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ABSTRACT

Che‘l‘l,;v.]yun-chehg. PhD, Purdue University, August 1991. Efﬁcient ~Imp6rt_é,nce
Sampling Simulations for Digital Communication Systems:" Maj'oi' Professor:- John S.
Sadowsky. . ;

Imp'orta‘nc‘e sampling is a modified Monte‘Ca‘rlo: sirhu,latiivo‘n téchni‘q'ue which éan
d:fémat»icaﬂvy‘ reduce the computational cost ofv the Mbﬁte Carlo ﬁle'@hdd! A"cojrhyfplet’e
‘ "dé'v-el:épi‘nent is presented for its use in the estimation of bit ertor rates Pbbfor‘ dig-
ital communication systems with éﬁlall Gaussian ﬁoiSé;ihﬁiits;‘ EihphaSis is on the
’ofp-t'i:‘mal mean-translation G‘z‘iuss'iavn simulation d'e'nsibt‘y fu‘riéti;)h-v'déé;ign and thé event
s’ifnulation’ method as applied to systems which ernp‘loy‘,quas'i—regular trellis codes.
Thesé codes include the convolutional codes and many TCM (U‘ngé'rbbeck) codes.
Euclidean distance information of a code is utilized to facilitate fh'e simulation. Also,
the conditional importance ‘sam’plving technique is pfesen\ted which can handle maﬂy
non-Gaussian system iﬁputs. Theories as well as numerical examples are given. In
particular, we study the simulations of an uncoded MSK and a- tf;e_llis—coded 8-PSK-
ti‘éh’sm’iSsioné over a general bandlimited nonlinear satellite channel rhodel. Our al-
gorithms are shown to be very efficient at low P, ’comparéd tol"thé or‘dina,ry Monte
Carlo method. Many techniques we have develb‘ped are applicable to other system

simulations as building blocks for their particular System configurations and channels.



1. INTRODUCTION =

11 ‘Problems and Goalsf

Con31der the conceptual block dlagram Flgure 1 1 of a communr‘cetlon system
The transmltted srgnal and the corruptlng noise are. 1nput to the system Wthh then :
dec1des what 51gnal has been sent. (There may be more than one n01se process and
these noise processes may enter the system at dlfferent pomts ) In dlgltal communi-
catlons the transmltted 31gna] represents an 1nformatlon b1t stream The system will
make 1ncorrect decisions on some bits along the- way because of the random noise..
‘ We are. most rnterested in the average probablhty of a transrmtted b1t belng recelved
~in error, Py, or the b1t error rate (BER) This is a unlversal performance crlterlon’
for digital commumcatlon systems P, depends on the statlstlcs of the input norse:’
process(es) which are assumed known to us. |

For simple system models, ‘analytical methods can | be used to derlve an exact
expressron for Pb Complex systems, especially nonlinear, however are often math-
ematically 1ntractable. For example, analyzing a digital satellite link w1th;.bandhrn-

iting filters and nonl.‘inedrampliﬁers is tedious, if not i“mpo'ssibble;. . Ma,n'yreoding and

- signal input -

| decision
System N R

_noise input

Figure 1.1 A eonceptna,l block diagram of ;communic‘at-ion‘ systems..



modulationschemes are also difficult to analyze even under simplified channel model

o assumptlons

"The Monte Carlo 51mulat10n [5,24, 45] is a popular alternatlve The key advantage '

'of the Monte Carlo method is that it can mcorporate many system degradatlon factors

' 51multaneously But th]s generahty comes with a prlce Be1ng an emplrrcal estrmator,_ ‘

the requxred computatlons increase with 1/ P,. Consequently, Monte Carlo s1mulatlon
of P, < 1075 is generally considered infeasible because of excessive computer run tlme
Some varxance reductlon schemes of the Monte Carlo method have been proposed

to speed up the s1mulat10n such as, extreme value theory (e g, [69]_)_,' t.all_'_-extrapolaj- g
7 v‘tlon (e.g., v[68]) -sem‘r-analytlca.l (e.g., [41]) and importance sampling- [13 2528 32 o
S 36 37 39, 40, 46, 48, 49, 53, 70]. The 1mportance samplmg (IS) method is more at-

tractlve than the others because IS retams the nice propertles of Monte Carlo method .

o (unblasedness srmulatlng unapprox1mated complex system models) and 1ts efﬁmency

: galn (over the Monte Carlo. ‘method) is more promlsmg In addrtlon to estlmatmg Pb, .
lmportance samplmg has found apphcatlons in many other areas of communlcatlons
e g, estlmatlons of the false alarm probablhty m radar systems [33] and the tlme ,
delay / blockm g probablllty for digital packet / c1rcu1t sw1tch1ng networks [42 48]
v Shanmugan and Balaban’s paper in 1980 [53] was the ﬁrst one to use 1mportance
samplmg to estlmate Py for cornmunlcatlon systems w1th small Gauss1an n01se 1nputs -
They demonstrated 31gn1ﬁcant lowering of computatlons, not 1ncreasrng w1th 1 /Pb,
in. s1mulat1ng uncoded systems operatlng on llnear memoryless channels S1nce then,,
most work in the llterature has concentrated on extendmg thelr concept to the more
practlcal channel models in partlcular channels wrth memory, and has achleved var-
"'1ous degrees of success However optlmlzatlon has been performed mostly for lmear.'
"channels For nonlmear channels efﬁc1ency galn falls somewhat short of the theoret-
v blcal l1rmt Also the ma_}orlty of the previous work has been for uncoded systems and -
Gaussmn n01se 1nputs alone | | | | T '
ThlS thesrs 1ntends to glve a comprehenswe development of 1mportance samplrng

: techmques for srmulatlons of dlgltal commumcatlon systems Our prlmary lnterest .



in the trellis coded systems | (Uncoded systems w1ll be shown to be a spe01al case. )
‘The channel models w1ll mclude Gaussran noise, nonhnearlty and 1ntersymbol mter—,
ference (ISI) Non Gaussian system dlsturbances such as synchronlzatlon error and/or
‘phase Jlttel" cross- channel and/ or co-channel mterference and fadlng may also be con-
srdered Therefore the technlques presented in this thes1s may be apphed to many
practlcal channels mcludlng telephone channels, terrestrlal mlcrowave links and satel
lite channels In partlcular we wrll use a satelllte channel model to 1llustrate many‘
of these techmques Our purpose is to demonstrate that efﬁcrent lmportance sam-
plmg s1mulatlons do ex1st for more practlcal and complex systems We w1ll not be;
able however to present a “universal” 1mportance samphng algorrthm that works for
many systems Instead the fundamental pr1nc1ples we have developed can be used
as “bulldmg blocks” for constructlon of various specral purpose algorrthms In lact
it wrll become clear later that efﬁc1ent importance sampllng algorlthms use extenswe
side 1nformat1on of the systems they are srmulatmg Therefore these 1mportance sam-
pllng schemes are strongly system-dependent. In general there is a tradeoff between
- the complex1ty and- efﬁaency of the simulation algorlthm |
| We now spec1fy our problems and goals more prec1sely Trellis codes have been
W1dely_used in digital communlcatlon systems due to their efﬁc1ency in utlhzlng the
power and bandWidth resources. This class of codes includes the well-known convo-
lutional codes and the Trellis-Coded Modulation (TCM) codes. They can be. fully
d’e‘scribed by their trellis diagrams, and the Viterbi decoder is the maximum likeli-
hood (ML) decoder for memoryl'ess channels. Let us ﬁ'r'_st_loo'k at how conventional
simulation is performed for trellis-coded systems'without-importance sampling.
Examples of or»dinary Monte Carlo simulation of trellis-coded systems can be
found in Heller and Jacobs [26]. The simulation is v1rtually a computer dupllcatlon
of the actual system operatron A contmuous stream of data samples noise- corrupted
‘and system—transformed, are input to the decoder. P, is estimated by the relative
frefquency of erroneously decoded bits.- We call this the “stream simulation” method.

‘There are two problems associated with this conven‘tional simulation; : Firstly, the



' occurrences of bit errors under norrnal operatlng condltlons are rare events whlch :
| rnay further be corrected by the decoder Consequently, a large sample s1ze and long

,, "computer Tun tlme are requlred to estlmate a small Pb Secondly, because of the"

‘ memory 1nherent frorn channel encodlng, stream snnulatlon generates a sequence of -

' correlated Vlterbr decoder branchmg decisions even 1f the channel is memoryless Asr

we will see, th1s makes the design of a good 1mportance sampling scheme dlfﬁcult

: Also, it is not an easy task to estimate the varlance of the estlmator (Wthh is used'

to ‘assess the quality of an estlmate) if the dec1s10ns are correlated - 7
Importance sampling provides a solutron to the first problem The basrc 1dea '

,vof 1mportance samphng is rather simple. Since a Monte Carlo estlmator for Pb s

baslcally an error counter eﬂicrency may be enhanced by artrﬁcrally 1ncreas1ng the' -

