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A b stract

The focus of this thesis is the non-linear equalization of channels for digital communi­

cation. Throughout, we assume a baseband PAM2 transmission system for uncoded 

data on a dispersive channel with additive noise. The emphasis is on theoretical 

development and analysis of new equalizer structures for the removal of intersymbol 

interference and the recovery of the transmitted data.

We present a multi-layer non-linear feedforward processor that emulates a deci­

sion feedback equalizer (DFE) on a finite impulse response channel. This feedforward 

emulator has close structural ties with multi-layer perceptron neural networks, but 

is more readily analysed. It derives from a non-adaptive decision feedback equal­

izer through a process of recursive unwrapping followed by truncation. We extend 

the finite-state Markov process techniques for the DFE to analyse this new structure, 

obtaining bounds on the noiseless error probability. We go on to develop training 

sequence adaptation rules using a stochastic gradient descent strategy and verify 

their convergence via numerical simulation.

We generalise conventional decision feedback equalization to block deci­

sion feedback equalization using a block processing channel model combined with a 

fixed-lag maximum a posteriori estimator and decision feedback. We consider vari­

ous realisations of block DFEs, generating single decisions and blocks of decisions, 

and ascertain their performance under simulation. We investigate the extremes of 

performance of the block DFE obtainable by varying the dimension of the block 

processing and the decision device, as well as its behaviour for high signal-to-noise 

ratios. These extremes are: the conventional DFE; the Viterbi decoder; and the 

minimum bit error rate detector. We show how block decision feedback equal-

2Pulse Amplitude Modulated
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ization can be applied to quadrature amplitude modulation signalling on infinite 

impulse response and non-linear channels with coloured noise. We derive minimum 

mean-square error and gradient descent adaptation rules for block DFEs with binary 

signalling on finite impulse response channels.

We provide performance analyses of the non-adaptive two-dimensional block 

DFE operating on low order channels. We give a direct calculation of the primary 

bit error rate. We treat the noiseless propagation of initial decision errors through 

decision feedback—firstly by deriving sufficient conditions on the channel impulse 

response parameters, then by modelling error propagation as a finite-state Markov 

process. The latter approach yields necessary and sufficient conditions on the chan­

nel which guarantee a bounded error recovery time and furthermore allows us to 

classify channels according to the statistics of their noiseless error recovery times. 

We also indicate how to include the effects of noise into the analysis.

Lastly, we derive an enhanced block DFE—the maximum a posteriori deci­

sion feedback detector—which generalises the block DFE through the incorporation 

of error event probabilities in its decision criterion. We show how this strategy re­

lates to classical non-linear detection. We give numerical examples for realisations 

on low order channels, and investigate the decision regions arising from the new 

detection criterion.
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C h ap ter  1

In trod u ction

1.1 T he Equalization Problem

1.1.1 Lead In

The equalization problem arises in the area of digital communication. It is desired 

to transmit a stream of discrete-time digital information through some physical 

medium, called the channel, to a receiver. Physical channels, having finite band­

width, tend to introduce distortion of the transmitted data which manifests itself 

in the time domain as a spreading of the energy or duration of the individual data 

pulses. The continuous received waveform is sampled at the receiver, generating a 

train of pulses. For practical sampling rates, each received pulse contains contribu­

tions from more than one transmitted pulse. This dispersion of information is known 

as intersymbol interference (ISI). At high data rates or on highly dispersive channels 

ISI becomes the major factor hindering the reliable recovery of the transmitted sig­

nals. The part of the receiver which is responsible for the removal or mitigation of 

the effects of ISI is called an equalizer. The compensation process itself is referred 

to as equalization.

In many areas of high speed digital communication on band-limited channels, 

such as data modems for telephone lines, an equalizer is indispensable. Without 

equalization, the ISI introduced by the channel can significantly degrade system 

performance resulting in high error rates. There are essentially two ways of com­

bating theses effects. The first is to use some form of coding prior to transmission

3
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Fignre 1-1: Communication system model.

followed by decoding at the receiver—although coding does not remove ISI, it in­

troduces redundancy in the transmission so that more errors can be tolerated. The 

second is to develop new and better equalizer structures. In achieving transmis­

sion rates that approach the theoretical limits [1], both these approaches need to be 

contemplated. Practical developments, such as very high speed digital signal pro­

cessing chips, mean that more and more numerically intensive processing algorithms 

can now be implemented, e.g., trellis-coded modulation schemes [2]. We refer the 

reader to [3] for a review of coded modulation techniques.

While channel coding (as opposed to source coding) seeks to increase the rate 

at which information can be sent with a given reliability, equalization corrects the 

distortion introduced during transmission and allows still higher data rates. We 

mention that the two functions of decoding and equalization can often be combined. 

This is true in the case of trellis-coding and Viterbi decoding [4]. The same may 

be true of block-coding and block decision feedback equalization (chapter 3). We 

will, however, only be concerned with the design of equalizers for uncoded data, the 

incorporation of coding being a possible subject for future research.

In the following section we present the basic pulse amplitude modulation system 

model underlying the development of the various equalizers which form the basis 

for chapters 2-5. This model is a commonly adopted starting point for problems in 

channel equalization. We also review conventional equalization strategies which are 

important in understanding the developments that we will be describing.

4
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Figure 1-3: Baseband equivalent model.

1.1.2 Digital  C om m u nica t ion  S y s tem  M o d e l

We restrict the present discussion to pulse amplitude modulation [5] (PAM) over a 

linear channel. The system block diagram is given in Fig.1-1. The input symbols 

or data {u;t) take values in a discrete set (for binary transmission the symbol set is 

{ — 1, +1}), and are indexed in time by the subscript k (representing the kth sampling 

instant). The data are passed through a transmitter filter and modulated by a carrier 

signal before input to the channel (which is often assumed to be linear). Fig.1-2 

shows the sampled impulse response of a representative communications channel 

and some associated terminology. Random fluctuations in the channel, modelled 

as additive noise, also corrupt the signal. The received signal (z in Fig.1-1) is 

demodulated (with correct carrier phase and frequency, i.e., coherently), fdtered 

and then sampled (with correct timing phase) at the symbol rate to produce the 

signal 3/jt, which, for equalization purposes, we will refer to as the received signal. 

This conversion from continuous to discrete time loses no information as long as 

we use a matched filter [3] before the sampler. The equalizer estimates the data 

sequence from the received signals and these estimates û  are called decisions. The 

process resulting in ŷ  can equivalently and more conveniently be represented in the 

baseband equivalent form shown in Fig.1-3.

The combined effects of filtering and sampling in Fig.1-1 have been lumped into
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one filter which we may view as the effective channel. The received signal can be 

expressed as the convolution of the channel impulse response (parametrised by /i,, 

i = 0 , . . L) and the input symbol sequence, with additive noise rik viz:

( l . i . i )

— ho^k T 'y  ̂h{U)c—i T njt,
;= i

in which the channel order L may be infinite. We refer to the coefficient ho as 

the cursor, which, without loss of generality, we can (and usually do) take to be 

unity. In writing (1.1.1) in this form, we are assuming implicitly that there is no 

transmission delay (since yk depends on u^), and, in treating ho as the cursor (which 

is generally the dominant coefficient), we are assuming that some linear filtering in 

the receiver has cancelled the precursor ISI. The middle term in the last equation 

therefore represents the remaining (postcursor) ISI. The vector of the L most recent 

past channel inputs

is called the state. (We can also define a channel state in the HR case.) This 

idealized model is a commonly adopted starting point [6] for problems in channel 

equalization of uncoded pulse amplitude modulated data.

Further assumptions concern the statistics of the input and noise sequences (e.g., 

correlated or independent) and the type of channel (e.gr., linear or non-linear). In 

the following chapters we will mostly consider the case in which:

1. The input to the channel is a sequence of independent and identically dis­

tributed (iid) multi-level random variables.

2. The channel is a linear finite impulse response filter.

3. The noise is a sequence of independent zero-mean Gaussian random variables.

The independence of the data teamed with assumption 2 guarantees that the base­

band system, from the point of view of the receiver, can be modelled as a finite-state 

machine with noisy observations, or a finite-state Markov process [7, 8]. That is, we

*k =  [Uk-l,  * • • ,  Uk-LY ( 1.1.2)
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can characterise the system in terms of its initial state and the transition probabil­

ities between its various states.

For simplicity of presentation, we will mainly be concerned with binary signalling, 

although extensions to Af-ary signalling and quadrature amplitude modulation will 

be covered in chapter 3. There, we will also deal with the equalization of infinite 

impulse response and non-linear channels. We do not consider how to modify the 

equalizer structures we develop for coded data.

1.1.3 Equalizer D esign  and A nalysis

The equalization problem now reduces to the design of a system that reliably recovers 

the data {?u} from the received signals {yk}- In practice, the following points need 

to be considered:

1. Lack of knowledge and time variation of the channel parameters.

2. Computational complexity and decoding delay of the equalizer.

3. The signal-to-noise ratio (SNR).

4. The required bit error rate (BER).

We make some general remarks concerning the above aspects. The channel is in gen­

eral unknown by the receiver and may change with time due to fading (varying signal 

strength). It is therefore desirable for the equalizer to adapt its internal model of the 

channel to track the unknown physical channel and cope with any (slow) time vari­

ation. An equalizer which adjusts its parameters automatically is called an adaptive 

equalizer. Adaptive equalization divides into two distinct approaches. In the first, 

an initial training sequence generated at the transmitter and known to the receiver 

is used to to perform the adjustment. The second, called blind adaptation, uses 

only signals available at the receiver. Blind adaptation is preferred in multi-receiver 

systems where it is impractical to retransmit training sequences. Blind adaptive 

schemes often adjust the equalizer taps via a stochastic gradient descent algorithm, 

derived from constraints imposed by the signal alphabet (modulus restoral [9], for 

instance). The signal-to-noise ratio is determined by the transmitter power (subject 

to fading and other disturbances). The processing delay of the equalizer affects the
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maximum bit rate that can be transmitted. Broadly speaking, the lower the required 

bit error rate, the higher the complexity/delay of the equalizer.

The bulk of this thesis focuses on non-adaptive aspects of equalizer systems (with 

the exception of parts of chapters 2 and 3). Although, in practice, the adaptation 

of an equalizer is of crucial importance to its operation, the importance of under­

standing the underlying mechanisms which cause errors (incorrect decisions) in the 

tuned (correctly adapted) device cannot be overemphasized. Our main concern is 

the non-adaptive performance of non-linear equalizers and we give only a brief ac­

count of adaptation in the conventional equalizers which we review in the following 

sections (the reader is referred to [6] for a comprehensive coverage).

The term non-linear equalizer is understood to mean a system for the recovery 

of transmitted data whose operation, in the non-adaptive mode, cannot be repre­

sented by a linear filter. The non-adaptive performance of a non-linear equalizer, as 

measured by its bit error rate (BER), is related to the criterion (subject to practical 

constraints) used in its design. Some examples of design criteria are: maximum 

likelihood sequence estimation, minimum bit error rate detection, minimum mean 

square error and zero-forcing criteria. Two major practical constraints in the real­

isation of an equalizer are the computational complexity and the inherent delay in 

obtaining data estimates.

In most (but not all) non-linear equalizers, there is some kind of feedback of 

past decisions. The mechanism for this may be either direct, as in a decision feed­

back equalizer (DEE) [5, 6], or indirect, as in reduced-state sequence estimators 

(RSSEs) [10, 11, 12]. The presence of a feedback mechanism complicates the per­

formance analysis. The problem of computing the output error probability, Pr(uk /  

Ufc), usually a relatively straightforward calculation for a linear equalizer or feedfor­

ward equalizer, is made more arduous by the dependence of present outputs on 

past outputs via feedback (recursion). Nonetheless, we can distinguish two partial 

solutions to the problem of non-linear equalizer performance analysis:

1. The conventional (and usually more tractable) analysis of primary (noise- 

induced) errors in the system, assuming correct past decisions.
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2. The analysis of errors produced by initial error states and propagated subse­

quently, in the absence of noise.

A complete understanding of error performance requires both of the above analyses. 

Many authors consider analysis 1 mandatory but 2 is often left out (for examples 

of 1, see [13, 14]). When there is feedback or use of past decisions, initial errors 

can produce further errors, enhancing the bit error rate due to noise alone, so that 

analysis 2 becomes a study of error propagation. One of the themes in our work 

is a study of error propagation in a generalised decision feedback equalizer called a 

block decision feedback equalizer [15]. The block DFE (in certain cases) is amenable 

to analyses of the kind applied to the conventional DFE [16, 17, 18]. The theory of 

finite-state Markov processs is an invaluable tool for modelling such systems.

1.2 Established Techniques

With the intention of setting the scene for the new techniques that we have de­

veloped, we now review three basic equalization strategies in increasing order of 

complexity and performance. These are the linear equalizer (LE), the decision feed­

back equalizer (DFE) and the maximum likelihood sequence estimator (MLSE) [19]. 

We also examine the reduced-state sequence estimator (RSSE) [11] which has close 

ties with the MLSE and the DFE. An understanding of the workings of these sys­

tems will be important in what follows. Certain detailed aspects of MLSEs and 

RSSEs have been relegated to appendix A.

1.2.1 Linear Equalization

The adaptive linear transversal equalizer (Fig. 1-4) consists of a tapped delay line 

whose taps are adjusted to give a response approximating the inverse of the sampled 

channel transfer function. (Of course, disregarding noise, the exact equalization of a 

FIR channel would generally require a LE of infinite length.) In this configuration, 

the LE acts to minimise intersymbol interference, possibly enhancing the noise, and 

is called a zero-forcing equalizer (ZFE). The LE can also be adapted to minimise 

an ISI plus noise criterion yielding a linear mean-square equalizer (LMSE). The
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delay elementsampled received s i gnals

(k) — 0  - -(k) —  0

data e s t im at e s

Figure 1-4: Adaptive linear transversal equalizer.

channel

feedback filter

Figure 1-5: Non-adaptive decision feedback equalizer.

ZFE is typically less robust than the LMSE and can only be used on eye-open1 

ISI channels [20]. A decision device—a hard limiter in the case of binary signals, 

or vector quantizer for M-ary signalling—can be added at the output of the linear 

equalizer to improve its noise immunity. This configuration is sometimes called a 

decision directed equalizer (DDE), although this terminology is more often reserved 

for the description of equalizer adaptation. Blind adaptation of DDE’s has been 

studied in [21], and [0] provides a general reference on training sequence adaptation 

of linear equalizers.

1.2.2 Decision Feedback Equalization

For more severe channel distortion (e.y., non-minimum phase channels whose inverse 

is unstable) a decision feedback equalizer (Fig. 1-5) may be required. The DFE is 

a non-linear equalizer with a linear feedforward filter designed to handle precursor

'Channels whose sampled output produces an open eye diagram.
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IST, and linear feedback filter and non-linear decision device handling postcursor ISI 

and noise. For argument's sake, we assume the feedforward part is lumped with the 

channel response and consider only the operation of the feedback part (treating the 

dominant impulse response parameter ho as the cursor). Ideally the DFE adapts or 

tunes its feedback taps rf, to cancel the intersymbol interference (d, = /it, uk~i = 

Uk-i, i = 1 ,.. . ,L )  and passes the ISI-free signal (hoUk + nk) to a quantizer (sheer) 

which makes a decision on the transmitted signal. In symbols this reads

L L
ük = sgn(/i0ujt + hiuk-i ~ X] d'Uk-i + nk). (1.2.1)

t = i  t = i
v  . ___  ^

Vk

The decision feedback equalizer does not utilise the energy contribution from the 

intersymbol interference in decoding each symbol, it merely tries to cancel it. If 

the DFE makes an initial incorrect decision uk ^  uk (be it due to noise, incorrect 

initialization or mistiming) it may fail to cancel the ISI and this occasionally leads 

to bursts of errors. The phenomenon of an initial error causing subsequent errors 

is known as error propagation. A more detailed description of the operation of the 

decision feedback equalizer, covering training sequence adaptation, is set out in [22]. 

Error propagation in DFEs has been analysed in [23, 24] and blind adaptation in 

[25].

1.2 .3  M axim u m  L ikelihood  Sequence E stim ation

The third technique—maximum likelihood sequence estimation (MLSE)—is per­

ceived as the optimal system for equalization. MLSEs can give performance ap­

proaching that of ISI-free transmission [19], and substantial bit error rate improve­

ments over the DFE are obtainable (e.g., 6dB for simulations on a second order 

partial response channel). We discuss the technique in some detail as it relates 

to work described in chapter 3. The MLSE is a sequence estimator, as opposed 

to the LE and DFE which output one decision per sample and can be seen as 

symbol-by-symbol detectors. Other optimal non-linear detectors have been devised 

[26, 27, 28, 29] which maximise various probability criteria, but these do not seem to 

have been adopted as the basis for practical systems. A summary of some of these
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techniques is given in section 3.4.3.

Using the notation introduced in section 1.1.2, the MLSE operates on finite im­

pulse response channels and determines the length K  state sequence {x*.} (or equiv­

alently the input sequence {u*.}) which maximises the conditional probability density 

P( {2/A:}I{ } ) -  A closely related problem, that of maximum a posteriori (MAP) es­

timation, seeks to maximise the a posteriori probability Pr({uk}\{yk})- The two 

criteria are equivalent when the input sequence is iid and equiprobable [26, 15] 

and can be interpreted as finding the input sequence which best represents the 

measurement sequence in a mean square sense. The MAP criterion minimises the 

probability of incorrectly decoding the whole state sequence. In chapters 3 and 5, 

we consider non-linear equalizers based on fixed-delay MAP criteria incorporating 

decision feedback.

For binary inputs to a finite impulse response channel of order L there are 2L 

possible states (since each component is binary and the state consists of L of these). 

The MLSE searches over all admissible state sequences and selects the one which 

minimises a sum-of-squares cost function—arising from the assumption of white 

Gaussian noise. The delay involved in this brute force computation would be unac­

ceptable for long channels and many authors have considered various related criteria 

which result in simpler (suboptimal) non-linear detectors [27, 30, 31]. However, the 

landmark work on the MLSE problem was achieved by Forney [19] with an ap­

plication of the Viterbi algorithm (VA) [32]—a forward-time version of dynamic 

programming [33]. This recursive solution of the optimization problem, Viterbi de­

coding, makes the MLSE computationally practicable. However, since its complexity 

grows exponentially with the channel length, the MLSE can only be used on chan­

nels having a short impulse response. Appendix A.l contains a summary of the 

Viterbi algorithm.

1.2.4 R ev iew  of O ther T echniques

As pointed out in section 1.2.3, there exists a large discrepancy in performance and 

in complexity between the decision feedback equalizer and the maximum likeli­

hood sequence estimator. Seeking to bridge this gap, many attempts have been 

made to design hybrid equalizers using the three basic equalizers as components
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[12, 34, 35, 36, 37, 38, 39]. These composite systems try to take advantage of the 

simplicity of the LE and/or DFE to preprocess and remove a portion of the inter- 

symbol interference from the received signal, thus presenting an effectively shorter 

channel and reducing the complexity of the Viterbi decoder required for the remain­

ing task. Although these hybrid equalizers can work well, their success is limited in 

general by the performance of the LE or DFE they incorporate.

Since the introduction of the Viterbi decoder, an equalizer with performance akin 

to a MLSE, but needing substantially less computation was the object of intensive re­

search. By the mid 1980's, systematic attempts were being made at developing such 

equalizers, or moreover classes of equalizers, with the attributes of relative simplic­

ity and performance ranging between the extremes of the DFE and MLSE. We now 

mention some of these. One technique is based on reduced complexity Viterbi de­

coding teamed with internal decision feedback. This was introduced independently 

in [10], under the name delayed decision feedback sequence estimation (DFSE) and 

by [11], under the name reduced-state sequence estimation (RSSE), who built upon 

the preceding work of [10]. Another technique, called the A/-algorithm, simply trun­

cates the search used in the Viterbi decoder. A large part of our work relates to 

the development and evaluation of a device (the block decision feedback equalizer) 

which also satisfies these requirements. We defer its discussion until chapter 3. A 

description of delayed decision feedback sequence estimation and reduced-state se­

quence estimation is available in appendix A.2. Both schemes reduce the dimension 

of the Viterbi trellis in a natural, structured way, retaining the essential features of 

the Viterbi decoder. In [10] the channel may be recursive (HR), whereas in [11] it 

is assumed to have finite impulse response.

1.3 O utline of T hesis

1.3.1 Sum m ary and C ontrib ution s

We now proceed with a chapter-by-chapter description of the thesis, pointing out 

the major contributions.

In chapter 2 we study a non-linear feedforward processor with hard limiting 

nodes, akin to an multi-layer perceptron neural network [40] (see Fig.2-4), that
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emulates a decision feedback equalizer. The so-called feedforward emulator (FFE) 

arises through a recursive unwrapping of the DFE, followed by truncation (cutting 

off the feedback path). This unwrapping procedure is analogous to a Markov ex­

pansion [41] of a linear (finite dimensional) HR system. The DFE with feedback is 

replaced by a multilayer feedforward processor and generates data estimates with 

delay corresponding to the number of layers.

In section 2.3 we obtain an upper bound on the noiseless error probability (due 

to non-zero initial conditions) by generalising the existing theory for the DFE [23]. 

The method entails modelling exactly the feedforward emulator as a DFE that has 

been initialized at each time instant in a non-standard error state. Then, modelling 

the DFE by a finite-state Markov process writh a large number of states, aggregation 

is performed by choosing a worst case channel (specialised to the FFE case) and an 

exponential upper bound for the FFE’s error probability is obtained in terms of the 

number of layers. The bound is realized by worst case channels but seems to be 

conservative for most practical (decaying) channels. The importance of this work 

is that it brings hard analysis to bear on the non-adaptive performance of a neural 

network-like structure which may have more general application. The norm in most 

w'ork on neural networks is the recognition that a multi-layer perceptron neural 

network can perform a certain task adequately (i.e., non-linear mapping), but the 

justification often rests solely on the experimental or simulated performance.

The structure of the feedforward emulator is constrained by the requirement 

that it should act as an equalizer. This manifests itself in the number of nodes per 

layer, the connectivity between nodes and the interdependence of the weights. It 

turns out that, for a FFE with A layers, only A -  1 of the ^A(A + 1) weights are 

independent (as the matrix of weights is Toeplitz). Thus only A — 1 quantities need 

be adapted during training (or tracking). Using back propagation ideas [40, 42], 

recursive gradient descent algorithms have been developed and tested for a FFE 

consisting of (1) sign nodes and (2) sigmoid nodes.

In chapter 3 we develop a family of equalizers, called block decision feedback equal­

izers, whose performance/complexity tradeoff can be varied parametrically to bridge 

the gap separating the DFE and the maximum a posteriori (MAP) detector (or 

equivalently, in the case of iid equiprobable symbols, the maximum likelihood se-
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quence estimator). In some respects our contribution, the block decision feed­

back equalizer, is complementary to reduced-state sequence estimation (see appendix 

A.2). Whereas the latter approach is based on reducing the complexity of an MLSE 

using the idea of a subset state, our approach seeks to improve the performance of 

the DFE by generalizing it to the vector case. In a manner of speaking, the RSSE is 

a top-down approach (the MLSE being perceived as the “top”) and the block DFE 

a bottom-up approach. Precursors to the block DFE were studied in [13, 14, 43, 44], 

although the block DFE was developed independently.

The block DFE (Fig.3-1) is a natural generalization of the conventional DFE. It 

is based on a block processing [45, 46, 47] channel model connected in feedback with 

a vector quantizer [15] operating under a maximum a posteriori criterion. The 

block DFE, or (p, </)-DFE, is indexed by two parameters: the block length p and 

the number of decisions q produced at each (block) iteration. The block length is 

independent of the channel length. It can be made to replicate the DFE when p = 

q = 1, the MLSE in the limit as p = q —* oo and the maximum a posteriori symbol- 

by-symbol detector [30, 31] when q = 1 , p —* oo. The best performance (for fixed p) 

is achieved in the latter mode with q = 1, p large, where the (p, 1)-DFE functions 

as a minimum bit error rate detector. We investigate these connections in section 

3.3.5

Intuitively, the block DFE acts as a non-linear fixed-lag smoother [48] with lag 

p. A block of channel outputs yk, .. .,pjt+p- i  is used to estimate a block of channel 

inputs Mfc,. . . , ttjt+g-i- The computational load increases exponentially with p, but 

fortunately even small values of p result in greatly improved performance over the 

DFE. Despite the fact that the (p, 1)-DFE has superior performance to the (p,p)- 

DFE, the latter device may still find useful application in the equalization of block 

codes in which each codeword has a fixed length [49]. The decision criterion for the 

block DFE reduces to a minimum Euclidean distance calculation for high signal- 

to-noise ratios [15]. The use of a minimum distance metric in a block DFE gives 

rise to a device called a high SNR block DFE, which has similar performance, but 

is computationally much simpler. These results, presented in section 3.2, are of 

practical importance for the implementation of block decision feedback equalizers. 

Simulated performance and complexity issues are investigated in section 3.3. Exam-
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pies of two and three-dimensional block DFE realisations and their vector quantizers 

are also given. Some other interesting examples of two-dimensional decision devices 

(and their corresponding decision boundaries) which optimize various criteria (in­

cluding maximum likelihood decision boundaries for non-linear FIR channels) may 

be found in [50, 51, 52]. The block DFE can operate on linear infinite impulse re­

sponse (ARMA) channels and also non-linear channels having a finite-dimensional 

state space realization. Generalization to M-ary signalling, coloured noise and adap­

tation of block DFE parameters are considered in section 3.5.

Block DFE performance analysis forms the substance of chapter 4. All analyses 

of the block decision feedback equalizer so far concentrate on the 2-input (p = 2) 

case. The analysis is complicated by the non-linearity of the decision device and 

its dependence on the channel parameters. The decision boundary is the curve 

separating the different decision regions in the decision device. This boundary is 

curved for a (2,1)-DFE but becomes piecewise linear for high signal-to-noise ratios. 

(The (2,2)-DFE decision boundary is always piecewise linear.) Simple geometrical 

considerations yield an explicit formulae for the decision boundary, and are the 

starting point of performance/stability analyses of the (2,1)-DFE and (2,2)-DFE.

We give a representative example calculation in section 4.3 of the (2,l)-DFE’s 

primary error probability on a first order channel, i.e., the bit error rate assuming 

that there have been no past decision errors. In section 4.4 we derive eye conditions 

for finite error recovery of the (2,1)-DFE on an arbitrary second order channel.

The block DFE is a non-linear equalizer with feedback and therefore can suffer 

from error propagation. In particular, we are interested in describing the class of 

channels on which the block decision feedback equalizer has a finite error recov­

ery time (in the sense that it can recover from an initial error state in a finite time 

regardless of the input sequence). On such channels we say the block DFE is stable 

[16]. Of course, other statistical measures of the error recovery time could be used to 

define stability, but the present definition is more convenient for our purposes. The 

theory of finite-state Markov processs [7, 8] gives necessary and sufficient conditions 

defining the class of stable channels, using the idea of pathological input sequences 

[16, 23]. This classification of second order channels has been carried out for the 

(2,1)-DFE and the (2,2)-DFE in the noiseless case [53] and is presented in section

16



4.5. Example calculations of the mean and variance of error recovery times are also 

presented. These preliminary results show that the block decision feedback equal­

izer is stable on a broader class of channels and is therefore more robust than the 

decision feedback equalizer.

As is common in decision feedback equalization, the block DFE’s criterion uses 

the assumption of correct block ISI cancellation (or channel state estimation) in 

the design phase. In chapter 5 we consider a different criterion, related to fixed- 

delay, symbol-by-symbol MAP detection, which does not rely on this assumption 

and subsequently generalises the block DFE, although it only operates on finite 

impulse response channels. The resulting non-linear equalizer is called a maximum 

a posteriori decision feedback detector [54], and incorporates knowledge of certain 

error probabilities, giving improved performance. The design of the detector is 

covered in chapter 5 in which we also present a recursive procedure for its realization 

(this is necessary since the decision criterion cannot be expressed in closed form). 

We provide simulated performance comparisons for the new detector on first and 

second order channels, showing the improvement in bit error rate over the block 

DFE, and give examples of the decision regions that are thus formed.

Chapter 6 concludes the thesis and contains a discussion of topics for future 

research. In particular, we mention the need for further work regarding simpli­

fied decision devices for, and the incorporation of coding into block decision feed­

back equalizers.
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C hapter 2

Feedforw ard E m u lation  o f th e  

D ecision  Feedback E qualizer

2.1 Introduction and M otivation

The decision feedback equalizer is a simple but effective non-linear equalizer that 

has enjoyed widespread application in digital communication systems [6]. Its op­

eration has been studied by various authors [16, 17, 36, 55] and is reasonably well 

understood. The simplest realisation of a DFE is the non-linear recursive structure 

shown in Fig.1-5. On the other hand, the multi-layer perceptron (MLP) neural net­

work [40], which also has been applied to the equalization problem in [52, 56], is a 

relatively poorly understood system. In this chapter, we consider an intermediate 

structure for equalization, the feedforward emulator (FFE) [57, 58, 59], which derives 

from the DFE and is closely related to the feedforward neural network, and which 

may be analysed in much the same way as the DFE.

The feedforward emulator has a structure akin to a systolic array for parallel 

processing. In the absence of noise, the the emulator can be represented as a stan­

dard MLP neural network [59] with hard-limiting nodes, but it has a non-standard 

structure in general. Unlike MLP neural networks whose weights may be chosen 

freely, the parameters here are constrained so that only some may vary indepen­

dently. If we can identify the communication channel, then we know how to assign 

the weights of the FFE system to make it act as an equalizer. This is an enhance-
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ment of standard MLP neural network equalizer techniques because there is a direct 

link between the weights and the parameters characterising the channel.

The chapter is organised as follows. In section 2.2, we briefly review the non- 

adaptive decision feedback equalizer and detail an unwrapping procedure followed by 

truncation that results in a recursive multilayer processor with hard limiting nodes. 

We obtain the feedforward emulator by disconnecting the feedback of decisions made 

in the distant past. We give some low order illustrations and show how the structure 

generalises to an arbitrary number of layers.

In section 2.3 we re-introduce the finite state Markov process description of the 

tuned noiseless decision feedback equalizer found in [17]. We extend the model to 

embrace both the DFE and the feedforward emulator by enlarging the state space. 

In section 2.3.2 we introduce the idea of a worst case channel, i.e., a FIR channel 

guaranteeing the worst bit error rate performance for any channel of the same order. 

We subsequently apply FSMP theory to upper bound the noiseless error probability 

of the DFE (in section 2.3.3) and then the FFE (in section 2.3.4), obtaining a bound 

in terms of the number of layers for the latter. We present numerical examples for 

the non-adaptive feedforward emulator in section 2.4 and also examine conditions 

on the channel under which the representation is exact (in the sense of producing 

the same sequence of outputs in the absence of noise).

Having established the possibility of representing a DFE by a specific feedforward 

emulator, we consider, in section 2.5, algorithms for FFE adaptation using a training 

sequence—as in supervised learning of neural networks. Because of the FFE’s non­

standard structure, the usual back propagation learning rule [40] is not applicable. 

Instead, we develop two novel training algorithms. The first of these assumes the 

hard limiters are replaced by sigmoid processing elements and implements a gradient 

descent strategy subject to the constraints imposed on the weights. The second 

algorithm, applicable to an FFE with sign nodes, uses a different error measure from 

the more usual sum-of-squares output error. Numerical evaluation of these training 

algorithms are presented, and comparisons with the DFE are made. Section 2.6 

contains concluding remarks and discussion of some open problems.
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2.2 Unwrapping the D ecision Feedback Equalizer

Conventional multi-layer perceptron neural networks, which can be configured to 

act as non-linear equalizers [52], are highly interconnected non-linear systems whose 

analysis is typically very difficult. In contrast to this, we derive a new non-linear feed­

forward processor designed to emulate the well-studied decision feedback equalizer. 

