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ABSTRACT

Chehj JyUn-cheng. Ph.D., Purdue University, August 1991. Efficient Importance 
Sarhplihg Simulations for Digital Comrnunicatioh Systems. Major Professor: John S’. 
Sadowskyv.

Importahce sampling is a- modified. Monte Carlo simulation technique which can 

drarnatically reduce the computational cost of the Monte Carlo method. A complete 

development is presented for its use in the estimation of bit error rates /V  for dig

ital communication systems with small Gaussian noise inputs. Emphasis is on the 

optimal mean-translation Gaussian simulation density function design and the event 

simulatiOh method as applied to systems which employ quaSi-regular trellis codes. 

These codes include the convolutional codes and many TCM (Uhgerboeck) codes. 

Euciideah distance information of a code is utilized to facilitate the simulation. Also, 

the conditional importance sampling technique is presented which can handle many 

non-GaUSsiuh system inputs. Theories as well as numerical examples are given. In 

particular, we study the simulations of an Uncoded MSK and a trellis-coded 8- PSK 

transmissions over a general bandlimited nonlinear satellite channel model. Our al

gorithms are shown to be very efficient at low Pb compared to the ordinary Monte 

Carlo method. Many techniques we have developed are applicable to other system  

sittiulations as building blocks for their particular system configurations and channels.



I. INTRODUCTION

1.1 Problems and Goals

Consider the conceptual block diagram Figure 1.1 of a communication system. 

The transmitted signal and the corrupting noise are input to the system which then 

decides what signal has been sent. (There may be more than one noise process, and 

these noise processes may enter the system at different points.) In digital communi

cations, the transmitted signal represents an information bit stream. The system will 

make incorrect decisions on some bits along the way because of the random noise. 

We are most interested in the average probability of a transmitted bit being received 

in error, Pt, or the bit error rate (BER). This is a universal performance criterion 

for digital communication systems. Pt depends on the statistics of the input noise 

process(es) which are assumed known to us.

For simple system models, analytical methods can be used to derive an exact 

expression for Pt- Complex systems, especially nonlinear, however, are often math

ematically intractable. For example, analyzing a digital satellite link with bandlim- 

iting filters and nonlinear amplifiers is tedious, if not impossible. Many coding and

signal input ^ • ■ ■ ■

System
decision

noise input ^
'

Figure 1.1 A conceptual block diagram of communication systems.



modulation schemes are also difficult to analyze even under simplified channel model 

assumptions.

The Monte Carlo simulation [5, 24, 45] is a popular alternative. The key advantage 

of the Monte Carlo method is that it can incorporate many system degradation factors 

simultaneously. But this generality comes with a price. Being an empirical estimator, 

the required computations increase with I/Pb- Consequently, Monte Carlo simulation 

of Pb <  IO-5 is generally considered infeasible because of excessive computer run time.

Some variance reduction schemes of the Monte Carlo method have been proposed 

to speed up the simulation, such as, extreme value theory (e.g., [69]), tail extrapola

tion (e.g., [68]), semi-analytical (e.g., [41]) and importance sampling [13, 25, 28, 32, 

36, 37, 39, 40, 46, 48, 49, 53, 70]. The importance sampling (IS) method is more at

tractive than the others because IS retains the nice properties of Monte Carlo method 

(unbiasedness, simulating unapproximated complex system models) and its efficiency 

gain (over the Monte Carlo method) is more promising. In addition to estimating Pb, 

importance sampling has found applications in many other areas of communications, 

e.g., estimations of the false alarm probability in radar systems [33] and the time 

del ay/blocking probability for digital packet/circuit switching networks [42, 48].

Shanmugan and Balaban’s paper in 1980 [53] was the first one to use importance 

sampling to estimate Pt for communication systems with sffiall Gaussian noise inputs. 

They demonstrated significant lowering of computations, not increasing with I/Pb, 

in simulating uncoded systems operating on linear memoryless channels. Since then, 

most work in the literature has concentrated on extending their concept to the more 

practical channel models, in particular channels with memory, and has achieved var

ious degrees of success. However, optimization has been performed mostly for linear 

channels. For nonlinear channels, efficiency gain falls somewhat short of the theoret

ical limit. Also, the majority of the previous work has been for uncoded systems and 

Gaussian noise inputs alone.

This thesis intends to give a comprehensive development of importance sampling 

techniques for simulations of digital communication systems. Our primary interest is .



in the trelfis-coded systems. (Unooded systems will be shown to be a special case.) 

The channel models will 'include Gaussian noise, nonlinearity and intersymbol inter

ference (ISI). Non-Gaussian system disturbances Such as synchronization error and/or 

phase jitter, cross-channel and/or co-channel interference and fading may also be con

sidered, Therefore, the techniques presented in this thesis may be applied to many 

practical channels including telephone channels, terrestrial microwave links and satel

lite channels. In particular, We will use a satellite channel model to illustrate many

of these techniques. Our purpose is to demonstrate that efficient importance sam

pling simulations do exist for more practical and complex Systems. We will not be 

able, however, to present a “universal” importance sampling algorithm that works for 

many systems. Instead, the fundamental principles we have developed can be used 

as “building blocks” for construction of various special purpose algorithms. In fact,

it will become clear later that efficient importance sampling algorithms use extensive 

side information of the systems they are simulating. Therefore, these importance sam

pling schemes are strongly system-dependent. In general, there is a tradeoff between

the complexity and efficiency of the simulation algorithm.

We now specify our problems and goals more precisely. Trellis codes have been 

widely used in digital communication systems due to their efficiency in utilizing the 

power and bandwidth resources. This class of codes includes the well-known convo

lutional codes and the Trellis-Coded Modulation (TCM) codes. They can be fully 

described by their trellis diagrams, and the Viterbi decoder is the maximum likeli

hood (Mfi) decoder for memory less channels. Let us first look at how conventional 

simulation is performed for trellis-coded systems without importance sampling.

Examples of ordinary Monte Carlo simulation of trellis-coded systems can be 

found in Heller and Jacobs [26]. The simulation is virtually a computer duplication 

of the actual system operation, A continuous stream of data samples, noise-corrupted 

and system-transformed, are input to the decoder. 1\  is estimated by the relative 

frequency of erroneously decoded bits. We call this the ‘'stream simulation” method. 

There are two problems associated with this conventional simulation. Firstly, the



occurrences of bit errors under normal operating conditions are rare events which 

may further be corrected by the decoder. Consequently, a large sample size and long 

computer run time are required to estimate a small P\>. Secondly, because of the 

memory inherent from channel encoding, stream simulation generates a sequence of 

correlated Viterbi decoder branching decisions even if the channel is memoryless. As 

we will see, this makes the design of a good importance sampling scheme difficult. 

Also, it is not an easy task to estimate the variance of the estimator (which is used 

to assess the quality of an estimate) if the decisions are correlated.

Importance sampling provides a solution to the first problem. The basic idea 

of importance sampling is rather simple. Since a Monte Carlo estimator for Pt, is 

basically an error counter, efficiency may be enhanced by artificially increasing the 

number of errors in a controlled way. This can be accomplished by biasing the proba

bility density function (pdf) of the input random variables, i.e., we use a “simulation 

density” which is different from the true “model density.” Each error count then is 

“unbiased” or weighted (to offset its significance) in such a way that yields an unbi

ased estimator. For example, if the relative frequency of an error event is increased 

by a factor of 10, then the average (or expected) weighting factor should be 1/ 10.

The main issue in importance sampling is the selection of simulation density func

tion which is a key factor in determining the simulation algorithm’s efficiency. (The 

efficiency of a simulation algorithm is measured by the estimator’s variance or ulti

mately the CPU time the algorithm takes to achieve a certain degree of accuracy.) 

Until today, most work in the design of importance sampling for the estimation of Pt 

for systems with Gaussian noise inputs has centered around two distinct approaches: 

I) variance scaling, i.e., increasing the noise power, and 2) mean translation of the 

probability distributions of the input noise samples.

The mean-translation biasing technique, which is the one we promote here, was 

first presented by Lu and Yax> [36] for uncoded systems and linear channels. The 

meah of each input Gaussian noise sample is shifted (translated) to a “simulation 

mean” which can be found by an optimization procedure. We will see in Chapter 4



that this biasing technique is more efficient than the variance-scaling biasing. In 

addition, instead of the stream simulation method commonly being used for uncoded 

systems, Lu and Yao also employ what we will call the “event simulation” method.

Lhch sirtiuiatioii run is directed to decide whether or riot the everit “test bit error” 

has occurred, The simulation density function cari then be optimized only within the 

scope bf each simulation run and the decisions in successive runs are independent. 

Ly their approach, they achieve efficiency gains that are previously considered not

possible for systeiris with memory |l3 , 25]. Everit simulation also greatly eases the 

evaluation of estimator variance. We will use a simple example in the next section to 

illustrate the basic idea bf everit simulation.

Everit sixiiulatibri with iriean-translation hiasirig for convolutional codes was de

veloped by Sadbwsky [46]. The bridge allowing this crossover frorri Uncbded to trellis

coded systeiris as well as a solution to the aforementioned second problem is the 

everit simulation method for VitCrbi decoders introduced in that paper. This method 

effectively decomposes the Viterbi decoder simulation into simulating independent 

error events. An optimal meriri-trarislatiori simulation density then is designed for ' 

each specific error event pattern and the decoder also makes independent decisions 

—- whether or not the “specific error event” has occurred, in consecutive runs. An 

additional advantage of evept simulation for coded systems is that the code distance 

information criii be utilized to facilitate the simulation. The channel model considered 

in [46] is lirieaf memoryless.

Lii arid Yao’s mean-tfarisiatiori biasing can be optimized only for linear and lin

earized moderately ribrilirierir channels. A different approach is taken by Sadowsky 

arid Bricklew [49] who use an asymptotical efficiency Criterion and a large deviations 

theory argument to arrive at the asymptotically optimal meafi translation for essen

tially arbitrary ribrifiheaf systems with small Gaussiari noise inputs. For the special 

case of iirieaf channels, their result agrees with Lu and Yao’s. Their work is in fact 

very geriefal which is not restricted to the BER estimation problem, arid it does riot 

require the rioise process to be Gaussian. We will present in Chapter 4 the theoretical
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aspects of importance sampling which results in the same optimal Gaussian simula

tion density design. Our arguments are not from the large deviations theory point of 

view but the ideas are similar.

The mea,n-tr%slatiqn biasing, event simulation method along with the “condi

tional importance Sampling” (briefly touched in [46] and [49]) constitute the funda

mental principles of our research. Conditional importance sampling is a very powerful 

technique which provides us a convenient tool to handle many non-Gaussian system  

inputs. In this thesis, we will give a systematic presentation of these three basic 

techniques. We will also demonstrate via examples how to apply them to construct 

procedures for simulations of uncoded and trellis-coded systems operating on linear 

and nonlinear channels, A satellite channel model will be our example of nonlinear 

channel where nonlinearity is present due to the nonlinear traveling wave tube ampli

fier (TWTA). Finding the optimal Gaussian mean-translation simulation density for 

UOrtlinear systems is considerably more complicated than for linear systems. We will 

show how to simulate linear convolutional codes and nonlinear quasi-regular TCM 

codes using the event simulation method and conditional importance sampling. Non

linear codes present additional complexity in both analysis and simulation because 

we cannot assume a particular codeword is transmitted, and the error probabilities 

must be averaged over all possible codewords.

This thesis is Organized as follows. Chapter 2 introduces the basics of importance 

sampling under the general framework of estimating any decision error probability. 

We will also review other works in applying importance sampling to the estim ation 

of BER in digital communications and comment on their ad vantages/disadvantages. 

Chapter 3 is an overview of some background of digital communication systems needed 

in reading this thesis. Chapter 4 is a presentation of the theoretical aspects of im por

tance sampling which leads to the optimal Gaussian density design for general nonlin

ear channels. Tbe treatment will be different from that of Sadowsky and Bucklew [49] 

but the ideas are similar. New results will be presented which can identify precisely
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what is meant by “moderately nonlinear” channel. The conditional importance sam

pling technique will be also introduced. Event simulation methods for uncoded and 

trellis-coded systems will be discussed in Chapter 5 along with two linear, memoryless 

channel simulation examples. Chapter 6 uses both uncoded and trellis-coded system  

examples to demonstrate the implementation of mean-translation biasing, event sim

ulation and conditional importance sampling for simulations of nonlinear channels: 

Numerical data will be given in Chapter 5 and 6 to show the power of bur algorithms. 

The final chapter contains the concluding remarks.

Hopefully, this thesis can serve as an up-to-date summary of the mean-translation 

biasing with event simulation and conditional importance sampling approach in im

portance sampling research. It is possible that even more powerful simulation schemes 

will be found in the future. We hope that this thesis is a starting ground to that road 

for interested readers. Part of this thesis has been published in [9, 10].

1.2 Event Simulations vs. Stream Simulations

We devote this section to a comparison between the event simulation and the 

stream simulation. The event simulation method is philosophically different from 

the conventional stream simulation method and is vital to our work. Its importance 

warrants a simple example in this introductory chapter to illustrate the difference 

between these two methods. A more general description of event simulation and the 

event simulation method for trellis codes will be presented in Chapter 4. Consider an 

uiicoded binary baseband transmission over a linear channel with memory as shown 

in Figure 1.2. Since this is a linear system, one sample per signaling interval T is 

sufficient for both signal and noise. Let Xk and Yk denote the signal and noise samples 

respectively during time interval [(k — l) T,kT],k  >  0. We call Xk (Xk =  ± 1) a “test 

bit” because it represents a transmitted information bit “1” or “0”. The memory 

length of the system is assumed to be T. The block labeled “D” is the unit delay 

operator and A is the linear system coefficient determined by the system finite impulse 

response (FIR) function. The test statistic Rk at the demodulator output can be



A
■X,

Figure 1.2 A simple system to compare stream and event simulations.

expressed as Rk -  Xk -f- Yk +  A(AT_i +  TT-i) == £(AT-i,AT, Yk-\  ,IT). The decision 

device decides on Xk — I if Rk >  0 and Xk — — I if Rk <  0. Note that the output 

decision during the time interval [(k — I )T,JcT] depends not only on the current 

signal input Xk but also the previous input Xk-i  which is known as the intersymbol 

interference.

The conventional stream simulation method is straightforward. It generates a 

sequence of random test bits and noise samples — (ATljrL0 and {Ffc}jrL0, computes 

■(Rk}k=n,' and counts the number of decisions AT 7̂  Xk- This procedure is analogous 

to the actual system operation where we have a cdhtinUOus stream of input bits and 

output bitestim ates. If n out of L test bits are in error, Pt, is estimated as n/L.  In 

mathematical form, the empirical estimator for Pb is
L  ■■ ’ A  L : '  \ L  ■■:;  ■■■' L

( l . i )n "  , L  it-. .( - u /u i .
A r = I

where the superscript (^ ) denotes stream simulation and !(•) is the indicator function 

defined as

u m
1, : y . € . a \

m
0, otherwise.

- i ; ' : ' . .  - ' . v '  r : -  7;L / : V n L  -  V, .  -  V ; .  y ,  ■ .

Note that E[Pfc(s°] =  P ( X k ^ X k )  =  Tfcfor all k.

In the event simulation, instead of generating T test bits and noise samples and 

sequentially testing each ope of them, we fix one test bit bht test it L times. For ex

ample, suppose that we fix X 1 — —1 and define a random vector Z =  (Ar0, — !, I 0, F1),



A. Stream Simulation:

/ X 0
I ,

/  X1/ 1 N-ZX2 N
K ;

X3 a  ......
I

Xl

V Y 0 '"-Yl.. /  VY2. / Y3 /  ...... Yl

f I i . t  ■
Time k = I 2 3 L

B. Event Simulation;

Trial I = I 2 3 ...... E

Figure 1.3 Event simulation vs. stream simulation.

then AT =  I if and only if £(Z) =  —1 +  Y\ +  A(.Y0 +  Tb) >  0. The event simulation, 

no longer an emulation of the system operation, is purely a statistical estimator of 

the unknown quantity P { ( (Z) >  0) =  E[l[0)Oo)(£(Z))]. It generates L sets of random- 

samples Z I =  I, . . . ,L,  computes £ (Z ^ ), and counts the number of error events 

{£ (Z ^ ) > 0}. If ft out of L trials result in the desired event, Pb is estimated as n/L.  

T heestim atorcanbeexpressedas

f t ' ”’ I V 1(0,M)(« Z W)), (1.3)
' ' I

where we have intentionally used the intermediate variable I instead of k to indicate

that it is no longer a time index. The superscript (ev) denotes event simulation. 

Figure 1.3 is a graphical illustration of the two simulation methods where each dashed 

circle indicates the set of random variables that each decision is based on. Notice the 

overlapping of random variables in successive runs of stream simulation.

Note that E [fjCv̂ ] =  P(((Z) >  0) =  P(X\ X\)  — Pb. We also notice that in

event simulation each decision requires the generation of more samples than Stream



simulation (3 samples versus 2 samples). As the system memory increases, the ratio 

incfeaseslineariy.

This example clearly demonstrates the fundamental difference between the two 

methods. Stream simulation can be viewed as an operation on the time axis while 

event simulation operates entirely on some probability space; Obviously, in simu

lating s^sterns with memory, event simulation has the advantage that the terms in 

(1.3), — I , . . . ,  A, are independent because they use different sets

of random.-variables whereas in (1.1) Rk and thus l[o)00)(—XkRk)? k — I, - ,'. ,Z-, are 

correlated. The estimator variance of P^v)' can be easily estimated by a sample vari

ance estimator while it is not so for Py3t\  In addition, although event simulation is 

compiutationally more costly for each run, its overall cost can be much lower than the 

stream simulation when an efficient importance sampling scheme is applied. Lu and 

Yao [36] and Sadowsky [46] have clearly demonstrated this in their papers. This can 

be explained as follows.

In a heuristic sense, the simulation density is simply easier to optimize for each 

independent rtln in event simulation. In stream simulation, one particular noise sam

ple’s impact on consecutive decisions varies with time, hence its dptimal biasing will 

be different for different test bits. This can create a biasing conflict. For example, 

suppose that X \  — -T a n d  X 2 =  I. With mean translation, the mean of Tl should be 

positive in order to cause an error on the k =  I decision, while it should be negative 

for the T — 2 decision. Similarly, with variance scaling, the variance of Y1 should be 

increased for theT; =  T decision but be decreased for the k =  2 decision. Therefore 

compromise has to be made. As the system memory increases, the compromise be

comes greater. For event simulation, no sacrifice on optimality is necessary because 

successive decisions depend on independent sets of random variables. In the above 

simple example, optimal biasing on To and Yi can be tailored for each of the only two 

possible signal combinations (Y 0, X\)  =  (—I, — I) and (Y0, Y j ) =  (1, - 1). Thus, in 

each run pf the event simulation, an optimal biasing is used after choosing Y 0
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In summary, the key of event simulation is that we fix the transmitted signal 

and focus on estimating the probability of the event that a decision error occurs. 

The advantages of this simulation method are: I) it is easier to evaluate the estima

tor variance; and 2) it allows signal-dependent importance sampling biasing which 

yields higher efficiency gain because no biasing conflict would occur. It will be also 

demonstrated later that event simulation permits “signal biasing” (biasing of the dis

tribution of X q in the above example) which enables us to further Concentrate our 

computational effort on the “important error events” and thus increases the impor

tance sampling efficiency. More will be said about event simulation and signal biasing 

in Chapter 4 and the examples in Chapters 5 and 6. In contrast, this signal biasing is 

not permissible with the stream simulation, again, because of biasing conflicts caused 

by correlated decision statistics.
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2. FUNDAMENTALS OF IMPORTANCE SAMPLING

This chapter introduces the basic notions of importance sampling and reviews 

previous work in its application to the BER estimation problem. We adopt the 

notational convention that upper case letters represent random quantities and lower 

case letters represent deterministic quantities or dummy variables. Bold-faced letters 

indicate vectors or sequences.

2.1 The Monte Carlo Method

Consider the block diagram of Figure 2.1 for a general mean estimation problem. 

Suppose that Y  is a random vector with joint pdf (rnqdfel density) /Y.(y), which 

is known to us, and we want to estimate the unknown quantity a =  E[r/(Y)], i.e.,; 

the population mean of y(Y ), where </(•) is any (possibly nonlinear) function such 

that g(Y ) >  0. In some literature, the density function / y (-) is called the “input 

density” in contrast to the ,“output density” Z5(Y)O)- The transfer function g(-) is 

often complicated enough to prevent us from directly computing statistics of the 

output ^ (Y )5 (We won’t need simulation if we can do this.) We will be working on 

input density / y  (•) exclusively.

Y
g(.)

a  =Etg(Y)]
------------- — — — ►

Figure 2.1 A general block diagram for mean estimation.



Of particular interest to us is the special case that a  =  Pe is a decision error 

probability. In this Case, the components of Y  are sampled values of the input noise 

process(es) that contfibute to the decision, and g(-) =  Ib (-) where E  is the “error 

set,” i.e., the set of noise inputs that result in a decision error. !#(•) is the indicator 

function as defined by (1.2). Note that Pe =  E [l£(Y )] =  P (Y  €  E). We will 

concentrate on this decision error probability. However, the following arguments can 

be easily generalized by replacing Ib (-) with </(•).

Expressing the expectation Pe =  E[1b (Y)] as an integral, we have

Pe =  J  i£ (y ) /v (y )d y , (2 .1)

where the integration (or summation if / y (') is a probability mass function) is mul

tidimensional. To evaluate the integral (2.1), the Monte Carlo method uses a sample 

mean estimator which generatesX independent identically distributed (i.i.d.) samples, 

Y(H, Y ^ , . . . ,  Y ^ \  from the density function /y ( y ) ,  then computes the sample mean 

of K (Y ). In mathematical form, the estimator (a random variable) of Pe is I)

-K L'■ £  m y "'.. (2 .2 )

where l i ; (Y ^ )  acts like an error detector and (2.2) is simply an error counter. As 

L —► o°> the estimate converges to the true value Pe. Note that the Monte Carlo 

method can be also used to obtain an empirical histogram of the random variable 

(r.v.) Ib (Y ) (or ^r(Y) in general) which may be useful in Some applications.

Since each Y ^  is sampled from /y ( y ) ,  we have E[Pe] =  E[1b (Y)] =  Pe. Hence, 

the Monte Carlo estimator is unbiased. The variance of Pe is' V V'

var[a i = J »?r|U (V ij -  (• (: P,). (2.3)

The required number of independent simulation tuns L Can thus be expressed as a 

function of the “standard error,” e, and Pe,

e =
var e..

^  L
C2Pfi

(2.4)
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where the approximation holds if Pe is small. Note that L increases with I /.Pe. For 

a decision error probability of IO-6 and e =  10%, this would require IO8 simulation 

runs — an expensive task even for a powerful computer.

The standard error, e, defined as the ratio between the standard deviation of 

the mean estimator and the true population mean, is a measure of the quality of 

an estimator. Note that the sample mean estimator (2.2) is binomially distributed 

(I^(Y ) is a Bernoulli random variable with mean Pe) which converges to a Gaussian 

random variable as L —> oo. Often, it is desired that the bias of the estimator satisfies 

the following equalities

0.95 =  P (|P e -  PeI < 8) =  P ( —  < Pe ~  Pe <  —
Vt7Pe t7Pe t7Pe

where &pe is the standard deviation of the sample 'mean estimator Pe. Approxirnating

(Pe — Pe)Jape with a standard Gaussian r.v., we have Pe G [Pe — 6',Pe +  <*)], where

8 — (1.96e)Pe. For example, an e — 10% is equivalent to 8 =  0 .2Pe. When L is not

very large, the Chebyshev inequality P (|P e — Pef > 6) <  <?p /82 can be used.

Equations (2.4) and (2.5) can only give us a qualitative description of the rela

tionship between L , e and how close the estimate is to the true value. In simulation, 

both Pe and <Tpe are unknown to us and need to be empirically estimated. That is, as 

the simulation progresses, we have no idea what the exact value of e and consequently 

how good the estimate is. In this case, the “confidence interval” is commonly used to 

assess the quality of the estimate in Monte Carlo simulation. A confidence interval is 

a random interval [r-j, r-2], Wi, 7*2 G R , such that with certain probability (usually 0.95) 

this interval would cover the true value. (This is different from the last paragraph 

where the estimate falls in a fixed interval.) As L increases, the confidence inter

val becomes narrower. For simple systems such as binary signalings the relationship 

between the confidence interval and the required number of runs L in Monte Carlo 

simulation can be found analytically [31].

For importance sampling, an exact quantitative relationship between L and the 

confidence interval is difficult to establish. Instead, we use the “empirical precision,”



an estimate of e which is readily available in simulation, s ~  b p J  Pt where is 

an estimate of Crpe, as an indicator of the quality of the estimate. There is a loose 

relationship between e and the confidence interval which can be easily obtained. 

Suppose that wd can estimate crpe closely. Replacing &pe with bpe in (2.5), we have 

Pe €  [A — S, Pe -f <$], where 6 =  (I-QGe)jPe- Therefore, an empirical precision e — 10% 

is equivalent to saying that, with probability 0.95, Pt € [OiSPe, 1,2/^,] when L is large, 

or Pe €  [0.5Avl-5P*e] with Chebyshev inequality when L is only moderate.

2.2' ̂ The importance Sampling Technique

Importance sampling is motivated by a modification to (2.1). Instead of the true 

model density function / y  (y) , we introduce a simulation density /y (y ) , provided 

that the absolute continuity is satisfied, i.e., Jy (y)  > 0 whenever l B(y ) /Y (y )  > 0 

[21]: Tet US- rewrite (2.1) as . ; .c : :v

= j } lE^ W ) S W d V  * \ J
- ' - y  = E*[1e (Y)io(Y)], ' i

where fi* denotes expectation with respect to the distribution / y  (‘) and the a poste-

n o n  likelihood fatio

w{y)  = t M
V  /v ( y )  . /  " V ;

is called the importance sampling weight.

. c l  Tb evaluate the integration in (2.6) we again appeal to the sample mean estima

tor. That is, the importance sampling simulation generates i.i.d. random samples 

from the biased simulation distribution / y  (y) and empirically estimates the mean of

I b(Y M Y ).  The IS estimator of Pe can thus be written as

j  t
l j I= I

(2.7)

where and hereafter the superscript * is Used to indicate Operations related to im

portance sampling density /*(•). Note that in ordinary Monte Carlo simulation, the
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density function is not biased, i.e., / y ( y ) ■=. /Y(y)> in such case to (Y ^ ) =  I for all 

I =  1 ,2 , . . .  ,T.

Let us examine the properties of importance sampling estimator (2.7). The sim

ulation data . . .  , Y ^  are i.i.d., therefore we have

E *[/>*] =  E * [1 4 Y M Y )J

=  J  l e i y ) w y > M y ) d y

■'■■■ =  Pe-

Hence the im portance sampling estim ator is also unbiased. The estim ator variance is

var*[P*] -  ; ivar*[ljg(Y)u;(Y)]

=  i{E * [l,; (Y )u ;2( Y ) ] - P e2}

=  j { J l E ( y ) w ( y ) f Y ( y ) d y - P ! } .  ■ (-2.8)

Comparing (2.8) with the variance of the Monte Carlo estimator (2.3) which is 

rewritten as

var[Pe] -  j  i£ ( y ) /v ( y )  -  r 2| ,

the IS estimator has the extra term u?(y) in the integrand. Apparently, if the sim

ulation density /y ( y )  is such that /y ( y )  >  /y (y)>  'i.e., w(y)  < 1, for all y  in the 

error region E 1 then var*[P*] <  var[Pe]. Equivalently, for an equal variance, the im

portance sampling estimator would require a smaller value of L 1 i.e., fewer simulation 

runs. The efficiency of importance sampling can be defined as

Efficiency rj =  given var*[Pe*] =  var[Pe],
Lis

where Tmc and Tis denote numbers of independent simulation runs for ordinary 

Monte Carlo simulation and importance sampling respectively. Note that this defi

nition of efficiency implies that the computational costs are the same for each run in



Monte Carlo simulation and importance sampling. This, however, is not so. With 

stream simulation method, the importance sampling algorithm has an overhead of 

computing importance sampling weights and unbiasing data. With event simulation 

method, as mentioned in Chapter I, we need to generate more samples and the over

head is even greater. !Both methods also have the extra cost of computing optimal 

biasings if a time varying (signal dependent) scheme is used. Nevertheless, importance 

sampling algorithms \vith stream simulation setting often still use Tj as the measure 

ofefficiency in the literature because of the small Overhead cost. However, since we 

will use event simulation, the “computer CPU time efficiency,” i.e., the ratio of CPU 

times required for Mottte Carlo simulation and importance sampling for the same 

variance, is a rttore appropriate and straightforward measurement of efficiency.

The selection of a simulation density is an important factor in determining the 

simulation algorithm’s efficiency. A qualitative characterization of “good” simulation 

densities can be established as follows. Returning to (2.8), for a required standard 

error e, we have ..

Jj 'SSfe'rvar-tl£ (y)u ,(Y )]l == ■-rvar-[lE(Y M Y )]- |
C2Pe2

(2.9)

where [x] denotes the least integer >  x and e is the standard error defined in the last 

section. Therefore, we would like to select a simulation density f y ( y) to minimize 

L or equivalently to minimize Var*[lf;(Y)w(Y)]. The unconstrained optimal simula

tion density is well known [24]. Considering (2.8) again, note that we always have 

vax*[P*] >  0, and equality holds, by Jensen’s inequality lemma, if and only if

M )ifi(y ) constant w.p. I with respect to /y ( y ) ,
M  y)

where ‘% .p.l” stands fqr “with probability one.” Therefore / y ( y) oc l£;(y)/Y (y)- 

After normalization, the optimal importance sampling density function is found to

J^Y^y) opt: —
i£ (y ) /Y (y )

(2.10)



Substituting (2.10) into (2.8), we have var*[l/j(Y)n;(Y)] =  var*[P*] =  0. That 

is, we need just one sample (T =  I) from this optimal distribution to estimate Pe. 

However, this solution is impractical. The denominator in (2.10), Pe, is what we want 

to estimate in the first place. Therefore, finding the optimal simulation density is as 

difficult as finding Pe. We cannot compute the importance sampling weight either, 

which is again Pe w .p.I.

The optimal simulation density function (2.10) does give us some hints as to what 

a good simulation distribution should be, namely,

1. Zy (Y)opt. puts all its probability mass in the error region E  because of the 

indicator function.

2. In the error r eg io n ,/y (y )opt. is proportional t o /y ( y ) .

3. Zy (Y)opt. need not be memoryless or stationary even if the channel is.

Thus, the “important samples” are those y  in the “important regions” — those re

gions where l# ( y ) / ( y )  are relatively large. An efficient simulation density design 

therefore should first identify the important error regions which we will see are signal- 

dependent. (Although signal inputs are not shown in Figure 2.1, they are present, 

and the error set in general strongly depends on the signal inputs.) Then we bias 

the model density function in such a way that more samples are taken from these 

regions. Later we will see that our nonstationary mean-translation biasing used in 

conjunction with the event simulation method is precisely one such efficient scheme.

If we take a closer look at the real computational cost of a simulation algorithm, 

which can be measured by the computer run time, it is

total cost =  L x per sample cost.

The optimal simulation density / y  (y )opt. has L — I but very high (possibly infinity) 

per sample cost. It is difficult to express the total cost as a function of the simulation 

density (or its parameters) and then perform minimization. Instead, in practice, we 

often control the per sample cost by restricting our candidate simulation densities

18



to a “candidate family” then minimize var*[l£;(Y)u;(Y)j only within this family. In 

other words, we can only emulate the proportionality /y ( y )  oc lf;(y )/Y (y ) to the 

best of this family. The candidate family should contain simulation densities /■$■(•) 

which allow us to generate samples and compute the importance sampling weights 

easily. For example, if the model density / y (-) is n-dimensional Gaussian, then 

the choice of a candidate family of Gaussian distributions would seem natural. If 

the model density f y ( y )  — 11* /*(?/*), he., the components of If are independent, 

then a candidate family of product form densities is preferred. A candidate family of 

arbitrary densities may result in a lower var* [I# (Y )ic( Y )] but riot be computationally 

efficient,'

Finally, as mentioned earlier, the estimator variance needs to be estimated empir

ically. A logical choice is the sample variance estimator^ That is, var*{i£(Y)m(Y)] is 

estimated by /

=  r  f x :  [i E( >«,( y ^>) -  >*]2] (2,11)
■■>/== I

(An unbiased estimator actually has the multiplicity 1/(T  — I) instead of I / L but the 

difference is negligible for large L.) And var*[P*] is estimated by S 2/ L. The simu

lation is terminated when the empirical precision e — \ ]S2/ L / P*, which is checked 

periodically during the course of simulation, falls below a preset empirical precision.- 

Usually we set e =  10% for a rough 95% confidence interval of [0.8P*,1.2P*] as 

explained in the last section.

