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Abstract

The focus of this thesis is the non-linear equalization of channels for digital communi-
cation. Thrdughout, we assume a baseband PAM? transmission system for uncoded
data on a dispersive channel with additive noise. The emphasis is on theoretical
development and analysis of new equalizer structures for the removal of intersymbol
interference and the recovery of the transmitted data.

We present a multi-layer non-linear feedforward processor that emulates a deci-
sion feedback equalizer (DFE) on a finite impulse response channel. This feedforward
emulator has close structural ties with multi-layer perceptron neural networks, but
is more readily analysed. It derives from a non-adaptive decision feedback equal-
izer through a process of recursive unwrapping followed by truncation. We extend
the finite-state Markov process techniques for the DFE to analyse this new structure,
obtaining bounds on the noiseless error probability. We go on to develop training
sequence adaptation rules using a stochastic gradient descent strategy and verify
their convergence via numerical simulation.

We generalise . conventional decision feedback equalization to block deci-
sion feedback equaliiation using a block processing channel model combined with a
fixed-lag maximum a posteriori estimator and decision feedback. We consider vari-
ous realisations of block DFEs, generating single decisions and blocks of decisions,
and ascertain their performance under simulation. We investigate the extremes of
pérformance of the block DFE obtainable by varying the dimension of the block
processing and the decision device, as well as its behaviour for high signal-to-noise
ratios. These extremes are: the conventional DFE; the Viterbi decoder; and the

minimum bit error rate detector. We show how block decision feedback equal-

2Pulse Amplitude Modulated

iv



ization can be applied to quadrature amplitude modulation signalling on infinite
impulse response and non-linear channels with coloured noise. We derive minimum
mean-square error and gradient descent adaptation rules for block DFEs with binary
signalling on finite impulse response channels.

We provide performance analyses of the non-adaptive two-dimensional block
DFE operating on low order channels. We give a direct calculation of the primary
bit error rate. We treat the noiseless propagation of initial decision errors through
decision feedback—firstly by deriving sufficient conditions on the channel impulse
response parameters, then by modelling error propagation as a finite-state Markov
process. The latter approach yields necessary and sufficient conditions on the chan-
nel which guarantee a bounded error recovery time and furthermore allows us to
classify channels according to the statistics of their noiseless error recovery times.
We also indicate how to include the effects of noise into the analysis.

Lastly, we derive an enhanced block DFE—the maximum a posteriort deci-
sion feedback detector—which generalises the block DFE through the incorporation
of error event probabilities in its decision criterion. We show how this strategy re-
lates to classical non-linear detection. We give numerical examples for realisations

on low order channels, and investigate the decision regions arising from the new

detection criterion.
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Chapter 1

Introduction

1.1 The Equalization Problem

1.1.1 Lead In

The equalization problem arises in the area of digital communication. It is desired
to transmit a stream of discrete-time digital information through some physical
medium, called the channel, to a receiver. Physical channels, having finite band-
width, tend to introduce distortion of the transmitted data which manifests itself
in the time domain as a spreading of the energy or duration of the individual data
pulses. The continuous reéeived waveform is sampled at the receiver, generating a
train of pulses. For practical sampling rates, each received pulse contains contribu-
tions from more than one transmitted pulse. This dispersion of information is known
as intersymbol interference (ISI). At high data rates or on highly dispersive channels
ISI becomes the major factor hindering the reliable recovery of the transmitted sig-
nals. The part of the receiver Which is responsible for the removal or mitigation of
the effects of ISI is called an equalizer. The compensation process itself is referred
to as equalization.

In many areas of high speed digital communication on band-limited channels,
such as data modems for telephone lines, an equalizer is indispensable. Without
equalization, the ISI introduced by the channel can significantly degrade system
performance resulting in high error rates. There are essentially two ways of com-

bating theses effects. The first is to use some form of coding prior to transmission
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Figure 1-1: Communication system model.

followed by decoding at the receiver—although coding does not remove ISI, it in-
troduces redundancy in the transmission so that more errors can be tolerated. The
second is to develop new and better equalizer structures. In achieving transmis-
sion rates that approach the theoretical limits [1], both these approaches need to be
contemplated. Practical developments, such as very high speed digital signal pro-
cessing chips, me-an that more and more numerically intensive processing algorithms
can now be implemented, e.g., trellis-coded modulation schemes [2]. We refer the
reader to [3] for a review of coded modulation techniques.

While channel coding (as opposed to source coding) seeks to increase the rate
at which information can be sent with a given reliability, equalization corrects the
distortion introduced during transmission and allows still higher data rates. We
mention that the two functions of decoding and equalization can often be combined.
This is true in the case of trellis-coding and Viterbi decoding [4]. The same may
be true of block-coding and block decision feedback equalization (chapter 3). We
will, however, only be concerned with the design of equalizers for uncoded data, the
incorporation of coding being a possible subject for future research.

In the following section we present the basic pulse amplitude modulation system
model underlying the development of the various equalizers which form the basis
for chapters 2-5. This model is a commonly adopted starting point for problems in
channel equali.za,tion. We also review conventional equalization strategies which are

important in understanding the developments that we will be describing.
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1.1.2 Digital Communication System Model

We restrict the present discussion to pulse amplitude modulation [5] (PAM) over a
linear channel. The system block diagram is given in Fig.1-1. The input symbols
or data {ux} take values in a discrete set (for binary transmission the symbol set is
{=1,+41}), and arc indexed in time by the subscript k (representing the k*? sampling
instant). The data are passed through a transmitter filter and modulated by a carrier
signal before input to the channel (which is often assumed to be linear). Fig.1-2
shows the sampled impulse response of a representative communications channel
and some associated terminology. Random fluctuations in the channel, modelled
as additive noise, also corrupt the signal. The received signal (z in Fig.1-1) is
demodulated (with correct carrier phase and frequency, i.e., coherently), filtered
and then sampled (with correct timing phase) at the symbol rate to produce the
signal yx, which, for equalization purposes, we will refer to as the received signal.
This conversion from continuous to discrete time loses no information as long as
we use a matched filter {3] before the sampler. The equalizer estimates the data
sequence from the received signals and these estimates 4y are called decisions. The
process resulting in y; can equivalently and more conveniently be represented in the
baseband equivalent form shown in Fig.1-3.

The combined cffects of filtering and sampling in Fig.1-1 have been lumped into



one filter which we may view as the effective channel. The received signal can be

expressed as the convolution of the channel impulse response (parametrised by h;,

t=0,...,L) and the input symbol sequence, with additive noise ny viz:
L
Ye = 3 hiug—i +nx (1.1.1)
1=0

L
= houk + ) _ hittk—; + nk,

=1

in which the channel order L may be infinite. We refer to the coefficient ho as
the cursor, which, without loss of generality, we can (and usually do) take to be
unity. In writing (1.1.1) in this form, we are assuming implicitly that there is no
- transmission delay (since y; depends on ug), and, in treating hg as the cursor (which
is generally the dominant coefficient), we are assuming that some linear filtering in
the receiver has cancelled the precursor ISI. The middle term in the last equation
therefore represents the remaining (postcursor) ISI. The vector of the L most recent

past channel inputs

. |
ok = [uk—1," -, up-L] (1.1.2)

is called the state. (We can also define a channel state in the IIR case.) This
idealized model is a commonly adopted starting point [6) for problems in channel
equalization of uncoded pulse amplitude modulated data.

Further assumptions concern the statistics of the input and noise sequences (e.g.,
correlated or independent) and the type of channel (e.g., linear or non-linear). In

the following chapters we will mostly consider the case in which:

1. The input to the channel is a sequence of independent and identically dis-

tributed (iid) multi-level random variables.
2. The channel is a linear finite impulse response filter.

3. The noise is a sequence of independent zero-mean Gaussian random variables.

The independence of the data teamed with assumption 2 guarantees that the base-
band system, from the point of view of the receiver, can be modelled as a finite-state

machine with noisy observations, or a finite-state Markov process [7, 8]. That is, we



can characterise the system in terms of its initial state and the transition probabil-
ities between its various states.

For simplicity of presentation, we will mainly be concerned with binary signalling,
although extensions to M-ary signalling and quadrature amplitude modulation will
be covered in chapter 3. There, we will also deal with the equalization of infinite
impulse response and non-linear channels. We do not consider how to modify the

equalizer structures we develop for coded data.

1.1.3 Equalizer Design and Analysis

The equalization problem now reduces to the design of a system that reliably recovers

the data {u;} from the received signals {yx}. In practice, the following points need

to be considered:
1. Lack of knowledge and time variation of the channel parameters.
2. Computational complexity and decoding delay of the equalizer.
3. The signal-to-noise ratio (SNR).
4. The required bit error rate (BER).

We make some general remarks concerning the above aspects. The channel is in gen-
eral unknown by the receiver and may change with time due to fading (varying signal
strength). It is therefore desirable for the equalizer to adapt its internal model of the
channel to track the unknown physical channel and cope with any (slow) time vari-
ation. An equalizer which adjusts its parameters automatically is called an adaptive
equalizer. Adaptive equalization divides into two distinct approaches. In the first,
an initial training sequence generated at the transmitter and known to the receiver
is used to to perform the adjustment. The second, called blind adaptation, uses
only signals available at the receiver. Blind adaptation is preferred in multi-receiver
systems where it is impractical to retransmit training sequences. Blind adaptive
schemes often adjust the equalizer taps via a stochastic gradient descent algorithm,
derived from constraints imposed by the signal alphabet (modulus restoral [9], for
instance). The signal-to-noise ratio is determined by the transmitter power (subject

to fading and other disturbances). The processing delay of the equalizer affects the



maximum bit rate that can be transmitted. Broadly speaking, the lower the required
bit error rate, the higher the cbmplexity/ delay of the equalizer.

The bulk of this thesis focuses on non-adaptive aspects of equalizer systems (with
the exception of parts of chapters 2 and 3). Although, in practice, the adaptation
of an equalizer is of crucial importance to its operation, the importance of under-
standing the underlying mechanisms which cause errors (incorrect decisions) in the
tuned (correctly adapted) device cannot be overemphasized. Our main concern is
the non-adaptive performance of non-linear equalizers and we give only a brief ac-
count of adaptation in the conventional equalizers which we review in the following
sections (the reader is referred to [6] for a comprehensive coverage).

The term non-linear equalizer is understood to mean a system for the recovery
of transmitted data whose operation, in the non-adaptive mode, cannot be repre-
sented by a linear filter. The non-adaptive performance of a non-linear equalizer, as
measured by its bit error rate (BER), is related to the criterion (subject to practical
constraints) used in its design. Some examples of design criteria are: maximum
likelihood sequence estimation, minimum bit error rate detection, minimum mean
square error and zero-forcing criteria. Two major practical constraints in the real-

isation of an equalizer are the computational complexity and the inherent delay in

obtaining data estimates.

In most (but not all) non-linear equalizers, there is some kind of feedback of
past decisions. The mechanism for this may be either direct, as in a decision feed-
back equalizer (DFE) [5, 6], or indirect, as in reduced-state sequence estimators
(RSSEs) [10, 11, 12]. The presence of a feedback mechanism complicates the per-
formance analysis. The problem of computing the output error probability, Pr(uy #
uk), usually a relatively straightforward calculation for a linear equalizer or feedfor-
ward equalizer, is made more arduous by the dependence of present outputs on
past outputs via feedback (recursion). Nonetheless, we can distinguishl two partial

solutions to the problem of non-linear equalizer performance analysis:

1. The conventional (and usually more tractable) analysis of primary (noise-

induced) errors in the system, assuming correct past decisions.



2. The analysis of errors produced by initial error states and propagated subse-

quently, in the ahsence of noise.

A complete understanding of error performance requires both of the above analyses.
Many authors consider analysis 1 mandatory but 2 is often left out (for examples
of 1, see [13, 14]). When there is feedback or use of past decisions, initial errors
can produce further errors, enhancing the bit error rate due to noise alone, so that
analysis 2 becomes a study of error propagation. One of the themes in our work
is a study of error propagation in a generalised decision feedback equalizer called a
block decision feedback equalizer [15]. The block DFE (in certain cases) is amenable
to analyses of the kind applied to the conventional DFE [16, 17, 18]. The theory of

finite-state Markov processs is an invaluable tool for modelling such systems.

1.2 Established Techniques

With the intention of setting the scene for the new techniques that we have de-
veloped, we now review three basic equalization strategies in increasing order of
complexity and performance. These are the linear equalizer (LE), the decision feed-
back equalizer (DFE) and the maximum likelihood sequence estimator (MLSE) [19].
We also examine the reduced-state sequence estimator (RSSE) [11] which has close
ties with the MLSE and the DFE. An understanding of the workings of these sys-
tems will be important in what follows. Certain detailed aspects of MLSEs and

RSSEs have been relegated to appendix A.

1.2.1 Linear Equalization

The adaptive linear transversal equalizer (Fig.1-4) consists of a tapped delay line
whose taps are adjusted to give a response approximating the inverse of the sampled
channel transfer function. (Of course, disregarding noise, the exact equalization of a
FIR channel would generally require a LE of infinite length.) In this configuration,
the LE acts to minimise intersymbol interference, possibly enhancing the noise, and
is called a zero-forcing equalizer (ZFE). The LE can also be adapted to minimise

an ISI plus noise criterion yielding a linear mean-square equalizer (LMSE). The
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Figure 1-4: Adaptive linear transversal equalizer.
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Figure 1-5: Non-adaptive decision feedback equalizer.

ZFE is typically less robust than the LMSE and can only be used on eye-open!
IST channels [20]. A decision device—a hard limiter in the case of binary sjlgnals,
or vector quantizer for M-ary signalling—can be added at the output of the linear
" equalizer to improve its noise immunity. This configuration is sometimes called a
decision directed equalizer (DDE), although this terminology is more often reserved
for the description of equalizer adaptation. Blind adaptation of DDE’s has been
studied in {21}, and [6] provides a general reference on training sequence adaptation

of linear equalizers.

1.2.2 Decision Feedback Equalization

For more severe channel distortion (e.g., non-minimum phase channels whose inverse
is unstable) a decision feedback equalizer (Fig.1-5) may be required. The DFE is

a non-linear equalizer with a linear feedforward filter designed to handle precursor

!Channels whose sampled output produces an open eye diagram.
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ISI, and linear feedback filter and non-linear decision device handling postcursor ISI
and noise. For argument’s sake, we assume the feedforward part is lumped with the
channel response and consider only the operation of the feedback part (treating the
dominant impulse response parameter hg as the cursor). Ideally the DFE adapts or
tunes its feedback taps d; to cancel the intérsymbol interference (d; = h;, Ug—; =
Uk—iy ¢ = 1,...,L) and passes the ISI-free signal (houi + nx) to a quantizer (slicer)

which makes a decision on the transmitted signal. In symbols this reads

L L
Uk = sgn(hour + Z hiwg_; — Z ditig—; + ng). (1.2.1)
=1 i=1
Yk

The decision feedback equalizer does not utilise the energy contribution from the
intersymbol interference in decoding each symbol, it merely tries to cancel it. If
the DFE makes an initial incorrect decision iy # ux (be it due to noise, incorrect
initialization or mistuning) it may fail to cancel the ISI and this occasionally leads
to bursts of errors. The phenomenon of an initial error causing subsequent errors
is known as error propagation. A more detailed description of the operation of the
decision feedback equalizer, covering training sequence adaptation, is set out in [22].

Error propagation in DFEs has been analysed in [23, 24] and blind adaptation in
[25].

1.2.3 Maximum Likelihood Sequence Estimation

The third technique—maximum likelihood sequence estimation (MLSE)—is per-
ceived as the optimal system for equalization. MLSEs can give performance ap-
proaching that of ISI-free transmission [19], and substantial bit error rate improve-
ments over the DFE are obtainable (e.g., 6dB for simulations on a second order
partial response channel). We discuss the technique in some detail as it relates
to work described in chapter 3. The MLSE is a sequence estimator, as opposed
to the LE and DFE which output one decision per sample and can be seen as
symbol-by-symbol detectors. Other optimal non-linear detectors have been devised
[26, 27, 28, 29] which maximise various probability criteria, but these do not seem to

have been adopted as the basis for practical systems. A summary of some of these
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techniques is given in section 3.4.3.

Using the notation introduced in section 1.1.2, the MLSE operates on finite im-
pulse response channels and determines the length K state sequence {z\} (or equiv-
alently the input sequence {u;}) which maximises the conditional probability density
p({yx}{ux}). A closely related problem, that of maximum a posteriori (MAP) es-
timation, seeks to maximise the a posteriori probability Pr({ux}|{yx}). The two
criteria are equivalent when the input sequence is iid and equiprobable [26, 15]
and can be interpreted as finding the input sequence which best represents the
measurement sequence in a mean square sense. The MAP criterion minimises the
probability of incorrectly decoding the whole state sequence. In chapters 3 and 5,
we consider non-linear equalizers based on fixed-delay MAP criteria incorporating
decision feedback.

For binary inputs to a finite impulse response channel of order L there are 2L
possible states (since each component is binary and the state consists of L of these).
The MLSE searches over all admissible state sequences and selects the one which
minimises a sum-of-squares cost function—arising from the assumption of white
Gaussian noise. The delay involved in this brute force computation would be unac-
ceptable for long channels and many authors have considered various related criteria
which result in simpler (suboptimal) non-linear detectors [27, 30, 31}. However, the
landmark work on the MLSE problem was achieved by Forney [19] with an ap-
plication of the Viterbi algorithm (VA) [32]—a forward-time version of dynamic
programming [33]. This recursive solution of the optimization problem, Viterbi de-
coding, makes the MLSE computationally practicable. However, since its complexity
grows exponentially with the channel length, the MLSE can only be used on chan-
nels having a short impulse response. Appendix A.l contains a summary of the

Viterbi algorithm.

1.2.4 Review of Other Techniques

As pointed out in section 1.2.3, there exists a large discrepancy in performance and
in complexity between the decision feedback equalizer and the maximum likeli-
hood sequence estimator. Seeking to bridge this gap, many attempts have been

made to design hybrid equalizers using the three basic equalizers as components
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(12, 34, 35, 36, 37, 38, 39]. These composite systems try to take advantage of the
simplicity of the LE and/or DFE to preprocess and remove a portion of the inter-
symbol interference from the received signal, thus presenting an effectively shorter
channel and reducing the complexity of the Viterbi decoder required for the remain-
ing task. Although these hybrid equalizers can work well, their success is limited in
general by the performance of the LE or DFE they incorporate.

Since the introduction of the Viterbi decoder, an equalizer with performance akin
to a MLSE, but needing substantially less computation was the object of intensive re-
search. By the mid 1980’s, systematic attempts were being made at developing such
equalizers, or moreover classes of equalizers, with the attributes of relative simplic-
ity and performance ranging between the extremes of the DFE and MLSE. We now
mention some of these. One technique is based on reduced complexity Viterbi de-
coding teamed with internal decision feedback. This was introduced independently
in [10], under the name delayed decision feedback sequence estimation (DFSE) and
by [11], under the name reduced-state sequence estimation (RSSE), who built upon
the preceding work of [10]. Another technique, called the M-algorithm, simply trun-
cates the search used in the Viterbi decoder. A large part of our work relates to
the development and evaluation of a device (the bloclc. decision feedback equalizer)
which also satisfies these requirements. We defer its discussion until chapter 3. A
description of delayed decision feedback sequence estimation and reduced-state se-
quence estimation is available in appendix A.2. Both schemes reduce the dimension
of the Viterbi trellis in a natural, structured way, retaining the essential features of
the Viterbi decoder. In [10] the channel may be recursive (IIR), whereas in [11] it

is assumed to have finite impulse response.

1.3 Outline of Thesis

1.3.1 Summary and Contributions

We now proceed with a chapter-by-chapter description of the thesis, pointing out

the major contributions.
In chapter 2 we study a non-linear feedforward processor with hard limiting

nodes, akin to an multi-layer perceptron neural network [40] (see Fig.2-4), that
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emulates a decision feedback equalizer. The so-called feedforward emulator (FFE)
arises through a recursive unwrapping of the DFE, followed by truncation (cutting
off the feedback path). This unwrapping procedure is analogous to a Markov ex-
pansion [41] of a linear (finite dimensional) IIR system. The DFE with feedback is
replaced by a multilayer feedforward processor and generates data estimates with
delay corresponding to the number of layers.

In section 2.3 we obtain an upper bound on the noiseless error probability (due
to non-zero initial conditions) by generalising the existing theory for the DFE [23].
The method entails modelling exactly the feedforward emulator as a DFE that has
been initialized at each time instant in a non-standard error state. Then, modelling
the DFE by a finite-state Markov process with a large number of states, aggregation
is performed by choosing a worst case channel (specialised to the FFE case) and an
exponential upper bound for the FFE’s error probability is obtained in terms of the
number of layers. The bound is realized by worst case channels but seems to be
conservative for most practical (decaying) channels. The importance of this work
is that it brings hard analysis to bear on the non-adaptive performance of a neural
network-like structure which may have more general application. The norm in most
work on neural networks is the recognition that a multi-layer perceptron neural
network can perform a certain task adequately (i.e., non-linear mapping), but the
justification often rests solely on the experimental or simulated performance.

