144 research outputs found

    2D Iterative MAP Detection: Principles and Applications in Image Restoration

    Get PDF
    The paper provides a theoretical framework for the two-dimensional iterative maximum a posteriori detection. This generalization is based on the concept of detection algorithms BCJR and SOVA, i.e., the classical (one-dimensional) iterative detectors used in telecommunication applications. We generalize the one-dimensional detection problem considering the spatial ISI kernel as a two-dimensional finite state machine (2D FSM) representing a network of the spatially concatenated elements. The cellular structure topology defines the design of the 2D Iterative decoding network, where each cell is a general combination-marginalization statistical element (SISO module) exchanging discrete probability density functions (information metrics) with neighboring cells. In this paper, we statistically analyse the performance of various topologies with respect to their application in the field of image restoration. The iterative detection algorithm was applied on the task of binarization of images taken from a CCD camera. The reconstruction includes suppression of the defocus caused by the lens, CCD sensor noise suppression and interpolation (demosaicing). The simulations prove that the algorithm provides satisfactory results even in the case of an input image that is under-sampled due to the Bayer mask

    Digital processing of signals in the presence of inter-symbol interference and additive noise

    Get PDF
    Imperial Users onl

    On Asynchronous Communication Systems: Capacity Bounds and Relaying Schemes

    Get PDF
    abstract: Practical communication systems are subject to errors due to imperfect time alignment among the communicating nodes. Timing errors can occur in different forms depending on the underlying communication scenario. This doctoral study considers two different classes of asynchronous systems; point-to-point (P2P) communication systems with synchronization errors, and asynchronous cooperative systems. In particular, the focus is on an information theoretic analysis for P2P systems with synchronization errors and developing new signaling solutions for several asynchronous cooperative communication systems. The first part of the dissertation presents several bounds on the capacity of the P2P systems with synchronization errors. First, binary insertion and deletion channels are considered where lower bounds on the mutual information between the input and output sequences are computed for independent uniformly distributed (i.u.d.) inputs. Then, a channel suffering from both synchronization errors and additive noise is considered as a serial concatenation of a synchronization error-only channel and an additive noise channel. It is proved that the capacity of the original channel is lower bounded in terms of the synchronization error-only channel capacity and the parameters of both channels. On a different front, to better characterize the deletion channel capacity, the capacity of three independent deletion channels with different deletion probabilities are related through an inequality resulting in the tightest upper bound on the deletion channel capacity for deletion probabilities larger than 0.65. Furthermore, the first non-trivial upper bound on the 2K-ary input deletion channel capacity is provided by relating the 2K-ary input deletion channel capacity with the binary deletion channel capacity through an inequality. The second part of the dissertation develops two new relaying schemes to alleviate asynchronism issues in cooperative communications. The first one is a single carrier (SC)-based scheme providing a spectrally efficient Alamouti code structure at the receiver under flat fading channel conditions by reducing the overhead needed to overcome the asynchronism and obtain spatial diversity. The second one is an orthogonal frequency division multiplexing (OFDM)-based approach useful for asynchronous cooperative systems experiencing excessive relative delays among the relays under frequency-selective channel conditions to achieve a delay diversity structure at the receiver and extract spatial diversity.Dissertation/ThesisPh.D. Electrical Engineering 201

    On distributed coding, quantization of channel measurements and faster-than-Nyquist signaling

    Get PDF
    This dissertation considers three different aspects of modern digital communication systems and is therefore divided in three parts. The first part is distributed coding. This part deals with source and source- channel code design issues for digital communication systems with many transmitters and one receiver or with one transmitter and one receiver but with side information at the receiver, which is not available at the transmitter. Such problems are attracting attention lately, as they constitute a way of extending the classical point-to-point communication theory to networks. In this first part of this dissertation, novel source and source-channel codes are designed by converting each of the considered distributed coding problems into an equivalent classical channel coding or classical source-channel coding problem. The proposed schemes come very close to the theoretical limits and thus, are able to exhibit some of the gains predicted by network information theory. In the other two parts of this dissertation classical point-to-point digital com- munication systems are considered. The second part is quantization of coded chan- nel measurements at the receiver. Quantization is a way to limit the accuracy of continuous-valued measurements so that they can be processed in the digital domain. Depending on the desired type of processing of the quantized data, different quantizer design criteria should be used. In this second part of this dissertation, the quantized received values from the channel are processed by the receiver, which tries to recover the transmitted information. An exhaustive comparison of several quantization cri- teria for this case are studied providing illuminating insight for this quantizer design problem. The third part of this dissertation is faster-than-Nyquist signaling. The Nyquist rate in classical point-to-point bandwidth-limited digital communication systems is considered as the maximum transmission rate or signaling rate and is equal to twice the bandwidth of the channel. In this last part of the dissertation, we question this Nyquist rate limitation by transmitting at higher signaling rates through the same bandwidth. By mitigating the incurred interference due to the faster-than-Nyquist rates, gains over Nyquist rate systems are obtained