2.3 Previous Works and Comments

A -U n cod ed system s:,

Importance sampling idea first appeared in 1949 [24], and has been used in diverse 

fields, such as, physics, operations research and statistics. Its applications to the 

estimation of BER, for pncoded digital communication Systems Operating on ideal 

linear memoryless channels have achieved significant computational gains. Efficiency 

t/ on the order of IOt is reported in Shanmugan and Balaban [53] in simulating a



BER of IO-6 . Their simulation density is a uniform (stationary) variance scaling for 

every Gaussian input noise sample. The conventional stream simulation is used- We 

will call importance sampling schemes employing the uniform variance scaling and 

the stream simulation “conventional importance sampling” or CIS.

For nonideal channels, their gains are moderate, for example, on the order of 

IO1 for a BER of 10“4 with the presence of a limiter (nonlinearity) and a simple 

receive filter (ISI). The deficiency results from I) the difficulty in determining the 

optimal variance scaling for nonlinear channel and 2) the so-called “dimensionality 

effect.” Dimensionality effect in the importance sampling literature refers to the effect 

that efficiency gain drops rapidly as the “dimension” of the system increases. The 

dimension of a system is roughly defined as the number M  of noisy samples that 

affect one output decision. It is easy to see the cause of dimensionality effect. Recall 

from the last section that importance sampling efficiency is achieved by concentrating 

the probability mass of the simulation density /y ( y )  on the important regions where 

M y ) / y ( y )  are large. CIS achieves this goal to some degree by simply pushing the 

probability mass out from the origin of the n-dimensional sample space uniformly in all 

directions. However, as the dimension of the system increases, there will be more and 

more wrong directions, and hence, less and less of the probability mass would really 

end up in the important regions. We will explain graphically this dimensionality effect 

in Chapter 4 when we compare the variance-scaling biasing and mean-translation
: • - . . .  i

biasing.

There are two obvious ways to reduce the dimensionality effect: I) reduce the 

number of samples per symbol and 2) compute the IS Weight using less than M  

samples. The first method introduces modeling error while the latter, as noted by 

Shanmugan and Balaban [53], results in a biased estimator. Both the modeling error 

and bias are hard to quantify and predict. Thus, these two solutions are not attractive. 

Shanmugan and Balaban also note that if we compute the weight using more than M  

samples (sometimes the exact memory length of the system is unknown), the estimator 

remains unbiased but the estimator variance is increased simply because more terms .



are included. Also, if the memory truncation occurs at where the impulse response 

function of the bandlirniting filter has significant value, the variance increase tends to 

be large. We will see that these problems can be eliminated by using event simulation 

where the importance sampling weight is computed using exactly Af samples, no less 

and no more.

Although gains are moderate for nonideal channels, Shanmugan and Balaban’s 

CIS algorithm is simple and easy to implement. Also, a saving factor o f even 2 can be 

significant if the Monte Carlo method requires hundreds of hours to run. Therefore, 

CIS was quickly adopted in commercial simulation softwares like TOPSIM III [38].

In an effort to reduce the dimensionality effect, Davis [13] proposes a rionstatibnary 

variance-scalihg scheme. Gnly M' <  M  samples are biased (M'  =  I is suggested for 

bi-phased transmission, i.e , no biasing for the ISI components) since these samples are 

the most importaht ones in decisions making. The result is an unbiased estimator with 

no dimensionality effect but gains are low (~  IO1) because now some important error 

regions are under-sampled. They also propose to approximate the nonlinear system  

with a linearized model in finding the optimal variance scaling. This linearization 

is never very desirable. As the system operating point moves toward the nonlinear 

region, the modeling error increases which, more often than not, we will not be able 

to quantify.

Another notable modification to the CIS is done by Jeruchim et al. [25, 32] in which 

they propose the EIS (efficient importance sampling) technique. EIS still employs 

Stream simulation and variance scaling. They force the dimension to be just unity 

(thus no dimensionality effect) by computing the IS weight as if the system is linear 

which admits a reduction to one dimension. A satellite channel with both Uplink 

and downlink noises is studied. The CPU time efficiency gains are in the range 

of IO1-IG2 for channels with nonlinearity which are quite good for a system this 

complex. However, their approach has some critical assumptions and approximations 

Which make the algorithm’s usefulness in other situations (e.g., different filters, severe 

nonlinearity) unclear:



1. Regression method is used to learn the system impulse response functions for 

both noise processes. This effectively linearizes the channel for uplink noise

which passes through nonlinearity.
■ ■■ ■ ' 0  ■ 1 ’ . .

2. The ISTcontrjbuted portion of the decision voltage is assumed to be uniformly 

distributed.

3. The noise statistic at the decision time is assumed to be Gaussian.

The second and the last assumptions can be of concern for some systems. Also, 

computing the IS weight at the channel output while the biasing is done at the input 

results iii a biased estimator [52]. Another drawback of EIS is that the required 

number of simulation runs L is preset by analytical calculation based on the above 

assumptions/approximations. Thus, at the end of simulation, we really have no idea 

of the exact bias and variance of the estimator. The quality of an estimate has to be 

confirmed by other estimators (e.g., error bounds, Monte Carlo or semi-analytical).

Lu and Yao [36] take a major departure from all previous work and achieves 

significant gains without dimensionality effect or bias. Their algorithm will be dis

cussed in detail in Chapter 5. Two key new concepts, as mentioned in Chapter I, 

are mean-translation biasing and event simulation. The noise vector is biased 

by shifting (or translating) its mean vector. The result, for example, is 54 times 

more efficient than CIS for a BER of IO-6 and M  — 3. The reason why there is no 

dimensionality effect is also clear. The optimal mean translation is the point where 

Ir;(y)/Y (y) is maximized. This is the “most important point” in the error set, hence, 

optimized mean translation will place much more of its probability mass in the im

portant region than CIS. Dimension is not a factor in this approach so long as we 

can locate that maximum point on the n-dimensional space. Their success proves 

that low computational gains for systems with memory is not a natural limitation 

Of importance sampling as once suggested. It also becomes clear that nonlinearity 

rather than memory is really more of a challenge to importance sampling.



Lu and Yao’s optimization method in finding the simulation mean Works only for 

linear systems. Sadowsky and Bucklew [49] use a different approach to arrive at the 

same result but their method also applies to nonlinear systems, In short, they show 

that within the closure of the error set, there exist some points called “minimum 

rate points” such that the rate at which the decision error probability decays with 

the increased signal-tO'noise ratio (SNR) is dominated by these points. When the 

model density is exponentially twisted to these mininaUm rate points, asymptotical 

efficiency is achieved. For a Gaussian random vector Y , the exponentially twisted 

function reduces to simply mean translation of the model density function. And 

the simulation density is some convex combination of the mean-translated (to the 

minimum rate points) model density functions. When there is only one minirtiUm 

rate point, called the “dominating point,” we just shift the mean to this point. That 

is, if Y(*C~ jV(0, C), then the simulation distribufion is Y (v , C ), where C is the 

unsealed covariance matrix and v  is the dominating point. We will in general assume 

in our study that the dOxninating point exists. The dominating point v  depends on 

the signal as well as other system parameters. Hencev the task of IS design is to find 

the dominating point, We direct readers to their paper for a complete treatment. Our 

Work is closely related to theirs and the cohimon fundamental ideas will be discussed 

in Chapter 4. ■ . I 1

B. Coded Systems:

Dimensions in coded systems are greater than in uncoded systems. It is a combi

nation of the channel memory (due to filtering and/or other memory devices) and the 

memory inherent from the code. This is even more true for trellis codes for which the 

code memory is theoretically infinite. Herro and Nowark’s paper [28] is apparently 

the first to study importance sampling applied to Viterbi decoding. The CIS method 

is used in their study. Not surprisingly, the efficiency diminishes as the “effective 

decoder memory,” which is proportional to the code’s constraint length, increases. 

Also, as noted by Shanmugan and BaIabanr memory truncation while computing the



importance sampling weight generates biased results, They conclude that importance 

sampling is useful only for short constraint length codes and small BER’s. The ef

fective decoder memory for a particular code must be chosen accurately to account 

for all noise samples that have significant impact 6n the decoder’s decision. Also, the 

optimal uniform variance scaling has to be found by trials. Over-biasing may result 

in a variance even greater than the Monte Carlo method.

In parallel to Lu and Yao’s approach for uncoded systems, Sadowsky [46] devel

ops the event simulation method for Viterbi decoders and he uses a union bound 

argument to design the mean-translation simulation density function. This biasing 

scheme coincides with the optimal mean-translation biasing obtained by the method 

in Sadowsky and Bucklew [49] for the special case of AWGN channel. The gains are 

extremely high. We will explain his event simulation method in Chapter 5 and use two 

trellis code examples to illustrate the principles in dealing with coded system simula

tions. A more complicated situation, coded systems operating on nonlinear channels 

with memory, will be covered in Chapter 6. The event simulation method for Viterbi 

decoders is what makes efficient importance sampling simulations for trellis-coded, 

systems possible.

Although we will not consider the simulation for the other major branch of error- 

correcting codes, the block codes, [46] has given an example of the Hamming (7,4) 

code employing importance sampling. It is conceived that importance sampling can, 

at least in principle, apply to other more complex block codes such as the BCH and 

RS codes and practical channel models. We leave this for future research.; '



3. TCM CODES AND SIMULATION CHANNELS

3.1 The Additive White Gaussian Noise in Simulations

Conirounieation systems analysis often assumes that the system input noise pro

cess in Figure LI is an additive stationary zero-mean white Gaussian noise process. 

This noise process is quite faithful in modeling the radio atmosphere noise (rain- 

induced noise, earth background noise, etc.) and the transmitter/receiver equipment 

thermal noise. Also, this assumption is easy to work with, especially in the signal 

space analysis of digital communication systems [43, 64, 72],

An AWGN process N(t)  has a two-sided power spectral density (p.s.d.) Nq/ 2  over 

the entire frequency spectrum and any finite collection of noise samples has a joint 

Gaussian distribution. This noise model leads to the concept of the matched filter, 

receiver if the channel is linear. If the channel is also bandlimited, which is the case in 

practical systems, N yquisf s ISI-free criterion for filter design applies. In this thesis, 

when we say ideal AWGN channel we will mean an infinite bandwidth channel with 

a corrupting AWGN process.

Digital computers can handle only discrete-time events, thus sampling of a con

tinuous time process is necessary in simulation. Note that we can not sample the 

infinite bandwidth AWGN directly, the samples would have infinite variance. Also, 

computer simulation of a narrowband (comparing to the carrier frequency) bandpass 

signal/system often uses its complex baseband equivalent to reduce the number of 

samples required by the sampling theorem. The discrete-time baseband equivalent of 

the AWGN is obtained as follows.

First we approximate the infinite bandwidth noise process N(t)  with a bandlim

ited noise N(t)  with p.s.d. No/2 and a bandwidth W  much wider than the system
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bandwidth to reduce mddeling error. See Figure 3.1(a). The noise process TV(T) 

be expressed as [43]

TV(T) =  X(t)  cos ivct — T(T) sinu>cT,

where o)c is the carrier angular frequency and X(t)  &nd Y(t)  are lowpass zero mean 

Gaussian noise processes with two-sided p.s.d. No and bandwidth W / 2  as shown in 

Figure 3.1(b), The complex signal Z(t ) =  X(t)  +  jY ( i )  is the baseband equivalent 

and contains all information of TV(T). The autocorrelation functions for Ar(T), T(T),

Z a n d ' ' Z ( i t ) ; a f e ' ^ / ^ . ; ^ ; l v V

4>x x {t) =  <I>y y (t ) =  4>zz(r) =  WTVoSinc(TFr) I

where sinc(x) =  sin(7rx)/xx , and <}>x y {t)  =  O for all r. That is, the in-phase (I) and 

quadrature (Q) components of TV(T) are uncorrelated (thus independent) Gaussian 

processes.
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Now suppose that we sample Ns times during an interval of T  seconds. Let 

/ ,  — I / A  =  Ns/T  denote the sampling rate, where A  is the time between samples. 

The sampled discrete-time lowpass noise process X s(t) (and Fs(O) has the p.s.d. of 

Figure 3.1(c) with no aliasing if we have W  =  / , ,  provided that W  is much greater 

than the system bandwidth. The autocorrelation functions of W ,(0  and Ys(t) are

<t>X,Xa( j )  =  <f>Y,Y,(T) =  N o f sS(T)

where d(-) is the unit impulse function. Therefore, samples of X a(t) and Ys(t) are 

i.i.d. Gaussian r.v.’s with the same variance Nofs =  NoNsR where R =  I j T . We 

will set T equal to the transmitted channel symbol duration and R is called the data 

baud rate.

For the ideal AWGN channel and many other linear channel models, the noise 

statistics at the demodulator output can be found analytically and we don’t have to 

sample the input noise process. When the channel is nonlinear, many samples per 

channel symbol are required to simulate the nonlinearity. The satellite channel is 

one such case where the transmitter and transponder high power amplifiers are often 

driven at near saturation to achieve power efficiency and are the major sources of 

nonlinearity. Depending on the modulation scheme and the severity of nonlinearity, 

8-64 samples (or more) per symbol are usually used. Nonlinearity tends to spread 

the signal spectrum [22], thus the more severe the nonlinearity, the more samples per 

syipbql will be needed.

The next section will introduce the trellis codes and analyze their error perfor

mance on the ideal AWGN channel. Section 3,3 describes a satellite channel which 

is the channel model We will pay much attention to. A satellite channel is often too 

difficult to analyze because of the nonlinearity and its many distortion sources. An

alytical tools do exist for the analysis of nonlinear systems with memory (e.g., [50]), 

but there are problems associated with these methods. Performance evaluation of 

satellite systems via computer simulation has remained the dominant means since 

the beginning of the satellite era.



Figure 3.2 Block diagram of a digital communication system.

3.2 The Trellis-Coded Modulation
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To have the error-correcting capability of channel coding while maintaining the 

same spectral efficiency as the uncoded transmission, the signal set S (S =  {p;(t),T <  

i <  M; P i ( t )  =  0, for t  > T and t  < 0} =  the set of all possible transmitted signals) 

must be expanded to accommodate the added bit redundancy. However, now the 

signal space becomes more crowded and there are more neighboring signal points. 

The probability of mistaking one signal with the others is increased. The coding gain 

can be offset by this effect. For example, an uncoded QPSK system can be replaced 

by a code rate 2/3, 64-state convolutional encoder, which has Jmtn =  7, followed 

by an 8-PSK modulator. However, after going through all the trouble of encoding 

and decoding, the coded system performs only as good as the uncoded QPSK [58]. 

One possibility to overcome this adversity is to let the signal mapping function be 

dependent on the channel encoding. This is the motivation behind the development 

of TCM [58].

TCM was introduced by Ungerboeck [57, 60]. It is one of the so-called combined 

modulation and coding techniques [2, 54]. One common concept of these techniques 

is to design the encoder and modulator jointly to directly maximize the Euclidean 

distance between transmitted signals. The encoder and modulator are viewed as one 

single block which maps information bits directly to the transmitted channel signals. 

The codes thus designed are also called “modulation codes” because coding can then 

be thought of being embedded in the modulation process. This class of codes often 

can achieve coding gains with no or little sacrifice of bandwidth efficiency and data 

rate, but at the expense of system complexity. This concept takes us one step further 

toward Shannon’s prediction of the existence of a both bandwidth and power efficient 

error-free coding scheme so long as the data rate is less than the channel capacity 

and the signal-to-noise ratio (SNR) is greater than -1.59 dB [20].

Figure 3.3(a) shows the block diagram of a TCM transmitter which consists of a' • . ' ' . . /•
linear binary convolutional encoder (bit-wise modulo-2 addition of any two codewords 

is another valid codeword) followed by a signal mapper. This structure was introduced 

by Forney et. al. [18]. During each signaling period k'I\ k =  1 ,2 , . . . ,  a block of.
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Figure 3.3 Block diagram of a TCM transmitter.

6 information bits are to be transmitted, where T is called the symbol duration. 

Among them, m bits are shifted into an (n ,m ) convolutional encoder while the rest 

of (6 — m) bits are uncoded and sent directly to the block labeled signal selector. The 

n-bit outputs of the convolutional encoder, called the “subset selector,” is to choose a; 

set S' of signals from the signal set S, where S' C S. The uncoded bits then select from 

this subset the actual transmitted channel signal. Fhus the signal set S is divided 

into 2" subsets, each having 2 b~m elements. The binary (n +  b — m)-tuple of the n-bit 

encoder output plus the (6 — m ) uncoded bits is called a “signal selector.” For some 

TCM codes which do not have uncoded bits, each subset would contain only one 

signal and the subset selector is the signal selector. We will call the 6-bit input data 

an “information symbol,” the corresponding signal selector a “code symbol,” and the 

transmitted signal a “channel symbol.” A codeword is a sequence of code symbols. 

The terms “code symbol” and “signal selector” will be used interchangeably; so will

“codeword” and “signal selector sequence.

.1.
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Figure 3.4 Examples of trellis diagrams for 8-pSK TCM codes.

The trellis diagram representation is a standard for trellis codes. A trellis diagram 

is a state transition diagram evolving in time and the transition branches are labeled 

with channel symbols or signal selectors. Two examples of TCM trellis diagrams are 

shown in Figure 3.4, both have the same input block length b =  2 and the 8-PSK signal 

set (|S| =  M =  8). At any time instance kT (we will often refer to simply as “time 

index” or “stage” k), a trellis node represents one of the finite convolutional encoder 

states. An encoder state is defined by the values of // past information bits stored 

in the shift registers of the convolutional encoder, where v is called the constraint 

length. The total number of states is 2". The incoming m information bits together 

with the current encoder state determine the transition from one state at time kT 

to some state at time (k +  I )T as well as the subset selector. There are 2m possible 

state transitions originating from each node. Uncoded bits have no influence on state 

transitions, their presence is represented by letting the state transitions have parallel 

branches. The number of parallel branches for each state transition is 2b~m, and they
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are labeled by signals from the same signal subset. - qM'-- ^ tietiTlar Stench is

chosen by the uncoded bits. The total number of branches Ieaying and entering each 

state is thus 2m2^-m  ̂ =  2b. Figure 3.4(a) has. parallel Kranches^ in- (b);

m =  b == 2 and hence no parallel branches. A trellis path is a sequence of branches 

that progress in time. Given the initial encoder state* there is a 1-to-l correspondence 

between the transmitted information sequence and the signal Selector sequence 

addition, that signal selector sequence is equivalent to a trellis path or an encoder 

state sequence in the trellis diagram. A TCM code can be completely described by 

its trellis diagram.

If we view the encoded bits, if there are any, as trivial connections in a larger 

convolutional encoder, a more general system block diagram is shown in Figure 3.3(b). 

Npte that by doing this, the linearity of the discrete encoder is preserved — it is 

stilt a linear convolutional encoder, we just eliminate the uncoded bits. In terms bf 

the trellis diagram, there will be more states but nP parallel paths. Therefore, the 

major conceptual difference between TGM codes and ordinary convolutional codes 

is the signal mapping function (modulation). We assume that the readers have had 

basic exposure to the convolutional codes and their performance bounds computation. 

Standard treatment of convolutional codes can be found in, e.g., [12, 34, 64].

Conventionally, for a rate R =  mfn  convolutional code, the selection of an M ary 

signal set is independent of m and n. Some commonly used modulation schemes are 

BPSK, FSK, QPSK (and its variations, such as, OQPSK, DPSK, MSK) and Qjj\M. 

The rules of signal assignment (mapping of signal selectors to channel symbols) are 

according to Gray coding when possible so that neighboring signals differ in the least 

number of bits to minimize bit errors. This type of conventional convolutional codes 

which have no special structure in the signal mapping function can be considered as 

a special case of TCM.

TCM employs an expanded M-ary signal set in the sense that M =  2b~m+n >  2 b,
'I:--: >■=>; ,'V. v' -  , ■ C ■ . I
i.e., the size of the signal set is larger than that required by the uncoded transmission. 

Coding gain can be viewed as coming from the redundancy of the expanded signal set



rather than from the redundancy of transmitting additional channel symbol pulses. 

Thus bandwidth expansion is not required. One class of commonly used TCM codes 

has b =  m and n — m -f I, i.e., the signal sets are expanded by a factor of 2. The 

rules of signal assignments for TCM codes are called “mapping by set partitioning” 

whose objective is to maximize Euclidean distances between discrete codewords. The 

Euclidean distance between two discrete codewords is defined as the Euclidean dis

tance between their corresponding channel symbols in the signal space. As mentioned 

earlier, this mapping function should depend on the encoder so that the loss of coding 

gain because of the expanded signal set can be recovered.

We will study the nonlinear satellite channel where constant envelope signalings 

are preferred, therefore let us take the 2-dimensional 8-PSK signal set for our example. 

This signal set has been also adopted in many practical modem designs [15, 19, 59]. 

Wei [66] and Part II of [58] outline the general rules of mapping by set partitioning for 

any Zk type signal sets and the desired “free distance,” dfree. A signal set is of type Zk 

if it is a subset of the fc-dimensional lattice with integer coordinates. The free distance 

dfree, defined as the minimum Euclidean distance between all possible codewords, is 

an important property of TCM codes. We will see in the next subsection that, for 

the AWGN channel, the free distance is a good indicator of error performance at high 

SNR.

Figure 3.5 shows the 8-PSK signal constellation and a signal mapping based on 

the rules of mapping by set partitioning. The one digit number next to a signal 

point is its “signal label,” and the 3-bit symbol inside the parentheses is the signal 

selector. This particular mapping of signal selectors to signal labels is known as the 

“natural mapping” because the signal labels happen to be the octal representation of 

their signal selectors. The reasoning of mapping by set partitioning for this 8-PSK 

signal set is as follows. Notice that there are four possible Euclidean distances (ED) 

between signals. Normalizing the signal power such that all signal points lie on the 

unit circle in the signal space, we have 6% =  0.5858, Sf =  2, S\ =  3.4142, and S\ =  4 . 

The minimum ED for signals in S is S0. A “careless” signal mapping might result
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Figure 3.5 B-PSK signal constellation and the natural mapping.

in two valid pathshavingthis minimum distance. To avoid this ahd to increase the 

distances between paths, we first partition S into 2n subsets with increased intrasubset 

minimum Euclidean distance: The first partition results in 2 subsets, {0,2,4,6} and 

{1,3,5,7}, and the minimunfi ED within each subset is Sj . One further partition results 

in 4 Subsets, {0,4}, {2,6}, {1,5} and {3,7}, and the minimum intrasubset Euclid< 

distance is S3 . The next partition, necessary only if n =  3, produces 8 subsets, each 

having only one single signal and the intrasubset Euclidean distance is defined tc> be 

infinity. The rules of mapping by set partitioning then are: [58]

1. Parallel branches are associated with signals with hiaximum distance S3 =  2  

between them, i.e., the signals in the subsets {0,4}, {1,5}, {2,6} or {3,7}.

2. FoUr branches leaving or entering one state are labeled With signals with at 

least distance Si =  y/% between them, i.e., the signals in the Subsets {0,2,4^6}

: . y .  '

3. All 8-PSK signals are used in the trellis diagram with equal frequency.

The two examples in Figure 3.4 are labeled by these rules and the result is the natural 

mapping in Figure 3.5.

Comparing Figure 3.4(a) with an Uncoded QPSK system, they both have the 

spectral efficiency of 2 bits/sec/H z. Starting from any state, the two paths which



diverge and later remerge that have the minimum distance, dfreei are the one-branch 

parallel paths. (This is the reason why they are assigned the set of signals with the 

greatest intrasubset distance £3.) That is, djree — <$3 == 2. For the uncoded QPSK, 

d/ree — \/2 . Therefore there is a 3 dB improvement for this code without bandwidth 

increase or data throughput decrease. For the Figure 3.4(b) code, two paths with the 

minimum distance are shown and (Pjree — 2 SJ -f Sq =  4.5838, i.e., a coding gain of 

3.6 dB. For the 8-PSK signal set, coding gains of 3, 4 and 4.8 dB schemes over the 

uncoded QPSK transmission on the AWGN channel have been found with 4-state, 8- 

state, and 16-state convolutional encoders respectively. Theoretically, 7-8 dB coding 

gain can be achieved with TCM [57].

Consider the mapping of Figure 3.5. The Hamming distance (HD) between two 

discrete code symbols is no longer a linear function of their Euclidean distance. 

For example, ^ h d (OOOj IOO) =  I <  c?h d ( 0 0 0 ,  HO) =  2, but c?e d ( 0 0 0 ,  100) =  2 >  

^ e d (OOOj I I O )  =  \ [ 2 . A signal mapping such that the Euclidean distance between 

two signals depends only on the Hamming distance of their signal selectors is called 

a regular mapping, otherwise non-regular. TCM codes in general have non-regular 

mappings and thus are non-regular codes. By definition, a regular code [6] is such 

that the distance between two codewords depends only on the Hamming distance of 

their input information bit sequences. Convolutional codes with regular mappings 

are regular because of the linearity (linear codes are trivially regular codes) of the 

encoders and regularity in signal mappings. Regular codes have a nice property that 

the number of codewords at distance d from one particular codeword is the same 

for all codewords and all d. Therefore in computing the BER performance we can 

assume a particular codeword is transmitted, in particular, the all 0 sequence. For 

non-regular codes, error performance analysis is more difficult. This is the subject of 

the next subsection.

At the receiving end, the sequence of transmitted signals is demodulated and 

then decoded by a maximum likelihood sequence decoder — the Viterbi decoder. We 

will use the unquantized soft decision Viterbi decoder to avoid loss of information and
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generally 2 dB of SNR if a two-level Hard-quantized decoder is used. Synchronizations 

of carrier phase and frequency, symbol and bit timings at the receiver is assumed 

throughout unless otherwise stated.

There are other fnore complex designs of signal sets and their mapping rules than 

the 2-dimensional 8-TSK with natural mapping described above. For example, ro

tational invariant TGM codes using 2-dimensional signal constellations are discussed 

in Wei [67]. Multidimensional TCM codes [7, 18, 66] can achieve higher coding 

gains and/or reduced system complexity by using multi-dimensional (>  2) signal 

sets. Recall that the expanded 2-dimensional 8-PSK signal set causes the loss of cod

ing gain obtained froni convolutional encoding. The signal set S has a minimum ED 

(Sp =  0.5858) much smaller than the uncoded QPSK system (djree =  4) to start the 

set partitioning. In multi-dimensional TCM codes, the added bit redundancy or sig

nal set expansion is evenly absorbed (shared) by all of the constituting 2-dimensional 

signal constellations [66]. We can thus have a simple per 2-dimensional eohstellanion 

or increased intrasubset ED. For the moment, the 8-PSK signal set suffices to serve 

our purpose of simulation algorithm study. The simulation algorithms we will present 

are applicable to any TCM codes with quasi-regularity which is explained in the next 

'.section. "y.-yG

3.2.2 Union Bounds and the RC Algorithm

An analytical solution for Pb is difficult to obtain for even simple TCM codes. 

Instead, an error bound or simulation is usually used. An union bound on Pb for the 

case of the ideal AWCN channel will be discussed in this section while simulations 

for the AWGN channel and the satellite channel will be covered in later chapters.

Let X =  (x i, x 2, - • •, arT, • • •) and x' — (xj, x'2, . . . ,  x'T, . . . )  be the transmitted code

word (signal selector sequence) and decoded codeword respectively. By notational 

convention, Xk is the signal selector produced by the state transition from time index 

k — I to fc. The decoded codeword x' is a “first event error” of length r if the two 

trellis paths representing x  and x' diverge at the same state at trellis time index



k =  0, remerge for the first time at some state after r branches, and Xk =  x'k, k > t . 

We allow x' — x  (r =  0) to be a trivial error event. Note that it may happen that 

Xk =  x'k for some k, I <  k <  r. That is, some signal selectors on the first event error 

path may be “accidently” correct. The squared Euclidean distance between x  and 

x', denoted as (P(x,x%  is

d2(x ,x ') =  ^ d 2(XkiX1k).
■ k~l ■

We have dropped the subscript ED for Euclidean distance because this is the distance 

measure We will be mainly concerned with. On the ideal AWGN channel, the squared 

Euclidean distance between x  and x' determines the likelihood of decoding x' while x  

is sent. Note that we consider only the ML Viterbi decoder which uses unquantized 

demodulator output and makes a decision at the end of the data. For the fixed-lag 

and/or quantized Viterbi decoder used in some practical applications, the relationship 

is slightly weaker.

Let x' =  x  +  e where e =  (ej, e2, • • •) is the “signal selector error sequence” 

and e* is obtained by bit-wise modulo-2 addition of Xk and xk, e.g., ek(xk,x'k) =  

e f c ( 0 1 0 , 1 1 0 )  =  1 0 0 .  If ek =  0, k >  £(e), we call £(e) the “length” of e. Note that 

because of the linearity of the convolutional code, e is also a valid signal selector- 

sequence (codeword), specifically, one which is a first event error of length £ ( e )  of the 

all 0  signal selector sequence. That is, the trellis path representing e diverges from 

the all zero path at time index k =  0 and merges back to the all zero path for the first 

time at k =  £(e). Let Pd =  Q(d/2cr), where cr.is an SNR determined constant factor, 

d is the Euclidean distance between two codewords and Q( ) is the complementary 

Gaussian distribution function defined as

Suppose that the transmitted codeword is of finite length, which is the case in 

practical applications. Let C be the set of all possible codewords and we assume 

throughout that all codewords are equally likely to be sent. The “first event error



probability” Pe can be expressed and upper bounded as follows. Additions betw 

two codewords ate bit-wise modulo-2 additions.

E [a < x )]

T .  E (X  + e|X )
e^O.eeC

£  A d ( X ) P { X  + e|X)
ji~dfree

een

< ; E
d

Y .

(3-1)

(3.2)

(3.3)

w'here Pe(X ) =  E[PejX] is the conditional first event error probability given that 

X  is the trMsmitted codeword, Ad(X) is the number (multiplicity) of codewords 

at distance d from X , and Ad =  E[Ad(X)] is the expected number of codewords 

at distance d from a codeword. Equation (3.1) results from the linearity of the 

convolutional code. Equation (3.2) follows (3.1) by grouping e ’s such that ^(X vX  -h 

e) =  d. The inequality (3.3) holds because the decoding error region {X  +  e is 

decoded} is a subset Of the error region when X + e  and X  are the only two admissible 

. decoding options. Equation (3.3) is the “union bound” of Pe. Note that this bound 

is valid only if the channel is AWGN. The expectations in (3.1)-(3.3) are taken with 

respect to all codewords because for non-regular codes the distance structures are not 

the same fpr all codewords. That is, Ad(x,) ^  Ad(xj), Xj j £ Xj. For regular codes, by 

definition, we have Ad (x) =  Ad for all x , and thus Pe(X) =  Pe.

If the Viterbi decoder we used is maximum likelihood, Pe is the probability that, 

given the decoded node is on the correct path at some time index k, the next branch! 

decision Zk+i will be incorrect. Or equivalently at this moment the decoder will 

eliminate the correct path in favor of another path with a larger metric. This 

because the distance distribution of paths diverging from and merging into a state 

are identical. If the paths are forced to merge as is done in the practical fixed-lag 

(near maximum likelihood) decoder, (3-1) is an upper bound of Pe [12]. Usually the



truncation length is chosen to be 4-5 times of the code constraint length and the 

difference is negligible.

Equation (3.1) is a sum over all possible x  and e which is difficult to compute 

analytically even for a simple code. (Suppose that the codeword length is 200 and 

the input block length b =  2. Then |C| =  (22)200.) The error bound (3.3) is more 

computable. Its most significant term, AdfreePdjree, can be easily obtained by com

puter search and is often used as a criterion for code designs, However, TCM codes 

often have dense distance spectra — there may be many possible distances close to 

d/ree with comparable or even much greater multiplicities than Adfree. Therefore, a 

code design based on the free distance term alone is not necessarily a better code 

than another one with a greater djTee. This is especially true when at low SNR where 

Pdfree is not much more significant than the values of Pd of its neighboring distances. 

Obviously there is a need for us to be able to evaluate more terms in (3.3).

The bit error probability Pb can be computed and upper bounded similarly. We 

have

Pb =  E[A (X )]

== ■ E i ^ N 6(X ,X  +  e )P (X  +  e |X )
b e£C

(3-4)

I e

i

E  Bd(X)P(X +  e |X )
_d-dfree

< t X W (3.5)

where N i(X 5 X-I-e) is the number of bit errors if X -fie is decoded and X  is transmitted 

(N j(X 5X ) =  0), Bd(X)  is the total number of bit errors for paths at distance d from

X , and jBd == E[jBd(X)3 is the average number of bit errors for paths at distance 

d from the correct path. Note that by linearity of the convolutional code, we have

N i(X ,X -fie) =  n i(e), i.e., the number of bit errors depends only on the error sequence 

e. We also remark that (3.4) is in fact an upper bound of Pb [64]. The bound is tight 

and the distinction has been usually neglected in the literature.