The structure of the feedforward emulator is constrained by the requirement
that it should act as an equalizer. This manifests itself in the number of nodes per
layer, the connectivity between nodes and the interdependence of the weights. It
turns out that, for a FFE with A layers, only A — 1 of the %A(A + 1) weights are
independent (as the matrix of weights is Toeplitz). Thus only A — 1 quantities need
be adapted during training (or tracking). Using back propagation ideas [40, 42],
recursive gradient descent algorithms have been developed and tested for a FFE
consisting of (1) sign nodes and (2) sigmoid nodes.

In chapter 3 we develop a family of equalizers, called block decision feedback equal-
izers, whose performance/complexity tradeoff can be varied parametrically to bridge
the gap separating the DFE and the maximum a posteriori (MAP) detector (or

equivalently, in the case of iid equiprobable symbols, the maximum likelihood se-
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quence estimator). In some respects our contribution, the block decision feed-
back equalizer, is complementary to reduced-state sequence estimation (see appendix
A.2). Whereas the latter approach is based on reducing the complexity of an MLSE
using the idea of a subset state, our approach seeks to improve the performance of
the DFE by generalizing it to the vector case. In a manner of speaking, the RSSE is
a top-down approach (the MLSE being perceived as the “top”) and the block DFE
a bottom-up approach. Precursors to the block DFE were studied in [13, 14, 43, 44],
although the block DFE was developed independently.

The block DFE (Fig.3-1) is a natural generalization of the conventional DFE. It
is based on a block processing [45, 46, 47] channel model connected in feedback with
a vector quantizer [15] operating under a maximum a posteriori criterion. The
block DFE, or (p,¢)-DFE, is indexed by two parameters: the block length p and
the number of decisions ¢ produced at each (block) iteration. The block length is
independent of the channel length. It can be made to replicate the DFE when p =
¢ = 1, the MLSE in the limit as p = ¢ — o0 and the maximum a posteriori symbol-
by-symbol detector [30, 31] when ¢ = 1, p — oo. The best performance (for fixed p)
is achieved in the latter mode with ¢ = 1, 'p large, where the (p,1)-DFE functions
as a minimum bit error rate detector. We investigate these connections in section
335

Intuitively, the block DFE acts as a non-linear fixed-lag smoother [48] with lag
p- A block of channel outputs yx, ..., Yk+p-1 is used to estimate a block of channel
inputs ug,...,Uk4q-i. The computational load increases exponentially with p, but
fortunately even small values of p result in greatly improved performance over the
DFE. Despite the fact that the (p,1)-DFE has superior performance to the (p, p)-
DFE, the latter device may still find useful application in the equalization of block
codes in which each codeword has a fixed length [49]. The decision criterion for the
block DFE reduces to a minimum Euclidean distance calculation for high signal-
to-noise ratios [15]. The use of a minimum distance metric in a block DFE gives
rise to a device called a high SNR block DFE, which has similar performance, but
is computationally much simpler. These results, presented in section 3.2, are of
practical importance for the implementation of block decision feedback equalizers.

Simulated performance and complexity issues are investigated in section 3.3. Exam-
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ples of two and three-dimensional block DFE realisations and their vector quantizers
are also given. Some other interesting examples of two-dimensional decision devices
(and their corresponding decision boundaries) which optimize various criteria (in-
cluding maximum likelihood decision boundaries for non-linear FIR channels) may
be found in [50, 51, 52]. The block DFE can operate on linear infinite impulse re-
sponse (ARMA) channels and also non-linear channels having a finite-dimensional
state space realization. Generalization to M-ary signalling, coloured noise and adap-
tation of block DFE parameters are considered in section 3.5.

Block DFE performance analysis forms the substance of chapter 4. All analyses
of the block decision feedback equalizer so far concentrate on the 2-input (p = 2)
case. The analysis is complicated by the non-linearity of the decision device and
its dependence on the channel parameters. The decision boundary is the curve
separating the different decision regions in the decision device. This boundary is
curved for a (2,1)-DFE but becomes piecewise linear for high signal-to-noise ratios.
(The (2,2)-DFE decision boundary is always piecewise linear.) Simple geometrical
considerations yield an explicit formulae for the decision boundary, and are the
starting point of performance/stability analyses of the (2,1)-DFE and (2,2)-DFE.

We give a representative example calculation in section 4.3 of the (2,1)-DFE’s
primary error probability on a first order channel, i.e., the bit error rate assuming
that there have been no past decision errors. In section 4.4 we derive eye conditions
for finite error recovery of the (2,1)-DFE on an arbitrary second order channel.

The block DFE is a non-linear equalizer with feedback and therefore can suffer
from error propagation. In particular, we are interested in describing the class of
channels on which the block decision feedback equalizer has a finite error recov-
ery time (in the sense that it can recover from an initial error state in a finite time
regardless of the input sequence). On such channels we say the block DFE is stable
[16]. Of course, other statistical measures of the error recovery time could be used to
define stability, but the present definition is more convenient for our purposes. The
theory of finite-state Markov processs [7, 8] gives necessary and sufficient conditions
defining the class of stable channels, using the idea of pathological input sequences
[16, 23]. This classification of second order channels has been carried out for the

(2,1)-DFE and the (2,2)-DFE in the noiseless case [53] and is presented in section
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4.5. Example calculations of the mean and variance of error recovery times are also
presented. These preliminary results show that the block decision feedback equal-
izer is stable on a broader class of channels and is therefore more robust than the
decision feedback equalizer.

As is common in decision feedback equalization, the block DFE’s criterion uses
the assumption of correct block ISI cancellation (or channel state estimation) in
the design phase. In chapter 5 we consider a different criterion, related to fixed-
delay, symbol-by-symbol MAP detection, which does not rely on this assumption
and subsequently generalises the block DFE, although it only operates on finite
impulse response channels. The resulting non-linear equalizer is called a maximum
a posteriori decision feedback detector [54], and incorporates knowledge of certain
error probabilities, giving improved performance. The design of the detector is
covered in chapter 5 in which we also present a recursive procedure for its realization
(this is necessary since the decision criterion cannot be expressed in closed form).
We provide simulated performance comparisons for the new detector on first and
second order channels, showing the improvement in bit error rate over the block
DFE, and give examples of the decision regions that are thus formed.

Chapter 6 concludes the thesis and contains a discussion of topics for future
research. In particular, we mention the need for further work regarding simpli-
fied decision devices for, and the incorpora.tion of coding into block decision feed-

back equalizers.
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Chapter 2

Feedforward Emulation of ‘the

Decision Feedback Equalizer

2.1 Introduction and Motivation

The decision feedback equalizer is a simple but effective non-linear equalizer that
has enjoyed widespread application in digital communication systems [6]. Its op-
eration has been studied by various authors [16, 17, 36, 55] and is reasonably well
understood. The simplest realisation of a DFE is the non-linear recursive structure
shown in Fig.1-5. On the other hand, the multi-layer perceptron (MLP) neural net-
work [40], which also has been applied to the equalization problem in [52, 56], is a
relatively poorly understood system. In this chapter, we consider an intermediate
structure for equalization, the feedforward emulator (FFE) [57, 58, 59], which derives
from the DFE and is closely related to the feedforward neural network, and which
may be analysed in much the same way as the DFE.

’ The feedforward emulator has a structure akin to a systolic array for parallel
processing. In the absence of noise, the the emulator can be represented as a stan-
dard MLP neural network [59] with hard-limiting nodes, but it has a non-standard
structure in general. Unlike MLP neural networks whose weights may be chosen
freely, the parameters here are constrained so that only some may vary indepen-
dently. If we can identify the communication channel, then we know how to assign

the weights of the FFE system to make it act as an equalizer. This is an enhance-
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ment of standard MLP neural network equalizer techniques because there is a direct
link between the weights and the parameters characterising the channel.

The chapter is organised as follows. In section 2.2, we briefly review the non-
adaptive decision feedback equalizer and detail an unwrapping procedure followed by
truncation that results in a recursive multilayer processor with hard limiting nodes.
We obtain the feedforward emulator by disconnecting the feedback of decisions made
in the distant past. We give some low order illustrations and show how the structure
generalises to an arbitrary number of layers.

In section 2.3 we re-introduce the finite state Markov process description of the
tuned noiseless decision feedback equalizer found in [17]. We extend the model to
embrace both the DFE and the feedforward emulator by enlarging the state space.
In section 2.3.2 we introduce the idea of a worst case channel, i.e., a FIR channel
guaranteeing the worst bit error rate performance for any channel of the same order.
We subsequently apply FSMP theory to upper bound the noiseless error probability
of the DFE (in section 2.3.3) and then the FFE (in section 2.3.4), obtaining a bound
in terms of the number of layers for the latter. We present numerical examples for
the non-adaptive feedforward emulator in section 2.4 and also examine conditions
on the channel under which the representation is exact (in the sense of producing
the same sequence of outputs in the absence of noise).

Having established the possibility of representing a DFE by a specific feedforward
emulator, we consider, in section 2.5, algorithms for FFE adaptation using a training
sequence—as in supervised learning of neural networks. Because of the FFE’s non-
standard structure, the usual back propagation learning rule [40] is not applicable.
Instead, we develop two novel training algorithms. The first of these assumes the
hard limiters are replaced by sigmoid processing elements and implements a gradient
descent strategy subject to the constraints imposed on the weights. The second
algorithm, applicable to an FFE with sign nodes, uses a different error measure from
the more usual sum-of-squares outpﬁt error. Numerical evaluation of these training
algorithms are presented, and comparisons with the DFE are made. Section 2.6

contains concluding remarks and discussion of some open problems.
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2.2 Unwrapping the Decision Feedback Equalizer

Conventional multi-laver perceptron neural networks, which can be configured to
act as non-linear equaliéers [52], are highly interconnected non-linear systems whose
analysis is typically very difficult. In contrast to this, we derive a new non-linear feed-
forward processor designed to emulate the well-studied decision feedback equalizer.
The new structure is more amenable to analysis and it is possible to obtain bounds
on its performance in the absence of noise—which we assume for simplicity only. We
therefore consider a non-adaptive binary decision feedback equalizer operating on
a finite impulse response channel corrupted by additive zero-mean white Gaussian

noise ng. At the output of the channel, the sampled received signal is

L
Yk = Z hiug—; + ng, (2.2.1)

i=0
where {h;} are the impulse response coefficients and {u} is a sequence of equiproba-
ble iid binary inputs which we cannot measure directly. The DFE (Fig.1-5) generates

an estimate of the input signal, based on its own past decisions, given by!

i = sgn(yk — ijdj(kjak_j) 2 fL(ykifikty . - -, Bk—L). (2.2.2)
=1
The feedback tap gains d;(k) are adapted to cancel the intersymbol interference in-
troduced by the channel. Initially, we will be presenting an analysis of the non-
adaptive system in which the d;(k) = d; are constant. We assume, with no loss of
generality, that hg = 1.

We develop a self-similar recursive representation of (2.2.2) by “unwrapping” the
DFE, and, in so doing, introducing a delay in the computation of the decisions. As
we mentioned in chapter 1, this procedure is analogous to the Markov expansion of
an ARMA filter. At the first step we write

L

Ug—1 = SgN(Yk-1 — Z djlk—j_1),
Jj=1

lsgn(z)=1ifz >0and —1ifz <0
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Figure 2-1: Processing element or node.

and substitute for tix_y in (2.2.2), thus obtaining

L L
sgn(yx — dysgn(yk—1 — Y djlik—jo1) = 3 djlik—;)
i=1 . i=2

3
£
Il

J7 Yty Yt ks« oy Biem Lot (2.2.3)

At the next step, we eliminate g (which appears twice in (2.2.3)) to get

L L
i = sgn{yk — dysgn(yk—y — dysgn(yk—o — 3 djix_j_2) — Y_ djlix_j-1)
i=1 j=2
L L
—dysgn(yh-2 — Y djfie—j—2) = ) djfix-;}
—

1

FE Yk Ykmty Ykm23 Tk -+« Bk L=2)- (2:2.4)

After A — 1 such steps we obtain a highly nested composition of sign functions

whose functional form can be written as

W = SR (s Yty e oy YkmAd 1 BhoAs - - os BkmL-A$1)- (2.2.5)

There are in fact A degrees of nesting in this expression and we can interpret
these as the layers in a recursive multilayer ‘processor whose external inputs afe the
{Yk=A+1,---,Yx}, whose feedback inputs are the {tk=Ay.-.yUk~A-L+1}, and whose
output is #. The processing clements, or nodes, compute the sign of the weighted
sum of their inputs. Tig.2-1 depicts a typical node.

Intuitively, it is reasonable to expect that the dependence of the output %y on

the past decisions #ix_p4+1-; decreases the larger we make A (at least for A > L).
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Figure 2-2: Three-layer feedforward processor.

This is equivalent to the effect of earlier decisions in a DFE ceasing to influence later
decisions, given a large enough time delay between the two. We give substance to
this notion in the following sections.

Supposing, then, that we can ignore decisions made in the distant past, we

disconnect the feedback implied in (2.2.5) by setting the arguments involving past

decisions to zero, obtaining

i = SR Yko1y - - o) Yk=a413 0, .., 0). (2.2.6)

If our intuition is correct, then with high probability and given a large number of
layers (A large) we would have %, = . It is instructive to visualise (2.2.6) as
a multilayer feedforward processor wﬁh sign nodes. We illustrate in Fig.2-2 the
corresponding system in the A = 3 case first (setting ix—; = 0, j > 3 in (2.2.4)).
Before proceeding with the general case embodied by (2.2.6), we make a short

digression to examine the noiseless feedforward version of (2.2.4) with A = 3, which

may be expressed as

U = f({l(yki Yh=1,Yk-2; 01 ey 0) |ﬂg=nk_1 =ngx_2=0

L L
= sgn{ux + Y hjur—i — dasgn(ur—z + 3 hiuk—i—2)

=1 =1

L L
—dy sgn(up—q1 + Zh;uk_,-_l — dy sgn(up—2 + E hiuk-i-2))}.

=1 =1

This is depicted in Fig.2-3 for a channel length L = 2 and arbitrary hg. Of course,
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Figure 2-3: Noiseless MLP realisation.

in practice, the input sequence {u;} and the channcl parameters are unknown, but
the purpose of T'ig.2-3 is to show how Fig.2-2 can be capfured in a étandard MLP
neural network framework.

Returning to the general A-layer structure described before in (2.2.6), it is fairly
easy to generalise the low order cases to arrive at the diagram in Fig.2-4. This
feedforward parallel processing structure, which implements (2.2.6), will be referred
to in the sequel as a A-layer FFE. We have drawn Fig.2-4 to accentuate its Toeplitz
structure—the weight of the branch connecting node i in layer k to node i + j in
layer k + 1 is —d;, independent of i. We alert the reader to the following important

differences between Fig.2-4 and a standard MLP neural network.
¢ Each diagonal node has one external input, this being a noisy channel output.
o All horizontal connections have fixed weight one.
o There are only A — 1 distinct weights.

The FFE is clearly self-similar. The A-layer FFE is embedded in the (A — 1)-layer
FFE. This embedding property has interesting consequences in terms of monotonic-
ity of performance (see simulations in section 2.4) and the simplicity of the training

rule required for adaptation (section 2.5).
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Figure 2-4: Feedforward emulator for the DFE.
Each node computes the sign of the weighted sum of its inputs. The weights are marked on

the branches and horizontal connections have weight 1.
2.3 Analysis of Noiseless Error Probability

2.3.1 Finite State Markov Process Description

We can accurately model the stochastic dynamics of the DFE using the theory of
finite state Markov processes [8] as long as the input sequence to the channel is

independent. Referring to (2.2.1) and (2.2.2), the input is u; and we choose
Xi = [uk=Lyeooy oty UkaLye s oy Ugor)

as the state vector. There are 4L states in total if all elements are binary. Since the
DFE is assumed to be tuned (in the sense that d; = h;, j € {1,...,L}), we can

reduce the number of states to 3% by defining an error state
A '
Ery = [ex—Ly...,ek-1] (2.3.1)

where each component ej_; = up_j — x~; takes values in the set IE S {-2,0,+2}.

We denote by IE" the sct of all possible Ej states. Consequently, the DFE output

24



(2.2.2) (with hg = 1) can be re-expressed as

L
Uk = sgn(ug + Z hiex—; + ng). (2.3.2)

i=1
In order to simplify the analysis, as is standard in the analysis of error propagation
of DFEs [16, 23], we consider only the noise-free case (ny = 0 Vk) so that the unique
absorbing state of the FSMP is Ex = 0 (the zero vector). To see this, note that the

error vector or state satisfies the simple recursion

(0010 - 0] [ 0 '
001 -0 0
Expr=1 0 ¢ 0 0 | Ex+ : , (2.3.3)
000 -1 0
(000 - 0| | uk — sgn(uk + h'Ex) |

where h £ [h1,...,hr). If Ex = 0 then for all inputs we have sgn(ur + h'Ex) = ug
and the DFE remains in the zero-error state regardless of the input. However, from
an Ej state having a non-zero entry, there is a non-zero probability of reaching the
absorbing state in M steps for any M > L (since a sequence of L correct decisions
will cause transition to the absorbing state). Also, the probability of ultimately
reaching the absorbing state is 1 [16]. When noise is present, only a noise-induced
decision error can cause a transition from the zero-error state.

Returning to the recursive representation of the DFE described in the last sec-
tion, we see that the output, in the absence of noise, can be viewed as depending
on the sequence of inputs ux_p41,...,u; and the initial state Xx_p4+1 (or Ex—p41).

For convenience, we introduce the notation (with reference to (2.2.5))

ff(ylh ey Yk=A+1, ak—A yo ey ak—/\—L-l )I"k='"="k-A+1 =0

N ~ -
= gK(Uky- oy UkmA—L=13 TRy« - -y BkmA=L-1)- (2.3.4)

We aim to determine an upper bound on the probability of an incorrect decision at
time k from an arbitrary non-zero initial error state. This measure of performance

will be seen to be central to the analysis of the feedforward emulator to follow.
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With this in mind, we define an extended state X; (E) in the tuned case) having
the same form as X, but in which the decisions which appear in the initial state
may take the additional value zero. Each element Ej of the extended error state
E} takes values in IE 2 {0, £1, £2}, so there are a total of 5L E; states comprising
the set TEZ. Of course, a DFE with an initial state in E" reverts to a DFE with
state in IEL after L time units because the binary decisions that are fed back will
displace the initial conditions. The concept of an extended state, together with the
error probability bound, will allow us to gauge the effect of omitting the recursive
part (i.e., old decisions) in the representation for the DFE (2.2.5), thus obtaining a
feedforward structure generated by

U = GR(Uks - - s Ukm Ab1s UkmAy - « oy UkmA—L—1} kA = 0, -, Fp—A-L—1 := 0),

| (2.3.5)
(or by (2.2.6) in the noisy case) where 1 is binary, but, by the notation x_p41~j :=
0, we mean that any feedback paths in the recursive processor (2.3.4) have been
deleted. Note that the same % as (2.3.5) would be generated by a standard DFE,
started in an abnormal initial state Ex_p4; with fictitious past decisions Up_p =
0,...,Uk-A-L-1 = 0 and fed with the sequence of inputs ux—p41,...,ur. Thus, the
feedforward structure in (2.3.5) is effectively a “sliding-window” version of the DFE
which resets its initial conditions at each time instant. We shall have more to say

about this in section 2.3.4.

2.3.2 Worst Case Channels

Extending the development found in [23 - ], we now determine a class of channels on
which the DFE has the worst possible performance (in terms of error propagation)
from an arbitrary initial condition in the extended error state space EX. This
will allow us to bound the DFE’s noise-free performance, and subsequently the
feedforward emulator’s performance, on an arbitrary FIR channel.
Any channel
h=[ho=1,hy,...,~h ]
hl
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satisfying

_min |REx] > 1 (2.3.6)
Ex# 0

has the property that Pr(@; # ux) = 3 for any non-zero extended error state Ej.
This follows since the inputs are equiprobable and therefore u; has a probability
of % of having the same sign as h'Ej (recall that iy = sgn(ui + h'Ex)). Channels
satisfying (2.3.6) will be termed “worst case” channels. We claim that the expected
error recovery time? is maximised for such channels, which form a subset of the
worst case class in [16] since we are allowing Ej to have the additional values 1.

Any channel (with hg = 1) whose parameters belong to the set

L j-1
{he R* | hy > 1} ({he R | hj>1+2 > m},
i=2 k=1

will fall into the worst case category. This is because the h; have been spaced so
far apart that no linear combination with coefficients in the set {0,+1,+2} has
magnitude less than 1. (The same is true of any channel that can be obtained from
this set by changes of sign and/or permutation of parameters.)