_nurnber of errors in a controlled ~way. This.can be accomphshed by blasmg the proba- o

iv_brllty density functlon (pdf ) of the iinput random varlables L.e., we use a s1mulat10n '
vdens1ty Wthh is dlfferent frorn the true model den51ty Each error count then 1s. o
i unblased” or welghted (to offset its 31gn1ﬁcance) in such a way that ylelds an unbl-r'—"
_zased estlmator For example if the relat1ve frequency of an error event is 1ncreased'
}by a factor of 10 then the average (or expected) werghtmg factor should be 1/ 10
| The main 1ssue in 1mportance samphng is the selectron of srmulatlon dens1ty func—
tion whrch is a key factor in determining the 51mulatron algorlthm s eﬂic1ency (The
efﬁcrency of a s1mulatlon algorithm is measured by the estlmator s varrance or ult1— |
mately the CPU tlrne the algorithm takes to achleve a certaln degree of accuracy )
v ,Untll today, most ‘work in the desrgn of nnportance samphng for the estlmatron of Pb" :
‘ 'for systems w1th Gaussran noise 1nputs has centered around two d1st1nct approaches
1) varrance scahng, ie., 1ncreas1ng the n01se power, and 2) mean translatlon of the :
v'»probablhty dlstrlbutlons of the 1nput noise samples | ' | o
The mean translatlon blasmg technlque Wthh is- the one we promote here | was -
-_ 'ﬁrst presented by Lu and Yao [36] for uncoded systems and hnear channels The '
mean of each 1nput Gaussran noise sarnple is shlfted (translated) to a 51mulat10n

. mean Wthh can be found by an optrmlzatlon procedure We wrll see 1n Chapter 4'~'



that this b1a51ng technlque 1s more efﬁc1ent than the varlance-scahng blasmg I
addltlon instead of the stream sunulatlon method commonly bemg used for uncoded
systems Lu and Yao also employ what we W1ll call the “event s1mulat10n method
Each snnulatlon run is dlrected to decide whether or not the event “test b1t error”
has occutred. The s1mulat10n densxty function can then be optn'nlzed only within. the
scope of each snnulatlon run and the dec1s1ons 1n successive Tuns are 1ndependent :
: 'By thezr approach they achleve efﬁc1ency gains that are prev10usly cons1dered not
poss1ble for systems W1th memory [13 25] Event sunulatlon also greatly eases the
: evaluatlon of estlmator varlance We will use a SJmple example in the next sectlon to
111ustrate the ba51c 1dea of event simulation. | | |

Event sirhulation with mean-translation biasing for convol"utio’na.l codes was de-
| veloped by Sadowsky [46] The brldge allowmg this crossover from uncoded to trellls-
‘coded systems as ‘well as a solutlon to the aforementloned second problem is the
~event simulation method for V1terb1 decoders 1ntroduced in that pa.per ‘This method
effectlvely decomposes the Vlterbl decoder simulation mto s1mulat1ng mdependent
error events An optimal rnean -translation s1mulat10n dens1ty then is designed for
each specxﬁc error event pattern and the decoder also makes 1ndependent dec151ons
— whether or not the ‘specrﬁc error event” has occurred in consecutive runs. An
additional advantage of evernt simulation for coded systems s ‘that the code dlstance ‘
information can be utilized to facilitate the s1mulat10n The channel model cons1dered
in [46] is linear memoryless |

Lu and Yao’s mean-translation biasing can be optimized only for linear and lin-
» earlzed moderately nonhnear channels A dlfferent approach is taken by Sadowskyv
and Bucklew [49] who use an asymptotlcal efﬁmency crltenon and a large deviations -
theory argument to arrlve at the asymptotlcally optlmal mean translatlon for essen-
tlally arbltrary nonhnear systerns with small Gau331an noise inputs. For the special
‘case of hnear channels theit result agrees w1th Lu and Yao s. Their work is in fact

very general which i is not restricted to the BER estimation problem, and it does not

require the noise p'roi:e_ss to be Gaussian. We will present in Chapter 4 the theoretical



aspects of 1mportance samphng which results in the same optrmal Gaussran simula- .
tion den81ty deslgn Our arguments are not from the large dev1at1ons theory pomt of
: ':v1ew but the 1deas are srmllar |
- The mean- translatlon blasmg, event 81mulat10n method along with the “condi-
tional 1mportance samphng” (briefly touched in [46] and [49]_) constitute the funda-
mental principles*‘of our research. Conditional importance sampling is a very powerful
technique Wh]Ch provrdes us a convenient tool to handle many non- Gaussian system
1nputs. In" this thesxs we will give a systematlc presentatlon of these three basic
-technlques. ,We‘ will also demonstrate via examples how to apply them to construct
procedures for Simulations of uncoded and trellis-coded syStems operating on linear
and nonhnear channels A satellite channel model will be our example of nonhnear
channel where nonhnear]ty is present due to the nonhnear travehng wave tube amph-
fier (TWTA). Finding the ~optimal Gaussian mean- translation srmulatlon density for
nonlinear s‘ystems is consxderably more comphcated than for hnear systems We w1ll
show how to srmulate hnear convolutlonal codes and nonhnear quasr -regular- TCM
codes 1 uslng the event simulation method and condltlonal importance sampling. Non-
vhnear codes present add1t1onal complexity in both analysrs and 51mulatron because
“we cannot assume apartrcular codeword is transm1tted‘, and the error probabilities
must be averaged over all p0551b1e codewords. a ‘ o
This thesis is orgamzed as follows Chapter 2 mtroduces the basrcs of 1mportance
/samphng under the general framework of estlmatrng any dec1sron error probabrhty
We wrll also review other ‘works in applylng 1mportance samplmg to the estimation
of BER in d1g1tal commumcatrons and comment on therr advantages / dlsadvantages '.
Chapter 3.is an overvrew of some background of dlgltal communication systems needed
‘in readlng thls thesrs Chapter 4is a presentatlon of the theoretrcal aspects of 1 1mpor~
' tance samplmg whlch leads to the optlmal Gaussran densrty de51gn for general nonlin-
~ear channels The treatment will be dlﬁ'erent from that of Sadowsky and Bucklew [49] |

but the ideas are similar. New results will be presented whrch can 1dent1fy precrsely



what is meant by moderately nonllnear channel The condltlonal 1mportance sam-b"
phng technlque will be also 1ntroduced Event s1mulat10n methods for uncoded ‘and
trellis-coded systems will be discussed in Chapter 5 along with two hnear, memoryless.
channel simulation examples. Chapter 6 uses both uncoded and trellisv—coded system :
v examples to demonstrate the implementation of mean-translatlon b1as1ng, event sim-

“ulation and condltlonal ‘importance samplmg for simulatiotis of nonlinear channels‘
' Numerlcal data will be glven in Chapter 5 and 6 to show the power of our: algorlthms '
v The final chapter contams the concludmg remarks

Hopefully, this thes1s can serve as.an up- to—date summary of the mean translatlon

- biasing W1th event simulation and condltlonal 1mport_ancersamphng approach in im-
portance sampling research.. It is 'possible that even more po'werful simulation schemes

will be found i in the future. We hope that this thesis is-a startlng ground to that road

for interested readers. Part of this thesis has been- pubhshed in'[9, 10].

1.2 - Event ‘Simulations: vs. Stream Simulations

We devote thls section’ to a comparison between the event s1mulat10n and thet
stream srmulatlon " The event, simulation method is phllosophlcally dlfferent from
the conventlonal stream 81mulat10n method and is v1tal to our work Its 1mportance
warrants a s1mple ‘example in this introductory chapter to 1llustrate the dlfference
between these two methods. A more general deseription of event's'imulati'on and the
- event simulation method for trellis codes will be presented in C-h-apter 4. ConSider an
uncoded bmary baseband transm1ss1on over a linear channel wrth memory as shown
n Flgure 1.2. - Since this i is a linear system, one sample per sxgnahng interval T' is
sufﬁcxent for both s1gnal and noise. Let X; and Yi denote the srgnal and noise samples v
respectively during time interval [(k—1)T, kT), k Z 0. ;We call Xi (X = £1) a “test
bit” because it represents a transmitted informati’on bit “17 or “0”. ‘The bmemory
length of the system is: assumed to be T. The block labeled "‘D”»'is the unit delay
- operator and A is the linear' system coeflicient determined'b.y=the;system‘ﬁn"itei'mp‘ulse

~ response (F IR) function. - The test statistic Ry at the demodulator output can be



L Flgure 12 A s1mple System to compare streamand events1mulatlons

) "'v'}i,";:expressed as Rk = Xk + Y;c + X(XkZ1 + Y}c 1) = (X;c I,Xk,Y}c I,Y;) The decrslonv-.
SRR '4f:\;jdev1ce demdes ‘ol Xk =1 1f Rk >0 and Xk -—1 lf Rk < 0 Note that the output

:{_l-‘,, slgnal 1nput X & but also the prev1ous lnput X k- 1 whlch 1s known as the 1ntersymbol ik
‘lnterference S ' . i A ‘

The conventlonal stream 51mu1at10n method 1s stralghtforward It generates a‘

‘_sequence of random test blts and noise samples — {Xk} o and {Yk}k_o, »computes o

e {Rk} k=15 “and counts the number of deasrons Xk 76 Xk Thls procedure i$ analogous o

o ; : to the actual system operatlon where we have a contlnuous stream of lnput blts and

R output b1t estlmates If n out of L test bits are in- error, Pb is estlmate as. n/ L In .:'

A i{mathematlcal form the emplrlcal estlmator for Pb is :
= P,,“)Z—Z 1[0,05)(—XkRk)s B (11) -

- s it’Vhere the sup.erscrrpt‘(st) denotes stream 31mulat10n and 1( ) is the lndlcator functlon
»‘fdeﬁned as k ’ | : : e

otherwiSe

o »Note that E[P(’t)] = P (Xk # Xi) = Py for all k
| In the event 31mulat10n, 1nstead of generatmg L test b1ts and norse samples and’ '.
»\sequentrally testmg each one of them we ﬁx one test’ blt but test it L tlmes For ex—

ample suppose that we ﬁx Xi=-1 and deﬁne a random vector Z (Xo, ‘ 1 Yb, Yl) |




A. Stream Simulation :

,Xo / , - Y reeses | XL
‘*..\.Yo_ ‘Yl, ‘Y2 Y3"'_A‘:" eeves YL
I
Time k= o120 3 L
" B. Event S1mu1at10n o S
| I'/XO - 1 Y\ ‘ " : o
\ YO Y] -l"," . . X
W \\ S
Teal I= 1 2 3 ... L -

Figure 1.3 Event simulation vs. stream simulation. -

then :X'-lv.—_“:l if and only lff(Z) —l +Y+ A(Xo + YE)) > 0 The event s1mulat10n
no longer an emulat1on of the system operation, is purely a statlstlcal estlmator of‘
the unknown quantlty P({(Z) > 0) = E[1p, OO)(ﬁ(Z))] It generates L sets of randornfl‘
samples Z(Z) (=1,...,L, computes £(Z9), and counts the number of € error eventsr
{f(Z(e)) > 0}. If n out of L trials result in the desired event Py is estlmated as n/L

The estimator can be expressed as

Pb(ev) - %é o) (E(ZDY)), T . (1.3)

'vn‘/vhere'\vvel have intentionally used the intermediate variable ! instead:of k to indlha.te
that it is no longer a time index.- The superscrlpt (ev) denotes event simulation.