The new structure is more amenable to analysis and it is possible to obtain bounds 

on its performance in the absence of noise—which we assume for simplicity only. We 

therefore consider a non-adaptive binary decision feedback equalizer operating on 

a finite impulse response channel corrupted by additive zero-mean white Gaussian 

noise nk. At the output of the channel, the sampled received signal is

L
Uk — ^  ̂hjU-k—i T H-ky (2.2.1)

t = 0

where {/i,} are the impulse response coefficients and {uk} is a sequence of equiproba- 

ble iidbinary inputs which we cannot measure directly. The DFE (Fig. 1-5) generates 

an estimate of the input signal, based on its own past decisions, given by1

L
uk = sgn(yk -  ^dj(Ar)wjt-j) = f£(yk\  ujt-i, • • •, Ufc-Z,)* (2.2.2)

j=i

The feedback tap gains dj(k) are adapted to cancel the intersymbol interference in­

troduced by the channel. Initially, we will be presenting an analysis of the non- 

adaptive system in which the dj(k) = d3 are constant. We assume, with no loss of 

generality, that /?0 = 1.

We develop a self-similar recursive representation of (2.2.2) by “unwrapping” the 

DFE, and, in so doing, introducing a delay in the computation of the decisions. As 

we mentioned in chapter 1, this procedure is analogous to the Markov expansion of 

an ARMA filter. At the first step we write

L
Uk-l  =  Sgn(t/jfc_i -  ^djUAr-j-l),

^gnfi)  =  1 if x > 0 and — 1 if x < 0
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sgn(w1y 1+w2 y2 +w3 y3 )

Figure 2-1: Processing element or node, 

and substitute for uk-\  in (2.2.2), thus obtaining

L L
uk = sgn(yk -  sgn(yjt_i “  1 ) -  ^ 2 djUk- j )

j= 1 J = 2

= f H  Vi*, V k - (2.2.3) 

At the next step, we eliminate uk - 2  (which appears twice in (2.2.3)) to get

L L
w* = sgn{yk -  (lI sgn(?/jt_i -  sgn{yk_2 ~ ^ rf jW it- i-2 ) -  Y l df i k- i - \ )

J=l J=2
L L

- r /2sgn(i/jt_2  -  ~ Y l dPlk- i )
J=V j=3

— y*3 (2/A*» !//►— 1» 2/A:—2 » Wfc—3 , . . ., Wfc_£,_2 )- (2.2.4)

After A — 1 such steps we obtain a highly nested composition of sign functions 

whose functional form can be written as

Wit =  / a ( 2/it> 2 / i t -1, • • . , » J t - A + r , M f c - A f  • W f c - L - A + l ) .  ( 2 . 2 . 5 )

There are in fact A degrees of nesting in this expression and we can interpret 

these as the layers in a recursive multilayer processor whose external inputs are the 

{j/fc-A+i, . . . ,  j/it}, whose feedback inputs are the {ujt-Ai • • •> w j t -A -L + i}> an d  whose 

output is uk. The processing elements, or nodes, compute the sign of the weighted 

sum of their inputs. Fig.2-1 depicts a typical node.

Intuitively, it is reasonable to expect that the dependence of the output uk on 

the past decisions ?4_A+i-j decreases the larger we make A (at least for A > L).
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Figure 2-2: Three-layer feedforward processor.

This is equivalent to the effect of earlier decisions in a DFE ceasing to influence later 

decisions, given a large enough time delay between the two. We give substance to 

this notion in the following sections.

Supposing, then, that we can ignore decisions made in the distant past, we 

disconnect the feedback implied in (2.2.5) by setting the arguments involving past 

decisions to zero, obtaining

II k — f \ (l/ki Vk — 1 ? • • • > J/A: —A + l i 0» • • • t 0)* (2.2.6)

If our intuition is correct, then with high probability and given a large number of 

layers (A large) we would have uk = uk. It is instructive to visualise (2.2.6) as 

a multilayer feedforward processor with sign nodes. We illustrate in Fig.2-2 the 

corresponding system in the A = 3 case first (setting iik-j = 0, j  > 3 in (2.2.4)).

Before proceeding with the general case embodied by (2.2.6), we make a short 

digression to examine the noiseless feedforward version of (2.2.4) with A = 3, which 

may be expressed as

Uk f'3 {Vki Vk — 1 y Vk—2» 0» • • • » 0) |n*=nfc_i =rifc_2=0 
L L

Sgn{?/jk + hiuk-i -  d2sgn(uk - 2  + JZ /l«'uJt-.-2 )
«=1 1=1

L L
- d \  sgn(Mjfe__i + h{Uk-i-\ -  d x sgn(?u-_2 + ^  /i,wjt-.-2))}-

i = i  » = 1

This is depicted in Fig.2-3 for a channel length L — 2 and arbitrary Hq. Of course,

22



Figure 2-3: Noiseless MLP realisation.

in practice, the input sequence {u*} and the channel parameters are unknown, but 

the purpose of Fig.2-3 is to show how Fig.2-2 can be captured in a standard MLP 

neural network framework.

Returning to (he general A-layer structure described before in (2.2.6), it is fairly 

easy to generalise the low order cases to arrive at the diagram in Fig.2-4. This 

feedforward parallel processing structure, which implements (2.2.6), will be referred 

to in the sequel as a A-layer FFE. We have drawn Fig.2-4 to accentuate its Toeplitz 

structure—the weight of the branch connecting node i in layer k to node i 4- j  in 

layer k -f- 1 is —<lj, independent of i. We alert the reader to the following important 

differences between Fig.2-4 and a standard MLP neural network.

• Eacli diagonal node has one external input, this being a noisy channel output.

• All horizontal connections have fixed weight one.

• There are only A -  1 distinct weights.

The FFE is clearly self-similar. The A-layer FFE is embedded in the (A — l)-layer 

FFE. This embedding property has interesting consequences in terms of monotonic­

ity of performance (see simulations in section 2.4) and the simplicity of the training 

rule required for adaptation (section 2.5).
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A

K- A +4

k- A +3

k- A +2

k- A +1

A- 2  A-  1layer (I) 1

Figure 2-4: Feedforward emulator for the DFE.
Each node computes the sign of the weighted sum of its inputs. The weights are marked on
the branches and horizontal connections have weight 1.

2.3 A nalysis o f N oiseless Error Probability

2.3.1 Finite  State  Markov Process  Description

We can accurately model the stochastic dynamics of the DFE using the theory of 

finite state Markov processes [8] as long as the input sequence to the channel is 

independent. Referring to (2.2.1) and (2.2.2), the input is uk and we choose

as the state vector. There are AL states in total if all elements are binary. Since the 

DFE is assumed to be tuned (in the sense that dj = /ij, j  £ (1 , . . . , £ } ) ,  we can 

reduce the number of states to 3^ by defining an error state

Ek = [ 'k-L ....... n - i l '  (2.3.1)

where each component = u ^ j  — takes values in the set IE = {—2,0,-f2}. 

We denote by lEr‘ the set of all possible Ek states. Consequently, the DFE output
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(2.2.2) (with h0 = 1) can be re-expressed as

L
uk = sgn(uk + ^ 2  hiek-i + n*). (2.3.2)

» = i

In order to simplify the analysis, as is standard in the analysis of error propagation 

of DFEs [16, 23], we consider only the noise-free case (nk = 0 Vk) so that the unique 

absorbing state of the FSMP is Ek = 0 (the zero vector). To see this, note that the 

error vector or state satisfies the simple recursion

E k + i

0 1 0 ••• 0 0

0 0 1 ••• 0 0

Ek +

0 0 0 ••• 1 0

0 0 0 ••• 0 uk -  sgn(ujt + h'Ek)

(2.3.3)

where h = [h\ , . . . ,  hi]1. If Ek — 0 then for all inputs we have sgn(uk + h!Ek) = uk 

and the DFE remains in the zero-error state regardless of the input. However, from 

an Ek state having a non-zero entry, there is a non-zero probability of reaching the 

absorbing state in M  steps for any M  > L (since a sequence of L correct decisions 

will cause transition to the absorbing state). Also, the probability of ultimately 

reaching the absorbing state is 1 [16]. When noise is present, only a noise-induced 

decision error can cause a transition from the zero-error state.

Returning to the recursive representation of the DFE described in the last sec­

tion, we see that the output, in the absence of noise, can be viewed as depending 

on the sequence of inputs m ^ _ a + i  , . . . ,  uk and the initial state Xjt-A+i (or Ek- a + i  )• 

For convenience, we introduce the notation (with reference to (2.2.5))

/ a  (iJki • • • i Vk— A +  l ! Mfc—a  i • • • i Uf c _ A—L —1 ) I n * =•• •=»!*_

=  9 A ( llk, ■ • . , M j f c - A - L - i ; W j f c - A > -  • « i f e - A - L - l ) * (2.3.4)

We aim to determine an upper bound on the probability of an incorrect decision at 

time k from an arbitrary non-zero initial error state. This measure of performance 

will be seen to be central to the analysis of the feedforward emulator to follow.
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With this in mind, we define an extended state Xk (Ek in the tuned case) having 

the same form as Xk but in which the decisions which appear in the initial state 

may take the additional value zero. Each element Ek of the extended error state 

Ek takes values in ZE7 = {0, ±1, ±2}, so there are a total of Ek states comprising 

the set IEL. Of course, a DFE with an initial state in 1EL reverts to a DFE with 

state in IE1 after L time units because the binary decisions that are fed back will 

displace the initial conditions. The concept of an extended state, together with the 

error probability bound, will allow us to gauge the effect of omitting the recursive 

part (i.e., old decisions) in the representation for the DFE (2.2.5), thus obtaining a 

feedforward structure generated by

Uk 9  • • •  i Uk — \ ± \  , V. k — i Uk —A — L — — A • — 0 ,  . . . , T Z j f e _  A — L — 1 0 ) »

(2.3.5)

(or by (2.2.6) in the noisy case) where Uk is binary, but, by the notation u^-A+i-j := 

0, we mean that any feedback paths in the recursive processor (2.3.4) have been 

deleted. Note that the same Uk as (2.3.5) would be generated by a standard DFE, 

started in an abnormal initial state Ek-\+\  with fictitious past decisions Uk~\ = 

0 , . . . ,  U k - A - L - i  = 0 and fed with the sequence of inputs U k - a + i  , . .  • ,  Uk.  Thus, the 

feedforward structure in (2.3.5) is effectively a “sliding-window” version of the DFE 

which resets its initial conditions at each time instant. We shall have more to say 

about this in section 2.3.4.

2 .3 .2  W orst Case C hannels

Extending the development found in [23 ], we now determine a class of channels on

which the DFE has the worst possible performance (in terms of error propagation) 

from an arbitrary initial condition in the extended error state space 1EL. This 

will allow us to bound the DFE’s noise-free performance, and subsequently the 

feedforward emulator’s performance, on an arbitrary FIR channel.

Any channel

h — [^o — 1, h i , . . ., h ]

~ 17~

26



satisfying

jnin \hTEk\ > 1 (2.3.6)
E r f  o

has the property that Pr(uk /  uk) = \  for any non-zero extended error state E k. 

This follows since the inputs are equiprobable and therefore uk has a probability 

of I of having the same sign as h'Ek (recall that uk = sgn(ujt + h'Ek)). Channels 

satisfying (2.3.6) will be termed “worst case” channels. We claim that the expected 

error recovery time2 is maximised for such channels, which form a subset of the 

worst case class in [16] since we are allowing Ek to have the additional values ±1. 

Any channel (with /i0 = 1) whose parameters belong to the set

L j -1
{h e n L I ft, > 1} P | {h e ntL \ hj > 1 + 2 Y a*}.

j =2 k=l

will fall into the worst case category. This is because the hj have been spaced so 

far apart that no linear combination with coefficients in the set {0 ,± 1 ,± 2 }  has 

magnitude less than 1. (The same is true of any channel that can be obtained from 

this set by changes of sign and/or permutation of parameters.)

As an illustration, consider the L = 2 case. We may take h\ = 1.2 and /*2 = 3.5 

so that

min I[1.2,3.5] E k\ = 3.5 -  2 x 1.2= 1.1 > 1,
Ek*  o

demonstrating that [1,1.2,3.5] is a worst case channel. That is, no second order 

FIR channel may have an expected recovery time which exceeds that of the above 

channel.

2.3 .3  B ound for th e D ecision  Feedback Equalizer

In what follows we may assume the DFE is operating on a noiseless worst case 

channel so as to obtain a tight performance bound. The order of the FSMP model 

can further be reduced by aggregating states, provided that states to be aggregated 

have identical transition probabilities [60]. Here, we are able to impose a structured 

aggregation of the 5L — 1 non-zero extended states Ek while retaining the Markov 

property between the aggregated states. We choose to aggregate the Ek states

2Expected time to reach the absorbing state.
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Figure 2-5: Aggregated FSMP for a worst case FIR(L) channel.

according to the following rule [18].

Definition 2.3.1 (Aggregation Rule) The extended error state Ek (it time k, 

defined by (2.3.1) with components in IE, is in aggregated state Ck = q if there exists 

a binary input sequence {wj}j*2_l such that the absorbing state Ek+q = 0 is reached 

in q steps (while it cannot be reached in fewer).

From the shift register property (2.3.3) applied to Ek (by allowing «jt = 0), it is 

clear that at most /, successive correct decisions are needed to force an arbitrary 

non-zero Ek state to the absorbing state. Hence there are L + 1 aggregated states 

ejt in the new FSMP. From a given state €k = q (q /  0) there is a probability of |  

(for equiprobable inputs) of transiting either to state cjt+i = q — 1 (with a correct 

decision) or to state (k+i = L (with an incorrect decision) at the next time instant 

(see Fig.2-5). Subsequently, the transition probability matrix can be partitioned as

P = (Po)
Q 0 l

r' 1
e /7j>(L+l)x(L+l) (2.3.7)

where

Pij = Pr(€k+\ = L+  l -  i \ € k = L + l - j )

and

Q =
1
2 e mLxL

r' = [0 , . . . ,  0,1/2] E m L.

(2.3.8)

Since €k = 0 is the unique absorbing class (containing only Ek = 0), the eigenvalues 

of Q are less than one in magnitude [8, CO]. Let 7r̂ . be the (L -f- l)-vector whose zth 

component 7r̂ t, is the probability of the aggregated system state at time k being
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L + 1 — i, or

7Tk,i = Pr(ek = L +  1 -  *), i = 1 , . . . , I  + 1, 

Then this state distribution vector evolves according to

TTfc+l =  P x i fc. (2.3.9)

Now suppose the initial extended error state £o € ZÊ  induces the distribution 7To 

at time k = 0. We can compute the probability of the system failing to reach the 

absorbing state €fc+i at time k + 1, while operating on a worst case channel, as

L
Pk(iro) = Pr(ek+\ #  0 I 7T0) = ^ P r ( c j t +i = i | tt0). (2.3.10)

t = i

In other words, pk(^o) is the sum of the first L components of the vector 7r*. If we 

partition Xk conformably with (2.3.7) as

7Tfc = ’ * k

L p

and make repeated use of (2.3.9), we have

Pa(tto) =  [ 1 • • • 1 OJtta; =  [ 1 -  • l J Qk7T0,
L + i  L

in which 7fo is the initial distribution across non-zero aggregated error states ek. 

Applying the power method to the matrix Q, we obtain the upper bound stated in 

the following theorem (this result is a mild generalisation of the analogous result in 

[23] concerning the DFE).

Theorem 2.3.1 (Noiseless Error Bound - DFE) Consider' the tuned DFE with 

output given by (2.3.2) with nk = 0, operating on a noiseless worst case FIR channel 

of order L , and initially in non-zero extended error state E q E IEL at time 0. If 

Eq induces the aggregated state distribution 7To, the probability of not reaching the 

absorbing state ek = 0 at time k is given by

Pk{iTo) =  Pr(ek ±  0 I ttq) = a iA j(1 +  o(2-fc)),
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L 2 3 4 5 6
Ai 0.8090 0.9196 0.9638 0.9830 0.9918

Table 2.1: Dominant eigenvalue of Q. 

where oq = w[Wq G (0.1],

Ai = max \ i(Q)  G (0,1),
1 < t < L

is the unique dominant eigenvalue of Q defined in (2.3.8), and w\ = w \/\w i \ G 2RL 

where W\ is the eigenvector of Q corresponding to Ai, given by

L - 1 L—2

w \  =  [1, XI l l J ' XI Z*7» •••»** + A*2»
3 =  1 3- 1

uu7/i /* = (2Ai) 1.

Since the calculations assumed a worst case channel, the above bound indicates 

the highest degree, on average, to which an initial error can influence subsequent 

decisions by error propagation alone on any noiseless channel. The bound may 

be conservative in that Ai ss 1 for worst case channels. We list Ai for various 

channel lengths (L) in Table 2.1. For practical channels (e.g., with decaying impulse 

responses) the exponential form of the bound is still valid (with correspondingly 

smaller Ai), but in general it is not possible to aggregate the FSMP model to obtain 

the Zth order description used above, so the full order bL non-aggregated FSMP 

would need to be used.

2.3 .4  B ound for the Feedforward E m ulator

In the last section we saw that the probability of an incorrect decision in the DFE, 

due to some initial decision error in the absence of noise, becomes exponentially less 

likely with time. Equivalently, we can say that after a sufficient time, the effect of an 

initial error is negligibly small. Because of the close link between the DFE and the 

recursive processor (2.3.4) (or (2.2.5) in the noisy case), this “settling time” will be 

shown to be an indicator of the number of layers A required to produce a feedforward
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emulator (2.3.5) (or (2.2.6) in the noisy case) that is a good approximation to the 

original DFE (in an error probability sense).

At each time instant k, the noise-free feedforward emulator (2.3.5) is equivalent 

(in the sense of producing the same output from a given sequence of inputs) to a 

(tuned) noiseless DFE that has been initialised in the non-zero error state

Ek-A+l = (ujt-A, . . Uk-\-L-\) '  (2.3.11)

at time k — A -f 1. Recall that we have forced Ufc_A+i-j = 0 for j  = 1 , . . . ,  L.

We can reformulate (2.3.5) in a way which reflects more lucidly the internal 

structure of the feedforward emulator. We denote by 7  ̂ (1 < i < A) the internal 

binary decision generated at the ith layer, used in computing the eventual output uk 

at time k. (In other words, 7  ̂ is the output of the ith diagonal node in the processor 

of Fig.2-4 when dt = ht Vi and there is no noise.) These preliminary decisions are 

obtained iteratively as follows:

t+i _  [ sgn(ufc_A+,-+i + JTtffc-A+i+i), if 0 < i < A -  1
j

0, otherwise

E k-A-H + l =  ( ^ f c - A + t  - 'J fcv iW fc -A + i-L + l -  7^+1-Ly E IEL, (2.3.12)

and Uk = 7^. Note that we have assigned 7  ̂ = 0 for i < 1 to match the initial 

conditions and produce the same Uk as in (2.3.5). Thus ujt is the output of a FSMP 

with initial state Ek-\+ \  driven by the input sequence {ujt_A-i-i, • • ., Uk}, passing 

through the sequence of states £jt_A+i+i (* = 0 , . . . , A — 1). In what follows, we 

take [h0 = 1 ,h'] to be a worst case channel and aggregate the states according to 

Definition 2.3.1.

We can calculate the probability that the feedforward emulator decision is correct 

at time fc, supposing an “initial” state distribution tt̂ -a-h * We use Bayes’ rule to 

condition on the aggregated state fjt corresponding to the extended state Ek (defined 

by (2.3.12)) at the output of the Ath layer of the feedforward emulator. Thus

Pr(uk = uk\nk-\+\) = Pr(uk = uk\Tk-\+\,(k ^ 0)Pr(€k ^ 0\xk-\+\)
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+ Pr(uk =  M JtK jt-A +l 1 €k =  0)Pr(6fc =  0|7Tjt_A + l )•

Now, the ek states have the transition diagram (Fig.2-5) corresponding to the choice 

of a worst case channel. Hence in the absorbing state ek = 0 the probability of a 

correct decision is 1, whereas for all states (ek ^  0) outside the absorbing state this 

probability is f . We now have

Pr(uk = uk |7Tfc_A + i) = p̂jt(7TA:—A+l) + 1 “  A + l)

= 1 -  P̂it(7TJt-A + l), (2.3.13)

where, like (2.3.10), we have defined

Pk(xi) = Pr(ck+i #  0 I 7r/).

However, unlike the DFE. the “initial” distribution 7r̂ __A-+-1 (for each k ) is not arbi­

trary. In fact all “initial” error states E jt-A+i for the feedforward emulator (2.3.5) 

belong to the aggregated state cjt-A+i = L . To see this, recall the shift register 

property for the extended states (2.3.12). Clearly we would need at least a sequence 

of L correct decisions 7 [.+1 = Ujt-A+i+i 0  = 0 1 )  to attain the absorbing 

state E k- a+l = Q. Therefore, the particular “initial” distribution we seek is

*fc-A+t =  [ i , o , : - - , q ]', vfc
t+t~

corresponding to ejt-A+i = L.

We now drop the conditioning on the left hand side of (2.3.13) since only one 

7Tjt_A+i is possible in the feedforward emulator case. Applying Theorem 2.3.1 to 

evaluate pk(Ko) with 7Tq = tt£_a+1, yields the asymptotic formula for the error 

probability which we state below.

Theorem 2.3.2 (Noiseless Error Bound - FFE) The noiseless decision error 

probability Pr(uk ^  uk) for the A-layer feedforward emulator generated by (2.3.5),
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with worst case channel parameters, is given by

Pr(uk ± uk) = ^p k{:rfc_A+1) = ia ;A f _1(l + o(2~A+1)),

where
(  L- 1  j

«i = i + H ( x y )2
\  3 - 1 ‘=1

where p = (2A!)-1 and X\ is the (unique) dominant eigenvalue of Q (2.3.8).

The reasoning carries over to the feedforward emulator because of the definition of 

the extended error state E k, which allows for the disconnection of the feedback part 

in the recursive representation (2.3.4). The above bound is tight in the sense that 

certain channels that realise the bound exist, but on practical channels, fewer layers 

would be required to obtain the same noiseless error probability. The reasoning 

leading to Theorem 2.3.2 implies that a A-layer feedforward emulator with sign 

nodes, operating on a general FIR channel of order L, has a noiseless error probability 

which is upper-bounded by

Pr(ük /  uk) < I[  1 ^ ^  ] Qa- '  [ 1,0,. . . ,0  ]' (2.3.14)
L L

where Q is given by (2.3.8).

2.4 Evaluation of the N on-A daptive System

2.4.1 Tuned N o iseless  Perform ance

Here, we give an example of the simulated performance of the tuned feedforward 

emulator on a second order channel. The weights rf,, i < L are equal to the cor­

responding channel impulse response coefficients hx and we assign dt, i > L to be 

zero.

In Fig.2-6 we have plotted the upper bound resulting from the aggregated FSMP 

realised by a worst case second order channel [1.0,1.2,3.5]. On the same graph, the 

bit error probability (simulated over 106 points) for a feedforward emulator with sign 

nodes operating on the second order partial response channel [1,2,1], as a function
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Number erf L»yen

Figure 2-6: Noiseless bit error rate of tuned FFE.
FFE implemented with sign nodes on (i) [1,2,1] partial response channel (“x”); and (ii)
[1, 1.2, 3.5] worst case channel—realising the upper bound (solid line).

of the number of layers A, is also displayed. The simulation clearly shows the 

agreement of the theoretical noiseless error probability bound for the FFE (2.3.14) 

and the simulated noiseless performance on a worst case channel.

2.4.2 E xact N oise-free  R epresen tation

The possibility arises of exact representation of a DFE by the feedforward emu­

lator structure in the absence of noise. This is indeed the case when the error 

propagation events for the DFE have a guaranteed finite length. For certain classes 

of channels [ho = 1,/t'] (which define a stability class [16]), for example, those which 

satisfy the following frequency-domain sufficient condition:

L

1/2 + Y l hkCos(ke) > °> V<9 G I°’27r) (2.4.1)
k = i

it is known that the DFE has a deterministic, bounded error recovery time from a 

non-zero error state [24]. If we call this time R, then the feedforward emulator de­

rived from the DFE for this stable channel will reproduce the output sequence {ujt} 

exactly (from the same sequence of inputs) if the number of layers is chosen to be 

greater than or equal to R + L. The reason for this is that the decision Ujt is in­

dependent of u;._A-j+1 for j  > 0 due to the finite extent of error propagation on 

stable channels. Hence (including a further L layers to regain the IEL state space) 

a feedforward emulator with R. -\- L layers or more loses no information relative to
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A 2 3 4 5
BER (i) 0.04129 0.02003 0.01287 0.00000
BER (ii) 0.01070 0.00100 0.00000 0.00000

Table 2.2: Noiseless bit error rate of FFE.

deciding uk by neglecting these past decisions, bearing in mind that we are only 

treating the noiseless case. In some cases, fewer than R + L layers will secure this 

property.

We have tabulated in Table 2.2 the noiseless bit error rates (simulated over 106 

points) for the feedforward emulator as a function of the number of layers A while 

operating on the following positive real FIR channels3:

1. An exponential impulse response channel

hk = (0.8)^ cos(A:7r/6), k = 0 , . . . ,  10, hk — 0, k > 10.

2. A 10th order channel with coefficients

[1.0,-0.27,-0.18,-0.31,0.27,0.09,-0.05,0.06,-0.08,0.084,0.01].

It is clear, in this example, that the representation becomes exact (exactly reproduces 

the input sequence in the absence of noise) when the number of layers is chosen to 

exceed the maximum duration of DFE error events, which is known to be finite on 

both the above channels. In the following subsection we look at the performance 

of the feedforward emulator in the presence of noise and give a numerical example 

demonstrating the monotonicity of bit error rate with respect to the number of 

layers.

2.4 .3  N on -A d ap tive  P erform ance in th e P resen ce o f N oise

We have seen that the output of the feedforward emulator of Fig.2-4 with sign nodes 

becomes indistinguishable from that of a DFE (for operation on a noiseless finite

3i.e., channels whose parameters satisfy (2.4.1).
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Number uf Layers

Figure 2-7: Performance of tuned FFE and DFE.
The bit error rate of the feedforward emulator (upper curve) is a function of the number of
layers. The DFE’s error probability is the straight line. The signal-to-noise ratio is lOdB.

error recovery channel) if the number of layers is sufficiently large. It will be apparent 

from the next example that the same structure can attain performance equaling that 

of a DFE when operating on a general FIR channel in the presence of noise. In Fig.2- 

7, the bit error rate of a DFE on the [1,2,1] binary partial response channel has 

been simulated (over 105 points) and plotted for a signal-to-noise ratio4 of lOdB. On 

the same graph we show the simulated error probability versus the number of layers 

of a feedforward emulator witli sign nodes whose weights have been tuned to the 

channel coefficients (see section 2.4.1). Clearly, the two systems perform with the 

same probability of error when the number of layers in the feedforward emulator is 

50 or greater, and the bit error rate of the FFE decreases monotonically with the 

number of layers A.

2.5  A d a p tiv e  A sp e c ts

In the preceding sections, we have developed a feedforward emulator structure with 

sign nodes (2.2.G) which approximates a non-adaptive DFE when the branch weights 

are correctly assigned. In this section we address the problem of how to adapt 

the weights in the emulator, using a training sequence, so that they converge to 

a setting in which the system acts as an equalizer. We will derive two algorithms

4The signal-to-noise ratio is defined as 10log10<r2 where cr2 is the variance of the white noise.
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designed to achieve this, the first applies to FFEs with nodes having a sigmoidal 

characteristic (which we define below)—as is the norm in work involving training 

of MLP neural networks. The second and less conventional algorithm applies to 

FFEs with sign nodes. Both are based on a stochastic gradient descent strategy 

[61] whereby a criterion is chosen that reflects the error between the actual and the 

desired performance as a function of the weights. The weights are then adjusted 

recursively so as to minimise the error.

Typically, for a standard artificial neural network (with the multilayer perceptron 

architecture), the algorithm which is used in the adaptation or training is called back 

propagation [40]. In the present case, the training problem differs fundamentally 

from the conventional problem to which back propagation is applied, in that the 

weights in the FFE are not independent, but are constrained in a Toeplitz manner. 

Any training algorithm, regardless of the activation functions used in the nodes, 

should take this special structure into account. In the following sections we derive 

two such training algorithms and evaluate their performance under simulation.

2.5.1 Training w ith  Sigm oid N od es

In keeping with conventional neural network training, we first consider a gradient 

descent scheme, motivated by back propagation ideas, for adapting the weights in 

the feedforward emulator assuming that the nodes have the following sigmoidal 

characteristic:

f ( x ) =  1 — €. r = tanh(x/2). (2.5.1)

We prefer to use bipolar activation functions in developing the training scheme since 

they closely reflect the desire to force the node outputs to take the values ±1 (in 

minimising the gradient of the objective function). In fact, /(o x ) —► sgn(x) as 

o —► +oo, so we might expect FFEs with sigmoid nodes to have similar attributes 

to their counterparts with sign nodes as o is increased from unity (this is born out 

in the simulations of section 2.5.3). We also note that the sigmoid function satisfies 

the first order differential equation

d- ^ j f L = = f  [1 -  /(«*)][! + / ( « ) ]  = ««/(<**)). (2-5-2)
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where 4>(x) = | ( 1  — x2) and a is a real constant.

Suppose at time k the input pattern {yk~ \+ \, . . . ,  yk} (where yj is a noisy channel 

output generated by (2.2.1)) has been applied to the feedforward emulator of Fig.2-4. 

If the output of the FFE is Uk, we define the instantaneous output error as

Jk = \ ( ü k - u kf , (2.5.3)

in which Uk is the current channel input in equation (2.2.1). Clearly Jk = 0 Vfc in 

the case of correct equalization. Unlike blind equalization, we assume that a known 

training sequence {uk} is available for the adaptation.

Regarding Fig.2-4. we make the following definitions.

D efinition 2.5.1 At time k, for any layer in the A-layer FFE of Fig.2-4, and for 

1 < j  < A, we define w>ij(k) as the weight of the branch connecting the node at 

level i in that layer to the node at level j  in the next layer. The output of the node 

in layer i at level j  is ylj(k). The external input to the diagonal node whose output 

is y}{k) is yk-\+i, where yi is defined in (2.3.12).

For the diagonal nodes we can drop the subscript, defining yJ = yj. The Toeplitz 

structure of the FFE imposes the following constraints on the weights w;j (for all

k):

Wij(k) =  <

dj—i{kfi i j

1, * = j

0, i > j,

(2.5.4)

where dj(k) is the jth  tap gain in the corresponding adaptive DFE (2.2.2). The 

outputs of the individual nodes can subsequently be expressed as

y p )  = <

f(ZU wij(k)yi '(*) +  yt-A+j),

f ( y ) - p ) ) ,

o ,

i = j  

i > j  

i < j.

(2.5.5)

Here, yj(k) is to be compared with 7  ̂ in (2.3.12) in the case of a tuned, noiseless FFE 

with sign nodes. In particular, yA(k) = Uk  is the output of the FFE at time k. It is 

understood that the weights W{j for i > j  are to remain fixed (as indicated in (2.5.4))
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during and after the training phase. The equality constraints (2.5.4) acting on the 

W{j(k) indicate that only A — 1 distinct parameters (the dj(k), j  = 1 ,. . . ,A  — 1) 

need be varied independently to force the feedforward emulator to act as a channel 

equalizer. The objective of the training algorithm is to adapt the dj(k) so that the 

instantaneous output error Jk is minimised. This may be achieved iteratively via 

the following stochastic gradient algorithm:

dj(k + 1) = dj(k) -  d̂dfkJ = 1>. . A -  1. (2.5.6)

The step size 77 > 0 (or learning rate, borrowing a term from the literature on 

neural networks) is adjusted to trade off speed versus accuracy of convergence to 

the minimum of the mean error, while maintaining the algorithm’s stability.