As an illustration, consider the L = 2 case. We may take h; = 1.2 and h; = 3.5
so that

min |[1.2,3.5] Ex| =35-2x1.2=11>1,
Ex#0

demonstrating that [1,1.2,3.5] is a worst case channel. That is, no second order
FIR channel may have an expected recovery time which exceeds that of the above

channel.

2.3.3 Bound for the Decision Feedback Equalizer

In what follows we may assume the DFE is operating on a noiseless worst case
channel so as to obtain a tight performance bound. The order of the FSMP model
can further be reduced by aggregating states, provided that states to be aggregated
have identical transition probabilities [60]. Here, we are able to impose a structured
aggregation of the 5© — 1 non-zero extended states Ej while reta.iningb the Markov

property between the aggregated states. We choose to aggregate the Ej states

2Expected time to reach the absorbing state.
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absorbing state

Figure 2-5: Aggregated FSMP for a worst case FIR(L) channel.
according to the following rule [18].

Definition 2.3.1 (Aggregation Rule) The eztended error state Ei at time k,
defined by (2.3.1) with components in IE, is in aggregated slate €, = q if there ezists
a binary input sequence {'llj}";:z—l such that the absorbing state Exyq, = Q is reached

in q steps (while it cannot be reached in fewer).

From the shift register property (2.3.3) applied to Ey (by allowing iy = 0), it is
clear that at most [ successive correct decisions are needed to force an arbitrary
non-zero E) state to the absorbing state. Hence there are L + 1 aggregated states
€ in the new FSMP. From a given state €, = ¢ (¢ # 0) there is a probability of ]
(for equiprobable inputs) of transiting either to state ex41 = ¢ — 1 (with a correct
decision) or to state ;41 = L (with an incorrect decision) at the next time instant

(see Fig.2-5). Subsequently, the transition probability matrix can be partitioned as

0
P g (p,'j) = Q L € m(L+1)X(L+1) (2.3.7)
1
where
pij=Prap=L+1-ila=L+1-7j)
and
O | | 1
Q = 2 2 2 E mLXL (2.3.8)
1

" =[0,...,0,1/2] € R".

Since € = 0 is the unique absorbing class (containing only Ey = 0), the eigenvalues
of @ are less than one in magnitude [8, 60]. Let 7« be the (L + 1)-vector whose ith

component . ; is the probability of the aggregated system state at time k being
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L+1-14,0r
ki =Pr(ee=L+1-14),i=1,...,L+1,

Then this state distribution vector evolves according to

Tkl = Pﬂ'k. (239)

Now suppose the initial extended error state Eo € TE~ induces the distribution o
at time k = 0. We can compute the probability of the system failing to reach the

absorbing state €x4+, at time k + 1, while operating on a worst case channel, as
L
A .
pk(7l'0) = PT(€k+1 96 0 | 7!'0) = ZP"‘(Gk.H =1 i 1I'o). (2.310)
i=1

In other words, px(mp) is the sum of the first L components of the vector ;. If we

partition 7 conformably with (2.3.7) as

%]
Tk = ’
P
and make repeated use of (2.3.9), we have

Pe(mo)=[1 - 10me=[2_.-- 1]Q*

L+1 L

-7?0’

in which 7p is the initial distribution across non-zero aggregated error states e.
Applying the power method to the matrix , we obtain the upper bound stated in

the following theorem (this result is a mild generalisation of the analogous result in

[23] concerning the DFE).

Theorem 2.3.1 (Noiseless Error Bound - DFE) Consider the tuned DFE with
output given by (2.3.2) with ny = 0, operating on a noiseless worst case FIR channel
of order L, and initially in non-zero eztended error state Ey € L at time 0. If

Eo induces the aggregated state distribution mo, the probability of not reaching the

absorbing state ex = 0 at time k is given by
a — 2k —k
Pi(mo) = Pr(ex # 0 | mo) = enAf(1 + 0(277)),
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L 2 3 4 5 6
A1 || 0.8090 | 0.9196 | 0.9638 | 0.9830 | 0.9918

Table 2.1: Dominant eigenvalue of Q.

where oy = W7o € (0, 1],

A
M 2 max (@) € (0,1),

is the unigue dominant eigenvalue of Q defined in (2.3.8), and ®, = w,/|w,| € RL

where w; is the eigenvector of Q corresponding to A\, given by

L-1  L-2
w = [1,2HJ,thJ,---,ﬂ+N2,ﬂ]',
Jj=1 i=1

with p = (2X)~L.

Since the calculations assumed a worst case channel, the above bound indicates
the highest degree, on average, to which an initial error can influence subsequent
decisions by error propagation alone on any noiseless channel. The bound may
be conservative in that A\ ~ 1 for worst case channels. We list A; for various
channel lengths (L) in Table 2.1. For practical channels (e.g., with decaying impulse
responses) the exponential form of the bound is still valid (with correspondingly
smaller A1), but in general it is not possible to aggregate the FSMP model to obtain
the Lth order description used above, so the full order 5L non-aggregated FSMP

would need to be used.

2.3.4 Bound for the Feedforward Emulator

In the last section we saw that the probability of an incorrect decision in the DFE,
due to some initial decision error in the absence of noise, becomes exponentially less
likely with time. Equivalently, we can say that after a sufficient time, the effect of an
initial error is negligibly small. Because of the close link between the DFE and the
recursive processor (2.3.4) (or (2.2.5) in the noisy case), this “settling time” will be

shown to be an indicator of the number of layers A required to produce a feedforward
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emulator (2.3.5) (or (2.2.6) in the noisy case) that is a good approximation to the

original DFE (in an error probability sense).
At each time instant k, the noise-free feedforward emulator (2.3.5) is equivalent
(in the sense of producing the same output from a given sequence of inputs) to a

(tuned) noiseless DFE that has been initialised in the non-zero error state

Ei—a+1 = (UkoAy- oy Uk-r-L-1)' S (2.3.11)

at time k — A + 1. Recall that we have forced tg_p41-; =0for j =1,..., L.

We can reformulate (2.3.5) in a way which reflects more lucidly the internal
structure of the feedforward emulator. We denote by 7i (1 < i < A) the internal
binary decision generated at the i*" layer, used in computing the eventual output
at time k. (In other words, 7} is the output of the ith diagonal node in the processor
of Fig.2-4 when d; = h; Vi and there is no noise.) These preliminary decisions are

obtained iteratively as follows:

i1 ) sEn(uk-ativ1 + HEj_ptin1), if0<i<A-1
s
0, otherwise
— . N —
Ex-a+i+1 = (Ukonti = Thr o oy UkenpioLt1 — 75T LY € B, (2.3.12)

and % = . Note that we have assigned 7; = 0 for i < 1 to match the initial
conditions and produce the same %y as in (2.3.5). Thus 1'1; is the output of a FSMP
with initial state Ex_p4; driven by the input sequence {ug—a+1,..., Uk}, passing
through the sequence of states Ex_p4ig1 (¢ = 0,...,A ~ 1). In what follows, we
take [ho = 1,k’] to be a worst case channel and aggregate the states according to
Definition 2.3.1.

We can calculate the probability that the feedforward emulator decision is correct
at time k, supposing an “initial” state distribution mTx_p4+1. We use Bayes’ rule to
condition on the aggregated state ¢ corresponding to the extended state E (defined

by (2.3.12)) at the output of the AP layer of the feedforward emulator. Thus

Pr(uy = ug|mr-as1) = Pr(tx = ug|Te—a+1, €k # 0)Pr(ex # 0|Te—_n41)
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+ Pr(u = ug|me—nr+1,€x = 0)Pr(ex = 0|mp_p41)-

Now, the €, states have the transition diagram (Fig.2-5) corresponding to the choice
of a worst case channel. Hence in the absorbing state ¢, = 0 the probability of a
correct decision is 1, whereas for all states (ex # 0) outside the absorbing state this
probability is 3. We now have

5 1
Pr(ix = uk|mr-a41) §pk(ﬂ’k—A+1) + 1 - pr(Th-A+1)

1
= 1- §Pk(7l'k-A+1), (2.3.13)

where, like (2.3.10), we have defined

pe(m) 2 Pr(exss #0 | m).

However, unlike the DFE, the “initial” distribution mx_a41 (for each k) is not arbi-
trary. In fact all “initial” error states Ex_p4; for the feedforward emulator (2.3.5)
belong to the aggregated state ex_p41 = L. To see this, recall the shift register
property for the extended states (2.3.12). Clearly we would need at least a sequence
of L correct decisions 7i*! = ug_p4it1 (i = 0,...,L — 1) to attain the absorbing

state Ex_p4+r = 0. Therefore, the particular “initial” distribution we seek is

1 = ... ' Yk
Tk—A+1 [ 1,0, ,0 ] ’ v
L+1 .
corresponding to €x_a4+; = L.
We now drop the conditioning on the left hand side of (2.3.13) since only one
Tk—A+1 1s possible in the feedforward emulator case. Applying Theorem 2.3.1 to

evaluate pi(mo) with mg = Ti_a4+1» Yields the asymptotic formula for the error

probability which we state below.

Theorem 2.3.2 (Noiseless Error Bound - FFE) The noiseless decision error

probability Pr(ty # ux) for the A-layer feedforward emulator generated by (2.3.5),
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with worst case channel parameters, is given by

- 1 . | _
Pr(ig # w) = §Pk(7fk—A+1) = 501/\'1\ 114 o(274+1Y),

where

N

L-1 5\~
a?=(1+2(2u')’) ,

j=1 i=1

where £ (2X1)7! and ), is the (unique) dominant eigenvalue of Q (2.3.8).

The reasoning carries over to the feedforward emulator because of the definition of
the extended error state Ej, which allows for the disconnection of the feedback part
in the recursive representation (2.3.4). The above bound is tight in the sense that
certain channels that realise the bound exist, but on practical channels, fewer layers
would be required to obtain the same noiseless error probability. The reasoning
leading to Theorem 2.3.2 implies that a A-layer feedforward emulator with sign
nodes, operating on a general FIR channel of order L, has a noiseless error probability

which is upper-bounded by

- 1 _
Pr(i # u) < 5[ 1., 1] QM1 1,0,;..,0 ) (2.3.14)
L

where @ is given by (2.3.8).

2.4 Evaluation of the Non-Adaptive System

2.4.1 Tuned Noiseless Performance

Here, we give an example of the simulated performance of the tuned feedforward
emulator on a second order channel. The weights d;, ¢ < L are equal to the cor-
responding channel impulse response coefficients h; and we assign d;, ¢ > L to be
zero.

In Fig.2-6 we have plotted the upper bound resulting from the aggregated FSMP
realised by a worst case second order channel [1.0,1.2,3.5]. On the same graph, the
bit error probability (simulated over 10° points) for a feedforward emulator with sign

nodes operating on the second order partial response channel [1,2, 1], as a function
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Figure 2-6: Noiseless bit error rate of tuned FFE.
FFE implemented with sign nodes on (i) [1,2, 1] partial response channel (“x”); and (ii)

[1,1.2,3.5] worst case channel—realising the upper bound (solid line).

of the number of layers A, is also displayed. The simulation clearly shows the
agreement of the theoretical noiseless error probability bound for the FFE (2.3.14)

and the simulated noiseless performance on a worst case channel.

2.4.2 Exact Noise-free Representation

- The possibility arises of exact representation of a DFE by the feedforward emu-
lator structure in the absence of noise. This is indeed the case when the error
propagation events for the DI'E have a guaranteed finite length. For certain classes
of channels [ho = 1, A’] (which define a stability class [16]), for example, those which

satisfy the following frequency-domain sufficient condition:

L .
1/2+ Y hy cos(k6) > 0, V6 € [0,27) (2.4.1)
k=1

it is known that the DFE has a deterministic, bounded error recovery time from a
non-zero error state [24]. If we call this time R, then the feedforward emulator de-
rived from the DI'E for this stable channel will reproduce the output sequence {;}
exactly (from the same sequence of inputs) if the number of layers is chosen to be
greater than or equal to R + L. The reason for this is that the decision y is in-
dependent of #ig_p—j41 for j > 0 due to the finite extent of error propagation on
stable channels. Tlence (including a further L layers to regain the IEL state space)

a feedforward emulator with R + L layers or more loses no information relative to
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A 2 3 4 5
BER (i) || 0.04129 | 0.02003 | 0.01287 |.0.00000
BER (ii) || 0.01070 | 0.00100 | 0.00000 | 0.00000

Table 2.2: Noiseless bit error rate of FFE.

deciding 4 by neglecting these past decisions, bearing in mind that we are only
treating the noiseless case. In some cases, fewer than R + L layers will secure this
property.

We have tabulated in Table 2.2 the noiseless bit error rates (simulated over 10°
points) for the feedforward emulator as a function of the number of layers A while

operating on the following positive real FIR channels3:

1. An exponential impulse response channel
hi = (0.8)* cos(kn/6), k =0,...,10, hx =0, k > 10.
2. A 10" order channel with coefficients

(1.0,-0.27,-0.18,-0.31,0.27,0.09, —0.05,0.06, —0.08,0.084,0.01].

It is clear, in this example, that the representation becomes exact (exactly reproduces
the input sequence in the absence of noise) when the number of layers is chosen to
exceed the maximum duration of DFE error events, which is known to be finite on
both the above channels. In the following subsection we look at the performance
of the feedforward emulator in the presence of noise and give a numerical example

demonstrating the monotonicity of bit error rate with respect to the number of
layers.
2.4.3 Non-Adaptive Performance in the Presence of Noise

We have seen that the output of the feedforward emulator of Fig.2-4 with sign nodes

becomes indistinguishable from that of a DFE (for operation on a noiseless finite

%i.e., channels whose parameters satisfy (2.4.1).
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Bit Error Rale

Number of Layers

Figure 2-7: Performance of tuned FFE and DFE. .
The bit error rate of the feedforward emulator (upper curve) is a function of the number of

layers. The DFE’s error probability is the straight line. The signal-to-noise ratio is 10dB.

error recovery channel) if the number of layers is sufliciently large. It will be apparent
from the next example that the same structure can attain performance equaling that
of a DFE when operating on a general FIR channel in the presence of noise. In Fig.2-
7, the bit error rate of a DI'E on the [1,2,1] binary partial response channel has
been simulated (over 10° points) and plotted for a signal-to-noise ratio* of 10dB. On
the same graph we show the simulated error probability versus the number of layers
of a feedforward emulator with sign nodes whose weights have been tuned to the
channel coeflicients (see section 2.4.1). Clearly, the two systems perform with the
same probability of error when the number of layers in the feedforward emulator is

50 or greater, and the bit error rate of the FFE decreases monotonically with the

number of layers A,

2.5 Adaptive Aspects

In the preceding sections, we have developed a feedforward emulator structure with
sign nodes (2.2.6) which approximates a non-adaptive DFE when the branch weights
are correctly assigned. In this section we address the problem of how to adapt
the weights in the emulator, using a training sequence, so that they converge to

a setting in which the system acts as an equalizer. We will derive two algorithms

4The signal-to-noise ratio is defined as 10log,, o7 where o? is the variance of the white noise.
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designed to achieve this, the first applies to FFEs with nodes having a sigmoidal
characteristic (which we define below)—as is the norm in work involving training
of MLP neural networks. The second and less conventional algorithm applies to
FFEs with sign nodes. Both are based on a stochastic gradient descent strategy
[61] whereby a criterion is chosen that reflects the error between the actual and the
desired performance as a function of the weights. The weights are then adjusted
recursively so as to minimise the error.

Typically, for a standard artificial neural network (with the multilayer perceptron
architecture), the algorithm which is used in the adaptation or training is called back
propagation [40]. In the present case, the training problem differs fundamentally
from the conventional problem to which back propagation is applied, in that the
weights in the FFE are not independent, but are constrained in a Toeplitz manner.
Any training algorithm, regardless of the activation functions used in the nodes,
should take this special structure into account. In the following sections we derive

two such training algorithms and evaluate their performance under simulation.

2.5.1 Training with Sigmoid Nodes

In keeping with conventional neural network training, we first consider a gradient
descent scheme, motivated by back propagation ideas, for adapting the weights in
the feedforward emulator assuming that the nodes have the following sigmoidal

characteristic:
1—-e7
1+e*

f(z) = = tanh(z/2). (2.5.1)

We prefer to use bipolar activation functions in developing the training scheme since
they ciosely reflect the desire to force the node outputs to take the values +1 (in
minimising the gradient of the objective function). In fact, f(az) — sgn(z) as
a — 400, so we might expect FFEs with sigmoid nodes to have similar attributes
to their counterparts with sign nodes as a is increased from unity (this is born out
in the simulations of section 2.5.3). We also note that the sigmoid function satisfies

the first order differential equation

Poz) (ffjc;:p = Z[1 - f(aa)l[L + f(a)] £ ag(f(az)),  (252)
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where ¢(z) = 3(1 — z?) and a is a real constant.
Suppose at time k the input pattern {yx—a+1,...,yx} (where y; is a noisy channel
output generated by (2.2.1)) has been applied to the feedforward emulator of Fig.2-4.

If the output of the FFE is @, we define the instantaneous output error as

1,
Jp = E(uk - uk)z, (2.5.3)

in which uy is the current channel input in equation (2.2.1). Clearly J; = 0 Vk in
the case of correct equalization. Unlike blind equalization, we assume that a known
training sequence {u} is available for the adaptation.

Regarding Fig.2-4, we make the following definitions.

Definition 2.5.1 At time k, for any layer in the A-layer FFE of Fig.2-4, and for
1 <14,j < A, we define w;j(k) as the weight of the branch connecting the node at
level ¢ in that layer to the node at level j in the next layer. The output of the node
in layer i at level j is y;(k) The external input to the diagonal node whose output
is yi(k) is Yk-r+i, where y; is defined in (2.8.12).

For the diagonal nodes we can drop the subscript, defining 3’ £ yj The Toeplitz

structure of the FFE imposes the following constraints on the weights w;; (for all

k):

—d;_i(k), i<j
w;j(k) = 1, t=7 (2.5.4)
0, i> 7,

where d;(k) is the jth tap gain in the corresponding adaptive DFE (2.2.2). The

outputs of the individual nodes can subsequently be expressed as

I w7 (k) + vk-nss), =
yi(k) = ¢ f(yimi(k)), i>j (2.5.5)

0, 1< J.
Here, yj (k) is to be compared with 7i in (2.3.12) in the case of a tuned, noiseless FFE
with sign nodes. In particular, yA(k) = iy is the output of the FFE at time k. It is

understood that the weights w;; for i > j are to remain fixed (as indicated in (2.5.4))
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during and after the training phase. The equality constraints (2.5.4) acting on the
w;;(k) indicate that only A — 1 distinct parameters (the d;(k), j = 1,...,A = 1)
need be varied independently to force the feedforward emulator to act as a channel
equalizer. The objective of the training algorithm is to adapt the d;(k) so that the
instantaneous output error Ji is minimised. This may be achieved iteratively via

the following stochastic gradient algorithm:

0Jx

dj(k + 1) = d;(k) - ﬂma

j=1,...,A-1 (2.5.6)

The step size n > 0 (or learning rate, borrowing a term from the literature on
neural networks) is adjusted to trade off speed versus accuracy of convergence to
the minimum of the mean error, while maintaining the algorithm’s stability.

The training algorithm is specified once we have found a (recursive) rule for
evaluating the derivatives in (2.5.6). We now turn our attention to this task. Two

applications of the chain rule yield

aJk oy~ 31‘1), . _
’ adj(k) - ('U,k - uk)ad—j(k—)'v ] = 1,-'-,A 1, (2.5.7)

and )
O O Owiiyi(k) iz
ad;(k) = ow; i+;(k) 0d;(k) ’

1,...,A—1. (2.5.8)

Equation (2.5.4) implies that the rightmost term of each product in the above sum
equals —1 Vk. We therefore require an expression for the derivatives of the output

with respect to the weights. This is furnished below (an inductive proof may be

found in appendix B.1).