Figure 1. 3is a graphicalillustration of the two simulation methods where each dashed" ‘

circle indicates the set of random variables that each decision is based on. Notice the
overlapping of random variables in successive runs of stream simulation. ,

Note that E[ (ev)] (f(Z) >0) = P(X, # Xl) = Pb We also notlce that in

event 81mulat10n each dec1s1on requires the generation of more samples than stream
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B x-"ls1mulat10n (3 samples versus 2 samples) As the system memory 1ncreases, the ratio

,’mcreases l1nearly

Tl’llS example clearly demonstrates the fundamental dlﬁ'erence between the twov_
| Nmethods Stream sxmulatlon can be viewed as- an operatlon on the trme axis while
L :event s1mulat10n operates entlrely on some probablllty space Obvrously, in s1mu-"
ilatlng systems W1th memory, event simulation has the advantage that the terms 1n'h
(L. 3), 1[0 oo)( (Z(‘))) ! = ,L, are 1ndependent because they use. dlfferent sets
“v".of random varrables whereas in (1 1) Rk and thus 1[0 oo)( XkRk) k = 1 L are

correlated The estlmator variance of P( _.) can be 63511}’ estrmated b a sam le varl-. |
. Y 1Y ,

'ance estlmator wh11e 1t is not so for P (1), In addltIOH although event s1mulat10n is

- computatlonally more costly for each run, 1ts overall cost can be much lower than the

stream srmulatron when an eflicient 1mportance sampllng scheme is apphed Lu and
: Yao [36] and Sadowsky [46] have clearly demonstrated th1s in, the1r papers ThlS can
;::fbe explalned as follows . ' i o

In a heur1st1c sense the simulation dens1ty is s1mply easrer to optlmlze for each ’

" 1ndependent riin in event sxmulatlon In stream s1mu1at10n one partlcular n01se sam- o

"ple s 1mpact on consecutlve dec1s1ons varies w1th tlme, hence 1ts optlmal b1as1ng w1ll
' "be dlﬁerent for dlfferent test b1ts This can create a bmsmg conﬂlct For example R

: suppose that X1 —*: —1 and X2 = 1 With mean translatlon the mean of Y1 should be

R pos1t1ve in order to cause an error on the k = 1 dec1sxon whlle 1t should be negatlve o

g for the k =9 decrsron Slmllarly, with variance scalmg, the varlance of Yl should be :

. mcreased for the k = 1 decrs1on but be decreased for the k = 2 dec1s10n Therefore Lo

,compromlse has to be made As the system memory 1ncreases the compromlse be— e

5 comes greater For event 31mulat10n, no sacrifice- on optlmahty is necessary because o

,success1ve decrslons depend on lndependent sets of random varlables In the abovef

= ‘f‘:s1mple example optlmal blasmg on Yo and Y1 can be tallored for each of the only two »

~“'poss1ble s1gnal combmatlons (XO,XI) = (=1 —1) and (XO,XI)M?_\

each run of the event s1mulatlon, an optxmal blasmg 1s used after choosmg Xo

;'(1:—1) Thus m’- ‘ i
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In sumrnary,‘t‘he key ‘.;’f event simulation is that we ﬁx the" trans:rnittecflt .fsi‘gnabl
and focus on estimating the p'r'obability"of' the event that va decision error occurs. ‘
The ‘adv‘antages of this simulation method are: 1) it is easier to evaluate the estirnaf ;
_tor variance; and 2) it allows signal—vd’ependent irnportance sampling biasing which
'yields hlgher efficiency gain because no biasing. conﬂlct would occur. It wrll be also.
demonstrated later that event srmulatlon perrnlts “signal biasing” (blasmg of the dis-
trlbutlon of Xo in ‘the above example) which enab]es us to further concentrate our
computatlonal effort on the 1rnportant error events” and thus lncreases the i 1rnpor—
- tance sarnphng efﬁc1ency More will be said about event simulation and sxgnal blasmg
in. Chapter 4 and the examples in Chapters 5 and 6. In contrast, this s1gna1 ‘biasing is

not perm1s31b1e with the stream simulation, again, because of biasing conﬂlcts caused -

by correlated decision statistics.
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2. FUNDAMENTALS OF IMPORTANCE SAMPLING

" This chapter introduces the basic notions of import@ncezsampling and"reﬁiéﬁs
previous work in its application to the BER estimation problem. We ad'opt' the
nbtational convention that upper case letters répresent random qudnﬁifiés- _dnd l-i)W'e:I_?- B
case letters represent deterministic quantities or dummy variables. Bold-faced l'ette'rs.,r._

indicate vectors or sequences.

2.1 . The Monte Carlo Method

Consider the block diagram of Figure 2.1 for a general mean estimation problém.
Suppose that Y is a random vector with joint pdf (model __densi‘t‘yl) fy(y), which
is known to us, and we wait t6 estimate the unkno{vﬁ quanfity a = E[g(Y)], ie.,
the population mean of g(Y), where g(-) is any (possibly nonlinear) function such
that ¢(Y) > 0. In some literature, the density function fy(:) is called the ‘zinpu't
density” in contrast to the “output density” fyy)(-).  The transfer funétion g() is
often complicated enough to prevent us from directly computing st_atistics 'o_'f. the

output ¢(Y). (We won’t need simulation if we can do'this.) We will be working on

input density fy(-) exclusively.

Y o =E(g(Y)]
—> gt) fF——>

Figure 2.1 A general block diagram for mean éstimation._
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'Of particula,r interest to us is the special case that o = Pe‘ is a decision error
| probablhty In thls case, the components of Y are sampled values of the input n01se
process(es) that contnbute to the decision, and g() = IE( ) where E is the “error -
set,” i.e. the set of noise inputs that result in a decision error. 1E( ) is the indicator
vfunctlon as deﬁned by (1.2). Note that P = E[1z(Y)] = P(Y € E) We w111
concentrate on thls decision error probablhty However the followmg arguments can
- be easily generalized. by replacing IE( ) with g(-).

~ Expressing the expectat1on P, =E[15(Y )] as an 1ntegral we have ,
P, = /IE(y)fy(y) dy, e | - (2

where the integ‘ration (or‘summation if fy(-)isa ‘prohahility mass lunction) is mul-.
' t1d1mens1onal To evaluate the 1ntegral (2.1), the Monte Carlo method uses a sa,mplev

‘mean est1mator Wthh generates L 1ndependent 1dent1cally dlstrlbuted (1 1. d ) samples _
YW, , Y(Z) Y(L) from the dens1ty function fy (y) then computes the sample mean

o of 1 e(Y). In mathematlcal form, the ‘estimator (a randorn varla,ble) of P.is
L =1 ‘ _ ER ' ’

| w‘here 1 E“;('Y‘(Z))V acts like a,n error detector and (2.2) is simply an er,rot counter. As
"L — o0, the estimate converges to the true-value P.. ‘N‘ote that the Monte Carlo
method can be also used to obtain an empirical h1stogram of the random varlable
( ) IE(Y) (or g(Y) i in general) which may be useful in some appllcatlons

Slnce each Y® s sampled from fy(y), we have E[P] = E[lE(Y)] = P ‘Hence,

the Monte Carlo estlmator is unblased The variance of P 1s

1

v‘@[ﬁe’] = v ‘r[lE(Y)]-————E(l'— P.). -(2;3)'

: The requlred nurnber of 1ndependent s1mulat10n runs L can thus be expressed as’ a

function of the “standard error,” ¢, and Pe,

h\./va’r[Pe]v 1
P étL”e%Pe’v

€

(2.4) l
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where the approximation holds if P, is small. Note that L increases with 1/P,. For
a decision error probability of 10‘6 and € = 10%, this would fe(juire 108 31mu]at10n
runs — a,n/ expensive task even for a powerful computer.