The training algorithm is specified once we have found a (recursive) rule for 

evaluating the derivatives in (2.5.6). We now turn our attention to this task. Two 

applications of the chain rule yield

and

dJk _ N 9uk
ddj(k) ~ ^Uk Uk)ddj (ky j  = 1.......A - l , (2.5.7)

0uk _ duk dwi,i+j(k) . .
ddj(k) dwi'i+jik) ddj(k) ’* *’

(2.5.8)

Equation (2.5.4) implies that the rightmost term of each product in the above sum 

equals — 1 VT\ We therefore require an expression for the derivatives of the output 

with respect to the weights. This is furnished below (an inductive proof may be 

found in appendix B.l).

Lemma 2.5.1 Consider the system described by the equations (2.5.1), (2.5.4) and 

(2.5.5), which has the structure shown in Fig. 2-4 with sigmoid nodes replacing the 

sign nodes. The branch weights which give a non-zero contribution to the deriva­

tive of the output uk = yA(k) with respect to dj(k), 1 < j  < A — 1 (2.5.8) are 

tf7tj,+j(/u), 1 < i < A — j , and the derivatives with respect to these weights are given 

by
0hk

dwi.i+j(k)
j II <t>(yl*\k))wu+i(k)
( l='+J

dyt+J(k)
dwi,i+j(k)'

(2.5.9)
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where 0(-) is given in (2.5.2), and (as before) we have set yJ(Ar) = yJj(k ) .

Furthermore, the derivative on the right hand side of 2.5.9 may be evaluated directly 

from (2.5.5) as

duuf+ j( t ) / (  %  +  » - A + i+ i)

<Ky,+im  E  yj+i- l (k)fu
1=1

<t>(y'*3(k))y \*J~l , (2.5.10)

where 6u is the Kronecker delta and we have used the fact that the yJ+J-1(fc), for 

1 < / < i + j  -  1, do not depend on W{ti+j(k).

Consolidating lemma 2.5.1 with (2.5.8) and (2.5.10), we now have (suppressing 

the time index A:),

dyt+3(k)
dwi<t+ j{k)

dn _  p !  dyA 
ddj  ^  dw(,i+j  ’ 3

= ~{ <t>(yA ) y \ Z ]  +  <t>(yA~ l ) w \ - i , \ y \ Z 2j- i  +  •••

+ 0 (yA)w’A-i,A0(yA“ 1)wA-2,A-i • • •0 (ir?+1)y i}  (2.5.11)

=  -dMyA- ' ) {y tU  - • • •

-di</>(yJ+2) { ^ +1 -  di<£(j/J+1)y j}  • • •}}, (2.5.12)

where the (2.5.12) follows from (2.5.11) by virtue of the fact that =  —d\ after

nesting terms with the first term of (2.5.11) occupying the innermost bracket. This 

nested form lends itself easily to rewriting in the recursive form

= = 1.......A ' 1’ (2'5'13)

where

* } (* )  =  •M,y1+\k))yi{k)(2.5.14)
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and

6](k) = « » J'+’(fc)){»J, + ,- 1(fc )- r f i(* )^ " , (fc)}, 9 = 2 , . . . ,  A - j .  (2.5.15)

This last expression shows how the self-similarity between successive layers of the 

feedforward emulator contributes to the calculation of the output derivative. Put 

into words, the derivative of the output with respect to dj is the sum of two terms: 

the contribution from the branch with weight dj to the output node; and: d\ times 

the derivative of the output of the previous diagonal node with respect to dj (and 

so on). We can now state the recursive training rule, which we will refer to as the 

sigmoid algorithm.

Theorem 2.5.1 (Sigmoid Algorithm ) The stochastic gradient descent algorithm 

arising from the minimisation of the criterion (2.5.3), for adaptation of the weights 

dj{k) of the X-layer feedforward emulator with output uk and sigmoid nodes replacing 

the sign nodes, takes the form

dj(k + 1) = dj(k) + r](uk -  uk)6f~j (k), j  = 1 , . . . ,  A -  1, (2.5.16)

where is computed recursively from (2.5.14) and (2.5.15), uk is the known training 

input sequence to the channel and q > 0 is a small step size parameter.

The reader is referred to section 2.5.3 for an example of adaptation during training. 

2.5.2 Training w ith  Sign N od es

Returning to the original feedforward emulator with sign nodes (Fig.2-4), we consider 

a recursive training procedure for the adaptation of the weights dj(k). Retaining the 

notation introduced in the last subsection, we redefine /(•) as sgn(-) and compute 

the node outputs ?/* as in (2.5.5). The error measure used in the sigmoid algorithm 

is unsuitable in this case since it is insensitive to changes in the weights. Just as 

in FSMP analysis of error propagation in the DFE [23], the sign of a weighted sum 

of (fixed) inputs will be the same for a range of weight values. We therefore define 

a new measure of error which more closely reflects the effect of changes in weights 

during adaptation
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(2.5.17)Jk — u k)  ■>

where

Zk Vk -

A — 1

E W)v£i(*)
t=i

(2.5.18)

is the weighted sum of inputs to the output node of the feedforward emulator, i.e., 

uk = sgn(zfc) E { —1,+1}. The training rule follows easily from the calculation of 

the gradient of Jk with respect to dj(k). Explicitly,

dJk
ddj(k) =  (zk ~  Uk)

dzk
ddj(ky

But
d?k

ddj(k) = - y k - j ( k ) -  E dt(k)
1=1

O y t l ( k )

9 d j ( k )  '

The gradient of the sign function is zero everywhere except at the origin. Since 

the occurrence of a zero argument in any sign function in a node of the FFE is a 

probability zero event in the presence of noise, we assign the derivative of sgn(-) 

to be zero everywhere. We thus obtain the following recursive rule stated in the 

theorem below. We will refer to this as the sign algorithm.

Theorem 2.5.2 (Sign Algorithm ) The stochastic gradient descent algorithm aris­

ing from the minimisation of the criterion (2.5.17), for adaptation of the weights 

dj (k) of the A-layer feedforward emulator with sign nodes, takes the form

dj(k + 1) = dj(k) 4- rf(zk -  uk)yi_j ,  j  -  1 , . . . , A -  1, (2.5.19)

where uk is the known training input sequence to the channel, zk is given by (2.5.18) 

and T] is the step size.

Whereas the sigmoid algorithm has contributions to the derivative from several 

layers of the FFE (in general), the only contribution in the sign algorithm is from the 

output of the preceding layer. This accounts for the algorithm’s relative simplicity. 

The resemblance of the sign algorithm to the perceptron algorithm of Rosenblatt [62] 

is more than coincidental as both use nodes with hard-limiting activation functions.

42



Examples of the performance of the respective algorithms are to be found in the 

next section.

2.5.3 Sim ulation E xam ples of A daptation  with N oise

As announced, we now proceed with an evaluation of the two adaptation algorithms. 

We chose a second order “closed-eye” channel [/i0 = 1.0, hi = 0.8,h 2  = -0.3], with 

a SNR of lOdB, and simulated both the sigmoid and sign training algorithms with a 

step size rj of 0.0001 over 105 points. In both cases, we observed the evolution of the 

weights d i , .. .,dio in an 11-layer feedforward emulator corresponding to Fig.2-4. In 

this case, satisfactory operation as an equalizer (without decision delay) requires the 

weights to converge to a neighbourhood of the point in parameter space given by

[d\ = 0.8, (I2  — —0.3, = (I4  = • • • = d\o = 0.0].

Convergence of the weights using the sigmoid algorithm (Theorem 2.5.1) was ob­

served to require considerably more than 105 training points. The speed of con­

vergence was greatly increased (along with an increase in jaggedness of the weight 

trajectories) of by using an “acceleration factor” a greater than unity, so that x 

in equation (2.5.1) is replaced by ax  and <f>(x) (equation (2.5.2)) is replaced with 

acf)(ax) in the sigmoid algorithm. Fig.2-8 shows the time evolution of the weights 

in the sigmoid algorithm from random initial values with an acceleration factor of 

a = 10. As can be seen in Fig.2-8, the weight trajectories are converging to the 

expected equilibrium settings for equalization, although more slowly than the cor­

responding trajectories for the sign algorithm (theorem 2.5.2) in Fig.2-9.

As a further example of the adaptive feedforward emulator’s operation, we have 

included Fig.2-10. This shows the weight-space trajectories (d\(k) versus ^(fc)) 

of a three-layer FFE during sign algorithm adaptation on the [1,2,1] channel at 

an SNR of lOdB with a step size 77 = 0.001 over 105 iterations. Each parameter 

trajectory has been decimated to 100 points. All trajectories were initialised on 

the boundary of the rectangle [—10 < d\(k) < 10] x [-10 < c?2(&) < 10]. The 

equilibrium point5 of the adaptive algorithm is [d\ «  1.1, d2 ~  0.10] in this case.

5».e., the point of convergence of the weights for noiseless adaptation with small step size.
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Figure 2-8: Accelerated sigmoid algorithm training of FFE.

3  0.4

Tun© (k)

Figure 2-9: Sign algorithm training of FFE.
The simulation was performed on the [1,0.8, —0.3] channel at a SNR =  lOdB for a feedfor­
ward emulator with 11 layers and sign nodes.

Some of the trajectories have not reached the vicinity of this point by the end of the 

simulation run, becoming hung for long periods of time at one of various points on 

the branches of the central “Y” in the figure. This behaviour indicates the presence 

of a one-dimensional manifold of local equilibria for the adaptive algorithm in this 

example. The trajectories display an interesting symmetry, belying the shape of the 

mean error surface which the gradient algorithm is descending.

2.6  S u m m a ry  and C o n c lu sio n s

We described a non-linear feedforward processing structure derived from a recur­

sive non-linear decision feedback equalizer. This new system, called a feedforward
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Figure 2-10: Parameter trajectories during adaptation.
Sign algorithm training with step size 0.001, SNR lOdB, three-layer FFE on the [1,2,1]
channel with di(k) on the x-axis and do(k) on the y-axis.

emulator, has close algebraic links with the decision feedback equalizer and close 

structural links with multi-layer perceptron neural networks. The connection with 

the DFE allowed theoretical techniques, already devised for that equalizer, to be 

applied with only minor modification to obtain a (noiseless) error probability bound 

for the FFE in terms of the number of layers in its realisation. The tightness of 

this theoretical upper bound was verified by simulation on a noiseless second order 

channel (a worst case channel). Previous results on finite error recovery channels 

for the DFE can be harnessed to determine classes of noiseless channels on which 

the representation of a tuned DFE by a tuned FFE is exact.

The training adaptation of the FFE’s equality-constrained weights was consid­

ered and two stochastic gradient descent algorithms were developed. The first algo­

rithm (the sigmoid algorithm) is applicable to FFEs with nodes having a sigmoidal 

activation function, and was derived using an extension of back propagation which 

allows for the interdependence of the weights. The second (the sign algorithm) is 

specifically tailored for FFEs, derived from the DFE, having hard-limiting (sign) 

nodes. The sign algorithm gives generally much quicker convergence of the FFE’s 

weights for a given channel, SNR and step size of the gradient algorithm. The con­

vergence of the sigmoid algorithm can be accelerated, although this may lead to 

oscillatory behaviour of the parameter trajectories.

Whereas the decision feedback equalizer can suffer from error propagation due
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to the feedback of incorrect decisions, the feedforward emulator suffers from another 

kind of error propagation due to the truncation of the Markov expansion for the 

DFE from which it derives. This effectively limits the FFE’s performance to that of 

a conventional DFE at best, despite the added delay involved in obtaining decisions. 

At any rate, replacing the DFE by a neural network-like device was not the motivat­

ing objective. Rather, the importance of these results lies in their solid theoretical 

base and the possibility of their broader application to the relatively new area of 

artificial neural networks. It is recognised that theoretical tools are needed which 

permit the designer of systems incorporating artificial neural networks to specify (or 

at least bound) architectural parameters such as the number of layers needed for 

a particular task. Analyses of the type presented in this chapter could provide a 

starting point for answering these questions.
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C h ap ter  3

Block D ecision Feedback  

Equalization

3.1 Introduction

In chapter 2, we studied a non-linear feedforward structure—the FFE, resembling a 

multi-layer neural network. The emphasis in that part was on the analysis of the new 

system which was facilitated by its close links with the decision feedback equalizer. 

We continue here with another development of the conventional non-linear DFE. 

This time, however, the emphasis is shifted from analysis to design and performance, 

and instead of dissecting the DFE, we build upon it.

As mentioned in section 1.2.4, the large discrepancy in performance/complexity 

separating the decision feedback equalizer and the Viterbi decoder has led to many 

attempts at designing an equalizer structure that bridges this gap. The reduced-state 

sequence estimator [11] and the delayed decision feedback sequence estimator [10] 

are two structured approaches to the problem of simplifying the Viterbi decoder. In 

this chapter we introduce another equalizer structure, called the block decision feed­

back equalizer (block DFE), which complements the work of [10, 11] by generalising 

the feedback and decision mechanism of the conventional DFE1. The block DFE is 

an optimal generalization of a modified DFE proposed by Clark, Lee and Marshall 

[43], although it was developed independently. The central idea is to make the de-

1 We are t herefore assuming that a linear prefilter has already cancelled the precursor intersymbol 
interference.
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tection process more effective by using groups of instead of single received signals to 

estimate one data symbol with a fixed delay. Proakis and Khazen-Terezia [14] and 

more recently Moon and Carley [13] have also proposed detection algorithms based 

on a finite length tree search which makes use of a fixed number of previous decisions 

to cancel the ISI on present and future symbols. We show that these algorithms are 

in fact equivalent to that of [43] and demonstrate their connection to the block DFE.

In contrast to most of the preceding trellis-based ideas, the block DFE is mo­

tivated by a systems approach using block processing [45, 46, 47]. The equalizer 

we present can give performance arbitrarily close to the MLSE as the block length 

p and the number of decisions made per iteration q tend to infinity. At the other 

extreme (p = q = 1) the conventional DFE is recovered. When q — 1 and p is 

arbitrary, the block DFE corresponds to the marriage of decision feedback with the 

symbol-by-symbol MAP fixed-delay optimal detector [26]. This property holds for 

arbitrary signal to noise ratios (SNRs), whereas the schemes proposed in [14, 13, 43] 

are only optimal in the same sense in the high SNR limit.

We mention that the proposed system cannot be classified as ad hoc. The deriva­

tion mirrors in a mechanical fashion, but in a block-processing environment, the 

conventional DFE philosophy, be., committed past decisions are used as if they 

were correct, and an optimal noise rejection system is then derived. Thus we build 

a theoretical framework in which the past suboptimal schemes [43, 14, 13] may be 

embedded and interpreted.

In the following sections we develop the block DFE which is composed of two 

essentially independent components: (i) a feedback filter, derived in section 3.2.2, 

based on a block processing model of the communication channel developed in sec­

tion 3.2.1; and (ii) a p-input, ^-output (1 < q < p) memoryless decision device which 

has various potential realisations according to the criterion of interest. We will be 

concerned principally with two realisations of block DFEs: the full-blocking block 

DFE or (p, p)-DFE, producing p data estimates per block iteration, and the sliding- 

window block DFE or (p, 1)-DFE, producing a single decision per block iteration. 

The latter device has an optimal realisation and a lower complexity realisation for 

high signal-to-noise ratios (called the high SNR block DFE). Section 3.3 considers 

low order realisations of block DFEs and presents simulations of the performance of
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the device based on an example which has appeared in the literature [11]. Compu­

tational issues are addressed in section 3.3.6. We demonstrate the close connection 

between the block DFE (using a maximum a posteriori decision device), the con­

ventional MLSE [19], and the optimal MAP detector [26, 27, 30, 31] in section 3.4, 

at the same time surveying the literature on minimum bit error rate detectors.

The block DFE, like the delayed decision feedback sequence estimator [10], can 

equalize recursive channels—the approach being to use state estimation feedback, 

which reduces to decision feedback in the case of FIR channels. Nonlinear channels 

with finite-dimensional state-space realisations are also amenable to this technique, 

and we give a description in section 3.5.1. Most of the treatment assumes binary 

signalling. The extension to A/-ary signalling and QAM is the subject of section 

3.5.2, noise colouration is treated summarily in section 3.5.3. A discussion of adap­

tation of block DFE parameters is given in section 3.5.4. We look first at deriving 

minimum mean-square error tap settings for the multivariable feedback filter and 

decision device, then obtain a stochastic gradient descent algorithm for training 

sequence adaptation of the block DFE. We leave consideration of performance anal­

ysis and stability to chapter 4, in which we present various analyses of the two-input 

block DFE (which we treat on account of the difficulty in analysing the more general 

p-input block DFE).

3.2 Block D ecision Feedback Equalizer D evelopm ent

3.2.1 B lock  P rocessin g

The starting point for the generalisation of decision feedback equalization is the 

concept of a block processing communication channel model. A single-input single­

output linear (IIR) channel has a transfer function H(z)  given by

oo

H(z)  = d + c (z l -  A)~l b = d + ]T  cAJbz~ij+1)
j=o
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where /  is the n x n identity matrix, A E IRnXn, b E IRnXl, c E lRlXn, and d E IR. 

This can be realised in the time-domain by a state space system of the form [41]

where uk,Xk and yk denote respectively the (iid zero-mean binary) channel input, 

state and output at time k. We assume the output yk is corrupted by zero mean 

white Gaussian channel noise2 nk with variance a 2. Following chapter 2, we define 

the signal-to-noise ratio as SNR = 101og10cr2 independently of the channel3.

A block processing [45, 46, 47] version of (3.2.1) of block length p can be derived 

by observing that

Xk+1 = Axk + buk, xk £ IRn

yk = cxk + duk + nk, k =  0 , 1 , 2 , . . . , (3.2.1)

Xk+ 2 = A2xk + Abuk + buk+\ 

yk+\ = cAxk +  cbuk + duk+i + nk+i

and

xk+3 — A3xk T A?bi±k ■+• Abuk+i +  buk+2

Vk+2 = cA2Xk +  cAbuk +  cbuk+\ 4- duk+2 +  nk+2

etc., leading to

xk+p = F x k + G U k , k = 0, p, 2p, . . . ,

n =  Hxk + DUk + Nk, (3.2.2)

where

F £ l R nXn ; G £ IRnXp ; H e IRpXTl ; D e IRpXp• n X n

are given by

F = AP ; G  = [Ap-'b  Ap- 2b ■■■ Ab 6]

2We may also denote this by n* ~  N(0, a2).
3Other definitions exist, for example, SNR= Var(uk) J^!=o ^?/Var(n*) on a finite impulse re­

sponse channel with taps h, [19].
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c

cAp~l

d 0 0 ••• 0

cb d 0 • • • 0

cAb cb d • • • 0

cAp~2b ••• cAb cb d

and the vectors Uk, Yk, and Nk in (3.2.2) are given by4

U k
A

[ttjfe, U k + 1 ,  • ■. . ,  u j t + p - i ] '  €  JRV

Yk
A

[j/Jfc, y f c + i i  • • . ,  j f c + p - i ] ' e  m v

N k
A

[ n k , wjfc+i ,  • . . ,  n k + p —i ] 1 G E p

(3.2.3)

(3.2.4)

3.2 .2  D ecision  Feedback Structure

Continuing with the development, we now propose a decision feedback equalizer struc­

ture for the block processing realisation of the channel (3.2.2)-(3.2.4). The term 

DUk in (3.2.2) is the direct feed-through term of the vector of channel outputs Yk in 

(3.2.2) and can be considered as the “cursor” . The term Hxk in (3.2.2) summarizes 

the effect of past inputs, and therefore acts as the “tail” . The term Nk in (3.2.2) is 

the vector of channel noise components.

We assume some arbitrary decisions have been made corresponding to a choice 

of Xk (a channel state estimate) via some decision procedure. We then attempt to 

cancel the “tail" H x k  in (3.2.2) (as in a conventional DFE) by generating a vector 

Z k  G I R P for k = 0, p, 2p , ..., defined by

Zk =  Y k - H x k

= DUk + H Ek + Nk (3.2.5)

where

Ek = x k-Xk (3.2.6)

denotes the state estimation error (which ideally should be zero). An estimate Uk 

of Uk is generated by passing the signal Zk through a memoryless decision function

4 Recall, x' denotes the transpose of x.
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memoryless vector 
decision device

Figure 3-1: Block processing DFE structure.

V(-) according to

Uk = V(Zh) (3.2.7)

as illustrated in Fig.3-1. Note that any reasonable decision function 'P(-) may be 

used (e.g., optimising various decision criteria, as we will see later) but the decision 

feedback structure is completely independent of the choice of X>(-).

3.2.3 Finite  Impulse  R esp on se  Channels

For the remainder of this chapter we will largely constrain the discussion to the 

study of channels with finite impulse responses. We remark that this is not a nec­

essary restriction of the technique but leads to a slightly simpler and more familiar 

presentation. An outline of the ARM A channel case will be given at the end of 

section 3.2.5.

If //(z) is the transfer function of a finite impulse response channel, then

H(z) = /<o + hi z 3 5 flL t  0, 
j = i

(3.2.8)

so that

Vk — hoUlc +  h \ U k - l  +  • • • +  l lLu k - L  +  rcjfc, 

then we have in (3.2.1) that n = and may define the state as

(3.2.9)

x k =  [«it- (3.2.10)
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We lose no generality in assuming that h0 = 1. A realisation of H(z) is

A =
0 I I - i 

0 0
; b = i C ? d  — 1

where Im denotes the m x m identity matrix and 0 denotes an appropriately dimen­

sioned matrix (or vector) of zeros.

Hence in (3.2.2) and (3.2.3) with the state xjt given by (3.2.10), we have

F  =
0 IL- P 

0 0
; G = for p < L — 1

F -  0 ; G = [0 IL\ ; for p > L

while

If =

h L /?L-1

0 hL

h 2 h\ 

h j  /?2
g m p x L (3.2.11)

and

0 0 " h i  • •• h p J

1 0 0 . . .  o
hi 1 0 . . .  o

D = h2 h\ 1 . . .  0

bp—i • • • h 2 hi 1

(3.2.12)

Note that the channel length L and block length p are independent. (For convenience, 

when p > L we define hk = 0 for L -f 1 < k < p.)

In the special case of a finite impulse response channel (3.2.8) with state (3.2.10), 

the state estimate of in (3.2.5) is simply the vector of L past decisions

Xk =  [«Jb-L, Wjt_L+l, . . . ,  Wjt-l]'. (3.2.13)

Writing Zjt as

Z k  — [ ~ Ar, 1 ■» ~ k , 2 i  • * * i  ~/r .p ] i (3.2.14)
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we have from (3.2.5) and (3.2.6) that the components Zk,i are given for p < L by 

(recall that h0 = \ )

z k, 1 = uk + h Lek - L  4" • ' * + 4* Tlk

zk,2 — h i uk 4- u*.+i 4- h i e ^ x -1 4- • • • 4- ^2 eit—l 4- ftt+i

zk,p — hp_\Uk 4- /ip_2Wjt+i 4- • • • 4- Wjt+p-i 4- hLek-L+p- 1 4- • • • 

+hpek-\  4- njt+p-i

(a similar set of expressions for p > L can also be derived), where, for any j,

Ae} -  XLj -  Uj,

and from (3.2.10) and (3.2.13), Ek (3.2.5) is given for FIR channels by

Ek = [Ck-L^k-L+U-  • (3.2.15)

That is, for finite impulse response channels the components of Ek are just past 

decision errors. Equivalently, the components of Zk can be expressed as

L
~k, 1 — Vk ^   ̂hj XLk—j

j= 1
L

zk,2 = Vk+1 ^   ̂hjUk-j+\
j=2

L
zk,p — Vk+p—1 ^  ̂hjUk—j+p—1 « (3.2.16)

3 - V

This expression more clearly reveals the use of decision feedback. The set of equa­

tions (3.2.16) actually appears in [43] in relation to non-linear equalizers. This 

treatment, however, departs from that of [34, 43, 63] by developing an optimal deci­

sion procedure which does not require the assumption of high signal-to-noise ratios, 

and is able to cope with ARMA channel models.
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k = 0, 3, 6, 9, . . .

Figure 3-2: Three-input Block DFE.

The structure of a three-input (p = 3) block DFE for the FIR model (3.2.8) with 

a 3-input, 3-output decision device whose inputs are the z^j  is illustrated in

Fig.3-2.

3.2.4 Full-Blocking M ax im u m  A Posteriori Decis ions

We now use a maximum a posteriori (MAP), or equivalently, since we assume 

equiprobable iid input symbols [19], a maximum likelihood (ML) criterion, to de­

velop an optimum memoryless decision function T)p.p(-) with p inputs and p decision 

outputs for the block OFF. A MAP criterion is generally preferable because it min­

imises the mean error probability [6]. We stress that this is finite subsequence (length 

p) MAP detection and not the semi-infinite sequence estimation used in, say, the 

Viterbi decoder.

The vector Zk in (3.2.14) is the decision device input which incorporates feedback 

of past decisions. In designing the decision device we are free to assume that there 

have been no past decision errors, i.e., Ek = 0 in (3.2.6), and therefore that only the 

noise process Nk corrupts the “block cursor” DUit. We develop an optimal detection 

procedure subject to these assumptions.

The probability density of the white Gaussian noise process Nk 6 Elv is

Vn(Nk) = 1
(27r)p/2a P e

i
7^ N ! N k (3.2.17)
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where a2 is the variance. (Other noise distributions can be assumed provided they 

are independent [26].)

The MAP decision criterion demands we take as decisions those p data estimates

Ok  =  [wjfc, Uk + 1, . . U k + p - l } '

which associate with the given input vector Zk (3.2.5) the most probable candidate 

noise vector. In forming the decisions, we make the assumption of the absence of 

past decision errors (Ek = 0), t.e.,

Uk = arg max Pr(Uk = U\ Zk, Ek = 0) 
uzIBp

= argmax/MZfcl Ek = 0, Uk =u£mp Pr{Zk\ Ek =  0)
= argmaxp,v(^A: -  DU) Pr(Uk = U) (3.2.18)

u e ID p "---------- ----------- '^ —-—— —  ̂ constant
Maximum Likelihood

where ID =  {  —1, +1}. We use IDP to denote the set of vectors of dimension p  with 

binary components. The last line in (3.2.18) follows from the independence of Uk 

and Ek, and the observation that Pr(Zk\Ek = 0) is constant in the maximisation. 

Since the input data are uniformly distributed, this MAP criterion reduces to a ML 

criterion. This leads to our first theorem.

T heorem  3.2.1 ((p ,p )-D F E ) The memoryless decision function

Vp,p(‘) : Z k eIRp ^  Uk e IDP

which optimises the maximum a posteriori criterion (3.2.18) under the assumption 

that there has been no state estimation error (no past decision errors in the FIR 

case) is given for k = O.p. 2p__ _ by

Uk = Vp,p(Zk)

= arg min j \\Zk — DU\\2\  
ueIBp 1 J

where ||t>||2 denotes the l^-norm v'v, D is defined in (3.2.3).

(3.2.19)
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Equation (3.2.10) is optimum (in a maximum a posteriori probability sense) 

when a block of p decisions is to be made. A block DFE, operating on an ARMA 

channel, using (3.2.19) as its decision criterion will be referred to as a full-blocking 

block DFE or (p, p)-DFE. In the next part we examine what form the decision device 

takes if we wish to generate q (1 < q < p) decisions and advance the block processing 

in units of size q. (For example, decoding data in groups of size q is useful for block 

codes [49].) This will allow us to compare the technique with a related structure, 

“System 1” of [43].

3.2 .5  S lid ing-W ind ow  M axim um  A P osteriori D ecisions

We now determine the maximum a posteriori block-by-block decision procedure 

which generates q < p decisions from p inputs for the block DFE5. This is to be 

distinguished from the MAP detectors of [26, 27] which estimate sequences of data. 

Denote a block of q decisions as follows:

for q < p which optimises the maximum a posteriori criterion, under the assumption 

that there has been no state estimation error (no past decision errors in the FIR 

case), is given, for k = 0, q. 2q, . . . ,  by

The following theorem now applies.

Theorem 3.2.2 ((p,q)-D FE) The memoryless decision function

DP,q(-) : Zk e IRp ^  Uk e IBq

l'k = V p.q(Zk)

arg max < 
uzIBq

(3.2.20)

where D is defined in (3.2.3).

5When q =  1, the block DFE becomes a symbol-by-symbol detector.
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Figure 3-3: Block diagram of a (2,1)-DFE.

This theorem is proved in appendix C.l. We have assumed, for design purposes, 

that Eh is independent of both Uk and N^. Note that the above criterion involves a 

search over 2q candidates U, each of which involves a sum of 2p~q terms. We make 

some observations regarding this result.

Rem arks

1 . If q = p we have Theorem 3.2.1, as the notation suggests. Unlike Theorem 

3.2.1, (3.2.20) is not equivalent to minimising an /2 -norm (Euclidean distance) 

for q < p. Computationally, (3.2.20) is less attractive than (3.2.19).

2. Equation (3.2.20) is not invariant to scaling of the noise amplitude (except 

when p = <7), i.e., the optimal detector is a function of the SNR.

3. We can interpret (3.2.20) as a structure equivalent to some classical optimal 

symbol-by-symbol detectors coupled with decision feedback (which introduces 

error propagation), see section 3.4.3.

4. We refer to the block DEE using the decisions (3.2.20) as the (p, </)-DFE, and in 

particular, when <7 = 1, we have the sliding-window block DFE or (p, 1 )-DFE.

Fig.3-3 shows the structure of a (2,1)-DFE.

We indicate briefly the form of the block DFE when recursive (ARMA) channels, 

captured by (3.2.1), are to be equalized. The optimal decision function (also called 

a vector quantizer) V p<q(-) given in (3.2.20) remains the same, except we need to 

use the general D matrix in (3.2.3) rather than the special case (3.2.12). Strictly
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speaking, what we have is state estimation feedback rather than decision feedback. 

Hence, in an implementation, we need to take the decisions {ilk} and reconstruct 

the state estimate x^. From (3.2.1) this is easily accomplished recursively by

Jjt+i = Axk + bük (3.2.21)

which covers the case q = 1 . A block processing version of (3.2.21) may be used 

for q > 1 to generate Xk+q', then the next vector quantizer input is given by (see 

Fig-3-1)

Zk+q —  ̂k-\-q HXk-\-q

= Yk+q -  HFqx k -  IIGqUk (3.2.22)

from (3.2.5) where Uk is the block of q decisions, Xk is the previous state estimate, 

and Fq and Gq are the q (rather than p) dimensional analogues of the block processing 

matrices (3.2.3). This style of generalization of decision feedback to state estimation 

feedback can also be found in [10] and [44].

3.2.6 High S ignal-to-N oise  R atio  Behaviour

The next result examines the asymptotic behavior of the decision function T>Piq(') in 

the case of high signal-to-noise ratios. We refer to this structure as the high SNR 

(p, </)-DFE, or the p-input high SNR block DFE when q = 1.

Theorem 3.2.3 (High SN R  (p,q)-DFE) The (p,q)-block maximum a posteriori 

decision procedure (3.2.20) for k = 0, q, 2q, . . .  with q < p, asymptotically satisfies

V p,q(Zk) ~ [/, I 0 ] x argmin {||Z* -  DU ||2} G IDq as o -  0 (3.2.23)
UeIBp

where a2 is the noise variance, Iq is the q x  q identity matrix, 0 denotes a q x { p  — q) 

matrix of zeros, and D is given in (3.2.3).

A proof may be found in appendix C.2. So, in fact, V p<q(-) is obtained by taking the 

first q components of the T>pp(-) decision function (3.2.19) whenever the signal-to- 

noise ratio is sufficiently high. This result is of practical significance because a high
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SNR block DFE is computationally much simpler than its optimal counterpart— 

only simple operations (add, multiply, compare and select) are needed in the decision 

circuit. In fact, for a number of studies performed, the high SNR block DFE incurs 

only a marginal performance loss with respect to the optimum (section 3.3.5).

This asymptotically optimal structure is equivalent to “System 1” developed in 

[43] when the channel is FIR and <7=1.  We make the point here that the “tree- 

search” approaches of [14] and [13] assume the same quadratic cost function as [43] 

(equivalent to (3.2.23)) and, therefore, all three are equivalent. We delay further 

comparison until section 3.4.2.