Lemma 2.5.1 Consider the system described by the equations (2.5.1), (2.5.4) and
(2.5.5), which has the structure shown in Fig.2-4 with sigmoid nodes replacing the
sign nodes. The branch weights which give a non-zero contribution to the deriva-
tive of the output U, = yA(k) with respect to dj(k), 1 < j < A—1 (2.5.8) are
wiit;(k), 1 <1< A—j, and the derivatives with respect to these weights are given
by

A , dy+i(k) -
m = {[Hj ¢(yl+l(k))wl,l+1(k)} m, (2.5.9)
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where ¢(-) is given in (2.5.2), and (as before) we have set y'(k) = yj(k)

Furthermore, the derivative on the right hand side of 2.5.9 may be evaluated directly
from (2.5.5) as

6y‘+j(k) 3 p] i+5-1 N i+i1 N
awi,i+j(k) - awi,i+j(k) f( Z} wlﬁ‘"J(k)yl (k) + Yk=A+i+; )
-1

= o(yti(k) Y u (k)b
=1

= oy kg, | (2.5.10)

where §;; is the Kronecker delta and we have used the fact that the yf"'j _l(k), for
1 <1< i+ j—-1,donot depend on w; ;4 (k).
Consolidating lemma 2.5.1 with (2.5.8) and (2.5.10), we now have (suppressing

the time index k),

ou g I )
W = - Ow: . ) ]=1,...,A—1
3 i=1 YWiit;

= —{o(yMyrz} + ¢(3IA_1)wA—1,Ay/‘t:f_1 + e
+o(y ) Ywa—1.ad(rA Dwa—ga-1 - - (T} (2.5.11)
= ~¢(yMAT - e AT -

—d () - dyp(r )i} 3 (2.5.12)

where the (2.5.12) follows from (2.5.11) by virtue of the fact that w; ;41 = —d; after
nesting terms with the first term of (2.5.11) occupying the innermost bracket. This
nested form lends itself easily to rewriting in the recursive form

Oty
ad;(k)

A=j .
= -629k), j=1,...,A-1, (2.5.13)

where

51(k) £ (1 (k))yi(k) (2.5.14)
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and
§3(k) = p(yi T (RN {y 97 1(k) = di(K)6I7 (K)}, = 2,...,A—j.  (2.5.15)

This last expression shows how the self-similarity between successive layers of the
feedforward emulator contributes to the calculation of the output derivative. Put
into words, the derivative of the output with respect to d; is the sum of two terms:
the contribution from the branch with weight d; to the oﬁtput node; and: d; times
the derivative of the output of the previous diagonal node with respect to d; (and
so on). We can now state the recursive training rule, which we will refer to as the

sigmoid algorithm.

Theorem 2.5.1 (Sigmoid Algorithm) The stochastic gradient descent algorithm
arising from the minimisation of the criterion (2.5.3), for adaptation of the weights

d;(k) of the A-layer feedforward emulator with output and sigmoid nodes replacing

the sign nodes, takes the form
dj(k +1) = dj(k) + n(ix — w8} (k), j=1,...,A~ 1, (2.5.16)

where §; is computed recursively from (2.5.14) and (2.5.15), uj is the known training

input sequence to the channel and 7 > 0 is a small step size parameter.

The reader is referred to section 2.5.3 for an example of adaptation during training.

2.5.2 Training with Sign Nodes

Returning to the original feedforward emulator with sign nodes (Fig.2-4), we consider
a recursive training procedure for the adaptation of the weights d;(k). Retaining the
notation introduced in the last subsection, we redefine f(-) as sgn(:) and compute
the node outputs yj- as in (2.5.5). The error measure used in the sigmoid algorithm
is unsuitable in this case since it is insensitive to changes in the weights. Just as
in FSMP analysis of error propagation in the DFE [23], the sign of a weighted sum
of (fixed) inputs will be the same for a range of weight values. We therefore define
a new measure of error which more closely reflects the effect of changes in weights

during adaptation
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1
Ji = §(Zk —u)?, (2.5.17)

where

= v- 3 AR B) (25.18)

=1
is the weighted sum of inputs to the output node of the feedforward emulator, i.e.,
ur = sgn(zx) € {-1,+1}. The training rule follows easily from the calculation of

the gradient of Jx with respect to d;(k). Explicitly,

0Jk 0z
a4k ~ (™ gy
But »
azk _ ay —1 (k)
st = 0 - a0

.;e,
The gradient of the sign function is zero everywhere except at the origin. Since
the occurrence of a zero argument in any sign function in a node of the FFE is a
probability zero event in the presence of noise, we assign the derivative of sgn(:)
to be zero everywhere. We thus obtain the following recursive rule stated in the

theorem below. We will refer to this as the sign algorithm.

Theorem 2.5.2 (Sign Algorithm) The stochastic gradient descent algorithm aris-
ing from the minimisation of the criterion (2.5.17), for adaptation of the weights

d;(k) of the A-layer feedforward emulator with sign nodes, takes the form
dj(k+1) = d;(k) + n(zx — w)yas), G =1,...,A- 1, (2.5.19)

where uy, is the known training input sequence to the channel, z is given by (2.5.18)

and 7 is the step size.

Whereas the sigmoid algorithm has contributions to the derivative from several
layers of the FFE (in general), the only contribution in the sign algorithm is from the
output of the preceding layer. This accounts for the algorithm’s relative simplicity.
The resemblance of the sign algorithm to the perceptron algorithm of Rosenblatt [62]

is more than coincidental as both use nodes with hard-limiting activation functions.
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Examples of the performance of the respective algorithms are to be found in the

next section.

2.5.3 Simulation Examples of Adaptation with Noise

As announced, we now proceed with an evaluation of the two adaptation algorithms.
We chose a second order “closed-eye” channel [hg = 1.0, hy = 0.8, h2 = —0.3], with
a SNR of 10dB, and simulated both the sigmoid and sign training algorithms with a
step size n of 0.0001 over 10° points. In both cases, we observed the evolution of the
weights di,...,djo in an 11-layer feedforward emulator corresponding to Fig.2-4. In
this case, satisfactory operation as an equalizer (without decision delay) requires the

weights to converge to a neighbourhood of the point in parameter space given by
[di =0.8,d2=-0.3,d3=d4y = --- = dyo = 0.0].

Convergence of the weights using the sigmoid algorithm (Theorem 2.5.1) was ob-
served to require considerably more than 10% training points. The speed of con-
vergence was greatly increased (along with an increase in jaggedness of the weight
trajectories) of by using an “acceleration factor” a greater than unity, so that z
in equation (2.5.1) is replaced by az and ¢(z) (equation (2.5.2)) is replaced with
a¢(az) in the sigmoid algorithm. Fig.2-8 shows the time evolution of the weights
in the sigmoid algorithm from random initial values with an accéleration factor of
a = 10. As can be seen in Fig.2-8, the weight trajectories are converging to the
expected equilibrium settings for equalization, although more slowly than the cor-
responding trajectories for the sign algorithm (theorem 2.5.2) in Fig.2-9.

As a further example of the adaptive feedforward emulator’s operation, we have
included Fig.2-10. This shows the weight-space trajectories (d;(k) versus dz(k))
of a three-layer FFE during sign algorithm adaptation on the [1,2,1] channel at
an SNR of 10dB with a step size 7 = 0.001 over 10° iterations. Each parameter
trajectory has been decimated to 100 points. All trajectories were initialised on
the boundary of the rectangle [-10 < dy(k) < 10] X [-10 < dy(k) < 10]. The

equilibrium point® of the adaptive algorithm is [d; ~ 1.1,d; =~ 0.10] in this case.

®i.e., the point of convergence of the weights for noiseless adaptation with small step size.
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Figure 2-9: Sign algorithm training of FFE.

The simulation was performed on the [1,0.8, —0.3] channel at a SNR = 10dB for a feedfor-
ward emulator with 11 layers and sign nodes.

Some of the trajectories have not reached the vicinity of this point by the end of the
simulation run, becoming hurlg for long periods of time at one of various points on
the branches of the central “Y” in the figure. This behaviour indicates the presence
of a one-dimensional manifold of local equilibria for the adaptive algorithm in this
example. The trajectories display an interesting symmetry, belying the shape of the

mean error surface which the gradient algorithm is descending.

2.6 Summary and Conclusions

We described a non-linear feedforward processing structure derived from a recur-

sive non-linear decision feedback equalizer. This new system, called a feedforward
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d_1(k)

Figure 2-10: Parameter trajectories during adaptation.
Sign algorithm training with step size 0.001, SNR 10dB, three-layer FFE on the [1,2,1]

channel with d,(k) on the z-axis and d»(k) on the y-axis.

emulator, has close algebraic links with the decision feedback equalizer and close
structural links with multi-layer perceptron ncural networks. The connection with
the DFE allowed theoretical techniques, already devised for that equalizer, to be
applied with only minor modification to obtain a (noiscless) error probability bound

for the FFE in terms of the number of layers in its realisation. The tightness of
' this theoretical upper bound was verified by simulation on a noiseless second order
channel (a worst case channel). Previous results on finite error recovery channels
for the DFE can be harnessed to determine classes of noiseless channels on which
the representation of a tuned DFE by a tuned FFE is exact.

The training adaptation of the FFE’s equality-constrained weights was consid-
ered and two stochastic gradient descent algorithms were developed. The first algo-
rithm (the sigmoid algorithm) is applicable to FFEs with nodes having a sigmoidal
activation function, and was derived using an extension of back propagation which
allows for the interdependence of the weights. The second (the sign algorithm) is
specifically tailored for FFEs, derived from the DFE, having hard-limiting (sign)
nodes. The sign algorithm gives generally much quicker convergencé of the FFE’s
weights for a given channel, SNR and step size of the gradient algorithm. The con-
vergence of the sigmoid algorithm can be accelerated, although this may lead to
oséillatory behaviour of the parameter trajectories.

Whereas the decision feedback equalizer can suffer from error propagation due
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to the feedback of incorrect decisions, the feedforward emulator suffers from another
kind of error propagation due to the truncation of the Markov expansion for the
DFE from which it derives. This effectively limits the FFE’s performance to that of
a conventional DFE at best, despite the added delay involved in obtaining decisions.
At any rate, replacing the DFE by a neural network-like device was not the motivat-
ing objective. Rather, the'importance of these results lies in their solid theoretical
base and the possibility of their broader application to the relatively new area of
artificial neural networks. It is recognised that theoretical tools are needed which
permit the designer of systems incorporating artificial neural networks to specify (or
at least bound) architectural parameters such as the number of layers needed for
a particular task. Analyses of the type presented in this chapter could provide a

starting point for answering these questions.
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Chapter 3

Block Decision Feedback

Equalization

3.1 Introduction

In chapter 2, we studied a non-linear feedforward structure—the FFE, resembling a
multi-layer neural network. The emphasis in that part was on the analysis of the new
system which was facilitated by its close links with the decision feedback equalizer.
We continue here with another development of the conventional non-linear DFE.
This time, however, the emphasis is shifted from analysis to design and performance,
and instead of dissecting the DFE, we build upon it.

As mentioned in section 1.2.4, the large discrepancy in performance/complexity
separating the decision feedback equalizer and the Viterbi decoder has led to many
attempts at designing an equalizer structure that bridges this gap. The reduced-state
sequence estimator [11] and the delayed decision feedback sequence estimator [10)]
are two structured approaches to the problem of simplifying the Viterbi decoder. In
this chapter we introduce another equalizer structure, called the block decision feed-
back equalizer (block DFE), which complements the work of [10, 11] by generalising
the feedback and decision mechanism of the conventional DFE!. The block DFE is
an optimal generalization of a modified DFE proposed by Clark, Lee and Marshall
[43], although it was developed independently. The central idea is to make the de-

!We are therefore assuming that a linear prefilter has already cancelled the precursor intersymbol
interference.
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tection process more effective by using groups of instead of single received signals to
estimate one data symbol with a fixed delay. Proakis and Khazen-Terezia [14] and
more recently Moon and Carley [13] have also proposed detection algorithms based
on a finite length tree search which makes use of a fixed number of previous decisions
to cancel the ISI on present and future symbols. We show that these algorithms are
in fact equivalent to that of [43] and demonstrate their connection to the block DFE.

In contrast to most of the preceding trellis-based ideas, the block DFE is mo-
tivated by a systems approach using block processing [45, 46, 47]. The equalizer
we present can give performance arbitrarily close to the MLSE as the block length
p and the number of decisions made per iteration ¢ tend to infinity. At the other
extreme (p = ¢ = 1) the conventional DFE is recovered. When ¢ = 1 and p is
arbitrary, the block DFE corresponds to the marriage of decision feedback with the
symbol-by-symbol MAP fixed-delay optimal detector [26]. This property holds for
arbitrary signal to noise ratios (SNRs), whereas the schemes proposed in [14, 13, 43]
are only optimal in the same sense in the high SNR limit.

We mention that the proposed system cannot be classified as ad hoc. The deriva-
tion mirrors in a mechanical fashion, but in a block-processing environment, the
conventional DFE philosophy, i.e., committed past decisions are used as if they
were correct, and an optimal noise rejection system is then derived. Thus we build
a theoretical framework in which the past suboptimal schemes [43, 14, 13] may be
embedded and interpreted. |

In the following sections we develop the block DFE which is composed of two
essentially independent components: (i) a feedback filter, derived in section 3.2.2,
based on a block processing model of the communication channel developed in sec-
tion 3.2.1; and (ii) a p-input, g-output (1 < ¢ < p) memoryless decision device which
has various potential realisations according to the criterion of interest. We will be
concerned principally with two realisations of block DFEs: the full-blocking block
DFE or (p, p)-DFE, producing p data estimates per block iteration, and the sliding-
window block DFE or (p,1)-DFE, producing a single decision per block iteration.
The latter device has an optimal realisation and a lower complexity realisation for
high signal-to-noise ratios (called the high SNR block DFE). Section 3.3 considers

low order realisations of block DFEs and presents simulations of the performance of
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the device based on an example which has appeared in the literature [11]. Compu-
tational issues are addressed in section 3.3.6. We demonstrate the close connection
between the block DFE (using a maximum a posteriori decision device), the con-
ventional MLSE [19], and the optimal MAP detector [26, 27, 30, 31] in section 3.4,
at the same time surveying the literature on minimum bit error rate detectors.
The block DFE, like the delayed decision feedback seduence estimator [10], can
equalize recursive channels—the approach being to use state estimation feedback,
which reduces to decision feedback in the case of FIR channels. Nonlinear channels
with finite-dimensional state-space realisations are also amenable to this technique,
and we give a description in section 3.5.1. Most of the treatment assumes binary
signalling. The extension to M-ary signalling and QAM is the subject of section
3.5.2, noise colouration is treated summarily in section 3.5.3. A discussion of adap-
tation of block DFE parameters is given in section 3.5.4. We look first at deriving
minimum mean-square error tap settings for the multivariable feedback filter and
decision device, then obtain a stochastic gradient descent algorithm for training
sequence adaptation of the block DFE. We leave consideration of performance anal-
ysis and stability to chapter 4, in which we present various analyses of the two-input

block DFE (which we treat on account of the difficulty in analysing the more general
p-input block DFE).

3.2 Block Decision Feedback Equalizer Development

3.2.1 Block Processing

The starting point for the generalisation of decision feedback equalization is the
concept of a block processing communication channel model. A single-input single-

output linear (IIR) channel has a transfer function H(z) given by

o0
H(z) = d+ (el - A b= d+ 3 cAlbz=G+)
i=0
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where I is the n x n identity matrix, A € IR"*", b€ R™*!, c € R'*", and d € IR.

This can be realised in the time-domain by a state space system of the form [41]

Tpy1 = Azg +bug, =€ R

Yk cxr +dup +ng, k=0,1,2,..., (3.2.1)

where ui,zx and y, denote respectively the (iid zero-mean binary) channel input,
state and output at time k. We assume the output y, is corrupted by zero mean
white Gaussian channel noise? nj with variance 2. Following chapter 2, we define
the signal-to-noise ratio as SNR £ 10 log,o 0% independently of the channel®.

A block processing [45, 46, 47] version of (3.2.1) of block length p can be derived
by observing that

Tryy = Az + Abug + bupyy

Yk+1 = cAzg+ cbug + dugyr + neq

and

Trts = A3zi + A%bup + Abupyy + bugys

Yktz = cA’zi + cAbug + cbupyr + dupga + npy2

ete., leading to

Tiyp = Frr+GUi, k=0, p, 2p,...,
Y, = Hzip+ DU+ Ng, (3.2.2)

where

FeR™ ; Ge R™® ; He R™" ; D¢ R

are given by

FE AP : GE2[AP b AP 2% ... Abb)

2We may also denote this by nx ~ N(0,0?).

3Other definitions exist, for example, SNR= Var(ux) E.‘L=o h?/Var(nk) on a finite impulse re-
sponse channel with taps k; [19].
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_ - d 0 0 .- 0
c
1 ch d 0 .- 0
C
ne ;D2 cab b d - 0 (3.2.3)
cAr1
) ) LcA”‘2l> <o« cAb ¢b d

and the vectors U, Yk, and Ny in (3.2.2) are given by*

A

Us = [uk, k41, .-y Ukpp—1] € IRP
N

Y. = [yk, Yk+1y + - s yk+p_1]' € IR? (324)
A

N, = [nk, Thtly ooy nk+p_1]'€ IR?.

3.2.2 Decision Feedback Structure

Continuing with the development, we now propose a decision feedback equalizer struc-
ture for the block processing realisation of the channel (3.2.2)-(3.2.4). The term
DUy in (3.2.2) is the direct feed-through term of the vector of channel outputs Y} in
(3.2.2) and can be considered as the “cursor”. The term Hz in (3.2.2) summarizes
the effect of past inputs, and therefore acts as the “tail”. The term Ny in (3.2.2) is
the vector of channel noise components.

We assume some arBitra,ry decisions have been made corresponding to a choice
of T (a channel state estimate) via some decision procedure. We then attempt to
cancel the “tail” Hzy in (3.2.2) (as in a conventional DFE) by generating a vector

Zy € IR? for k = 0, p,2p,..., defined by

[

Zk Y. - HZ;
= DUy + HEy + Ni (3.2.5)
where
A ~
Er =z — T} (3.2.6)

denotes the state estimation error (which ideally should be zero). An estimate l7k

of Uy is generated by passing the signal Z; through a memoryless decision function

4Recall, £’ denotes the transpose of z.
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Figure 3-1: Block processing DFE structure.

D(:) according to
U = D(Zy) (3.2.7)

as illustrated in T'ig.3-1. Note that any reasonable decision function D(:) may be
used (e.g., optimising various decision criteria, as we will see later) but the decision

feedback structure is completely independent of the choice of D(+).

3.2.3 Finite Impulse Response Channels

For the remainder of this chapter we will largely constrain the discussion to the
study of channels with finite impulse responses. We remark that this is not a nec-
essary restriction of the technique but leads to a slightly simpler and more familiar

presentation. An outline of the ARMA channel case will be given at the end of

section 3.2.5.

If H(z) is the transfer function of a finite impulse response channel, then

L
I1(z) =ho+ Y hjz™0 5 hy #0, (3.2.8)

j=1
so that

yr = howr + hyug—y + -+ hpug—r + ng, (3.2.9)

then we have in (3.2.1) that n = L, and may define the state as

T = [UpoLy Uke L1y e v ey Uk, k1] - (3.2.10)
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We lose no generality in assuming that hg = 1. A realisation of H(z) is

0 I, 0 '
A= ; b= ; e=[hL,...,ho,h] 5 d=1
0 O 1
where I,,, denotes the m X m identity matrix and 0 denotes an appropriately dimen-

sioned matrix (or vector) of zeros.

Hence in (3.2.2) and (3.2.3) with the state z; given by (3.2.10), we have

0 I, 0
F= ; G = ; forp<L-1
0 0 I,
or
F=0; G=[01I] ; forp>L
while X i
hL hL—l h2 hl
0 h - hs h
"= L 2T e mexk (3.2.11)
0 0 - hg, hy |
and X -
1 0 0 0
hy 1 0 0
D = h2 hl 1 LR 0 . (3-2-12)
i hp—1 -+ hy hy 1 |

Note that the channel length L and block length p are independent. (For convenience,
when p > L we define by =0for L+ 1<k <p.)
In the special case of a finite impulse response channel (3.2.8) with state (3.2.10),

the state estimate of z in (3.2.5) is simply the vector of L past decisions

~ A ~ ~
Tk = [Uk=Ly UkaLt1y +-o» uk_l]'. (3.2.13)

Writing Zj as

A
Zr = [Zk,h 2k,29 ooy zk.p],’ (3214)
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we have from (3.2.5) and (3.2.6) that the components z; are given for p < L by
(recall that hg = 1) '

zk1 = uk+hpex_p +---+ hieg_1 4+ ni

2zk2 = hyug +urgpr +hreep—1 + -+ haek—y + Nk

Zkp hp—iup + hp_otpgr + -+ Ukyp1 + hLer_L4p-1 + -

+hper_1 + Nkpp-1

(a similar set of expressions for p > L can also be derived), where, for any j,
A ~
€; = Uu; — Uy,
and from (3.2.10) and (3.2.13), E (3.2.5) is given for FIR channels by
Er = ek—r1,€k—L41s---y€k=2, ek_l]'. (3.2.15)

That is, for finite impulse response channels the components of Ej; are just past

decision errors. Equivalently, the components of Z; can be expressed as

L
1 = Yk — 3 kil
1=1
L
2k2 = UYk4+1 — Zhjﬁk—j+l
i=2
L
Zkp = Ykap-1— Y RiTk—jip-1- (3.2.16)
i=p

This expression more clearly reveals the use of decision feedback. The set of equa-
tions (3.2.16) actually appears in [43] in relation to non-linear equalizers. This
treatment, however, departs from that of [34, 43, 63] by developing an optimal deci-
sion procedure which does not require the assumption of high signal-to-noise ratios,

and is able to cope with ARMA channel models.
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Figure 3-2: Three-input Block DFE.