    Direct-form adaptive equalization for underwater acoustic communication

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2012Adaptive equalization is an important aspect of communication systems in various environments. It is particularly important in underwater acoustic communication systems, as the channel has a long delay spread and is subject to the effects of time- varying multipath fading and Doppler spreading. The design of the adaptation algorithm has a profound influence on the performance of the system. In this thesis, we explore this aspect of the system. The emphasis of the work presented is on applying concepts from inference and decision theory and information theory to provide an approach to deriving and analyzing adaptation algorithms. Limited work has been done so far on rigorously devising adaptation algorithms to suit a particular situation, and the aim of this thesis is to concretize such efforts and possibly to provide a mathematical basis for expanding it to other applications. We derive an algorithm for the adaptation of the coefficients of an equalizer when the receiver has limited or no information about the transmitted symbols, which we term the Soft-Decision Directed Recursive Least Squares algorithm. We will demonstrate connections between the Expectation-Maximization (EM) algorithm and the Recursive Least Squares algorithm, and show how to derive a computationally efficient, purely recursive algorithm from the optimal EM algorithm. Then, we use our understanding of Markov processes to analyze the performance of the RLS algorithm in hard-decision directed mode, as well as of the Soft-Decision Directed RLS algorithm. We demonstrate scenarios in which the adaptation procedures fail catastrophically, and discuss why this happens. The lessons from the analysis guide us on the choice of models for the adaptation procedure. We then demonstrate how to use the algorithm derived in a practical system for underwater communication using turbo equalization. As the algorithm naturally incorporates soft information into the adaptation process, it becomes easy to fit it into a turbo equalization framework. We thus provide an instance of how to use the information of a turbo equalizer in an adaptation procedure, which has not been very well explored in the past. Experimental data is used to prove the value of the algorithm in a practical context.Support from the agencies that funded this research- the Academic Programs Office at WHOI and the Office of Naval Research (through ONR Grant #N00014-07-10738 and #N00014-10-10259)

    Modem design for digital satellite communications

    Get PDF
    The thesis is concerned with the design of a phase-shift keying system for a digital modem, operating over a satellite link. Computer simulation tests and theoretical analyses are used to assess the proposed design. The optimum design of both transmitter and receiver filters for the system to be used in the modem are discussed. Sinusoidal roll-off spectrum with different roll-off factor and optimum truncation lengths of the sample impulse response are designed for the proposed scheme to approximate to the theoretical ideal. It has used an EF bandpass filter to band limit the modulated signal, which forms part of the satellite channel modelling. The high power amplifier (HPA) at the earth station has been used in the satellite channel modelling due to its effect in introducing nonlinear AMAM and AM-PM conversion effects and distortion on the transmitted signal from the earth station. The satellite transponder is assumed to be operating in a linear mode. Different phase-shift keying signals such as differentially encoded quaternary phase-shift keying (DEQPSK), offset quaternary phase-shift keying (OQPSK) and convolutionally encoded 8PSK (CE8PSK) signals are analysed and discussed in the thesis, when the high power amplifier (HPA) at the earth station is operating in a nonlinear mode. Convolutional encoding is discussed when applied to the system used in the modem, and a Viterbi -algorithm decoder at the receiver has been used, for CE8PSK signals for a nonlinear satellite channel. A method of feed-forward synchronisation scheme is designed for carrier recovery in CE8PSK receiver. The thesis describes a method of baseband linearizing the baseband signal in order to reduce the nonlinear effects caused by the HPA at the earth station. The scheme which compensates for the nonlinear effects of the HPA by predistorting the baseband signal prior to modulation as opposed to correcting the distortion after modulation, thus reducing the effects of nonlinear distortion introduced by the HPA. The results of the improvement are presented. The advanced technology of digital signal processors (DSPs) has been used in the implementation of the demodulation and digital filtering parts of the modem replacing large parts of conventional circuits. The Viterbi-algorithm decoder for CE8PSK signals has been implemented using a digital signal processor chip, giving excellent performance and is a cost effective and easy way for future developments and any modifications, The results showed that, by using the various studied techniques, as well as the implementation of digital signal processor chip in parts of the modem, a potentially more cost effective modem can be obtained

    Efficient Importance sampling Simulations for Digital Communication Systems

    Get PDF
    Importance sampling is a- modified. Monte Carlo simulation technique which can dramatically reduce the computational cost of the Monte Carlo method. A complete development is presented for its use in the estimation of bit error rates /V for digital communication systems with small Gaussian noise inputs. Emphasis is on the optimal mean-translation Gaussian simulation density function design and the event simulation method as applied to systems which employ quasi-regular trellis codes. These codes include the convolutional codes and many TCM (Ungerboeck) codes. Euclidean distance information of a code is utilized to facilitate the simulation. Also, the conditional importance sampling technique is presented which can handle many non-Gaussian system inputs. Theories as well as numerical examples are given. In particular, we study the simulations of an uncoded MSK and a trellis-coded 8- PSK transmissions over a general bandlimited nonlinear satellite channel model. Our algorithms are shown to be very efficient at low Pb compared to the ordinary Monte Carlo method. Many techniques we have developed are applicable to other system simulations as building blocks for their particular system configurations and channels

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions
    corecore