3.3 Im p lem en ta tio n  E x a m p les

So far we supplied a general definition of the decision function V(-) in (3.2.7) and 

determined its optimal form P P((?(-) according to a maximum a posteriori criterion 

(3.2.19) and (3.2.20), including the high SNR case (3.2.23). We now attempt to 

make these decision procedures more concrete by determining explicitly the decision 

functions for low order cases on finite impulse response channels. We shall also 

present simulations which demonstrate the performance of the block DFE with the 

optimal and high SNR decision functions.

3.3.1 C onventional D FE

In the one-input case, p = 1, we have from (3.2.14)-(3.2.16) and (3.2.19) that

L

uelB j=i 
L

ue IB J = 1

That is
L

uk = sgn (yk - Y ^ h j Uk - j )  
j - 1

(3.3.1)

and so a (p, </)-DFE with p = q = 1 using symbol-by-symbol maximum a posteri­

ori decisions (3.2.19) is just a conventional DFE.



Key: Decisions

Figure 3-4: Decision regions for (2,2)-DFE, hi = 1.5.
The decision boundaries and corresponding decisions for the high SNR (2,1)-DFE may be
obtained by omitting the dashed lines in the figure and taking the first component of the 
(2,2)-DFE decision.

3.3.2 Two-Input  High S N R  Block D FE

We consider firstly the decision procedure ^2,2(0 for the (2,1)-DFE in the high 

signal-to-noise ratio case (3.2.23), and save the optimal realisation (3.2.20) for the 

next section. A realisation example for the (2,2)-DFE may be found in [15]. Since 

p = 2, the decision function Vp,q(-) has two inputs and one binary output. Assuming 

the past L decisions are correct, noise is absent and that ho = \,  the components of 

Zk in (3.2.19) are

Zk, 1 = Mjfc ; Zk, 2 = h\Uk + Mjt+1, 

so that the four possible noiseless, error-free values of Z* are

4-1 + i
Z++ -

4-1 4- h\
; z +_ =

— 1 4- h\

Z-+ =
-1

; z_ - =
-1

4-1 — h\ — 1 — h\

The decision function has as its input the corrupted signal Zk (3.2.16). It com­

putes the Euclidean distance between Zk and each of the above four points, assign­

ing a binary decision according to the minimum distance rule: ujt = — 1 if Z_+ or 

Z__is closest to Z^, u^ = +1 if Z++ or Z+_ is closest to Z*. In this way Zjt-
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Key: Decisions

Figure 3-5: Decision regions for (2,2)-DFE, h\ = 2/3.
The decision regions for the high SNR (2,1)-DFE may he obtained by omitting the dashed 
lines in the figure.

space is partitioned into two (polygonal) regions, each with an associated binary 

decision. The decision boundary is the set of points on the boundary of the two 

decision regions. Fig.3-4 shows the decision boundary for h\ = 1.5 (representative 

of hi > 1), and Fig.3-5 for h\ = 2/3 (representative of 0 < h\ < 1). Note that 

the decision boundary for a scalar DFE (3.3.1) is simply the line Zkt\ = 0. Simple 

geometrical arguments lead to the explicit formula for the decision device output 

which we state below without proof.

L em m a 3.3.1 The high SNR (2,l)-DFE operating on a finite impulse response chan­

nel with unit cursor ho = 1 has decisions given for A: = 0 ,1 ,2 , . . .  by

uk = sgn {sgn(/i) -I- sgn(/2) + sgn(/3)} (3.3.3)

where

11 =  h i Z k '2  +  z k , \  — h  i

/2 = h\Zk,2 + zk,\ + h\

h  = zk,i + {hi -  sgn(/»i))^,2.

Here /, = 0, i = 1,2,3 are the equations of the straight lines comprising the deci­

sion boundary. The above result shows that, like a conventional DFE, a two-input 

high SNR block DFE can be implemented using only tapped delay lines and hard
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limiters. We note that similar expressions exist for the decisions formed by the 

(optimal) (2,2)-DFE, and these may be found in [15]. Due to the assumption of 

correct past decisions, the decision function in Lemma 3.3.1 depends on the impulse 

response parameters ho and h\. For a general (p,q)-DFE, the decision laws depend 

only on {hk : 0 < k < p — 1}. Loosely speaking, this means the decision procedure 

for the block DFE effectively utilizes information carried not just by the cursor but 

by the first p impulse response values. However, for p > 2 the explicit form of the 

decision laws is very difficult to obtain (see section 3.3.4).

3.3 .3  T w o-In pu t S lid ing-W indow  B lock  D FE

The decision boundary for the optimal sliding-window block DFE (or decision bound­

aries for the (p, <7 )-DFE in Theorem 3.2.2) depend not only on the first p channel pa­

rameters, but also on the signal-to-noise ratio, and are generally curved, as we will 

see in this and the following example. We consider a FIR channel whose first two 

coefficients are ho = 1 and hi = 0.5 for this example. The (2,1)-DFE computes its 

decisions according to

uk = argmax g(zi, z2,u; h0,h\,(7), 
«€{-!,+!}

(3.3.4)

where

A ( (zi -  h0u)2 + {z2 -  hiu -  h0)2
g{zx,z2,u\ho,hi ,( j)  = exp i ---------------- -----------------------

f (zi -  h0u)2 + (z2 -  hiu + h0)2 \  , 0 0
+ exp <---------------- -----------------------> , (3.3.5)

and z\ and z2 are the components of the decision device input vector Z^. For a given 

channel and signal-to-noise ratio (which fixes the noise variance a 2), we choose a 

value for z2 and solve the following non-linear equation for z\

*21-1; fco» 0 (*i»*2»+l;fcoifci»<O = 0» (3.3.6)

using a Newton-Raphson iterative method. The set of points (Z\,z2) satisfying 

(3.3.6) defines the decision boundary for the (2,1)-DFE. Fig.3-6 shows the resulting
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Figure 3-ß: Decision boundaries for (2,1)-DFE.

decision boundaries in Z^.-space for a range of signal-to-noise ratios. Note that as 

the SNR increases the regions become the same as those of Theorem 3.2.3 (sim­

ilar to Fig.3-4), i.e., the boundary is effectively piece-wise linear for SNRs above 

about +20dB. It is also apparent that in the low SNR extreme (<  — 20dB), the 

decision boundary reduces to a straight line through the origin. This latter property 

is easily proved, but is of little practical significance and will not be elaborated.

3.3 .4  T hree-Inp ut High S N R  B lock D F E  E xam ple

As the dimension of the block DFE’s decision device increases, it becomes pro­

hibitively difficult to find explicit expressions for the decision procedure. This is 

true even in the high SNR limit, where the boundary is composed of (hyper)planes. 

The lack of such information hinders analysis, as we will see in chapter 4. We il­

lustrate this difficulty here by giving two visualisations of decision boundaries for 

the three-input, sliding-window, high SNR block DFE (3.2.23). The minimum dis­

tance decision procedure takes the first component u\ of the vector [u\, u2, u3]' which 

achieves the minimum

z\

Z2

1 0 0 «1

2

hx 1 0 u2

~3 «3

min
[«1 U‘2. 3̂]€ IB

1

(3.3.7)



Figure 3-7: Decision surface for high SNR (3 ,1)-DFE, h\ =  1.5, h 2 = 1.

where || • || is the Euclidean norm of «1 real vector, and the decision device input is 

Z'k = [2 1 ^2 2 , 2 3 ]'. We can obtain a mesh picture of the decision boundary surface 

for a given channel in the following way. We take a two-dimensional grid of points 

in the (z \ , Z3)-plane (say). For each grid point, we perform a binary search over a 

prescribed range of values, thus homing in on the point at which the decision 

changes sign. We are assuming, of course, that there is just one such change of 

sign for each grid point. Fig.3-7 and Fig.3-8 show the form of the decision surface 

obtained for the channels [/i0 = 1,/ij = 1.5, /12 = 1] and [ho = l yh\ = 0.5, /12 = 1] 

respectively. In both cases, the decision surface consists of 11 planar sheets, eight 

of which are semi-infinite. Clearly, the normal to each plane is determined by a 

pair of points from the set of eight points {DU \ U E ID3} with D as in (3.2.12), 

but discovering a formula akin to (3.3.3) for the decision surface remains an open 

problem. We turn in the next section to consider of the bit error rate performance of 

block DFEs, obtained by numerical simulation.

3 .3 .5  Perform ance C om parisons

In the preceding sections we detailed the theoretical development of a family of block 

DFEs. Our aim in this section is to give numerical performance examples of these
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Figure 3-8: Decision surface for high SNR (3, 1)-DFE, h i =  0.5, /i2 =  1.

equalizers and compare the results with those of the decision feedback equalizer and 

the Viterbi decoder. We will see that by varying the block size p, the block DFE’s 

performance can range between these two extremes, and that even relatively small 

values of p give considerable improvement over the DFE. Moreover, we will observe 

that the replacement of the optimal block DFE’s decision device by its high SNR 

manifestation (3.2.23) has only a small adverse efTect on performance.

Following [11], we consider the (1 -f z ~1)2 binary partial response signalling 

channel6 which is known to guarantee poor performance for the conventional DFE. 

The channel output is given by

Vk — uk + 1 + uk-2 + nk (3.3.8)

where {74} is a binary w /input data sequence, and 74. is a zero-mean white Gaussian 

noise sequence. The (p,r/)-DFE (3.2.20) and the high SNR (p,q)-DFE (3.2.23) were 

simulated for various combinations of p and q. Fig.3-9 shows simulation results (bit 

error rates versus SNR) for different block DFE realisations corresponding to the 

(p,<7)-pairs (arranged in order of implementation complexity): (1,1), (2,2), (2,1),

6IIere, z ~ l is the backward shift operator: z-1 u* =  Uk-i.
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Figure 3-9: Probability of error.

(4,1), and (6, 1) when used on the channel (3.3.8). All simulations include error 

propagation. The bit error rate for the maximum likelihood sequence estimator (us­

ing a Viterbi algorithm with a 30 sample delay, simulated over a minimum of 105 

points) is also plotted in the figure, and may be used as a reference for compari­

son with figure 7 in [11] (whose definition of SNR differs from ours by a constant). 

Clearly, as the complexity increases, the block DFE has performance ranging from 

the conventional DFE to the MLSE. In the section 3.4 we will explain these trends 

in terms of the respective decision criteria.

The differences between the optimal (p, 7)-DFE and the high SNR (p, <ji)-DFE for 

this channel are minimal. For this example channel the (p, 7)-DFE is numerically 

superior to the high SNR (p, r/)-DFE but only to the order of a few percent at 

OdB SNR. (For other channels the difference has been observed to be closer to 

5%.) This simulation substantiates the claim in [13] concerning the marginal loss 

in performance of high SNR approximations at least on some channels. In the next 

section we comment on the computational complexity of block DFE realisations, as 

this is one of the major factors governing the implementability an equalizer.
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3.3.6 C om putational C om plex ity

We have seen that the input dimension p of a block DFE can be increased to enhance 

its bit error rate performance. In this section we look at the complexity of particular 

block DFE realisations. By “complexity” , we mean the number of operations7 re­

quired to compute each decision output. This is really only a partial measure of the 

difficulty of implementation, as we are ignoring such factors as memory requirements 

and transfer of data during computation [64].

We restrict the present discussion to the (p, 1)-DFE and high SNR (p, 1)-DFE on 

a FIR(Z) channel with binary input. The high SNR decision function (3.2.23) for q =

1 involves an integer programming problem of generic complexity 2P (the number of 

candidate binary vectors). Let us count the maximum number of operations required 

in obtaining the decision uk (ignoring the structure of the matrices (3.2.11,3.2.12)). 

At the start of each block iteration k, the block DFE stores the received data block 

Yk (3.2.4) and the state estimate x k (3.2.13). The operation count is as follows: 2pL 

operations to compute Zk (3.2.5); 2p2 -f 2p — 1 operations for each of the 2P values 

of | |Zk — DU ||2, to which we add 1 for the comparison needed to find the minimum. 

The (maximum) total is then 2P2p(p-t- 1) + 2pL operations for one decision. On the 

other hand, the optimal (p, 1)-DFE requires (roughly) an additional £2P operations 

per decision, where (  is the number of flops required to find the exponential of a 

real number. All this indicates that the technique is unworkable if the p parameter 

is too large.

A recursive tree search algorithm is discussed in [13] which is computation­

ally competitive with the Viterbi algorithm and applicable to high SNR systems 

like (3.2.23). We infer that similar reduced-complexity algorithms exist for more 

general block DFEs (3.2.20). The alternative to such algorithms which give an ex­

act solution of an integer optimisation problem is the investigation of approximate 

decision schemes requiring substantially less computation with some loss in optimal­

ity of performance. Work along these lines has been undertaken in [34, 43] with the 

implicit assumption of high signal-to-noise ratios. The possibility of applying func­

tional representation techniques, such as multi-layer perceptron feedforward neural

7 “operation” means a floating point addition or multiplication, i.e, a flop.

68



networks [40], to approximate the decision criterion also suggests itself. An ap­

proach along these lines has been attempted for purely feedforward equalizers in 

[56], but application of these ideas to block decision feedback equalizers remains an 

open problem. Perhaps further investigation of the block DFE’s decision function 

may lead to a specific non-linear processing architecture as was achieved for the 

DFE in chapter 2. We leave these practical considerations for now and return to a 

theoretical discussion of the connections between the block DFE and other classical 

non-linear detectors.

3.4 R elationship to C lassical D etection

Our aim in this section is to reinforce further the methodology of block decision feed­

back equalization by considering its relationship to (i) maximum likelihood se­

quence estimation and (ii) minimum bit error rate detectors. Throughout, we confine 

the discussion to binary signalling on a FIR channel with additive white Gaussian 

noise.

3.4.1 V iterbi D ecod ing

Here, we establish the relationship between the MLSE optimal block DFE, firstly 

by comparing decision criteria, and secondly via a trellis-based interpretation. The 

MLSE (using the Viterbi algorithm) determines the semi infinite sequence of esti­

mates {uq, ui, U2 , . . . } which minimises the cost8

in which {u_i ,  2 , . . . ,  U-l } defines some arbitrary initial condition.

Similarly, the p = q block DFE (3.2.19) forms the length p vector of estimates 

{fit, ük+1 , . . . ,  lik+p-1 } that minimise the cost

(3.4.1)

J p  =  (Zk,  1 -  MJfc)2 +  ( Zk, 2 -  Wfc+1 -  h \ U k f  +  • • •

4---------1- ( Zp,k ^k-\-p— 1 h \ U k + p —2 * * * h p _ jU ^ )

8 In reality, the message length is finite.
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o o

Figure 3-10: Trellis interpretation of a three-input block DFE.

which, with the aid of (3.2.16), may be re-expressed as

A k + p - i  L

j „ = Y  ( «  -  «j -  • (3-4-2)
j = k i=l

By comparison with (3.4.1), we see that J v is essentially identical to a p-length 

window of the MLSE cost (3.4.1), with the exception that: (i) the past L decisions 

(Ok-1 , ük-2 , . ••, nk-iv] in (3.4.2) act as initial conditions at time k and are not 

necessarily the same as the corresponding terms in (3.4.1); and (ii) there is a trun­

cation to p terms in (3.4.2) rather than the infinite number of terms in (3.4.1). The 

MLSE and (p, <?)-DFE with q = p will generate identical estimates given matching 

initial conditions (at time k) and letting p —* oo. We delay comparison with the 

classical non-linear MAP probability detector until section 3.4.3.

3.4.2 Trellis Interpretation

The Viterbi algorithm is easily visualised in terms of a 2^-state trellis with associ­

ated quadratic metric (see description in appendix A.l). In this subsection we give 

trellis-based interpretations of the optimal block DFE decision procedures (3.2.19), 

(3.2.20), and (3.2.23) assuming FIR channels. (We will see that for the block DFE 

the metrics need not be quadratic.) In this setting, a clear comparison between the 

(p,r/)-DFE and the methods in [13, 14] is possible. We illustrate the decision rules 

for block length p = 3.

At time k, having L past decisions x.k in (3.2.13) corresponds to fixing a state in
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the trellis of Fig.3-10. For binary signalling there are only two possible transitions 

from each state. We have shown the 8 possible trajectories from Xk up to time A;+ 3. 

These form a tree structure with starting node Xk. Each trajectory corresponds to 

a different Uk € IB3 and has an associated total “cost” c, given, in the notation of 

section 3.2.4, by \\Zk — DUk||2. We remark for clarity that this sum of squares cost 

arises naturally in Viterbi decoding, the (p, p)-DFE and the high SNR block DFE.

The interpretation of (3.2.19) is that we select the 3 step path (and hence those 

3 decisions) that gives the minimum cost among {c, : i = 1 ,... ,8 } . The recursion 

then proceeds by advancing from k to k + 3 and we start afresh. Note that the 

conventional DFE would choose the one step trajectory (A or B in Fig.3-10) with 

the least incremental cost, as given by (3.3.1).

The high SNR decision rule (3.2.23) is obtained by taking the least cost 3 step 

path, in the same way as (3.2.19), but retaining only the first q E {1,2} steps. 

The recursion advances from k to k + q. Thus (3.2.23) is seen to be a receding 

horizon strategy, borrowing the terminology from optimal control theory [65], i.e., 

only a truncated version of the full optimal path (generated from (3.2.19)) is actually 

implemented. Under this framework one can see that the approaches described in 

[14, 13] are equivalent to “System 1” developed in [43], and all three are identical in 

action to a high SNR (p, 1)-DFE.

We now proceed to the optimal (p, <?)-DFE (q < p), and develop a trellis-based 

interpretation of the cost (3.2.20). Suppose q = 1 in Fig.3-10. The optimum (3,1)- 

DFE must decide between the one step paths leading to A and B. To do this, it 

computes the 2q respective aggregated costs

c.4 = X > - / ^  , cfl = £  e - ‘^ 2
t = l  t = 5

and takes the maximum, thus determining Uk. Whereas the tree-search algorithms 

of [13, 14] are essentially versions of (3.2.23), developed using a suboptimum metric, 

the optimal block DFE metric (3.2.20) in fact corresponds to the non-linear function 

of quadratic costs described above.
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3.4.3 M inim um  B it Error R ate  D etec tors

In the last section we saw that the (p, p)-DFE (with correct initial conditions) be­

comes an MLSE in the limit as p —► oo. We now look at two classical “minimum 

probability of error” detection criteria and examine the conditions under which the 

(p, <7)-DFE is recovered. The block DFE will be seen to have a central place among 

these detection methods. We let K  denote the total number of transmitted symbols 

and continue using our notation. The reader is referred to [27, 30, 31] for details 

on optimum non-linear receivers, and to [54] for a concise review of the relevant

The two detection strategies which, as we will show, are closely related to the 

block DFE are: (i) the sequential symbol-by-symbol optimum detector [30, 31] which 

minimises the error in detecting each symbol based on the entire received sequence, 

that is

and (ii) the detector [26] resulting from (i) when a fixed decision-delay constraint is 

imposed, with criterion

Recursive implementations exist for both of the above detectors.

In order to clarify the connection between (3.4.4) and the (p, q)-DFE when 9 = 1 ,  

we now adopt the decision feedback strategy xk = £jt, where xk is the state of the FIR 

channel given by (3.2.10). Noting that uk does not appear explicitly in yo, . . . ,  yk-i 

(by causality), and that the information these observations convey about the past 

inputs relevant to deciphering the value of uk is subsumed by the state, we are led 

to consider a modification of the MAP criterion (3.4.4) which incorporates decision 

feedback

literature.

arg max Pr(uk | y0, J/i, • • • ,  VK- 1 ); (3.4.3)

argmaxPr(ujt 1 yo, 2/1 , •••,  2/jfc+p-i).
u k e I B

(3.4.4)

= arg max Pr(uk \ Zk, Ek = 0) 
ukzIB
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=  Z>P.1 (Zk) (3.4.5)

where Zk = — / /? t  from (3.2.5). Therefore, the (p, 1)-DFE (3.4.5) arises from

(3.4.4) with the assumption of correct past decisions (decision feedback). In contrast 

to the tree-search algorithm [13], this derivation, which is easily generalised to the 

(p, <7)-DFE for q > 1, is not dependent on the signal-to-noise ratio.

Examination of (3.4.5) leads to the conclusion that the (p, 1)-DFE decision is 

asymptotically equivalent (as p —♦ message length K) to the optimum symbol-by- 

symbol detector (3.4.3), given matching initial conditions and in the absence of past 

errors.

3.5  E x ten s io n s

3.5.1 Non-Linear Channels

Modelling the transmission channel as a linear filter with additive Gaussian noise 

(3.2.9) may not be adequate for some physical channels. For example, telephone 

lines suffer from non-linear distortions of varying degrees [20]. Traditionally, in the 

finite impulse response case where the state is a vector of past inputs, the receiver 

design entails the expansion of the noiseless yk in a Volterra series [49]. This series is 

truncated, and a non-linear tapped delay line equalizer is developed using a minimum 

mean-square error (MMSE) criterion. We now investigate the applicability of block 

decision feedback equalization ideas to the equalization of non-linear channels. The 

channel model is assumed known at the outset, and we develop a suitable block DFE 

structure. Formal proofs are omitted as we aim only to convince the reader of the 

feasibility of the approach.

Suppose we have a causal non-linear finite-dimensional single-input, single-output 

system described in state-space by the non-linear equations

1 — / l  ( •££ 5 )

Vk =  9i(xk,Uk) +  nk, k  =  0, 1, 2, . . . ,

(3.5.1)
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for some deterministic functions /i(-) and gi(-), where Xk € IRn, Uk E IB, yk E 

/??, and n*. ~ Ar(0.<72). Furthermore, we assume that the sequence uk is iid and 

equiprobable. Such a model could describe the output yk of a finite-memory non­

linear channel with additive white noise nk fed by an input sequence Uk.

With the intention of arriving at a block processing description of the system, 

we form successive states and outputs by composition in the first argument

Z)t+2 = /l(Xjt+i, Ufc+i) = /i(/i(Xjt, uk) ,uk+i)

= f2(Xk,Uk,Uk+\)

Vk+\ = Sb(*ifc+1, Ujt+i) + ftfc+1 = 9l(f\(xk,  Wit), Wjt+l) + Tijt+1

= <72(̂ Ar, + njt+1. (3.5.2)

Proceeding analogously, after (p -  1) such steps, we obtain

fc+p

n-

Uki  • • Uk + p — 1 ) — f p ( % k i  I1 jt)> ^ — OiP? 2p, . . .,

92( %k i H k i  Uk-\-1 )
+ iVt  = Gp(xfc, ^ )  + Aft ,

Z7p( i Hk-\-p— 1 )

(3.5.3)

where Uk, Vfc and AT are defined in section 3.2.1, and /,(•) and </,(•) are defined for 

i = p,p — 1 ,.. .,2  by the backward recurrences

fi(Xk, Uk, • . •, Mfc+i-l ) — /i—1 (/»—1 ( f̂ci • • •, —2)» Uk+t — 1)

9 i ( %k i  Uk,  • • • , Uk +i  — \  ) — 9i  — l ( / i t  — ki  U k , • • • ,  Uk-\-% — 2 )* ^ f c + j  —1)?

with /i(-) and pi(-) as in (3.5.1). Thus, assuming the same initial conditions, the 

model (3.5.3) generates the same outputs as (3.5.1), but in blocks of size p.

In the philosophy of the block DFE development for a linear channel, we suppose 

a state estimate Xk is available at time k. How can we design a p-input, p-output 

decision device for this system? The non-linearity of f p(-) means that we cannot 

generally write Yk as a sum of block cursor, ISI and noise terms, as we did in section 

3.2.2. However, we can gain insight by reconsidering the (p, p)-DFE criterion V pp{•)
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(3.2.19). Recall that this decision criterion selects that Uk 6 2BP which minimises 

the squared magnitude of the vector Zk — DUk. First rewrite this using (3.2.5) and 

(3.2.6) as

Zfc -  DUk = Yk~  H x k -  DUk — Yk — Yk,

where Yk = Hxk + DUk is the estimated noiseless block channel output. We see 

immediately that the same objective may be achieved in the non-linear channel case 

by choosing Uk according to

Uk = arg min ||Vt -  Gp(xk,U'k)\\2, = . , ( 3 . 5 . 4 )
UkSB”

and these decisions can be used to generate the next state estimate via

$k+p = fp(xk,U'k).

A (p, 1)-DFE for the non-linear channel can be realised as in section 3.2.5, using 

the same design assumptions as before, namely: the input sequence Uk is iid and 

equiprobable; and Ek = Xk — Xk is independent of Uk and Nk at the design stage. 

We thus arrive at the sliding-window decision criterion for a non-linear channel,

Uk = argmin ^  v] ill  ̂ = 0 ,1 ,2 ,. . . ,  (3.5.5)
ueIB veIBp_1

with Yk and Gp(-) defined in (3.5.3). We can use

X k+1 — fl(Xki'U’k')

to generate successive state estimates. The proof that this result holds follows the 

same argument as the proof of Theorem 3.2.2, and is therefore not supplied. We note 

here that the block DFE for a non-linear channel has a non-linear vector quantizer 

and a non-linear filter in its feedback path. The non-linear feedback filter, which 

generates Gp(xk,U'k) from the current state and block input estimates, could be 

realised with a look-up table (random access memory) if (3.5.1) has only a finite 

number of possible states Xk. This is the case if the channel has finite memory. 

The reader is referred to [50] for more examples of feedforward equalizers for non-
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linear channels.

We continue describing possible extensions to block decision feedback equaliza­

tion in the next section, treating the case of quadrature amplitude modulation, 

and giving some examples of maximum likelihood decision device realisations for 

M -ary signalling.

3.5.2 Q uadrature A m p litu d e  M odulation

We first introduce the idea of an A/-ary signalling alphabet. This is a finite set of 

symbols of the form

M  =  { —Af + 1 ,-M  + 3 , . . . , - 3 , - 1 ,1 ,3 , . . . ,  A/ -  3, M -  1}, (3.5.6)

where M  is an even positive integer. For example, with A/ = 2, we recover the 

binary signalling set. Physical channels are two-dimensional and can support trans­

mission of information on two carriers that are 90° out of phase. Such an ar­

rangement is called quadrature amplitude modulation (QAM). The symbol set for 

QAM, called a constellation, is often a square grid of points in the complex plane 

C with centre of mass at the origin. For instance, a signalling set for 4-QAM is9 

{eJ7r/4, ej3?r/4, ej5?r/4, eJ ' . If all symbols in the QAM constellation have the same

magnitude, then the signalling scheme is termed phase-shift keying (or n-PSK, where 

there are n symbols). The previous example could therefore equally well be called 

4-PSK. For further discussion of QAM techniques, see [20].

In order to model both in-phase and quadrature channels, we adopt a chan­

nel model with complex coefficients. This approach has the advantage that the 

algebra is symbolically the same as in the real case. Preserving the notation of sec­

tion 3.2.1, we generate the complex channel output yk in response to the complex 

input sequence uk via

zjfc+i = A xk + buk

yk -  cxk + duk + nk, (3.5.7)

9We use j  =  yJ— \ .
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where x \t € Cn, {A, b , c , d } is a complex realisation and n* = + jn^ is a com­

plex Gaussian white noise process whose independent components satisfy n^,n[  ~  

N(0,o-2) and have identity covariances. The input signal Uk = + j u [  is such that 

u j u [  e M,  so that Uk E Q, where Q = {mi + jm 2 |mi, m2  E M }  is a square QAM 

constellation. The same block processing realisation (3.2.2) holds, recognising that 

the matrices {F, G, //, D } now have complex elements.

We now focus our attention on the form of the decision device. Assuming, as be­

fore, that both components of the input sequence u£ and u[ are iid and equiprobable, 

we can develop maximum a posteriori (or equivalently maximum likelihood) vector 

quantizers for the full-blocking and sliding-window block DFEs. The reasoning for 

the binary case carries over, the optimum decision device for the (p, p)-DFE being 

a “slicer"’ or nearest-neighbour quantizer, computing

Ük = arg min \\Zk -  D U ||2, (3.5.8)
ueQp

in which Qp denotes the set of vectors of dimension p with components in the QAM 

constellation Q, and ||A'||2 = A'* A" where A'* is the conjugate transpose of the vector 

X.  As before, Zk = Yk — Hik,  in which Xk denotes the (complex) channel state 

estimate obtained via (3.2.21). Similarly, as expected, the vector quantizer for a (p, 1)- 

DFE uses (3.2.20), replacing ID by Q (and invoking the usual design assumptions 

of independence).

We now give a concrete example of a decision procedure. We choose, for ease of 

visualisation, a high SNR (2,1)-DFE for quaternary (M = 4) signalling on a real FIR 

channel with first two impulse response coefficients ho =  1 and h\ = 0.3. As in the 

binary case, in the high SNR limit, the quantizer reduces to a minimum Euclidean 

distance metric, selecting its estimates as

Uk  =  [1,  0] X  a r g m i n
Z k ,  1 1 0 Ui

Ui
.  Z k ' 2  .

hi 1 «2

M  denoting the set {—3, —1 ,+ 1 ,+ 3 } . The two-dimensional Zjt-space is partitioned 

into 4 regions (Fig.3-11), corresponding to the 4 alphabet symbols. The deci­

sion boundaries consist of straight line segments which perpendicularly bisect pairs
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Quantiser Input Z_1

Figure 3-11: Decision regions for quaternary signalling.
From left to right, the respective regions correspond to the decisions u = —3, —1, 1, 3.

of points (displayed in the figure as “*”) from the set

1 0 

0.3 1

«1

u2
5 wi,w2 £

We mention in passing that a quaternary decision feedback equalizer would use a 

sheer with charteristic [21]

sgn(z -  1) + sgn(z) + sgn(z + 1),

where z is the scalar input to the sheer. It should be clear that the block DFE 

framework is well suited to the incorporation of quadrature amplitude modulated 

signals.

3.5 .3  C oloured N oise

In the sampling operation that occurs at the front end of an optimal receiver, a 

matched filter is used to ensure that no information is lost. Supposing the chan­

nel noise is initially white, after the filtering it will generally be coloured. A whiten­

ing filter [3] can be used to remove this colouration, further distorting the signal. 

This is a necessary measure in Viterbi decoding, since the minimum distance metric 

assumes whiteness. On the other hand, in block decision feedback equalization, we 

recognise that the problem of designing practical decision criteria necessitates some
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(small) loss in optimality. We have made certain “weak independence” assumptions 

in the design of the (p.p)-DFE, using the approximation

Pr(Zk I Ek = 0, Uk = U) = PN(Zk -  DU). (3.5.10)

In the (p, 1)-DFE design, we assumed that Ek was independent of Uk and Nk. 

These steps, although not rigorous (since weak correlations do arise through the use 

of decision feedback), result in practical detection strategies and should be seen as a 

compromise between implementability and optimality. With these remarks in mind, 

we now consider what form the optimal decision function for the block DFE could 

take in the presence of additive coloured Gaussian noise.

If there is correlation in the noise sequence, then the validity of assuming the 

independence of Ek and Nk will be weakened. Nonetheless, we can attempt to 

incorporate the colouration of the sampled noise process into the design in the 

following manner. We present this at a tutorial level only.