A profile of Aa or with respect to the distance d is called the distance spectrum 

of the code. Distance spectra provide us the necessary information to compute the 

unioii bounds (3.3) and (3.5). We will want to compare our simulation results a.gainst 

the error bounds as a way to confirm the accuracy of our estimates. Many algorithms 

have been proposed to obtain the distance spectrum [8]. A fast bi-directional st ick 

algorithm is given by Rouanne and Costello in [44] which we will call the RC Al

gorithm. With some modification, their algorithm also provide valuable information 

which can facilitate the simulation. The RC Algorithm works for linear, regular find 

the so-called quasi-regular codes. For quasi-regular codes (linear and regular codes 

are special cases), the distance spectrum can be computed by assuming the all-zero 

sequence is transmitted;-, vf£hia is a very large class of codes which includes the or

dinary convolutional codes and many of the practical TCM codes. Recall that for 

a linear convolutional code with regular mapping, the ED and HD are related by a 

linear function. In this case, the distance spectrum can be reduced tq the commonly 

known “weight spectrum” after scaling.

Quasi-regularity of a code is an important characteristic which We will exploit 

in the simulation, Therefore, let us first examine the definition and properties of 

quasi-regular cod es.L et s and s' be two states in the trellis diagram and e be the 

signal selectpr error of two signal selectors which are produced by two Stafe transitions 

originating from s and s'. We define the “distance polynomial” Ps,a',e(z) as

(3-6)
' JX ■ ■ ' ■ /' ■

where P(x\s)  is the probability of producing the signal selector x given that the 

encoder is in state s. The polynomial p3<s><e(z) is defined only for the e for which 

there exist a branch that leaves s and a branch that leaves s' whose signal selector 

error is e. Also, in general, we have ps>s»,e(z) =  pa>\afi{z). Examining the trellis 

diagrams in Figure 3.4; the eight possible distance polynomials are



41

i l l
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Figure 3.6 Signal selector error and distance for 8-PSK mapping.

pa,S',ooo( )̂ -  I, Ps,s',ooi(z) =  Z%, :

Ps,s'fiio(z) =  ^ ,  pa,a, ^ z )  =  \z% +  \zt%, (3 7)

,JOo(^) =  Zs*., Ps,8> ,10 l(z)  =  Z % ,

Ps,s',m(z) =  \ z ^  +  \-zsl.

These polynomials can also be represented graphically as in Figure 3.6 where, for 

every e, all terms in the sum of (3.6) are shown with x and x +  e connected by lines. 

A trellis code is quasi-regular if and only if [44] (I) it consists of a linear binary encoder 

followed by a mapper and (2) the distance polynomials are independent of the pair 

of states, i.e., for any two pairs of states ( s i ,^ )  and (.S2,^ ) ,  Pai^1i<e(z) =  p32y2<e(z). 

Regular codes can be considered as a special case of quasi-regular codes where the 

distance between two codewords depends only on e (the Hamming distance between 

them) and not on the signal selectors, hence, pa,a',e(z) is a monomial. In the above 

examples, PsisZiOii(2) and pSlS',in(z) are not monomials. Therefore they are not regular 

codes, but they are quasi-regular because the polynomials do nqt depend on (s,V ).



An example of regular code is a convolutional code with QPSK and Gray coding;. In 

that case the distance polynomials are, independent of the number of states,

ps,s',OO )̂ F  1»

P s ,s ',0 l (« )  =  . a # ,

Ps,sM0(2) - ZS°,

;  P s , s ' ,u ( ^ )  =  ' z% ,

where S0 =  y/ 2  and Si =  2 for a normalized signal power. Note that they arq all 

monomials and do not depend on (s, s').

From the polynomials in (3.7) or from Figure 3.6, we note that for some signal 

selector errors there are more than one distance associated with them. That is, 

e ) is not .uiH'fyue'Whicb. depends on x. In out examples, there are only two such 

signal selector errors, they are e €  {011,111} =  E. For those e, all possible distances 

and their probabilities of occurrences are contained in the information provided by 

their distance polynomials. For example, in (3.7), the distance polynomial of e =  Oil 

(or e I l l )  indicates that d(x,:x+e)  == So or 62 with equal probability. And Figure 3.6 

tells us what exactly those pairs of x and x -f- e are. The “worst-case distance” of e is 

defined as dw(e) =  minx d(x, x +  e). For a sequence e, d |(e )  =  ! ^ ^ ( e * ) .  Here 

have^d^O li)/;=;^.!!!!):'’=. <V Note that for e ^  we have dw(e) — d(x,x  -f e) for 

all x. • . m

Return to the distance spectrum and RC Algorithm. The original RC Algorithm 

does not keep track Of the signal selector error sequences e as it progresses. For the 

purpose of simulation, we do like to have a list of e ’s which have small-to-moderate 

Worst-case distances. Therefore we modify the RC Algorithm a, little bit and the

algorithm can be described as follows. First we assume that the all zero path is the 

correct path; In this case, the set of all signal selector error sequences (i.e., the set C) is 

simply the set Of first event error paths of the all zero path on the trellis diagram. This 

set of first event error paths can be sequentially constructed by using a bi-directional 

(forward and backward) stack algorithm. The output of the algorithm is therefore 

a list of signal selector error sequences. The multiplicities Arf(O) and Rrf(O) car. be
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obtained from this list. Note that, from Figure 3.6, </(000, 011) =  d(000, 111) =  

So, i.e., the first event error paths of the all zero path always have the worst-case 

distances. Therefore, A^(O) (or Bd(O)) versus the distance d can be called the “worst- 

case distance spectrum.” (This is slightly different from Rouanne and Costello’s 

definition of worst-case distance spectrum, but more intuitively satisfactory.) The 

bi-directional stack algorithm is described formally as follows.

Modified RC Algorithm: * 1 2 3 4

• Input: Convolutional encoder configuration, signal mapping function, and the 

desired maximum worst-case distance dmax.

• Output: A list of signal selector error sequences e such that dw(e) K drriax, their 

respective worst-ease distances, lengths/(e ) ,  and information weights nt,(e).

•  Method:

1. Construct tables containing trellis diagram information.

2. Forward (or backward alternatively) extension. For the successor (prede

cessor) state is not the zero state, extend path. Push new paths into the 

forward (backward) stack with updated terminal states, worst-case dis

tances, information weights, lengths, and error sequences e. Delete old 

path.

3. For the newly created paths, check mergers with all paths in the oppo

site direction stack. Ifmergers happen, push the complete paths into the 

output stack. If d > dmax, stop.

4. Choose the path with shortest distance and length in the stack. Go to 2.

The multiplicity Ad(O), for d < dmax, is obtained by simply counting the number 

of e that have the same worst-case distance d. Bd(O) is obtained similarly except 

each count is weighted by nt,(e). We are, however, more interested in the distance



Spectrum. For quasi-regular codes, the distance spectrum can be easily computed 

using the distance polynomials. For example, suppose that Adfree(O) =  6, i.e., t 

are 6 error sequences having the same worst-case distance djree. For a fixed e,

iere 

let

n^(e) denote the number of appearances of e*, k == I , . . . ,  ^(e), such that e* €: £.

with

We

(*o

the

ces

this

are

(of

can

Assume that, for these 6 error sequences, there are two with n^-(e) =  2, three 

ns(e) =  l  and one with ns(e)  =  Q. See the distance polynomials in (3.7). 

find that for each appearance of c* G 5, there are 2 equally likely distances 

and S2) depending on the transmitted code symbol £*• Therefore, for a fixed e, 

probability bf haying the worst-case distance is (I /2) n£^ . Hence, we have A d frt 

I • ( i / 2)° 4- 3> (1 /2 )1 A- 2  ■(1 /2 )2 =  3. Note that if we are considering Ad,4  >  djr, 

the contribution to the multiplicity from error sequences with worst-case distan 

less than d must be also considered. Furthermore, we are fortunate that, for 

8-PSK with the ha.tural mapping, the distance polynomials for all elements in £  

identical. If this is not the case, we have to count the appearance of each element 

S) in e  separately rather than using the total number r?f(e).

This algorithm wOrks for all quasi-regular codes which include the codes that 

be analyzed by Zehavi and Wolf’s [71] transfer function bounds. An even broader 

class of Codes than quasi-regular is defined in Sefilegel [51] for which the distance 

spectrum is computable. In there, the Euclidean distance between two codeword s 

expressed as a quadratic form. This expression makes possible the computation of 

distance spectrum for some codes even when linear ISI is present. The utilization of 

his method to  our simulation problem is left for future work.

For small SNR’s, the error bounds (3.3) and (3.5) are loose. Also, they do not 

hold if the channel model is not the ideal XWGN. In those cases, simulations are 

desired. To estimate Pe and Pbi we will be working with (3 .1) and (3.4). Note that 

the two equations are in nature event-oriented in Which the term P (X  -j- ejX ), the 

probability Of the event “decoding X  +  e while X  is transmitted,” is what we will be 

estimating. One major advantage of this event simulation approach is that We can 

concentrate pur computation on the terms/ihat have significant contributions to the



values of Pe and Pf,. We will use the distance information to identify these terms in 

Ghapters 5 and 6. Details and justification of the event simulation method for trellis 

codes will be given in the next chapter. As mentioned earlier, this event simulation 

approach is conceptually different from the conventional stream simulation which is 

simply an imitation of the system operation.

3.3 A Satellite Channel Model

The satellite channel [16, 23, 55, 61] is the channel model we will be mainly 

concerned with besides the ideal AWGN channel. A simplified block diagram of 

a digital communication system operating on a bend-pipe (non-regenerative) type 

satellite channel is shown in Figure 3.7. A passband model is described below although 

the simulation will be conducted entirely on the baseband by using the complex 

baseband representation for all relevant waveforms and components.

The transmit IF (intermediate frequency) bandpass filter (BPF) Hi(J)  is mainly, 

for pulse shaping as well as reducing the spectral energy spread. Its selection is 

an important part of the system design and is basically a tradeoff between the in- • 

band noise power, 1ST and cross-channel interference. A Nyquist, Butterworth or 

Chebyshev filter is often used. For the most commonly used Nyquist filter, the pulse 

shaping function is usually evenly shared by the transmit and receive filters and 

thus H i(J )Ts a square-root Nyquist filter. This filter is often compensated, resulting 

in a notch filter, because the Nyquist filter is ISl free only if an impulse train is 

transmitted. The roll-off rate of the Nyquist filter needs to be carefully designed. 

Note that filtering generates signal envelope variation, therefore the selection of Hi(J) 

also depends on the modulation scheme and the nonlinearity of the channel. In our 

simulation program, we will allow the discrete baseband equivalents of all filters to be 

any finite impulse response functions (FIR). The baseband equivalent of a bandpass 

filter can be easily computed from the transfer function Hi(J)  or the impulse response 

hi(t) [43]. Our program will specify all filters directly in the baseband.
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Filter operations tend to be one of the more CPU-intensive parts of the simula

tion. For this reason, many Monte Carlo simulations are performed in the frequency 

domain and use the FFT for filtering rather than the more time consuming con

volution. The FFT is more efficient than convolution if the data length is large. 

For our importance sampling algorithm employing the event simulation method, the 

data length is usually small-to-moderate, and the computation required to find the 

optimal mean-translation simulation density turns out to be the dominant cost of 

computation. Therefore, we will simulate the system entirely in the time domain.

We have omitted the up-converter following Hi (J) because it is transparent in our 

complex baseband simulation. The up-converter translates the carrier frequency from 

IF to RF (radio frequency), the latter is usually in the L band (1-2 GHz), C band (4-6 

GHz) or Ku band (12-14 GHz) for commercial geostationary satellite systems such 

as the MSAT (Mobile Satellite) and INTELSAT (International Telecommunications 

Satellite) systems. The earth station high power amplifier (HPA) provides uplink 

transmitting power which can be as high as several thousand watts to overcome the 

great (~  200 dB in Ku band) free space loss. A wideband BPF sometimes appears 

after HPA to reduce the cross-channel interference.

The uplink (UL) and downlink (DL) noises are assumed to be independent additive 

white Gaussian processes. As mentioned at the beginning of this chapter, they are 

very good models for the satellite channel noise. Our algorithm actually allows the two 

noise processes to be correlated but the computation in this case will be considerably 

more complex. For some applications where the fixed earth station is able to provide 

large uplink power such that, in spite of the small receive antenna size and antenna 

gain at the satellite, the uplink enjoys a much greater SNR than the downlink which 

has large earth receive antenna but limited satellite on-board power. In such cases, it 

is a common practice to ignore the uplink noise (SNR =  oo) and add downlink noise 

analytically. This greatly simplifies the analysis and simulation since only the uplink 

noise is passed through the satellite nonlinear amplifier. This practice of course is 

not valid [56] in many other applications such as the MSAT and VSAT (Very Small

47
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Aperture Terminal) satellite systems where the transmit power is limited and the 

uplink SNR may be even less than the downlink SNR. Our IS algorithm is capable 

of handling any combination of uplink and downlink SNR’s. If the system is lifiear, 

the overall system SNR, in terms of EbJNo, can be expressed as [16]

'Eb\  =  (EbJNo)u(EbJN0)d 
iotai (EbJN0)u +  (EbJN0)d'

(3.8)

the

n m
V'  ;

and

where the subscripts “u” and “d” denote uplink and downlink respectively. Ii 

channel is nonlinear, the above equation is only an approximation.

The satellite input filter Hi(J)  is in fact a cascade of filters, including the low 

noise amplifier (LNA), receive filter and demultiplexing filter. The transponder ETA, 

usually in the form of TWTA, will be described shortly. A frequency translation from 

uplink to downlink on the transponder is omitted in the diagram. The satellite output 

filter Hz(J) is also the combination of several filters which are responsible for reducing 

the intermodulation and spectral spreading (and hence adjacent channel interference 

or ACI) caused by the TWTA. Note that, although only one channel is show 

Figure 3.7, there are usually many channels sharing one common transponder.

At the receiving end, the presence of ACI, co-channel interference (CCI) 

multipath effect usually can be modeled as additive noise processes before the receive 

filter H4 (J). For example, in [27], the total effect of the ACI and multipath is modjeled 

as a signal-correlated Gaussian process. The earth receive filter H4 (J) includes the 

front-end LNA and BPFs. A frequency down-converter before the demodulator is 

again omitted. The demodulator removes the carrier and produces one (complex) 

sample per symbol interval T. We will sample the demodulator output waveform at 

the midpoint of each symbol interval, but the program will allow search for the optimal 

sampling timing within the signaling interval. We will assume that the demodulator 

is synchronized with the transmitter such that the mid-band group delay is zero. 

However, since the algorithm will accept, any FIR filters, static synchronizer phase 

error A<f> and/or frequency offset A J  could be easily incorporated by introducing 

a complex phase factor exp(j[A^ -f 2ttA Jt]) to the receive filter impulse response



function. Likewise, a static timing error A r can be modeled by simply time-shifting 

the receive filter impulse response function. A perfect symbol timing will be also 

assumed.

The coding and modulation schemes we will cover include the uncoded BPSK, 

QPSK and MSK, convolutional codes with BPSK/QPSK and 8-PSK TCM codes. 

Time domain pulse shaping is permissible at the modulator although the rectangular 

pulse is the norm. Soft-decision ML Viterbi decoders, which accept the complex 

demodulator sampler output without quantization, will be used for convolutional 

and TCM codes. The branch metric function which compares a single demodulator 

output symbol r and a signal selector x is i?e[s(:r)*r] where Re\-\ denotes “real part,” 

s(x) is the complex signal pulse amplitude selected by a;, and the superscript * is 

the complex conjugate. This is the maximum likelihood branch metric for a I or 

2-dimensional signaling operating on a linear memory less channel.

The satellite HPA usually is the light-weight, small-sized traveling wave tube 

amplifier (TW TA). To achieve power efficiency, it is often driven at near saturation. 

This introduces the so-called AM/AM and AM/PM conversion effects, where AM' 

and PM stand for amplitude modulation and phase modulation respectively. This 

amplitude and phase nonlinearity is the main reason which makes analysis difficult. 

Also, since there are usually many channels sharing one common transponder, TWTA 

is also known to cause intermodulation and spectral spreading and thus the ACL An 

example of TWTA AM/AM and AM/PM characteristics is shown in Figure 3.8. This 

is for the Hughes 261H TWTA used in the INTELSAT VI and V. The curves labeled 

“Bessel” and “Spline” are curve fits to the measured data (not shown) using Bessel 

functions and third order polynomials spline approximation respectively. They closely 

agree to the measured data in all normal operating regions and are indistinguishable 

except in the low input power region of the AM /PM  curve. A TWTA is usually 

specified by its input power backoff, IBO, or its corresponding output backoff. The 

IBO is the difference in dB between the actual average input power of the modulated 

signal and the carrier power input to the TWTA required to saturate it. For example,



input power (dBmW) ( x 10 )

(a) AM/AM  conversion

input power (dBmW) ( x 10 )

:(;b) AM /PM  conversion

Figure 3.8 Hughes 261H TWTA nonlinear characteristics.
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in Figure 3.8, a 4 dB input backoff (IBO =  4 dB) from the saturation point (-21 

dBmW) is equivalent to a I dB output backoff.

For the purpose of simulation, we need a complex baseband model for the TWTA, 

A quadrature model described in [3, 29] fits our purpose perfectly and the curves 

labeled “Bessel” in Figure 3.8 are the result of this model. For our IS algorithm, 

we prefer functional descriptions of the nonlinearity to he differentiable. We now 

investigate this quadrature model. The output signal of the TWTA responding to an 

input signal of the form

z(t) — A(t) cos(uct +  0(f))

=  Z 1 (t) cos(uct) — z®(t) sin(u;ct),

where Z1(̂ i) - A{t) cos 0(t) and z® (t) =  A ( t ) sin 0( t ) ,can be expressed as

z{t) =  U (A(t))cos[uJct +  9(t) +  G(A(t))]

=  R1 (A(t)) cos(u>ct +  0(t)) — Rq (A(i))sm(<z>ct +  9{t))

— z J(t)cos(ujct) — z Q(t)sm(a>ct).

The instantaneous quadrature nonlinearity R1(A) =  U(A)cos(G(A))  and R®(A) 

U(A) sin(C?(A)) can be approximated by Bessel functions:

R1(A) =  C1A e ^ 2 I0(c2A2) (3.9)

Rq(A) =  siAe-*2*2 h ( s 2A2), (3.10)

where /o(*) and /i(-) are modified Bessel functions of the first kind of order 0 and 

I respectively and the constants are c\ =  1.61245, C2 =  0.053557, s i  =  1.71850 and 

s 2 =  0.242218 for this particular TWTA.

The input-output relationship between the instantaneous I and Q channel en

velopes can thus be obtained as follows.

z l =  U(A) cos(0 + G(A))

R 1 cos( 9 ) - R q Sin(O)

' =  CiTJ0 (C2 A 2 ) Z 1 -  S1TIi (S2A2)Zq , (3.11)



where r/0(a) =  e~^Io(ct) and r)\(a) =  e~'"l/i(Q;) are exponentially scaled modified 

Bessel functions which are available as IMSL subroutines [30]. Similarly, it can be 

t s h o w n : - t h a t - ■ .: V

ZQ -  CiTjo(C2A 2) Z ^  +  S iT j i ( S 2A 2 ) Z 1 .12)
: .iJ.

To find the optimal mean-translation simulation density, we will show that 

is necessary to take derivatives of (3.11) and (3.12). An alternative to the Be  

approximation which allows quick computation of derivatives is the spline polyno 

approximation. For example, we can approximate R1(A) and R q (A) piecewisely 

third order polynomials. See Figure 3.8. In order tb locate each region easily,

divide the input amplitude A into 10 regions: [0,1), [1 ,2),---- , and [10,oo). There

the integer part of A is the region index. In each region, the approximations are

it 

ssel 

mial

with

we

fore

R 1(A)

R q (A)

C3A3 +  C2A? A CiA +  Co 

S3A3 A F2/!2 +  SiA A S0.
(3

(3

Next we have to find the coefficients C f'and , == 0 ,1 ,2 ,3 . Note that
; r,'-

derivatives of (3.13) and (3.14) are

3C3A2 +  2C2A +  C1 

::R ^ ( 0 :a ^  SS3A2 +  2 S2A A R1,.

Taking derivatives of (3.9) and (3.10), Ct and Si for each region can thus be obtained 

by solving the following linear system equations. Note tfiat we use the beginning and 

end points of each region for boundary conditions to ensure continuity. Hence there 

are 8 equations and 8 unknowns. .  ̂ o

C3 A3 A C2A2 A Ci A: A Co =  ciAtjo(c2A2)

- v: 5o-. = siA m (s2A 2)

SC3A 3 A ^C 2A A Ci = ciTjo(c2A2) A 2cic2A 2\jji(c2A2) — Tjoic2A 2))

=  S1Tji(S2A2) A

2sis2A 2[Tjo(s2A 2) -  (I +  J - ^ j A t ( S 2A 2)I.

13)

the



The derivatives of Bessel functions follow [1] Iq(x) — h(x)  and I[(x) =  Iq(x) — ^l\(x).  

The last region [10,oo) should be handled differently. We set R 1 (A) =  P 7(IO) =  Co 

and RP(A) — i?^(10) =  Sq for A >  10. The curves labeled “Spline” in Figure 3.8 are 

the result of this model which agree closely to the Bessel approximation.

With the spline approximation, it is easy to show that the input and output I and 

Q channel envelopes are related by:

z 1 =  R 1(A) cos 8 - R ci(A)SinO

=  (G3A 2 -f- O2 A +  Ci +  ~ ('Ss-Â  + S-2.A T S\  T ~^)z  ̂ (3.15)

and

^  = ^ zAi A  S2A A S1A ^ z 1 A (C3A2 GiA ^ Q 1 A ^ ) ^  (3.16)

We have described a satellite channel model in detail. For system simulations, 

subroutines often are not only related by inputs and outputs but also some system 

parameters. This is especially true for importance sampling program. Therefore, it is 

crucial to have a good understanding of the system. One important observation of a 

bandlimited nonlinear channel such as the satellite channel is that the probability of 

deciding on one codeword while the other is sent depends not only on the Euclidean 

distance between them but also the ISI and nonlinearity. Therefore, the Euclidean 

distance spectrum which we use to obtain the union bound of Pj for the AWGN 

channel is no longer valid. Nonetheless, Euclidean distance information is still useful 

in designing the signal biasing which we will discuss in Chapter 6.
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;4. IMPORTANCE SAMPLING THEORY

4.1 Systems with Gaussian Noise Inputs

In this sectionGwe will develop the optimal Gaussian simulation distribution 

systems with GauSsiah noise inputs. The reason for restricting bur candidate fan 

for the simulation densityto be Gaussian is stated in Chapter 2. Increasing the size 

of the candidate ’family' surely increases the possibility of a higher efficiency gain. But 

while doing this, we rnust make sure that the expansion still permits optimizatiori as 

Well as easy generation of samples and computation of the IS weights.

Consider the general block diagram of Figure 4.1 for a digital communication 

SysterU whose single output decision is based on the noise input vector Y  and tile 

‘‘signal” input vector x. Let Y  be an n-dimensional zero mean Gaussian random 

vector with covariance matrix <r2I. (There is no loss of generality by assuming a diag

onal covariance rha,trix because any correlation ,structure can be realized by-indu'd 

a linear transformation in the system model. Therefore, colored noise can also 

considered.) The m-dimensional vector x  models any other inputs (such as the ISI

for

iily

mg

be

I ‘ i ..

and/or error event pattern which we will discuss in the following sections) that have

Cl:
S(X1Y)

output
Y decision ^

: ' - . .....

Figure 4.1 A general system block diagram with noise and signal inputs;.
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influence on the output decision. Let £(•,•) be the “system response function” such 

that the output decision statistic D  can be expressed as D  = £(x,Y). The function 

£(•, •), possibly nonlinear, may be fairly complex and need not be in closed form. Sup

pose that the decision is performed by a threshold test D < 0, and the decision error 

occurs when D >  0. This binary decision rule may seem inappropriate at first glance 

for some applications such as uncoded M-ary signalings or coded communications 

where more than two decision options are admissible. But we can always pick one 

particular decision error (one that would occur with high probability) and formulate 

it as a binary decision problem, i.e., we are only interested in one particular type of 

decision error. How this is done and why will be discussed in more detailed later.

We are interested in estimating the decision error probability P7(Y  € P (x )) (or 

the mean of Ie(X)(Y) by the formulation of Chapter 2) where 7 — I j o i  is a normalized 

SNR parameter and E(x)  =  {y  : £(x,y) > 0} is called the “error set” o f x which in 

general depends strongly on x. However, at this level of the simulation algorithm, we 

will let x be a fixed parameter vector and thus E(x)  is a fixed subset of Rn. Therefore, 

in this section we will usually suppress the dependency on x in the notation and denote 

the error set E =  E(x).  We are primarily interested in the high SNR case and we will 

gain some inoiportant insight by considering asymptotic behavior as 7 —► 00 (<r2 —»• 0).

A special case of particular interest is f (x ,y) =  a(x) +  b(x)<y, where a(-) is a 

real-valued function and b : Rrn —> Rn is an n-dimensional vector function. This is an 

“affine” function of y. However, we will refer to this as a “linear system” (even though 

■ strictly speaking it is not linear in y) because the contribution from y to the decision 

voltage D  is a linear function of y. We only require that the system be affine in y , 

any type of dependency for vector x  is admissible. (n(x) is treated as a constant and 

b(x) as a constant vector.) In this case, we have E  =  A’(x ) = {y : b(x)ey > —a(x)} 

which is a “half space” in Rn.

We will assume throughout that the error set E  has a nonempty interior and no 

isolated points, that is, E == E 0 where E  and E 0 denote the closure and interior of 

E  respectively. We also assume 0 ^ E. ( O e E  means that the system is more likely



to make incorrect decisions than correct decisions for large 7 .) Decision regions of 

practical interest always satisfy these simple regularity conditions. The boundary of 

E  will be denoted dE  =  E\E°,  The notation a7 ~  &7 means that Iim7-̂ 00 a7/ 67j =  I 

and that this limit exists. Also, Q(z ) =  f^°(27r)~1̂ 2 exp(—( 2/2) d(  is the standard 

Gaussian complementary distribution function.

There are several concepts to be presented in this section. For sake of clarity, we 

separate major arguments with numbered titles.

I. P7(Y  € # )  vanishes exporientially fast as a function of 7 .

Expressing the decision error probability as an integral, we have P7(Y  <= E)

Se  I y ( Y )  dy.  Note that the integrand I y (y ) dc exp(—7 ||y ||2/2 ) vanishes exponentially 

fast as 7 —> 00. More specifically, —7-1 lo g (/y (y ))  ~  ||y ||2/2 . We call ||y ||2/2  the 

“exponential rate of decrease” of /y ( y )  with respect to 7 . By a classical asymptotic 

method due to Laplace, the rate of decrease of the integral fE / y ( y ) dy  is the minimum 

rate of decrease of the integrand over the range of integration E  [14]. Under our 

regularity condition E  =  P°, we may apply Laplace’s method to conclude that the 

exponential rate of decrease of the decision error probability P y(Y  € E) is

.lifc il|y||!'
We will call a point v  €  BE such that jjv||2 =  infye£; ||y ||2 a “minimum rate point.”

Therefore, a minimum rate point is a boundary point of E  with the smallest P2 norm, 
■V: M -, ■ ■ . ■ H."." : . / ■ . ^ ~
i.e., it is closest to the origin among all points in the error set E. Figure 4.2 shows an

n =  2 example of an error set and a minimum rate point. Note that the minimum rate 

point may not be unique. If there is only one minimum rate point, we will call it the 

“dominating point.” Since we have assumed that 0 ^ E,  at least one minimum rate 

point always exists. Hence the right hand side of (4.1) can be replaced by ||v ||2/2  

other words, we have P7 (Y  € E) — a7 exp(—(||v ||2/ 2)7 ) where the factor a7 decays 

slower than the exponential rate, that is, Iim7-̂ 00 7 -1 log (a7) =  0.

m



Figure 4.2 An n =  2 example of an error set and a npinimurn rate point.

Example 4.1: . ■ -I'-. I

Let us take the above special case of linear systems for example. The minimuni 

rate point can be obtained by solving the following minimization problem:

min ||y ||2, V v

subject to £(x,y) = a(x) + b(x)ty =  0.

The minimization problem is to find y which are closest to the origin under the con

straint that y gj dE.  Assume that £ : Rm x Rn -> R is continuous and differentiable 

with respect to y. By continuity, we have dE =  £_1(0) =  {y : D  =  £(x,yj =  0}, 

and thus the constraint. Using the Lagrange method [35], it is easy to show that the 

unique minimum rate point (dominating point) is v =  v(x) =  —(a(x)b(x))/||b(x)||2. 

Also, the error set can be written as E  = {y : v t(y — v) >  0} which is a half space 

tangent to the dominating point vector v. It follows that F7(Y  € E)  = F7(Z) > 

0.) =  Q(7-1/,2a(x)/||b(x)||) =  Q (Z) is a real Gaussian random vari

able with mean a(x) and variance ||b(x)||2/ t -) Using the well-known approximation

;?



Q(z ) ~  (27T2r2)_1/'2exp(—z 2/2) for large z, We have P7(Y  G E)  =  a7 exp(—(||v ||2/2  

where a7 ~  (27r||v ||2-y)—1̂ 2I Therefore P7(Y  € E)  indeed vanish with expone 

rate ||v ||2/ 2. ■>v

2 . Le(7 ), the required number of simulation rhns fof estimating P7(Y  € P ), 

increase exponentially fast as a function of 7 .

) l )

ntial

I

iiftay

Consider the simulation distribution to be Gaussian which is specified by its mean 

vector v* and its covariance matrix C*. This is the most general formulation for 

any Gaussian simulation densities because both v* and C* can be functions of 7 . 

Let Le (7 ) be the number of simulation runs required to estimate P7(Y  € E)  for a 

standard error e. Le (7 ) is found to be as (2:9) except now it is also a function of the 

SNR factor 7 . Since per sample computational costs are the same for any Gaussian 

simulation distributions, we can use Le(7 ) as the measure of computational cost. 

Using var[Z] =  E[Z2] — E[Z}2, we can rewrite (2.9) as

E; [(Ie (Y)Iu(Y))2],-2 -  I [4.2)

Proposition I: Assume that the limit

P =  ~  I!™, 7 1 log ( [(Ie (Y)Iu(Y))2] )

exists. Then

Iim 7 log ( Le( î) )•y—KX) Ilvll2 P

4.3)

is the “exponential rate of increase” of the number of simulation runs Le(7 ). Moreo 

P <  IIv II2S and hence, the exponential rate of increase in (4.4) is always >  0.

Proof: Following the result of previous discussion, P7(Y  € E)2 vanishes with 

ponential rate 2 x ( ||v ||2/2 ) — ||v ||2. Notice that for any 7  <  00, we should 

var*[lE(Y)iu(Y)] =  E;[(1e (Y)iu(Y))2] -  P7(Y  € E)2 >  0. Therefore, if p >

4.4)

ver,

-ex-:'

lave

Vll2



(p is the exponential rate of decrease of E* [(Ib (Y )w(Y ))2]) then E^[(Ie (Y )w(Y ))2] 

would vanish faster than P ( Y g E )2 and this would violate var*[Ib (Y)W(Y)] >  Q for 

large -7 . Therefore we must have p <  ||v ||2.

If p <  [Iv ||2, then (4.4) follows by simply taking the logarithm of (4.2). If p =  ||v ||2, 

there is a possibility of cancellation in the argument of the [•] function in (4.2) causing 

this argument to decrease possibly even faster than exponentially. (For example, in 

the case of the unconstrained minimum variance solution (2.10), the cancellation is 

1 — 1 = 0  because E!)[(lj3(Y )ty(Y ))2] == Py(Y € E)2.) However, even if this happens 

we still have Lt (7 ) >  I (because of the [•] function). Therefore, the exponential rate 

of increase (~  7 _1 log(iye(7 ))) cannot be negative.

Now, our goal is to specify v* and C* to minimize Lt(7 ). Or, asymptotically we 

should minimize the rate of growth of P£(7 ). The term ||v ||2 in (4.4) is fixed because 

the minimum rate points do not depend on the SNR. Hence, we should maximize 

p <  Ilv ||2. We say that an importance sampling scheme is “exponentially efficient” 

if p =  JjyIl2- (This is called the asymptotic efficiency in [49].) Clearly, any scheme 

; , for which p <  ||v ||2 is ultimately very inefficient due to its exponentially increasing)

computational cost as indicated by (4.4).

- ' 59

3. For any “stable” variance-scaling scheme, X£(7 ) does not increase exponentially 

fast if the simulation density is the optimized mean-translation biasing and the “for

bidden set condition” is satisfied.