The structure of a three-input (p = 3) block DFE for the FIR model (3.2.8) with

a 3-input, 3-output decision device D3 3(-) whose inputs are the 2 ; is illustrated in
Fig.3-2.

3.2.4 Full-Blocking Maximum A Posteriori Decisions

We now use a maximum a posteriori (MAP), or equivalently, since we assume
equiprobable iid input symbols [49], a maximum likelihood (ML) criterion, to de-
velop an optimum memoryless decision function D, ,(+) with p inputs and p decision
outputs for the block DFE. A MAP criterion is generally preferable because it min-
imises the mean error probability [6]. We stress that this is finite subsequence (length
p) MAP detection and not the semi-infinite sequence estimation used in, say, the
Viterbi decoder.

The vector Zj in (3.2.14) is the decision device input which incorporates feedback
of past decisions. In designing the decision device we are frec to assume that there
have been no past decision errors, i.e., Ex = 0 in (3.2.6), and therefore that only the
noise process Ny corrupts the “block cursor” DUj;. We develop an optimal detection

procedure subject to these assumptions.

The probability density of the white Gaussian noise process Ny € IR? is

1

A
PN(Ni) = @r)ylor

¢~ 77 NiNi (3.2.17)
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where o2 is the variance. (Other noise distributions can be assumed provided they

are independent [26].)

The MAP decision criterion demands we take as decisions those p data estimates
5D L A ~
Ur = [uka Uk41y ooy uk-l—p-—l],

which associate with the given input vector Zj (3.2.5) the most probable candidate
noise vector. In forming the decisions, we make the assumption of the absence of

past decision errors (Ex = 0), i.e.,

~

Uk

1>

argmax Pr(Uy = U| Zi, Er =0)
velB*

Pr(Ux =U| Ex=0)

= argmax Pr(Zi| Ex =0, Uy = U)

= argmaxpn(Zx — DU) Pr(Ux = U) (3.2.18)
UEBP &_,——l
~ - constant

Ma.ximuvaikelihood

where IB £ {—1,+1}. We use IB” to denote the set of vectors of dimension p with
binary components. The last line in (3.2.18) follows from the independence of Uy
and Ey, and the observation that Pr(Zi|Ex = 0) is constant in the maximisation.
Since the input data are uniformly distributed, this MAP criterion reduces to a ML

criterion. This leads to our first theorem.

Theorem 3.2.1 ((p,p)-DFE) The memoryless decision function
D,o(-): Zx € R? — Uy € IB?

which optimises the marimum a posteriori criterion (3.2.18) under the assumption
that there has been no state estimation error (no past decision errors in the FIR

case) is given for k = 0,p,2p,..., by

~

Uk

np

Dp,p(Zk) .
= argmin {||Z - DU|} (3.2.19)
velB* _

where ||v]|? denotes the I3-norm v'v, D is defined in (3.2.3).
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Equation (3.2.19) is optimum (in a maximum a posteriori probability sense)
when a block of p decisions is to be made. A block DFE, operating on an ARMA
channel, using (3.2.19) as its decision criterion will be referred to as a full-blocking
block DFE or (p, p)-DFE. In the next part we examine what form the decision device
takes if we wish to generate ¢ (1 < ¢ < p) decisions and advance the block processing
in units of size ¢. (For example, decoding data in groups of size ¢ is useful for block

codes [49].) This will allow us to compare the technique with a related structure,

“System 1”7 of [43].

3.2.5 Sliding-Window Maximum A Posteriori Decisions

We now determine the maximum a posteriori block-by-block decision procedure
which generates ¢ < p decisions from p inputs for the block DFE®. This is to be
distinguished from the MAP detectors of {26, 27] which estimate sequences of data.

Denote a block of q decisions as follows:
~ A e - - ’
U, = [uk, Ukdly ooy ’ltk+q_1]; k= 0, ¢, 2, ...

The following theorem now applies.

Theorem 3.2.2 ((p,q)-DFE) The memoryless decision function
Dp'q(') : Zk € RP — fjk € Bq

for g < p which optimises the mazimum a posteriori criterion, under the assumption
that there has been no state estimation error (no past decision errors in the FIR

case), is given, for k =0, ¢, 2q,..., by

ﬁk é DM( Zk)

, .
argmax{ Y e-w2hz-olVlIn Y (3.2.20)
velB* velBP™?

where D is defined in (3.2.3).

SWhen ¢ = 1, the block DFE becomes a symbol-by-symbol detector.

57



Yo + 5 k1
B H
h] Z-1+. ..+hLZ-LI<-‘ 2 Dz'l(.) r
Yerl T T ) k’i
}12 Z-1+. . hLZ L+l <€

k=0,1,2,3,...

Figure 3-3: Block diagram of a (2,1)-DFE.

This theorem is provedvin appendix C.1. We have assumed, for design purposes,
that Ej is independent of both U; and Ny. Note that the above criterion involves a
search over 29 candidates U, each of which involves a sum of 2°~% terms. We make

some observations regarding this result.

Remarks

1. If ¢ = p we have Theorem 3.2.1, as the notation suggests. Unlike Theorem
3.2.1, (8.2.20) is not equivalent to minimising an l2-norm (Euclidean distance)

for ¢ < p. Computationally, (3.2.20) is less attractive than (3.2.19).

2. Equation (3.2.20) is not invariant to scaling of the noise amplitude (except

when p = q), i.e., the optimal detector is a function of the SNR.

3. We can interpret (3.2.20) as a structure equivalent to some classical optimal
symbol-by-symbol detectors coupled with decision feedback (which introduces

error propagation), see section 3.4.3.

4. We refer to the block DFE using the decisions (3.2.20) as the (p, ¢)-DFE, and in
particular, when ¢ = 1, we have the sliding-window block DFE or (p,1)-DFE.

Fig.3-3 shows the structure of a (2,1)-DFE.

We indicate brieflly the form of the block DFE when recursive (ARMA) channels,
captured by (3.2.1), are to be equalized. The optimal decision function (also called
a vector quantizer) D, () given in (3.2.20) remains the same, except we need to

use the general D matrix in (3.2.3) rather than the special case (3.2.12). Strictly
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speaking, what we have is state estimation feedback rather than decision feedback.
Hence, in an implementation, we need to take the decisions {u;} and reconstruct

the state estimate Zx. From (3.2.1) this is easily accomplished recursively by
Zry1 = AT + bilg (3.2.21)

which covers the case ¢ = 1. A block processing version of (3.2.21) may be used

for ¢ > 1 to generate Tj44; then the next vector quantizer input is given by (see
Fig.3-1)

Zktqg = Yiyg— H §k+q

= Yiyq — HF,Z, — HG, Uy (3.2.22)

from (3.2.5) where Uy is the block of g decisions, Zj is the previous state estimate,
and F, and G, are the g (rather than p) dimensional analogues of the block processing
matrices (3.2.3). This style of generalization of decision feedback to state estimation

feedback can also be found in [10] and [44].

3.2.6 High Signal-to-Noise Ratio Behaviour

The next result examines the asymptotic behavior of the decision function D 4(-) in
the case of high signal-to-noise ratios. We refer to this structure as the high SNR

(p, q)-DFE, or the p-input high SNR block DFE when ¢ = 1.

Theorem 3.2.3 (High SNR (p,q)-DFE) The (p, q)-block mazimum a posteriori
decision procedure (3.2.20) for k = 0,q,2q, ... with ¢ < p, asymptotically satisfies

Dpo(Zk) ~ [I, | 0] x argmin {||Zx — DU|*} € B? as g — 0 (3.2.23)
velB®
where o? is the noise variance, I, is the q X q identity matriz, 0 denotes a ¢ X (p—q)
matriz of zeros, and D is given in (3.2.3).

A proof may be found in appendix C.2. So, in fact, D, 4(-) is obtained by taking the
first ¢ components of the D, ,(-) decision function (3.2.19) whenever the signal-to-

noise ratio is sufficiently high. This result is of practical significance because a high
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SNR block DFE is computationally much simpler than its optimal counterpart—
only simple operations (add, multiply, compare and select) are needed in the decision
circuit. In fact, for a number of studies performed, the high SNR block DFE incurs
only a marginal performance loss with respect to the optimum (section 3.3.5).
This asymptotically optimal structure is equivalent to “System 1” developed in
[43] when the channel is FIR and ¢ = 1. We make the point here that the “tree-
search” approaches of [14] and [13] assume the same quadratic cost function as [43]
(equivalent to (3.2.23)) and, therefore, all three are equivalent. We delay further

comparison until section 3.4.2.

3.3 Implementation Examples

So far we supplied a general definition of the decision function D(-) in (3.2.7) and
determined its optimal form D, 4(+) according to a maximum a posteriori criterion
(3.2.19) and (3.2.20), including the high SNR case (3.2.23). We now attempt to
make these decision procedures more concrete by determining explicitly the decision
functions for low order cases on finite impulse response channels. We shall also
present simulations which demonstrate the performance of the block DFE with the

optimal and high SNR decision functions.
3.3.1 Conventional DFE

In the one-input case, p = 1, we have from (3.2.14)-(3.2.16) and (3.2.19) that

L
@y = argmin {(uk + Z hjex—j + ng — u)z}
uElB

i=1

L
arg min {(y;c - Z hjtg_; — u)’}.
uGB

5=
That is

L
U = sgn (yg — Ehjak—j) (3.3.1)
i=1

and so a (p,q)-DFE with p = ¢ = 1 using symbol-by-symbol maximum a posteri-

ori decisions (3.2.19) is just a conventional DFE.
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Figure 3-4: Decision regions for (2,2)-DFE, hy = 1.5.
The decision boundaries and corresponding decisions for the high SNR (2,1)-DFE may be

obtained by omitting the dashed lines in the figure and taking the first component of the
(2,2)-DFE decision.

3.3.2 Two-Input High SNR Block DFE

We consider firstly the decision procedure Dg2(-) for the (2,1)-DFE in the high
signal-to-noise ratio case (3.2.23), and save the optimal realisation (3.2.20) for the
next section. A realisation example for the (2,2)-DFE may be found in [15]. Since
p = 2, the decision function D, 4(:) has two inputs and one binary output. Assuming
the past L decisions .are correct, noise is absent and that hg = 1, the components of

Zy in (3.2.19) are

21 = Uk 5 Zk2 = hyug + kg,

so that the four possible noiseless, error-free values of Zj. are

- - - -

+1 : +1
Zpy = iy Ly = ;
] +1 + hy -1+Mh
-1 -1
7., = 7 = . (3.3.2)
I +1-n -1-Mh

The decision function has as its input the corrupted signal Zy (3.2.16). It com-
putes the Euclidean distance between Z; and each of the above four points, assign-
ing a binary decision according to the minimum distance rule: 4, = —1if Z_4 or

Z__ is closest to Zy, iy = +1if Z44 or Z,_ is closest to Zx. In this way Zj-
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Figure 3-5: Decision regions for (2,2)-DFE, hy = 2/3.
The decision regions for the high SNR (2,1)-DFE may be obtained by omitting the dashed
lines in the figure.

space is partitioned into two (polygonal) regions, each with an associated binary
decision. The decision boundary is the set of points on the boundary of the two
decision regions. I'ig.3-4 shows the decision boundary for h; = 1.5 (representative
of hy > 1), and Fig.3-5 for hy = 2/3 (representative of 0 < hy < 1). Note that
the decision boundary for a scalar DFE (3.3.1) is simply the line zx; = 0. Simple

geometrical arguments lead to the explicit formula for the decision device output

which we state below without proof.

Lemma 3.3.1 The high SNR (2,1)-DFFE operating on a finite impulse response chan-

nel with unit cursor ho = 1 has decisions given for k = 0,1,2,... by

iy = sgn {sgn(ly) + sgn(l2) + sgn(la)} (3.3.3)
where
L2 hzio+ 2k —

L, & hzng+za+h
I3

I

zi,1 + (k1 —sgn(hy))zk 2.

Here [; = 0, ¢ = 1,2,3 are the equations of the straight lines comprising the deci-
sion boundary. The above result shows that, like a conventional DFE, a two-input

high SNR block DFE can be implemented using only tapped delay lines and hard
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limiters. We note that similar expressions exist for the decisions formed by the
(optimal) (2,2)-DFE, and these may be found in [15]. Due to the assumption of
correct past decisions, the decision function in Lemma 3.3.1 depends on the impulse
response parameters hg and h;. For a general (p, ¢)-DFE, the decision laws depend
only on {h; : 0 < k < p— 1}. Loosely speaking, this means the decision procedure
for the block DFE effectively utilizes information carried not just by the cursor but
by the first p impulse response values. However, for p > 2 the explicit form of the

decision laws is very difficult to obtain (see section 3.3.4).

3.3.3 Two-Input Sliding-Window Block DFE

The decision boundary for the optimal sliding-window block DFE (or decision bound-
aries for the (p, ¢)-DFE in Theorem 3.2.2) depend not only on the first p channel pa-
rameters, but also on the signal-to-noise ratio, and are generally curved, as we will
see in this and the following example. We consider a FIR channel whose first two

coefficients are hg = 1 and h; = 0.5 for this example. The (2,1)-DFE computes its

decisions according to

i, = argmax g(21, 22, u; ho, h1,0), (3.3.4)
u€{-1,+1}

where

—_ 2 — — 2
g(zla 22, U3 hOo hls U) g exp {(Zl hOU) * (22 hlu hO) }

—202

(21 — hou)? + (22 — hau + ho)?
exp { Sy , (3.3.5)

and z; and z; are the components of the decision device input vector Z;. For a given

+

channel and signal-to-noise ratio (which fixes the noise variance o2), we choose a
value for z; and solve the following non-linear equation for z;

9(z1, 72, ~1; ho, h1,0) — g(21, 22, +1; ho, b1, 0) = 0, (3.3.6)

using a Newton-Raphson iterative method. The set of points (z1,2;) satisfying

(3.3.6) defines the decision boundary for the (2,1)-DFE. Fig.3-6 shows the resulting
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Figure 3-6: Decision boundaries for (2,1)-DFE.

decision boundaries in Zi-space for a range of signal-to-noise ratios. Note that as
the SNR increases the regions become the same as those of Theorem 3.2.3 (sim-
ilar to Fig.3-4), i.e., the boundary is effectively piece-wise linear for SNRs abbve
about +20dB. It is also apparent that in the low SNR extreme (< —20dB), the
decision boundary reduces to a straight line through the origin. This latter property

is easily proved, but is of little practical significance and will not be elaborated.

3.3.4 Three-Input High SNR Block DFE Example

As the dimension of the block DFE’s decision device increases, it becomes pro-
hibitively difficult to find explicit expressions for the decision procedure. This is
true even in the high SNR limit, where the boundary is composed of (hyper)planes.
The lack of such information hinders analysis, as we will see in chapter 4. We il-
lustrate this difficulty here by giving two visualisations of decision boundaries for
the three-input, sliding-window, high SNR block DFE (3.2.23). The minimum dis-
tance decision procedure takes the first component u; of the vector [uy, ug, ug}’ which

achieves the minimum

2
2 1 0 0 i
(11 u,n:.i:fema 2= 10wl (3.3.7)

23 hy hy 1 us

64



Figure 3-7: Decision surface for high SNR (3, 1)-DFE, hy = 1.5, hp = 1.

where || - || is the Fuclidean norm of a real vector, and the decision device input is
Zk = [z1,22,23). We can obtain a mesh picture of the decision boundary surface
for a given channel in the following way. We take a two-dimensional grid of points
in the (21, z3)-plane (say). For each grid point, we perform a binary search over a
prescribed range of :?g values, thus homing in on the point at which the decision
changes sign. We are assuming, of course, that there is just one such change of
sign for each grid point. Fig.3-7 and Fig.3-8 show the form of the decision surface
obtained for the channels [hg = 1,h; = 1.5,hy = 1] and [ho = 1,hy = 0.5,hy = 1]
respectively. In both cases, the decision surface consists of 11 planar sheets, eight
of which are semi-infinite. Clearly, the normal to each plane is determined by a
pair of points from the sct of eight points {DU | U € B3} with D as in (3.2.12),
but discovering a formula akin to (3.3.3) for the decision surface remains an open

problem. We turn in the next section to consider of the bit error rate performance of

block DFEs, obtained by numerical simulation.

3.3.5 Performance Comparisons

In the preceding sections we detailed the theoretical development of a family of block

DFEs. Qur aim in this section is to give numerical performance examples of these
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Figure 3-8: Decision surface for high SNR (3,1)-DFE, h; = 0.5, hy = 1.

equalizers and compare the results with those of the decision feedback equalizer and
the Viterbi decoder. We will see that by varying the block size p, the block DFE’s
performance can range hetween these two extremes, and that even relatively small
values of p give considerable improvement over the DFE. Moreover, we will observe
that the replacement of the optimal block DFE’s decision device by its high SNR
manifestation (3.2.23) has only a small adverse effect on performance.

Following [11]}, we consider the (1 + z~!)? binary partial response signalling
channel® which is known to gnarantee poor performance for the conventional DFE.

The channel output is given by

Yk = g + 2up_q + uk—2 + nk (3.3.8)

where {ux} is a binary #id input data sequence, and ny, is a zero-mean white Gaussian
noise sequence. The (p,q)-DFE (3.2.20) and the high SNR (p, q)-DFE (3.2.23) were
simulated for various combinations of p and ¢. Fig.3-9 shows simulation results (bit
error rates versus SNR) for different block DFE realisations corresponding to the

(P, g)-pairs (arranged in order of implementation complexity): (1,1), (2,2), (2,1),

®Here, z7! is the backward shift operator: z='ug = ux—;.
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(4,1), and (6,1) when used on the channel (3.3.8). All simulations include error
propagation. The bit error rate for the maximum likelihood sequence estimator (us-
ing a Viterbi algorithm with a 30 sample delay, simulated over a minimum of 10°
points) is also plotted in the figure, and may be used as a reference for compari-
son with figure 7 in [11] (whose definition of SNR differs from ours by a constant).
Clearly, as the complexity increases, the block DFE has performance ranging from
the conventional DFE to the MLSE. In the section 3.4 we will explain these trends
in terms of the resbective decision criteria.

The differences hetween the optimal (p, ¢)-DFE and the high SNR (p, q)-DFE for
this channel are minimal. For this example channel the (p,q)-DFE is numerically
superior to the high SNR (p,q)-DFE but only to the order of a few percent at
0dB SNR. (For other channels the difference has been observed to be closer to
5%.) This simulation substantiates the claim in [13] concerning the marginal loss
in performance of high SNR approximations at least on some channels. In the next
section we comment on the computational complexity of block DFE realisations, as

this is one of the major factors governing the implementability an equalizer.
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3.3.6 Computational Complexity

We have seen that the input dimension p of a block DFE can be increased to enhance
its bit error rate performance. In this section we look at the complexity of particular
block DFE realisations. By “complexity”, we mean the number of operations’ re-
quired to compute each decision output. This is really only a partial measure of the
difficulty of implementation, as we are ignoring such factors as memory requirements
and transfer of data during computation [64].

We restrict the present discussion to the (p, 1)-DFE and high SNR (p,1)-DFE on
a FIR(L) channel with binary input. The high SNR decision function (3.2.23) for ¢ =
1 involves an integer programming problem of generic complexity 2P (the number of
candidate binary vectors). Let us count the maximum number of operations required
in obtaining the decision % (ignoring the structure of the matrices (3.2.11,3.2.12)).
At the start of each block iteration k, the block DFE stores the received data block
Yk (3.2.4) and the state estimate 7 (3.2.13). The operation count is as follows: 2pL
operations to compute Zj (3.2.5); 2p? + 2p — 1 operations for each of the 2P values
of || Zx — DU||?, to which we add 1 for the comparison needed to find the minimum.
The (maximum) total is then 2°2p(p + 1) + 2pL operations for one decision. On the
other hand, the optimal (p,1)-DFE requires (roughly) an additional {2? operations
per decision, where ( is the number of flops required to find the exponential of a
real number. All this indicates that the technique is unworkable if the p parameter
is too large.

A recursive tree search algorithm is discussed in [13] which is computation-
ally competitive with the Viterbi algorithm and applicable to high SNR systems
like (3.2.23). We infer that similar reduced-complexity algorithms exist for more
general block DFEs (3.2.20). The alternative to such algorithms which give an ex-
act solution of an integer optimisation problem is the investigation of approximate
decision schemes requiring substantially less computation with some loss in optimal-
ity of performance. Work along these lines has been undertaken in [34, 43] with the
implicit assumption of high signal-to-noise ratios. The possibility of applying func-

tional representation techniques, such as multi-layer perceptron feedforward neural

T“operation” means a floating point addition or multiplication, i.e, a flop.
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networks [40], to approximate the decision criterion also suggests itself. An ap-
proach along these lines has been attempted for purely feedforward equalizers in
[56], but application of these ideas to block decision feedback equalizers remains an
open problem. Perhaps further investigation of the block DFE’s decision function
may lead to a specific non-linear processing architecture as was achieved for the
DFE in chapter 2. We leave these practical considerations for now and return to a

theoretical discussion of the connections between the block DFE and other classical

non-linear detectors.