The standard error, ¢, defined as the ratio between the sﬁmdard deviation of
the mean estlrnator and the true population mean, is a measure of the quahty of
an estimator. Note that the sample mean estimator (2 2) is bmomxally distributed
( 1 E( ) is a Bernoulli random variable with mean P, ) which converges to a Gau331an
random variable as L — oo. Often it is desired that the blas of the estlmator satlsﬁes

the followmg equalltles -

5 P_-P s\ o
<), (25)

095=P(|B.~P|<é)=P (3; < -y -
where d}s is the standard deviation of the sample mean eetimator 13 Anproximéting
(P P, )/UP with a standard Gaussian r.v., we have P, € [P, — 6, P, + ], ‘where
b= (1.966)})5., For example, an ¢ = 10% is equ1valent to § = 0.2P.. When L is not
versr large | ﬁhe‘Chebyshev‘ineqnality P(|f’ ~P|>6< 0% /62 can be used.
Equatlons (2.4) and (2 5) can only give us a quahtatlve description of the rela—
tionship between L, ¢ and how close the estimate is to the true value. In snnulatlon
both P, and UPe are unknown to us and need to be empmcally estlmated. That is, as
the simulation progresses, we have no idea what the exact value of € and consequently
how good the estimate is. In this case, the “confidence interval” is cofnrhonly use%i to
assess the quality of the estirn‘ate in Monte Carlo simulation. A confidence interval is
a random interval [ry, r,], 7, r, € R, such that with certain proba,binlity (usually 0.95)
this interval would cover the true value. (This is different from the last paragraph
where the estimate falls in a fixed interval.) As L increases, the confidence inter- -
val becomes narrower. For simple systems such as binary signa,lings the relationship
between the conﬁdence interval and the required number of runs L in Monte Carlo
31mulatlon can be found analytlcally (31]. | ‘
For importance sampling, an exact quantitative relationship between [ and tl‘le‘

confidence interval is difficult to establish. Instead, we use the “empirical precision,” :



| an est1mate of € whxch is readlly avallable in s1mulat10n € =. O‘P /P where aP is

Tt an estimate of aP , as an mdncator of the quahty of the estlmate There isa loose,:'i R

15

: ‘."i"&relatlonshlp between € and the conﬁdence mterval which can be easﬂy obtamed

Suppose that we can estlmate op, closely. Replacmg op, thh o-P’ 1n (2 5), we have o

Pe [P, =6 P, -l— 6] where 6 = (1.96¢)P.. Therefore, an empmcal preclsxon e= 10%_>

s eqmvalent to saymg that, with probablhty 0.95, P E [0: 8Pe, 1.2B; e] When L is Iarge - |

or P, € [O 5Pe,1 5P] w1th Chebyshev inequality when L is. only moderate

B _ 22 The lmportanCe Sampling Technique |

Importance samphng 1s motlvated by a modlﬁcatlon to (2 1). Instead of the true -
model den51ty function fy(y), we introduce a 31mulat10n dens1ty fY(y) prov1ded
that the absolute continuity is satisfied, i.e. fY(y) > 0 whenever IE(y)fy(y) > 0 :
[21] Let us rewrlte (2. 1) as Lo ” LW o

YY) |
Fe =:_jlfa(y)f§(y)fy(y) dy

= BV, SRR (2 6)'.'. L

‘ where E* denotes expectatlon with respect to the dlstrlbutlon fY( ) and the a poste- o

5 rzorz hkehhood ratlo

fY(Y) .
fY( /)

is called the 1mportance sarnphng weight.

w(Y)

To evaluate the 1ntegratlon in (2 6) we again appeal to the sample mean estlma-_ ) |

That 1s, the 1mportance sampling 31mulat10n generates 11d random samples o

from the blased 31mulat1on dlstrlbutlon fY(y) and empmcally estlmates the mean of -

1g(Y)w (Y) The IS estlmator of P, can thus be written as

L

:'— fj w) w(Y<‘>) | R (27)

where and hereafter the superscrlpt * is used to mdlcate operatlons related to 1m-fi S

portance sampling density f* (-)- Note that in ordmary Monte Carlo sunulatlon the'-{
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density function is not biased, i.e., f{(y) = fy(y), in such case w(Y®) = 1 for all
£=1,2,...,L. | ‘ :
Let us examine the properties of importance sampling estimator (2.7). The sim-

ulation data YO, Y@ .. 'Y are i.i.d., therefore we have
E'[F;] = E[le(Y)w(Y)]

:/1E fy(y ()dy

Hence the importance sampling estimator is also unbiased. The estimator variance is

varlf] = var(ia(Y)u(Y)]

;};'{E*nE(Y)w?(Yn -r}

= {/1}3 w(y) fy(y )'dy—.Pg}. o , (28)

Comparing (2.8) with the variance of the Monte Carlo estimator (2.3) which is
rewritten as | v | o

A

var[B,] = | { / 1a(y | )y (y) dy - P’}

the IS estimator has the extra term w(y) in the integrand. Appa;ently, if the sim-
ulation‘density fy(y) is such that fy(y) > fy(y), e, w(y) < 1, for all y in the.
error region E, then var*[P?] < var[P.]. Equivalently, for an equal variance, the im-
portance sampling estimator weuld require a smaller value of L, i.e., fewer simulation

runs. The efficiency of importance sampling can be defined as

, Efﬁciency n= given var’*[]f’e‘] = var[P,],

Lmc
L’
where LMC and LIS denote numbers of 1ndependent simulation runs for ordinary

Monte Carlo simulation and importance sampling respectlve]y Note that this deﬁ-

nition of efficiency 1mp11es that the computat:onal costs are the same for each run in"



E Monte Carlo srmulatron and 1mportance samplmg Thls, however, 1s not so Wrth"_:

‘ stream sxmulatlon method the 1mportance samplmg algorrthm has an overhead of e

.computlng lmportance samphng weights and unbrasrng data Wrth event srmulatron, : S =

method as mentloned in Chapter 1, we need to generate more samples and the over—,: =

‘head 1s even greater Both methods also have the extra cost of computlng optxmal RS

, brasmgs 1f atime varying (srgnal dependent) scheme is used Nevertheless 1mportance' L

: samphng algorxthms w1th stream simulation settxng often stlll use 77 as the measure -

b.‘of efﬁcrency in the lrterature because of the small overhead cost However, s1nce we., o

- will use event srmulatron the ‘computer CPU tlme efﬁcrency, ie. the ratlo of CPU L

.trmes requrred for Monte Carlo simulation and 1mportance samplmg for the same'.

’varlance, is a more approprrate and strarghtforward measurement of efﬁcrency o
The selectlon of 2 srmulatron density is an 1mportant factor in determmmg the_t -
‘ srmulatron algorlthm 5 efﬁcrency A qualitative characterlzatron of good” srmulatron.l-ls
densrtres can be estabhshed as follows Returmng to (2 8) for a requrred standard"'r;:
error ¢, we have N L o . |
| L [ var[15(¥ )w(Y)J‘I _ [var.‘,‘llE(Y) w(Y)) ] i
i var[P] epP2 .|

: .-1':(2_;9)‘_;‘ o

where fa:l denotes the least 1nteger > ¢ and € is the standard error deﬁned in the last __ .'

sectron Therefore we would like to select a srmulatron densrty fY (y) to mlnlmrzeir

Lor equrvalently to minimize var*(1 E(Y) (Y )] The unconstramed optlmal srmula-':.. =3

tron densrty is well known [24] Consrdermg (2 8) agam note that we always have,

var [P*] > 0 and equalrty holds by Jensen’s 1nequalrty lemma, 1f and only 1f

1 ( )fY(y) = constant w.‘p.»l w'ith _reespect‘ to-f{{_(y), i

K y)

where w p 1” stands for w1th probabrllty one.” Therefore fY( ) (o 1E(y)fy( ) ,

be o
1E(Y) v(y) -

’After normahzatlon the optimal 1rnportance samplrng denslty functlon is. found to : ;.
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Substituting (2.10) into (2.8), we have var*[1g(Y)w(Y)] = var*[Pr] = 0. That
is, we need just one sa,rnpblde (L = 1) from this optimal dtstribution to estinlate P..
However, this solution is impractical. The denominator in (2.10), P,, is what we Want
to‘est_imate in the first place. Thefefor’e, finding the optimal simulation density is as -
- difficult as finding P.. We cannot compute the importance sampling weight either,
which is again P. w.p.1. . L
The optimal simulation density function (2.10) does give us sofne hints as to what
a good simulation distribution should be, namely,
| 1. f§(y)opt, puts all its probahility mass in the'error"region FE because of the

indicator function.
2. In the _error‘region5 f{{(y)opt, is proportional to fy(y):
3. f¥ (¥ )opt. need not be memoryless or stationary even if the channel is.

Thus,‘the “important samples” ‘are those y in the “important' regions” — those re-
gions where 16(y) f(y) are relatively large An efficient snnulatlon den51ty des1gn
therefore should first 1dent1fy the lmportant error reglons Wthh we will see are signal-
dependent (Although SIgnal inputs are not shown in. Flgure 2. 1 they are present
and the error set in general strongly depends on the signal inputs.) Then we bias
the model dens1ty function in such a way that more samples are taken frorn these
regions. Later we will see that our nonsta,tlonary mean- translatlon blasmg used in
conjunctvlon with the event simulation method is precxsely one such efficient scheme.
If we take a closer look at the real computational cost of a simulation algorithm,

which can be measured by the computer run time, it is
total cost = L x per sample cost.