E To maximize p with hope of achieving the exponential efficiency, we must char

acterize p in terms of v* and C*. To do this, we first express the expectation 

E*[(1b (Y )w(Y ))2] as an integral

E; [ (U (Y )m(Y ))2]

= j E *>(y?My)dy  = J J j r ^ d y



T \" /2 ,-,.N1/2
,2 * / .1,, ( , C j

: * Ie exp ( ” 7 M 2 +  [•(y  '  v '*'c " ‘ ( y -  v ' . ) )  <!y- ;4.5)

Assuming ,-Vj- ~  Vj0 and 7 C* ~  CJ0, we apply the Eajpla.ce’s method and (4.3) 

obtain : " \' ■■

Iim7 1 log (det(7c ;)1/2)

4.6)

'7—̂00

+ ^  { Ilyll2 -  b y - v : ! ' c : , - ‘i y - v ,  ) }

For later use (in Proposition 3) we note that (4.6) continues to hold even if settle or 

all elements of 7 C* tend to + 00.

any
p*°00

Proposition 2: Assume that there exists a dominating point v  €  dE.  Consider 

Gaussian importance sampling schemes such that v* ~  Vj0 €  R n and 7 C* ~  

where CJ0 is a finite positive definite matrix, and define the “forbidden set” F(CJb)

as ■. ■
I

m i )  =  [ y :  Ilyll2 -  I  Iy v)'C-, l I y -  v; < | | v f }

Then, p =  Ilvjj2 if and only if Vj0 =  v  and E  n F(CJ0) =  0.

4-7)

Proof: Since CJ0 is assumed tp be finite, we have Iim7̂ co 7 _1 log(det(7 C* )1/ 2) =  O in 

(4.6). The infimum in the second term of (4.6) can be Upper bounded by evaluating 

the arguinent at any point in E. In particular, since v  € dE,  we have

I
inT I  Ily ll2 -  ~ (y -  v ^ )<C*0 1( y - v ^ )  }

<  Ilvl
I

(v  — v J0)tCJ0_1(V — Vj0)

< IKlI2-
We have assumed that CJ0 is positive definite, hence equality holds in the sec 

inequality if and only if v  =  Vj0. When v  =  Vj0, the forbidden set condition 

F(CJ0) =  ® is necessary and sufficient for equality in the first inequality.

Grid

E n

f



Figure 4.3 The forbidden set condition.

The assumption 7 C* ~  C 0̂ in Proposition 2 considers the case in which the 

importance sampling covariance matrix is asymptotically stable relative to the model 

covariance matrix 7 -1I. Notice that v  is a boundary point of the forbidden set F(C^0) 

(but v  ^ F(C^0)), and if 2 1 — C 0̂-1 is positive definite (which will usually be the 

case) this set is an ellipsoid. In the case of uniform variance scalings (C^c =  cl), (4.7) 

reduces to, for c >  1/ 2,

F(cl) =  { y  : ||y -f- (2c — l ) - 1v|| < ||v|f J ,

which is a sphere with center —(2c — l ) -1v  and radius 2c||v ||/(2c — I). Figure 4.3. 

illustrates the situation for c — I and c — 2. In the case of linear systems, SE  =  {y  : 

v V  =  IIv II2) is a hyperplane that is tangent to the sphere F(C q0). Assuming only 

that 21 — C ^ -1 is nonnegative definite, it follows that E  ft F(C^0) =  0 always holds 

for linear systems. So, in general the forbidden set condition E  D F(C^0) =  0 can be 

viewed as a restriction on the admissible “degree of nonlinearity.”



Proposition 2 says, asymptotically, the mean vector of the Gaussian simulation 

density should be the dominating point provided that the forbidden set condition 

is satisfied. By (4.7), the forbidden set depends on the choice of the covariance 

matrix C*,.- It turns out that the optimal choice of C 0̂ is difficult to  determine for 

general systems. However, for linear systems a more precise resuit can be obtained 

which will provide us some useful insights. Consider the case in which we employ 

the asymptotically optimal (efficient) mean translation V* =  v  and uniform variance 

scaling C* =  C7 - 1I. (We consider here only the uniform variance scaling because it 

can be characterized by a parameter and it can be easily implemented. Non-uniform 

variance scalings will be discussed in the next Proposition.) We want to determine 

the optimal variance-scaling constant c. For c >  1/ 2, expression (4,5) reduces to

E; [(Ie (Y )w(Y))2] =  c» / > ( _ £ _ ) " /2 exp ( J M I 7 ) q
2c — I

(n—1)/2

2c -  I HyJl1r

(87r|!vU27) 3/2 cn/2 )  ■ exP( IIv IJ2T)- (4.8)

When c <  1/2 , we have E*[(1b (Y )u;(Y ))2] =  oo. Plugging (4.8) and Py(Y  €  E) 

(27r|jv||27 )_1 exp(—||v ||27), which we have obtained in Example 4.1, into (4.2)

'.have''' ■ ■■■ v JJ' ■ AVv;-" ' '■ ''"vV' . . J ' J -.Jv...J"

’ , («-i)A
i .(7 )  ~  ' / I !Ml

Note that the exponential factors in the numerator and the denominator of (4:2) ĥ

cancelled. The approximations in (4.8) and (4,9) involve only Gaussian Q func
. . .  ■ JJ : ;v ■■■■:■#. :J'jJ-: J'v 7 J T' . "J .

approximations which are still quite accurate foronlym oderately large arguments

Therefore, for exponentially efficient mean translations, Lt (7 ) grow like 7 

Moreover, notice that the variance-scaling constant c impacts the computational 

only as a multiplicative factor c”/2(c /(2c — l))(n_1)/2. The optimal c can be obtai 

by minimizing this factor and the result is found to be

2 ~.. 

we

( 4 . 9 )
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Figure 4.4 Dimensions in the optimal mean translatiqn.

That is, no variance scaling (c =  I) is approximately asymptotically optimal, at least 

for linear systems. Moreover, notice that when c == I, E* [(Ie (Y )u>(Y))2] (and hence 

Le(iY)) does not depend on the dimension n. In other words, for linear systems, 

exponentially efficient mean-translation biasing with no variance scaling (uniform or 

non-uniform) is free of the dimensionality effect. Figure 4.4 shows the multiplicative 

factor c"/2(c/(2c — l ))(n_1)/2 as a function of n when c =  I and c =  copt. The saving 

on Lt (7) by employing a uniform variance scaling in addition to the optimal mean 

translation quickly diminishes as the dimension n goes up. Therefore, hereafter unless 

otherwise stated, when we consider an optimal mean-translation biasing, we will mean 

the asymptotically efficient mean translation without scaling the covariance matrix.

Another observation of (4.10) is that, if We plot Copt  against the dimension n, the 

optimal variance scaling factor increases from 1/2 (n =  1) to I (n =  00). Recall 

that C* == Cy-1L A variance-scaling factor c <  I actually means variance reduction 

rather than increase! Thus, in contrast to the variance-scaling biasing where the noise



variance is increased, our exponentially efficient mean-translatioti biasing requires 

a variance reduction. As an aside, some workers have been able to reduce many 

IS problems to 1-dimensional [13, 52], and thus eliminate the dimensionality effect. 

For « =  I, the asymptotical optimal variance-scaling factor for mean-translation 

biasings is 1/2. This solution, however, is unstable because E* [(lf;(Y )tn(Y ))2] 

for C =  1/2. Therefore, as seen from Figure 4.4, although the potential saving on 

Fe(q) by Variance-Scaling the optimal mean-translation biasing is great for the n =  I 

case, the chance of disaster is great too. The optimal variance-scaling factor cop< must 

be chosen carefully (cppt =  1/2 is an asymptotical solution). This is an open questi on. 

Bnt in most cases, we would rather settle for C =  I.

The last two paragraphes present results for linear systems which we might hope 

to extrapolate to a “moderately nonlinear” system. Such arguments are cOimmpn 

practice in the literature. However, this appeal to linear system behaviors neglects 

the forbidden set conditiph n F (O 0̂) =  0 which must be Satisfied by a “moderately 

nonlinear” system. Notice th a tif  C p̂-1 fa 0 , then F(C^0) fa {y  : j|y ||2 < 21

the sphere centered at the origin of radius jjv||, But by the definition Of a minimum 

rate point, we always have E  D {y  : 11y 112 <  |jv||2} =  0. Thus, variance scaling by 

increasing the noise variance weakens the forbidden set condition, and hence, provides 

a degree of robustness by admitting more severely nonlinear systems, as illustrated 

in Figure 4.3. (An optimal mean-translation biasing with forbidden set F (21) is more 

robust than the One with F(I).) Of course, the cost of this robustness is an increase in 

computation. But in practice since it is normally not possible to verify the forbidden 

set condition, the robustness obtained by some degree of variance scaling may

justified in some cases.

In parallel to the above exponentially efficient mean translation, it is possible 

to achieve this exponential efficiency with just variance scaling, Proposition 3 b e  ow 

states the necessary and sufficient conditions of the optimal variance-scaling Gaussian 

density, which follows directly from (4.6), so we omit the straightforward proof.



Proposition 3: Assume that there is a dominating point v  and consider any Gaussian 

importance sampling scheme such that v* ~  V 0̂ ^  v. Then p — ||v ||2 if  and only if

jim  7  1Iog ^det (7 C*)1/2  ̂ == Q
= 7 *

(4.11)

I
t o  | ( y  -  V^)*(7 9 ;)  1 (y  -  ; ; Ilyti2 — IM!2 (4-12)

for all y  €  E  with equality for some y  G

Notice that condition (4.12) for y  =  v  € E  gives Us the necessary condition 

7lim ( v - v ^ q C ^ - ^ v - v ^ )  =  0.

In other words, qC* must tend to infinity at least in the dimension of v  — V̂ 0. 

Condition (4.11), on the other hand, says that the rate of growth must be less than 

exponentially fast.

Proposition 3 suggests a non-uniform variance scaling which scales the covariance 

matrix only in the dimension of v  — V̂ 0. Before we comment on this approach, let Us 

first examine the CIS algorithm mentioned in Chapter 2 which is uniform variance 

scaling with unsealed mean vector. Therefore, we have v* =  0 and C* =  <yy- 11. In 

the case of CIS applied to a linear system, (4.5) reduces to, for C7 > 1 /2 ,

( c \ nl2
e ;  [(i e (y )» ( y ))2] =  <$/» ( ^ - J

2 - ( n + 1 ) / 2
rn/2 exp IvIt2T'

7 N2 exp (-JIv II2T)
^ W v W I 7 1 V 2c7 , ,

If C7 <  1/2, as in the case of (4.8), we have E*[(l£;(Y)ie(Y))2] =  oo, The asymp

totically optimal variance-scaling factor Cy is found by minimizing the term in the 

bracket {•}. The result is C7i0pt ~  ||v ||2T /n - Note that n can’t be too large such that 

Uy <  1/2, (This implies that the CIS scheme would blow up beyond some dimension 

n for large 7 .) Plugging this C7j0pt back into the expression above, and then plugging 

into (4.2), we get



Le( i )  ~  ^ 2 ~(n+1)/2 ||V||(n+1) n^n/2 exp(n/2) 7 (n+1)/2. (4.13)
• ■ ■ . . -V • .. . .'.'V- ■. . . ' 7 '■ ,■ ■' v .  -V- . •  ' ■ v  ■' V ■;v  • '-V-V- ( i-

Therefore, for an optimized CIS and a fixed n, Le(7 ) grows in proportion to -yf"+1)/2. 

This is substantially worse than the 7 1/2 (for all n) behavior obtained in (4.9) for the 

optimized mean translation. Moreover, the CIS computational growth does depend 

on the dimension n in an undesirable way. A more precise description of the dimen

sionality effect like in Figure 4.4 is difficult to obtain. However, note that (4.13) is 

approximately the Lt{7 ) for a large 7 . In that case, the growth of the last term, 

7 (n+i)/2, relative to n far outweights the others. Thus, it is clear that the CIS is very 

inefficient for a large n and SNR. This will be confirmed by an example in the next 

ŝectiph.:;.';; V .V.V: V 'VV-V^/:.'..,.V;-

The technique proposed by Davis [13] in an effort to reduce the dimensionality 

effect of the CIS method is precisely a non-uniform variance scaling only in th^ di

mension of v  — V̂ 0. This method reduces the computational growth back toj the 

1-dimensional case. (One would still have to deal with the condition (4.12) which 

would play the same role as the forbidden set condition of Proposition 2.) Howpver, 

this approach gives up the major advantages of uniform variance scaling over! the 

mean translation, ,namely, the robustness and ease of implementation. In addition, 

mean-translation biasing is still more efficient. Taking n =  I in (4.9) and (4.13), 

we have the computational cost of variance scaling grows like 7 compared to the 

71/2 growth for the mean translation. In our opinion, if we are to go to the trouble

of computing v , then we might as well apply this information to the more efficient
7 VV' v V V V V V  V-V'VV : ■- 77 '7 -7 V V 7 * 7 7 -VV.fVVVW 7-:7" VV"-'' yVi'VV '7
estimator — mean translation, possibly in conjunction with a moderate degree of

variance scaling for sake of robustness.

In Propositions 2 and 3 we have assumed the existence of a dominating point. The
v ;VvV=V V / V V v v v - ' - ' v v ^  i f  V/  --V- : v  : V V»- ■>*-• ' - . 'V b  -V-V-V V'7 '

analysis of Sadowsky and Bucklew in [49] demonstrates that exponential efficiency
7VV-, ;V..^vV'V ■' - W-; V'' V̂ v - ;vvVvV-;: VV'V-V . '-V-.-. >V W V v; V -  V v  ' . V.; ' ' V . ,VVV'? :;i-'VV. : V.';-' ',VV V

can be achieved in the case of multiple minimum rate points by taking / y (-) to be a 

convex combination of Gaussian mean-translation densities. (For example, decision 

regions for a QAM demodulator will have multiple minimum rate points.) We further 

remark that in comparison to [49], here we have considered a more restricted problem



formulation, but within this Context we have obtained some deeper results (eombined 

mean translation and variance scaling, and the conclusions about robustness obtained 

from the forbidden set condition). Extensions of these ideas to some exponentially 

efficient Uon-Gaussian simulation distributions are given by Schulebusch in [52],

4.2 Variance Scaling vs. Mean Translation ■' i;-.-

The uniform variance-scaling biasing and the optimized mean-translation biasing 

have been the two mainstreams along the line of the IS development and are also the 

methods appear .to'be m ost practical. In the high SNR region, (4.9) and (4.13) show 

that the computational cost of the variance scaling increases more rapidly than the 

mean translation biasing relative to the increased SNR. Therefore, the mean trans

lation is more efficient than the variance scaling at a large SNR. Andthef important 

factor in (4.9) and (4.13) is the dimension n. Li(tJ) for the optimized mean translation 

with no variance scaling is independent of n. Equation (4,13), on the other hand, 

suggests that the uniform variance scaling is very inefficient at a large n and would 

break down at some point;.

For a moderate SNR, the above asymptotic behavior may hot apply, We are inter

ested in knowing how the two biasings Compare to each other in this case. However, 

it is difficult to obtain general conclusions such as what we have obtained for large 

SNR’s in the last section. (This is why we go to the asymptotic analysis in the first 

place.) In this section, we will examine the uniform variance-scaling biasing and the 

mean-translation biasing using some heuristic arguments which apply to all. SNR’s. 

This approach also helps to explain more clearly the dimensionality effect of the uni

form variance scaling. At the end of this section, we will use a simple matched filter 

example to compare the two biasings numerically.

Consider Figure 4.5 which shows the n =  2 model density / y (^i , P2), an error set 

(on the ^1-  y2 plane) and a dominating point. This figure can be seen as a side view 

of Figure 4.2 which is viewed from the top. Recall from Chapter 2 the criterion we 

have established for a good simulation density which we restate here:



\  '



An efficient simulation density /y ( y )  should sample y  (important sam

ples) from the important error regions where':!■&&)"f y ( y )  are relatively 

large.

Since the Gaussian probability density /y ( y )  decreases as the distance between y  

and the origin (the mean of the Gaussian distribution) increases, it is obvious that 

the dominating point v  has the largest probability density / y (v )  among all points in 

the error set E(x),  i.e., / y (v ) =  maxy€£(X):/ y (y ) HenCe, the dominating point is 

the “most important sample.” This is the physical interpretation of (4.1) which also 

explains why we perform the minimization in Example 4.1 to find the dominating 

point. An efficient simulation density therefore should be able to sample more often 

from the regions that are close to the origin in the error ^et. In particular, the 

dominating point should have a probability density that is the peak of /y ( y ) ,  i.e.,

should be the point that is most likely to be sampled

Recall that the model density is /y ( y )  ~  Ar(0 , rr2I), where Af (in ,-C j: denotes 

a Gaussian distribution with a mean vector m  and covariance matrix C. To in

crease the relative frequency of sampling those important Sarhples, the strategy of 

variance scaling is to use / y  (y) ~  Ar(O5Ccr2I)-Z whereas for mean translation it is 

/ y (y) ~  iV(V5(J2I). Therefore, intuitively, the variance-scaling ffiethod pushes the 

probability mass away from the mean and spreads it into the error set. The mean 

translation, on the other hand, “moves” the entire probability distribution toward 

the error set. The difference between these two approaches can be seen easily in the 

one-dimensional picture of Figure 4.6. The shaded areas in Figure 4.6(a) and (b) are 

the increased probability mass in the error set due to biasings compared to original 

model distribution functions. The superiority of mean translations is evident from 

this illustration. The mean-translation biasing causes more probability mass increase 

in the error set, especially in the (important) error region close to the threshold t. 

Note that in Figure 4.6(a), a significant amount of probability mass has been spread 

in the negative y-axis direction — the “wrong” direction by the variance scaling. 

Figure 4.7 shows the variance scaling for the above n =  2 example by which the
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Figure 4,7 Dimensionality effect of variance scaling.

probability mass is pushed out of the origin in “all” directions. Clearly, as in the 

one-dimensional case, only part of the probability mass really goes in the “right” di

rections and ends up in the error set. As the dimension increases, there will be more1 

and more wrong directions. This explains the rapid decrease of efficiency for uniform 

variance scalings, i.e., the dimensionality effect, documented in the literature as well1 

as the discussion followed (4.13). Even with the non-uniform variance scaling, which 

is equivalent to the n == I case, mean-translation biasing is still more efficient as seen 

from Figure 4.6.

It is also important to notice from Figure 4.6(b) that the mean-translation bi

asing is signal-dependent. If the transmitted signal is the other polarity (e.g,, T l)  

and hence the error set is E(x)  =  (—oo, — t] instead of [t, oo), then the probability 

distribution should be moved toward the negative y-axis. In general, because the er

ror set E(x)  and thus the dominating point is strongly signal-dependent, the optimal 

mean translation has to be tailored for each x. In contrast, the variance scaling is 

independent of the transmitted signal as is obvious from Figure 4.6(a). (As noted 

in Section 1.2, we can still have signal-dependent variance scalings. But because of

W-



Y(t) = Gaussian 
noise

Figure 4.8 A matched filter example.

biasing conflicts, the optimal variance scaling can’t be used and hence the biasing can 

only be sub-optimal.)

In summary, the optimal mean translation has a much higher efficiency gain than 

the variance scaling, especially at a high SNR and/or a large n. But because of its 

signal dependency it is also more difficult to implement and computationally more 

costly in making each decision (due to the need of computing the dominating point for 

each x). In the next section, we will see that this disadvantage of mean translation can 

be reduced. When the mean-translation biasing is used in conjunction with the event 

simulation method, its efficiency can be boosted by also biasing the signal distribution 

which is called the conditional importance sampling technique. This “signal biasing” 

can not be used in the stream simulation where the variance scaling has been mostly 

Mised,' _/ V-v”/ c : ' ---V

We now use a simple example to illustrate how the model dimension issue impacts 

the problem of discrete-time modeling of a continuous time system. The optimal m^an 

translation and uniform variance scaling will be compared. The dimensionality effect 

of the variance scaling will be shown. Figure 4.8 is a receiver block diagram of a binary 

baseband communication system. The matched filter impulse response function /)’($) 

is matched to —x(t), i.e., h(T — t) oc where x(t), the transmitted signal, is

a pulse of duration [0, T]. Assume that Jq h(t)2 dt =  I and Jq h(T — t)x(t) dt <; 0.

-  •;
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Suppose that we are interested in estimating the decision error probability P7(Z) >  0) 

where the decision statistic is the convolution D =  h(T — t)(x(t)  -f Y(t))d t  and 

Y(t)  is a white Gaussian noise process with power spectral density Nq/2. Define 

£ — (Jq h(T — i)x(t) dt)2 to be the received signal energy, bet 7 =  2£/N 0. Then 

the exact expression for the decision error probability can be found, which is P7(Z) >

0) =  Q(VtT)-
For the purpose of simulation, a discrete-time model can be obtained by first 

approximating Y(t)  with Yn(t) where Yn(t) is a bandlimited white Gaussian 

noise process with power spectral density N qT  J{2n£) and bandwidth n/2T.  (Recall 

from Section 3.1 that infinite bandwidth white noise can not be sampled directly.) 

Then the discrete-time noise samples Y k -  Yn(kTJ.n),,k =  I , .., n, are i.i.d. zero mean 

Gaussian random variables with variance a 1 =  (2£-/Na)'‘1y~1-, Neixt, we approximate 

the convolutional integral as a finite sum. Let a =  Jq h(T t)x(t) d t / \ f £ , n =  the 

number of samples in the interval [0,T], and A  — TJn be the sampling period. Then 

we get

f  h ( T - t ) ( x ( t ) + Y { t ) ) d t
Jo - , ;

«  J S  a +  V
jk=i -V- * ■, : ;

=  V £ \  a +  £  J - h(T Y fc 
I a=i * n

The above approximation leads to a linear discrete-time model of the form £(y) — 

a +  b*y where b* =  y ^ A (P  — kA).  This is precisely the format of the linear system  

example in the last section except that the signal factors have been simplified because 

here we are considering only a fixed transmitted signal x(t). We will also make one 

more approximation. Notice that I3a=x( \ /^  ̂ (P A:A))2 «  J07 h(T — t)2 dt =  I.

We will set b* oc h(T — ZA) where the constant of proportionality is set so that 

||b||2 =  YJk=I H =  V Provided that x(t) and h(t) are lowpass, these approximations 

are insignificant for large n. The reason for this normalization is that P7(Y  € E) =



P-y{D >  0), that,is, there is no modeling error introduced by the discrete-time model. 

(Of course, this is only true because of the linearity of the problem;) Finally, notice 

that the dominating point is, from the example in the last section, v  == b, and hence, 

||v ||2 =  I for all n. ' v.

Figure 4.9 compares the computational costs of three estimators for various values 

of the model dimension n. Z i(7 ) is plotted, but for any e >  0 we can easily compute 

X£(7 )  =  Z i(7 ) /e 2. For the plotted range of 7 , 4 to 16 dB, the probability P-y(D >  0) 

ranges from 5.6 x lO-2 down to 1.4 x IO-10. The three estimators are the pure mean 

translation (v* =  v  and C* =  7 - 1I) which is denoted MT, the optimizedCIS (v* — 0 

and C* =  c77 - 1C^0), and the unbiased Monte Carlo (v* =  0 and C* =  7 - 1I) which 

is denoted MC. By optimized CIS we mean that the scaling factor Cy has been 

numerically optimized for each 7  <  00. In some cases this could be substantially 

better than the asymptotically optimal solution C7 ~  y/n .  In contrast, the mean

translation in Figure 4.9 is the asymptotically optimal Solution v.7 v , which is

close, but not identical to the finite 7  optimal rhean translation which  ̂is derived 

by Lu and Yao in [36]. We also remark that the performance of Davis’ non-uniform 

Variance-Scaling scheme [13] is equivalent tp the n =  I CIS curve for all n. Apparently, 

while the mean-translation suffers from no dimensionality effect, the computational 

cost for CIS increases exponentially. At large n, the performance of CIS is almost no 

better than; the^ordinary Monte Carlo method.

4.3 Conditional Importance Sampling

So far, we haven’t talked much about the signal inputs x  except it was defined 

at the beginning of this chapter to represent “anything else but noise’’ that have im

pacts on the output decision. We will keep this vagueness in this section to develop 

the general concept of conditional importance sampling. The Context of x  is system- 

dependent and will not be fully clear until we formally introduce the event simulation 

method in the next chapter. In this section, we will fit
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Figure 4.10 Event simulation vs. stream simulation.

into a conditional mean estimation environment and introduce the conditionaliihppr- 

tance sampling technique which links the mean-translation biasing of the noise with 

the signal biasing.

The following example provides a motivation for developing the conditional im

portance sampling. Also, we will be able to be a little more specific about X/ whi 

may clear some cloud over the discussion we have had in this chapter.

Ejtarnple 4.2- Z „

Let us revisit the simple example in Section 1.2 which illustrates the differe 

between event simulation and stream simulation. Figure 1.3 is redrawn here for relje: 

ence. Recall that in the event simulation we put Xi  =  —1 and Z =  (Xo5- I 5Io5 

The bit error probability is Pb =  P(£(Z) > 0 ) .  Instead of generating L sets of Li 

random vectors Z ^ \ l  =  I , . . .  , T 5 and directly estimating Pb as is done in (1.3), 

can first partition Pb as follows.

Pb  =  P ( t (  Z ) > 0 )

pee  

:r-

W-
•d.

we



=  E P U ( Z )  >  ()|Xo =  xo)Pxo(xo) ' : (4.14)
xo . . • ■■ ..... ■:

= i-P(«Z)>0|A:„ = l) +  ip « (Z )> 0 |A -„  =  - l ) ,  \

where Pjr0 Uo) is the marginal probability mass function of the random variable Xo- 

We have assumed that Pjr0(Xo =  I) =  Py0(X) =  —I) = 1/ 2. Suppose that Io and Tj 

are i.i.d. zero mean Gaussian random variables with variance a 2. Then the random 

variable £(Z) =  —1 Y-Yx +  A(Xo +  To) has a conditional mean (—1 +  A) if Xo .== I 

and (—1 — A) if Xo = —1. Apparently, if A > 0, we have PU(Z) — 0|Xo = I) > 

P { i { Z) >  0|Xo — —1). That is, some “ISI patterns” are more likely to cause a bit 

error than others. In the language of importance sampling, the error event {^(Z) >  

0, given X 0 =  1} is a more important error event than {£(Z) >  0, given Xo =  —1}, 

It is then natural that we would like to devote more of our computational effort to 

the estimation of dominant terms of Pj,, which is P(£(Z) >  0|Xo =  I) here. This can 

be done by biasing the probability mass function of Xo such that Xo =  I would be 

sampled more often. The biased probability mass function can be PJ^ (Xo =  1) =  

p >  1/ 2. Similar to (2.6), (4.14) can then be rewritten as

n  V I ’m . :  > 0 a, . /•;.

After sampling Xo, we have the system signal inputs x  =  (x0, a;x) and Gaussian noise 

inputs Y  =  (To, Ti) which is exactly the formulation of Section 4.1 and the optimal 

2-dimensional Gaussian mean-translation simulation density can be applied to the 

noise inputs.

We now formally introduce the conditional importance sampling. Consider Fig

ure 4.1 except now we also let the signal inputs be a random vector X . Let (X , Y ) be 

jointly distributed as specified by the conditional density /Y |x ( ' |x ) and the marginal 

density /x (-)-  (We use the term “density” in a generic sense. In our application, Y  

will be a continuous random vector while X  will be discrete, so fx(' )  will actually be 

a probability mass function.) We wish to estimate a  =  E[</(X, Y )]. As in Chapter 2, 

the special case #(•, •) = T fi(T )I  he., the decision error probability is what we are



most interested in. Often, it is convenient to think of this joint expectation in terms 

of the successive conditioning formula a  =  E[^(X)j whefe /0(x) =  E[^(x, Y ) |X  =  x]. 

Successive Conditioning suggests the “conditional importance sampling estimator” 

described as follows [5]. Independent samples X ^ ,  Z =  I, , . . ,  Zor5 are sampled 

from a marginal simulation density / x ( -) For each fixed Z, (conditionally) inde

pendent samples Z' =  I , L y , are sampled from the conditional simulation

density /y |x ( '  P ^ )'«  ^  will be convenient to denote these samples as one big vector 

ZF) =  (Y^-1) , . . .  For each £ — I, we compute a conditional estim ate 

(4.15)=  —  £  5 (X w ,Y ^ ' ) )  u;y |x (y (̂ ' ) |X w )
-Lj Y  i'zz l  . .  ' V  '

where h^p£:(y|x) =  /Y |x (y |x ) / /Y |X(y |x )- It is easy to show. that

" E V [d (x ^ ,Z W )|X w ] = E’ ^X^^Y^^doYixCY^^lXWjlXW]

=  /?(XW), <4:16}

i.e., /3 is an unbiased estimator for the conditional expectation /? ( x ^ ) .

^he estimator fbr a  is

1 £  /?(X<*\Z<'>) u>x(X<*>)
■x''!v'

-jX j - \
( 4 -1 7 )

X X;

where u>x(x) — / x ( x ) / /x ( x )- Again, we have an unbiased estimator:

X - X E ' p ]  =  E-p(X,Z)tox(X)]

=  E* [E tP (X 1Z)t0x(X)IX]]

X  =  E* [ Uix (X) E*p(X,Z)|X] J =  a.

Notice that the total number of samples is X ==Jjx L y .

Proposition 4: The variance of the estimator (4.17) is

var* [a]
Lx Ly

(hi +  LyV 2),

(4.18)

(4-19)



where

vj. =  E* [ var* [fi?(X, Y )u;Y|x (Y|X)|X] u,x (X )2 ] ; (4.20)

and • v. ,

u2 == var* [ /?(X)u>x(X) ] • (4.21)

Proof: Since the pairs (X ^ , Z ^ ), I =  I, .., Lx,  are i.i.d. random vectors, it follows 

that var*[d] =  var*[j0(X,Z)u;x(X)]/Lx . Next we have

var*[/?(X, Z V x (X )]

=  E- [var-[/5(X ,Z )w x(X )|X j] +var" [ E *[^(X ,Z )w x(X )|X ] J 

=  E ' [ t t i ( X ) w * 0 ( X ,  Z)|X] ] + var’ [ W x(X )E -I^X , Z)|X] ] .

The second term in the last summation Can be reduced to var* V x(X )/3(X )] =  V2 by 

(4.16). Furthermore, because Y ^ ’V - . . ,  Y ^ ,Ly  ̂ are conditionally independent given 

X ^ , var*[/3(X, Z)|X] in the first term is simply

var-[^(X ,Z )|X ] =  j -  var*[9(X ,Y )w Y |x (Y |X )|X ],

Therefore the first term is Ui/Ty.

W ehaveused inth ep roofacon dition alvarianceform ulaw hich is

var(/(X , Z)] =  E [ var[/(X , Z)[X] ] +  var [ E [/(X , Z)|X] ].

This can be shown as follows. We have

var[/(X , Z)] — E [/2(X , Z)] — (E [/(X , Z)])2

where

E (/2(X ,Z )] =  E [ ELf2(X 1Z)IX] ] '

=  E [ var[/(X , Z)|X) ] +  E [ (E (/(X , Z )|X ])2 ] .
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The second term in the last equation can be expressed as

E [(E [/(X ,Z )|X ])2 ] =  var [ E [/(X , Z)|X] ] +  (E [ E[/{X , Z)|X] ])2

=  var [E [/(X , Z)|X] ] +  (E [/(X , Z)])2

which completes the proof.

In Section 4.1, we have considered the optimization of the estimator by minimi zing 

Le of (4.2) via the minimization bf the one sample variance. We now have 

parameters to select: Lx  and L y , Qpe might first think that we should set 

Sufficiently large so that each (X ^ , Z^^| fqrins a precise estimate 6f the conditib] 

expectation However, it turns out that this is not a good strategy. Supp'

that we want to select Ly  to minimize var* [a] =  (v\ -f Lyv2) / (L xL y)  for a fi: 

total number of samples L =  LxLy.  Clearly, the best choice in this sense is Ly  

because both tq and tq >  0.

More generally, the choice of Ly should be influenced by per sample computatio: 

cost. Let Cx and Cy denote the costs of sampling and computing the associ 

weighting functions for single samples of, respectively, X ^  and Y ^ 'K  Then 

total cost is C =  Lx(Cx  +  L y C y ). We should set Lx  and Ly  to minimize C  sub je 

to the precision constraint var* [a] <  e2a 2. That is, Lx  and Ly  are solutions to t 

constrained optimization problem:

min Lx (Cx +  L y Cy)  

subject to (vi +  LyV2) / (L x L y )  <  e2a 2.

Applying the Kuhn-Tucker conditions [35], we have the following linear system equa

tions

" M V L y C y  -  X L y t 2Oi2 =  0 

L x C y  +  X(v2 -  L x t 2Oi2) =  0 

Uj +  L y V  2 — L x L y t 2Ct2 =  0
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where A is the Lagrange multiplier. We thus get

Ly Cxv  i
CyVi

( £ 22)

Lx =
I

C2C t2
(Vil Ly  +  U2) (4.23)

Note that Ly does not depend on e.

As a practical matter, the solution (4.22) cannot be used to numerically set L y . 