3.4 Relationship to Classical Detection

Our aim in this section is to reinforce further the methodology of block decision feed-
back equalization by considering its relationship to (i) maximum likelihood se-
quence estimation and (ii) minimum bit error rate detectors. Throughout, we confine

the discussion to binary signalling on a FIR channel with additive white Gaussian

noise.

3.4.1 Viterbi Decoding

Here, we establish the relationship between the MLSE optimal block DFE, firstly
by comparing decision criteria, and secondly via a trellis-based interpretation. The
MLSE (using the Viterbi algorithm) determines the semi infinite sequence of esti-

mates {#p, 4y, U3, ...} which minimises the cost®

A &, . 2
TEY (vi-9-3 :h,-uk_,-) (3.4.1)
7=0 =1

in which {t@_q, U_q, ..., -1} defines some arbitrary initial condition.
Similarly, the p = ¢ block DFE (3.2.19) forms the length p vector of estimates

{Uk, Uk41, ..., Uk4p-1} that minimise the cost

To = (21— @)+ (2,2 — Gkgr — hatle)2 + -

~ ~ fin)?
+- 4+ (zp,k = Uk4p-1 — hluk+p—2 -ttt T hp-luk)

®In reality, the message length is finite.
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Figure 3-10: Trellis interpretation of a three-input block DFE.

which, with the aid of (3.2.16), may be re-expressed as

k+p-1 L
Tp g Z (yj - ‘ﬁj - 2 h;ﬁk_,‘)z. (3.4.2)
j=k i=1

By comparison with (3.4.1), we see that J, is essentially identical to a p-length
window of the MLSE cost (3.4.1), with the exception that: (i) the past L decisions
{8k~1, Uk-2, ..., Ux-r} in (3.4.2) act as initial conditions at time k and are not
necessarily the same as the corresponding terms in (3.4.1); and (ii) there is a trun-
cation to p terms in (3.4.2) rather than the infinite number of terms in (3.4.1). The
MLSE and (p, q)-DFE with q¢ = p will generate identical estimates given matéhing
initial conditions (at time k) and letting p — co. We delay comparison with the

classical non-linear MAP probability detector until section 3.4.3.

3.4.2 Trellis Interpretation

The Viterbi algorithm is easily visualised in terms of a 2L-state trellis with associ-
ated quadratic metric (see description in appendix A.1l). In this subsection we give
trellis-based interpretations of the optimal block DFE decision procedures (3.2.19),
(3.2.20), and (3.2.23) assuming FIR channels. (We will see that for the block DFE
the metrics need not be quadratic.) In this setting, a clear comparison between the
(p,q)-DFE and the methods in [13, 14} is possible. We illustrate the decision rules
for block length p = 3.

At time k, having I past decisions Zj in (3.2.13) corresponds to fixing a state in
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the trellis of Fig.3-10. For binary signalling there are only two possible transitions
from each state. We have shown the 8 possible trajectories from Z; up to time k& +3.
These form a tree structure with starting node Z. Each trajectory corresponds to
a different ﬁk € IB? and has an associated total “cost” ¢; given, in the notation of
section 3.2.4, by || Zx — DUL||*. We remark for clarity that this sum of squares cost
arises naturally in Viterbi decoding, the (p, p)-DFE and the high SNR block DFE.

The interpretation of (3.2.19) is that we select the 3 step path (and hence those
3 decisions) that gives the minimum cost among {¢; : i = 1,...,8}. The recursion
then proceeds by advancing from k to k + 3 and we start afresh. Note that the
conventional DFE would choose the one step trajectory (A or B in Fig.3-10) with
the least incremental cost, as given by (3.3.1).

The high SNR decision rule (3.2.23) is obtained by taking the least cost 3 step
path, in the same way as (3.2.19), but retaining only the first ¢ € {1,2} steps.
The recursion advances from k to k + ¢. Thus (3.2.23) is seen to be a receding
horizon strategy, borrowing the terminology from optimal control theory [65], i.e.,
only a truncated version of the full optimal path (generated from (3.2.19)) is actually
implemented. Under this framework one can see that the approaches described in
(14, 13] are equivalent to “System 1” developed in [43], and all three are identical in
action to a high SNR (p,1)-DFE.

We now proceed to the optimal (p,q)-DFE (¢ < p), and develop a trellis-based
interpretation of the cost (3.2.20). Suppose ¢ = 1 in Fig.3-10. The optimum (3,1)-
DFE must decide between the one step paths leading to A and B. To do this, it

computes the 29 respective aggregated costs

4 8
—c: 2 — 2
ca =Ze cif20 , cB:Ze cif20

=1 =5

and takes the maximum, thus determining %;. Whereas the tree-search algorithms
of [13, 14] are essentially versions of (3.2.23), developed using a suboptimum metric,
the optimal block DFE metric (3.2.20) in fact corresponds to the non-linear function

of quadratic costs described above.
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3.4.3 Minimum Bit Error Rate Detectors

In the last section we saw that the (p,p)-DFE (with correct initial conditions) be-
comes an MLSE in the limit as p — oo. We now look at two classical “minimum
probability of error” detection criteria and examine the conditions under which the
(p, q)-DFE is recovered. The block DFE will be seen to have a central place among
these detection methods. We let K denote the total number of transmitted symbols
and continue using our notation. The reader is referred to [27, 30, 31] for details
on optimum non-linear receivers, and to [54] for a concise review of the relevant
literature.

The two detection strategies which, as we will show, are closely related to the
block DFE are: (i) the sequential symbol-by-symbol optimum detector [30, 31] which
minimises the error in detecting each symbol based on the entire received sequence,

that is

argmax Pr(uk | Yo, v1, ---5 YK-1); (3.4.3)
ug €

and (ii) the detector [26] resulting from (i) when a fixed decision-delay constraint is

imposed, with criterion

argmax Pr(uk | Yo, Y1, «-+y Yk4p-1)- (3.4.4)

ux€

Recursive implementations exist for both of the above detectors.

In order to clarify the connection between (3.4.4) and the (p, ¢)-DFE when ¢ = 1,
we now adopt the decision feedback strategy zj = Zx, where z is the state of the FIR
channel given by (3.2.10). Noting that u; does not appear explicitly in yo, ..., Yk-1
(by causality), and that the information these observations convey about the past
inputs relevant to deciphering the value of uj is subsumed by the state, we are led
to consider a modification of the MAP criterion (3.4.4) which incorporates decision

feedback

argmax Pr(ug | Yo, -.+y Yk=1y Yky +++» Yk4p~1, Tk = k)
= argmax Pr(ug | Zx, Ex = 0)
ug € .
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= D,1(Zk) (3.4.5)

where Z; £ Yy — HZ from (3.2.5). Therefore, the (p,1)-DFE (3.4.5) arises from
(3.4.4) with the assumption of correct past decisions (decision feedback). In contrast
to the tree-search algorithm [13], this derivation, which is easily generalised to the
(p,q)-DFE for ¢ > 1, is not dependent on the signal-to-noise ratio.

Examination of (3.4.5) leads to the conclusion that the (p,1)-DFE decision is
asymptotically equivalent (as p — message length K) to the optimum symbol-by-
symbol detector (3.4.3), given matching initial conditions and in the absence of past

errors.

3.5 Extensions

3.5.1 Non-Linear Channels

Modelling the transmission channel as a linear filter with additive Gaussian noise
(3.2.9) may not be adequate for some physical channels. For example, telephone
lines suffer from non-linear distortions of varying degrees [20]. Traditionally, in the
finite impulse response case where the state is a vector of past inputs, the receiver
design entails the expansion of the noiseless yx in a Volterra series [49]. This series is
truncated, and a non-linear tapped delay line equalizer is developed using a minimum
mean-square error (MMSE) criterion. We now investigate the applicability of block
decision feedback equalization ideas to the equalization of non-linear channels. The
channel model is assumed known at the outset, and we develop a suitable block DFE
structure. Formal proofs are omitted as we aim only to convince the reader of the
feasibility of the approach.

Suppose we have a causal non-linear finite-dimensional single-input, single-output

system described in state-space by the non-linear equations

Tyl = fl(zk,uk) (3.5.1)

Yk g (e, uk) + 7k, k£=0,1,2,...,
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for some deterministic functions f;(-) and g¢y(-), where z; € IR", ux € B, yx €
IR, and n; ~ N(0,0?%). Furthermore, we assume that the sequence uj is iid and
equiprobable. Such a model could describe the output yx of a finite-memory non-
linear channel with additive white noise n, fed by an input sequence ug.

With the intention of arriving at a block processing description of the system,

we form successive states and outputs by composition in the first argument

Trtvz = Si(@kr, k1) = fi(fi(zk, uk), Uksr)
2 ok wks uks1)
Yet1 = 91(Tre1s ukt1) + kg1 = g1(fi(ze, vk)s vkt1) + mkgr
2 ga(r ks ukgr) + mkgr- : (3.5.2)

Proceeding analogously, after (p — 1) such steps, we obtain

Tktp = fp(xhuk?' . "uk+p—l) = fp(xk’ UI’c)’ k= 0’pa2pa° vey
91(Zk, uk)
92(ZTk, Uk, Ukt1)
Y = o + N £ Gyar, U + Ni,  (3.5.3)
L 9p(Tks Uky e oy Ukgp—1) ]

where Uy, Y and Ny are defined in section 3.2.1, and f;(-) and g¢;(-) are defined for

t=p,p—1,...,2 by the backward recurrences

filzr, koo oy tkio1) = fic1(fic1(Thy Uky o oy Ukgi=2)) Uk4i-1)

Gi(Zk, Uky -+ s Ukpiz1) = Gim1(fic1(Zky Uky + o s Ukgriz2), Ukgi-1),

with fi(-) and g¢1(-) as in (3.5.1). Thus, assuming the same initial conditions, the
model (3.5.3) generates the same outputs as (3.5.1), but in blocks of size p.

In the philosophy of the block DFE development for a linear channel, we suppose
a state estimate 7 is available at time k. rHow can we design a p-input, p-output
decision device for this system? The non-linearity of f,(-) means that we cannot
generally write Y, as a sum of block cursor, ISI and noise terms, as we did in section

3.2.2. However, we can gain insight by reconsidering the (p, p)-DFE criterion Dp,(-)
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(3.2.19). Recall that this decision criterion selects that Uy € IBP which minimises

the squared magnitude of the vector Zx — DUy. First rewrite this using (3.2.5) and
(3.2.6) as

Zk-—Dﬁk=Yk—H5k—Dl7k=Yk—?k,

where Y, = HZ; + DUy is the estimated noiseless block channel output. We see
immediately that the same objective may be achieved in the non-linear channel case

by choosing Uk according to

Uy = argmin ||V — G,(Zk, UDI%, k= 0,p,2p,..., (3.5.4)
U,eIB?

and these decisions can be used to generate the next state estimate via
Zktp = fp(Zk, Ug)-

A (p,1)-DFE for the non-linear channel can be realised as in section 3.2.5, using
the same design assumptions as before, namely: the input sequence uy is iid and
equiprobable; and Fj 4 T — i is independent of Uy and Ny at the design stage.

We thus arrive at the sliding-window decision criterion for a non-linear channel,

~ w112
Uy = argmin E e~ w7 lYe=Gr @[V DI , k=0,1,2,..., (3.5.5)
uGIB VGBp—l

with Yz and G,(+) defined in (3.5.3). We can use
Tiy1 = f1(Zx, )

to generate successive state estimates. The proof that this result holds follows the
same argument as the proof of Theorem 3.2.2, and is therefore not supplied. We note
here that the block DFE for a non-linear channel has a non-linear vector quantizer
and a non-linear filter in its feedback path. The non-linear feedback filter, which
generates Gp(Zk,U}]) from the current state and block input estimates, could be
realised with a look-up table (random access memofy) if (3.5.1) has only a finite
number of possible states z;. This is the case if the channel has finite memory.

The reader is referred to [50] for more examples of feedforward equalizers for non-
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linear channels.
We continue describing possible extensions to block decision feedback equaliza-
tion in the next section, treating the case of quadrature amplitude modulation,

and giving some examples of maximum likelihood decision device realisations for

M -ary signalling.

3.5.2 Quadrature Amplitude Modulation

We first introduce the idea of an M-ary signalling alphabet. This is a finite set of

symbols of the form
M={-M+1,-M+3,...,-3,-1,1,3,...,. M -3, M -1}, (3.5.6)

where M is an even positive integer. For example, with M = 2, we recover the
binary signalling set. Physical channels are two-dimensional and can support trans-
mission of information on two carriers that are 90° out of phase. Such an ar-
rangement is called quadrature amplitude modulation (QAM). The symbol set for
QAM, called a constellation, is often a square grid of points in the complex plane
€ with centre of mass at the origin. For instance, a signalling set for 4-QAM is®
{eI™/4 1374 ¢i57/4 ¢iT7/4} f all symbols in the QAM constellation have the same
magnitude, then the signalling scheme is termed phase-shift keying (or n-PSK, where
there are n symbols). The previous example could therefore equally well be called
4-PSK. For further discussion of QAM techniques, see [20].

In order to model both in-phase and quadrature channels, we adopt a chan-
nel model with compler coefficients. This approach has the advantage tha,t‘ the
algebra is symbolically the same as in the real case. Preserving the notation of sec-
tion 3.2.1, we generate the complex channel output yx in response to the complex

input sequence uj via

Tpyr = Azp +bug

Y = cxk+ du + ng, (3.5.7)

9We use j = v/—1.
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where z € €", {A,b,c,d} is a complex realisation and ny = nf + jnl is a com-
plex Gaussian white noise process whose independent components satisfy nf, ni ~
N(0,0?) and have identity covariances. The input signal ux = uff + juf is such that
ult,ul € M, so that u; € Q, where Q = {m1 + jma|m,, my € M} is a square QAM
constellation. The same block processing realisation (3.2.2) holds, recognising that
the matrices {F,G, H, D} now have complex elements.

We now focus our attention on the form of the decision device. Assuming, as be-
fore, that both components of the input sequence uf and uf are iid and equiprobable,
we can develop maximum a posteriori (or equivalently maximum likelihood) vector
quantizers for the full-blocking and sliding-window block DFEs. The reasoning for
the binary case carries over, the optimum decision device for the (p, p)-DFE being

a “slicer” or nearest-neighbour quantizer, computing
Ur = argmin || Zx — DU|J?, (3.5.8)
Uegr

in which QP denotes the set of vectors of dimension p with components in the QAM
constellation Q, and || X||* = X*X where X* is the conjugate transpose of the vector
X. As before, Z; = Yy — HZy, in which T denotes the (complex) channel state
estimate obtained via (3.2.2)). Similarly, as expected, the vector quantizer for a (p,1)-
DFE uses (3.2.20), replacing IB by Q (and invoking the usual design assumptions
of independence).

We now give a concrete example of a decision procedure. We choose, for ease of
visualisation, a high SNR (2,1)-DFE for quaternary (M = 4) signalling on a real FIR
channel with first two impulse response coefficients hg = 1 and hy; = 0.3. As in the
binary case, in the high SNR limit, the quantizer reduces to a minimum Euclidean

distance metric, selecting its estimates as

2
2k 1 0 U

4 = [1, 0] x argmin - ) (3.5.9)

€M 2o hi 1 Uz
M denoting the set {—3,—1,+1,+3}. The two-dimensional Zi-space is partitioned
into 4 regions (Fig.3-11), corresponding to the 4 alphabet symbols. The deci-

sion boundaries consist of straight line segments which perpendicularly bisect pairs
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Quantizer Input 2_2

“

i
1 2

Quantizer Input z_1

Figure 3-11: Decision regions for quaternary signalling.
From left to right, the respective regions correspond to the decisions 4 = -3, -1, 1, 3.

of points (displayed in the figure as “*”) from the set

1 0 uy
03 1 U

7 Uy, U € M

We mention in passing that a quaternary decision feedback equalizer would use a

slicer with charteristic [21]

sgn(z — 1) + sgn(z) + sgn(z + 1),

where z is the scalar input to the slicer. It should be clear that the block DFE

framework is well suited to the incorporation of quadrature amplitude modulated

signals.

3.5.3 Coloured Noise

In the sampling operation that occurs at the front end of an optimal receiver, a
matched filter is used to ensure that no information is lost. Supposing the chan-
nel noise is initially white, after the filtering it will generally be coloured. A whiten-
ing filter [3] can be used to remove this colouration, further distorting the signal.
This is a necessary measure in Viterbi decoding, since the minimum distance metric
assumes whiteness. On the other hand, in block decision feedback equalization, we

recognise that the problem of designing practical decision criteria necessitates some
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(small) loss in optimality. We have made certain “weak independence” assumptions

in the design of the (p, p)-DFE, using' the approximation
Pr(Zy | Ex =0,Ux = U) = pn(Zx — DU). (3.5.10)

In the (p,1)-DFE design, we assumed that Ej was independent of Uy and Ni.
These steps, although not rigorous (since weak correlations do arise through the use
of decision feedback), result in practiéal detection strategies and should be seen as a
compromise between implementability and optimality. With these remarks in mind,
we now consider what form the optimal decision function for the block DFE could
take in the presence of additive coloured Gaussian noise.

If there is correlation in the noise sequence, then the validity of assuming the
independence of Ej; and N, will be weakened. Nonetheless, we can attempt to
incorporate the colouration of the sampled noise process into the design in the
following manner. We present this at a tutorial level only.

Denote by ¥ the autocorrelation matrix of the noise sequence with elements o;;
given by

oi; = E{nkyi-1Mktj-1} (3.5.11)

The vector of noise samples N will then have an (invertible) p x p autocorrelation
‘matrix X, (the upper left p x p submatrix of £) which is the same for all such Ny

(assuming stationarity). The multivariate probability density of Ny is

A 1 -iINIZSIN,
N Ve Nk 3.5.12
pN(Nk) (2n)7/7] pI%e ( )

where | - | represents the determinant of a square matrix. We modify the (p,p)-

DFE criterion by weighting the distance measure by ¥;?
Uy = argmin {||Z;c — DU||%- }, (3.5.13)
UcelB? ? ’

where the vector norm || X||> = X'Y X for some positive definite Y. We can do the
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same with the (p, 1)-DFE criterion

u 2
o~Hlen (il

U = argmax{ Y (3.5.14)
uxelB Vie B!
This formulation makes the implicit assumptions
Pr(Zg | Uy, Ex = 0) = pn(Zi — DUy)
Pr(Vi = [uk41y. .o s Ukpp=1]' | Ex = 0) = Pr(Vi = [uk41,5- .« Ukgp-1]'),

for which we do not seek theoretical justification, but point out that, in the white
noise case, such assumptions lead to practically realisable detection strategies that
perform well. We add that in the high SNR coloured noise case, if we extract the
dominant term from the maximisation in (3.5.14), the decision boundaries are still
hyperplanes in Zi-space. To see this, note that for a high SNR (p,1)-DFE, a point
Z lies on the decision boundary if and only if the weighted norm ||Z — DU "22;1 is

minimised by Uy, U; € IB? where U; and U; have distinct first components. In other

words,

(Z - D)YE;Y(Z - DUy) = (Z - DU,)'S;(Z — DU), (3.5.15)
which implies by symmetry of £, that

UyD'E;' DUy — U3 D'S;' DU, + 22'S;' D(U; — Uy) = 0. (3.5.16)

But (3.5.16) is the equation of a hyperplane in Zy-space. Thus, the effect of coloured
noise is to tilt and displace the decision hyperplanes with respect to the white noise

case.

3.5.4 Adaptation

In the present formulation, we require explicit a priori knowledge of the chan-
nel model in order to implement the block decision feedback equalizer. This as-
sumption is generally unrealistic—physical channels tend to be unknown in advance
and also time-varying. As mentioned in the section (1.1.3), the remedy is to make

the equalizer adapt its internal channel model automatically—first to identify and
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then to track the actual channel parameters. An adaptive equalizer [6] often uses
an initial (known) training data sequence and then, once the channel is identified,
switches to a decision-directed mode, replacing the training sequehce with its own
decisions. _

We treat the subject of adaptation of the block DFE by analogy with the con-
ventional adaptive decision feedback equalizer [36, 20]. For simplicity, we assume a
finite impulse response channel with real coefficients and ignore the adaptation of
the would-be feedforward filter which cancels the precursor intersymbol interference.
We are assuming, then, that the true input sequence (and hence channel state) is
known, and derive minimum mean-square error (MMSE) settings for the decision de-
vice and the causal multivariable feedback filter of the block DFE. The analysis
applies equally to the (p, p)-DFE and the (p,1)-DFE, with their respective optimal

decision devices. Thus we define (in a notation consistent with section 3.2.2)

Ty — ﬁUk

i

Vi
= Y, - ﬁmk - ﬁUk

= Y%-Y% (3.5.17)

where we have used (3.2.5), and defined i £ Tk + ﬁU,,, the hats “~™ denoting
estimated variables.
The equalizer adapts its channel model h = [hq, .. .,TuL]' to minimise the “noise

variance” at the quantizer input

rgigs{uvkn’} = e{Ive - %ull?}. (3.5.18)
Let us rewrite ?k as
~ ~ ] ~ xr -~
P = [#| D] 2 Au,, (3.5.19)
. Uk
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where

o~ ~ ~ 9

hr hp—1 - - hg 0 --- 0
. (-) h o+ - Ry kg -er 0 SR (35.20)
0 hr oev eee e Bo_
and
U = [Uk=Ly- -y Uke1y Uky - - -, Uppp ]’ € BLFP, (3.5.21)

We now need the following facts presented in the Lemma below (appendix C.3

contains a proof).