The optimal simulation density f3 (¥)op. has L = 1 but very high (possibly infinity)
“per sample cost. It is difficult to express the total cost as a function of the simulation
density (or its pararneters) and then perform m1n1m17at10n Instead in practice, we

often control the per sample cost by restricting our candldate simulation densities
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~ to a “candidate family” then minimize var*[IE(Y)w(Y)] only within this family' In
bother words, we can onl'y“ernulate“ the proportionali‘ty f{;( ) lE( )fy(y) to thel:
best of this famlly The candldate famlly should contain s1mulatlon den91t1es fY( ) .'
which. allow us to generate sarnples and compute the 1mportance sarnplmg weights |
-easily. _For,exa,mpl,e, if the model dens1ty fy() is n- dlmensmnal Gau551an then'.
th‘e choice of a ’candidéite":farnily of Gaussian distributions would‘ seem _naturel." If
“the nrodfelvdensity'-fj((y)‘ = Iy fe(yx), i-e., the cornponents of Y are indiependent,'
7 then a candidate family of rproduct form densities is preferred."A candidate family of
:arbitrary densities may result in‘a lower var*[1 E(Y)w(Y)] but not be COmputetionally :
efficient. | | | | » o s
Fma,lly7 as mentloned ea,rher the estimator varlance needs to be estlmated emplr- L
ically. A logtcal choice is the sample variance estlmator That is, var [IE( )w(Y)]ls _
estimated by _ | e
1 v L

= by e ]} S ew

(An unbiasedestinljator _ztc_tually has the multiplicity’ 1/(L¥ 1) instead of l/L bnt the _
difference is neghglble for large L.) And var [P*] is estlrnated by 52/L The simu-
lation is termmated when the empmcal prec1s1on €= \/:57 L/Pr , Whlch is checked
'perlodlcally durrng the ‘course of 31mulat10n falls below a preset emplrlcal precl_sro:n.
Usnally:we‘set £ = 10% for a rough 95% conﬁdence mterval of [O 8P"‘,12f’;“] as,

explalned in the ]ast sectlon
23 P‘revi‘ons Works and Comments

A Uncoded systems
Importance samphng 1dea first appeared in 1949 [24] and has been used in- dlverse _

‘_ﬁelds such as, physrcs operations research and statlstlcs Its apphcatlons to the

estlmatlon -of BER for uncoded dlgltal communlcatlon systems operatmg on 1deal .' e

linear memoryless channels have achieved 31gn1ﬁcant computatlonal galns Efﬁcrency‘ S

| n on the order of 104 is reported i in Shanmugan and. Balaban [53] in s1rnulatmg a". '
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BER of 10~°. Their srmulatlon densrty is a uniform (statlonary) variance scahng for
. every Gaussian 1nput noise sample The conventional stream 81mulat10n is used We._
will call 1mportance samplmg schemes employing the unlform variance scahng and
the stream simulation “conventional 1mportance samplmg or CIS | _. -
~ For nonrdeal channels their gains are moderate for example on the order of
101 for a BER of 10” with the presence of a hmlter (nonllnearlty) and a s1mple'- :
receive ﬁlter (ISI) The deﬁc1ency results from 1) the dlfﬁculty in determmmg the

optlmal varlance scalmg for nonhnear channel and 2) the s0- called “dlmensmnahty:,j

effect.” D1mens1onallty effect in the 1mportance samphng literature refers to the effect -

that efﬁc1ency gain drops rapidly as the “dimension” of the system increases. The
dimension of a system is roughly defined as the n‘umber M of noisy samples that '
affect one output decision. Tt is easy to see the cause of dimensionality effect. Recall
from the last sectlon that 1mportance samphng efficiency i 1s achleved by concentratmg
the probablhty mass of the simulation’ density fy(y) on the 1mportant reglons where
1e(y)fy(y ) are large. CIS achieves this goal to some degree by s1mply pushmg the
probability mass out from the orlgm of the n- d1mensxonal sample space unlformly in all'
d1rect10ns However, as the dimension of the system i 1ncreases there will be more and'
more Wrong d1rect10ns and hence, less and less of the probablhty mass would really
end up in the important regions. We will explain graphlcally this d1mens1onal1ty effect
in Chapter 4 when we compare the variance-scaling biasing and mean-translation
biasing. _ o
There are two obyious ways to reduce the dimensionality effect: 1) reduce_ the
number of samples per symbol and 2) compute the IS weight using less than M
samples. The first method introduces modeling error while the latter, as noted by
Shanmugan and Balaban [53], results in a biased estimator Both the modeling error
and bias are hard to quantify and predict. Thus, these two solutions are not attractlve
Shanmugan and Balaban also note that if we compute the we1ght using more than M

samples (sometlmes the exact memory length of the system is unknown) the estimator

remains unbiased but the est1mator variance is 1ncreased 51mply because more terms.
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' ar‘e in'cluded ‘Al‘so‘ if the memory truncatlon occurs ’at‘ vvhere the impulse-. r'esponse
 function of the bandhmrtmg filter has s1gn1ﬁcant value “the variance 1ncrease tends to" S

| -_be large We will see: that these problems can be eliminated by us1ng event srmulatlon

ywhere the 1mportance samphng weight is computed usmg exactly M samples no less/_'._- .

“and no more.

Although ga'ins are. ‘moderate for nonideal ch‘annels‘, Shanmugan and B'al'aban’s:
CIS algorithm is s1mple and easy to 1mplement Also, a savmg factor of even 2 can be 7_-
'_ s1gn1ﬁcant 1f the Monte Carlo method requires hundreds of hours to run. Therefore, 77'
CIS was qu1ckly adopted in commerc1al 31mulat1on softwares hke TOPSIM 111 [38] |
| In an effort to reduce the chmensronahty effect Dav1s [13] proposes a nonstatlonary -

variance- scahng scheme Only M’ < M samples are brased (M’ = 1 is suggested for':i:_f--.. S

b1 phased transmrssron x e , O blasmg for the ISI components) srnce these samples are "
the most 1mportant ones in dec1srons makrng The result isan unbrased est1mator w1th' B .
no drmensronallty eﬁ'ect but gams are low (~ 101) because now some 1mportant error o
‘regrons are under sampled They also propose to approxrmate the nonhnear system
’i" with a lmearlzed model in finding the optlmal varrance scahng ThlS llnearlzatron'_
‘j1s never very desrrable As the system operatmg pomt moves toward the nonllneari : -
i reglon, the modelmg error- increases which, more often than not we w1ll not be able"-: o
to quantrfy ) v B ‘. S ~' - LT
Another notable modrﬁcatron to the CIS is done by Jeruchlm et al [25 32] in wh1ch o
i they propose the EIS (eﬂicrent 1mportance samphng) technrque EIS still employs' ::":,:'
: ;stream srmulatron and varrance scaling. They force the d1mensron to be ]llSt umtyi::‘ -
'V(thus no. dlmensronahty eﬁ'ect) by computmg the IS werght as 1f the system 1s llnearii. L .-
'whrch admrts a reductlon to one dimension. - A satelhte channel w1th both uphnk:w}
and downhnk norses is studled The CPU time efﬁcrency galns are. 1n the range:,"‘:- el

of 101 1()2 for channels with nonhnearrty Wthh are. qurte good for a system thls -

. complex However thelr approach has some crltrcal assumptlons and approxrmatrons'” i

Wthh make the algorlthm s usefulness in other srtuatrons (e g dlfferent ﬁlters severe i

: nonhnear1ty) unclear
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" 1. Regression method is used to learn the system impulse response functions for
both noise processes. This effectively linearizes the channel for uplink" noise

which passes through nonlinearity.

~ 2. The ISI-contributed portion of the decision voltage is assurned to be uniformly

distributed.
3.* The noise statistic at the decision tirne is assumed to be Gaussian._ -

The second and the last assumptions can be of concern for some systems Also‘ -
computlng the IS welght at the channel output whlle the blasmg is done at the 1nput:
results in a blased estimator [52]. Another drawback of EIS is that the requlred'
number of sxmulatlon runs L is preset by a,nalytlcal calculatlon based on the above
assumptions/ approx1rnat10ns. Thus, at the end of simulation, we really have no -1dea
of the exact bias and variance of the estimator. The qudlity of an estimate has to be
confirmed by other estimators. (e.g., error bouhds, Monte Cailo or semi—an“alyti‘cal).
Lu and Yao [36] take a mnajor ‘departure from all i)'fevibﬁs work and achieves
significant gei’ns without dimensionality effect or bias. Their éﬂgorithm will be d‘i”s- :
' cussed in detail in Chapter 5. Two key new coneepts, as mentioned in Chaptef 1,
are mean-translation biasiﬁg and event simulation. The noise vecto‘r Y is biased
by shifting (or translating) its mean vector. The result, for example, is 54 times
more efficient than CIS for a BER of 10=® and M = 3. The reason why there is no
dimensionality effect is also clear. The optimal mean translation is the» point vtiher_e v
1E(y)fy(y) is maximized. This is the “most important point” in the error setj hedce, -
d'ptimized mean translation will place much more of its probability mass in the im-
portant region than CIS. Dimension is not a fa,ctor'inv- this approach so 10dg_as we
. can locate that maximum point on the n-dimensional space. Their success proves
that low computational gains for systems with memory is 1_1'o_t a ﬁatural limitation
of importance sampling as once suggested. It also becomes clear that nonlinearity

rather than memory is really more of a challenge to impoftépnce Sampling.
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Lu and. Yao s optlrmzatlon method in ﬁndmg the srrnulatlon mean works only for ..
_lmear systems Sadowsky and Bucklew [49] use a dlfferent approach to arrive at the
" ~same result but thelr method also apphes to nonlmear systems In short they show

" that w1th1n the closure of “the. error ‘set, there ex1st some pomts called minimum

rate pomts ’such that the rate at Wthh the dec1s1on error probablllty decays w1th" o

 the 1ncreased s1gnal to-noise ratio (SNR) is dommated by these pomts When the
model densrty is. exponent1ally twisted to these rmmmum rate pomts asymptotlcal _

efﬁc1ency is achieved. For a Gaussran random vector Y, the exponentlally tW1sted. ‘

function reduces to srmply mean translation of the model den81ty functlon And;_"'. o

| the s1mulat10n denS1ty is some convex comb1nat1on of the mean translated (to the."
: mlmmum rate pomts) model den81ty functlons When there is only one m1n1mum-“

rate pomt called the “dommatlng pomt 7 We Just shlft the mean to thls po1nt That

is, if Y(‘) N(0, C) then the. s1mulat10n dlstrlbutlon is N(v C) where C is. the _ s

unscaled covariance matrlx and Vis the domlnatmg pomt We w1ll in general assurne
in our study . that the dommatmg point exists. The dommatmg pomt v depends on

the 81gnal as well as other system parameters Hence the task of 1S desngn is to ﬁnd .