While computational costs Cx and Cy can be determined experimentally, we will not, 

know the factors U 1 and U 2 which are constants once we have Selected the simulation 

densities / x ( 0  and fy \x( '  Ix )- (Although we can empirically estimate them, no good 

strategy has been found which can effectively determine the ratio C x /C y  for the 

purpose of setting Ly.)  In our application to coded digital communication systems 

the cost ratio C x I Cy will be usually large (e.g., 100) due to the computation of

the optimal mean translation, hence, setting Ly >  I will be justified. For uncoded 

systems, the difference between Cx and Cy narrows (e.g., C x /C y  ~  10°). We will 

have a more concrete idea about Cx and Cy in the examples of Chapter 6. In any 

cases, we should not be tempted subjectively set Ly extremely large because of the, 

square root in (4.22). Once Ly is set, from (4.23), the required L x  depends on the 

standard error c and a , or empirically, on the relative precision e and the estimate a.

There is also the issue of selecting the simulation distributions as represented by 

/ x ( - )  and / y |x ( -  | x ) .  The minimum total cost, using (4.22) and (4.23), is

C m in  «  ~^2~2 { \ J v ^ C y  +  \ f V2CX^j ■

Therefore, we should choose /x (- )  and fy \x('  Ix ) to minimize U 1 and U 1 .  See (4.20). 

The latter density impacts only U 1 ,  and, regardless of the choice of /x ( - ) ,  is min

imized by minimizing the conditional variance var* [<z(x, Y )iuy|x (Y |x ) |X =  x] for 

each x. In particular, if Y  is Gaussian distributed then the biasing Strategies devel

oped in Section 4.1 apply directly to the design of the conditional simulation density 

/ y |x (' Ix )- Next, consider the selection of /x (- )  which involves joint minimization 

of both U 1 and u2. The factor U 2 is just the variance expression that one would



have for estimating a — EO (X )], and hence, to minimize this factor we should seek 

a simulatidn density that Approximates / x ( x ) °c. /3(x)/x(x). Minimization of v\ 

is not so dear because this factor also depends on our choice of / y |x (* Ix )* How

ever, if we have done a good job selecting / y |x (’ lx )> then the conditional variance 

var*[gf(X, Y )tuY |x(Y |X ) |X] will be roughly proportional to /?(X)?. In the case of the 

exponentially efficient Gaussian simulation schemes developed in Sectibn 3, for ex 

ample, the exponential factor (as a function of the SNR parameter 7 ) of the variam 

does in fact satisfy this proportionality. Thus, ui is approximately proportional 

E*[/?(X)2u;x(X )2] which is again minimized by / x ( x ) oc /? (x )/x (x ).

Finally We remark that we may estimate the empirical precision of our estimates 

using a sample variance estimator as in Section 2,2. Since Z ^ ,  I — I ,.. ,  L x ,

are i.i.d., an appropriate estimator for var[/?(X, Z)u;x;(X)j is

.2'
S 2 =  E  /5(x W ,ZW )2u;x (x W)'' 2 (4.24)

And the variance of the estimator (4.17), var[a] is estimated by S 2 JLx •



5. EVENT SIMULATIONS AND AWGN CHANNEL EXAMPLES

. ;

5.1 Event Simulations for Uncoded Systems

In this section we will discuss the event simulation method for uncoded systems 

and channels with memory. This method was originally presented by Lu arid Yao 

in [36]. It is, in fact, simply an enlarged version of the event simulation we have 

described in Section 1.2. Consider a baseband binary digital corrimunication system 

with memory as shown in Figure 5.1. This is also the system model used in [36] and 

by Shanmugan and Balaban in [53]. We use this simple system model to illustrate the 

formulation of the event simulation method. Its generalization to more complicated 

systems will follow.

The trarismHfecl signal in Figure 5.1 is X(t)  =  J2k Xk p(t — fcT), where Xk takes , 

on the value T l or -I with equal probability (this equal a priori probability actually 

is not required), p(t)  is a rectangular signaling pulse over the duration [QvT] and 

T  is the signaling period. The additive noise process Y (t) is a white Gaussian fioise 

process with zero mean and two-sided p.s.d. N0/ 2. The sampler output 7?* is obtained 

by taking orie sample every J1 seconds from the system output waveform R(t). The 

decision device then decides on Xk by imposing some decision rules on Rh.

X(t)
U-)

R(t) X̂

Y(t)

Figure 5.1 A binary communication system with memory.
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To simplify present discussion, we assume that th esystem is linear SO that we can 

represent the above contiriuous time model with only one sample per signaling interval 

T  for both the signal and nOise. Therefore, the signal samples can be represented by 

the sequence {X*;}. The discrete-time system with memory incorporating the effects 

of all the relevant filtering and the sampler can be modeled by

Rk  I , • • • , jCk—(n —I) ? Yki f̂k- i  r • * • ? ^k- (M )

orywhere £(•) is the discrete-time system response function, n is the system mem 

length and {Y/t} are i.i.d. noise samples with zero mean and variance cr2 == No/2.

Equation (5.1) is really the format we only need for deriving the event simida- 

tion method. Any uncoded communication system whose decision statistic can be 

expressed as a function of the current data sample plus the ISI samples and the 

noise samples can be simulated in an event-simulation fashion. If the system is time 

invariant, a more general formulation than (5.1) can be written as

( ( X . Y ) .  V \  ; > ■ (5

where: denotes the currentdata sample a n d ( X i 1 < .  ̂ is called an tfISI -J>at-

tern” which is the influence on /(! coming from adjacent signal samples. Note that this 

representation has also removed the causality implied by the time indices in (5.1), 

hence the system can have honcausaTfiltering. The random variables {AT}, {Tfc} and 

f? Can be complex, and the dimension of X , m, need not be the same as that of Y , n, 

i.e., the signal memory does not have to be equal to the noise memory. The latter sit

uation may happen when, say, p(t) is a partial-response function or the noise process 

is not added to the signal at the same point in the system, that is, they go through 

different filtering; Furthermore, if £(•) is nonlinear, we may have many samples per 

transrhitted symbol. In that case, every AT (and Yk) is itself a vector.

AVe now work on the general form (5,2). The ideas of the event simulation niethOd 

and the conventional stream simulation method depart from here. While the stream

•2)



simulation sequentially generates R k  as in (5-1), the event simulation can be consid

ered as taking only a snap shot at (any) one decision statistic. Suppose that Xo =  Xq 

is transmitted and the decision rules are such that an incorrect decision on Xq will be 

made if R  € E(xo) =  E, where E  is the decision error region of x q . Then the decision 

error probability P  =  P (R 6 E\Xo =  xo.) =  Je fR\x0(r \xo) dr can be expressed as

p  =  P M x , Y ) e E \ x 0 =  x0)

=  J  l£  (C (x ,y))/x ,Y !X o(x,y |x0) dxdy (5.3)

=  J 1B ( f (x ,y ))  /x |X o(x|xo)/Y (y) dxdy  (5.4)

^ J  J 1E (£(x0), y)) / y (y) dy (5.5)

J J=1

where the first component of x b l j  =  I 5. . . ? J i is Z0, and

F (x (j)) =  y  Ie (^(x0 ),y ) ) /Y |Xo )(y lx0))d y  

=  -.-E.[1b (^(xw ,Y ))  |x^}]

=  e JIb U(XVY)) |x « ]  (5.6)

is the conditional decision error probability given a specific ISI pattern X  =  x*Jb We 

have assumed that fx,Y\x0(x ,y |x 0) =  /XIX0(x Is O)Zy (X), be., the signal and noise 

samples are independent, and that all of the ISl patterns (total number =  J) are 

equally likely and therefore /x |x 0 (x ls o) =  I /J-  For the earlier binary system example, 

we would have P  =  Pf, and J  =  2 m̂_1Z

Lu and Yao’s importance sampling event simulation then empirically estimates 

(5.5) by the following estimator:

r J l/j
^  =  r E E ^ ( « x (' W M ) ) WY( Y W) ) ,  (5.7)

^  J = I.' tel '
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where ury(y) == / y  (y )/ J y  (y ) -is- the IS weighting function and Y ^  is the £th sample 

of the noise Y  for each of the N /  J  simulations conditioned on each xtd sample of X . 

We note that E*[P*] =  y E j - i  P ( x ^ )  =? P,  be., P* is an unbiased estimator of P.

In the importance sampling simulation of theform (5.7), only the marginalnoise 

density function /Y (Y ) is biased. Recall from Section 4.3 that we can bias the 

marginal signal density function fx\Xo(x \xo) in (5.4) too. The advantage of having 

a signal biasing is twofold. Firstly, recall from the discussion following (4.14) that 

Some ISI patterns X  — xf-7/  are more likely to cause a decision error than others. 

That is, see (5.5), those have more significant corresponding conditional decision 

error probabilities P ( x ^ ) . Therefore, we can design a signal biasing fx\x0 (x l^o) to 

“encourage” the generation of more of these “important” ISI patterns. As long as 

we do this in a reversible way as we do for the noise distribution, we Can make use 

of our computational resource more efficiently. Secondly, if the total number of ESI 

patterns (J) is a large number, which is the case for most practical systems with 

memory, the number of simulation runs, L/  J,  devoted to each conditional decisi on 

error probability will be small, or conversely X must be large. In this case, similar to 

the noise, we should randomly generate an ISI pattern in each simulation run rather 

than distributing the total number of simulation runs evenly among all possible TSI 

patterns. Thus, if we can bias the sampling of the noise, there is no reason why we 

can’t do so to the signal. (Signal biasings have not been a common practice in the 

importance sampling literature, Or for that matter, any simulation study, This is

because the conventional stream simulation method has been the norm for which the
C _ T' V ; ”JV v : ' ; ' " ' V T  - T ;  ■ ' Vv  ■’ ; . ; :y -■ ;:■■■■■.. ■ : V '
signal biasing is not very productive. As mentioned in Section 1.2, the biasing

signal or noise in the stream simulation environment would create biasing conflicts 

due to correlated decision statistics in successive simulation runs.)

Looking at (5.3), one might immediately think of a straightforward form of esti

mator which incorporates the signal biasing. That is, we employ a joint simulati 

density fx,Y\x0 (x >yko) =  fY\x,x0 (yfx > xo}fx\pCop^X6^ an^ the estimator Which em

pirically evaluates (5.3) becornes



P- =  J  E  I e ( « X « ,  Y<'))) wxi*  (X w Izo)WYix1Xo ( Y « |X W ,i0)

where

(5.8)
£=1

/,,I*. \ /x|X„(x M  
^XIXo (x Fo) =  --------------- - “

fx\X0(X\ Xo) J f k  IXa(x Ixc)

f y ( y )

; V:

are IS weighting functions for signal and noise respectively. (Note that if a signal- 

independent noise biasing is* used, we would have / y |X ^o(y |x , ^o) — f ^ i y )- However, 

we have demonstrated in Chapter 4 that signal-dependent noise biasings generally 

yield higher efficiency.) Therefore, in each of the L simulation runs, we randomly 

generate a signal sample X ^  and a noise sample from the biased joint den

sity function /x ,Y |X o (x >y|x°)* It is easy to show that P* is an unbiased estimator: 

£*[-£*] — E [If; (^(X, Y )) |X0 == X0] — P .

Equation (5.8) actually corresponds to the Ly — I case in Section 4.3 where 

we have shown that Zy =  I may not be the optimal choice to minimize the total 

computational cost. Hence, the appropriate formulation for this problem is exactly 

what we have presented in Section 4.3, i.e., we want to estimate

P  =  E [ l i ( < (X ,Y )) IX0 =  X 0 ] =  E '[E [ls tf(X ,Y )) |X ,X 0 ==Zo]], 

The estimator is therefore the combination of (4.15) and (4.17):

T i- Z  " x . . v ,  ( X ^ k o )  x
1=1

(5.9)

I  l j Y

Ly Y 1E (^(Xw , Y ( f / ) )) tUYiXXo (y (v ,)|X (̂ ,x0) >. (5.10)
I1 = I

The proof of the unbiasness of (5.10) proceeds as in (4.18) and we omit here.

Since Yk1 k =  I , . . . ,  n, are conditionally i.i.d. Gaussian random variables, the 

optimal Gaussian simulation density obtained in Section 4.1 applies readily to the 

design of /YjX1X0(y Ix =Fo)- The choice of / x |Xo(x |zo), as discussed in Section 4.3,



and

Pe =  Y  E [P (X  +  e|X)}
ê O,eGC

n  I  >2 i j/'.x  - « .x;;

(5.

e

e

e

ar

as

should be proportional to /5(x)/x|^0(x|x0) == P (x ) /J  where /?(x) = P(x) is 

conditional decision error probability defined by (5.6). P(x) is unknown, but, for th 

purpose of designing /& |X0(x lxo) we Gan obtain an approximation by appealing to th' 

ideal channel behavior. Examples of optimal designs for /Yix^pCylXy^o) for lin€:, 

systems can be found in Lu and Yao [36]. The design of /Y[X,Xo(ylx ’^0) as weU 

/x|.v0(x l-To) for a more general case — nonlinear systems with memory will be giv 

in Chapter 6 via the example of an MSK modulation operating Oil a satellite chann

5.2 Event Simnlations for Trellis Codes

5.2.1 Event-SimulationEstimator

Recall from Chapter I that in the stream simulation of a Viterbi decoder, the de 

coder’s branching decisions are correlated which includes scattered error events and 

intervals of correct paths lying in between. The bit error probability Pb is easily 

estimated by the relative frequency of erroneous decoded Mforrnation bits. Accompa

nying with this simulation method, however, are the diminishing dimensionality effect 

When the importance sampling technique is applied and the difficulty to compute the 

estimator’s variance.

Similar to the development of the event simulation method for uncoded systems 

in the last Sectionil let us do some analysis on the decision error probability before 

jumping to the intuitive stream simulation. (The whole idea of an efficient importance 

sampling is to construct an analysis-based simulation and the analysis will pay o:T.) 

In Section 3.2.2, we have demonstrated that the first event error probability Pe and 

the bit error probability Pb for a trellis code can be expressed as (3.1) and (3.4) 

respectively which are rewritten as

I)



where we have moved the expectations (with respect to the random signal selector 

sequence X ) inside the summations assuming that the infinite sums do converge. 

Also, the random variable N;,(X, X  +  e) in the summand of (3.4) has been replaced 

by rib(e) due to the linearity of the convolutional code. Note that (5.11) and (5.12) 

are also true for block codes. Thus, most of the following discussion also applies, at 

least in principle, to block codes.

See (5.11) and (5.12). It is logical for us to suspect that there are some sig

nal selector error sequences e whose corresponding “expected specific decoding error 

probability” E [P(X  +  e|X )] =  P (e  is decoded) are the dominant terms of the values 

of Pe and Pt,. That is, some error sequences are more likely to be decoded than others. 

Hence, it would be nice if we can estimate Pe and Pb by identifying those “important” 

e ’s and summing only their estimated E [P(X  +  e|X )]. This will inevitably introduce 

an estimation “truncation bias.” But we will show that if the pool of e  is large enough 

and/or the SNR is high, the truncation bias will be negligible.

For regular codes and the AWGN channel, the task of identifying important error 

sequences e is relatively easy. Recall from Section 3,2.1 that for regular codes, the' 

Euclidean distance between two codewords depends only on the Hamming distance 

between their input information sequences (or signal selector sequences if the discrete 

encoder is linear). Also, on the AWGN channel, the Euclidean distance between two 

codewords determines the likelihood of decoding one codeword while the other one is 

sent, using a maximum likelihood decoder. Hence, P (X  -f  e[X ) P (e |0 ), where 0 is 

the all zero signal selector sequence, and thus important error sequences are those e 

with small Hamming weights (number of non-zero bits).

For non-regular codes, the Euclidean distance between two codewords depends 

not only on the Hamming distance between them but also what the two codewords 

actual are. Furthermore, for channels with memory, P (X  +  e |X ) depends also on the 

ISI pattern, i.e., adjacent signal selectors. Thereforepinstead of looking for important 

error sequences e, we need to find important error sequence and signal selector pairs,

89



90

(x, e), with x  taking into account the intersymbol interference. To do this, we require 

more general and explicit formulas than (5.11) and (5.12).

Let and M+ denote the “backward” and “forward” memory lengths respec

tively of the channel, measured in numbers of symbol durations T. More specifically, 

because of ISI, the demodulator output symbol Ru is affected by signal selectors 

(AT—M-, • , Xk+M+ )■ The total channel memory length is;thus MT= M~  +  M +. We

allow M~ ^  M + here and in the simulation program for sake of generality. If the 

system is Causal, we have M + =  0 ,  and hence Rk depends only on the Current and 

Af-  previous signal selectors. For each I =  1 ,2 ,.v. ., Iet X(I)  denote the set of signal 

selector sequences of length f  +  M  beginning in a random initial state at trellis stage 

Jc =  —M~.  Consider a fixed error sequence e of length f(e). The expected specific 

decoding erfdr probability E fPfX  +  e]X)J for e can be expressed as

" decoded) ■ : •

[*{e is d eco d ed }^ ’^ )]

: == %  [Ev [l,e is decoded) A y )!*]]

= K* /'(<• is- !!.-.-....!.-IlIixJ

==' E  P(e  is decoded|x)P-j^(x)

’ E  Ffx + e|x) 2 - W +a/) ' ' -  ^1-^(5.
*€*(/(e))

the
M)

where Y  is the Gaussian noise samples vector. We have used a subscript for 

expectation to indicate the underlying probability measure. The factor :2- *We’)+ 

is just the marginal probability P (X  =  x). The single term probability P(x  +  e 

ih (5.13) is determined by the Gaussian noise distribution, and, since the Viterbi 

decoder has a random decoding delay, P (x  +  e|x) is also averaged with respect to the 

“tail sequence” Y qe)+M++is AT̂ (e)+M++2, - • •• More precisely,

F(x +  e|x) = E [ P (X  +  e |X ) |X  =  x



where X  =  (X1 _m - ,  • • •, X^e)+M+) £  X(£(e))  is a finite subsequence pf the infinite 

sequence X . Combining (5.13) and (5.12) we have

P1 =  E  E  ^ C ( x  +  e | i ) 2 - ‘W')tM>.: (5.14)
eec xeA'(qe)) b

For a fixed e, it will be convenient to write X  =  (X " ,X , X + ) where X -  =  

(X 1̂ jv/-? Xo)? X  — ( X i , . . . . ,X /(e)), and X + =  (Xqe)+i i • ? • » ®qe)+M+)- In the 

case of a memoryless channel, i.e., ho ISI, we have M  =  0 and X  — X.

We are now ready to design an event simulation based bn the expression (5.14). 

Define I? =  { ( e ,x )  : e € C and x  € X(^(e)) } . Let P*, .̂ ( e ,x )  be a discrete distribu

tion on T>, and let (E ^ \ X ^ ) , £ == I , . . . ,  Lx,  be independent samples from P^ ^ (e , *-)• 

The estimator of Pt which evaluates (5.14) is

Pi, = y -  Y  P (X w +  EW|XW) ^Eix (e w , x w ) (5.15)

where

uE1X
tfc(e)2-b(e(e)+M)

6 ^ , x (e ,x )

is the importance sampling weighting function for the signal X  and error sequence E , 

and P(XW  +  E^)|XW) is a conditional estimate of the first event error probability 

given ( E ^ \X W), P ^

/>(XW + E«> |X « ) = E g  i „■ is deeoded) ( x « ,  x
■ juY  £ '= l

w Y l E lX  (Y (y  l IEw 1 X (f)) (5.16)

where

^YIE.xlyl6’-̂ )
/ y ( y)

ŷie

It is easy to show that E‘ [p (x  +  e|x)J =  P (x  +  e|x). Hence, provided that 

Pg j-(e,x) > 0 for all (e ,x )  € X>, it follows from (5.14) and (4.18) that E*[Pfc] — 

El* :E*[A[EjXj], =» that is, Pt is an unbiased estimator for Pj. In practice, since



■ ■ '4- ■ 
. ;  .

2>is an infinite set We will have to restrict the support of P g ^ (e ,x )  to a finite subset 

This will introduce a truncation bias. However, if the support of F* ^ (e, x) includes 

the dominant terms in (5.14), then this truncation bias will be insignificant.

The optimal Gaussian simulation density developed in Section 4.1 again applies 

here for / y |e x ( y le > *)• Note that e and x  together decides the error set, and thus the 

error Set notation in Ghapter 4 is really ^E(e, x). Therefore, the optimal simulation 

density Will depend on both the signal x  and the specific error e. The design of the 

s ign a lbiaaihgH g ^ (e ,x ) is more complicated than the uncoded case, especially 

non-regular codes and channels with memory. We postpone its discussion unti 

study some examples later in this chapter and the next chapter.

5.2.2 The Error Event Simulation Method
Tt.

4 -e ;Tb estimate E (x  +  e]x);, which is t̂he probability that the specific error event x  

is decoded While x  is the correct path, a new Viterbi decoder simulation method which 

is error-event oriented is in order. The error event (simulation) method for Viterbi 

decoders developed by Sadowsky in [46] is an answer to this call. For a detailed 

description of this method, the readers are directed to [46]. The advantages of this 

method, as mentioned in Ghapter I and have becom edear through the discussion so 

far, are the independence betweensimulation runs, allowing signal-dependent noise 

biasings, and that the code distance information can be utilized to design a signal 

biasing to further speed up the simulation.

The error event, simulation method for Viterbi decoders can be summarized as 

follows. First the decoder is initialized in a known state, randomly selected e 

time, at time index (stage) =  0. This initialization is because we are interested in 

x  +  e is a first event error path which diverges from the correct path x  at stage 0. 

(The X-  part of x  is to simulate the !SI, and since e* — 0,k <  I, we don’t initialize 

the decoder at stage —M~ although x  starts from there.) The Viterbi algorithm then 

proceeds until the first merger of the error event path with the correct path after stage 

0 is detected. We call this a “simulation run.” In the Case that the first branching

for

We

T '  -Th)



correct path

*\trivial error 
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Figure 5.2 Trivial and nontrivial error events in the event simulation

decision is correct, and thus the error event cannot be a first event error, we call it a 

“trivial error event.” Therefore, each simulation run simulates one and only one error 

event. Whenever a trivial error event or the completion of a nontrivial error event

is detected, that simulation run is terminated. See Figure 5.2 for examples of trivial 

and nontrivial error events. Note that the correct path need not be the all zero path.

In this manner, the Viterbi decoder is simulated in an event fashion similar to the 

event simulation method for uncoded systems discussed in the fast section where, by 

conditioning on an ISI pattern, the receiver in each simulation run makes a binary 

correct/error decision. More specifically, the receiver decides in each run if the event 

“test bit error” has occurred. Decisions in consecutive runs are independent because 

different sets of random vectors Y  are used. Here, by conditioning on the correct 

path, the decoder decides in each run whether or not an error event has occurred. 

A trivial error event corresponds to a “correct” decision in the uncoded case, while 

a nontrivial error event is an “error.” The Viterbi decoder also makes independent 

trivial/nontrivial error event decisions in successive runs, again because the use of 

independent sets of random vectors.

Without importance sampling, the simulation runs will consist of mostly trivial 

error events. The objective of IS then is to increase the frequency of nontrivial error 

events, more precisely, to cause the particular nontrivial error event x + e . In the event 

sinaulation for a binary uncoded system, every decision error is counted in computing



the estimated bit error probability Pb. Here, the Viterbi decoder has more than two 

decoding options. Some nontrivial error events may not be the desired specific error 

x + e and will be discarded in computing P(x +  e|x).

The independence between simulation runs requires some explanation. First 

though we review briefly the mechanism of the Viterbi algorithm [17, 62, 63]. Con

sider the example shown in Figure 5.3. At every stage, the Viterbi decoder performs, 

for each of the 2" states, ACS (Add, Compare and Select) functions and keeps track 

of the survivor path and its accumulated metric. (A programming trick which can 

reduce the memory size required for storing survivor paths and back-tracing by using 

a size 2" pointer array is given in [46].) The key principle of the Viterbi decoding 

process is that the survivor path for any state at stage k + 1  is a one-branch extension 

of some survivor path at stage k. Note that the decoder does not discard paths en

tering a state with smaller metrics until after the transient stages or when candidate 

paths have reached all states. For the example in Figure 5.3, the transient stages are

Let Tp(i) =  the time that ith branch is decoded =  the time all survivor paths agree 

on the ith branch, J  =  the time of the completion of an error event, and Tm =  the time 

that a complete error event is decoded =  length of simulation run. In the example, 

we have Tp(I) =  Td(2) =  4, Td (Z) =  5, and Tp(4) =  Tp(5) =  Tm =  7, and hence 

J  =  5. The subscripts D and M stand for “decoded” and “merger” respectively. The 

minimum simulation length is Tm =  3 for the earliest possible detection of a trivial 

error event.

Because of the random noise, the first time that the maximum metric path 

merges with the correct path, J,  and the time of the detection of this event , Tm , 

are random variables. Furthermore they are “stopping times” [11]. That is, the 

event { T m  =  t } is measurable by the noise statistics up to time t  +  Af+ . Note that 

T m  is also the time that the decoder decides whether or not the specific error evdnt 

x - f  e has been decoded. Therefore, the decision in the Tth simulation run of llhe 

estimator (5.16) depends only on noise samples, generated by the simulation density



Figure 5.3 An example of event simulation. Correct path =  all 0 path.
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• ^Y| EX^e ’ uP t°  time Tm +  M +. This confirms the claim that simulation 

are independent. Also, it is necessary to generate signal selector Xk and noise sam 

in each simulation run only up to time Tm +  M +.

5.3 Ideal Channel Simulations

In this section* we will put together those principles for efficient IS simulations we 

have been discussing so far — event simulation, conditional importance sampling and 

Gaussian mean-translation biasing arid use two trellis code examples to demonstrate 

the techniques and procedures in carrying put the simulation. The channel model 

will be the ideal linear memoryless AWGN channel, while the nonlinear satellite 

channel with memory case will be covered in the next chapter. Simulation results 

and analytical error bounds will be given.

5.3.1 A Convolutional Code

Consider a 16-state, code rate R =  1/2 convolutional code with BPSK or QPSK 

(with Gray coding) modulation operating on the linear memoryless AWGN channel. 

Figure 5.4(a) shows the discrete convolutional encoder configuration whose code gen

erator is (35,23) [12]. The left-most shift register element 6(1) contains the most 

recent incoming information bit and is also the least significant bit of the encoder 

state index. The 2-bit encoder output Xk =  (£fc,i, £*,2) responding to an information 

bit input Uic is called a code symbol or a signal selector as defined in Chapter 3. For 

notational convenience, we often use quaternary representations for code symbols, 

i.e., (0,0) =  0, (0 ,1) =  I, (1 ,0) — 2, (I, I) == 3. T hecodeV trellis diagram is shown 

in Figure 5.4(b) where trellis branches are labeled with quaternary representations of 

code symbols. The only two dmtn paths are also shown with the correct path being 

the all zero path. By definition, dmtn is the minimum Hamming distance between 

all possible codewords (signal selector sequences). This code appears in Heller and



(a) Encoder configuration.

(b) Trellis diagram.

Figure 5.4 A 16-state, R =  1/2 and =  7 convolutional code.



Jacobs’ simulation study [26] and is known to be optimal for R  =  1/2, 16-state codes 

in the sense that it achieves the maximum dmin — 7 [12].

A. Union Bounds:

As mentioned in Section 3.2.1, this is a regular code. Performance evaluation can 

be greatly simplified by assuming that the all 0 sequence is the transmitted codeword. 

Therefore, letting X  =  0 in (3.1) and (3.4), we have

/ - I - ’ P’feio)
: ' e#0,eeC --.'V r\ .

< 5 2  AdPd
■ ■■ , 4 ~ d m i n  v.-. i'

and : '/W;- u/:

K - ' 2  (5.18)
;;v y:2‘2 -2v ^ / ■ e e C I :  -/V---'... y ° -y; ■■■'• - ' ■ ’ , ’ 1 ■ 2 , ’ v ; v / - •' - ■ y . ; * ■ , _* ‘ ‘ J . ' * ■ J'

< E  Bi Pi,
• d z z d m in  .

where Ad — number of codewords at distance d from 0, and B d — total information

weight for codewords at distance d from 0. The distance measure d here is the

Hamming distance which is a linear function of the Euclidean distance. Pd is the 

probability that e is decoded while 0 is transmitted, assuming 0 and e are the only 

two decoding options, which is an upper bquhd of jP(e|0). Note that b =  I for 

this code. The multiplicities Ad and Bd areobtained by counting the output of the 

modified RC Algorithm which is a list of e such that 7 <  d(0, e) <  17, where d (0 ,e)  

is also the Hamming weight of e. The algorithm takes less 5 mimutes CPU time on a 

SUN SPARC I station to obtain this list. Table 7 in Appendix A shows the beginning 

part of the list for d(0, e) <  10. The resulting distance (weight) spectrum is shown 

in Table 5.1. We will compare our simulation results against union bounds comput 

from this table.
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Table 5.1 A convolutional code weight spectrum.

d Ad B d d Ad Bd

T 2 4 13 176 1324

8. 3 JL2 14 432 3680

9 4 ' 20 15 925 8967

10 16 72 !6 1966 19686

H 37 225 !7 3003 30017

12 68 500 ■ a  a ;

B. IS Simulatioh: ; ;

As mentioned in the last section, we can estimate P (e |0 ) for those important e 

only, which are e ’s with small Hamming weights. See Table 5.1, In the simulation, we 

choose two cutoff distances — dmax =  10 which consists of 25 e ’s arid dmax =  11 for 

which there are 62 terms in the summations of (5.17) and (5.18). For each e, P (e |0 )  

is estimated by (5.16) which is reduced to

^ ' (e l° ) =  ^ :  £  l W (o ,Y » )™ Y|e ,o (Y ('> |e ,o ), (5.19)

where l{e}(0 ,y )n s  the indicator function which is unity if e is decoded when 0 is 

transmitted and y  is the noise vector, and 0 otherwise, The evaluation o fT {e}(0, y) 

in the 7th run is nothing but one execution of the decoding process and checking if 

e is decoded. The variance of (5.19) is estimated by a sample variance estimator of 

the form (2.11), S2(e) /Ly y where P2(e) is

^ ( « )  = T - X  1W  (5.20)
l j Y t = \

Finally, the IS estimator for Pt is
I  d m a x

> • ;  I  E  » ( ' ) H e  |0), (5.21)
e:d(0,e)=dmtn
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Figure 5.5 BPSK and QPSK signal mappings and mean translations.
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and the variance of A  is estimated as 

Est. var*[A]
I dfnctx

(5.22)

=T=''" b ■

v e:d(0,e)=dm,n

The remaining problem is to design the noise biasing /Y |e x (y |e , x ), given x  

and e. Following the formulation in Chapter 4, we need to first find the decision 

statistic D  in terms of the system response function £(•). Recall that the code ra;e is 

1/2, i.e., Xk =  (xk,i,Xkt2)- If Xk is transmitted by a QPSK signal pulse, the signal pulse 

amplitude s(xk) selected by Xk is a complex number, or equivalently a 2-dimensional 

vector. If the modulation is BPSK, Xk is transmitted by two BPSK signal pulses 

hence s(xk) is still complex with the real part s(Xk)1'=  a(x*,i) and the imaginary ]fart 

s ( x k =  s (x fe,2). Both cases can be reduced to an equivalent discrete coding channel 

with s(xk) =  (± 1 ,± 1 ) . Figure 5.5 shows the BPSK and QPSK signal mappings in 

the signal space. Recall from Chapter 3 that the ML metric function for comparing a 

demodulator output symbol r* and a signal pulse amplitude s(xk) is f?e[s(xfc)*rfc] =  

s(xkYrl  +  s(xk)Qr®. Thus, given that x  and x  +  e are the only two decoding options, 

the Viterbi decoder will favor the first event error path x  +  e over the correct pat|h x  

if and only if the decision statistic is
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*(e)'D = Yl (s^Xk +  ek)1 -  S(Xky) T1k +  ( s(xk +.ek)Q -  s (xk)Q)  r £  >  0
A ; =  I

where for the AWGN channel we have Tk =  s(x.k) +  yk- To simplify the following 

discussion, we represent a !’(^-dimensional complex vector by a 2?(e)-dimensional 

real vector and define

s -  [ s ^ i ) 7, s(a:i)g , . . . ,  s(xe{e)Y,  s(arf(e))^]<

S =  [s(a;1 +  e i ) J , s ( a : i  +  e 1) Q , . . , , s ( x €(e ) +  e ^ e ) ) / , s ( ^ (e) d - e ^ (e ) ) ft] <

r i Q i Q I t
y  =  [2/1,2 / i •

Note that with the BPSK or the QPSK signal mapping in Figure 5.5, we have s =  

[ 1 ,1 , . . . ,  I]* for x  =  0. The decision statistic D  can then be expressed as

P  =  £(*> y) =  (s -  s) ■ s +  (s -  s)* y  

-  a(x) +  b (x )f y (5.23)

which is an affine function of y , and hence this is a linear system by the definition in 

Section 4.1. Note that both s and s are treated as constant vectors at this level of 

the simulation.