Lemma 3.5.1 Let the input sequence {ui} to the channel be a stationary white

random process with zero mean and unit variance. There holds!®

. L . p
E{ViHUY =Y hroi Y iy (3.5.22)
j=0 i=1
e{uR AU} = AR
L
= p) R, (3.5.23)
1=0

where ¢;; ¢ {Yrti-1Uk-L+j-1} fori=1,...,pand j = 1,...,L + p, with ’ﬁ, Uy,
as in (3.5.20), (3.5.21) and yx, Yi as in (3.2.9) and (3.2.4) respectively.

Denoting the channel output autocorrelation matrix by
C = £{VY)} € RP*?
where C has components
¢ij = & {Yrtic1¥ktj-1}, 1 < 4,5 < p,

we have £ {Y/Y;} = tr C. Making use of the Lemma, we can express the MMSE

10tr A is the trace of the square matrix A.
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criterion as

£{Ivil*}

& {ViYs — 2Y{ Rt + Uy H'Fus )

L P L
tr C =23 hr ;> $iivi +pY_hi (3.5.24)

j=0 i=1 =0

The minimum mean-square error tap coefficients are the values of sz for which
2 (vl =0, j=0,...,1L, (3.5.25)
Oh;

which yields the simple (batch) solution

p—1
> & {yksithsioj} =0, j=0,...,L. (3.5.26)

=0

~ 1
hi=-—
Tp

The block DFE under MMSE adaptation would thus use the tap settings (3.5.26)
to form the {F,G, H, D} (3.2.2) matrices which determine the decision device and
feedback filter. Unfortunately, in practice, we could not expect to realise this MMSE
‘solution for lack of knowledge of the channel-input cross correlation. Instead, we
try for an approximate solution. This is furnished by a stochastic gradient descent
strategy [20], which essentially ignores the expectation in (3.5.18), and uses the (real

time) iterative adaptation rule

- - 19 2 . ’
hj(k+1) = hj(k) = zn—=——|IVkl|’, 7=0,...,L, 3.5.27

i+ 1) =Ri(h) = grgs il 3 (3.5.27)

in which sz(k) is the current (time k) estimate of the jth channel tap h;, and nis a
small step size. We will now state the form this algorithm takes for the block DFE

in the following theorem whose proof may be found in appendix C.4.

Theorem 3.5.1 (Adaptive Block DFE) Let Y be as defined in (3.2.4), and
H, Uy as defined in (3.5.19). The stochastic gradient descent training algorithm
for the adaptation of the parameters sz(k), j=0,...,L of the block DFE matrices
D and H forming H (3.5.20) is given, for k = 0,1,2,..., by |

p-1

hy(k+1) = hi(k) + 1Y tkpizjerris (3.5.28)
=0
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where €, = yr — Yk is the channel output noise estimate at time k and ¥ defined as

L
Gk = O hi(k)uk—i. (3.5.29)

1=0

The block DFE, then, replaces the unknown h;, which parametrise its decision de-
vice and feedback filter, with their estimates fz;(k) and updates these according to
(3.5.28) during the training phase. After training, the block DFE can use its own
decisions g, in lieu of the ux in (3.5.28) dutomaticauy to track variations in the

physical channel. For QAM signalling, the derivation of the adaptation algorithm

proceeds analogously.

3.6 Conclusions

In this chapter, we have presented a natural generalisation of conventional de-
cision feedback equalization—the block DFE—based on a block processing chan-
nel model. For a fixed block size, we can distinguish two principal types—the full-
blocking block DFE ((p,p)-DFE) and the sliding-window block DFE ((p,1)-DFE).
The (p, 1)-DFE has superior performance to the (p, p)-DFE and requires more com-
putation, although for reasonably high signal-to-noise ratios its variant, the high
SNR (p, 1)-DFE, offers comparable performance at reduced complexity.

We investigated the extremes in performance of the block DFE and showed
how to recover the conventional DFE, the maximum likelihood sequence estima-
tor and the symbol-by-symbol maximum a posteriori detector as special limiting
cases. We demonstrated, using trellis-based ideas, the equivalence of earlier ap-
proaches in [13, 14, 43] with the high SNR block DFE. We discussed briefly is-
sues relating to computational complexity of block DFE decision device realisations,
which is exponential in the block size. This indicates a need for finding simpler
vector quantizers if the channel response is long compared to the sampling interval,
even though substantial BER improvements over the DFE are obtainable for modest
block sizes.

Concerning possible extensions, we maintain that the block DFE is a very flexible

structure. This flexibility is a by-product of the separate design of the feedback filter
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and the decision device. The block processing model can be applied to linear and
non-linear ARMA channels. The decision device can easily be modified to handle
M-ary signalling or quadrature amplitude modulation and even coloured noise. We
showed that it is straightforward to incorporate adaptation into the block DFE
structure, making it a viable practical scheme. We did not discuss the important
aspect of coding, but suggest that the block DFE is naturally amenable to the
equalization of block codes.

We have reserved any discussion of performance analysis for the next chapter.
As in the analysis of the conventional decision feedback equalizer [23, 16, 17], it is
a wise move to study first the performance of the non-adaptive (tuned) structure.
This involves calculating or bounding the primary (noise-induced) error probability,
the analysis of error propagation, error recovery times, and error probability en-
hancement due to error propagation. The feedbaék mechanism of the block DFE,
while assuring its generally good performance, combines with the non-linearity of
the decision device to make most analyses very difficult. For this reason, in the

sequel we will only be attempting a performance analysis of the two-input (p = 2)

block DFE on second order channels.
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Chapter 4

Two-Input Block DFE -

Detailed Performance Analysis

4.1 Introduction

There are many aspects that should be considered in evaluating a communication
system. Some examples are the system’s sensitivity to various timing and phase
errors and mistuning of parameters, its noise immunity, and the effects of finite
precision arithmetic. All of these factors influence the eventual system’s performance
and are reflected in the symbol error probability Pr(@ # uk). Since we are treating
the transmission of uncoded binary iid data, the symbol error probability is the same
as the bit error rate and we will refer to these simply as the error probability.

As we mentioned at the end of chapter 3, ‘the analysis of error probability in
a non-linear feedback equalizer is not only a study of the primary (noise-induced)
error probability, but also of the effects of feedback of decision errors (causing error
propagation) which enhances the primary error probability. In our study of error
propagation, we only treat the noiseless case. This has the virtue of simplifying the
finite-state Markov process description—since the probability of a particular state
transition is then just the a priori probability of observing a particular input symbol
Pr(ug).

When we come to discuss the noiseless propagation of errors in the block DFE,

we use a definition of stability that has appeared in the literature on decision feed-
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back equalizers [16]. Loosely speaking, we say that an equalizer (incorporating
decision feedback) is stable on a given channel, or alternatively, that a channel is
in the stability class for that equalizer, if there is no input sequence that can cause
an indefinitely long stream of decision errors. On such channels, we can expect the
equalizer to recover from an initial error condition in a “reasonable time” (in the
absence of noise). We make these notions more precise in section 4.5.

In chapter 3, we introduced the block decision feedback equalizer by extending
the concept of decision feedback equalization to many dimensions. There, we dealt
mainly with aspects of design, various realisations and their simulated performance,
and extensions of the technique. In this chapter, we will concern ourselves with
the analysis of performance and stability of the two-input block DFE, which we
review in section 4.2. The reason for treating only the two-input case is that, in the
general p-input case for p > 2, no explicit expressions for the solution of the integer
programming problem for the decision rule (3.2.20) have been found. We reiterate
here that an exact decision rule can be written down for the (2,2)-DFE, whereas
this rule is only an, albeit good, approximation for the (2,1)-DFE (3.3.3), valid for
moderate signal-to-noise ratios. We also restrict the stability discussions to first
and second order channels. Firstly, this constrains the complexity of a finite-state
Markov process based analysis (relying on the independence of the input sequence to
the channel). Secondly, the results are easily interpreted and visualised graphically.

Our analysis of the two-input block DFE splits up into three broad categories:

1. Primary error probability analysis.
2. Sufficient conditions for error recovery.

3. Necessary conditions for error recovery.

A primary error is a decision error caused by channel noise. The analysis of such
errors is commonplace in the equalization literature and assumes that there have
been no past decision errors, ignoring the possibility of error propagation which
may occur regardless of the signal-to-noise ratio. We will give an example of this
kind of analysis applied to a high SNR (2,1)-DFE, on a first order channel (section
4.3), yielding the error probability as a function of the signal-to-noise ratio. We

take a direct approach, using knowledge of the block DFE’s decision boundary to
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express the primary bit error rate as a definite integral. This is unconventional—
many authors prefer to use the union bound [3], which is essentially a trellis-based
approach (see [13], for example), to bound the primary error probability.

Error recovery analyses concentrate on the existence of certain undesirable or
pathological input sequences which may generate bursts of decision errors. We seek
conditions on the parameters of the finite impulse response channel that preclude this
behaviour in the absence of noise. We look firstly at sufficient conditions derived
from considerations of the noise immunity of the decision device. This le#ds to
eye conditions which we present in section 4.4. We establish the stability class of
second order channels for the (2,2)-DFE and (high SNR) (2,1)-DFE in section 4.5.
These conditions are necessary and sufficient for the two-input block DFE to have a
bounded noiseless error recovery time (or a short expected error recovery time). The
complexity of this analysis, however, would seem to prohibit generalisation to longer

channels or higher dimensional block DFEs, although it is applicable in principle.

4.2 The Two-Input Block DFE

Before proceeding with the error probability analyses, we rederive the two-input
block DFE model, mimicking the treatment in chapter 3. We assume a finite impulse
response channel with unit cursor! hg = 1 and coefficients h; (i = 1,...,L). The
input to the channel is a sequence of independent random variables {u;}32,, where
uj takes values in IB = {-1,+1} with equal probability?. The channel output at
sampling instant k, corrupted by zero-mean white Gaussian noise n; with variance

02, gives the received signal

L
Yk = U + Z hjug—; + ng. (4.2.1)
=1

Defining the channel state z; as the vector of the last L channel inputs,

A ! L
Tk = [Uk—LyUk—-L41,-- ., Uk-1] € B

! Again, as in section 3.2.3, we are assuming that the precursor ISI has been removed by linear
equalization. :
2Equiprobability is not an essential assumption.
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where z’ denotes the transpose of z, we can express the system in state-space form

Tpyr = Azp+bug, k=0,1,...
Ye = CTp+ugp+nk (4.2.2)
where
0 Ip, 0
A= 3 b= i e=[hr,y ... yha, hi] (4.2.3)
0 0 1

and where I, is the identity matrix of order n and 0 is a matrix of zeros of the

appropriate size.

We now form a block processing realisation of block length p = 2 for (4.2.2) by
defining

A A A
Uk = [uk, ues1]'s Yo = [Yk, vks1]’s Nk = [ney nea]'s (4.2.4)

then

Thyo Fzi + GUx, k=0,2,4,...

Y Hzy + DUk + Ny, (4.2.5)

where, like (3.2.2) with p =2,

I 0]
P IR R ifL>2
0 0 I
or
F:O;G:[O ]’LT if L <2
and
hy h -1 0
H = 2 ! ,D= 9 (4'2'6)
hs ho hy 1

and we define hy =0ifk > L.
In aha.logy to the DFE, DUy is the direct term of current channel inputs for

decoding (acting as the block cursor), Hz contains past input terms and acts as
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the tail of the intersymbol interference.
The block DFE (Fig.3-3) assembles its past decisions in a state vector estimate
Ty = [Uk-L, .-, Uk—1]) with which it attempts to cancel the Hzj term at the decision
device input
Z £ [k, 22l = Yi — H& = DUx + HE + Ny (4.2.7)

where

Ek é Tr — 5]; (4.2.8)

is the state estimation error.

On the assumption that past decisions are correct (Ex = 0), the input to the
memoryless decision device is ISI-free and in a from suitable for vector quantization.
Since the block length p = 2, there are two possible maximum a posteriori deci-
sion device strategies: the full-blocking (2,2)-DFE, producing two input estimates,

and the sliding-window (2,1)-DFE, producing one estimate per iteration. The (2,2)-

DFE computes its decisions via

ﬁk = [k, Uk41) = argmin || Z; — DUk“z, (4.2.9)

U,,EB2
using (4.2.5) to generate successive state estimates. The optimal (2,1)-DFE uses a
sum of exponentials criterion like (3.2.20) which, in the moderate to high SNR case,

reduces to the high SNR (2,1)-DFE criterion

i = [1, 0] X argmin || Z; — DU||?, (4.2.10)

UxelB?
with D as in (4.2.6), obtaining Zx4, using (3.2.21). In this chapter, we will assume
the block DFE is operating under a minimum distance criterion. This is optimal
for the (2,2)-DFE but a high signal-to-noise ratio approximation for the (2,1)-DFE.
We are therefore assuming that the decision boundary is piecewise linear for the

purposes of the analysis.

Geometrical arguments yield the explicit solutions to the minimisation in (4.2.9)

i = sgn{sgn(ly) + sgn(l2) + sgn(l3)} (4.2.11)
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Uk41 = sgn{sgn(ly) + sgn(ls) — sgn(h,) sgn(l3)} (4.2.12)

in which

h = Mzt 2z — M

lh = hag+zg+h

Iz = (hy—sgn(h1))zk2+ 2k

ls = zgo+hi;ls=2zk2-h, (4.2.13)

for the (2,2)-DFE (k = 0,2,4,...) and by (4.2.11) for the high SNR (2,1)-DFE (k =
0,1,2,...) (see Lemma 3.3.1). The decision boundaries for h; = 2 are shown in

3
chapter 3 Fig.3-5.

We can equally well write the decision rules (4.2.11)-(4.2.12) in a piecewise form

sgn(hizk2 + zk,1), |hazr2 + 21| > |

sgn(l3), |h12k,2 + 2| < |Ra]

)
x>
il

(4.2.14)

Tous = sgn(zx,2), |2k,2] > |hal . (4.2.15)

—sgn(h1) sgn(ls), |2x.2| < |hal
This results from the observation that the decision regions depend on the strips
formed by the pairs of parallel lines /; = 0, I; = 0and Iy = 0, I5 = 0in (4.2.13). This
alternate representation will be useful when we' determine the finite-state Markov

process corresponding to a particular channel class in section 4.5.2.

4.3 Primary Error Probability Example

Determining the error probability of a non-linear equalizer is a hard problem in
the sense that exact solutions often cannot be found. The conventional method for
trellis-based detection algorithms, such as the Viterbi algorithm and its variants
[11, 13, 14, 19], is to make the simplifying assumption that there have been no past
decision errors, then to find a bound on this primary error probability. These anal-
yses use the idea of an error event, which is a sequence of incorrect state transitions

in the trellis. The probability of error is the probability of the union of the various
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error events, which is upper bounded by the sum of their individual probabilities
[19]. This union bound is dominated at high signal-to-noise ratios by the mini-
mum (Hamming) distance error event. Although this method works well for the
Viterbi decoder, the effect of past decision errors on the error probability is more
pronounced when decision feedback is incorporated. This is the case in most of the
simplified Viterbi schemes. As we will see later, error propagation in a block DFE
can easily double the primary error probability.

The style of analysis presented in this section differs from the trellis-based calcu-
lation in that we compute the primary error probability directly, using knowledge of
the decision boundary’s geometry. We assume piecewise linear decision boundaries,
but otherwise the calculations are exact. As we saw in section33.5, the optimal deci-
sion device typically performs only slightly better than its high SNR approximation.

The primary error probability of the (p, 1)-DFE on a particular channel (and for
a given SNR) is defined as

Po 2 Pr(i # ux | A), (4.3.1)

where the conditioning A is indicative of the assumption of no past errors, i.e.,

Uk—i = Ug—~; Vi > 0. Applying Bayes’ rule, we have

Po = Z Pr(u # ur | A,ur = a)Pr(ug = a)
«elB

= %Pr(z’ik ol Auw=1)+ %Pr(ﬁk =1 Au=-1) (432

bby equiprobability of the input sequence {u} (the conditioning on the symbol prob-
abilities is redundant). As a preliminary example, let us compute this quantity for
a conventional decision feedback equalizer, whose decisions are given by (1.2.1). In

the absence of past decision errors, the DFE’s output is just (assuming hg = 1)

Uk = sgn(ux + nk), (4.3.3)
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so that

1
Po(DFE) = §Pr(sgn(uk +np)=1]u= -1)
1
+—2-Pr(sgn(u;c +ng)=-1|u=1)

- %Pr(nk > 1)+ %Pr(nk < -1). (4.3.4)

Now, assuming that ny ~ N(0,0?), we have

© 1 2 1
Pr(ng>1)= P —1=/ ~S1dt = Q(2), 3.
r(nk ) r(nk < ) 2 \/We 2 ¢ Q(d) (4 3 ’5)

where () is the complement of the cumulative normal distribution function
1
Q(z) = / — e3P, (4.3.6)
Hence, from (4.3.4), the DFE’s primary error probability is just
1.1 1 .1 1
Fo(DFE) = 5Q(=) +5Q(=) = Q(2). (4.3.7)

Turning again to the two-input block DFE, the computation is complicated by
the non-linearity of the decision device and its dependence on the channel (we are
assuming the high SNR case, so there is no dependence on 0?). The decision de-

vice inputs are (with hg = 1)

A
21 = 2Zg1 = Uk +ng

np

22 k2 = k41 + hauk + Nkt (4.3.8)

and the joint probability density of the vector Ny (4.2.5) of iid noise samples is

decomposable as

pN(NE) = pu(nk)pa(nesr) 2 pa(n1, n2), (4.3.9)
where
—m?
n(m) = e2s, 0% = Var(ng). 4.3.10
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Applying Bayes’ rule, we condition on the four possible values of U, obtaining

Pr(dy #ux | A) = z E Pr(ug = a | A,ux = —a,ug+1 = B)
a€lB selB
X Pr(ux = a)Pr(ugsr = B), (4.3.11)

where we have used the independence of {ux} and causality to remove the condi-
tioning on the a priori symbol probabilities (which are assumed equiprobable). We
first investigate a symmetry property, pertaining to the high SNR (p, 1)-DFE deci-

sion rule, that will simplify the calculations.

Property 4.3.1 (Symmetry of Decision Rule) Suppose that the decision device
input Z = Zy € IR? to the high SNR (p, 1)-DFFE results in the decision 4y = u, € IB.
Then when Zy = —Z;, the corresponding decision is Uy = —u,, where u, is the first

component of Uy.

Proof: Let U = U; minimise ||Z; — DU||?. Then ||~ Z; - DU||? = || Z; - D(=U)||?

is minimised by —-U = U, or U = -U;.

Remarks

1. If a point Z lies on the decision boundary, then so does its reflection in the

origin —Z.

2. The same symmetry property applies to the optimal (p, ¢)-DFE with decisions
given by (3.2.20).

Now define the following regions in connection with the (2,1)-DFE with decision rule

D, 1(+) : IR? — IB given by (4.2.10)

He = {Z€ R*|D2(2) =+1})
H_ = {Ze€ R?| D,y (2)=-1}. (4.3.12)

Property 4.3.1 implies that Z; € Hy <= —Z; € H_-. We have not specified the

decision device’s output for a point Z lying on the decision boundary, but this is
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unimportant since the latter is a set of Lebesgue measure zero in Zi-space and will
have no contribution to the probability of error due to noise.
Consider one of the conditional probabilities in equation (4.3.11). Using (4.3.8)

we have (using the subscripts 1 and 2 in place of k£ and k + 1 for the components of

both Z; and Ni)

Pr(d = -1 Ajur = L,up41 = 1)
= Pr(Z=[n,n€H-|znn=m+1,22=n2+1+hy)
= Pr(-Z€Hy4 |z =n1+1,22=n2+1+ hy), by Property 4.3.1
= Pr(ZEHy|z1=-n1—-1,22=—ny—1-hy)
= Pr(ZeHt|nn=m—-1,z2=n3—-1-hy)

= Pr(ur=1| A ux = -1, up41 = -1), (4.3.13)

having used the symmetry of the noise density. The upshot of this is that only two
of the four terms in (4.3.11) are distinct. From here, it is a straightforward but
messy step to write down the expression for the primary error probability. This may
be found in appendix D.1. As an illustration, we go through the computation for
the special case of hy = 1. This case is a representative “bad” channel in respecf
of giving a relatively high simulated error probability over the class of first order
channels (normalised to have the same energy).