Denote by E the autocorrelation matrix of the noise sequence with elements <rtJ 

given by

The vector of noise samples Nk will then have an (invertible) p X p autocorrelation 

matrix Ep (the upper left p  x p submatrix of E) which is the same for all such Nk 

(assuming stationarity). The multivariate probability density of Nk is

<jxj — t  i nk+j —\ } . (3.5.11)

PN(Nk)  =
1 (3.5.12)

(2tt)p/2|Ep| 2

where | • | represents the determinant of a square matrix. We modify the (p,p)- 

DFE criterion by weighting the distance measure by E“ 1

(3.5.13)

where the vector norm ||.Y||y = X ' Y X  for some positive definite Y.  We can do the
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same with the (p, 1)-DFE criterion

uk = arg max { ^  e
" * e ®  v k£ B ”- '

- k \ \ Z k- D u k
Vk

' * ? } ■
(3.5.14)

This formulation makes the implicit assumptions 

Pr{Zk I Ukk Ek = 0) = pN{Zk -  DUk)

P r(^k — [wfr+i i • • • i uk+p—i] I Ek =■ 0) = P r ( \ k = [ujt+i, • • • i i] ),

for which we do not seek theoretical justification, but point out that, in the white 

noise case, such assumptions lead to practically realisable detection strategies that 

perform well. We add that in the high SNR coloured noise case, if we extract the 

dominant term from the maximisation in (3.5.14), the decision boundaries are still 

hyperplanes in Zjt-space. To see this, note that for a high SNR (p , 1)-DFE, a point 

Z  lies on the decision boundary if and only if the weighted norm \\Z — DU\\^-i is 

minimised by U\, V2 G IPP where U\ and U2 have distinct first components. In other 

words,

(Z -  D U , ) ' ^ \ Z  -  DU\) = ( Z -  DU2YE~1(Z -  DU2), (3.5.15)

which implies by symmetry of 1 that

UlD'Z-'DUi -  U!2D,'Z-l DU2 + 2Z,H~1 D(U2 -  Ux) = 0. (3.5.16)

But (3.5.16) is the equation of a hyperplane in Zjt-space. Thus, the effect of coloured 

noise is to tilt and displace the decision hyperplanes with respect to the white noise 

case.

3.5.4 A daptation

In the present formulation, we require explicit a priori knowledge of the chan­

nel model in order to implement the block decision feedback equalizer. This as­

sumption is generally unrealistic—physical channels tend to be unknown in advance 

and also time-varying. As mentioned in the section (1.1.3), the remedy is to make 

the equalizer adapt its internal channel model automatically—first to identify and
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then to track the actual channel parameters. An adaptive equalizer [6] often uses 

an initial (known) training data sequence and then, once the channel is identified, 

switches to a decision-directed mode, replacing the training sequence with its own 

decisions.

We treat the subject of adaptation of the block DFE by analogy with the con­

ventional adaptive decision feedback equalizer [36, 20]. For simplicity, we assume a 

finite impulse response channel with real coefficients and ignore the adaptation of 

the would-be feedforward filter which cancels the precursor intersymbol interference. 

We are assuming, then, that the true input sequence (and hence channel state) is 

known, and derive minimum mean-square error (MMSE) settings for the decision de­

vice and the causal multivariable feedback filter of the block DFE. The analysis 

applies equally to the (p.p)-DFE and the (p, 1)-DFE, with their respective optimal 

decision devices. Thus we define (in a notation consistent with section 3.2.2)

V *  =  Zk —  DUk

=  Yk — Hxk — DUk

= Yk -  U , (3.5.17)

where we have used (3.2.5), and defined Yk = Hxk T DUk> the hats denoting 

estimated variables.

The equalizer adapts its channel model h = [ho,. . . ,  hi]' to minimise the “noise 

variance” at the quantizer input

min£{llU||2} = £ { | | n - h | | 2} .

Let us rewrite Yk as

Yk

(3.5.18)

(3.5.19)
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where

hL h i - 1

n = o

ho

Si

o

ho

0

0
£  /r p * ( l + p) (3.5.20)

0 hL ho

and

Uk -  [ i i k- Li -  • - , U k - \ , U k , . . . , U k + p- \ ] '  G Z0L+P. (3.5.21)

We now need the following facts presented in the Lemma below (appendix C.3 

contains a proof).

L em m a 3.5.1 Let the input sequence {uk} to the channel be a stationary white 

random process with zero mean and unit variance. There holds10

L p

j=0 t= l
(3.5.22)

S {u'k'H’HUk} = tr H'H
L

= p £ f t? ,  (3.5.23)
i = 0

where fcj = £ {y*+i_i Wjt-L+j-i} for i = l , . . . , p  and j  = 1 , . . . ,Z  +  p, ttuf/i ?i, Z4 

as m (3.5.20), (3.5.21) and yk, Yjt as m (3.2.9) and (3.2.4) respectively.

Denoting the channel output autocorrelation matrix by

C = £ { Y kY{} E lRpXp

where C has components

Cij = <-• {Vk+i—1 Vk+j — 1 } i 1 — î j  — Pi

we have £ {Y^yjt} = tr C . Making use of the Lemma, we can express the MMSE

10tr A is the trace of the square matrix A.
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criterion as

£{||V*H2} = C { n 'n  -  2Yt'W7t + U'kH'HUk)
L p L

= t r C  —2 £ h L_j £ 0 ,,1+j + p £ A 2. (3.5.24)
j=0 « =  1 4=0

The minimum mean-square error tap coefficients are the values of hj for which

r\

-^-£{ ||V * ||2} = 0 , j  = 0 (3.5.25)

which yields the simple (batch) solution

1 P_1
hj = -  ^ 2  £ {yk+iuie+i-j} = 0, j  = 0 , . . . ,Z .  (3.5.26)

p  i=o

The block DFE under MMSE adaptation would thus use the tap settings (3.5.26) 

to form the {F, G, //, D} (3.2.2) matrices which determine the decision device and 

feedback filter. Unfortunately, in practice, we could not expect to realise this MMSE 

solution for lack of knowledge of the channel-input cross correlation. Instead, we 

try for an approximate solution. This is furnished by a stochastic gradient descent 

strategy [20], which essentially ignores the expectation in (3.5.18), and uses the (real 

time) iterative adaptation rule

ftj(*+  1) = h ( k )  -  ^ T ^ T T lIV tll2, = 0.......  , (3.5.27)
2 dhj(k)

in which h3(k) is the current (time k) estimate of the j th channel tap hj, and 77 is a 

small step size. We will now state the form this algorithm takes for the block DFE 

in the following theorem whose proof may be found in appendix C.4.

Theorem 3.5.1 (Adaptive Block DFE) Let Yjt be as defined in (3.2.4), ant1 

H, Uk as defined in (3.5.19). The stochastic gradient descent training algorithm 

for the adaptation of the parameters hj(k), j  = 0, . .  . ,L of the block DFE matrices 

D and H forming H (3.5.20) is given, for A: = 0,1,2, . . . ,  by

p~1
hj(k + 1) = hj(k) + p^Uk+i-jCk+i,  (3.5.28)

4 =  0
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where €k = yk — yk 25 the channel output noise estimate at time k and y^ defined as

L
Vk = ^  hi(k)uk-i. (3.5.29)

t=0

The block DFE, then, replaces the unknown ht, which parametrise its decision de­

vice and feedback filter, with their estimates hfik) and updates these according to 

(3.5.28) during the training phase. After training, the block DFE can use its own 

decisions 2*;, in lieu of the Uk in (3.5.28) automatically to track variations in the 

physical channel. For QAM signalling, the derivation of the adaptation algorithm 

proceeds analogously.

3.6 C o n clu sio n s

In this chapter, we have presented a natural generalisation of conventional de­

cision feedback equalization—the block DFE—based on a block processing chan­

nel model. For a fixed block size, we can distinguish two principal types—the full­

blocking block DFE ((p. p)-DEE) and the sliding-window block DFE ((p, 1)-DFE). 

The (p, 1)-DFE has superior performance to the (p, p)-DFE and requires more com­

putation, although for reasonably high signal-to-noise ratios its variant, the high 

SNR (p, 1)-DFE, offers comparable performance at reduced complexity.

We investigated the extremes in performance of the block DFE and showed 

how to recover the conventional DFE, the maximum likelihood sequence estima­

tor and the symbol-bv-symbol maximum a posteriori detector as special limiting 

cases. We demonstrated, using trellis-based ideas, the equivalence of earlier ap­

proaches in [13, 14, 43] with the high SNR block DFE. We discussed briefly is­

sues relating to computational complexity of block DFE decision device realisations, 

which is exponential in the block size. This indicates a need for finding simpler 

vector quantizers if the channel response is long compared to the sampling interval, 

even though substantial BER improvements over the DFE are obtainable for modest 

block sizes.

Concerning possible extensions, we maintain that the block DFE is a very flexible 

structure. This flexibility is a by-product of the separate design of the feedback filter
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and the decision device. The block processing model can be applied to linear and 

non-linear ARM A channels. The decision device can easily be modified to handle 

A/-ary signalling or quadrature amplitude modulation and even coloured noise. We 

showed that it is straightforward to incorporate adaptation into the block DFE 

structure, making it a viable practical scheme. We did not discuss the important 

aspect of coding, but suggest that the block DFE is naturally amenable to the 

equalization of block codes.

We have reserved any discussion of performance analysis for the next chapter. 

As in the analysis of the conventional decision feedback equalizer [23, 16, 17], it is 

a wise move to study first the performance of the non-adaptive (tuned) structure. 

This involves calculating or bounding the primary (noise-induced) error probability, 

the analysis of error propagation, error recovery times, and error probability en­

hancement due to error propagation. The feedback mechanism of the block DFE, 

while assuring its generally good performance, combines with the non-linearity of 

the decision device to make most analyses very difficult. For this reason, in the 

sequel we will only be attempting a performance analysis of the two-input ( p  = 2) 

block DFE on second order channels.
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C h ap ter 4

Tw o-Input Block D FE  - 

D etailed  Perform ance A nalysis

4.1 Introduction

There are many aspects that should be considered in evaluating a communication 

system. Some examples are the system’s sensitivity to various timing and phase 

errors and mistuning of parameters, its noise immunity, and the effects of finite 

precision arithmetic. All of these factors influence the eventual system’s performance 

and are reflected in the symbol error probability Pr(uk ^  Uk). Since we are treating 

the transmission of uncoded binary iid data, the symbol error probability is the same 

as the bit error rate and we will refer to these simply as the error probability.

As we mentioned at the end of chapter 3, the analysis of error probability in 

a non-linear feedback equalizer is not only a study of the primary (noise-induced) 

error probability, but also of the effects of feedback of decision errors (causing error 

propagation) which enhances the primary error probability. In our study of error 

propagation, we only treat the noiseless case. This has the virtue of simplifying the 

finite-state Markov process description—since the probability of a particular state 

transition is then just the a priori probability of observing a particular input symbol 

Pr(uk).

When we come to discuss the noiseless propagation of errors in the block DFE, 

we use a definition of stability that has appeared in the literature on decision feed-
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back equalizers [16]. Loosely speaking, we say that an equalizer (incorporating 

decision feedback) is stable on a given channel, or alternatively, that a channel is 

in the stability class for that equalizer, if there is no input sequence that can cause 

an indefinitely long stream of decision errors. On such channels, we can expect the 

equalizer to recover from an initial error condition in a “reasonable time” (in the 

absence of noise). We make these notions more precise in section 4.5.

In chapter 3, we introduced the block decision feedback equalizer by extending 

the concept of decision feedback equalization to many dimensions. There, we dealt 

mainly with aspects of design, various realisations and their simulated performance, 

and extensions of the technique. In this chapter, we will concern ourselves with 

the analysis of performance and stability of the two-input block DFE, which we 

review in section 4.2. The reason for treating only the two-input case is that, in the 

general p-input case for p > 2, no explicit expressions for the solution of the integer 

programming problem for the decision rule (3.2.20) have been found. We reiterate 

here that an exact decision rule can be written down for the (2,2)-DFE, whereas 

this rule is only an, albeit good, approximation for the (2,1)-DFE (3.3.3), valid for 

moderate signal-to-noise ratios. We also restrict the stability discussions to first 

and second order channels. Firstly, this constrains the complexity of a finite-state 

Markov process based analysis (relying on the independence of the input sequence to 

the channel). Secondly, the results are easily interpreted and visualised graphically.

Our analysis of the two-input block DFE splits up into three broad categories:

1. Primary error probability analysis.

2. Sufficient conditions for error recovery.

3. Necessary conditions for error recovery.

A primary error is a decision error caused by channel noise. The analysis of such 

errors is commonplace in the equalization literature and assumes that there have 

been no past decision errors, ignoring the possibility of error propagation which 

may occur regardless of the signal-to-noise ratio. We will give an example of this 

kind of analysis applied to a high SNR (2,1)-DFE, on a first order channel (section 

4.3), yielding the error probability as a function of the signal-to-noise ratio. We 

take a direct approach, using knowledge of the block DFE’s decision boundary to

87



express the primary bit error rate as a definite integral. This is unconventional— 

many authors prefer to use the union bound [3], which is essentially a trellis-based 

approach (see [13], for example), to bound the primary error probability.

Error recovery analyses concentrate on the existence of certain undesirable or 

pathological input sequences which may generate bursts of decision errors. We seek 

conditions on the parameters of the finite impulse response channel that preclude this 

behaviour in the absence of noise. We look firstly at sufficient conditions derived 

from considerations of the noise immunity of the decision device. This leads to 

eye conditions which we present in section 4.4. We establish the stability class of 

second order channels for the (2,2)-DFE and (high SNR) (2,1)-DFE in section 4.5. 

These conditions are necessary and sufficient for the two-input block DFE to have a 

bounded noiseless error recovery time (or a short expected error recovery time). The 

complexity of this analysis, however, would seem to prohibit generalisation to longer 

channels or higher dimensional block DFEs, although it is applicable in principle.

4.2 The Two-Input Block DFE

Before proceeding with the error probability analyses, we rederive the two-input 

block DFE model, mimicking the treatment in chapter 3. We assume a finite impulse 

response channel with unit cursor1 ho = 1 and coefficients hi (i = 1 The

input to the channel is a sequence of independent random variables {ujt}£L0, where 

uk takes values in ID = { - 1 , - f l }  with equal probability2. The channel output at 

sampling instant k, corrupted by zero-mean white Gaussian noise nk with variance 

er2, gives the received signal

L
Vk = + hjUk-j + nk. (4.2.1)

j = i

Defining the channel state xk as the vector of the last L channel inputs,

Xk = [ujfc-L»Wfc-L+1» • - - ,  Mfc—l]7 €  IBL

1 Again, as in section 3.2.3, we are assuming that the precursor ISI has been removed by linear 
equalization.

2Equiprobability is not an essential assumption.
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where x' denotes the transpose of x, we can express the system in state-space form

x;.+i = Axk + buk, k = 0 , 1 , . . .

yk = cxk + uk -f nk (4.2.2)

where

/I
0 I L-1

0 0
6 [̂ L* • • • > 2̂> M (4.2.3)

and where In is the identity matrix of order n and 0 is a matrix of zeros of the 

appropriate size.

We now form a block processing realisation of block length p = 2 for (4.2.2) by 

defining

Uk = [uk,u k+1]', Yk = [yicVk+i]', Nk = [nk,nk+\]', (4.2.4)

then

%k-+2 = Fxk + GUk, k = 0 , 2 , 4 , . . .

Yk = H xk + DUk + Nk,

where, like (3.2.2) with p — 2,

or

F
0 / l-2

0 0

0

h
if L > 2

F = 0 ; G 0 II if L < 2

(4.2.5)

and

/?3 /l2

1 0 

/î  1
(4.2.6)

and we define /u- = 0 if k > L.

In analogy to the DFE, DUk is the direct term of current channel inputs for 

decoding (acting as the block cursor), Hxk contains past input terms and acts as
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the tail of the intersymbol interference.

The block DFE (Fig.3-3) assembles its past decisions in a state vector estimate 

xk = [uk-L,  . • •, Uk-1]/ with which it attempts to cancel the Hx k term at the decision 

device input

Zk = = Yk -  Hx k = + HEk +  (4.2.7)

where

Ek = xk -  xk (4.2.8)

is the state estimation error.

On the assumption that past decisions are correct (Ek = 0), the input to the 

memoryless decision device is ISI-free and in a from suitable for vector quantization. 

Since the block length p = 2, there are two possible maximum a posteriori deci­

sion device strategies: the full-blocking (2,2)-DFE, producing two input estimates, 

and the sliding-window (2,1)-DFE, producing one estimate per iteration. The (2,2)- 

DFE computes its decisions via

Uk = = arg min \\Zk -  DUk\\2, (4.2.9)
ukelB2

using (4.2.5) to generate successive state estimates. The optimal (2,1)-DFE uses a 

sum of exponentials criterion like (3.2.20) which, in the moderate to high SNR case, 

reduces to the high SNR (2,1)-DFE criterion

uk = [1, 0] X argmin \\Zk -  DUk\\2, (4.2.10)
ukeIB2

with D as in (4.2.6), obtaining Xjt+i using (3.2.21). In this chapter, we will assume 

the block DFE is operating under a minimum distance criterion. This is optimal 

for the (2,2)-DFE but a high signal-to-noise ratio approximation for the (2,1)-DFE. 

We are therefore assuming that the decision boundary is piecewise linear for the 

purposes of the analysis.

Geometrical arguments yield the explicit solutions to the minimisation in (4.2.9)

uk = sgn{sgn(/i) + sgn(/2) + sgn(/3)} (4.2.11)
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Ü k + X  = sgn{sgn(/4) + sgn(/5) -  sgn(/*i) sgn(/3)} (4.2.12)

in which

— h i z k ,2 + z k, i  — h \

I2 = h \ Z kl2 + z k,\ +  h \  

h  =  (J*i ~ sgn(hi))zk,2 + Zk,\

U  = z k,2 +  h \  ; /5 =  ĵt,2 -  h \ ,  (4.2.13)

for the (2,2)-DFE (k = 0 ,2 ,4 ,...)  and by (4.2.11) for the high SNR (2,1)-DFE (k = 

0 ,1 ,2 ,...)  (see Lemma 3.3.1). The decision boundaries for h \  = |  are shown in 

chapter 3 Fig.3-5.

We can equally well write the decision rules (4.2.11)-(4.2.12) in a piecewise form

uk Sgn(/?i£fc,2 + z k, l), \h\Zk,2 + z k,\ I > \h i \

sgn(/3), + z k, i \  <  |/*i|
(4.2.14)

Sgn(2*f2), I z k,2 1 > |^l|

-  sgn(ht ) sgn(/3), \zka\ < |/ii(
(4.2.15)

This results from the observation that the decision regions depend on the strips 

formed by the pairs of parallel lines l\ = 0, I2  = 0 and I4  = 0, I5  = 0 in (4.2.13). This 

alternate representation will be useful when we determine the finite-state Markov 

process corresponding to a particular channel class in section 4.5.2.

4.3 Prim ary Error Probability Exam ple

Determining the error probability of a non-linear equalizer is a hard problem in 

the sense that exact solutions often cannot be found. The conventional method for 

trellis-based detection algorithms, such as the Viterbi algorithm and its variants 

[11, 13, 14, 19], is to make the simplifying assumption that there have been no past 

decision errors, then to find a bound on this primary error probability. These anal­

yses use the idea of an error event, which is a sequence of incorrect state transitions 

in the trellis. The probability of error is the probability of the union of the various
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error events, which is upper bounded by the sum of their individual probabilities 

[19]. This union bound is dominated at high signal-to-noise ratios by the mini­

mum (Hamming) distance error event. Although this method works well for the 

Viterbi decoder, the effect of past decision errors on the error probability is more 

pronounced w'hen decision feedback is incorporated. This is the case in most of the 

simplified Viterbi schemes. As we will see later, error propagation in a block DFE 

can easily double the primary error probability.

The style of analysis presented in this section differs from the trellis-based calcu­

lation in that we compute the primary error probability directly, using knowledge of 

the decision boundary’s geometry. We assume piecewise linear decision boundaries, 

but otherwise the calculations are exact. As we saw in section3.3.5, the optimal deci­

sion device typically performs only slightly better than its high SNR approximation.

The primary error probability of the (p, 1)-DFE on a particular channel (and for 

a given SNR) is defined as

V0 = Pr(u ± uk I A),  (4.3.1)

where the conditioning A  is indicative of the assumption of no past errors, i.e., 

Uk-i = Uk-X Vi > 0. Applying Hayes’ rule, we have

V0 = £  P r ( u ? u k \ A , u k = a)Pr(uk = a)
ae lB

= X- Pr{uk = - \ \ A , u k = \ ) + X- P r ( u k = \ \ A , u k = - \ )  (4.3.2)

by equiprobability of the input sequence {uk} (the conditioning on the symbol prob­

abilities is redundant). As a preliminary example, let us compute this quantity for 

a conventional decision feedback equalizer, whose decisions are given by (1.2.1). In 

the absence of past decision errors, the DFE’s output is just (assuming ho = 1)

uk = sgn(ujt + njt), (4.3.3)
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so that

^o(DFE) -Pr(sgn(w A; + nk) = l \ uk = -1 )

+ -Pr(sgn{uk + nk) = -1  I uk = 1) 

=  ^Pr(nk > l) + ^Pr(nk < - l ) . (4.3.4)

Now, assuming that nk ~ N(0,cr2), we have

r°° l  - t 2 i
Pr(nk > 1) = Pr(nk < -1 )  = J -j===e ^ d t  = Q(~),

y/2'Kcr2

where Q(-) is the complement of the cumulative normal distribution function

(4.3.5)

Q(x) = j H  'i‘2dt. (4.3.6)

Hence, from (4.3.4). the DFE’s primary error probability is just

T’o(DFE) = = Q ( i) .  (4.3.7)
Z <7 Z O <7

Turning again to the two-input block DFE, the computation is complicated by 

the non-linearity of the decision device and its dependence on the channel (we are 

assuming the high SNR case, so there is no dependence on a2). The decision de­

vice inputs are (with ho = 1)

Z\ =  Zk,\ = uk + nk

Z2 = Zk, 2 = uk+i + hiuk + n*+i, (4.3.8)

and the joint probability density of the vector N k (4.2.5) of iid noise samples is 

decomposable as

P.v(AT) = Pn(nk)pn(nk+l) = PN{n\,n2), (4.3.9)

where

Pn(m) =
V'2t (t2

— m
e 2<r2 a2 =  Var(ujt). (4.3.10)

93



Applying Baves’ rule, we condition on the four possible values of Uk, obtaining

Pr(uk ± Mfc I -4) = Y2 P p{uk = at I A , u k = - a , u k+l = ß)
aelB ßelB
xPr (uk = a)Pr(uk+i = ß), (4.3.11)

where we have used the independence of {ujt} and causality to remove the condi­

tioning on the a priori symbol probabilities (which are assumed equiprobable). We 

first investigate a symmetry property, pertaining to the high SNR (p, 1)-DFE deci­

sion rule, that will simplify the calculations.

Property 4.3.1 (Sym m etry of Decision Rule) Suppose that the decision device 

input Zk — Z\ E IRP to the high SNR (p, \ )-DFE results in the decision uk = ux E IB. 

Then when Zk = — Z\, the corresponding decision is uk = — u\, where U\ is the first 

component of U\.

Proof: Let U = Ux minimise \\ZX -  DU\\2. Then || - Z x -  DU\\2 = \\ZX -  D {-U )\\2 

is minimised by — U — U\ or U = — U\.

□

R em arks

1. If a point Z lies on the decision boundary, then so does its reflection in the 

origin —Z.

2. The same symmetry property applies to the optimal (p, <?)-DFE with decisions 

given by (3.2.20).

Now define the following regions in connection with the (2,1)-DFE with decision rule 

X>2,i(-) : JR2 —► IB given by (4.2.10)

n+ =  {z e m 2I 2,,(Z) = +i}

W- =  {Z6 IR2I I > 2 , i ( Z )  = -1} . (4.3.12)

Property 4.3.1 implies that Z\ E - Z \  E H - .  We have not specified the

decision device’s output for a point Z lying on the decision boundary, but this is

94



unimportant since the latter is a set of Lebesgue measure zero in Zk-space and will 

have no contribution to the probability of error due to noise.

Consider one of the conditional probabilities in equation (4.3.11). Using (4.3.8) 

we have (using the subscripts 1 and 2 in place of k and k 4- 1 for the components of 

both Zk and Nk)

Pr(uk = -1  I A , u k = l , u * + i  = 1)

= P r(Z  = [zx, z2]' G H - I z\ = rii + 1, z2 = n2 + 1 + hi)

= P r ( - Z  E H+ I z\ = rii +  1 ,z2 = + 1 + /*i), by Property 4.3.1

= Pr{Z  E H+ I z i = -ri! -  l , z 2 = ~ n 2  -  1 -  hi)

= P r (Z  E I Zi = n\ -  1, z2 = n2 -  1 -  /ii)

= Pr(wfc = 1 I = -l,Ufc+i = -1 ) ,  (4.3.13)

having used the symmetry of the noise density. The upshot of this is that only two 

of the four terms in (4.3.11) are distinct. From here, it is a straightforward but 

messy step to write down the expression for the primary error probability. This may 

be found in appendix D .l. As an illustration, wre go through the computation for 

the special case of h\ = 1. This case is a representative “bad” channel in respect 

of giving a relatively high simulated error probability over the class of first order 

channels (normalised to have the same energy).

When ho = 1, h i = 1, the decision region for Uk = — 1 can be represented as the 

union of the three disjoint sets below (see (D.1.1) in appendix D .l),

Consequently, we find from (4.3.11) that the primary error probability is

H\ = { (z i ,z2) E IR2 I 1 < z2 < oo ,-oo  < z\ < 1 -  z2}

H-2 =  {(zi, z 2 ) G IR2 I -  oo < Zi <  0, -oo  < z2 <  1}

Hz = {(*1 , z2) E IR2 I 0 < zi < oo, -oo  < z2 < - 1  -  z i) .

2Vo

(4.3.14)
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Signal to N one Rauo (dH)

Figure 4-1: Bit error rates with and without error propagation.
The curves are (from top to bottom): the simulated error probability for the DFE; the
simulated error probability for the (2,1)-DFE; the theoretical bounds and simulated primary 
error probability for the (2,1)-DFE.

where p/v(-,-) is given by (4.3.9). This is expressible more compactly as

I l f  1 Q 'I 1 roo f
Po = 5Q(-)  1 - Q ( - ) - Q ( ~ )  + 5  /  Q(-)p„(t)dt  +

2 o  y <7 a  J 2 J \ a
I f 0 0  /  4 - 9  I f 0 0  4  —  t

r j  Q( —  )Pn(t)dt + ± ------)Pn(t)dt . (4.3.15)
2 J-oo o  2 h  °

V v

I 3

In addition, the first two of the three integrals above reduce to

roo * i i
/  Q(-)l>n(t)dt = - Q \ ~ )  (4.3.16)

J \  O  2  0

r ° °  1 4-  2 1 \/2
/  Q( — )Pn (t)dt = - Q ( - ) ,  (4.3.17)

J-oo  0  2 O

whereas we can obtain simple bounds on the third as

<?(-)<?(-) < *3  <<?(-)■ (4-3.18)o o  o

These results are derived in appendix D.2. We combine (4.3.15-4.3.18) to obtain 

upper and lower bounds on the primary error probability. These have been plotted 

in Fig.4-1 together with the corresponding curve (4.3.4) for the DFE. Fig.4-1 also 

shows the performance curves for the high SNR (2,1)-DFE with and without error 

propagation (simulated over a minimum of 106 points). The BER curve for the
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DFE (simulated over 10h points) has been included as a reference. The bounds 

are indistinguishable for this range of signal-to-noise ratios, and coincide with the 

simulation. Clearly, the enhancement of the primary bit error rate through error 

propagation is a significant factor in both the (2,1)-DFE and the DFE. We will 

return to this point in section 4.5.

4.4 Sufficient Conditions for N oiseless Error Recovery

4.4.1 Eye C onditions

Recall that a correctly tuned decision feedback equalizer, in the non-adaptive mode, 

produces its decisions according to

uk = sgn (uk + rk + riit),

Tk —  ^  ^ h j ( U k - i  Uk —i )  
i =  1

represents the residual intersvmbol interference after decision feedback. Clearly if 

the channel parameters are such that \rk\ < 1 for all fc, then a decision error can 

only be caused by noise (although the ISI can still detract from the noise immunity­

making the occurrence of an error more likely). Channels satisfying a condition of 

this type are known as open eye channels for the DFE. We say alternatively that the 

channel parameters satisfy an eye condition [20]. On such channels, all errors are 

noise-induced and error propagation cannot occur. In the absence of noise, the DFE 

is guaranteed to recover from an initial error condition in a finite number of steps 

(of the order of the channel length). Eye conditions for M-ary decision-directed 

equalizers may be found in [21]. We consider the problem of deriving eye conditions 

for a high SNR (2,1)-DFE operating on a second order channel [fio = 1, /ii, /12] in 

this section.

In the absence of noise, the decision device input Zk is given by

2 *. 1 1 0 uk h2 hi ejk-2
+

k̂,2 h\ 1 Ufc+i 0 h2 ejt-i
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An eye condition will be satisfied in this case if the magnitude of the residual 

block intersymbol interference is always less than the minimum distance to the 

decision boundary, rmjn, or

2

<  r m i n ( M i  Vejfc_i,ejfc_2  € IE (4.4.1)

where the notation indicates the dependence of the minimum distance on the chan­

nel parameter h\.

The decision boundary in the high SNR case is composed of three straight lines 

in Zfc-space

h 2
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h : hi(z 2 -  1) + z\ -  0 (4.4.2)

h (/i! -  sg n (/ii))^2 +  zi =  0 (4.4.3)

h hi(z 2  +  1) + z\ = 0 , (4.4.4)

where Zk = [ z \ , z $  is the decision device input. Recalling the reasoning of section 

3.2, the intersymbol interference (and noise) has the effect of displacing the processed 

received signals Z from their natural positions given in (3.3.2). Equation (4.4.1), 

then, simply expresses the condition that these displacements can never alter the 

decision, assuming that the block DFE is tuned in the usual sense.

We now turn to computing rm\n(h\). By symmetry, we need only consider the 

distances from Z++ and Z+_ (3.3.2) to the decision boundary. The minimum of 

these distances will determine rmm(hi). Let us label the point of intersection of 

lines /i and I2 by Pi and of I2 and I3  by P2 . These have respective co-ordinates

[M l ~ h\ sgn(/?!)),/ii sgn(M ]' and [M ^i sgn(M  ~  1)> - h i  sgn(M l'-

We also denote by r/(-, •) the Euclidean distance between two points or the perpen­

dicular distance between a point and a line (depending on the arguments which 

appear). Defining r+(/?i) and r_(/ii) as the minimum distances from Z++ and Z+_
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to the decision boundary respectively, we have by definition

^min(^i) =  m in{r+ (/ii) ,r _ (/i! )} . (4.4.5)

It is clear from the geometry (see Fig.3-5, for example) that Z++ is always closer to 

/ 1 and / 2  than to /3 for any h\,  as Z+_ is to /2 and /3. This says that

M M  — min{d(Z++ , / 1 ), d(Z++, P i), d(Z++, / 2)}

M M  = m in{d(Z+_ , / 2),d (Z +_ ,P 2),d (Z +_ , /3)}.

But these distances are easily computed as

rf i ( f t i )  =  d(Z++,h) = i]l  + h\

d2(ht ) = d(Z++,P,) = ^ (1  -  /*! + sAj)2 + (A,(s -  1) -  l )2 

dj ihi )  — d(Z++, l2) — (1 + (hi — s)(hi +  1) /  ^ /l +  (hi - s )2 

d4(hi) = d(Z+_ J 2) =  (1 + (hi -  s)(hi-  1) /  +  (A, -  «P

rf5(/>i) =  rf(Z+_, P2) =  \ / ( - l  -  A, +  sA2)2 +  (A, ( 3  +  1) -  l ) 2 

d6(hi) = d(Z+_ , l 3) = f l  +  A2,

where 5  =  sgn(hi). Furthermore, direct comparison of these distances, as a function 

of h\,  allows us to write

and

MM  =

MM =

MM> / ll  >  /?i

MM> 1 <  Äi <  ä ;

M M » - 0 . 5  < / ? ! < !

MM> kO01V
I

-e

d 4 (h i ) , h x >  0.5

MM> - 1  <  h i  <  0.5

MM> - h *  <  h i  <  - 1

MM» hi <  - h j

where h\ ~  1.5437 is the positive real root of the equation hf — 2h\ +  2/ii — 2 =  0.
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—  distant* from (1, h i ♦ 1]

----- distance from (1, hi • 11

Figure 4-2: Minimum distance to the decision boundary.

