used so far can
overestimate the robustness of networks, and provides researchers with a
tool to evaluate the effectiveness of new heuristics for this problem.
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On the other hand, it is straightforward that the damage criterion pro-
vides the optimal solution when one single node is to be interdicted. How-
ever, our results show that, in practice, it also provides the optimal solutions
to problems P2(K) for small values of K other than one. Since for larger
K values the greedy solutions obtained with the betweenness criterion are
the best among the greedy ones, in situations where the exact robustness
computation is not affordable, it becomes advisable to use methods that
combine both, damage and betweenness criteria.
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