When hg = 1, hy = 1, the decision region for %y = —1 can be represented as the

union of the three disjoint sets below (see (D.1.1) in appendix D.1),

Hi = {(21,22) € R* | 1< 2 < 00,-00 < 21 < 1 — 23}
Hy = {(z1,2)€R*| —00 <2 <0,~00<2<1}
Hy = {(z1,22) ER?|0< 2 < 00,-00 < z2< =1 -z}

Consequently, we find from (4.3.11) that the primary error probability is

00 p-n2 -1 p-ny-2 1 -1 o0 p-nz—2
e [
1 -0 —00 J—00 ~-1J-00 -1 J=oc0

-3 p-np—4 -1 -1
/ / + / s }pN(n1, n2)dnydng, (4.3.14)
—o0 3 Jooo

-0
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Probability of Bit Error

Sigoal-to-Noise Ratio (dB)

Figure 4-1: Bit error rates with and without error propagation.

The curves are (from top to bottom): the simulated error probability for the DFE; the
simulated error probability for the (2,1)-DFE; the theoretical bounds and simulated primary

error probability for the (2,1)-DFE.
where pn(-,-) is given by (4.3.9). This is expressible more compactly as

Po = s {1-0)- e} +3 [T aQm0ar+

3 /7 o 5 [7 oS pntoar

o

v

I3
In addition, the first two of the three integrals above reduce to
o 1,1
[T aGmma = %)
142 1. V2
| e mma = 3005,

-0

whereas we can obtain simple bounds on the third as

e2)eG) < T < Q).

(4.3.15)

(4.3.16)

(4.3.17)

(4.3.18)

These results are derived in appendix D.2. We combine (4.3.15-4.3.18) to obtain

upper and lower hounds on the primary error probability. These have been plotted

in Fig.4-1 together with the corresponding curve (4.3.4) for the DFE. Fig.4-1 also
shows the performance curves for the high SNR (2,1)-DFE with and without error

propagation (simulated over a minimum of 10® points). The BER curve for the
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DFE (simulated over 10° points) has been included as a reference. The bounds
are indistinguishable for this range of signal-to-noise ratios, and coincide with the
simulation. Clearly, the enhancement of the primary bit error rate through error

propagation is a significant factor in both the (2,1)-DFE and the DFE. We will

return to this point in section 4.5.

4.4 Sufficient Conditions for Noiseless Error Recovery

4.4.1 Eye Conditions

Recall that a correctly tuned decision feedback equalizer, in the non-adaptive mode,

produces its decisions according to

Uk = sgn(ug + & + nk),

where

L
re =D hi(uk—i — ki)

i=1
represents the residual intersymbol interference after decision feedback. Clearly if
the channel parameters are such that |rg| < 1 for all k, then a decision error can
only be caused by noise (although the ISI can still detract from the noise immunity-
making the occurrence of an error more likely). Channels satisfying a condition of
this type are known as open eye channels for the DFE. We say alternatively that the
channel parameters satisfy an eye condition [20]. On such channels, all errors are
noise-induced and error propagation cannot occur. In the absence of noise, the DFE
is guaranteed to recover from an initial error condition in a finite number of steps
(of the order of the channel length). Eye conditions for M-ary decision-directed
equalizers may be found in [21]. We consider the problem of deriving eye conditions
for a high SNR (2,1)-DFE operating on a second order channel [ho = 1,hq, ko] in

this section.

In the absence of noise, the decision device input Zj is given by

2k 1 1 0 Uk ha ek—2
+

Zk2 hy 1 Uk41 0 he ek—1
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An eye condition will be satisfied in this case if the magnitude of the residual
block intersymbol interference is always less than the minimum distance to the

decision boundary, 7mjn, or

2
hy h €k_
PR <02 (hy), Vero1,ex—s € E (44.1)
0 h2 €k-1

where the notation indicates the dependence of the minimum distance on the chan-

nel parameter h,.

The decision boundary in the high SNR case is composed of three straight lines

in Zi-space

11 : h1(22 - 1) + 2= 0 (4.42)
la @ (hy1—sgn(h1))z2+21=0 (4.4.3)
I3 : hl(Zg + 1) +2 =0, (4.4.4)

where Zj = [z, 23]’ is the decision device input. Recalling the reasoning of section
3.2, the intersymbol interference (and noise) has the effect of displacing the processed
received signals Z; from their natural positions given in (3.3.2). Equation (4.4.1),
then, simply expresses the condition that these displacements can never alter the
decision, assuming that the block DFE is tuned in the usual sense.

We now turn to computing rmin(h1). By symmetry, we need only consider the
distances from Z,4 and Z,_ (3.3.2) to the decision boundary. The minimum of
these distances will determine rmin(h1). Let us label the point of intersection of

lines /; and I; by P; and of /5 and I3 by P,. These have respective co-ordinates
[h1(1 = hysgn(h1)), h1sgn(hy))’ and [hi(h1sgn(hy) — 1), —hy sgn(hy)]'.

We also denote by d(-,-) the Euclidean distance between two points or the perpen-
dicular distance between a point and a line (depending on the arguments which

appear)f Defining r4(h;1) and r_(hy) as the minimum distances from Z, and Z,_
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to the decision boundary respectively, we have by definition
Tmin(h1) = min{ry(h1),r_(h1)}. (4.4.5)

It is clear from the geometry (see Fig.3-5, for example) that Z,, is always closer to

1 and I3 than to I3 for any hy, as Z,_ is to Iz and I3. This says that
7‘+(h1) = min{d(Z++,Il),d(Z++, Pl)a d(Z++712)}

r-(h1) = min{d(Z4-,13),d(Z4-,P2),d(Z4-,13)}.

But these distances are easily computed as

di(h) & d(Zesh) =141
do(h1) £ d(ZysPr) = /(L= by + sh3)? + (hy(s ~ 1) = 1)?
da(h1) 2 d(Zyp,la) = (L4 (b = 8)(h1+1) / /14 (b1 — 9)?
dy(h1) £ d(Z4o,l) = (14 (hy = 8)(hy = 1) [ /14 (b1 — 5)?
ds(h1) 2 d(Zi-,P2) = \/(=1 = hy + sh?)? + (hy(s + 1) — 1)?
do(h) 2 d(Zs-yks) = \[1+ R,

where s 2 sgn(hy). Furthermore, direct comparison of these distances, as a function

of hy, allows us to write

ds(h1), h1 2 h}

da(hy), 1< h <h}

ro(hy) = 4 2(h1) <hi<h ’
di(hy), —05<h <1

ds(h1), hy < —0.5

and

([ dy(h1), h12>05

de(h1), —1<hy <05
r_(hy) = 4 6(h1), 1 ’
ds(hy), —hi<h <-1

| da(h1), h1<-R]

where h} ~ 1.5437 is the positive real root of the equation A3 — 2h% + 2h; —2 = 0.
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r_min(hl)

Figure 4-2: Minimum distance to the decision boundary.
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Figure 4-3: Open eye region (starred) for high SNR (2,1)-DFE.

The above functions are plotted in Fig.4-2. Taking the minimum, as suggested by

(4.4.5), gives
VR +2h +2,  hy £-05

Tlllil](hl) = h% +1, Ih]l <05
h% - 2h + 2, hy > 0.5.

7

Notice that ry,in(hy) > 1, whereas 7y, = 1 for the DFE. This indicates that the
block DFE has better noise immunity than the DF'E. We now apply the eye condition
(4.4.1) for the cight non-zero choices of [ex—q,ex—1] € IE?, each of which defines
a region in (hy, ho)-channel space.(For E; = [0,0), (4.4.1) is trivially satisfied.)
The intersection of these regions defines the class of channels for which the eye
condition for the high SNR (2,1)-DFE is satisfied. This is the lozenge-shaped region

surrounding the origin in Fig.4-3. We remark that this is only a sufficient condition
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for error propagation to be absent in such a block DFE, and is liable to be fairly
conservative. As a comparison, the corresponding region for the DFE is shown
dashed in the figure. (This is the intersection of the regions {|hiex—1 + hzeg—-2| <
1; ex—1,€k—2 € IE}, or the ly-ball |hy| +|ho| < %) We will be considering in the next
section necessary and sufficient conditions that guarantee noiseless error recovery of

the block DFE in a finite time in the next section.

4.5 Necessary Conditions for Noiseless Error Recovery

A full error probability analysis of the block DFE must include the important ef-
fect of error propagation. The approach taken here, based on finite state Markov
processes, follows similar lines to the error analysis of the tuned DFE in [23]. We
consider the recovery of the block DFE from an initial error condition in the absence
of noise. This is complementary to the calculations of section 4.3 in that a complete
performance analysis should account for both noise-induced errors and their prop-
agation. The key assumptions are the statistical independence of the binary input
sequence to the channel and the fact that the decision device is memoryless. Under
these assumptions, an analysis of the dynamics of error propagation in a block DFE
in terms of finite-state Markov processs is possible. The noiseless assumption is by
way of simplification and is inessential. The inclusion of noise into the analysis is
possible once the noiseless case has been solved, and we sketch the required steps in

the appendix, using a DFE on a first order channel as an example.

4.5.1 Finite State Markov Process Description

In modelling error propagation in a block DFE the quantity of interest is Ej. (4.2.8).
A non-zero entry in Ej indicates that a decision error has occurred in the last L
time instants (due to a noise spike, for instance). We wish to track the progress of
this initial error as it is propagated around the feedback loop of the block DFE.
For a two-input block DFE with decision function Dpe(+) (3.2.20), operating on

a finite impulse response channel, the decision error vector (4.2.8) evolves by shift
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register action (c.f. (2.3.3)) via

01 0
Eryr = Ei + , k=0,1,2,..., (4.5.1)
00 ug — D21(DUx + HE + Ni)

in the sliding-window case, and via
Eix4o = Uy — Dy o(DU + HEy + Ni), k=0,2,4,..., (4.5.2)

in the full-blocking ¢ = 2 case. Some initial error condition, arising at time k = 0,
is responsible for the initial error state Fy of the block DFE. We assume that subse-
quent errors are due to error propagation alone and hence set the noise Ny to zero
in (4.5.1) and (4.5.2)—which is basically a high signal-to-noise ratio approximation.
If we further assume that D(-) is a memoryless decision function and that {ux} is
a sequence of independent binary random variables, then we can label Ejy as the
state in a finite state Markov process model  of the block DFE. The FSMP for a
given channel is determined by its initial state distribution and the set of transition
probabilities between its states (which we will define shortly). These transition prob-
abilities are easily obtained if we assume equiprobable input symbols.

| The zero-error state Ex = [0,...,0])' = 0, corresponding to a succession of L
correct decisions, has special status in the FSMP. We see from (4.5.1) and (4.5.2)
that when Ei = 0, then Ejry, = 0, since we must have Dpo( DUy) = (I, | 0)Uy, in the
absence of IST and noise, for any sensible decision device. This means that E} = 0
is an absorbing state of the FSMP for any channel. Thus, in the absence of hoise,

once the system reaches the zero-error state it stays there.

Definition 4.5.1 (Error Recovery) We say the block DFE has recovered from
error once it reaches the zero-error state, and define the error recovery time R as

the first time k = R such that Ex = 0 (assuming that Eq # 0).

We would like to determine the statistics of the error recovery time for the block
DFE on a given channel and whether there exist any input sequences that would
prevent its recovery from an initial error condition. This last question will lead
us in section 4.5.2 to necessary (and sufficient) conditions on the parameters of a

second order FIR channel that guarantee error recovery. That the concept of error
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recovery is well-defined is a consequence of the reachability of the zero-error state.
This means that we can always find an input sequence {ux}=} which drives the
system to the state Eg = 0 in a finite time R, regardless of its initial state. This
property is demonstrated for the high SNR (2,1)-DFE in appendix D.3.

Since uj is binary, each component ex.; of E; has only three possible values:
ex—i € {—2,0,2} = [E, so there are 3L Ej-states in the FSMP. We can roughly
halve the number of state transitions to consider, and therefore facilitate the error

recovery analysis, by observing the following simple property of the FSMP.

Property 4.5.1 (Symmetry of Finite State Markov Process) On a given FIR
channel [ho,...,ht], the finite-state Markov process governing the Ej-state transi-

tions in the (p,q)-DFE has the symmetry property

Ex — Exyq under Ui

&= —Ey — —FEk4q under - Uy, (4.5.3)

with respect to inputs Uy.

Proof: This follows directly from the negatives of (4.5.1) and (4.5.2), observing
the odd symmetry of the block DFE’s decision function (Property 4.3.1).

Remarks

1. Here,“—” should be read “transits to”.

2. The same symmetry property with respect to the probability of a transi-

tion also holds in the noisy case when the noise is white.

If we define an aggregated state as a complementary pair of Ej states, A(k) =
{Ek,—Ey}, then these new aggregated states A(k), of which there are only M =
%(31‘ + 1), form a finite-state Markov process. This follows from Property 4.5.1 and
the equiprobability of the input sequence. The same approach to simplifying the
error recovery analysis was used in [23] in connection with the DFE. We now make

some general definitions concerning the aggregated finite-state Markov process.
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We first choose an indexing scheme for the Ej-states that assigns an integer
(Ex) € {1,...,3L} toerror state Ej. This we do by transforming Ejy — Ex according

to

~ 1
Ek = §Ek + [1,...,1]’,

so that the elements of Ej belong to {0,1,2}, then treating Ey as a ternary number

with its L*h component as the most significant bit. This reads
1 L-1 1 L-2 1 0
(Br) = (14 5ek-1)3"7" + (14 gex2)3" 7+ + (14 Je-1)3° (45.4)

so that if (Ex) = i, then (—Ex) = 3L —i4+1for1 < i < M = 1(8L+1). In particular,
the absorbing zero-error state has index (Ex = Q) = M. Denoting the M possible

values of the aggregated state A(k) by A;, 1 < i < M, we map these to the indexes
of the Fj-states via

Ay ={1,31), A, ={2,35-1},..., Ay = {M =1, M +1}, Apr = {M}. (4.5.5)

We can now define the state distribution vector 7 = [7k1,...,Tk,Mm)" and transi-

tion probability matrix P = (p;;) of the finite-state Markov process by

Tk, P’I‘(A(k) = A,‘) : (4.5.6)

Pr(Ak+1) = A; | A(K) = A;), 14,5 < M,

pij
which satisfy
Tk4+1 = P7rk.

These definitions will be helpful in section 4.5.3.

4.5.2 Channel Space Partition

For the remainder of this chapter, we confine the discussion to an arbitrary second
order channel [hg = 1, hy, h2]. This will allow graphical interpretation of the results.

With this restriction, the finite-state Markov process for the two-input block DFE
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has 9 Ei-states or 5 aggregated states (4.5.5)
A = {[-2, _2],’ [2’2],}3 Ay = {[_230]” [2a0]’}’ Az = {["2’2],’ (2, —2],}’

A4 = {[0,-2],[0,2]'}, A5 = {[0,0]}

in response to the 4 possible inputs

veem {1 LTS

Our aim is to determine the partitioning of (hy, hy)-channel space into its respective
channel classes. We treat the more involved (2,2)-DFE case first and then specialise
to the high SNR (2,1)-DFE case.

As explained at the start of section 4.5, we ignore the noise terms in (4.2.7). The

decision device input is therefore

1 0 hy h
Zi = Uet | © ' | B, (4.5.7)
hy 1 0 ho
with Ey = [ex—2, €x—1]) defined by (4.2.8) and Uy = [uk, ug41]’.
In order to classify channel space according to the finite-state Markov pro-

cess arising from a choice of hy and h;, we consider the values of these parame-

ters which result in a zero argument of one (or more) of the signum functions in

(4.2.11)-(4.2.12). This leads us to define a switching boundary below.

Definition 4.5.2 (Switching Boundary) For given values of Ey and Uy and a
given condition holding in (4.2.14) or (4.2.15), the switching boundary is the set of

values {hy, ha} that makes the argument of the corresponding sign function zero.

It is intuitively clear that the set of switching boundaries divides the channel space
into regions, or classes of channels, in each of which a single FSMP applies. To
see this, note that a change in a decision is due to a change in sign of one or more
sign functions in (4.2.11)-(4.2.12), which, by definition, only occurs if a switching
boundary is crossed.

We need to consider the switching boundaries that arise from the various choices
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of Ex and Ui (or equivalently for the purposes of error recovery, A(k) and Uy).
We look first at the zero-error state Ex = [0,0]’. Using the “strip” representation
(4.2.14)-(4.2.15) of the decision function, it is easily demonstrated that under all 4
inputs Uy € IB?, transitions can only be made to Ex4z = [0,0]'. For instance, let
Ui =[1,1], (4.5.7) gives Z; = [1,1 + hy]’ which is independent of h;. The ’>’ part
of (4.2.14) holds for all hy and implies @ = sgn(1 + hy + h?) = 1 = ux. Similarly
Uk+1 = Ug4 for all hy. Thus, as expected, the zero-error state is an absorbing state
of the FSMP for any h; (and in fact for any FIR channel) so that once this state is
reached, no further decision errors can be made due to error propagation. Similar
statements also apply to the (2,1)-DFE.

Next we consider Ej states that have a non-zero entry. The 4 curves defined
when an argument of a sign function in (4.2.14)-(4.2.15) is zero may be expressed

in the form ¢(hy, hy) = 0, where
c(h1, h2) = a1h? + azh? + azhihy + aghy + asha + a6

for real constants a;, and are thus conic sections in the (h;, h2)-plane. As an example,
to determine which part of (4.2.14) applies in a particular region of channel space,
it is necessary to consider the values of hy; and h, for which (hlzk,q + zka| = |hal.

Applying the following identity,
|z =yl &= (2 + y)(z —y) =0
valid for real z and y, defines two curves in the (hy, hy)-plane
(14 A2, h)Uk 4+ [ho, by -thhl]E,, +h =0,

after substituting for Z in (4.5.7) and simplifying. The same reasoning is applicable
to (4.2.15). Thus for each of the 32 combinations (16 if we use property 4.5.1) of
the 8 non-zero error states (Ex # 0) and the 4 inputs (Uy), we must plot a total of 8
curves (4 from the conditioning and 4 from the arguments of the signum functions)
in order to determine the set of switching boundaries and hence what transitions

can occur in each partition of channel space.
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We choose the case Ey = [0,2], Uy = [1,~1] as a representative example. The

curves in question are given by
A .
ci(h1,h)=¢;=0,1=1,...,8,
where

i = —1+2h2;02=61+h1;63=01+2h1

c4 1+ h? +2hhy; cs = ca+ by j c6 = ca + 2

c7

€4 —C1; cg =4+ C3y

and the decisions (4.2.14)-(4.2.15) may be re-expressed as

4

sgn(cs) if c4c6 > 0
ug =4 sgn(er) if cye6 <0 and hy >0 (4.5.8)
sgn(ecg) if c4c6 < 0 and hy <0

sgn(ez) ifeiea >0
k41 = \ —sgn(c7) if cyjea<0and hy >0 (4.5.9)

sgn(cg) if cjecz < 0and hy <0

Plotting these curves and using (4.5.8)-(4.5.9) establishes the switching boundaries
depicted in Fig.4-4 for this particular state/input pair. To illustrate the decision
procedure, we take the point hy = 0.6, hy = 0.8 (the cross in Fig.4-4). We compute
cace ~ 8.17 > 0 so the first line of (4.5.8) gives ¢5 = 2.92 and U = sgn(cs) = 1.
Similarly ¢;e3 = 0.28 > 0 and (4.5.9) gives ¢ = 0.8 and Ug4+1 = sgn(cz) = 1, so that
Ery2 =[1,-1) = [1,1]) = [0, —-2]'. Note that all [hy, h3] points in any one region of
Fig.4-4 will result in the same Ej4o. These boundaries are the same for the state
Ei = [0,-2] with input Uy = [-1,1]". Continuing this way, yields the full set of
switching boundaries (for all possible error states and input combinations) which,
when overlaid, allows the complete determination of the FSMP for any second order
channel with hp = 1. This is shown in Fig.4-5. For instance, in the region of
Fig.4-5 containing the point [h; = 0.6, hy = 0.8] the particular FSMP has the state

transition diagram shown in Fig.4-6 (the transition probabilities are marked on the
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Figure 4-4: Possible transitions from error state [0, 2].

The (2,2)-DFE is in state Ey = [0,2)’ at time k with input Uy = [1,-1]".

Figure 4-6: FSMP diagram for ho =1, by = 0.6, hy = 0.8.
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Figure 4-7: FSMP regions for the (2,1)-DFE.

branches).

As the same FSMP applies to each point inside any one region, it is possible
to classify classes of channels with “desirable” error recovery properties, as will be
explained in the section 4.5.4. By ignoring those boundaries relevant to the x4y
decision in (4.2.15), the channel space partition for the high SNR (2,1)-DFE is easily
deduced from<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>