: 'the dommatlng pomt We dlrect readers to their paper for a complete treatment Our o :

work is closely related to thelrs and the common fundamental 1deas will be dlscussed

in Chapter 4

B Coded Systems | _ ’
v Dlmensmns in coded systems are greater than in uncoded systems It 1sa comb1; :
» natlon of the channel memory (due to ﬁltermg and/ or other memory dev1ces) and the ,
fmemory mherent from the code This is even more true for trelhs codes for wh1ch the :
"code memory is theoretlcally mﬁmte Herro and Nowark’s paper [28] is apparently
' _fthe ﬁrst to study 1mportance sarnphng applled to V1terb1 decodmg The CIS method' |

1s used in thelr study Not surprlsmgly, the efﬁmency dlmmlshes as. the “effectlve

o _,»decoder memory, ’ Wl’llCh 1s proportlonal to the code 8 constramt length increases.

.Also as noted by Shanmugan and Balaban, memory truncatlon Whlle computmg the .
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1rr1portance samphng Welght generates biased results They conclude that 1rnportance
samplmg is useful only for short constramt length codes and small BER’S The ef-
fectlve decoder memory for a partlcular code must be chosen accurately to account
for all noise sarnples that have mgmﬁcant 1mpact on the decoder s deCISlon Also the
optimal uniform varlance scahng has to be found by trlals Over blasmg may result
in a variance even greater than the Monte Carlo method |

In parallel to Lu and Yao’s approach for uncoded systerns Sadowsky [46] devel-
ops the event simulation rnethod for Vltel‘b] decoders and he uses a union bound
argument to design the mean- translatlon simulation den31ty function. This blasmg
scheme coincides with the optlmal mean- tra.nslatlon blasmg obtained by the rnethod
in Sadowsky and Bucklew [49] for the special case of AWGN channel The galns are
extremely high. We will explam his event simulation method in Chapter 5 and use two
trellis code examptes to illustrate the principleé in dealing with coded system simula-
‘tions. A more complicated situation, coded systems operating on nonlinear charmels
with mernory, will be covered in Chapter 6. The event simulatidh rrlethod for Viterbi
decoders is what makes efficient importance sampling simulations for trellis-coded.
systems possible. " |

Although we will not consider the simulation for the other Irrajor_braneh of error-
correcting codes, the block codes, [46] has given an example of the Hamming (7;4)
code employing importance sampling. It is conceived that importance sampling can,
at least in principle, apply to other more complex block codes srxch as the BCH and

RS codes and practical channel models. We leave this for future research.
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3. TCM CODES AND SIMULATION CHANNELS

3.1 The Ad‘ditiy.e- White Gaussian Noise 'in‘Si,mul_ation_s "

Commumcatlon systems analy31s often assumes that the system 1nput n01se lpro— )
cess in Flgure 1. 1 1s an addltlve statlonary zero-mean whlte Gaus31an noise process
ThlS n01se process is quite falthful in modehng the- radio. atmosphere noise (ram-
» induced- n01se, earth background noise, etc.) and the transmltter/ receiver equlpment
thermal noise. Also, this assumptlon is easy to work w1th especlally in the 51gnal
space analysxs of dlgltal commumcatlon systems [43 64, 72]

An AWGN process N (t) has a two- srded power spectral den51ty (p s.d.) No /2 over
the entlre frequency spectrum and any ﬁmte collection of néise samples has a Jomt
) Gaussmn distribution. ThlS noise model leads to the concept of the matched ﬁlter
‘ recelver if the channel is lmear If the channel is also bandlimited, whlch is the case in
practical systerns Nyqulst s ISI- free criterion for filter design apphes In this thes1s,
when we say ideal AWGN channel we will mean an 1nﬁn1te bandwxdth channel with
a corrupting AWGN process. | » ;

Digital computers ‘can handle only discrete-time events, thus sampling of a con-
tinuous time process is necessary in simulation. Note that 'we can' not sampie the
infinite bandwidth AWGN directly, the samples would -have infinite variance. Also,
computer simulation of a narroyvband (comparing to the' car,rier_frequency-) bandpass
siglial/ system often uses its complex b'as'e'ban_d ‘equivalent to reduce the number of
samples required by the sampling‘theore‘m. The discrete~t_ime haseband equivalent of
the AWGN is obtalned as follows. = | | | |

First we approximate the infinite bandw1dth noise process N(t) Wlth a bandlim-

ited noise N(t) with p.s.’d.‘ No/2 and a bandwidth W much wider than the system
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(a) Bandlimited AWGN. ~ (®) Lowpass.equivalent of ().~
Xs(N)
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©) Sampled process of (b)
. Figure‘3'}1 Power spectra of bandlimited_, lonas‘s a,ndsampled AWGN. -

| bandw1dth to reduce modehng error. See Flgure 3 l(a) The n01se process N ()
\“‘:1 be expressed as [43] ’ '

N(t_) = X () coswet — Y (t)sinw,t,

where w, is the carrier angular frequency and X (t)end: Y (t) are lowpass zero m
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can

can

: Gaussia'n noise processes with two-sided p. s.d. No and bandwidth W/2”‘as shown in -

Figure 3.1(b). The complex signal Z(t) = X(t) + ]Y( ) i is the' baseband eq‘uivalent

‘and contams all information of N (t). The autocorrelatlon functlons for X (t)

“"and Z(t) are
¢XX(T) Pyy(r) = ¢ZZ(T):WNOSinc(W7;)- oo

- where smc(a:) = sm(7rz)/7r:c and ¢Xy(7') = 0 for all 7. That is, the in- phase (I)
:quadrature Q) cornponents of N (t) are uncorrelated (thus mdependent) Gaus‘

pro cesses.

¥(),

and

1an
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Now suppose that we 'sample N times during an interval of T seconds. Let :

=1/A =N, /T denote the sampling rate where A is “the tlrne between samples

The sampled dlscrete -time lowpass noise process X,(t ) (and Y,(t)) has the p.s.d. of.

Flgure 3,1( ) with no aliasing if we have W = fs, provided that W is much greater_'. '
than the system bandwidth. The autocorrelatron functions of X,(t ) and Y, (t) are '

¢x,xs(7)’= Py,v,(T) = Nofs5(7)

where 5( ) is the unrt 1mpulse functlon Therefore samples of X (t) and Y(t) arerr k

1.1. d Gaussran r.v.’s w1th the same variance Nofs = NON R where R = 1/T We .

will set T equal to the transmltted channel symbol duration and R is called the data
| baud rate _
For the ideal AWGN channel and many Iother linear channel models the n01se
statistics at ‘the demodulator output can be found analytlcally and we don’t have tolr
sample the 1nput noise process. When the channel is nonlmear, many samples per-

ch‘annel syrnbol are required to simulate the nonlinearity. The satellite‘ch'annel is

one such case where the transmitter and transponder hlgh power amphﬁers are often B

driven at near saturation to achieve power efficiency and are the ‘major sources of:
nonhnearlty. Dependlng on the modulation scheme and the severity of nonhnearrty,
8-64 sa’mples (or more) per symbol are usually used. Nonlinearity tends to sp'read.
the signal spectrum [22], thus the more severe the nonlinearity, the more sar_nples:.-per .
symbol will be needed. |
The next section will introduce the trellis codes andvanalyze t‘heir‘ error pe:rf'o.r-r
mance on the ideal AWGN channel. Section 3.3 describes a satellite channel which.
is the channel model we will pay much attention to. A satellite channel is oltén'too
- difficult to analyze because of the nonlinearity and its many distortion sources. An-
alytical tools do exist for the analysis of nonlinear s’ystems with memory (e.g., [50]),
but there are problems associated with these methods. Performance evaluation ol'
satellite systems via computer simulation has remained the dominant means since

the beginning of the satellite era.
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Cons1der the block dlagram of a typlcal dlgltal comrnumcatlon system show1

functlonal umts —~ the encoder transforms and adds blt redundancy to the clata

stream for Iater error correction/ detection while the. modulator chooses transrnlt

-51gnals which can be easily dlstmgulshed by the receiver after transmlssmn over

waveform channel They more or less’ are des1gned separately as long as the comb

tlon achleves BER power and bandwidth specifications. Wlth an M-; a.ry modulation‘_, S

fed
th'_eﬂ -

a code rate R (R < 1) block code or convolutional code would result in a fa-torﬁr.f

r ,of 1 /R ‘bandwidth expanswn cornpared to the uncoded systern a.t the same. effectlve '

data rate. Note ‘that for many modula,tlon schemés (e g blnary s1gnalmgs, QPSK',_;:V

: OQPSK MSK), the Harnmmg dlstance between any two dlscrete codewords (number.-"

of d]glts in whrch they dlffer) is'a hnear functlon of the Euchdean dlstance between‘

' therr respectlve transmltted s1gnals in the s1gnal space Therefore the crlterlon:,’fori st

. ,desrgmng channel encoders has been to maxrmlze the mlmmum Hammmg"dlsta

- dmm between dlscrete codewords

nce -

nin

lent' .