Figure 4-3: Open eye region (starred) for high SNR (2,1)-DFE.

The above functions are plotted in Fig.4-2. Taking the minimum, as suggested by 

(4.4.5), gives

^m in (  h  1 )

\ J + 2/ii -f 2,

< \Jh\+ 1,

y jh \  — 2/i i +  2,

hi < - 0 . 5  

|/ i, |  <  0.5 

/t, > 0.5.

Notice that rinm(/ij) > 1, vvliereas rmin =  1 for the DFE. This indicates that the 

block DFE has better noise immunity than the DFE. We now apply the eye condition 

(4.4.1) for the eight non-zero choices of [e^_2 , cjt-i]/ G IF!2, each of which defines 

a region in ( /i i , /^-channel space.(For Ek = [0,0]', (4.4.1) is trivially satisfied.) 

The intersection of those regions defines the class of channels for which the eye 

condition for the high SNR (2,1)-DFE is satisfied. This is the lozenge-shaped region 

surrounding the origin in Fig.4-3. We remark that this is only a sufficient condition
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for error propagation to be absent in such a block DFE, and is liable to be fairly 

conservative. As a comparison, the corresponding region for the DFE is shown 

dashed in the figure. (This is the intersection of the regions + /i2e)fc-2| <

1; ek- \ , ejt- 2  £ IE], or the /x-ball |h\| H- |/i21 < 2 •) We W1̂  be considering in the next 

section necessary and sufficient conditions that guarantee noiseless error recovery of 

the block DFE in a finite time in the next section.

4.5 N ecessary C onditions for N oiseless Error Recovery

A full error probability analysis of the block DFE must include the important ef­

fect of error propagation. The approach taken here, based on finite state Markov 

processes, follows similar lines to the error analysis of the tuned DFE in [23]. We 

consider the recovery of the block DFE from an initial error condition in the absence 

of noise. This is complementary to the calculations of section 4.3 in that a complete 

performance analysis should account for both noise-induced errors and their prop­

agation. The key assumptions are the statistical independence of the binary input 

sequence to the channel and the fact that the decision device is memoryless. Under 

these assumptions, an analysis of the dynamics of error propagation in a block DFE 

in terms of finite-state Markov processs is possible. The noiseless assumption is by 

way of simplification and is inessential. The inclusion of noise into the analysis is 

possible once the noiseless case has been solved, and we sketch the required steps in 

the appendix, using a DFE on a first order channel as an example.

4.5 .1  F in ite  S tate  M arkov P rocess D escrip tion

In modelling error propagation in a block DFE the quantity of interest is Ejt (4.2.8). 

A non-zero entry in Ek indicates that a decision error has occurred in the last L 

time instants (due to a noise spike, for instance). We wish to track the progress of 

this initial error as it is propagated around the feedback loop of the block DFE.

For a two-input block DFE with decision function Vpq(•) (3.2.20), operating on 

a finite impulse response channel, the decision error vector (4.2.8) evolves by shift
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register action (c.f. (2.3.3)) via

Ek+\
0 1 

0 0
Ek +

0

Uk -  E>2,\(DUk + HEk + Nk)
k = 0 ,1 ,2 ,. . . ,

in the sliding-window case, and via

Ek+'i — L k — ^ 2.2(DUk + HEk + Nk), k — 0 ,2 ,4 ,. . . ,

(4.5.1)

(4.5.2)

in the full-blocking q = 2 case. Some initial error condition, arising at time k = 0, 

is responsible for the initial error state Eq of the block DFE. We assume that subse­

quent errors are due to error propagation alone and hence set the noise Nk to zero 

in (4.5.1) and (4.5.2)—which is basically a high signal-to-noise ratio approximation. 

If we further assume that D(-) is a memoryless decision function and that {u^} is 

a sequence of independent binary random variables, then we can label Ek as the 

state in a finite state Markov process model of the block DFE. The FSMP for a 

given channel is determined by its initial state distribution and the set of transition 

probabilities between its states (which we will define shortly). These transition prob­

abilities are easily obtained if we assume equiprobable input symbols.

The zero-error state Ek = [0 ,...,0 ] ' = 0, corresponding to a succession of L 

correct decisions, has special status in the FSMP. We see from (4.5.1) and (4.5.2) 

that when Ek = 0, then Ek+q = 0, since we must have V pq(DUk) = (Iq | 0)Uk, in the 

absence of ISI and noise, for any sensible decision device. This means that Ek = 0 

is an absorbing state of the FSMP for any channel. Thus, in the absence of noise, 

once the system reaches the zero-error state it stays there.

Definition 4.5.1 (Error Recovery) We say the block DFE has recovered from 

error once it reaches the zero-error state, and define the error recovery time R as 

the first time k = R such that Ek = 0 (assuming that Eq ^  Oj.

We would like to determine the statistics of the error recovery time for the block 

DFE on a given channel and whether there exist any input sequences that would 

prevent its recovery from an initial error condition. This last question will lead 

us in section 4.5.2 to necessary (and sufficient) conditions on the parameters of a 

second order FIR channel that guarantee error recovery. That the concept of error
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recovery is well-defined is a consequence of the reachability of the zero-error state. 

This means that we can always find an input sequence {uk}^Io which drives the 

system to the state Er = 0 in a finite time R, regardless of its initial state. This 

property is demonstrated for the high SNR (2,1)-DFE in appendix D.3.

Since Uk is binary, each component e^-, of Ek has only three possible values: 

ek-i £ { — 2,0,2} = IE, so there are 3^ Ejt-states in the FSMP. We can roughly 

halve the number of state transitions to consider, and therefore facilitate the error 

recovery analysis, by observing the following simple property of the FSMP.

Property 4.5.1 (Sym m etry of Finite State Markov Process) On a given FIR 

channel [ho, . . . ,  hi], the finite-state Markov process governing the Ek-state transi­

tions in the (p. q)-DFE has the symmetry property

Ek -*• Ek+q under Uk

<=> —Ek —► —Ek+q under — Uk, (4.5.3)

with respect to inputs Uk-

Proof: This follows directly from the negatives of (4.5.1) and (4.5.2), observing

the odd symmetry of the block DFE’s decision function (Property 4.3.1).

□

R em arks

1. Here,“—►” should be read “transits to” .

2. The same symmetry property with respect to the probability of a transi­

tion also holds in the noisy case when the noise is white.

If we define an aggregated state as a complementary pair of Ek states, A(k) = 

{Ek, —Ek}, then these new aggregated states A(k), of which there are only M  = 

\ {3 l + 1), form a finite-state Markov process. This follows from Property 4.5.1 and 

the equiprobability of the input sequence. The same approach to simplifying the 

error recovery analysis was used in [23] in connection with the DFE. We now make 

some general definitions concerning the aggregated finite-state Markov process.
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We first choose an indexing scheme for the Ek-states that assigns an integer 

(Ek) € { 1 ,... ,  3L} to error state E This we do by transforming Ek •-*> Ek according 

to

Ek = ~Ek + [1, . . 1]',

so that the elements of Ek belong to {0,1,2}, then treating Ek as a ternary number 

with its Lth component as the most significant bit. This reads

{Ek) = (1 + ~ek- \ )3L 1 + (1 + 2 ek~2)^L 2 + -----h (1 + -efc-L)3°, (4.5.4)

so that if (Ek) = then {-Ek)  = 3L — i + 1 for 1 < i < M  = ^(3L + 1). In particular, 

the absorbing zero-error state has index {Ek = 0) =  A /. Denoting the M  possible 

values of the aggregated state .4(A:) by j4 j, 1 <  i < A /, we map these to the indexes 

of the E^-states via

/li = { l,3 L}, ,12 = {2,3i - l } , . . . ,  = { M - U M  + 1}, Am  = {M}.  (4.5.5)

We can now define the state distribution vector Tk = [x ^ i,. . . ,  and transi­

tion probability matrix P  =  ( p , j )  of the finite-state Markov process by

TTfc.i = Pr(A(k) = Ai) (4.5.6)

Pij = Pr(A(k  +  1 ) =  Ai I A(k) = Aj ) ,  1 <  i , j  < A /,

which satisfy

* k + 1  =  P * k ‘

These definitions will be helpful in section 4.5.3.

4.5.2 Channel Space Partition

For the remainder of this chapter, we confine the discussion to an arbitrary second 

order channel [ho = 1, /zi, /z2]- This will allow graphical interpretation of the results. 

With this restriction, the finite-state Markov process for the two-input block DFE
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has 9 Ek-states or 5 aggregated states (4.5.5)

A i { [-2 ,-2 ] '. [2,2]'}, A2 = {[-2,0]', [2,OH,^3 = { [-2,2]', [2, - 2]'},

A4 = {[0, - 2]', [0,2]'}, {[0,0]'}

in response to the 4 possible inputs

uk e B 2 =
1 1 - l - l

1 y - 1
y

l
y

- l

Our aim is to determine the partitioning of (/*i, /^-channel space into its respective 

channel classes. We treat the more involved (2,2)-DFE case first and then specialise 

to the high SNR (2,1)-DFE case.

As explained at the start of section 4.5, we ignore the noise terms in (4.2.7). The 

decision device input is therefore

1 0

•c

1_____z fc = uk +
hY 1 0 h 2

(4.5.7)

with Ek = [eis-2 *ek-i]' defined by (4.2.8) and Uk =

In order to classify channel space according to the finite-state Markov pro­

cess arising from a choice of h\ and /1 2 , we consider the values of these parame­

ters which result in a zero argument of one (or more) of the signum functions in 

(4.2.11)-(4.2.12). This leads us to define a switching boundary below.

Definition 4.5.2 (Switching Boundary) For given values of Ek and Uk and a 

given condition holding in (4 -2 .14) or (4-%-15)> the switching boundary is the set of 

values { /ii,/i2 } that makes the argument of the corresponding sign function zero.

It is intuitively clear that the set of switching boundaries divides the channel space 

into regions, or classes of channels, in each of which a single FSMP applies. To 

see this, note that a change in a decision is due to a change in sign of one or more 

sign functions in (4.2.11)-(4.2.12), which, by definition, only occurs if a switching 

boundary is crossed.

We need to consider the switching boundaries that arise from the various choices
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of Ek and Uk (or equivalently for the purposes of error recovery, A(k) and Uk)- 

We look first at the zero-error state Ek = [0,0]'. Using the “strip” representation 

(4.2.14)-(4.2.15) of the decision function, it is easily demonstrated that under all 4 

inputs Uk G IB2, transitions can only be made to fjt+ 2  = [0,0]'. For instance, let 

Uk = [1,1]', (4.5.7) gives Zk = [1,1 + h\]' which is independent of h2. The ’> ’ part 

of (4.2.14) holds for all h\ and implies Uk = sgn(l + h\ + h\) = 1 = Uk. Similarly 

Uk+ 1  = Uk+ 1  for all h\. Thus, as expected, the zero-error state is an absorbing state 

of the FSMP for any h\ (and in fact for any FIR channel) so that once this state is 

reached, no further decision errors can be made due to error propagation. Similar 

statements also apply to the (2,1)-DFE.

Next we consider Ek states that have a non-zero entry. The 4 curves defined 

when an argument of a sign function in (4.2.14)-(4.2.15) is zero may be expressed 

in the form c(h\,h2) = 0, where

c(/?i,/i2) = a\h\  + a2h2  + a^h\h2 + «4^1 + «5^2 + 6̂

for real constants n,, and are thus conic sections in the (h\ , h2)-plane. As an example, 

to determine which part of (4.2.14) applies in a particular region of channel space, 

it is necessary to consider the values of h\ and h2 for which |/uzfc,2 + Zk,i( = l^il- 

Applying the following identity,

\x\ = |y| (x + y)(x -  y) = 0 

valid for real x and y , defines two curves in the ( /ii, /*2)-plane

[1 + /ij, h\]Uk + [/i2, h\ + h2h\\Ek i  h\ = 0 ,

after substituting for Zk in (4.5.7) and simplifying. The same reasoning is applicable 

to (4.2.15). Thus for each of the 32 combinations (16 if we use property 4.5.1) of 

the 8 non-zero error states (Ek /  0) and the 4 inputs (Uk), we must plot a total of 8 

curves (4 from the conditioning and 4 from the arguments of the signum functions) 

in order to determine the set of switching boundaries and hence what transitions 

can occur in each partition of channel space.
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We choose the case Ek = [0,2]', Uk = [1,— 1]' as a representative example. The 

curves in question are given by

Ci(hi,h2) = Ci = 0, i = 1 ,.. -, 8,

where

ci = — 1 -f 2h2 ; c2 — C\ + h\ ; C3 = ci + 2h\

c4 = 1 + h\ + 2h\h2 ; C5 = C4 + hi ; cq = C4 -f- 2h\

c7 = c4 -  Cl ; c8 = c4 + c3,

and the decisions (4.2.14)-(4.2.15) may be re-expressed as

ük =  <

sgn(c5)

sgn(c7)

sgn(c8)

if c4c6 > 0

if c4Cß < 0 and h\ > 0 

if c4C6 < 0 and h\ < 0

(4.5.8)

Ük+ 1

sgn(c2) if cic3 > 0 

< — sgn(c7) if C1C3 < 0 and h\ > 0 

sgn(c8) if C1C3 < 0 and h\ < 0

(4.5.9)

Plotting these curves and using (4.5.8)-(4.5.9) establishes the switching boundaries 

depicted in Fig.4-4 for this particular state/input pair. To illustrate the decision 

procedure, we take the point h\ = 0.6, h2 = 0.8 (the cross in Fig.4-4). We compute 

c4C6 — 8.17 > 0 so the first line of (4.5.8) gives C5 = 2.92 and Uk = sgn(cs) = 1. 

Similarly C1C3 = 0.28 > 0 and (4.5.9) gives c2 = 0.8 and ujt+i = sgn(c2) = 1, so that 

Ek+2 = [ 1 , - 1 ] '-  [1,1]' = [0,-2]'. Note that all [h\,h2] points in any one region of 

Fig.4-4 will result in the same Ek+2- These boundaries are the same for the state 

Ek = [0,-2] with input Uk = [—1,1]'. Continuing this way, yields the full set of 

switching boundaries (for all possible error states and input combinations) which, 

when overlaid, allows the complete determination of the FSMP for any second order 

channel with ho = 1. This is shown in Fig.4-5. For instance, in the region of 

Fig.4-5 containing the point [h\ = 0.6, h2 = 0.8] the particular FSMP has the state 

transition diagram shown in Fig.4-6 (the transition probabilities are marked on the
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Figure 4-4: Possible transitions from error state [0,2].

The (2,2)-DFE is in state Ek = [0,2]' at time k with input Uk = [1,-1]'.

hi

Figure 4-5: FSMP regions for (2,2)-DFE.

Figure 4-6: FSMP diagram for Uq = \ , h\ = 0.6, /1 2  = 0.8.
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Figure 4-7: FSMP regions for the (2,1)-DFE.

branches).

As the same FSMP applies to each point inside any one region, it is possible 

to classify classes of channels with “desirable” error recovery properties, as will be 

explained in the section 4.5.4. By ignoring those boundaries relevant to the ujt+i 

decision in (4.2.15), the channel space partition for the high SNR (2,1)-DFE is easily 

deduced from the switching boundaries of Fig.4-5 and is displayed in Fig.4-7. The 

inner region has been blown up in Fig.4-8.

4.5 .3  N oise less  Error R ecovery  Statistics

The usefulness of determining the channel space partition for a block DFE is that 

it enables us to arrange the channels in classes. In each class, just one finite-state 

Markov process governs the (noiseless) error recovery of the device. In particular, 

this allows us to determine the statistics of the noiseless error recovery time R 

(definition 4.5.1) on any channel by considering just a finite (although large) number 

of finite-state Markov processs. By way of example, there are a maximum of 149 

possible noiseless FSMPs for the high SNR (2,l)-DFEon a second order channel (this 

is the number of separate regions in the channel partition of Fig.4-7). In this section, 

we choose a sample of thirteen3 of these regions and compute the mean and variance 

of the error recovery time. We will use the aggregated state FSMP description of

3My lucky number.
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A "~

Figure 4-8: Detail of the inner FSMP regions.

section 4.5.1 to simplify the calculations.

The channel has order 2, so that there are M = 5 aggregated states (4.5.5) in the 

FSMP. The absorbing zero-error state is As. We partition the 5 x 5  transition prob­

ability matrix P defined in (4.5.G) as follows:

Q 0

r1 1
(4.5.10)

where Q is a 4 x 4 matrix. Now we make the following claim [23].

C laim  4.5.1 The eigenvalues of Q in (f.5.10) have modulus less than unity.

Proof: (Sketch only). Since P is a stochastic matrix, its maximum eigenvalue is

unity. The absorbing zero-error aggregated state ^ 5  = 0 is reachable from any other 

non-zero aggregated state (see appendix D.3). Hence As is the only irreducible closed 

subset of the FSMP (all other closed subsets of the FSMP must contain ZI5 ) [GO]. It 

follows that the multiplicity of the unity eigenvalue is one, and this corresponds to 

the absorbing state / I 5 .

□

Next we suppose that the initial error state Eq induces a distribution (4.5.6) 7r0
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across the aggregated states. We partition 7To conformably with P as

xo — p}'-

Standard procedures [8] from the theory of finite-state Markov processs give the 

mean error recovery time (expected time to reach the absorbing state) as

PR = £{R]  = I 'T tFq, (4.5.11)

and the variance of the error recovery time as

° 2r — — P2r — 1;(2 T  — 1)7^0 — P2r , (4.5.12)

where T = ( /  — Q)~l is well defined by Claim 4.5.1, and 1 = [1,1,1,1]'.

We consider the recovery time from a noise-induced error at time —2 such that 

Eq = [0,2]'. The corresponding aggregated state is A(0) = A4, so that 7fo = 

[0,0,0,1]'. Table 4.1 lists the 13 different channels (all have ho — 1) with their 

respective error recovery time statistics. (Stability of a particular channel class 

is defined in section 4.5.4.) Each channel is representative of the channels in its 

region of (h i, h2)-channe\ space, and is indicated by a capital letter in Figs.4-7 

and 4-8. We remark that regions A, B, C, K, L and M have the most desirable 

error recovery properties (these are all finite error recovery channel classes—see next 

section). Regions E and I in fact have identical FSMPs—regions that are adjacent 

along a line always have distinct FSMPs, whereas the same is not always the case 

for regions adjacent at a point. There is also equivalence of FSMPs in regions that 

are symmetric with respect to the h\ = 0 axis (although in higher dimensions this 

need not hold [23]). The aggregated state FSMPs for regions A, B, C and D are 

given in Fig.4-9. We have picked the clustering of regions E-J around the point 

[hi = 2, /12 = 1] (see simulation example in chapter 3) to show that closeness 

of channel parameters does not necessarily imply closeness of error recovery time 

statistics.
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c la ss /ii h 2 s ta b le /*/? ° n
A 0 0 yes 2 4
B 0.3 0 .3 yes 2 4
C 0.6 0 .3 yes 2 .5 6 .5
D 0.6 0 .8 n o 5 38
E 1.5 0 .5 no 3 11
F 1.5 0 .6 5 n o 4 2 2 .6 7
G 1.5 1.5 n o 3 .5 5 6 1 6 .6 9

11 2 .2 0 .5 no 2 .6 6 7 7 .7 7 8

I 2 .2 1.15 n o 3 11
.1 2.2 1.5 no 6 58
K 6 0 .5 yes 2 4

L 6 1.2 yes 2 4
M 6 1.5 yes 2 .2 5 5 .2 5

Table T l: Mean and variance of noiseless error recovery time.

Figure T9: Aggregated FSMPs for channel classes A, B, C and D.
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4.5 .4  P ath ology  o f Error Propagation

The FSMP for certain values of h \ and /i2 {e.g., Fig.4-6) occasionally contains sub­

sets of non-zero-error states among which indefinite error propagation could occur 

(subject to the realisation of a particular, undesirable input sequence). Thus on 

certain channels the block DFE may suffer from long bursts of errors triggered by a 

single (primary) incorrect decision. In view of this, it is important to identify chan­

nels where the phenomenon of prolonged error propagation cannot occur. To do so, 

we need only examine the possible state transitions—the actual transition probabil­

ities of the FSMP are not required. This motivates the definition of stability below 

(introduced in [17] in connection with the DFE).

Definition 4.5.3 (Stability) For a given noiseless channel and initial error state 

Eq /  0, we say the input sequence {u^} to the block DFE is pathological if it causes 

an indefinite sequence of transitions between non-zero error states Ek ^  0, k > 0. 

We define the block DFE to be stable on a given channel if no pathological sequences 

exist for any initial error state.

The next example shows what we mean by pathological behaviour of the block DFE.

Example 4.5.1 (Pathological Sequence) For the channel[hQ = l ,h 1 = 0.6, /i2 = 

0.8], if the (2,2)-DFE is initially in Ek-state [0,2]' then the (period 4) input sequence

{«*}£=<, = { 1 , - 1 , - 1 ,1 ,1 , - 1 , - 1 , l,---}

results in the error-state sequence

so that the (2,2)-DFE never recovers from the initial error condition.

The simplest form of pathological behaviour (as illustrated in the example) is man­

ifested in an FSMP that has a transition from a non-zero aggregated state to itself. 

In theory, then, there exist channels on which the block DFE may have an indefinite 

recovery time due to certain input sequences. Of course the probability of such an 

input condition persisting tends to zero exponentially with time. Nonetheless, the
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Figure 4-10: Comparison of stability regions.
Inner stability region of the high SNR (2,1)-DFE shown dotted, stability triangle of the 
decision feedback equalizer shaded with “x”s. The inner stability region of the (2,2)-D FE is 
obtained from the dotted region by disregarding the two cusp-shaped regions above the line 
/i 2 =  0.5.

existence of pathological sequences generally increases the block DFE’s expected 

error recovery time on a given channel.

F in ite  Recovery T im e  Channels

The class of second order channels on which the block DFE is stable is readily 

determined by examining the FSMPs for each channel class. On stable channels, 

the block DFE has a bounded error recovery time equal to the maximum number 

of steps required to reach the zero-error state from a non-zero in itia l error state. 

The stability regions (equivalence classes of stable channels) for the (2,2)-DFE have 

been shaded in Fig.4-5 and for the high SNR (2,1)-DFE in 4-7 ( if  ho ^  1, the 

axes must be scaled appropriately). On their respective stable channels, the (2,1)- 

DFE will recover in at most 3 steps, whereas the (2,2)-DFE has a noiseless error 

recovery time of at most 2 (although the latter has inferior BER performance).

We pause to make a comparison with the conventional DFE. The latter has a 

triangular stability region [4] with vertices [0 ,-0 .5 ]', [-0 .5 ,0 .5 ]' and [0.5, 0.5]', shown 

as the region shaded with “ x” s in Fig.4-10. This is a subset of the stability region for 

the (2,2)-DFE which is in turn contained in that of the (2,1)-DFE. We remark that 

for points in the outer semi-infinite regions, the block DFE is effectively treating h\
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as the cursor—the DFE is unable to do this.

It is curious to note that the stability region of the (2,2)-DFE lies in the strip 

\hi \ < I of Fig.4-5. The reason for this may be gleaned from the switching boundary 

diagrams for error states [0,2]' and [0 ,-2]' (not shown). These states have transi­

tions between each other when h\ >  ̂ and transitions to themselves when h\ < 

Notice that when \h\\ >  |/i2| > y/2 for the (2,1)-DFE, the dominant part of (4.5.7) 

is Zk ~  [/iiejt-i, h\iik]', so that (4.2.14) implies

uk = sgn(/i1ejt_i + h\uk) = uk.

This explains the roughly triangular shape of the outer semi-infinite regions in Fig.4- 

7. The above arguments run in favour of the (2,1)-DFE in terms of stability over a 

wider class of channels than either the (2,2)-DFE or the DFE.

4.6  C o n c lu sio n s

We review here the findings of this chapter and make some comments as to their 

utility.

We presented an analysis of the primary error probability of the two-input block 

DFE operating on a second order finite impulse response channel. We used a di­

rect approach, expressing the error probability as an integral over the decision re­

gion. This calculation was complicated by the non-linearity of the block DFE’s 

decision boundary. This technique is extendible to longer channels, although the 

complexity, as measured by the number of terms involved, grows exponentially with 

the channel length. Bounds could be obtained easily by considering the dominant 

terms—corresponding to points near the decision boundary. Unfortunately, this kind 

of analysis is not easy to apply to higher dimensional block DFEs (with p > 2), and 

this suggests the need for considering more conventional error probability bounds, 

as in [13], based on minimum distance error events.

We derived eye conditions for the high SNR (2,1)-DFE on an arbitrary second 

order channel. These were necessarily conservative and show the limitations of ignor­

ing the structure of the block DFE’s error dynamics. We corrected the shortcomings 

of this n a iv e  method by providing a detailed and exhaustive finite-state Markov
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process analysis, again assuming a second order noiseless channel. This allowed us 

to associate all second order channels having the same error recovery properties with 

a finite number of channel classes. We gave examples of the mean and variance of 

noiseless error recovery times for various channel classes. We saw that the (2,1)- 

DFE is more robust than either the (2,2)-DFE or the conventional DFE, since it is 

stable on a wider class of channels. This conclusion is also supported by the statis­

tics of the noiseless error recovery times (see [23] for DFE error recovery statistics). 

It is not clear how the inclusion of noise affects the error recovery properties of block 

DFEs—although we know how to handle the analysis in principle (the calculations 

of the error probability for the DFE in appendix D.4 serve as an illustration).

Most importantly, we saw how complicated the analysis of the error probability of 

a block DFE can become. The step involved in passing from the conventional DFE to 

the block DFE is substantial—from an analysis point of view. The added dimension, 

encountered with the two-input block DFE, results in the curvature of the FSMP 

boundaries (which are straight lines for the DFE), and complicates the topology of 

the regions associated with the various channel classes. We stress that this analysis 

assumed a piecewise linear decision boundary, whereas the true decision boundary is 

curved for lower signal-to-noise ratios. It is hard to see how the three-input case 

could be handled—not to mention higher order block DFEs on arbitrary channels, 

even if explicit expressions can be found for the decision functions.

A final remark seems in order. Although it may be possible to obtain simple 

bounds on the primary error probability of a non-adaptive block DFE, the observed 

error probability, when the effects of error propagation are included, is liable to be 

considerably higher. Hence, in any comprehensive performance analysis of the block 

DFE, we should not simply assume that past decisions are correct, but should try 

to allow for the important phenomenon of error propagation.
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C h ap ter  5

M axim um  A Posteriori 

D ecision Feedback D etection

5.1 In tro d u ctio n

In this chapter, we present a new symbol-by-symbol detection scheme for the equal­

ization of uncoded binary data transmitted on noisy, dispersive communications 

channels. The new detector—the MAP decision feedback detector [54]—derives from 

a generalisation of block decision feedback equalization (chapter 3) in which the 

assumption of correct decision feedback is dropped. We conserve the basic feed­

back structure of the block DFE, but incorporate a new decision device, designed 

around a fixed-delay maximum a posteriori criterion which exploits knowledge of 

certain operational error probabilities to give improved performance over the block 

DFE. The formulation uses decision feedback in a structured way—effectively re­

ducing the dimension of the space on which decisions are formed. This permits 

substantial simplification of previous fixed-delay optimal detectors that minimise 

maximum a posteriori sequence estimation criteria. The idea of applying decision 

feedback to simplify detector design was mentioned in [26].

The new detector depends on a parameter p, the block size, related to the delay 

in obtaining decisions and representative of the number of significant taps in the 

sampled channel impulse response. Choice of this parameter fixes the input dimen­

sion of the detector’s decision device. The decision device depends on the channel
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impulse response coefficients and the signal-to-noise ratio (which together determine 

the probabilities of certain error events needed in the decision criterion). The detec­

tor’s criterion is a natural extension of the block DFE’s decision function [15], and 

reduces to the latter under the assumption of correct past decisions (ignoring the 

extra information provided by decision error probabilities).

The main drawback of the technique is the complexity of the decision function 

which, in the present formulation, is exponential in the channel length. In order to 

cope with long channels, the feedback filter can be chosen to cancel the tail (as in 

conventional decision feedback equalization), thus presenting an effectively shorter 

channel around which the decision device can be designed. Furthermore, the recent 

application of feedforward neural networks to the equalization problem (see [56], for 

instance) may provide a means of implementing these complicated decision functions. 

In [56] non-linear feedforward processing was applied to the problem of generating 

data estimates with a fixed delay from a window of received signals. Although in 

[56] no use was made of decision feedback in cancelling the intersymbol interference.

In the next section, we detail the system model and give a review of the relevant 

classical non-linear detection methods that will help put the subsequent development 

of the new detector into perspective. We show the steps leading to the derivation 

of the MAP decision feedback detector’s decision function in section 5.3.1. There 

is some overlap with section 3.4.3 of the material on non-linear detectors, although 

a more thorough treatment is given in this chapter. In section 5.3.2, we describe 

an iterative method that can be used to acquire the error probabilities needed to 

realise the detector's decision device. Section 5.4.1 gives a first order example of 

the detector’s operation for block size p = 2. In section 5.4.2 we give a more 

substantial test of the performance of the new detector, comparing it with the (2,1)- 

DFE (section 3.3.3), the decision feedback equalizer and the Viterbi algorithm on a 

second order channel. We take what could be referred to as a “worst case channel” 

(see section 2.3.2) for the comparisons—this allows the improvement in bit error 

rate performance over the block DFE to be seen at the relatively low SNRs (or 

equivalently, high BERs) attainable in the simulations. We also include examples 

comparing of the decision regions formed by the new detector and the block DFE 

in the two-input case on first and second order channels.
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5.2 O verv iew  o f  C la ssica l N on -L in ear D e te c t io n

In this section we give a brief overview of the classical non-linear detection systems 

alluded to earlier, leading to the design of the new detector which we will examine in 

detail in section 5.3. We assume a standard baseband pulse-amplitude modulation 

model for the communication system (as presented in chapter 1), consisting of the 

following elements:

1. A transmitted symbol sequence (data) of equiprobable independent binary 

random variables (the data) {ttfc}A_0 taking values in the set IB = {— 1, -hi).

2. A communication channel (including whitened matched filter [19]) which is 

modelled as a causal discrete-time linear filter with known impulse response 

coefficients {/?,}f_0.

3. An iid noise sequence {n^} with nk ~  N (0 ,o 2).

The data are input to the channel which introduces intersymbol interference 

(ISI) and measurement noise, producing the received sequence {yjt} given at time k

by
L

yk = h ' Uk - i  +
t = 0

The equalizer (or detector) attempts to recover the data sequence {ujt} from the 

measured sequence {yk}£_0- Optimal performance, in the sense of minimising the 

probability of incorrectly decoding the whole received sequence, would be obtained 

by the (MAP) detector that estimates the complete transmitted sequence, based on 

the entire received sequence of length A', by maximising the a posteriori probability 

[27]

Pr(u0, . . . , u K I yo,---,yK~\)

over the 2A candidate sequences This is clearly impractical since the com­

putational load increases exponentially with the message length. A closely related 

problem is that of maximum likelihood sequence estimation (MLSE) in which the 

maximising sequence of inputs is sought for the conditional probability

Pr(y0, . • .,2/A'-i I w0, . . . , wa'_i ).
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The MLSE and MAP problems are equivalent in the case of equiprobable input 

symbols. The Viterbi algorithm provides a recursive realisation of the MLSE [19], 

whose complexity is exponential in the channel length.

Instead of minimising the sequential error probability, we can move towards 

symbol-by-symbol maximum a posteriori or minimum bit error rate detectors that 

estimate the data by smoothing the measurement sequence according to

max Pr(uk | j/0, • • J/A'-i), fc = 0 , . . . ,  K  -  1, (5.2.1)
u k t l B

where IB = { —1,+1}. The first step in this direction, an iterative algorithm pro­

posed by Chang and Hancock [27], used a MAP criterion to estimate blocks of data 

(of size p) via

max Pr(ujfe, . . . ,«fc+p_i | y0, . . . ,  vk - i )-
u,(zu3,  k<i<k+p— 1

The disadvantage of such an approach is that it is an off-line technique, and the full 

received sequence is required for computation, even though the complexity of the 

algorithm increases only linearly with the message length K .