Therefore, recall from Example 4.1, the dominating point v  =  [w,]2! ^  is

a(x)
V  =

Itb(X)IIT

( S - S ) t S

b(x)

(S - » ) (5.24)
P - S l l 2

which is also the simulation mean vector. Note that the multiplicative factor in (5.24), 

— (s — s )* s / 1) s — s 11 ̂ , is a real number. Furthermore, if ||s|j2 — ||s ||2, that is, a constant 

envelope modulation scheme is used (e.g, an M-ary PSK or an M-ary FSK), we get 

( S - S ) f S ( S - S ) fS I
||s -  s ||2 2 ||s||2 -  2s*s “  2 ’

i.e., the multiplicative factor is always 1/2 in this case. Let, us now examine each 

component of v . Denote s'i and Si as ith components, i =  I , . . .  ,2 £(e), of s and
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s respectively. If =  0, and consequently s(xfc)7 — S2k-i — <§2fc-i and s(xfc)*3 =
■ ■ . v '■ " . . .

s2* =  s2*, we have U2Jt-I =  «2* — 0. That is, the means of the Gaussian; random

variables y k and y k  are not shifted if ek — 0. On the other hand, if e* ^  0, we

have u2*-i =  0.5 * (s(x* +  e k ) 1 -  s(xfc)J) and u2* =  0.5 * ( s ( x k  +  e k ) Q -  s ( x k ) Q) ,

Hence, the mean of yk is one-half the difference between s(xfc +  e*) and s(xfc) in each

dimension. Note that with this biasing the mean of the transmitted signal plus the

zero-mean random Gaussian noise, s + y , has been translated from s to s + v  =  |( s - f  s),

which is the midpoint between the two signal points representing S and s. This is

also true in each individual dimension. Figure 5.5 shows this asymptotically optimal

Gaussian mean translation for BPSK and QPSK. Finally, we remark that the above
. . .  Iderivation and conclusion are not restricted to x  =  0 or <  2-dimensional modulations.

Vi
The non-uniform, signal-dependent mean-translation biasing is therefore

/Y |e ,x (y |e ,x ) =
*=i

where Tm is the random simulation length (the time of detection of a complete first 

event error), and

N  (0.5 * (s (x fc +  e*)1 ^ s(xk)1)  , o-2) , e* ^  0; 

N (0 ,a 2), e* =  0,
fY’\ek,xk(yl\ek’Xk) 

and similarly

f k Q\ ^ S y^ ek' Xk)
N  (0.5 * (s (x fc +  ek)Q -  S(Xfc)*3) , <t2) , efc ^  0;

N(  0,o-2), efc =  0.

For example, if xk =  (0,0) and efc =  (0 ,1), then the probability distribution of the real

part (!-channel) of the Gaussian noise is N {0,o-2), and N ( —l,cr2) for the imaginary

part (Q-channel). As mentioned in the last paragraph* this biasing has the effect
.........................  _ j

of moving the mean of the transmitted signal from s(xfc) =  (1,1) to the midpcjint

between s(xfc) and s(xk +  ek) =  ( 1 ,- 1 )  as shown in Figure 5.5(b). The importance
I

sampling weighting function u>y|e x (y |e ,x )  is simply / y ( y ) / fy\e,x(y  I e, x ) , and since 

f y ( y )  = Uk=I f Y^yDfY^iyk) is a product form density, the weighting function is 

also in product form.



The above mean-translation biasing design can be also derived from a simple union 

bound argument given in Sadowsky [46]. Recall that the goal of IS is to “trick” the 

decoder into decoding the specific error event x  + e. Given that x and x + e are 

the only two decoding options, we don’t have to bias transmitted signal samples if 

they are the same as those of the error event path. For those dimensions in which 

they differ, the variance of a Bernoulli trial is minimized when the success rate p is 

1/2. This explains why we translate the mean of the Gaussian random variable to the 

midpoint. Note that we use this union (upper) bound argument or the binary decision 

statistic D  of (5.23) only to design the noise biasing. In the simulation, the actual 

Viterbi algorithm is performed which admits all possible decoding options. Some 

nontrivial error events will be decoded which are not the desired x + e. Therefore the 

biasing we have designed can be considered suboptimal in the sense that the overall 

“success rate” (of decoding x +  e) will be less than 1/2. In any way, with our event, 

simulation method and the optimal mean-translation biasing, we are not estimating 

an upper bound of P(x T ejx) but just use it to derive the biasing.

See the trellis diagram of Figure 5.4(b). Notice that the two admissible transition 

branches leaving a node always differ in two bits, i.e., it is either the pair (0,1) and 

(1,0) or the pair (0,0) and (1,1). Suppose that e* =  (0,1). Then, see Figure 5.5(b), 

with the mean being shifted to (1,0) — the midpoint between s(x-k)  =  (1,1) and 

s(xk +  Ck) =  (I, —I), the chance of that branch being decoded as .e* — (1,0) is much 

smaller then e* == (0 ,1). (This is particularly true for a high SNH and/or a long error 

sequence.) Therefore, although the Viterbi decoder has many decoding options, it 

can be predicted that approximately 50% of the decoded error events will be trivial. 

And with high probability the remaining 50% will be the attempted e. In simulations, 

it is verified that less than 5% of the total runs result in nontrivial error events other 

than e for SNR >  5 dB.

The simulation algorithm can be described as follows.

The IS Simulation Algorithm for a Regular Convolutional Code:
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•  Input: Convolutional encoder configuration, SNR, number of simulated error 

sequences and L y .

•  Output: P*(e|0) for all simulated e, percentages of desired error events decod'

P6* and relative precisions for estimators.

•  Method:

I. Construct tables containing trellis diagram information

file

7.

2. Read error sequence e, length /(e ) , and weight nt(e) from the data 

obtained from the RC Algorithm. If all e ’s have been simulated, go to

3. PutZ =  O.

4. Z =  Z rf-1. If Z Py , go to 2.

5. Compute received data. Initialize the Viterbi decoder.

6. Compute received data. Perform the Viterbi decoder error event simula

tion. When an error event is decoded, update simulation data accumula

tors then go to 4.

7. Output simulation results.

A sample simulation output of the above algorithm is given in Appendix A Table 7.

Simulated Pb for various SNR’s and their union bounds are shown in Figure 5.6 

can see that our estimates agree closely to union bounds at moderate-to-high SNR’s. 

The truncation bias is the main reason for the undef-estimation at small SNR’s. 

(Recall from Section 3.2.2 that the union bound is not tight loose in this region

We

aseeither.) For comparison, also shown in Figure 5.6 are simulation results for the c 

in which we employ a hard, rather than soft, decision Viterbi decoder (this in effect 

reduces the channel model to the binary symmetric channel or BSC). The result 

confirms that there is about a 2 dB loss due to hard quantization. The number

simulation runs for every error sequence e is Ly  =  1000. For each SNR, the simulation
"-7-\  V ■' ./;■ 77’.- : ■ 7V.7 Vr ■

is terminated if the relative precision e for the estimate of Pb is less than 10%.

■



AWGN1 d<1 Q 
AWGN1 d<11 
Union Bd.

Figure 5.6 Pb of the 16-state, R — 1/2, dmin =  7 convolutional code.



106

5.3.2 A Quasi-Regular TGM Code

Next we consider a 16-state, R =  2 /3 , 8-PSK, dfTee — 2.27 TCM code given in 

Ungerboeck’s original paper [57]. The encoder configuration and trellis diagram with 

a dfree path (correct path x  =  0) are shown in Figure 5.7. The signal mapping 

function (modulation) is as described in Section 3 .2.1 and Figure 3.5. Shift register 

elements 6(1) and 6(2) contain the most recent incoming information bits and are also 

the two least significant bits of the new encoder state.

The fact that this is a non-regular code makes the union bound computation arid 

the IS simulation more difficult than the convolutional code example discussed in 

the last subsection. The major additional complexity arises from that d//£j(0 , e) 

dtf£>(x,x 4- e), for all signal selector sequences x , but d££>(0 ,e )  ^  dg£)(x,x 4- e), 

where as defined in Chapter 3 and dEoi', •) are the Hamming and Euclidean
Ldistance measures repectively. Consequently, we may have P(x 4 -ejx) ^  P(x  -f 

e |x ),x  ^  x. Therefore, we can no longer assume that x =  0 is the transmitted 

codeword in computing .

A. Union Bounds:
’i:: . r '''"'.-V-:v ' ? v ■■ ■ "''I'-'- ./--'''V- r ■ , :• '■, ■ ./•.

■ ■ ■ .: " , . .. : . _V'■ . ' .• / . ■' • , . ' ' V . .■

Fortunately, for many practical TCM codes that can be classified as quasi-regular, 

the average multiplicities Ad and Bd in (3.3) and (3.5) are computable by assuming 

the all 0 sequence is transmitted. We have demonstrated this using the RC Algorithm 

and the distance polynomial information in Section 3.2.2. The distance polynomials 

in (3.7) apply directly to this code. Table 5.2 shows the distance spectrum of this 

code for squared distance up to 10. The modified RC Algorithm takes 3.4 hours CPU 

time on a Gould PN9080 to obtain the list of error sequences e used in computing 

this table. Table 7 in Appendix B shows the beginning part of the modified RC 

Algorithm output for squared distance <  5.7574 (18 error sequences). There are a 

total of 22 possible distances and 49,506 signal selector error sequences e within this 

range. Recall from Table 5.1 that, for the regular convolutional code, there are only
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(

(a) Encoder configuration.

s ig n a l

s e le c to r
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0426 0

1537 . i

4062 2
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3715 5

6240 6

7351 7

4062 8

5173 9

0426 10

1537 11

6240 12

7351 13

2604 14

3715 15

0(b) Trellis diagram.

Figure 5.7 A 16-state, JR =  2/3 and djree =,.2,27 TGM code.



Table 5.2 A TCM code distance Spectrumi

d2 : #  of e - . M d Bd <P # o f e

5.1716: 6 2.50 10.00 8.3431 248 50.31 446.56

5.7574 12 3.75 22.50 8.5858 25 17.75 94.50

6.3431 42 8.13 64.88 8.6863 :;3282 128.26 2062.34

6.5858 4 3.50 9.00 8.9289 948 127.72 1384.69

6.9289 120 16.19 161.88 9.1716 ; 93: 85,00 381.25

7.1716 5.00 26.00 9.2721 9840 255.95 4607.20

7.4142 2.00 4.00 9.4142 0 0.50 2.00

7.5147 366 31.78 381.41 9.5147 3364 303.58 3900.90

7.7574 68 21:13 143.00 9.7574 437 146.81 1317.63

8:0006 I 4.00 14.00 9.8579 29526 :511.77; 10234.89

XlOGb 1092 63,92 894.75 10.000 18 19.50 85.00



4 possible distances and 25 e ’s for distance d2 within the range of (Tfnin <  d2 <  2d2min. 

In general* TCM codes have very dense distance spectra. Again, we will compare 

our simulation results against union bounds computed from (3.3) and (3.5)' using the 

information in Table 5.2.

B. IS Simulation:

The importance sampling simulation algorithm we propose for this code is a re

fined version of that for the convolutional code, We will estimate the expected specific 

error probability P (e) =  E [P(X  +  e|X )] in (5,11) and (5.12) for only a few number 

of “important” error sequences e, assuming their existence and the resulting trunca

tion bias is insignificant at a moderate-to-high SNR. We will see from the following 

discussion and verify through simulation results that this assumption generally holds 

in the case of the AWGN channel. When there ate too many e ’s to be considered!, 

the above technique becomes very inefficient. This }s the case when we consider the, 

satellite channel transmission in the next chapter. There, a Similar but more sophis

ticated algorithm and its rigorous reasoning will be presented. In this section, O U r . 

estimator for Pb is thus still a specialized form of (5.15) in the sense that we don’t 

jointly sample x  and e jn each simulation run.

The major difference between the simulation of a TCM code and a convolutional 

code is that we cannot assume the all O sequence is the transmitted signal selector 

sequence. Also, there will be more e ’s needed to be included in the summations of 

(5.11) and (5.12) because of the dense distance spectrum. More specifically, since 

E [P(X  +  e|X )] =  Ylx jP(x +  e |x )P x (x ), we will have to estimate P (x  +  e |x ) and 

average over all x. To do this efficiently, note that P(e)  =  E[X, Y] and hence we can 

employ the conditional importance sampling technique of Section 4.3 with a signal 

biasing (x). Following the discussion in Section 4.3, the conditional IS estimator 

for



thus becomes

no

£ •(« )  =  Tl  E  I M  ( x W , Y < « ) ^ lx t ^ l ^ ) ;«<«(x«‘>) ,
lj* e=i "

I - - V ' .
25)

where we have let Ly  =  I because per sample costs for the same length X  and 

Y  are approximately equal, and ttfY|x(y|x) =  /Y |x (y |x ) / /Y |x (y lx ) an<l «>x(x) 

P x (x ) /P £ (x )  are IS weighting functions for the noise and signal respectively. The 

variance of (5.25) can be estimated by S 2(e) /Lx  where S 2(e) is

52(e)
Lx

—  £  Iw  ( x w , Y w ) K-Vix (Y m IXw ) «4  (x<0) - P * ( e ) J. (5.26)
ljX e=i

Finally,; the estimator for Pfc is

T
E  V j y lI-Ie) .

e:dw(e)=dfree

and the variance of Pfc* is estimated as

'I
Est. var*[Pfc*] =  L  nl(e)S2(e)/Lx .

(5.27)

(5.28)
e:dw( e ) - d frt.f.

.................  . . . ' ■ ■ ■ ■ ;  1 ■ . ■ - ■ ■ '

Another issue is how do we identify those e ’s with significant values of P(e) and

estimate for as many of them as possible. Equation (5.27) indicates that we sum over 

those e with worst-case distances <  dmax and we also propose to let the number of 

simulation runs for each e, Lx \ be a function of e which decreases as P(e) decrease. 

We will explain these later. First though, let us consider the design of the sig 

biasing P £ (x ).

I. The signal biasing Px (x):

In the following discussion e is a fixed signal selector error sequence. Consider 

the expected specific error probability P(e) =  E[P(X +  e[X)j where the expectation 

is with respect to the random signal selector sequence X. Recall that n^(e) is Ihe 

number of appearances of e*, k =  I , . . .  ,^(e), such that e* 6 €  =  {011,111}. (More 

generally, for a quasi-regular code S is the set of signal selector errors whose distance
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polynomials are not monomials.) It is easy to show that there are n^(e) +  I possible 

distances associated with e. The smallest or the worst-case distance is dVJ(e) =  

minx d (x ,x  +  e). If we denote the worst-case distance as do and the next smallest 

distance dx, and so on, We find that

4  =  d2(e) +  ^ - ^ ) ,  (5.29)

for i =  0 , . . . ,  ne(e), where S\ — 3.4142 and Sq =  0.5858 for a normalized signal 

constellation of Figure 3.5. Then we can express P (e) as

P(e) =  ]T /P(X +  e[x)Fx(x)
X

cW(S)
W £  X  P (X T ejx )P x (X)

d = d o  X : d ( x + e ) = d

C 2_nf(e) <
7

V

+

nf (e ) Y dw(e) (  ne (e)

ns(e) J 2cr n f(e)

1 ne(e) ^

V /
(5.30)

where Q(d,/2cr) is the union bound for P (x  +  e |x ) on the AWGN channel given 

d(x, x  T e) =  d,-. For example, suppose that n£(e) =  2, then

(5.31)

For all practical operating SNR’s, we find that the first term of the summation in

(5.30) or (5.31) is more significant than all other terms in spite of its small propor

tionality 2_nf'(0\  That is, ford >  I, we have

> '■  iie x p ( i i i 2.82S4i) »  I.Q(di/2a) do “  (5.32)

However, if the distribution of the random signal selector sequence X  is not biased, 

only a small portion, 2~n£(e\  of the sampled X  will result in this worst-case distance 

error event. As nt-(e) increases, this percentage decreases exponentially. Therefore,



in order to focus our computational resource on the first few (important) terms of

(5.30), in particular, the worst-case distance term, we want to bias P k (x ) in such 

a way that signal selector sequences for which the distance d(x,x +  e) is small are 

sampled more often and later properly weight the result.

The true information process is a random walk through the trellis diagram. Leav

ing any encoder state, the probability of entering either one of the 2b possible succe 

states, p, is the same, i.e., p =  2~b. Hence, Px(x) =  2~bê  is a uniformly distribution. 

In our 8-PSK example, if e* € £ , the information process will walk into a succe 

state which produces a code symbol Xk such that d(xk, Xk +  e*) =  So or S2 with equal 

probability 1/2 (2*’“1 transitions for each case, this information is provided by dis

tance polynomials). We wish to “trick” the information process into generating more 

of those important x^s  which result in So instead of S2. Our strategy is to change the 

random walk parameter p. That is, with probability p* >  p, the information process 

will generate a code symbol xjt such that d(x*, Xk +  e&) =  Sq and with probability 

q* =  I — p* choosing the greater (less favorable) distance S2.

To find an appropriate p*, recall that P(e) =  J2x P(x  + e|x)Px(x). Thus, we 

would like to have the probability of choosing x proportional to its “importance.” 

That is, ix (x )  oc P(x  +  e |e )2_M^  oc P(x +  eje), because Px(x) =  2~bi^  is a 

constant for a fixed e. Now consider two signal selector sequences x  and x  such that 

d(x, x -f  e) =  d^(e) — d0 and d(x,x-f e) — di, That is, the random walk of x and that 

of x differ only in one choice in which x  produces So while x  results in S2. Therefore,

C j(x )
C j(* ) (p* )de)_1 q

P_
q*

Q(d0/2cr)  ̂ exp(-dl(e)/8(T2) 
a  Q(di/2a)  exp(—dj/8a2)

where we have used the approximation Q(a)  «  V^r exp(—a 2/2) for the Gaussian 

function. Recall from (5.29) that d\ — d2w(e) +  (S2 — Si). Therefore we get

(5.33)

Q

E
q*

exp(—<$o/8cr2) _  £0 .
exp(—62/8<r2) c 2
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> 1 = 2
2 C0 + c2 4

-6 (5.34)

which satisfies the condition 2b~1p* +  2b~1q* =  I. We note that p* is a function of So, 

S2 and the SNR. Had we used the tighter upper bound Q (a) =  y/2xaexp(—a 2/2), 

p* would have been also dependent on the worst-case distance (Ity(S)- But for all 

practical SNR’s, we fihd that the difference is negligible because of the dominance of 

the exponential factor in (5.34). Therefore in the simulation we use the same random

walk parameter p* for all error sequences e in consideration;

In summary, the quasi-regularity of the code allows us tq do the signal biasing 

on the per branch basis. The biased probability mass function of the random signal 

selector sequence X  is hence a product form (x) — Pxk(xk) where Pxk(X)c) is

Pxk(xk)

2 b — Pxk(xk), &k £

P*, Ck e  £ ,d (xk,x k +  ek) =  S0 •

q*, ck G E,d(xk, Xfc +  efc) =  S2

(5.35)

The IS weight in the ^th run rex ( X ^ ) is simply ■

■■ ■ m x(xW ) =  ^ x '" 1 =  2~tM e) : -  s ;

if in i out of n^(e) decisions an i j  is chosen such that d(xk,x k +  ek) — S2 (which 

results in d(x, x  +  e) =  d,). For non-quasi-regular codes whose distance polynomials 

are also functions of the originating pair of states (see (3.7)), the signal biasing will 

also have to depend on the encoder state.

2. Let the number of simulation runs for e, Lx,  be a function of du,(e).

It can be seen from (5.30) and (5.32) that the value of P(e)  is generally domi

nated by the worst-case distance term 2~bn£̂ P ( x  +  e|x) given d(x ,x +  e) =  dw(e). 

Therefore, the “importance” of e can be roughly measured by its worst-case distance 

dw(e) (or more precisely by the factor 2_!m£le).P(x -|- e|x)). It is then just natural 

that we should devote most of the computation to the estimation of P(x -f e|x) for 

those e ’s with small worst-case distances so that they have smaller relative precisions.



On the other hand, a smaller value of Lx  can be assigned to error sequences e w 

relatively large dw(e).

Let Lx  (e) be the number of simulation runs assigned to the error sequence 

In particular, Lx  (e /) is the preset number of runs for e / ,  where e /  denotes so

ith

e .:

me
?■

i

error sequence e whose worst-case distance is the free distance d/ree. Our objective 

is to design L x (e) to be decreasing from the peak value Lx(e j )  with respect to the 

increased dw(e). Suppose that for all e a fixed variance for the estimator P*(e) is 

desired. For example, we choose the variance of the estimator for e / ,  var*[P*(e/)] 

(Note that the relative precision will increase with the decreased F*(e), meaning 

poorer accuracy.) We next approximate var*[P*(e)] by

var"[P*(e)] <  — t - j  (P (e ) -  P 2(ef) *  (5.36)

where the upper bound, recall from (2.3), is the variance for the Monte Carlo estima-
-  ■ ■ ■  .  #  j

tor, and the last approximation holds if P (e) P 2(e), which is generally the case. 

Furthermore, we approximate P (e) by Q(dw(e)/2cr). Then, it is found that

i x ( e ) « I x ( ^ ) £ g e x p ( - ^ L ( ^ ( e )  -  4 , , ) )  (5.37)

which drops exponentially fast relative to the increased worst-case distance dw(e)

It is noted that (5.36) is the worst-case approximation. With the optimal mean 

translation biasing for Gaussian noise samples, the estimator variance actually can 

be approximated by (l/2 /x (e))-P 2(e). (Recall from Chapter 4 that the variance of 

the optimal estimator decreases as fast as P 2(e).) Therefore, the actual number of 

simulation runs required for e, e ^  ey is less than that computed by (5.37). We femark 

that this technique can be also used in the previous convolutional code example, and 

in fact more accurately. For convolutional codes, d(x,x +  e) =  dw(e) for all x, i.e.,

(5.30) consists of only one term.

Finally, given x  and e, the Gaussian noise biasing is exactly the same as that 

for the convolutional code except now the signal set is 8-PSK. The dominating 

point obtained in (5.24) still holds here because we did not require x to be 0 in the 

derivation. Therefore we have as before
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FigUfe 5.8 An example of the optimal mean translation for 8-PSK.

’■is ' i : : ;  i i . f -

where s and s are samples of channel symbol sequences representing x  and x  -f e 

respectively. The channel noise simulation density is
■ \ ■ I'm ' : ■

/Y|e,x(y|e,x) = n  f h \ ^ M \ e ^ X k) f*Y^\ek , , k ^ k \ ^ X k ^

where Tm is the random simulation length and

y. i ^ 7 , v I N  (0-5 * ( s ( x k +  e k y  -  S ( X k ) 1)  , a 2)  , e k /  0;
=  ] ' 2v  7 : A ; n V

r W , * 3),

N  (0.5 * (s(a;fc +  ek)Q -  s(xk)Q  ̂ , a 2) , e* /  0; 

JV(0, ct2), Ek =  0.

An example is given in Figure 5.8 where the signal selector is xk — 0 =  (0, 0,0), 

and ek =  6 =  (1,1,0).  Again, the simulation mean of yk is located at the midpoint 

between the two signal points representing xk and xk +  ek, Note that the admissible 

signal selectors leaving any decoder state are either the set {0,2 ,4 ,6}  or the set 

{1,3,5,  7}. Therefore, with high probability, the Viterbi decoder will choose between 

xk or xk -f ek even the biased mean seems to fall into other decision regions. It can 

also be predicted that approximately 50% of the decoded error events will be trivial.

fY?\ek,xSy*\ek' Xk} ~
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The simulation algorithm can be described as follows.

Quasi-Hegular TCM Codes IS Simulation Algorithm:

Input: Qonvolutioiial encoder configuration, signal mapping function, 

number of simulated error sequences and Lx(&f).

SNR,

* Output: JH(e) for all Simulated e, percentages of trivial and desired error even 

Pe*, PfcQ theirrelative precisions and CPU time.

•  Method:

1. Construct tables containing trellis diagram information.

2. Compute noise variance, random walk parameter p*.

3. Read error sequence e, length £(e), weight n6(e) and worst-case distan 

dw(e) from the data file obtained from the RC Algorithm, if all e ’s h 

been simulated, go to 8.

4. Compute Lx(e)-  Put  ̂=  O.

5. £ = I  4- I. If t  > P v (e), go to 3. Select a random initial state and corn 

path x . Compute the signal biasing weight lex (x ).

6. Compute received data. Initialize the Viterbi decoder.

7. Compute received data. Perform the Viterbi decoder error event sim 

tion. When an error event is decoded, update simulation data accum 

tors then go to 5.

8. Output simulation results.

ave

A more detailed simulation program flow chart, especially on the part of the Viter 

Algorithm, is given in Appendix B Figure 7.

A sample simulation output of the above algorithm is given in Afijpendix B Table 7. 

Estimates Pe* and P6* for various SNR’s are shown in Figure 5.9 and Figure 5.10

ula-

:ula-



Pe. U.B.
IS, 64 events 
IS, 18 events 
IS ,6 events

12.0 13.0

Es/No (dB)

Figure 5.9 Pe for the 16-state, R =  2/3, d 2.27 TCM code.



IS, 64 events 
IS, ISevents 
IS, 6 events

10*

Eb/No (dB)

Figure 5.10 Pb for the 16-state, /2 — 2/3 , djree =  2.27 TCM code.



Table 5.3 Average CPU time required per SNR for TCM simulations.

#  of e CPU (Gould 9080) CPU (Sun 3/50)

6 7 min 118 min

18 11 min 18.1 min

64 23 min 303 min

respectively. In all simulations, Lx(ej)  — 1500 and e <10%.  We have also preset 

the minimum number of simulation runs for any e to be 200 to ensure the reliability 

of estimates^ We can see that our IS estimates agree with the union bounds at 

moderate-to-high SNR’s. Table 5.3 lists average CPU times required to estimate a 

pair of Pe and Pt on a Gould PN9080 and a SUN 3/50 (with 4MB memory) for various 

numbers of error sequences e. In particular, for Pt on the order of 10-6 , it takes CPU 

time 400 Seconds and 115 minutes for Gould PN9080 and SUN 3/50 respectively. 

These CPU times are very close to the averages. This is expected because the IS 

computational cost is theoretically independent of the Pt being estimated. In contrast, 

the computational cost for the Monte Carlo estimator is inversely proportional to the 

true value.
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6. SIMULATIONS FOR THE SATELLITE CHANNEL

6.1 The Complexity in the Satellite Channel Simulation

Simulations for a satellite channel such as that described in Figure 3.7 is more 

complicated than for the ideal linear memoryless channel. First of all, there are two 

noise processes, usually having different signal-to-noise ratios. The uplink noise YJt)  

is passed through the satellite nonlinear TWTA while the downlink noise Yj(t) is not. 

Hence, the contribution from Yd(t) to the receiver decision statistic is a linear function 

of Yd(t). Secondly, we need many samples per signaling interval T for both the signal 

and the (uplink) noise to model the nonlinear TWTA. As far as the Monte Carlo 

simulation is concerned, these are the major differences between the satellite channel 

simulation and the ideal channel simulation. For an efficient importance sampling 

simulation, which is strongly system-dependent, there are more.

Two problems needed to be addressed before we can implement an efficient im

portance sampling simulation such as what we have done for ideal linear memoryless 

channels (the AWGN channel and the BSC) in Section 5.3. As is clear from the dis

cussion so far, the efficiency of our importance sampling algorithm is obtained by the 

optimal Gaussian mean-translation biasing for the channel noise and the signal bias 

ing for the distribution of ISI patterns in the uncoded system case or the distribution 

of random signal selector sequences in the trellis-coded system case. For trellis code 

simulations, we can also utilize the code distance spectrum information to emphasize 

those “important” signal selector sequences e, i.e., those with a high expected specific 

error probability F (e) — E [P(X  +  e|X )]. Therefore, a question arises naturally here 

is “How do we find the optimal Gaussian mean-translation biasing and an efficient



signal biasing scheme for the satellite channel simulation?” Also, for trellis codes, 

how the distance property can be used to facilitate the sibiulation?

First we consider the signal biasing. For uncoded systems, important ISI patterns 

(those that are more likely to cause a test bit error) can be fduttd analytically if the 

channel is linear and the memory length is short. In the satellite channel simulation, 

the channel is nonlinear and the channel memory length is usually long; Therefore, 

we must find ah efficient way to identify important ISl patterns and plan the signal 

biasing according to their “importance,” more specifically, their conditional bit error 

probabilities, E[1#(£(X, Y )) |X ,X 0 =  xo], in (5.9), w h ereX 0 =  X0 represents the 

test bit, X  is the ISI pattern and the indicator function takes on the value I if the 

pair (X ,Y ) results in a test bit error and 0 o th e r w ise .We will demonstrate our 

approach in the next section when we consider an MSK modulation example. For 

quasi-regular trellis codes, recall that we used the quasi-regularity of the code and the 

Gaussian Q function approximation to design the signal biasing P ^ (x) (see (5.30)- 

(5.34)) and to decide on the important e ’s which should be estimated with small 

relative precisions (see (5.37)). Note that the Gaussian Q function Q(d/2cr) Is a  

union bound for P (x  +  e |x ), given d(x, x  -f e) — d, which is accurate only for the 

AWGN channel at a large SNR. In Section 6.3 the same TCM code operating on the 

satellite channel will be studied. We will show our sampling scheme for e and x and

justify the technique by simulation data.
" !/'-I'-;.-;!:'.' '"-I- -I\;/I:;I I  - -iV i fI  ^

Next we consider the optimal Gaussian mean-translation biasing for nonlir: ear

channels with memory. Memory is really not the part that causes problem because 

we already know how to deal with linear systems with memory. The analysis in 

Chapter 4 did not place a limit on the dimension of the signal inputs x or the noise 

inputs Y . In fact, the two examples in Section 5.3 are linear systems with memory 

where the memory results from the channel encoding rather than from the ISI. No 

matter where the memory comes from, as long as the decision statistic D  can be 

expressed as an affine function in the noise vector Y j the dominating point is what 

is shown in (5.24). For nonlinear systems, our derivations in Chapter 4 still hold It.



is just that the system response function f (x ,Y )  is a nonlinear (and not an affine) 

function in Y . However, now the challenge is to find the dominating point.: Note 

that, for moderately nonlinear systems, we will assume the existence of a unique 

dominating point.

It is difficult to find the dominating point analytically for nonlinear systems- In

stead, we can solve the original minimization problem (see Example 4.1)

min Ijyli2, ; ’ ‘
... • " " ; : (6.1)
subject to £ (x ,y ) =  0.

for the dominating point numerically. However, (6.1) needs to be modified for our 

satellite channel model which has two noise sources. Recall in the discussion of Sec

tion 4.1, the covariance matrix of the random noise vector Y  is C =  Cr2I  and we showed 

that the decision error probability P7(Y  € E) decays with an exponential rate ||v ||2/ 2, 

where v  is the dominating point, because the joint probability density function of Y  

is /y ( y )  oc exp(—|jy|j2/2cr2). Now we have two noise processes. Suppose that the 

complex baseband samples of the uplink noise process Yu(t), Yu.,',* =  I , . . . ,  nu, are 

i.i.d. complex Gaussian random variables with zero mean and variance or2 in eacfi 

dimension. Similarly, I d,;,* — I ,.  ..,rid,  denote samples of the downlink noise Yd(I) 

with a common variance crj in each dimension. Let Y u =  (Yud)S j and Y d =  (Vdlt)^ 1 

be the uplink and downlink noise vectors respectively. Then Y  =  [Yu,Y j]M s an 

n — nu T nd dimensional zero mean complex Gaussian random vector. The covari

ance matrix of Y , C, is an n x n diagonal matrix whose nu upper left diagonal 

components are 2cr2 and the lower right nd components are cIcrid. Therefore, we have 

/ y (y) oe exp(—y <C ~1y /2 ). Consequently, what should be minimized in the mini

mization problem of (6.1), instead of ||y ||2, is

- y ' c r V  =  -
2 - * 4

'IIyuII2 , M+ I I y r f I I 2 Y

<4 A
( 6 .2 )

Equation (6.2) is called the large deviations rate function by Sadowsky and Bucklew 

in [49]. It is also noted that it would make no difference to the minimization problem
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if we consider Y  as a 2n-dimensional real vector, which we will do in the following 

discussions unless otherwise stated.