ina-
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To have the error- correctlng capab111ty of channel codlng whlle mamtalnm‘g the
same spectral efficiency as the uncoded transm1ss1on, the srgnal set S (S = {p,( ) 1<
¢ < M; pi(t) =0, fort > T and ¢t < 0} = the set of all possible transmitted signals) -
must be expanded to accommodate the added bit redundancy ‘ However, now the
signal. space becomes more crowded and there are more ne]ghbormg s1gna1 pomts_
The probablhty of mlstaklng one signal w1th the others.is mcreased The codmg gain
can be offset by this effect. For example, an uncoded QPSK system can be replaced
by a code rate 2/ 3 64 state convolutlonal encoder Wthh has dmm = 7 followed
by an 8- PSK modulator However after going through all the trouble of encodlng
and decodlng, the coded system performs only as good as the uncoded QPSK [58]!
One possibilityto overcomethis adversity is to let the signal mapping functlon be
dependent on the channel encodlng This is the motivation behlnd the development
of TCM [58]

TCM was 1ntroduced by Ungerboeck [57, 60]. It is one of the so-called combined
modulation and coding techmques [2, 54]. One common concept of these techniques
is to design the encoder and modulator jointly to directly'maximize the Euclidean
distance betw‘eenv transmitted signals. The encoder and modulator are v‘iewed as on‘e
single block which maps information bits directly to the transmitted channel signals.
The codes thus designed are also called “modulation codes”’ because coding can then
be thought of being embedded in the modulation process. This class of codes often
can achieve coding gains with no or little sacrifice of bandwidth efficiency and data
_rate, but at the expense of system complexity. This concept takes us one step further
toward Shannon’s prediction of the existence of a both bandwidth and power efficient
“error-free coding scheme so long as the data rate is less than the channel capacity .
and the signal-to-noise ratio (SNR) is greater than -1.59 dB [20].

” Figure 3.3(a) shows the block diagram of a TCM transmitter which consists of a
llnear binary convolutional encoder (bit-wise modulo-2-addition of any two codewords
is another valid codeword) followed by a signal mapper. This structure was introduced

by Forney et. al. [18]. During each signaling period kT,k = 1,2,..., a block of .



. ‘mbits. - | Convolutional | - Subset -
L — = ‘
' Encoder Selector
#n.bits
" . b-m uncoded bits | Signal | channelsignal
- Selector | : ,
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© b-m+n bits
| bbits | Convolutional | o Signal | channel signal
Encoder Mapper .
(b)

' ;Figl,{ll‘,ebs.:‘; Block diagram of a TCM transmitter. -

b lnformation’ bits are to be tra,nsmitted where T is called the Symbol’ duration.

- Among them, m bits are shifted into an (n,m) convolutlonal encoder whlle the

. of (b m) bits are uncoded and sent directly to the block labeled s1gnal selector.

n- “bit outputs of the convolutlonal encoder, called the subset selector, 1s to choose a

The"

- set S’ of s1gnals from’ the s1gnal set S, where S’ CS. The uncoded bits then select ltrom

this subset the actual transmltted channel signal. - Thus the signal set S is d1v1ded7 B =
into 2" subsets, each having 20-™ elements. The blnary (n+b— m)—tuple_ of the n-bit =~

'_enc’oder‘ output plusthe (b — m) uncoded bits is called a “signal selector.” For s

TCM codes which: do not: have uncoded bits, each: Subset V‘would'containa-onl'y._'

- signal and the subset selector is the signal selector We will call the b-bit input :data..

| an. 1nformat10n symbol ” the corresponding srgnal selector a code symbol », é,nd

transmltted s1gnal a cha.nnel symbol " A codeword is a sequence of code symbol's‘.

- The terms code symbol” and s1gnal selector Wlll be used 1nterchangeably, so

codeword’ and ¢ s1gnal selector sequence.”

Wlll -

res’t L

ome

one . - -

the 7
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Figure 3.4 Examples of trellis diagrams for 8-PSK TCM codes. -

" The trellis diagram reﬁresentéition'is a standa,,;rd for fféiiis cod_és. A"t"rél'li‘js'dia,gjr'e‘xﬂ_r.nv ,
is a state transition diagram evolving in time and the tvran:si"ti‘oh bfanéhes afe labeled
with channel syrﬁbbls or signal sélector_s. Two examples of TCM t‘rell'ivslc‘lia',grams are’
shown in Figure 3.4, both have the same input block leﬁgth b=2 a:rid"thé 8."PSK‘s'itgna;1 '
set (|S| = M = 8). At any time instance kT (we will often refer to s_imp_ly as “time
index” or “stage”. 'k)_v, a trellis node represents one_of the finite conVoiutional encoder
states. VA'n encoder state is defined by the values of v basf iﬁfq;mation bits stored

“in the shift registers of the convolutional encoder, where » is called the constraint
length. The total number of states is 2“. The incoming m information bits together
with the current encoder state determine the transition froni one state at time kT
to some state at time (k + 1)T" as well as the subset selector. There are 2™ pbssible
state transitions originating from each node. Uncoded bits have no influence on stafe
transitions, their presence is represented by letting the state transitions have parallel

branches. The number of parallel branches for each state transition is 2t=m and they -



L Standard treatment of convolut1onal codes can be found in, e. g [12 34 64]

| “are labeled by s1gnals frorn the same’ srgnal subset. The one partlcular branc
‘:chosen by the uncoded b1ts The total number of branches leavrng and entering e

state is thus 2’”2“’ m) = 2b Flgure 3.4(a) has parallel branches (m = 1) while i in
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h is
ach’ ‘~

(b)

. " m = b =2 and hence no parallel branches A trellis path is a sequence of branthes

that progress in t1me Grven the 1n1t1al encoder state, there is a 1 to- 1 correspondencev ‘

- between the transmltted mformatlon sequence and the s1gnal selector sequence

' add1t10n that srgnal selector chuence is equlvalent to a trelhs path or an encoder

In

_\state sequence in the trelhs dlagram 'A TCM code can be completely descrlbed by

its trelhs dlagrarn

If we v1ew the uncoded bits, if there are any, as tr1v1al connectlons in a larger

i :vconvolutlonal encoder a more general system block dlagram is shown in Flgure 3. 3
Note that by domg thrs the hneanty of the dlscrete encoder is preserved _
E ‘Stlll a lmear convolutronal encoder ‘we Just ehmmate the uncoded blts In term

“the trelhs dlagram, there wrll be more states but no parallel paths Therefore

(b)
t is

sof

:th?3 ROELR

'vma]or conceptual dlfference between TCM codes and ordmary convolutlonal codes ’

s the 31gnal mappmg functlon (modulatlon) We assurne that the readers have had’ ‘

"basrc exposure to the convolutlonal codes and therr performance bounds computaqion.ﬁ

Conventlonally, for a rate R=m/n convolutlonal code the selectron of an M

: signal set is 1ndependent of m and n. Some commonly used modulation schémes

'BPSK FSK QPSK (and 1ts var1at1ons such as, OQPSK DPSK MSK) and QAM

'The rules of slgnal assxgnment (mapplng of srgnal selectors to channel symbols)»

L ary

are

are’

- »accordmg to Gray codmg when possrble so that nerghbormg 31gnals dlffer in the least

: number of b1ts to minimize b1t errors. ThlS type of conventlonal convolutlonal codes ’

'- whlch have no spec1al structure 1n the srgnal mappmg functlon can be consrdered as -

: '[va specral case of TCM
| A TCM employs an expanded M- ary s1gna1 set in the sense that M 2z 2”"’”’" >

?

1 e. the size of the srgnal set is larger than that reqmred by the uncoded transmlss‘ion.“ . |

Codmg gam can be v1ewed as comlng from the redundancy of the expanded 31gnal

set
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rather than from the redundancy of transrnlttrng addltlonal channel syrnbol pulses‘
Thus bandw1dth expansmn is not required. One class of comrnonly used TCM codes
has b =m and n =m+1, ie., the srgnal sets are expanded by a factor of 2. The
’rules of signal assignments for TCM codes are called mapping by set partitioning”
whose objective is to maximize Euclidean distances between discrete codewords The
Euclidean dlstance between two dlscrete codewords is defined as the Euchdean dlS-
tance between their corresponding channel symbols in the srgnal space As mentioned
earller this mapping function should depend on the encoder so that the loss of codlng |
gain because of the expanded srgnal set can be recovered. |
We w1ll study the nonlinear satellite channel where constant envelope slgnalmgs
are preferred, therefore let us take the 2-dimensional 8- PSK 31gnal set for our example.
This signal set has been also adopted in rnany practrcal rnodem de31gns [15, 19, 59].
Wei [66] and Part 11 of (58] o'utline the general rules \of rnapping by set partitioning for
any Zy type signal sets and the desired “free distance,” d f,-ee A srgnal set is of type Zk
1f it is a subset of the k- dimensional lattice with integer coordinates. The free dlstance
d free, defined as the minimum Euclidean distance between all possible codewords, i is
an important property of TCM codes. We will see in the next subsection that, fior"
the AWGN channel, the free distance is a good indicator of error perforrnance at high
SNR. | | |
Figure 3.5 shows the 8-PSK signal constellation and a signal mapping based on
the rules of mapping by set partitioning. The one digit number next to a signal
poi’nt is its “signal label,” and the 3-bit symbol inside the parentheses is the signal‘
selector. This particular mapping of signal selectors to signal labels is known as the
“natural mapping” because the signal labels happen to be the octal representation of
their signal selectors. The reasoning of mapping by set partitioning for this 8-PSK
signal set is as follows. Notice that there are four possible Euclidean distances (ED)
between signals. Normalizing the signal power such that all signal points lie on the
unit circle in the signal space, we have 62 = 0.5858, §? = 2, 62 ='3.l4’142, and 87 = 4.