Seeking an on-line technique, we can aim at implementing a minimum bit error 

rate detector with a “truncated” MAP criterion, utilising only received signals up 

to time k + p — 1 in estimating the symbol Uk transmitted at time k. The fixed-delay 

constraint, introduced by Abend and Fritchman [26] and Bowen [31], allows the 

recursive solution of the integer programming problem

max Pr(uk | y0, • • •, 2/Jfe+p-i), fc = 0 ,1 ,2 ,. . . ,  (5.2.2)
uk e I B

so that data estimates are obtained sequentially as a fixed-lag smoothing operation 

with delay p — 1. This method, valid for finite impulse response channels, establishes 

a recursion on the joint probability

P r ( i t k i . . . ,  w/f .̂p—1, j / i , . . . ,  J//c+p—i )
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and assumes that certain channel and data dependent probabilities are calculated 

and stored in advance. The possibility of using past decisions to simplify the cal­

culations was flagged in [26] and this leads us to consider another class of recently 

developed detectors—maximum a posteriori decision feedback detectors [54]. Like 

the block decision feedback equalizer, these combine block processing, MAP estima­

tion and decision feedback, but also take advantage of decision error probabilities 

in forming their decisions. This obviates the assumption of correct decision feed­

back which is inherent in block DFEs. We describe these developments in the next 

section.

5.3  D esig n  o f  th e  N ew  D e te c to r

5.3 .1  G eneralising th e  B lock D ecision  Feedback Equalizer

We now revisit the block processing channel model used in the derivation of the 

block DFE (chapter 3). We require the channel model to have a finite number of 

states in deriving the new detection criterion. Therefore, we restrict the treatment 

to finite impulse response channels with state vector

Xk = [itk-L,Uk-L+\, ■ • - lUk-i}' e ib l .

The input sequence {u*.} is assumed to be binary. We remark that the method can 

easily be extended to AI-ary or quadrature amplitude modulated signals (see section 

3.5.2), but in the interests of simplicity, we restrict the presentation to binary pulse 

amplitude modulated signals. The scalar channel output yjt, corrupted by white 

Gaussian noise n\t, is generated by the system

Xk+i = A xk + buk

yk = cxk + duk + nk, (5.3.1)

for known matrices A £ ZRLxL, 6,c' £ IRL and d £ IR given in section 3.2.3. With 

binary inputs there are 2L channel states. Stacking the input and output variables, 

we obtain the block processing [47] representation with block size p (or decision delay
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p - 1)
Yk = [i/*, Vk+1, • • •, yfe+p-i]' = tfzfc + DUk + iVfc, (5.3.2)

where Uk = [wjt,. . . ,  tifc+p-i]' and = [n^t,. . . ,  nfc+p_i]'. We thereby generate 

?/*.,..., yfc+p-i in one step. The block processing normally advances in units of the 

block size. In this case, we will be considering an algorithm that generates only 

one data estimate at a time and hence choose to process blocks of received signals 

advancing in single steps (as in the sliding-window block DFE of section 3.2.5). The 

matrices H E IRpxL and D E IRpxp are formed from the realisation (A ,6,c,d), and 

are given by equations (3.2.11) and (3.2.12).

The information conveyed by the measurement sequence up to time k is re­

dundant if the state Xk of the channel is known. Since the state is not directly 

measurable, we assume that a state estimate Xjt, which we generate subsequently, is 

available at time k. As in section 3.2.2, from the current block of channel outputs Yk 

we subtract an estimate of that portion of the intersymbol interference due to the 

estimated channel state Hxk (this is an estimate of the dispersion due to symbols 

before time k), forming the signal

Zk = Yk -  Hxk. (5.3.3)

From (5.3.2) we can express the decision device input as

= DUk + H(xk -  xk) + Nk. (5.3.4)

Thus the three terms contributing to Zk are

• A “block cursor" DUk-

• An ISI cancellation term H(xk — Xk)-

• A vector of measurement noise terms Nk-

Since, in generating Zk we are feeding back past decisions, the structure resembles 

a tuned (non-adaptive) non-linear DFE [6] which calculates decisions according to

L L
ük = sgn (h0Uk + ^2 hiUk-i -  ^  / w - , '  + n*) • (5.3.5)

t=i «=i
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The resemblance o f the block D FE  to  a D FE  is more than coincidental, indeed for 

p =  1 w ith  Uk =  sgn(Zk)  we recover the D FE  (section 3.3.1). The (p, 1 )-D FE  (section 

3.2.5) uses the signal Zk (5.3.4), under the assumption o f correct state estim ation 

(Xk =  x jt), to  compute the data estimate Uk according to  the modified M A P  crite rion

ük =  arg max P r ( u k \ Z k , x k =  x k), (5.3.6)
ukeIB

where IB =  { — 1, -F1}. From section 3.2.5, the practica l embodiment o f th is crite rion  

is

a rg  m a x E P N  [ Z k ])
ukeU3

a rg  m a x E exp(- Z k - D

i--------1
■V

uke I B v k € B - - '

(5.3.7)

where a 2 is the variance o f the w hite  noise. As we saw in section 3.2.6, for reason­

ably high signal-to-noise ratios, one term  dominates the sum in (5.3.7), and so the 

fo llow ing m in im um  distance rule applies

xik — [ 1. 0, • • •, 0 ] x  a rgm in  \\Zk — DU\\2. (5.3.8)
--------------- uaJBpv

This approxim ation typ ica lly  incurs on ly a small performance penalty w ith  respect to  

the op tim a l rule (5.3.7). Decision feedback is used to  obta in  the next state estimate 

using

Xk+1 =  A i k  +  bük, k =  0 ,1 ,2 , . . . ,  (5.3.9)

required in fo rm ing  Z jt+ i at the next ite ra tion  (and advancing the block processing 

in steps o f size 1). The state estimate is sim ply the vector o f L  past decisions

X = [ Ü k - L , U k - L + 1 , • • •, ü k - i \ .

The suboptim al realisation o f (5.2.2) embodied in (5.3.7) thus yields a substantia l 

s im p lifica tion  in com puta tion  re lative to  the op tim a l M A P  detector because o f the 

use o f decision feedback as suggested by [26], w ith  an understandable trade o ff in
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performance.

M axim um  A Posteriori D ecision  Feedback D etectio n

We are now in a position to investigate a further development of the block deci­

sion feedback equalizer, called the maximum a posteriori decision feedback detector, 

which ensures better performance for medium to high signal-to-noise ratios, at the 

expense of increased complexity. This new non-linear equalizer disposes of the as­

sumption of correct state estimation xk = Xk explicit in (5.3.6), but retains the 

decision feedback, i.e., the generation of Zk from Yk, that distinguishes the tech­

nique from the more elaborate minimum BER detectors of [26, 27]. The MAP 

decision feedback detector selects the binary Uk which maximises the conditional 

probability

max Pr(uk \ Zk), (5.3.10)
Wfc €  IB

which is equivalent to computing

uk = sgn {Pr(uk = +1 I Zk) -  Pr{uk = -1  | Zk)} , (5.3.11)

and forms the next state estimate using (5.3.9). We now derive the central equation 

characterising the decision function of the MAP decision feedback detector for an 

FIR(L) channel. To this end, we re-introduce the notion of an error state already 

encountered in the previous chapters

Pk — •£k %k — [̂ fc—L? k̂—L+l i • • •* k̂—l] t (5.3.12)

whose components are the past decision errors ek-j = uk-j  — Uk-j- These take 

values in the set IE = {0, —2, +2} in the case of binary inputs (ek~j = 0 indicating 

a correct decision at time k — j).  Hence, there are a total of 3^ different error states 

Ek. We now apply Bayes’ rule, conditioning on the error states, to re-express the 

new detection criterion (5.3.10) as

Pr(tik\Zk) =  £  Pr(uk\Zk,Ek)Pr(Ek\Zk). (5.3.13)
EkeIEL
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Two more applications of Bayes’ rule yield

Pr(Ek\Zk) = Pr(Zk\Ek)Pr(Ek) /P r ( Zk) (5.3.14)

and

Pr{uk\Zk, E k) = Pr (Zk\uk, E k)Pr(uk\Ek) / Pr ( Zk\Ek). (5.3.15)

Equally, we can rewrite the first term on the right hand side of (5.3.15) as

Pr(Zk\uk, E k) =  Pr(Zk\Vk =
I ' . c B ' - '

Uk
LVfcJ , E k) Pr(Vk\uk, Ek), (5.3.16)

where Vk =  [ujt+i, • • uk+p-i]'.  Now, observing that the input is a sequence of inde­

pendent random variables, uk can be dropped from the conditioning of Pr(Vk\uk, Ek) 

in (5.3.16). On substitution of (5.3.16) in (5.3.15), then (5.3.15) and (5.3.14) in 

(5.3.13) we find, after cancelling the term Pr(Zk\Ek), that

Pr(uk\Zk) [Pr(Zk)] 1 Pr(uk, E k) x
Ek€.IE

E  MZk\Uk 
vkz!Bp~l

Uk

Vk
, E k) Pr(Vk\Ek).

(5.3.17)

At this stage of the design, we are forced to make the simplifying assumption that 

the current inputs Uk and the noise vector Nk are statistically independent of the 

past decision errors Ek. In fact, in the resulting detector there will necessarily be a 

correlation between these quantities due to the overlap in elements of Uk and Uk+\ 

and the use of decision feedback. Nonetheless, we contend that this assumption 

will not significantly degrade the performance of the detector. Recall that the same 

philosophy was adopted during the design of the (p, <?)-DFE (section 3.2.5). Invoking 

this assumption, (5.3.17) becomes

Z  Pr ( Ek) Z  Pr(Vk)PN(Zk -  D 
k)Ek<=IEL vkeIB’- 1

where pjw{‘) is the p-dimensional joint Gaussian density of the noise vector Nk given 

in (3.2.17). Lastly, since the inputs are equiprobable and Pr(Zk) is constant in the

uk
[Vk \

-  H E k),
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Outputs D e c i s i o n s

f eedback  filter

Figure 5-1: The MAP decision feedback detector.

maximisation, we can ignore their contribution, obtaining the decision rule for the 

new MAP decision feedback detector stated below.

T heorem  5.3.1 ((/>, 1 )-D etector) The memoryless decision function with input 

Zk G IRP and binary output uk which optimizes the maximum a posteriori criterion 

(5.3.10) is given in terms of the 3^ steady state probabilities Pr(Ek) of the error 

states Ek (5.3.12), for A: = 0 ,1 ,2 ,..., by

Uk = arg max 
UfcG IE

E MBk) E
FkelEL vkeinp~'

Zk - D uk
vk - H E k

(5.3.18)

where ||:r||2 denotes the squared l-i-norm x'x, Zk is defined in (5.3.3), D £ fflpXp is 

given by (3.2.12), L is the order of the finite impulse response channel, ID and IE 

denote respectively the sets { —1,-f 1} and ( —2 ,0 ,+ 2 ), and a2 is the variance of the 

Gaussian noise.

Comparing with (5.3.7) shows how past decision errors have been incorporated into 

the new detection criterion. Notice that with the assumption of correct past deci­

sions, Pr(Ek ^  0) = 0, (5.3.18) collapses to give the (p, 1)-DFE criterion (5.3.7).

The operation of the new detector, whose block diagram is shown in Fig.5-1, is 

characterised by equations (5.3.1), (5.3.9) and (5.3.18). In effect, we have generated a 

family of detectors (for a given channel and SNR), depending on the two parameters 

p (the block size) and L (the channel order). The device is called generically a 

MAP decision feedback detector. However, to distinguish particular realisations, 

we will refer to this device as a (p, l)-detector, on the understanding that L, which 

dimensions Ek in (5.3.18), is taken as the full channel length. The terminology is
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in keeping with section 3.2.5. The data estimates utt are obtained by selecting the 

larger of two objective values, each of which is a sum of 2p-13L terms. In order to 

lessen the computational burden, p should be chosen as the length of the significant 

part of the channel impulse response, while L should be viewed as an “effective 

channel length", i.e., the effective length of the channel after the linear cancellation 

afforded by the decision feedback filter, although for the examples in the following 

subsections L is taken to be the full channel length.

5.3 .2  Itera tive  R ealisation

The (p, l)-detector we derived in the preceding section generates its decisions ac­

cording to (5.3.18), which is a non-linear difference equation in the symbol estimates 

Uj, j  = k — L ,. . . ,  k (the dependence on past estimates arises from the inclusion 

of the error states in the detection criterion). Finding a closed-form expression for 

the error state probabilities Pr(Ek) appears to be intractable, so an approximate 

method must be sought. On a given channel with known input sequence at a fixed 

signal-to-noise ratio, the following simple iterative procedure yields the required error 

probabilities and hence realises the detector. We first simulate the (p, 1)-DFE (sec­

tion 3.2.5), keeping track of the frequency of occurrence of each error state Ek. The 

3L sample values of Pr(Ek) we obtain on this first run can be used as an initial 

estimate of the true values for (5.3.18). In practice, at reasonable signal-to-noise ra­

tios, there will only be a slight difference between the respective (steady state) error 

state probabilities for the (p, l)-detector and the (p, 1)-DFE, but this can result in 

a large difference in BER performance (see section 5.4.2). We continue the iterative 

process of simulating the detector, each subsequent run using the values for Pr(E k) 

obtained from the previous run, until convergence is observed. Further to this, the 

definition of the error state (5.3.12) and the statistical assumptions on the noise and 

input sequence to the channel guarantee the following property (which is shared by 

the (p, 1)-DFE):

Property 5.3.1 (Sign Sym m etry) The transition probabilities of the finite-state 

Markov process for the error states Ek (5.3.12) of the MAP decision feedback detector 

satisfy

Pr(E k+\ I Ek) = P r ( - E k+\ \ -  Ek)
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Property 5.3.1 implies that at most \{ZL — 1) of the 3L steady state error prob­

abilities need be computed. In practice, only some of the 3L error events will have 

significant probability and hence only these would need to be included in the sum in 

(5.3.18). These effects are generally channel dependent, but may be used to simplify 

the decision device on a given channel. (See table 5.1 for a numerical example.) The 

reader is referred to appendix E.l for comments on the structure of the finite state 

Markov process governing the dynamics of the error state transitions.

As an alternative to this “batch realisation” approach, one could envisage a fully 

recursive detection algorithm using running estimates of the error state probabilities 

substituted for the corresponding terms in (5.3.18). However, this would require 

knowledge of the transmitted data during the training phase. The adaptation of 

these error probability estimates could be turned off once their steady values were 

reached.

5.4  P er fo rm a n ce  E x a m p les

5.4.1 First Order Channel

We take a first order channel to serve as a simple, initial illustration of the operation 

of the detector. Since L = 1, the error state Eit = e^-i  is a scalar, so there are only 

3 probabilities Pr(Ek) to identify. In the steady state, these are related as follows

Pr(Ek = 2) = Pr(Ek = -2 )  = 1{1 -  Pr(Ek = 0)} = ^BER.

So, in fact, we need only identify one parameter—the bit error rate (BER). This must 

be obtained by multiple simulation passes (as described in the previous section). In 

this example we take the channel parameters as ho =  1, hi = 1.5. This choice 

gives a noticeable difference in performance between the (2,1)-DFE and the (2,1)- 

detector for signal-to-noise ratios at which it is practical to simulate. On the first 

pass, we simulate the (2,1)-DFE, with a SNR of 4dB, over 500 000 points, then use 

the BER thus obtained as input to the detector (5.3.18). After two further passes, 

the algorithm converges (using the same data and noise sequences) to a steady state
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Figure 5-2: (2, l)-Detector performance, first order channel.

bit error rate of 0.03185. Fig.5-2 shows the BER performance of the (2, l)-detector 

in this example, along with the corresponding curves for the (2,1)-DFE with decision 

function (5.3.7), and the scalar DFE (3.3.1). For this channel, the detector shows 

an improvement of around 0.5dB over the block DFE at the low SNRs in the range 

of the simulation.

We can gain further understanding of the detector by considering the decision, 

boundary. This is defined below (c.f. section 3.3.2).

Definition 5.4.1 (D etector Decision Boundary) The set of all points Zk £ IRV 

satisfying

Pr(uk = +1 I Zk) = Pr(uk = -1  I Zk\  (5.4.1)

where uk is obtained by (5.3. IS), is called the decision boundary of the maximum a 

posteriori decision feedback detector.

That is, the decision boundary consists of the set of all points Zk for which the value 

of the objective (5.3.18) is the same for both uk = \ and uk = — 1. Note that this 

set need not form a closed curve in Z^-space, as is the case for the DFE and block 

DFE, and we will see an example of this in the next section. Other examples of 

decision boundaries for non-linear equalizers can be found in [56]. The (2,l)-DFE’s 

decision boundary is a curve whose shape depends on the channel parameters ho and 

h i and the SNR (section 3.3.2). On the other hand, the decision boundary of the 

(2, l)-detector will depend on /?o, h\ and h,2 and the SNR (and the corresponding 

error state probabilities).
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Figure 5-3: Detector decision boundary, first order channel.
The decision boundary of the (2,1)-DFF is shown dashed. The signs denote the centres
of the conditional probability densities.

We can examine the differences in performance between the (2,1)-DFE and the 

(2, l)-detector by looking at the decision regions formed by their respective criteria. 

In this simple first order case, equation (5.4.1) is amenable to numerical solution 

using the same technique described in section 3.3.3. The results are shown in Fig.5- 

3 along with the block DFE’s decision boundary for ho = 1, h\ = 1.5 at a SNR 

of 4dB (z\ and z2 are the first and second components of Zk). The two deci­

sion boundaries differ significantly in tlie regions oflow error probability, away from 

the centres of the conditional noise densities Mjt) (shown as ’+ ’ signs),

but are close in the high error probability region (near the origin), which accounts 

for the small but significant difference in performance between the two equalizers in 

this example. Fig.5-4 has been included to give further clarification of the decision 

criterion (5.3.18). The eight conditional noise densities for non-zero decision errors 

are dwarfed by the four main densities (shown cut off) piv(Nk\Ek = 0, £4), £/jt € ID2. 

Note that we have depicted the densities corresponding to m* = — 1 (the first com­

ponent of Uk) as having negative height. The decision boundary (Fig.5-3) would be 

the curve of zero height in this picture.

5.4.2 Second Order Channel

We now look at the (2, l)-dotector’s performance on a second order channel. Since 

L = 2 there are 32 = 9 error state probabilities Pr(Ek) to identify, not all of which
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Figure 5-4: Conditional probability densities.

are independent. We can reduce this number to p p  =  4 on account of to the 

symmetry property 5.3.1. Hence, knowledge of the probabilities,

V, = Pr(Ek =

V3 =  Pr(Ek =

0 ‘
.2. ) v 2 =  Pr(Ek =

r
.2. ) V4 = Pr(Ek = (5.4.2)

would be sufficient to calculate all 9 error state probabilities and would allow us 

to realise the detector equation (5.3.18) for the chosen channel and signal-to-noise 

ratio.

At the first pass of the algorithm, the (2 ,1 )-block DFE (using decision rule 

(5.3.7), or equivalently (5.3.18) with Pr(Ek ^ 0) = 0) is simulated and the above 

four probabilities are estimated from their sample occurrences. On subsequent 

passes, the detector criterion (5.3.18) is implemented, using the error probability 

estimates from the preceding pass. For moderate SNRs only three passes are re­

quired for convergence of the estimates to three significant figures, whereas for low 

SNRs more passes may be required.

The simulated HER performance of the new detector differs most markedly from 

that of the block DFE (at SNRs within the range of simulation) for channels with 

large tail energy. We take the second order non-minimum phase channel [/io =  

1, hi = 2, h2 = 3] as a representative example. For such a channel, the centres
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Figure 5-5: Performance comparison on the [1,2,3] channel.
Block DFE and MAP decision feedback detector implemented with p = 2 (and decision delay 
1), Viterbi decoder decision delay 20.

of the conditional probability densities are spread out over a wide area in the Zjt 

plane (whereas they are more closely clustered for channels with decaying impulse 

responses). Even though the respective weightings of these densities are of the order 

of the BER for the non-zero error state terms ^  0 in (5.3.18), their inclusion has 

a significant efFect on the resulting performance. For an example of the bit error 

rates obtained, see Table 5.1.

Fig.5-5 gives a comparison of bit error rates (simulated over 107 points) for the

(2.1) -block DEE and (2, l)-detector for the [1,2,3] channel. At a SNR of 4dB on 

this channel, the (2,1 )-detector shows a performance improvement of 1.5dB over the

(2.1) -DFE, 5dB over the conventional DFE, and falls short of the Viterbi decoder 

(implemented with a decision delay of 20 samples) by around 7dB. As mentioned 

in section 3.4, for larger values of the block size, the performance of the block 

DFE approaches that of Viterbi decoding [15]. Presumably the detector’s gain in 

performance over the block DFE persists at high SNRs, although this is not easily 

verified either in theory or by simulation. For very low SNRs (~ — lOdB) the (2,1)- 

detector and the (2,1)-DFE perform more or less identically.

132



Figure 5-6: Decision boundaries for SNR=—2dB.
Simulation for [1,2,3] channel. (2,l)-Block DFE: solid curve; (2, l)-detector: “+ ” denotes a
+1 decision and denotes a —1 decision. Centres of conditional probability densities for 
the detector are shown as

D ecis ion  R egions

As seen in section 5.4.1, the form of the decision regions can yield insight into the 

workings of the MAP decision feedback detector. Whereas in that section the deci­

sion boundary consisted of a simple curve in Z^-space, for a second order channel the 

topology of the decision regions can be much more complicated. Fig.5-6 stems from 

a simulation on the [1, 2, 3] channel at —2dB on which we have portrayed the 

(2, l)-detector’s Z^.-space as a grid of points (the x and y axes corresponding to the 

first and second components of Zjt respectively). The detector’s output on the grid 

is denoted by a “+ ” for Uk = ■f  1 and by a for Uk = — 1. The centres of the condi­

tional error densities are marked by a star. The corresponding decision boundary for 

the (2,l)-block DFE is also displayed. The intervening decision regions are multiply 

connected—isolated regions appear in the vicinity of some of the conditional error 

densities (c.f. (5.3.18)) whose presence distorts the decision boundary.

Fig.5-7 shows the decision regions for the (2, l)-detector on the [1, 2, 3] channel 

at a SNR of 8dB with the same conventions as in Fig.5-5. (The absence of points 

in the corners of the figure is due to numerical underflow.) In this case the required 

error probabilities were found after three passes and are displayed in Table 5.1. There 

are clear differences in the boundaries for the two devices—even in the region around
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Figure 5-7: Decision boundaries for SNR=8dB.

P as s H E R V x v2 v3 V4
1 0 . 4 9 0  x  IQ“ 3 0 . 9 9 5 x l 0 " 4 0 0 . 1 4 6 x  10- 3 O . l O l x l O " 3
2 0 . 1 7 8 x  l 0 “ 3 0 . 5 2 9 x l 0 “ 4 0 0 .3 5 9  x  10- 4 0 . 5 4 8 x  10- 4
3 0 . 1 7 8 x  10“ 3 0 . 5 2 4 x  1 0 ~ 4 0 0 .3 0 8  x  10- 4 0 .541  x  1 0 ~ 4

Table 5.1: Error state probabilities for (2, l)-detector. 

The symbols P, are defined in equation (5.4.2).
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the origin where the probability densities are relatively large. This fact goes some 

way to explaining the difference in performance. Note that the decision boundary of 

the conventional DFE in these examples is simply a vertical line through the origin.

The upshot of the example is the following. The decision region for a true fixed- 

delay MAP (minimum BER) detector may be a very complicated object, even for 

low-dimensional decision devices. The possibility of applying multi-layer neural net­

work techniques (or other approximate functional representations) to the problem 

of implementing the decision device comes to mind. The corresponding problem for 

the block DFE would need to be tackled first. As stated in section 3.3, the ma­

terial in chapter 2 concerning the conventional DFE could serve as an initial step 

in this direction. The application of such techniques in non-adaptive equalization 

has already been investigated in [50] (obtaining isolated decision regions for MLP 

equalizers operating on non-linear FIR channels). However, an advantage of the cur­

rent scheme is the use of decision feedback to provide cancellation of the significant 

intersymbol interference before vector quantization.

5.5 Conclusions and Discussion

The MAP decision feedback detector developed in this chapter, which combines 

(5.3.4), (5.3.9) and (5.3.18), represents an enhancement and generalization of the 

(p, 1)-DFE comprising equations (5.3.4), (5.3.9) and (5.3.7). The simplification of 

the MAP detection criterion (5.2.2) due to the use of decision feedback, was exploited 

in both devices to reduce the dimension of the space on which the decisions ujt are 

formed (z.e., dim(Z^) = p as compared with dim{?/oi • • •, Vk+d} = k + p). These new 

decision procedures are essentially classification algorithms in the sense that the 

appropriate (Zfc)-space is partitioned by the decision rule into sets corresponding to 

Uk =  ± 1.

The difference between the (p, 1)-DFE (chapter 3) and the MAP decision feed­

back detector arises from the different decision rules: (5.3.7) and (5.3.18). The block 

DFE’s criterion has a relatively simple closed form, whereas (5.3.18) represents a 

superior rule or partition on Z^-space which requires numerical evaluation (since the 

behaviour of the error state probabilities with SNR is not easy to model in general),
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but is more closely related to the fixed-delay, symbol-by-symbol minimum bit error 

rate criterion (5.2.2). At the design stage, the independence of certain variables had 

to be assumed in arriving at an implementable form of the (p, l)-detector’s decision 

rule. The same approximations were necessary in deriving the sliding-window block 

DFE’s decision rule, so this does not come as a surprise. What is important, and 

has been achieved here, is to extract a decision function that can be realised on-line 

from the more ambitious minimum bit error rate criterion (5.2.1).

Unlike the block DFE, an adaptive MAP decision feedback detector could not 

operate in a blind (decision-directed) mode. This is because the (steady state) prob­

abilities Pr(Ek)  of the error states Ek (5.3.12) are required in the decision device, 

and the data (training) sequence must be known to establish and/or update these.

The asymptotic performance of the MAP decision feedback detector for high 

signal-to-noise ratios needs to be investigated. As we mentioned in section 5.4.2, 

the detector’s behaviour for high SNRs is not easy to ascertain even by numerical 

simulation owing to the extremely small error probabilities that are involved. It is 

an open problem as to whether the detector increases its performance gain over the 

block DFE for higher SNRs or becomes equivalent to the latter.

It is not clear that the (p, l)-detector’s criterion (5.3.18) gives the minimum 

probability of error over the class of detectors with criteria of the form

Uk = arg max p(Ek) e
l

2<t^
Zk- D  “ *  - H E k

ukein EkeI E vk£lBp~1

for some weights p(Ek) E [0,1]. This suspicion arises from the assumption that the 

conditional probability densities are Gaussian, which may in some cases be a bad 

approximation. Perhaps some tweaking of the weights p{Ek) in the above equation, 

away from their nominal values p(Ek) = Pr(Ek)  for the (p, l)-detector, would yield 

a further reduction in the bit error rate.

It should be stressed that the generic complexity of the MAP decision feedback 

detector is of order 2P-13L, where p is the output dimension of the feedback filter 

and L is the effective channel length (of the remaining ISI). A similar exponential 

complexity problem is also encountered in both [26] and [19]. However in a MAP 

decision feedback detector, this complexity is confined solely to the decision function

136



(5.3.18) which, conceivably, could be replaced by a simpler feedforward non-linear 

processor, for instance an MLP neural network [40], while maintaining good per­

formance. It seems that added complexity is the price we pay for achieving low bit 

error rates with only a small decision delay. The alternative to this is sequential 

decoding, such as the Viterbi algorithm, which requires a large delay (and can still 

suffer from a complexity problem).

In flagging the possible application of artificial neural networks here, we are al­

luding to the capacity for functional representation of these devices. It is known that 

a three-layer perceptron neural network can classify arbitrary disconnected regions 

of its input space [42], and something akin to this is what is needed to implement 

the MAP decision feedback detector’s decision function. The reader should be aware 

that one of the major problems associated with MLP neural networks is their train­

ing. Certainly, back propagation training (a gradient descent strategy) [50] has its 

drawbacks in terms of the size of the data set required for adaptation of the neural 

network parameters and the time required for convergence. Unlike the emulation of 

the decision feedback equalizer by a non-linear feedforward processor (chapter 2), 

there is no obvious connection between the MAP decision feedback detector and a 

feedforward neural network, although the block DFE's decision function (at least for 

small block sizes—e.g., (3.3.3)) is reminiscent of a neural network with hard-limiting 

nodes.
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C h ap ter  6

C onclusions and Further Work

6.1 Further Work

We wrap up the thesis in this section with a discussion of some possible extensions 

and further work, sparing the reader from a restatement of the conclusions we have 

already presented in the respective chapters.

Feedforward E m ulation  o f th e D FE

We flag here some open problems concerning the work in chapter 2. Firstly, for 

the non-adaptive feedforward emulator, the calculation of a bound primary error 

probability needs to be addressed. This entails the inclusion of noise into the finite- 

state Markov process model of section 2.3. The aggregated state description would 

likely lead to a very conservative bound. The alternative to this is the computation 

of the full order bL transition matrix (L is the channel order), whose elements are 

dependent on the particular channel as well as the signal-to-noise ratio. It should 

be provable that the error probability of the feedforward emulator is lower bounded 

by the corresponding (tuned) DFE’s error probability.

Next, there are questions concerning non-tuned performance. The effect of static 

mistuning (the departure of the weights from their ideal values) could be examined. 

The motivating idea here is the need to test the robustness of the system, or its 

sensitivity to changes in parameters. The adaptive performance of the feedforward 

emulator could be more fully examined. Theoretical results such as local stability 

or convergence of the adaptive algorithm might not be difficult to obtain and the
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question of existence of local (e.g., delay-type1) equilibria could equally be investi­

gated. Delay-type equilibria of the FFE under the sign algorithm have already been 

observed in simulations. These considerations are essentially questions about the 

shape of the mean cost function surface [25].

Another possibility is the use of blind adaptive algorithms for the FFE, as sug­

gested by existing modulus-restoral algorithms for the DFE [9]. A possible blind 

adaptive error measure for binary signalling is

h  = ^{uk -  sgn(ujt)}2,

where Uk is the output of a FFE with sigmoid nodes. We take the opportunity 

here to mention a interesting, but as yet unexploited, connection between neural 

network-like structures with hard and soft-limiting (sigmoid) nodes. If we include 

a random dither signal n as an input to a hard-limiting node, then by choosing the 

signal’s probability density pn(•) appropriately, we can make the action of such a 

node sigmoidal on average. For instance, suppose we wrant to choose pn{") such that

£{sgn (z + n)} = 1

Then it is easily shown that the random variable n must have a probability density 

given by , x _  _  d  1
PnKU) (1 -f e- ")2 du 1 + e-"*

A broader line of enquiry is the application of FSMP modelling techniques to 

standard MLP neural networks, although, without the special structure inherent 

in the FFE, it is harder to see how one would progress. What is needed in this 

area are solid results, analogous to those of chapter 2, that justify the use of neural 

network techniques in equalization.

E xten sion s to  B lock D ecision  Feedback E qualization

The work in chapter 5 pointed to the possibility of improving the performance of 

block DFEs by modifying the decision device. We already mentioned the need for

'An equilibrium of the form Uk =  U k - s  for some 6 > 0.
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research into simplified vector quantizers that maintain good performance for the 

MAP decision feedback detector. The same comment applies equally to the block 

DFE. Indeed, it may be feasible to apply low dimensional block DFEs to channels 

having long impulse responses, thereby obviating complexity problems, although 

this is something which needs to be tested by simulation.

The complexity involved in designing minimum bit error rate detectors need not 

preclude the realisation of implementable devices that achieve similar performance. 

The training of MLP neural networks to replace more computationally intensive 

decision devices is another topic worthy of investigation. An interesting heuristic 

approach might be to try and train a multi-layer neural network decision device as 

a Viterbi decoder.