Since the downlink noise is processed only by linear devices before arriving at t 

decision device, the contribution to the decision statistic from the downlink noise 

a linear function of Yd. Therefore, we can write the decision statistic D  as

D  =  .((Y )- =: Vfr(Yv)- +  a’Y a,

Where Vj : R 2nu- > R  is a nonlinear function in Y u and the 2nd-dimensional vector a 

Summarizes the linear operation on Y j .  To avoid confusion in notations when taking 

derivatives^ we have dropped the dependency of the system response function on the 

signal inputs X because at this level of the simulation x  is a constant vector. Then the 

dominating point v  =  [Yu, ^]*, if it exists, is the solution to the following constrained 

minimization problem:

S y t > 4 ( y « )  +  a < y d  -  o  ^

Applying the Lagrange method to the above Optimization probleni, the dominating 

point V is found to satisfy

(6.3)

\ ir'

(6.4)

Vu =  Ao-2 y  V’fV")
(6.5)Vd =  Aer2a 

Vj(Vu) +  aVd =  O
■ . .. .;■■■ -V ■' ■. ' ■ ■ ' V — -- ^
where A is the Lagrange multiplier and y  denotes the vector gradient. To solve (6.5) 

numerically, the Newton’s method can be used which is easy to implement and has a 

second order convergence rate. The method cam be described as follows. We define a 

(2n -f1) dimensional vector Z — [v*, V td1 Ajt and a vector function G : R 2n+1 —► R 2n+1,

Vj( V u ) -  V u

A<rf a — Vd 

Vj(Vu) +  a 4 V d



Then the Newton’s method which solves G(z) =  0 by numerical iterations can be 

expressed as

Id G .
Z k +I — Z k +1 ■(**)

-X
G(zk), ■ ■'

One disadvantage of this method is that it requires the computation of \J2ip(vUjk) 

and the inversion of a high dimensional, non-diagonal matrix d S /d z . Both can be 

done but are computationally costly.

A modified Newton’s method will be used whicli does not require the inverse 

matrix or the knowledge-of V 2V>(-). We can fix VVj(v Jx) iu the first equation of (6.5) 

and solve for A first. Thusw e have

: ' ; ■ :  -(Adr; v  .+■ Ao3|jai[? ■ •

Applying the Newton’s method to the last equation, we get

% v V>(vu,x)) + W M ’>: ■

(6 ,6)

A*+r: ^  ir 5 |iV V '(^ ^ V V ’(v ,.i ))||*  + ^J||a||J

v„,fc+l = , V

v d,fc+l — Afc+io^a

m  8)
■>. ■' . I

( 6 .4 ’

One refinement o f fire above method is to run many iterations on (6.7) to obtain X k + i -  

A convergence is said to have reached if ||v*+i — Va-|| is less than some preset value, 

which we set to be 0.01 (IVfclj in simulation program. Two initial values are needed 

for the above iteration method: v Uj0 and A0. We will s e tv u0 =  <̂0( s —s), where <f>0 is an 

input parameter, and A0 =  —V’(v u,o)/(crd||a||2)- The parameter =  1/2 corresponds 

to the linear system solution (5.24). Depending on the “importance ratio” between 

the uplink noise and the downlink noise and the severity of nonlinearity, the optimal 

value of <j>0 can be determined experimentally at the beginning of the simulation. 

Generally, if <j \  >  cr|, that is, the uplink is noisier than the downlink, then intuitively 

the uplink noise is the “important’’ noise (which has a greater impact on the decision 

statistic) and we should bias the uplink noise more than the downlink noise, and 

vice versa. A good choice of the initial value will speed up the convergence of the



iteration. The value of Ao is simply the solution to (6.6) with Vii =  v Uio. (Or 

can approximate the system by a linear system of the form D  =  a +  b*y, and 

solution is A =  2a/||6 ||2.) If the system is highly nonlinear* many iterations wil 

necessary for a convergence. In contrast, if the channel is linear, the dominating

we

the

be
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point is expected to converge with only one iteration and we did have confirmed this. 

The notations s and s, as in Chapter 5, denote the signal vectors which are sampled 

values of s (x) and s(x  +  e), i.e., the channel symbol sequences representing x  and 

x  +  e respectively. For uncoded systems, we can view x  -f e as a “one-branch” error 

event. More will be said about this in following sections.

It is therefore obvious that whether or not the channel has memory has no effect 

on the dominating point other than the dimension n, For a large n, the modified 

Newton’s method may require many iterations to reach a convergence. Also, we can 

see from (6.5) that the dominating point is a function of all factors affecting the 

decision statistic: <r2, <7j, the filtering operation on y<*, i.e., H4(f)  in Figure ;3.7, 

and the system response function ip(-). The value of tp(yu) in turn depends on jthe 

transmitted signal vector s, the desired error event vector s, transponder filters Zf2( / )  

and Tfa(Z), TWTA, and the receive filter H4(J). Note that s and s are signal vectors 

at the input of the satellite transponder where the uplink noise y„ is added. Therefore, 

the transmitting earth station HPA and the BPF Hi (J) in Figure 3.7 can be anything. 

In our simulation study, we will conveniently set the HPA to be a linear amplifier 

with a gain of unity and Hi (J) be an all-pass filter. Finally, we remark that with the 

Newton’s method the system response function tp(-) is required to be differentiable. 

Other methods can be used to solve (6.5) which may not have this restriction, j

6.2 MSK Modulation on the Satellite Channel |

In this section, we will study the Pb estimation problem for an uncoded system
j

with MSK modulation operating on the satellite channel of Figure 3.7. ;



6.2.1 Construction of the Discrete IS Simulation Model

The unfiltered transmitted signal at the satellite transponder input is of the fol

lowing form

s(t) =  s !(t) cos(2wfct) — s®(t) sin(27r f ct)

where f c is the carrier frequency of the bandpass signal, and s r(t) and s®(t) are the 

information bearing lowpass quadrature signals. Det -.'the' =

Asw(iti /7')  for O <  t <  T  and p(t) — O for t < O and i  > T, where T — 231 is 

called the symbol (signaling) interval and 1/T& is the information bit rate. Then 

s l (t) =  t k X k P ( t  ~  kT) and s^{t) =  -  fcT +  T /2) where ^  ±1  and.

X® =  ±1  are i.i.d. with values +1 and —1 being equally likely as determined by 

the information bits. An MSK signal is equivalent to two BPSK signals modulated 

in quadrature with half-sine pulse waveforms and with the Q-channel signal being 

staggered by T /2. The average power of an MSK signal is A2/2 .

We will employ the event simulation method for uncoded systems as described

in Sectiou 5,1 which considers the specific event of a bit error. For example, wd 

choose the OTh inphase bit as our test bit. By the symmetry of the channel, we 

can set Xq =  —I which we take to correspond to a bit value 0. Let 33 denote the 

demodulator output which is the decision statistic for the test bit. That is, the 

decision device performs a threshold test 33 < 0 and decides on I if 33 >  0 and 0 if  

33 <  0, Hence, the decision error event is {33 > 0} and the bit error probability can 

be expressed as Pb =  P(D >  0).

. In order to apply the techniques developed in Chapter 4 and Section 5.1, we need 

to first derive a discrete-time model of the form 33 =  f  (X , Y ) where X  iS a random 

ISI pattern and Y  is a finite dimensional vector which models the Gaussian poise 

inputs.

Figure 6.1 shows a complex baseband equivalent model of Figure 3.7 and notations 

for signals and filters which we will use throughout this chapter. Y /(i)  and Y® (t) are 

the inphase (!-channel) and quadrature (Q-channel) lowpass components respectively
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Figure 6.1 A complex baseband equivalent of the satellite channeLmodel. |

of the uplink noise process Yu(J) in Figure 3.7. Similarly, Y j (t) and Y*J(t) are the I jand 

Q channel components of the downlink noise Yd(t). The complex impulse response 

function /12(2) =  h2(t) +  j h 2 (t) is the lowpass equivalent of the satellite input filter 

!!2 (f).  This notational rule also applies to filters H3(J) and H4(J). We have also 

combined filters H3(J) and H4(J) for the signal plus uplink noise path where h3 Jh4 

in Figure 6.1 denotes the convolution of h3(t) and h4(t). For notational convenience, 

we will denote the combined filter h34(t). The input signal to the TWTA is denoted 

z(t) and the output is z(t). The demodulator output is the complex signal r(t).

Now, let Ns be the number of samples per symbol interval T i i.e., the sampling 

rate is Ns/ T  and the sampling period is A  =  T /N s. We will use the subscript k as 

the index for information bits X l  and X ki  and k' as the sample numbering index. 

For convenience, we line up the time axis and the “sampling axis” such that !the
'Isample at time t — O is the k' — O sample. This can be explained by Figure!6.2 

which shows the transmitted signals s1 (t) and s®(t). The dots on the time ajxes 

represent sampling times. Thus, the I and Q channel samples at time t — T  are |the 

NJth  samples. The uplink noise samples of Yj(t)  and Y®(t) are denoted { Y j k, }ki 

and {Y®k,}k> respectively. They are i.i.d. zero mean Gaussian random variables with 

variance a\.  Similarly, { Y j k, }k> and {Y^k,}k> are samples of Y j (t) and Y®(t) with a

common variance <rj.



Suppose that the decision statistic D  is the sampled value at time t — to  of 

the inphase demodulator output r'(t),  which corresponds to the A°th sample on the 

sampling axis. Recall from Chapter 3 that we have assumed all filters have finite 

discrete impulse response functions. Let h2,» =  /i2(*A ),m J < i < rnf, and /i2,t =  0 

for i <  or i > . If the filter is causal, we have m 2 >  0. However, as mentioned

in Chapter 3, we can use noncausal filters without loss of generality . A time delay

can be added to the received waveform if we have causal filters. It is not required 

that the filter is symmetric about t =  0, hence, we can have m j ^  —raj. Similarly, 

7 i4  #  P for <  i  <  raij, and h34ti ^  0 when m^4 <  i <  raj4. If all filters are 

noncausal, symmetric and the channel is linear, the optimal sampling time would be 

t jo  — T /2  or equivalently K  - N a/ 2. In the following discussion and the simulation 

program, we will consider the general case and let K  be an input parameter. Or, 

with little modification, the program can search for the optimal sampling time within 

a signaling interval which is a common practice in satellite simulations.



We are now ready to find the signal vector X  and the noise vector Y  in the

ision

and

expression D  =  £ (X ,Y ). See the signal flow diagram in Figure 6.3. The dec 

statistic D  =  T1(Id ) — depends on the 7i4(<)-filtered downlinkttoise process 

the A34(<)-flltered TWTA outputs. That is, the contribution to D  from the downlink 

noise samples IYjik, ]k> and is

r n K  =  ^  Y d ,K - i h i , i  ~  Y d ,K - ih % i-

: ; - ' C v ; c ' y  i=m* ■ v
The above display is simply a discrete approximation of the real part of the complex

convolution

(*jr( 0 + i* g(<)) * (^(O +j^C *)) -

(6. 10)

K -. Therefore, the downlink noise samples that are relevant to the decision are Y^yr 

m | <  k' <  K  — m 4 . This is illustrated in the lower part of Figure 6.3. Simil 

the decision statistic depends on the TWTA output complex samples Zy , K  — m 

k' <  K  — mjj. The TWTA is memoryless, i.e., zy  is a function of the input at 

same instance, z y ,  only. The input sample zy  is in turn the output of /i2(t)-filtered 

transmitted signal and uplink noise samples. H enceeachzy ,  K — <  k' <  K  — m 

depends on signal samples s,- and uplink noise samples Ym- for k' — m ]  <  i < k' — 

Consequently, the relevant transmitted signal and uplink noise samples are S y  

YUty , K  — m j, — m ]  <  k' <  K  — m^4 — , respectively.

Therefore, if we define the Uplink noise vector

Yu =  (Yu,y,Yu,k>)■> K - m ] 4- m ]  <  k' <  K-m~4-m ~  

and the downlink noise vector

arly,

£  <
the

34?

raj.

and

( 6.11)

Y j = ( Y l l l tY f t , )  , K - m i  <  k' <  K - m ,  .

then the noise vector Y  in the decision statistic expression D =  £ (X ,Y ) is I f =  

[Y^, Y^] . On the other hand, the transinitted signal samples which have impacts

.12)
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Figure 6.3 MSK signal flow diagram in the satellite channel.
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on D are sampled values of the transmitted waveforms S1(I) =  YlkX[p(t — kT ) and 

sQ (t) =  Ylk X]®p(t — kT +  T / 2) for some k. It then is found that the information bits 

which need to be considered in the event simulation are

x' = (xl), - Jnjj4 -f- m l —K Im34T m 2 I-Ars-I A'
N3

V /C
; ; N3

and

x« = (.Vi'), - m34 -f m l —K - N 3 /  2
< k < lm34 +  m2 \ + X - N s/2

N3 \ Y ; ' x  N3

(6.13)

(6,14)

Hence the signal vector is X  =  [(X 7)*, (X q )4J . For example, if N3 =  16, K  =  8, raj!" =  

m34 =  31 and m j =  raj4 =  —32, then we have X  =  [X 74, . . . ,  X{,  X % ,. . , ,  X QJ and 

recall that X l  — — I is fixed.

Now we have the decision statistic of the form D — £ (X ,Y ) and we know pre

cisely what X  and Y  are. The event simulation method which we has developed in 

Section 5.1 states that to estimate

Pt =  P (Z > > 0 ) =  E[1e ( ( ( X ,Y ) ) |X '  =  xo] 

=  E [e (1e (((X , Y )) |X ,X ' =  X0] ] .

the estimator is 

P*

(6.15)

iC  wXIX07 ( x ^ |x 0) X
Lx (=1

T -  E  >  (((X<'>,Y<«'>)) » Y|XiX, (Y<«')|X<'>,x0) | , (6.16)

where x0 ~  —I and E == { (x ,y )  : £ (x ,y ) >  0} is the error set which, although the 

notation does not show, is a function of x.

The simulation program thus is executed in a double-do-loop structure. First 

we select an ISI pattern x  according to the biased signal probability mass function 

P x|X/(x |x°). We then have the same format D  — £(Y ) =  ^ (Y u) +  S4Y^ as in (tj.3) 

of Section 6.1. Therefore, a dominating point can be computed by the modified 

Newton’s method described in that section. For this ISI pattern and its dominating

. c
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point, Ly  samples of the random noise vector Y  will be taken from the optimally 

mean-translated Gaussian simulation distribution as represented by the joint den

sity function /Y|X,x0'(y lx > *o) -  /Y u|X,*0'(y«lx > a;o)/Y(i|X,x(f(y<ilx vxo)- The signal and 

noise samples are then passed through the channel and a threshold test is carried 

out at the demodulator sampler output to see if the event of a test bit error has 

occurred. If yes, the indicator function in (6.16) registers a one and weights it by

t h e  i m p o r t a n c e  s a m p l i n g  w e i g h t  p r o d u c t  WxjYo (x ^ l xo) W Y | X , Y ^  for
the ’̂th sample of X  and (£,T')’th sample of Y . Note that we need to compute the 

IS weight WxiyJ (x ^f|xo) only once for each sample of X  in Ly runs. Another ISI 

pattern then is Chosen and the above procedures repeated until the relative precision 

of the bit error estimate falls below some pre-deterrnined value which we set to be 

10%. We next demonstrate techniques in finding the dominating point arid the design 

of an efficient signal biasing scheme.

6.2.2 Finding the Dominating Point

Recall the discussion following (6.3) and the solution to the minimization problem
7 7 t- 7: / 7  ';-->7'- 7'7.; :7 7 - 7 - ' 7 7 7  .-.S'-.-. :7 7’ ;;‘:7' '

in (6.7) -  (6.9). To find the dominating point, we need to know the downlink noise

linear transformation vector a, the uplink noise transfer function V’(‘) aru  ̂ and *ts 

gradient vV ’(')- The test statistic I) can be expressed as: ■

D =  =  T1k ' 77, a--- ■ - -V V:

=  TX1k ^ tti1k ' ■

where denotes the Contribution from the signal plus the uplink noise samples 

s +  y u while rrij<- is solely from the downlink noise samples y,*.

Hence, if we express the decision statistic D as I) =  V’(yu) +  afyrf we have

aVrf — rnK — Ud,K ^ i H vi ~  ^d,K-i^A,ii (6.17)
i=TTl̂
•' V̂iwhere for convenience we have incorporated the sampling period factor A  into the 

filter impulse response function. This practice will be also used for all other filters.
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It is then easy to find a =  (aI', ay ) , ,  where

a y  — M1JX-V

Q
W -h^K-y

(6.18)

(6.19)

for K  — rnjj’’■< k' <  K  ' m4 .

Next we will find the uplink noise transfer function tf>(yu). We have

Z1K-Tih1Zij ~  ^K-i^34,i

- / S  M M  +  Zyby

WiIiere

h i

hi

y=K~mf4

h i
a 3 4 ,K -k '

■ . ' -V

hQ t- aSA1K-W

for K  — jnJ, <  k' < K  — m34, and zy  is the output of the TWTA responding to 

input sample zy.; : \

Recall from Section 3.3 in which wh have shown that the memoryless nonlinearity 

of the TWTA results in an input-output relationship as described by (3.11) and (3.12) 

which are rewritten bejow for they will be of use later: ^

r i f c i - / <h%(c2A 2)M  -  .Sifa(AaA2)M

+CiTj0(C2A2)Z l̂

( 6.20)

[+■ I

(6.21)

( 6.22)

where Cl,c2, Si ,S2 are constants, 170(a ) =  e“ lallo(o:) and ifi(pe) =  ;e_^lli(Q;) are expo

nentially scaled modified Besselfunctions of the first kind Of order 0 and I respectively, 

and A2 =  (M )2 +  (M )2 is Ihe instantaneous input squared amplitude. Or, if we use
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the spline function approximation also described in Section 3 3, the instantaneous 

I/O  relationship is

4 '  =  ^C3A2^ C 2 A ^ C i ^ - ^ ^ z ( , — (^SsA2^S2A^S%^-^jiz^i  (6.23)

Zp m ŜaA2+.^̂ +.*?! + -  ̂4  + + + - 4  (6.24)

where Ci and Si, i — Q, .; . ,3 , are constants.

The uplink noise vector y u and the TWTA input vector z are related by

where

’

.:4  \' 4  ¥ ' ' E V':4 ,»4 ,A :'--{^ 4t4fe'-r (6.25)
- V ■ ■ «=mj ■

4  =  4 +  E  • (6.26)
t=m2

4  — 4 ,* 4 -«  ~  4 » 4 - »
. i=mZ

(6.27)

4 .  -  E  n m + ^ 4 - t ;
'' '=™i ■ ' .

, /  <3'

(6.28)

and s =  (s{/,s^,), K  ■— m^4—m £  <  k' <  K  — mj4 — raj, is the transmitted signal 

vector which has the same dimension as the uplink noise vector y u.

In summary, the uplink noise transfer function is

■ K — m3i ■ .
xP(Yu) =  E  4 4  +  4 4

J-'';--' fc'=A-m+

./C—77134

=  E  (ax4  — ^2 4 ) 4  +  >(p2zl' +  / h 4 )  4
fc'=A-m+

=  E  f c 4  +  ^ 4 )  4  +  (/xi4  -  />2 4 ) 4 ,  (6.29)
kf=K—mtA



k’ + m

Figure 6.4 The range ofim pact of a uplink noisesam ple yu,k>-

where

i f  t h e  B e s s e l  a p p r o x i m a t i o n  i s  u s e d ,  a n d

Cz  A  +  Ci  A  +  Ci  +

F 3Z l 2 + F2Zl +  F i  - F

if the spline approximation is used. Finally, (z |,, z£,) is computed by (6.25) -  (6.28) 

The last task is to compute the gradient of ^(*),

dVU> dy^k,J

assuming it is everywhere difFerentiable with respective to y u. We note that 1/«^/ 

affects the value of z,{ for k' +  m a £  i <  k' +  ra*. This is illustrated in Figure 

Let us first consider the real part of the last display. From (6.29), we have
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Note that Qzljdy1u k, =  Qzfjdyllik, — 0» if  i < K  — mf4 qr i >  K  — because 

V»(y«) depends only on z< for AT — <  i <  K  — m j4 by (6.29), This is also clear

from Figure 6.4. For any one TWTA output sample zit because the nonlinearity is 

memory less, we get

Qzl Qz1i Qzl ' Qzl Qzf

Qyh' QzlQy1Ut k f l Q z f d y 1Utk'

where, from (6.25) and (6.26), it is easy to show that

dzL - h1— n 2 ti - k>

(6,35)

Qyh'

Qzf

Qy1Utk'
h9n2ti~k>

Thederivationis similar for the imaginarypart Q^jQyftkI- Then, after grouping 

terms, we have

Q f  fc'+m2

■a. J  — w l ^ h - k' + w Z ^ 2\i-rk'
h 'k> i=k’+m-

Qf
k* ̂ TTlx

o"Q”  =  S  -Wihfti_k, +  Wih12
ŷ ik'

for K  — mf4 — m 2 <  k' <  K  — mjj4 — m 2 , where

W1 =  6' S  + b?

2ti-k'

(6.36)

(6.37)

Qz1i

b1 M '
‘ Qzf

w2 ~  Pi TTTj +  bf

Qz1i

Qzf
QztIQ-

Again, terms are omitted in the summations of (6.36) and (6.37) if i < K  — mf4 or 

i > K  — m j4.

The derivatives in the above W1 and W2 displays are the I and Q channel TWTA 

outputs taken with respect to the I and Q channel inputs. Taking the derivatives of 

(6.21) -  (6.24), we find that, after some manipulations,

■ S i!
dz>

Pl +  PzzIZ1 +  P4Z1i z f (6.38)
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-
j  Q Q Q

~ P 2  +  PZz i Z{ — pA^i Zi (6 .39)

P2 +  P z 4 Z?  +  P i zI H ;VV .40)

"  - / ' " V . i ... V-''- . -V.. .

V== Pi +  P z z f z ?  +  PazI z ?  • (6 .41)

d zf

dz?
i V : .  v - V . ' / G '  dz!

v a ? ?

As mentioned in Ghapter 3, useful rules are I q( x ) =  h ( x ) and l[(x)  =  i6(a;) — |/ t ( x )  

for the derivatives of Bessel functions [I]. With the Bessel function approximation 

to the AM /AM  and AM /PM  nonlinearities, pi and p2 are as defined in (6.30) 

(6.31), and

and

Pz =  2cjc2 [ -^ (C 2A2) +  Ty1(C2A2)J

S-SiS2 [^(-S2A2) -  ^l +  ~ f i i )  ^iv52A2)

For the spline function approximation, pi and p2 are as defined in (6.32) and (6.33), 

and

^  -  2S3 + 1 - - ^ -  

We note that the computation of pi -  p4 for the spline approximation is simpler than 

for the Bessel approximation. This completes our discussion of finding the dominating 

point numerically. It is evident that this is a difficult and CPU-intensive part of the 

simulationalgorithm, and:it will get even more complicated when it comes to coded 

systems. However, we will show via simulation data that this hard work does pay off.

6.2.3 MSK Signal Biasing

g ofIn this subsection, we discuss the design of the signal biasing, i.e., the biasin 

the probability m a ^  the ISI-patterns, Px|Ar0; (x lx'o)- Recall from (6 13)

and (6.14), the cOinponents of X  =  [/X 7)*, (X c3)tJt are the test bit =  X0 =  —I



and its adjacent bits in the I and Q channels whose number depends on the channel

memory length and the demodulator output sampling time. The principle we have 

established in Section 4.3 for the signal biasing is that the biased signal probability

mass function -pXpr'(x ko) should be proportional to /?(x)P x]x '(xk o) =  P ( x ) / J  

where /3(x) — P (x ) is the conditional bit error probability given a particular ISI 

pattern X  =  x  is transmitted, i.e., P (x ) =  E [1#(£(X , Y )) jX =  x , =  #0], and J  

is the total number of ISI patterns. We have J  =  2M here if there are M  ISI bits.

For our simulation study in the next subsection, we will have M  =  16 and hence 

J  ~  216 ISI patterns. It will be quite a task to design an efficient biasing scheme 

for all of them, and in fact is unnecessary. In general, the most adjacent bits of X q 

have greater impacts on the decision statistic than those that are farther away. That 

is, they are the “important ISI bits,” and thus we can bias their distributions only. 

Suppose that, among the 16 ISI bits, we will only bias the two most adjacent bits in 

both the I channel and the Q channel. Then we can write X  as

; x  =  ( x ' , x , x )

where X  =  ( X { , X i l , X q ,X ^ )  represents the 4 closest bits to XI (see Figure 6.2) 

and X  is the collection of all other 12 ISI bits whose probability distributions will not 

be biased. Therefore, our simulation signal density function is

P X | * ' ( x k o ) =  (x k o)pxpr'(xko). (6.42)

The importance sampling weighting function is

-pXix0' foko) _  -pX ix'(*ko>
wXpr0'  (xko) Pi | x ' ( x ko) P ^ w (xk o) ’

and here we have Pxi^j(Xko) =  1/16.

The problem thus reduces to finding -p^jx / (xko) cx P (x ). For the nonlinear satel

lite channel, the conditional bit error probability P (x ) is difficult to obtain analyti

cally. However, for the purpose of designing the signal biasing, we can approximate the 

channel with a linear channel and obtain an approximation of P (x ). Recall the linear
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system example Example 4.1 in Chapter 4. If the system is linear (I? is an affine func

tion in the noise vector Y ), we have P (Y  € E) — ^(decision error) =  Q (y^||v||2/cr)

and 

nal 

ged 

xed

where v  is the dominating point. Here, suppose that x  =  (x0,x ,x )  is transmitted 

the dominating point is v (x ). Then Q j^ j| v (x ) ||2/ <r) is the approximated conditio: 

bit error probability P (x ). (Note that the above P (x ) actually should be averaj 

over all possible x . However, for designing the biasing, we can choose x , say, a ft 

alternating ±1 sequence.) Therefore, we get

Q (\Z l|v(x)||2/<r)
(6 43)

rher-

Pise

C f y i i v lXi v - )

We can compute (XjaJ0) at the beginning of the simulation by using the nu

ical iteration method to find the dominating point for all 16 ISl patterns. The n 

variance a 2 can be approximated by the linear channel formula (3.8)

6.2.4 Simulation Parameters and Results

In our simulation study, we use Ntt =  16 (a typical number fdr digital telecommu

nication satellites) samples per symbol interval T — 27Vfor both l and Q channels. 

The demodulator output sampling time is set at the middle of the signaling pulse, 

i.e., the 8rth sample ( / ;  == 8). All filters are specified in the baseband of the frequency 

domain as the ideal “brick wall” filters with bandwidth B  such that B T  =  1.5. The 

inverse FFT then computes finite impulse response functions of the filters with 

time domain truncation occurs at ± 2 T. The combined downlink filter hzi is also 

truncated to be within ±2T  although theoretically it spans over ±4jT. Therefore we

have mi — m4 — -*-32 and rat m 34 i+ —=  31.

139

ula-Consequently, the set of information bits which are of concern in our event aim  

tion, Le., the ISI pattern X , is ( x i 4, . . . ,  X { , X®3, . . . ,  X f^  where X q =  —1 is fixed 

Thus, the total number of ISI bits is 16. As discussed in the last subsection, only  

the probability distributions of the four bits which are closest to X q — —I wil 

biased in the signal biasing. On the other hand, the dimension of the downlink n 

vector yd (and thaf, qf the vector a) is 2 x (m4 — m4 +  l j  =  128, and for the uplink

be

oise
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noise vector y u it is 2 x + m ^  — — m ^ +  l )  =  254. Thus the noise vector y  is a 

382-diniensional real (or 191-dimensional complex) vector. In simulations, we found 

Ih a tT y =  S isanap propriateinn erdo-Ioop num berforallS N R 5S,

The satellite TWTA input backoff power is IBO =  I dB. To compensate for 

the phase rotation introduced by the TWTA AM /PM  conversion, a phase shift corre

sponding to the phase of the operating point is added to the impulse response function 

Hza- The uplink and downlink noise samples are i.i.d. Gaussian random variables with 

zero mean and the variance is computed as (recall from Section 3.1)

a 2 =  NoNaR

=  Ns2x 2

where R  =  I/ T  =  I /27), is the symbol rate, Ef, = Es/ 2 is the energy per bit, x 

is the given specification of Ef,/N0 and EaR =  A2/2 is the carrier power which is 

A212. The value of A is calculated from the TWTA IBO and the AM/AM conversion 

characteristic. The spline function approximation is used.

Table 6.1 shows simulation results for the equal uplink and downlink SNR ca§e.j 

The columns labeled “MC” present data from a conventional stream, unbiased Monte 

Carlo simulation. That is, data are continuously injected into the channel and Pb is 

estimated by the relative frequency of bit decision errors. (We omit a description of the 

algorithm because it is straightforward. The only thing that requires special caution 

is keeping the timing and the sampling indices straight because, for both convenience 

and efficiency, the signal and noise samples are generated by long blocks instead of 

one symbol interval at a time.) A Monte Carlo simulation is terminated whenever 

100 bit errors are detected which amounts to roughly a 10% relative precision. These 

Monte Carlo simulation results can serve as baseline data for comparison with our 

importance sampling data. The importance sampling simulation is run until a 10% 

relative precision is achieved for the Rf, estimate. The CPU-time data are for a Sun 

SPARC I workstation. We note that our importance sampling estimator is very 

accurate and the computational cost is stable with respect to Pt,. In contrast, the



Table 6.1 MSK Pb estimates and CPU time comparisons.

s-:SNR; Estimates of CPU Time (Min.)

(dB) ■ MG; '■ IS ■ ;c M c ^ : IS

9.0 3.71 x IQ"3 3.56 x 10"3 50 18

9.5 2.12 x IO-3 2.00 x IO-3 , 87 20

10.0 1.07 x IO-3 1.04 x 10-3 173 24

10.5 5.43 x IQ-4 5.07 x IO"4 345 23

11.0 2.77 x IO-4 2.39 x IO-4 674 27

11.5 1.12 x IO-4 1.02 x IO"4 1674 31

12.0 *
V %-:r: ■ , ' . 3.89 x IO -5 38

13.0 * 4.22 x IO-6 * 55

14,JX : 1 : 2.67 x l0"7 i ■’ . ''7* ■ 'T '45

CPU time required for the Monte Carlo estimator increases with I/Pb- Figure 6.5 

shows Pb vs. downlink SNR curves with the Uplink SNR as a parameter. As the 

downlink SNR —u exp, /V becomes dominated by the Uplink noise and approachin g a 

constant.., "C T  \

6.3 A TCM Code on the Satellite Channel :

v ’ , -I : . • ■ . ' ■, ■:: / :: ' ' ■
In this section we estimate Pb for the quasi-regular TCM code of Figure 5.7 op

ating on the satellite channel of Figure 3.7.

6.3.1 The signal vector X  and the noise vector Y

The unfiltered transmitted 8-PSK signal at the satellite transponder input is 

the form --

s(t) =  S 1 (t) c o s (2 n f ct) — sin(27r/ct).
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IOdB

12dB

Figure 6.5 MSK Pb vs. downlink Eb/No

- :
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The information bearing lowpass quadrature signals are 'S1(Jt) =  J2k $(XkYp(t — kT) 

and s9(t) =  J2k s (Xk)®p(t — kT), where s(Xjfe)— (s(Xk)1 ,s(Xk)®) is the complex 

8-PSK signal pulse amplitude selected by the signal selector Xk (see Figure 3*5), p(i) 

is the signaling pulse and T  is the symbol (signaling) interval. For this code rate 

R  — 2/3 , 8-PSK code, we haye T  =  22),. The discretizations of the transmitted signal 

and the channel are identical to that described in Section 6.2.1. We will also use same 

notations.

The event simulation method for trellis codes presented in Section 5.2 will be used. 

In particular, the estimator is of the form (5.15) and (5.16) which for convenience 

rewrite here

I -
Lx

^  P  ( X ^  +  E ^ fX w ) WjjtX ; (6.4-

where the estimate of the conditional first event error probability given (E ^  , X

L

<?)■-■

p (X i»  +  E (')|XM) =  J -  £  11E(„ i„ ......... X
e=r

lwYlE1X |E ^ ,  X (^ )  ,

and

- v nt(e) 2 - W + m>.
KX 1 » a s (e,ii)

^Yife,x^yle >^)
Jy  (y)

f h'
•^Y|E,X^le ’^

are the importance sampling weighting functions for the signal and noise respectively.

The core of the above method is that we choose a pair of signal selector sequence 

X =  (x “ , x , x +) and error sequence e then find the optimal mean-translation biasing 

for the distribution of the noise vector Y .; The objective is to estimate the probability 

of a specific error event that x  +  e is decoded while x  is-the transmitted signal selector 

sequence, i.e., P (Sc +  e |x). As in the MSK case, let us first clarify what are x  and Y .

(6.45)
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For a fixed e, recall that X -  =  (X i_m - ,  • • •, Xq), X  =  (X 4 , . . . ,  X^e)) and X + 

=  (Xf(e)+ i, . .  •, ®<(e)+M+} from Section 5.2 where ^(e) is the length of e, That is, 

x  is the transmitted signal selector sequence x  plus its adjacent signal selectors. 

To understand this and to find M + and Af- , consider the signal flow diagram in 

Figure 6.6. By the definition of signal selector error sequence e, the trellis path 

representing x  +  e diverges from the path of x  at stage k =  0 and later remerges for 

the first time at stage k =  £(e). Now, if the Viterbi decoder is to choose between x  

and x  -f e (assuming for the moment they are the only decoding options), the error 

event x  +  e will be decoded if the decision statistic D is

Y  Re[s(xk +  HkYrk] -  Re[s(xky r k]
k—1

((e)

=  Y  Re[(s( xk +  ejt) -  s(xk) Y r k] >  Q (6.46)
■ Jk=I

where rk is the F’th demodulator sampler output. Note that the summation is only 

over the range of the error event length £(e) because s(x^ +  cjt) =  s^r*,) for k < I and  ̂

k > Re).  ■ ; /

Therefore, D depends on rk for I <  k <  t?(e). Let k' still be the sample numbering 

index as in the last section and the demodulator sampler takes the X ’th sample of a 

transmitted pulse, 0 <  K  < Na -  I. Also, we align the time axis and the sampling 

axis such that the sample at time t =  0 (stage k — 0) corresponds to the O’th sample. 