The important area of coding should be researched in relation to block deci­

sion feedback equalization. We noted earlier that the device is naturally suited to 

the use of block codes [20]. We also saw in section 3.5.2 that quadrature ampli­

tude modulation signalling with independent data could be incorporated into the 

block DFE framework. However, the problem of how to modify a block DFE for the 

important practical technique of trellis-coded modulation [2] remains open.

As far as analysis of block DFE performance is concerned, techniques for bound­

ing the error probability (including the effects of error propagation) need to be 

devised that do not rely on explicit knowledge of the decision boundary. Since, 

as mentioned in section 3.3.4, finding expressions for the decision rule of even the 

(3 ,1)-DFE appears to be a hard problem. Bounding the block DFE’s primary error 

probability should be possible using trellis-based techniques [13, 14], at least for 

high signal-to-noise ratios. If a way for obtaining explicit formulae for the block 

DFE’s decision rule can be found, then a recursive unwrapping procedure, similar 

to the one used in generating the FFE of chapter 2, could be applied to obtain a 

specific feedforward structure which may in turn suggest other appropriate neural 

network architectures for equalization.

We seize2 this opportunity to suggest the possibility of applying input-output 

stability techniques (e . g ., Lyapunov stability, passivity theory) to analyse block DFE 

error recovery (in the sense of section 4.5). Preliminary results have already been ob-

2Frenrh for sixteen—another lucky number.
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tained in this area—in particular, the stability of the high SNR (2,1)-DFE on a first 

order channel has been treated using passivity arguments (similar to the treatment 

of the DFE in [16. 24]). These arguments, however, seem quite difficult to generalise 

to higher order block DFEs and rely on knowledge of the decision boundary which 

might not be obtainable.

In the immediate future, the topics in section 3.5 concerning extensions to block 

decision feedback equalization should be investigated numerically. More specifi­

cally, the effect of coloured noise on the BER performance of the block DFE could 

be compared by simulation with the Viterbi algorithm. Although the Viterbi de­

coder is the optimal equalization system for white noise, it suffers a degradation 

in performance in the presence of coloured noise. It would be interesting to see if 

the block DFE’s performance is as sensitive to noise colouration and whether the 

decision criterion can be modified in the way described in section 3.5.3 to allow for 

this situation.

Using the theoretical framework developed in sections 3.2.1 and 3.2.2, it is 

straightforward to devise recursive realisations of block DFEs for ARMA (HR) chan­

nels. In the interests of completeness, some numerical examples of block DFE per­

formance on ARMA channels should be catalogued. From an analysis point of view, 

however, the FSMP-based analysis adopted in chapter 4 (dealing with FIR channels) 

would need extension, since the state space is generally a continuum in the ARMA 

case.

The application of block processing to the equalization of non-linear channels 

(section 3.5.1) also seems worthy of investigation via simulation, as non-linear chan­

nels do arise in practice. The techniques of that section may be a good starting point 

for the application of block DFEs to non-linear modulation schemes like frequency 

shift keying (FSK) [20] in which the transmitted signal is a non-linear function of 

the data.

Perhaps the most important aspect for further work is the subject of adapta­

tion in block DFEs. This is a major practical concern, and the algorithms derived 

in section 3.5.4 need to be tested numerically to establish the practical feasibility 

of block decision feedback equalization. Such experiments could also indicate the 

block DFE’s sensitivity to mistuning of parameters in its feedback filter and deci-
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sion device (i.e., its robustness). In addition, algorithms for blind adaptation and 

statistical output tests for convergence could be tried, building on the existing tech­

niques for DFEs [25, 66]. Although the theoretical treatment of such topics would 

tend to be rather difficult, as many open problems of this nature remain even for 

the conventional decision feedback equalizer.

While on the subject of adaptation, we recall the trellis interpretation of the 

block DFE (section 3.4.2) which establishes a direct link between the latter and the 

Viterbi decoder and the other Viterbi-based schemes of [10, 11, 13, 14]. In the FIR 

case at least, it should be possible to make these trellis-based equalizers adaptive 

by incorporating a stochastic gradient descent algorithm (based on the instanta­

neous cost or metric) to update the channel estimates. Preliminary investigations 

have revealed the feasibility of this approach for adaptive Viterbi decoding and M- 

algorithm decoding when a good enough initial estimate of the channel is available. 

Similar work on adaptive Viterbi decoding has also been undertaken in [67].

Venturing even further afield, we can contemplate the marriage of block deci­

sion feedback equalization and the reduced-state sequence estimation schemes of 

[11, 10]. In the same way that the RSSE is a structured simplification of Viterbi de­

coding, the block DFE is a structured generalisation of the decision feedback equal­

izer, and both approaches have the same extremes of performance. We appeal to 

the use of decision feedback in the RSSE to make the tentative suggestion that 

this mechanism may be amenable to block processing and vector quantization (as 

found in the block DFE). In so doing, it may be possible to develop adaptive non­

linear equalizers that are computationally simpler than the Viterbi decoder and yet 

yield comparable performance. We conclude this thesis with the observation that 

such a marriage would indeed be a happy one.
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A ppendix A

A p p en d ix  To C h ap ter 1

A .l  Trellis Interpretation of V iterbi A lgorithm

The Viterbi algorithm for the MLSE is easily visualised in terms of a A/^-state  trellis 

[3] where M  is the alphabet size and L the channel order. In the case of binary 

signalling (A/ =  2), only two transitions are possible from each trellis s ta te  at each 

time instant, as depicted in Fig.A-1 for a second order channel. The inputs Uk-\ 

causing the sta te  transitions x ^ - i —+ are marked on the branches (xjt defined 

in section 1.1.3). Rows in the trellis correspond to states and columns index the 

time. Each path through the trellis corresponds with a unique input sequence. The 

Gaussian and Markov properties of channel model allow the total cost of a path 

to be expressed as the sum of costs (log likelihoods) of its individual transitions. 

This “incremental cost” is the squared distance with respect to the noisy received 

signal. The algorithm extends paths from each state  according to the transition 

which incurs the minimum incremental cost.

Not all the paths through the trellis survive the minimisation process. The path

t i me  k-1 k k+1

( - 1 . - 1 )

(-1 . + 1)

( + 1.-D

(+1 .+1)

Figure A-l: Binary 4-State Viterbi Trellis.
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t i m e  k - 4

( - 1 . - 1 )  c x

k - 3 k - 2 k

> o

k - 1

( - 1 . + 1) 

(+1 . -1) 

(+1 .+1)

1

Figure A-2: Merging.

t i m e  k - 1  k k+1 or i g i na l  t r el l i s

( - 1 . - 1 . x)
( - 1.-1 . - 1 )

(-1 ,+ 1 ,x) ( -1. -1 . + 1)

(-1 . + 1 . -1)
( + 1.-1 .*)

(-1 .+1 .+1)
(+1,+1,x)

Figure A-3: Trellis with 4 Subset States.

terminating at a particular state at time k is called the survivor for that state. The 

path history is the sequence of states that a path has moved through. Whenever two 

paths meet at the same state, the path with the minimum total cost (calculated from 

its path history) is selected. The various paths leading to states x* at time k will 

generally share a common initial portion terminating at some state Xk-s (<$ > 0), 

after which some diverge. This configuration is known as merging and is depicted 

in Fig.A-2 for 6 = 2 on the 4-state binary trellis. A merged path corresponds to 

a subsequence of maximum likelihood decisions («*_4 = 1, Uk-3 = —1 in Fig.A- 

2). Merging is a nondeterministic phenomenon (see ref 34 in [19]) and results in 

an unbounded variable delay <*> in the output of (groups of) MLSE decisions. In 

practice, a maximum decision delay (usually several times the channel length) is 

fixed by design. This may incur a small performance penalty with respect to MLSE 

detection with infinite delay.

A .2 R e d u c e d -S ta te  S eq u en ce  E stim a tio n

At the heart of the decision feedback sequence estimation (DFSE) and reduced-state 

sequence estimation (RSSE) schemes is the idea of a subset state. The Viterbi trellis
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has M l states for m-arv signalling. In [11] rules are given that allow the definition 

of a hierarchy of partitions of the set of channel states and signal alphabet. The 

resulting subset states retain the state transition properties of a trellis. So, given 

any subset state and knowing which of the finest partitions of the signal set contains 

the current symbol (estimate), the transition to the next subset state is uniquely 

determined. An example DFSE subset trellis for M = 2, L = 3 is shown in Fig.A-3. 

In this example, the full trellis has 8 states and the reduced trellis has 4 states. 

The inset (expanded on the right of the figure) shows how the reduction has been 

achieved. For instance, states ( —1,—1 ,—1) and ( — 1 ,—1,1) have been aggregated 

into the ( -1 , —l,x) subset state, where x is either 1 or —1.

The cost of a transition is the same as in the Viterbi algorithm, and is obtained 

from knowledge of the current input symbol estimate and the L most recent past 

estimates, which are stored in the path history of the survivor sequence to the des­

tination subset state. Parallel transitions between states within the same subset 

transition are resolved by choosing the privileged state in the subset which min­

imises the cost metric for that transition. Decision feedback enters into the metric 

calculation by the use of past decisions in place of the true data, but the overall 

algorithm, in a manner of speaking, can be made to incorporate more of the Viterbi 

trellis and less decision feedback.

By judicious choice of the partitions that determine the subset states, a gradual 

tradeoff of performance for complexity is achievable, ranging from the stock DFE— 

the coarsest partition (a one subset state trellis) to the MLSE—the finest partition 

(the full M l -state trellis).

The decision feedback sequence estimator [10] is a special case of RSSE. A reduc­

tion in the number of states in the Viterbi trellis is obtained by aggregating states 

whose first b (1 < b < L) components are identical (for binary signalling states with 

the same b most significant bits are aggregated). The truncated states form a trellis 

(Fig.A-3 depicting the 6 = 2 case). Each subset transition is represented by its state 

transition of minimum metric (corresponding to a decision). Paths in the reduced 

order trellis are compared on the basis of metrics of these privileged transitions.
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A ppendix B

A ppendix To C hapter 2

B . l  P r o o f  o f  L em m a  2.5.1

We calculate the derivatives in the order i = A — j ,A  — j  — 1 , . . . ,  2,1. 

For i = A — j :

da _  + Vk)
dw»A_j,A dtl>A_j,  a

i r j  dw\ - j , \

= ^(yA)yA:} .

For i = A -  j  — 1:

dieA - j - l  , A - 1

jL/-.A\dteA- 1,Ay A 1
=  &(y )-z----------------------aw A -j-ifA- i

d u ’A—j —1,A—1

=  0(yA)wA-i,A^(yA-1)yiJlJ2- i .

(with an application of the chain rule in line 1).

In general, to compute the output derivative with respect to weight we

apply the chain rule repeatedly up to the derivative of the diagonal node (i + j, i + j )  

through which arises the output’s only dependence on Thus,

153



du
dw i ' i + j

0 ( y A ) w A- i , A
d y A 1
d wi,i+j

d /(E /L i2 ^/,A-iy/A * +  y k - i )
A—2

</>(t/A)wA_liA
0™i,i+j

<£(?/A ) w A - l , A</>(yA 1 ) ^ A - 2 , A - 1

<A—2

=  < K yA ) w A - l , A < K 2 / A 1 ) ^ A - 2 , A - 1  . . • <^( 2/ ,+J +  1 )w, -+j , , -+j+ i

But from (2.5.5),

and this establishes the lemma.

0(y,+J)yt,+J 1

dy '^ i  
dw{i^+j
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A ppendix C

A p p en d ix  To C hapter 3

C .l P roof of Theorem  3.2.2

The MAP criterion for generating q (1 < q < p) decisions for a block length p, under 

decision feedback is

Ük =  arg max Pr(U  = [«*, uk+x, . . uk+q- 1]' | Zk, Ek =  0). 
UeIBq

We can rewrite the above probability using Bayes’ rule as

Pr(V\Zk, E t = 0) Pr(Zk\ Ek =  0,
Pr(U\ Ek = 0)
Pr(Zk\ Ek =  0)

Y .  P r{Zk\ E k = 0, Uk = [U
vaE ”-"

(C.1.1)

)Pr(V\Ek =  0),

where

t  ^fc+q +  11 U k + p — l ] *

Now Pr(Zk\Ek = Q,Uk) = Pr(N k = Zk -  DUk\Ek = 0,Uk). The noise sequence 

is independent of the input data so Uk and Nk are independent. At this stage 

of the design we have not specified how the past decisions (state estimates in the 

ARM A case) are generated. We now assume that Ek (which depends on these past 

decisions or state estimates) is independent of Uk and Nk. (Observe that in the 

resulting detector, Ek will depend on uj and nj for j  < k + p — q — 1 through 

decision feedback, so there will be a (weak) correlation between Ek and Nk if p > q,
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and between Ek and V if p > 2q.) Hence, dropping the conditioning from the right 

hand side of the last line of (C.1.1), we have

Ük = arg max ^  PN{Zk -  D 
U e I B q V e ißp-<f

U'
V

) Pr(V), (C.1.2)

where Pn (-) is the multivariate Gaussian density defined in (3.2.17). Since the inputs 

are equiprobable and independent, Pr(V)  = 2q~p. This constant multiplier (along 

with the normalising constant of the density) does not affect the maximisation, so 

we omit it, thus obtaining (3.2.20).

C.2 P roof of Theorem  3.2.3

We can extract the dominant term from

as:

E •||Z*-D[?]||

v-effi’'“'

e_jirllz*"D[ '"wl l|2 (|f!(l/)| + £  e - ^ v y ) )
venc(U)

= 0 { e ~ ^ W Zk- D[v%)}\\ j  as a  0,

where fi(f/T) is the set

Q(U) = j v  G IBP q realizing min Zk — D ^  },

(C.2.1)

with cardinality |Q(f/)|, and

A 2(U, V) <
= 0

> 0

w  g n(u)
V F g IBp- q \Q(U)  = n c(U)

and V*(U) G Q(U). We now need the following Lemma which relates the optimal 

problem over U G IBq to an optimization over W  G JBP via projection.
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Lemma C.2.1 Let fi = {W  G IBP realizing min ||Zk -  DW\\2}. I fV*(U)  G D(U) 

then
‘ U '
y m(u).arg min | Zk — D

uzmq = [<,'■■ 0

for some

W* = \u*
V * G ft, U* G IB \  and V*{Um) = V*. 

Proof: Suppose (to establish a contradiction)

U = arg min {llZjt — D 
ueIBq Ul

for any W* G H. Then (by definition)

U
’}  t  I U  '■ 0 ] w

\\zk- U
V*(&)

< Z k - D U
V*(U)\

v u g mq.

and by definition of V*(U) G Q(U), for each U G IDq

Zk - D U
V*(U) J < Zk - D V V  G LBv~q.

But this implies v{0) G 0 which is a contradiction.

Using (C.1.1) and (C.2.1), now observe that (3.2.20) is asymptotically equivalent

arg min < 
U tI B q ^

Z k - D U
V ( U )  J

\> as a

However Lemma C.2.1 shows that the above can be rewritten as (3.2.23) which is 

the desired result.

C.3 Proof of Lem m a 3.5.1

Proof: From the definitions of Yk,H and Uk, we have

Yffilik -  Vk(hLUk-L + hL-iUk-L+\ + -----h h0Uk)

+ Vk+l (^Lwfc-L+1 + * * * + ^oWik+l) +
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+ V k + p - \ ( h L U k - L + p - \  + -----b /loUfc+p-l),

(C.3.1)

(C.3.2)

with

j  L' {Vk-\-i — 1 L + j  —1 }  i  ̂ — h  "  ‘ *Pi  j  — 1? * * " •) L  "f" P'

Take the expectation of (C.3.1) to get

£ {Tfc'WZVfc j  = hi((f>u + <£22 + • • • + 4>pp)

+  ^ L - l ( < £ l 2  +  <^23 + -------b < £p , p+ l )  +

+ ^o(01,L+l + 02.L+2 + ---- f  0p,L+p)> (C.3.3)

whence (3.5.22) follows.

Let h{j (not to be confused with h{ in (3.5.20)) be the ij  element of the (L + 

p) X (L + p) matrix ‘H'H, then

( L + p L+p

£ |iUlH'HUk} = £ < r  hiiUk-L+j-\Uk-L+i-\
1 «=i j=i

L+p L+p

= } " ^   ̂ hjj£ {ukr.+i—l uk—L+j—l}  • (C.3.4)
t = l  j = l

By assumption, £ {u,Uj} = #,-j, where is the Kronecker delta, so that (3.5.23) is 

equal to
L+p L+p L+p

E E  Mo = E  =tr «'«• (c.3.5)
t=i j=i »=1

Consideration of the form of bf leads by observation to

tr H'li = + (^L-i + ^l) + (^L-2 + ^L-i + ^l)

+  ------b (^L-p+2  H-------- I"^l )

+  { ( ^ L - p + 1  H----------b ^ i )  +  ( ^ L - p + -------b ^ L - i )

+  ------ f  (^0 + ------^ p - l ) }

+ (ÄJ + ---- f  ^p-2) + ---- 1" (ho + ^1) +
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where each of the L — p + 2 terms in the curly brackets is a sum of p terms. It is 

easy to check that each hf occurs exactly p times in the above sum, so that (3.5.23) 

follows.

□

C.4 P roof of T heorem  3.5.1

Proof: Starting with

HVfcll2 = y* 'n  -  2 + U'kH'HUk,

we have firstly,

= o vj.
dhj

We use (C.3.1) to re-express Y^HUk as

L p

Y  hL - l  Y  y k + i - l u k - L + l - \ ,
/=0 t=l

whence

Y  v,'Huk = Y2 t r . - i , ]  y k + i - i U k - L + i - i
d h i  1=0 .=1

p
— ^  ^  Vk+i—1 j —1 •

i=l

Furthermore, we have

h L U k - L  +  + ----- f  ^OWA:

^L^fc-L+1 +  ^ L -l^ fc -L + 2  + ------h /ioMfc+1 (C.4.1)

^LWfc-L+p-1 +  hi-\Uk-L+p +  ------ 1" ^O^jfc+p-l

which has squared norm
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and derivatives

- £ - | | 'W 4 ||2 = 2 ] T  u k+ i - j
d h J  1 = 0

Combining the above derivatives, we obtain, after a relabelling of indices in the sums

y  h i - i u k . L + i + l

V- 1 Ly wA r+ /-j y /»,■«*+/-»•
/=0 i =0
P - 1

y  u k + i - j V k + i -
1=0

Evaluation at h j  = and substitution in (3.5.27) now yields the result.

□
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A ppendix  D

A ppendix  To C hapter 4

D .l  Prim ary Error Probability C alculation

We are considering the primary error probability of the high signal-to-noise ra­

tio (2,1)-DFE on a first order channel with Hq = 1 and h\ > 0 (the hi < 0 case 

follows the same lines). We start by defining the sets

ht\ = {(^i, 2 2 ) G JR2 I h\(z2 — 1) + Z\ < 0, Z2 > /*i}

^2 = {(-i? *2) £ JR2 I (̂ 1 — 1)^2 + 21 < 0 , 2̂ < ^1}

^ 3  = {(^i, Z2 ) E IR2 I /ii(^2 + 1) + Zi < 0, Z2 < — ̂ 1 }

= ni u n2 u n3
H+ =  {Z G IR2 I -  Z G W_}. (D.1.1)

Note that the sets Ht (i = 1 ,2 ,3) are pairwise disjoint. Following (4.3.11) and 

(4.3.13) and taking advantage of symmetry, we integrate over 7i~ to obtain the 

exact expression for the primary error probability

Vo =

+

+

+

2  J \  <7

Ö / Pn(<)Q(------------------2 J2hx- \  &

1 ~rMmi±M±Mvt
2 2 _ i  cr
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+

+

1
2
1
2

r  Pn(t)Q(l±Mh±2-A)dt
J 2h\ +1  <T

r '  Pn(t)Q(1 + { h l ~ m ' + l - t ) )dU 
J 1 O’

where pn(-) is a Gaussian zero-mean density with variance cr2, and Q(-) is defined in 

(4.3.6). The weighting of each term, 2 x |  arises from the equal probability of 

the Uk in (4.3.6). The reader may want to verify that this expression reduces to 

(4.3.15) when h \  =  1.

D .2 P roof of Equations (4.3.16)-(4.3.18)

We are considering the integral of a two-dimensional circular Gaussian density, cen­

tred at the origin, over the following regions in the (x, y)-plane:

= {(x ,y ) E IR2 \ 1 < y < oc,x > yj

Tv2 = { (x ,y )E lR 2 I -  oc < y < oc,x > y + 2}

1Z3 =  { (# ,y )  € 1 R 2 | -  oo < y < - 3 ,x  > y + 4}

We rely on the separability of a white two-dimensional Gaussian into two one­

dimensional Gaussians (equation 4.3.9). We express the integrals over 7 Z \ and TZ? 

as standard integrals (in cases (i) and (ii) below), and bound the integral over 1Z3 

(in case (iii)) using integrals over quadrants or half-spaces.

Case (i)

Let 1 Z [  =  {(x ,y ) | y > x, 1 < x  < oo}, then 7vi 0  7 Z [ = 0 and 1 Z \ U 7 Z \  = 

(l,o o ) X (l,o o ) U 0, where 0 is a set of Lebesgue measure zero. Note that the 

integral of p j v over ( l,o c )  is simply Q(^). By symmetry of the density p n ( - ) ,  

dpiv = dpy,  and therefore

[  dpu =  Q ( - ) . Q ( - )  -  2 \  dpN, 
j v .xutz\ & & J n x

which yields (4.3.16).
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Case (ii)

This is straightforward, as 7v2 is a half-space:

/  <<Piv = ^Q( — ),
J  7?2 ~ ®

which is (4.3.17).

Case (iii)

Define the following sets in IR2:

7Z3 = (1, oo) x (—oo, -3 )  

'Hi = {(x ,y )  I x > y + 4}.

Then, since 1z3 D 7Z3 D H \, we have

L  dpN < /  dpN < /  dpN ,
3 J7Z3 J ' H i

but

L dpN =  Q ( - ) Q ( - ) .
a  (J

and

/  dpN = Q(~).
cr

This yields the bounds in (4.3.18).

D .3 R eachability  of the Zero-Error State

We start with the following definition.

Definition D.3.1 (Reachability) A state E k  in the finite-state Markov process for 

the block DFE is reachable from an initial state Ek, k < K , if there exists a finite 

sequence of inputs {uk+i \ i =  0 , . . . ,  K  — 1} (each having nonzero probability) driving 

the system from Ek to Ek . A state that is reachable from any initial state in the 

FSMP is said simply to be reachable.
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The zero-error state of the FSMP for a given channel must necessarily be reach­

able if the block DFE is to be able to recover from an arbitrary initial error condition. 

We show here that, for a high SNR (2,1)-DFE operating on an order L finite impulse 

response channel, the zero-error state is always reachable.

Reachability of the zero-error state is assured if we can write down a rule or recipe 

for choosing the terms in the sequence {uk+i | i = 0 , . . . ,  K — 1} that drive the state 

from Ek ^  0 to Ek  = 0. Since the error state is an Z-vector in this case and satisfies 

the shift register property (4.5.1), we need only determine a length L sequence of 

inputs (ujt+, I i = 0 , . . . ,  L — 1}, each resulting in a correct decision Sfc+i =

The noiseless input to the decision device (with ho = 1) is

Zk = DUk + Rk

where Uk = [ujt, Wjt+i]7, D is given by (4.2.6) and

Rk
h\ek-\  + ^2eit-2 + -----V hiek-L

h 2 ^ k - i  + ----h h i e k - L +1

In fact, the geometry of the decision boundary is such that we can always choose a 

Uk, with Uk+\ unspecified at time fc, so that for any Rk (determined by Ek and h{, 

i > 1) we have Uk = Uk• The same recipe applies at subsequent times k + l , k  + 

2 , . . . ,  k + L — 1, yielding the sequence of inputs (ufc+i | i = 0 , . . . ,  L — 1} that drives 

the system from an arbitrary state Ek ^  0 to = 0. We now show this.

Recall that the decision Uk is given by (4.2.14). We first note the following 

property of the decision device.

Property D.3.1 The decision device input DUk always lies outside the strip S 

defined by

S = {Zk e IR2 I \hizk,2 + Zk,\\ < |/*i|}

for all Uk G IB2.

This is simple to check. The point [l,/ii +  1]' £ S  since

h\(h\  +  1) +  1 > h i, Vhj.
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The point [l,h\ — l]r ^ 5 since

hi(h\ — 1) + 1 = h\ — hx + 1 > h\, when \hx\ ^  1.

(We consider the hx = 1 case separately.) By symmetry, the same reasoning applies 

to [— 1, h\ ± 1]'.

We now define the two half-spaces

H\ = {(*1, z2) E IR2 I hiz2 + zi > 0} 

n 2 = {(zx, z 2) € IR2 I hxz2 + zi < 0}

with H 1 U H 2 = IR2. Treating the term Rk as an arbitrary (quantized) displacement 

of the point DUk, we note that if we choose uk according to the recipe

uk = 1 if R k e Hi (D.3.1)

«* = -1  if R k e n 2, (D.3.2)

then the decision device input will lie outside S, i.e.,

D Uk

±1 + Rk S.

Consequently, with Rk = , 7'A:,2]/ € Hi,  the top line of (4.2.14) implies

Uk =  S g n ( / l . i2 * ,2  +  2jfc,i)

= sgn {(h\ +  l)uk + hiUk+i + hxrk<2 + rk,i + ufc}
>0

= uk regardless of uk+i,

since h\ + 1 > \hx \ V/?i € IR- A similar argument shows that we can choose uk =  uk 

when rk E H 2.

If hx = ±1, we simply redefine the sets H\ and H 2 as

Hi  = {(zi, z2) E IR2 I sz2 + zi > 0} U {(z i , z2) I sz2 + zx = 0, zx > 0}
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Hi  = { { z i , z2) G /ff2 I sz2 + zi < 0} U { { z i , z2) I sz2 +  zx = 0 ,zi < 0},

where 5 = sgn(/?i). then the same recipe for uk (D.3.1) still applies.

We remark that the preceding argument would not extend so easily to the (3,1)- 

DFE as Property D.3.1 generally does not hold.

D .4 Inclusion of N oise into the FSM P A nalysis

We illustrate briefly how to incorporate the effects of noise into a finite-state Markov 

process-based analysis, like that of section 4.5, by considering for simplicity the 

an ordinary tuned DFE operating on a (noisy) first order channel. The analysis 

automatically includes the effects of error propagation. There are more possible 

transitions when noise is present, for instance the zero-error state is no longer an 

absorbing state. The technique also extends to the two-input block DFE, although 

the calculation of the elements of the transition matrix would be considerably 

more elaborate (see section 4.3).

The output of the decision feedback equalizer is then

uk = sgn (ujt + hi€k-i  + njfc),

where there is only one element of the error state, namely ek-\  = Uk-\ — «fc-i» 

Consider the probability of being in the zero-error state at time k -f 1, using Bayes’ 

rule, this is

Pr(ek+i = 0) = ^2 P r i ek =  0 I Cfc)Pr(efc). (D.4.1)
ek€ l E

Now, the transition probabilities of the FSMP are given by

Pij = Pr{(ek+\) = i I (ek) =  j ) ,  1 < i , j  <  3 (D.4.2)

where we number the states according to (4.5.5) as

(e* = -2 )  = 1, (e* = 0) = 2, (e* = 2) =  3.

We define the steady state transition matrix as Ps = lim -̂^oo P k with elements ptJ-.
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In the steady state (for large k) we would have P r ( e = 0) = P r(ek = 0) = A, so 

that (D.4.1) implies

A = p21(l -  A)/2 + p22A + p23(l -  A)/2,

or
A = \(Pii + P23)

1 ~ P22 + 2 ^ 2 1  + P23) *

in which we have used the equiprobability of the input symbols and the odd sym­

metry of the decision device, i.e.,

Pr{ek~\ = 2) = Pr(ek_i = -2 )  = (1 -  Pr{ek_x = 0))/2.

The probability of error (BER) is therefore

HER = 1 — A = ----- r—  — ^ . (D.4.3)
1 + j(P 2i + P23) -  P22

It remains to evaluate the elements of the transition probability matrix pij. We 

use Bayes’ rule again to write for given ek and ek-\

Pr{ek I ek- i )  =

+

^ Pr(uk = 1 -  ek I cjt-i,u* = 1) 

^Pr(u* = -1  -  e* I ek- i , u k = -1 ). (D.4.4)

Assuming white Gaussian noise with variance <r2, we can show from the above that 

the elements of P, given by (D.4.2), are

€ k  —  _2 

e f c  =  2 .

P r(e fc I e*_i) = < (D.4.5)

For a particular choice of channel [ho,/*i] and signal-to-noise ratio, we first com­

pute the transition probability matrix P  numerically from (D.4.5), obtain the steady 

state matrix by raising P to a large power and finally compute the bit error rate using 

(D.4.3). For instance, with h0 = hi = 1 and a SNR of 4dB, we obtain a theoretical
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BER of 0.0966 with this method, compared with a simulated BER of 0.0970 (for a 

106 point run).
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A ppendix E

A ppendix  To C hapter 5

E .l Structure of the Error State FSM P

In effect, we are computing the steady state distribution of the finite-state Markov 

process governing the dynamics of the detector’s error states. Denote by xk the 

stochastic L-vector whose elements are the probabilities of the respective error states 

(numbered from 1 to 3L) at time k, and by Pl the 3Lx 3 L-matrix whose (i,j)elem ent 

Pij is the probability of of a transition from state j  to state i, or in symbols

Pij = Pr((E k+i) = i I (Ek) = j ) .

The governing equation is then irk+\ = Pl irk and the (unique) steady state dis­

tribution 7Ts satisfies 7r5 = Pl irs. Although the actual entries of Pl (transition 

probabilities) are dependent on the channel parameters and on the SNR, the struc­

ture of Pl is constrained by symmetry with respect to sign (property 5.3.1) and the 

following fact:

From each state at time k, only 3 transitions to states at time fc + l may have nonzero 

probability.

This property derives from the (shift register) definition of the error state (5.3.12). 

In particular, the following holds for any FIR channel:

Pr ( Ek+1 = 0  I Ek = 0) = 1 - 2 P r(E k+1 =  [0 ,0 ,---,0 ,2 ]' | Ek =  0). (E.1.1)
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For instance, with the indexing rule for error states that assigns an integer (Ek) E 

{1, • • •, 3l } to error state Ek (5.3.12) according to (see section 4.5.1):

(^/c) = (1 + -Cfc-i )3l 1 4- (1 4- -Cfc_2)3L 2 4----- b (1 4- -efc_^)3°, (E.1.2)

the transition probability matrix for the detector operating on a second order channel

( L  =  2 )  w o u ld  h a v e  t h e  s t r u c t u r e :

Pn P i 2 P i 3 0 0 0 0 0 0

0 0 0 P24 P25 P26 0 0 0

0 0 0 0 0 0 P73 P72 P71

P a i PA2 P43 0 0 0 0 0 0

P2 = 0 0 0 P54 P55 P54 0 0 0 (E.1.3)

0 0 0 0 0 0 P43 P42 P41

P71 P 7 2 P73 0 0 0 0 0 0

0 0 0 P26 P25 P24 0 0 0

0 0 0 0 0 0 P l3 P i 2 P l l  _

Of course, all column sums of Pi are unity.

If we use the state indexing rule given in (E.1.2), we can deduce the structure 

of Pi+1 from Pi simply by replacing each nonzero element of Pi in turn by a 3 X 3 

block having one of three possible forms (the particular form depends on the position 

of the element being replaced), and each zero element by a 3 X 3 matrix of zeros. 

The three block types are (with appropriate choice of subscripts)

p .. p .. p .. 0  0  0 0  0  0

0  0 0 1 p .. p .. p .. 5 0  0  0

0  0  0 0  0  0 p .. p .. p ..

There is clearly a high degree of structural similarity between transition matrices 

for successive channel orders.
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