Hence, rk is the k' =  K  +  (k — I )NS sample of the demodulator output (before the 

sampler) and we can write rk =  rnK+(k_^Na +  (ji- i),v.,, where rnK+{k i )Ns is

the contribution from the A4(t)-filtered downlink noise and rxA'+(t-i)jv, is from the 

A34(i)-filtered TWTA outputs. See the lower part of Figure 6.6. It is then clear 

that the downlink noise samples which have impacts on the decision statistic D are 

Yd̂ ki i K —mY <  k' <  A'+(^(e) — l )N a—m^. Similarly, the decision statistic depends on 

the TWTA output complex samples zk>, K  — m j, <  k' <  K  (£(e) — l )N a — m^4. The 

dimension of the TWTA output vector z is the same as the input z because the TWTA 

is memory less. Each TWTA input sample zk> is in turn the output of A2(^)-Iiltered



TWTA

Figure 6.6 TGM signal flow diagram in the satellite channel
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transmitted signal samples plus the uplink noise samples. Consequently, the relevant 

transmitted signal and uplink noise samples are Sk< and Yu^  for K  — m 34 — m4 < 

k' <  K — I)JYa — mgg — m 2 respectively. It is not difficult to see that Figure 6.6 

is really an expanded version of Figure 6.3; or conversely Figure 6.3 is a special case 

of Figure 6.6 with Z(e) =  I.

In summary, the noise vector Y  in this problem is [YJ1, Y^ji where

Y  - ( Y 1 y q 16 471Y“ _  yYu’k̂ Yu,h')kl=K. mti_mt ib-4 o

and

A'+(^(e)-l)JVs-m 7  

k '= K —m j ” :

The signal Selectors which need to be considered are

(X i ) , I -
mt4 + rrit—K

< k  <J(e)  +
\m34 + rn2 \-N3H K

(6.48)

(6.49)

Thus, M~ =  \ (mt4 +  m + - K ) / N s], M + =  [(Img4 +  m* | -  Na +  K )/JVa] , and the 

total signal memory length M — M~ +  M + is a function of the filter memory and 

where the demodulator output samples are taken.

6.3.2 FindingtheD om inatingPoint

As far as finding the dominating point is concerned, as the signal flow diagrams 

Figure 6.3 and Figure 6.6 indicate, the derivation in Section 6.2.2 for the MSK is in 

fact a special case of that for a trellis code with £(e) =  1. We now show this. The 

test statistic Z), which is the difference between the metrics of the error event path 

x  +  e and the correct path x , is given in (6.46). That is,

D  =  Y l  rIdI +  rk d̂
&= I

■ : f '' ■ - 'I V : . '
de)

=  E  (rXK+(k-l)Nf +  r H1KHk- l)iV») 4  +  (r ^Hk-X)Ne +  rn?<Hk-l)Nf) d<k 
k—1

C(Yu)+ ^tYd



where dk =  {dk, d^) i= (.s(.rfc +  Ck)1 -  s(xky , s(xk -f ek)Q — s(xk)Q  ̂4 Therefore, we 

have Tvi ..
m

-  £  rn^+(fc_1)Ns4  +  ™ 2 +(^ 1)Nsd? (6.50)

and
A:== I

£(e)

^ (y « )  ^  ] C  r x K + ( k - \ ) N ^ i  +  r X K + ( k - l ) N e ^ k  '

As before, in order to find the dominating point, we need to know a ,  */>(•) 

VV’(-). We first show how to find the vector a. From (6.50) and letting k'(k) 

K  (k -  I ) A’3, it can be shown that

.51)

and

d«0 ™-t
’ 2 / < f , * < ( & ) _ ,  +  ( ^ 4 , . d f c  —  ^ 4 , » d f c )  yd,k'(k)-i-

' [ fc=l •. ' ■ V  ' : ^ V ' ' / V v / " '  V  :T  V V  ' U v - "

The objective is to express a^yj as

aVd y ^ ak'yd.k> +  a<k<ŷ .k'- (6 52)

First we consider a |,, A i-m4 <  k' < K + (£(e)—l)N s—m4 . After a change of variable,

we get T,V' ■ v w . ;:
■ 4(e) k f( k ) ^ m ~  ■ .

5Z X ] +  — S  aWyLkr
k ! ~ k , (k ) - - m' f  k* ■.

*  ! ■ v  v.. ■ \ w  v. : '• • - . .. ,■ . . .  ■'

I tis th e n fo u n d th a t :
' T  V V '-; y  v  ' ' -'AvV'.-.. i; d e F ; . / ' ^ V vv . ■ ■v ' v ; '

flI ' =  I j  M , K + ( k - l ) N s - k ' d k +  ^ A ,K - i - ( k - - l ) N , - k ‘M
■ V v' --.. 'T=I-V : , - - v-.v.v ■ V ;-V -VvV' -

(6 53)

where terms in the summation are omitted if K- (̂Ie-jL)Nŝ -Jc' <  m4 or K +  0r4 . ) >  

mJ . Similarly, is

m
(6.54)k' ^ 4 , K + { k - l ) N , - k ' ^ k  ^  ^ , K + i ^ t f N ^ k ' d k

k =I ,■■■■

for Ar-H i4 <  k '  <  (£(e)—IjAT+A’—m4 . With £(e) =  I, d{ — I andd{ =  0, (6.53) and 

(6.54) reduce to (6.18) and (6.19). The uncpded MSK can be considered as having 

s(x) =  .s(0) =  —I, .s(x +  e) == s ( l)  =  I and e is a one-branch error sequence.

Next we find ifi(yu)- Following the above derivation for a, we can rewrite (6.51) 

in a form similar to (6,52). That is,



K + (( (e) - l)N3~ra^

where

V»(y«) ■-  v  Z1 I)1 4- z Q bQ— 2-/ z k>°k'  +  z k ' ° k '
A' . ' = K - T n t i

(6.55)

it ^  I I Q
Y  3̂4,K’+(fc-l)JV<,-fc'̂ fe +  h 3 4 , K + ( k - X ) N . - v d k
k —I

(6.56)

Il-O

Y  h 3 4 , K + ( k - l ) N , - k ’ ^ k  ~ h<3 4 , K + ( k - l ) N 3- k ' d k \ (6.57)
fc=i

Similarly, terms are omitted in the summations of (6.56) and (6.57) if A T (k—I)Ns—k' <  

mj4 or K  -f (A1- I ) A rs -A:' >  m^4. The relations between Zk> and are given in 

(6.21) and (6.22) or (6.23) and (6:24) if using spline functions- The uplink noise 

vector y u and the TWTA input vector z are also related by the same formulas as 

in the MSK case, i.e., Equations (6.25) -  (6.28), except now the dimension of the 

uplink noise vector yu =  (y^fc, y^^k and the transmitted signal vector s — (sk)k is 

K - I i i z 4-T n t  <  k' <  K +  (£(e) — l )N s—m •m-,

In summary, the uplink noise transfer function is
I A'+(C(e)-l)N»-tn^

^(y«) =  Y  ~zl'bl ’ +  zk‘bk'
V=K-Tnti

(6.58)-  Y  V {plbl  +  P2b<k)  Zl  +  ( M 2  -  Plbk'j z%,
I V=K-Tnti

where p\ and p? are defined in (6.30) -  (6.33). Equation (6.58) reduces to the uncoded 

MSK case (6.29) for £(e) =  I.

The computation of V tM u ) =  (<9//dr/'fc, /^Vu,k) is aIso very similar to that for

the uncoded MSK system except increased dimensions in the signal and up/downlink 

noise vectors. Hence we only state the result. For K - T n i 4- m i  <  k' <  A'+ (£(e) — 

I) Â s -77134- m j ,  ,

d f k'+mt

d f

^ V u ,  k'

=  Y j  h I i - V  +  W 2 h 2 . i -2 , i —k'
t—k'+mZ

Y  - wIhZ -V  +  w ĥI2 , i - k f

(6.59)

(6.60)



where terms are omitted in the summations if i < K —m^4 or i >  K 1(e) —I)Na 

: and

'iI Oz1i \ tQ d z f  
^  dz( +  bi dz i  .

*7* 34 i

IO2 =  ^ M + 4? 95;Q
J i mOzY ' dz\

The four derivatives d z j / d z j , d z \ / d z f , d-zf / d z ( ‘, and d z f  f d z f  are given in (6.38) -  

(6.41).. ; ■;

6.3.3 Sampling E and X

The event simulation estimator (6.44) calls for the joint sampling of the pair (e , Sc) 

according to the signal biasing density P g ^ .(e ,x ). Recall the notation x  — (x^, XvX^) 

where x “ and x +, whose lengths are computed by (6.49), represent the ISL We will 

first derive the Critdrioh for a “good” design of P^ ^ (e ,x )  and then propose a sampling 

scheme which satisfies this criterion.

Before proceeding, let us first recall the fundamental principle of importance sam

pling as spelled out in (2.10). That is, to estimate a, quantity a  — E[g(U)], the 

optimal simulation density is /* (u ) be ^ (u )/(u ). The optimal mean-translation Gaus

sian noise simulation density satisfies this proportionality. Also, we have used it to 

design the signal biasing in Section 4.3 and found that Tx(X) oc /?(x)Px(x) where 

/l(x) i= E[^(X, Y)jx], The signal biasing design in Section 6.2.3 for the MSk example 

follows precisely this rule.

Now let us apply this fundamental principle to the discrete sum of (5.14) with 

U  =  (E, X ). Suppose that we have an exact conditional estimate, that is, P(>: +  

e |x ) =  . P (x  +  ejx). Then from (5.14) it is apparent that the optimal choice

r - x ( e , x ) i S

x) a  n6(e) P (x  +  e |x ) 2_w*e' . ,, ■ , ; , (6.61)

One reason that, we cannot implement this sampling distribution is that we do hot 

have an exact formula for P (x -f e jx) and can only empiricallyestimate it by (6.45).
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However, for the purpose of designing the signal biasing, we can approximate P (x  +• 

e |x ) using the Euclidean distance information. Recalling the liniop bound P (x  H- 

e |x ) <  Q  (d (x ,x  H- e ) /2 a )  (assuming x  and x  +  e are the only decoding options) in 

Section 3.2.2 and using Q ( x )  <  exp(—x 2/2 ), we have P (x  -f e]x) <  exp(—d2(x, x  -f 

e)/8<r2). (Note that x  and x  +  e differ only in the part of x .) As previously noted, 

this bound holds only for the ideal AWGN channel. Nonetheless, provided that the 

ISI and nonlinearity are not too severe, to some degree P ( x  +  e |x ) should be roughly 

proportional to exp(—d2(x, x  H- e ) /8 cr2). Hence, neglecting the less important factor 

nt(e) in (6.61), we will design a simulation distribution such that

P g ^ (e ,x )  OC 2"W(<̂  exp ( - a d 2(x ,x  +  e)) (6.62)

where a  is a free parameter that will be roughly determined by SNR-

Next we describe a two-step sampling scheme for implementing a sampling dis

tribution that does satisfy the proportionality (6.62). The basic idea is to first sam

ple E from a precompiled list of error sequences and then sample X  from a condi

tional distribution. Hence, the sampling distribution will be of the form P^ ^ (e , x) — 

/■• Kfx ' -

Given a sampled error event E =  e, the correct path X  is sampled as that described 

in Section 5.3.2- A general formulation is presented below. First a random initial

state is generated for stage k — 0. The branches X k ,  k =  I ,  ..,T(e), are then sampled 

sequentially as a “biased random walk” through the trellis. At each stage there are 

2b branching possibilities. When e* ^ £, the 2b branching possibilities are given 

equal probability, so the random walk is not biased on these branches. (Recall that 

£  is the set of single branch signal selector errors e such that d(x,x  -f e) > m(e) 

for some x , i.e., their distance polynomials are not monomials. For example, for 

the 8-PSK signal set with the natural mapping, we have £  =  {(O il), (111)}.) Now 

suppose that e* CE £  and that at stage k — I the sampled path X  is in state s

and path X  +  e is in state s'. Notice that the set of branching possibilities for Xk is 

indicated by the distance polynomial ps<si<ek(z) of e^as defined in (3.6). Let us denote



■' I  '■ '

this set of branching possibilities ^ ( s ,  s', ek). We bias these branching probabilities 

in proportion to exp (—ad?{x, x +  e*)). Hence, after normalizing to a probability 

distribution, the probability of selecting a particular x (E X ( s , s \  ek) is

e x p f - a d 2^ ,^  +  efc»  ^ < ^ ( - a < P ( x yx + * ^ y ^̂x ^

E * '€ ^ (^ efc) exP ( - a ^ ( ^ » ^  +  e*)) ' :

Note th at' P(arfs) -- 2~b in (3.6). For a quasi-regular code tl 

becomes ^2tpe|i(e‘ i')j ' which does not depend on the particular pair of states (s, s') 

This is the key prdphrty of quasi-regular codes that allows u$ to ultimately realize 

the proportionality (6.62) via a sequential sampling procedure for X . For non-quasb 

regular codes, the samplg will be state-dependent; For the 8-PSK signal set with the 

natural ttiapping, (6,63) results in

P X k \ E k { x k W )

2~6 =  -PxfcIEfc(ZJtfefc), ejt g  S

P * , efc € €,d(xk,x k +  ek) =  S0 

J l X  efc e  £, d(xk,x k +  ek) =  S2

which is precisely what we have obtained in (5.35) for the signal biasing of this TCM 

code dperatihg on the AWGN channel. In that case, we have a  =  I /8a2. Since the 

relationship between the union bound and the probability P(x +  e|x) becomes weaker 

when the ISI and nonlinear.il ty  are present, we should have a  <  1/8<t2 in the satellite 

channel case. ;

The sampling of X  is completed by adding the extensions X ~  and X + which are 

sampled sequentially as unbiased raiidom''WaIfes.;'::Therefo^: imple

ments the conditional sampling distribution

exp (-aiPf^fc, Xfc +  Cfc))
P l  E(x|e) = 2-W e>+M> H  C V

1 1- *•
.64)

To complete the procedure we must describe the sampling of the random e 

event E. We wish to realize a distribution Pg^.(e,x) =  P^|E(x|e)PE(e) which 

isfies the proportionality (6.62). Using d2 (e) =  £fc=i <Pw(ek) and (P(xk,x k +  ej) 

d2w{ek) whenever ek g  £, it follows from (6.62) and (6.64) that

rfor

sat-
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=  K II I'..'''"'I
k ; e k £ E

exp —a V <(«)
k;eke£

(6.65)

where K  is a constant normalizing factor. To implement (6.65), we simply sampled 

E from a precompiled list that includes all error sequences with minimum distance 

d^,(e) <  <Pmar. In the simulation, we use the list of 49,506 e ’s with d2w(e) < 10 which 

we have used to compute Table 5.2. Since this is a subset of the infinite set C of 

all possible error sequences, there will be a truncation bias as mentioned previously. 

However, we can expect that this truncation bias will be negligible at moderate-to- 

high SNR’s, attd we will verify this in the next subsection’s simulation data.

6 .34  Sirnulation Algorithm, Parameters and Results 

The simulation algorithm can be described as follows.

Quasi-Regular TCM Codes IS Simulation Algorithm: * 1 2 3 4

• Input: Convolutional encoder configuration, signal mapping function, error se

quences list, Arjs, product B T , uplink SNR, TWTA IBO, downlink SNR, de-j 

modulator sampling time K , Ly, dominating point initial value 4>q and signal 

biasing factor a.

•  Output: Pfc*, its relative precision and CPU time.

•  Method:

1. Construct tables containing trellis diagram information.

2. Compute noise variance, random walk parameter p*.

3. Read error sequence e, length ((e), weight nt(e) and worst-case distance 

dw(e) from the data fde obtained from the RC Algorithm.

4. Compute Pg (e).

: 5. Sample E ^ . Select a random initial state and sample the correct path 

X ^ . Compute the signal biasing weight ?/>E -jj(e,x.). Put C — 0.



6. P =  f  +  I. If t  > Ly, compute P(X<*> +  EW |xW ) then go to 5.

7. Compute the dominating point.

8. Perform the Viterbi decoder error event simulation. When an error event 

is decoded, update simulation data accumulators then go to 6.

As in the case of MSK complex baseband simulation of Section 6.2, we use Na =  16 

samples per symbol, brick-wall filters with bandwidth B  (B T  =  I), impulse response 

functions for all filters being truncated to be within ± 2 T  and the demodulator output 

sampling time K  =  TVs/ 2. The satellite TWTA input power backoff is IBO =  4 d l  

phase shift corresponding to the phase of the operating point is added to the impulse 

response function /134 to compensate for the phase rotation introduced by the TVrTA 

AM /PM  conversion. The variances of the uplink and downlink noise samples are 

computed as in the MSK case, that is, cr2 ■= Ns(No/2Eb)C where C  is the carrier

(pure sinusoid) power which is calculated from the TWTA IBO and the AM/AM'"
■ ■ '■ TVVVVV C V V U T  V ' '  ■' V ■ . V1V-- :y V ^ v V ^ ^ - V ^ V - V U - V . -  T V. Vv j;U v
conversion characteristic. The spline function approximation is used. j

Table 6.2 shows simulation results for equal uplink and downlink SNR cases. Con-
• V ■ v ' V:; V\  > -V '"T1:-. ' Tvvyv-V V '  . . - V ' \  ‘ : ' To' : '  • V V . V  - V V  V' ' ' •  Vy;. V.' \ y y V '  VV- . V ' - V  ' ' ' ' -V"' "1; ' . - V

ventional stream, unbiased Monte Carlo simulations, whose data are presented in the 

columns labeled “MC,” are performed for comparisons with our importance sampling 

algorithm. A Monte Carlo simulation is terminated whenever 100 independent error 

events are detected. This number translates into a 10% relative precision for the esti

mation of Pe. For a Pb estimate, the relative precision is slightly worse. As an aside,
' V V " '  VV'V- , ^.Vvv VVVVV V' ■; t' V ' . W  V ' - - • ■. ‘ V ■ -V v! VyV TV;;y Vy.;- r VV'' -v" vV-yyVVV'Ty.- v y y  tV v

we remark that for the low SNR figures in the table our conventional Monte Carlo
- \  ■, V v  ■ y  . '..' Vv  ■ ■ - - ‘ v  . v  . ■ : . v . , . -V.,;V vV ■■■’■ ... ; y v ', yv v V y  T V . ,

simulation did produce a significant number of error events with d^(e) >  10. Hence, 

a non-negligible truncation bias is to be expected for these low SNR values. We can 

reduce this bias by increasing the size of the list of error sequences. However, we note 

that the power of our importance sampling algorithm is in the moderate-to-high SNR 

region where truncation bias is negligible. Notice that the Monte Carlo simulation for 

11 dB required 14 CPU days! The importance sampling simulation is run until a liO% 

relative precision is achieved for the Pt estimate. The CPU times data are for a Sun



Table 6.2 TCM Pb estimates and CPU time comparisons.

SNR Estim ates of CPU Time (Min.)

(dB) MC . IS MC IS

8.5 6.53 x IO- 3 4.38 x IO- 3 43 191
■

; • -.'x ■ '
9.0 2.17 x IO"3 1.37 x !O' 3 115 190

9.5 4.66 x IO- 4 4.20 x IO- 4 401 362

10.0 9.35 x IO- 5 8.85 x IQ"5 1,653 245

10.5 2.19 x IO- 5 2.03 x IO"5 6,047 283

11.0 4.17 x IO- 6 4.17 x Ip"6' 20,114 294

11.5 "■* 8.61 x .Ip"7 * 347

12.0 * 1.45 x IO"7 * 406

SPARC I workstation. Figure 6.7 shows Pb vs. downlink SNR curves with the uplink 

SNR fixed as a parameter! As the downlink SNR "-4 oo, Pb becomes dominated by
. '■ . ■ ■ . , ..... T  : .■ . . .  . i  ! . . ' . . - W . ,  , t ;

the uplink noise and approaching a constant.

Recall that our signal biasing scheme which achieves the proportionality (6.62) is 

based on the assumption that P(x +  e|x) is roughly proportional to exp(—acP(x, x +  

e)) where a; is determined by some combination of the uplink and downlink SNR’s. 

To test this hypothesis, we performed the following experiment, We randomly se

lected various pairs (e,x) and accurately estimated P(x -f ejx) using the error event 

simulation algorithm with Ly — 2000. This amount of simulation was sufficient to 

produce an empirical precision of less than 10%. The results of th is experiment for 

SNR =  9/12 dB (uplink/downlink) are plotted in Figure 6,8, Since these probabilities 

are plotted on the logarithmic scale, we should expect to see a linear trend, and we 

do. The straight fines plotted in Figure 6.8 are least square fits of the exponential 

function c exp(—ad2). For SNR =  9 db, a  =  1,92, and for SNR =  12 dB, A — 3.62.



Figure 6.7 TCM Pb vs. downlink EbfNo
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0.8 times the value of a  for a crude linear and memoryless AWGN approximation 

of the satellite channel model. The reason for the 0.8 “fudge factor” is as follows.! 

Setting a  on the small side of the (unknown) optimal value simply causes some less 

important terms (with higher distances) to be over-sampled. On the other hand, 

setting a  too large will cause some important terms (with moderate distances) to be 

uuder-sampled. Hence, it is better to error by setting a  to be less than the rtOptimar 

value. For the two cases of Figure 6.8, our formula produced ft ===■ 1.59 and ft =  3.17, 

respectively, for SNR =  9 and 12 dB. This compares well to the empirically measured 

optimal values ft =  1.92 and a  =  3.62 in the last paragraph.

(



7. CONCLUSIONS

We Lave presented a comprehensive development of the optimal Gaussian mean- 

translation biasing, event simulation and conditional importance sampling techniques 

and demonstrated their usage in efficiently estimating the bit error rate for digital 

communication systems. In particular, we study the simulation of uncoded and trellis

coded systems operating on linear memoryless channels and nonlinear channels with 

memory. Quasi-regularity of the code is utilized to facilitate the simulation as well as

to design the signal biasing. Uncoded systems can be considered as special cases of 

coded systems frotn the viewpoint of our importance sampling algorithm. Simulatidn 

procedures and numerical results are presented which show the efficiency and accuracy 

of our algorithms. The techniques presented in this thesis can be readily applied to 

other system simulations as building blocks for their particular system configurations 

and channels.

Future work is foreseeable in many areas. We are interested in other coded systems 

whose decoding algorithms may not be describable by functionals, e g., many block 

codes used in practice; or for which the system response function £(•) is discontinuous 

and thus not everywhere differentiable, e.g., Viterbi decoders with quantized demod

ulator outputs (instead of soft-decision decoders). The latter situation (disconl inuity) 

also happens when the channel model contains components with discontinuous char

acteristics, e.g., a hard limiter. For these systems, we may have problems, both in 

the theory and in the implementation, in finding the dominating point because we 

may not be dealing with a moderately nonlinear system anymore.

Rotational-invariant and multi-dimensional TCM codes are useful in practical 

applications. It may happen that many of them are not quasi-regular and hence for



each

even

which we must explore their other properties to aid the simulation. Concatenated 

codes (combined block codes and trellis codes) are also widely used for which the 

implementation o f the event simulation method and conditional importance sampling 

will be more complex than when only a single code is used. The event simulation 

method for some trellis codes is also yet to be further investigated, such as OPM 

(Continuous Phase Modulation) codes which do not have the linear convolutional 

encoder structure and thus we probably don’t have a list of error sequences to sample 

from. For them, we may have to find a pure “random sampling” scheme which 

randomly generates the “important” information process and error event in 

simulation run. Trellis codes whose distance spectra are computable and may 

include the ISI effect as reported by Schlegel in [53] are also worth studying.

The type of carrier synchronization error for which our algorithm can readily 

handle is either a constant phase error or a phase jitter whose statistics are known. 

We would like to study the case where only the phase estimator is known, for example, 

a Costas loop or a nonlinear estimator as presented in [67]. An adaptive equalization 

at the receiver end is often a popular means to combat severe ISI. We have not look 

into such system configurations.

We have only considered intersymbol interference in our examples. The presence 

of ACI, CCI and/or multipath in the channel can often be modeled as an additive 

noise process. If the noise process is Gaussian, then we simply expand the dimension 

of the noise vector Y . If the noise process is non-Gaussian or it is correlated with 

the signal process, which is often true for the multipath and C d ,  the conditional 

importance sampling technique discussed in Section 4.3 can be used. That is, we 

will let the “signal input” vector X  include samples of this noise process. In general, 

we can express X  as (X i5X 2, . ..) . The task then is to design Zx1X2 ( x i ,x 2, . . . )  

or, we can appeal to successive conditioning again, e.g., if X  =  (X i ,X 2), then a =  

E f^(X i5X 2jY)] =  E[E[E[<7(X i-,X2,Y ) |X i ,X 2]|X i]]. This procedure is particularly 

useful if X i and X 2 are correlated. However, by doing this, we need to consider 

joint minimization of the total computational cost as a function of L y , Lx1 and

the

Lx2



as well as the design of simulation densities. The latter may become increasingly 

difficult as the number of levels of conditioning is increased.

Other channel and system models whose optimal simulation density designs are 

not covered by the method presented in this thesis can also be future research sub

jects. For example, in optical channels, the noise process is not Gaussian but often 

time-varying shot noise. In spread spectrum communications, the dominant distortion 

source is not the Gaussian noise but the channel interference and jamming. Finally, 

not much work has been done in applying the importance sampling to network-layer 

simulations which are event-driven (often with Poisson event arrival process) in con

trast to the time-driven nature of data-link layer simulations. Network level analysis 

and simulations are becoming more important because of the increasing number, 

complexity and interconnection of data networks.
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A. Sample Simulation Data for the Convolutional Code

Table A .I is an output of the modified RC Algorithm for the convolutional code 

example in Section 5.3.1 with the Hamming weight of codewords d(0 ,e)  < 1 0 . This 

is also the input data file required by the importance sampling simulation program. 

Table A .2 shows a sample importance sampling simulation output data for the above 

code at the signal-to-noise ratio Ef,/N 0 -- 5.5 dB. The final bit error rate estimate 

is computed by (5.21) and the result is F6* =  0.200562E-05,Est. ^var*[F6*]) =

0.755697E-07 and 1/e =  26.54.



Table AT Tbe IS simulation input data file, d(0 ,e ) <  10.

# n6(e) d(6 ,e ) e .

I I 7 1110100111

2 3 7 1101000000010111

3 2 8 IIOIOOIIIOII

4 V.V.4,;; I; 9 8 11100100000100101I

5 ;:-v;y;6 '. 12 8 iioiooooooiooooooiooioii

6 3 ■ ' : T- 9 I 1011101001011

5 10 11010000110001001011

8 5 10 9 11100100001010001011

9 7 13 9 11010000001000001010001011

10 2 7 10 11100111010111

11 2 8 10 1110101001100111

12 4 8 10 1101111010001011

13 2 9 10 111010010010100111

14 4 10 10 11010000001011010111

15 10 TO I1100100I 1000001011I

IG v :-g,T-. 11 10 II100100001001I00010II

: 17 . 4 . 10 1101000000011001100111

18 T ii- 10 1110101010000000010111

19 n 10 1101000011001010001011

20 4 ' >T2;. .■ 10 110100000001010010100111

21 4 12 10 111010010001000000010111

22 .6- v 9' 13 10 11010000001000110000010111

23 8 14 10 1101000000100000100110001011

24 6 14 10 1101000000011010000000010111

25 ■ GT 15 10 110100000001010001000000010111



Table A .2 A sample result of the convolutional code simulation.

. # nt(e) d(0, e) % e decoded H e  |0) Est. ^var*(P*(e10)]  ̂ ^

I I 7 50 0.3226E-06 0.2341E-07 13.78

2 3 7 52 0.2886E-06 0.2177E-07 13.26

3 2 8 51 0.4909E-07 , 0.3927E-08 12.50

4 4 : 8 50 0.5273E-07 0 4073E 08 12.94

5 6 8 48 0.4662E-07 0.3831 E-08 12.17

6 3 9 48 0.706815-08 0.590615-09 11.97

7 5 9 48 0.6773E-08 0.5916 E-09 11.39

8 5 9 52 0 7000E 08 0.575615-09 12.16

9 7 9 47 0.7338E-08 0.6116E-09 12.00

10 2 10 47 0.141 IE-08 0.1173E-09 12.03

I l 2 10 48 0.1127E-08 . 0.9939E-10 11.34

12 4 10 48 0.1164 E-OS 0.1055E-09 11.03

13 2 10 50 0.1150E-08 0.1019E-09 11.29

14 4 10 48 0.1199E-08 0.1036E-09 11.57

15 4 10 46 0.1141E-08 0.9965 E-10 11.45

16 6 10 50 0.1380E-08 0.11101*5-09 12.43

17 4 10 47 0.1082E-08 0.9783E -10 11.06

18 4 10 48 0.1080E-08 0.9313E-10 11.59

19 6 10 47 0.1316E-08 0.1094E 09 12.03

20 4 10 46 0.1158E-08 0.1011E-09 11.46

21 4 10 48 0.131 IE-08 0 1091E-09 12.01

22 6 10 47 0.1217E-08 0.1034E-09 11.77

23 8 10 49 0.1165E-08 0.1023E-09 11.39

-24. 6 10 51 0.1222E-08 0.1061 E-09 11.52

25 6 10 47 0.1137E-08 0.9735E 10 j 11.68



B. Sample Simulation Data for the Quasi-Regular TCM Code

Table B .l is an output of the modified RC Algorithm for the quasi-regular TGM 

code example in Section 5.3.2 and the worst-case distance of signal selector error 

sequences d^(e) <  5.7574. Figure B .l is a program flow chart for the importance 

sampling simulation which shows in more detail the Viterbi Algorithm and the error 

event simulation method. Table B.2 presents a sample importance sampling simula

tion output data for the above code at the signal-to-noise ratio Es/N q =  9.5 dB. The 

index number in the first column for an error sequence e  is a one-to-one correspc 

dence to that in Table B .l. The final Pe and Pb estimates are

. '■ == 0.280688E-05

(Var-IP*])1'' 0.622554E-07

l /£ 45.09

H W 0.637126E-05

(var-]/;,-])1' 2 : '' 0.148704E-06

1/e : 42.85



Table B .l The IS simulation input data file with 18 e ’s and c^(e) <  5.7574

# nt(e) ^(e ) ■e«-i e :

I 3 4 5.1716 6172

2 4 =■ 4 5.1716 6336

3 3 5 5.1716 20132

4 4 5 5.1716 20376?

5 5 6 5,1716 207016

6 5 7 5.1716 6700012

i 4 5 5.7574 61332

8 5 . 5 5.7574 61176

9 ■5 5 5.7574 63772

10 4 6 5.7574 201732

11 5 6 5.7574 203372

12 6 6 5.7574 203136

13 6 7 5.7574 2011016

14 7 7 5.7574 2070736

15 7 8 5.7574 67000776

16 7 8 5.7574 63100012

17 8 9 5.7574 670003016

18 8 10 5.7574 2070300012
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Figtire B i A program flow chart for the TGM code IS simulation.
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Table B.2 A sample result of the TGM code simulation.

# : i x ( e ) % e decoded % trivial "£?(*) : : (var-[/-*(e)]),/2 l i e .

i 1500 49 50 0.3829E 06 0.2414E-07 15.86

; 2 1500 51 48 0.2176E 06 0.1264E-P7 ; 17.21

3 1500 48 51 6.4426E-06 0 2595El 07 17.06

4 , 1500 49 49 0.2062E-06 0.1199E-07 17.20

' 5 ..■■■ 1500 - 47 52 0.3697E-06 0;2299E-07 16.08

6 1500 51 ; 48 0.4092E 06 0.2388E-07 17.13

7 385 50 49 0.5310E-07 0,6123^08 8.67

8 ; 385 49 50 0.9606E-07 0.1198E-07 8.02

9 385 49 50 0 2618E-07 0 3296E 08 7.94

10 385 48 50 0.5231E 07 0.6619E-08 7.90

11 ■ 385; 52 : : 45 0 2599E 07 0.3270E-08 7.95

12 385 51 48 0.5438E-07 0.6385E-08 8.52

13 385 51 48 : 0.2152 E-06 0.262713-07 8.19

14 385 . 54 45 0.2696E-07 0.3182E-08 ; 8.47

15 385 51 48 0.2486E 07 0.3126E-08 7.95

16 385 46 53 0.9590E 07 0.11-19E-07 8.35

17 385 45 54 0.4505E 07 0.6023E-08 7.48

!8 385 52 47 0.6271E 07 0.7200E08 8.71
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