The minimum ED for signals in S is 8. A “careless” signal rnapping might result .
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Figure 3.5 8-PSK signal constellation and t‘he natural rna‘pp,in-g;‘

" in two valid paths having this minimum distance. To avoid this.‘and to increase

the

| , . distances between paths‘ we first partitien S into 2™ subsets with ritncreased intras'ubSet

minimum Euchdean dlstance The ﬁrst partltlon results in 2 subsets {0,2 4 6}

nd

{13, 5, 7}, and the mlmmurn ED W1th1n each subset is 51 One further partltlon results
“in. 4 subsets {0 4} {2 6} {1 5} and {3, 7}, and the m1mrnum 1ntrasubset Euchdean ”

v dlstance is- 53 The next partltxon necessary only 1f n = 3 produces 8 subsets each

hav1ng only one s1ngle 31gnal and the 1ntrasubset Euchdean distance i is deﬁned to

| 1nﬁn1ty The rules of mappxng by set partltlonlng then are: [58]

1. Parallel branches are assoc1_ated:-‘w1th_s1gnals wlth rnax1mum distance b3 =

_ between thern; i.e., the signals in the subsets ’{0,4}, {1,5},5{2.,6} QI‘ {3,7}. .‘

2. Four branches leavmg or entering one state are labeled W1th 31gnals with

least d1stance 61 \/_ 2 between them, Le., the s1gnals in the subsets {0 2,4

" 0r{1357}

3 All 8 PSK 31gnals are used in the trellls dlagram W1th equal frequency

| :The two examples 1n Fxgure 3 4 are labeled by these rules and the result is’ the natural ,

Comparmg Flgure 3 4( ) w1thanuncoded QPSK'system they both have

o ‘spectral efﬁmency of 2 blts/sec/ Hz Startlng from any state the two paths whvich'

[ —
N

the
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diverge and later remerge that have the mi'nimum distance, d fT,‘;e’ are ﬁhe One-'b_ra,n_ch
parallel paths. (This vis the reason why they are assigned the set of signals with the
greatest intra,subset distance 83.) That is,idfree = 63 = 2.. For the uheo'ded QPSK,

dfree = /2. Therefore there is a 3 dB improvement fof this code without bandwidth‘ |
increase or data throughput decrease. For the Figure 3. 4(b) code two >p‘aths with the
‘ oo = 267 + 62 = 4.5838, i.e., a coding gain of
3. 6 dB. For the 8-PSK 51gnal set, coding gains of 3, 4 and 4.8 dB schemes over the
uncoded QPSK transm1551on on the AWGN channel have been found w1th 4- state 8-

minimum distance are shown and d2

state and 16- state convolutlonal encoders respectlvely Theoretlcally, 7-8 dB codmg
gain can be achieved with TCM [57] | »

Consider the mapping of Figure 3.5. The'Hamming distance (HD) betv'veen>two
discrete code symbols is no longer a linear functlon of their Euchdean distance.
For example, dup(000,100) = 1 < dup(000,110) = 2 but dED(OOO 100) = 2 >
dED(‘OOO, 110) = v/2. A signdl mapping such that the Euclidean distance between
two signals depends only on the Hamming distance of their signal selectors is called
a regular mapping, otherwise non-regular. TCM codes in general have non-regular
mappvihgs and thus are non-regular codes. By definition, a regular code [6]'.is such’
that the distance between two coaewords depends only on the Hamm-ing distance of
their input information bit sequences. Convolutional codes‘v‘vitvh regular mappings
are regular because of the linearity (linear codes are ,triviaﬂy regular codes) of the
» encoders and regularity ‘in signal mappings. Regular codes have a nice property that
the number of codewords at distance d from one particular codeword is th.e same
for all codewords and all d. Therefore in computing the BER performance we can
assume a particular codeword is transmitted, in particular, the all 0 sequence. For
nen—regular codes, error performance analysis is more difﬁcﬁlt. This is the subject of
the next subsection.. | |

"At the receiving end, the sequence of transmitted signals is demodulated and
then decoded by a maximum likelihood sequence decoder — the Viterbi decoder. We

will use the unquantized soft decision Viterbi decoder to avoid loss of informst’ion and '



o ‘ éenerally 2‘dB of SNR if a. two leVel'hard-quantised decoder isused‘ "'S‘ynchronizations-b e
of carrler phase and frequency, symbol and blt tlrnlngs at the recelver is assumed
: throughout unless otherw1se stated | o | v
There are other more complex des1gns of 51gnal sets and their mappmg rules than

the 2- dlmensmnal 8- PSK w1th natural mapplng descrlbed above For example, ro-

i tatlonal 1nvar1ant TCM codes using 2- d1mensxonal s1gnal constellatlons are dlscucsed

in Wei [67] Mult1dunensronal ‘TCM codes [7, 18, 66] can achleve hlgher coding

":*.*“'gams and/or reduced system complex1ty by usmg mult1 dlmensmnal (> 2) s1gnal

) sets Recall that the expanded 2- d1mens1onal 8 PSK s1gnal set causes the loss of co‘d- o

1ng galn obtamed fromi convolutlonal encodmg The s1gnal set. S has a mlnlmum ED '

| (53 = 0. 5858) much smaller than the uncoded QPSK system (d2 : —:4) to start the -

ree
”set partltlonmg In mult1 d1mens1onal TCM codes, the added b1t redundancy or sig-
- nal set, expans1on is evenly absorbed (shared) by all of the constltutlng 2- d1mens1onal

| §

- "S1gnal constellatlons [66] We can thus have a snnple per 2- d1mens10nal constella n,o,n ‘
or lncreased 1ntrasubset ED. For the moment the 8 PSK 81gnal set suﬂ'lces to serve -

| ~our purpose of s1mulat10n algorlthm study The s1mu1atlon algorlthms we. w1ll present

R are apphcable to any TCM codes w1th quas1 regularlty Wthh is explamed in the next o

o sectlon

B 3 2. 2 Unlon Bounds and the RC Algorlthm a

- An analytlcal solutlon for Pl, is dlﬂ'lcult to obtaln forv even s1mple TCM co :les
: _Instead an error bound or s1mulat10n is usually used An umon bound on Pb for .the
case of the 1deal AWGN channel w1ll be dlSCUSSCd in thrs sectlon whlle s1rnulatlonsv
--:for the AWGN channel and the satelllte channel w1ll be covered in later chapters. |
Let x = (wl,xz, . :1:,, ) and x = (ml,xz, ) be the transn‘ntted code-

vword (s1gnal selector sequence) and decoded codeword respectlvely By notatlonal

s ‘convent1on :ck is the s1gnal selector produced by the state tranSItlon from tlme mdex"

| »k -1 to k The decoded codeword X" is a “first event error” of length rif the two

' trelhs paths representmg x and X' dlverge at the same state at trellls tlme lnde‘x_




' k = 0, remerge for the ﬁrst trme at some state after T branches, and T = a:k, k >T.
We allow x' = x (r=0) to be a tr1v1al error event Note that it may happen that
zp =z}, for some_ k1 < k < 7. That i is, some signal selectors on the first event error

~ path may be““ac.cidently” correct. ‘The squared Eucl_idean distance between X and

x', denoted as d?(x,x'), is | |

d?(x,ic’) = Z dz(xk,':c;c).

- We have dropped the subscript ED for Euchdean dlstance because thls is the dlstance

measure we will be rnamly concerned W1th On the ideal AWGN channel the squared

Euchdean dlstance between x and x’ determines the hkehhood of decodrng x’ whrle X

is sent Note that we con31der only the ML Viterbi decoder which uses unquantlzed

demodulator. output and makes a decision at the end of the data. For the ﬁxed lag
and/or quantlzed V1terb1 decoder used in some pract1cal appllcatlons the relatlonshlp
is shghtly} weaker.

Letl x/ =x+e where e = (e1,ez,-) is the “signal selector error sequence”
and ek 1s obtalned by b1t -wise modulo-2 addition of zy and a:k, eg:, ek(:vk,:ck) —‘i
ek(OIO 110) 100. If ex = 0,k > £(e), we call E( ) the “length” of e. Note that
‘ because of - the hnearlty of the convolutional code, e is also a vahd srgnal selector
sequence (codeword), spec1ﬁcally, one which is a first event error r of length ¢(e) of the
all 0 srgnal selector sequence.. That is, the trellis path representlng e drverges from

the all zero path at tlme index k =0 and merges back to the all zero path for the ﬁrst
time at k f(e) Let Pd = Q(d/20), where o is an SNR deterrmned constant factor;

d is the Euchdean distance between two codewords and Q(*) is the complementary o

Gaussian distribution.function defined as
Qy e /2 dt.
) - /—'

Suppose that the transrmtted codeword is of ﬁnlte length whlch is the case in
practxcal apphcatlons Let C be the set of all poss1ble codewords and we assume

_throughout that all codewords are equally likely to be sent The “ﬁrst event error
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probablllty” P,3 can be expressed and upper bounded as follows Addltlons betw‘een ‘

two codewords are b1t w1se modulo 2 addrtrons

: o

= E[Pe(?X)]
=E| > P(X+eIX)} . N ¢ 5
Le;éo‘,eec ' . S ) }

< E ZAd(X)Pd} - }_:Ade, | | " R _'(3.‘3_),
"where P (X) E[P IX] is the condrtlonal ﬁrst event error probablhty glven th:e,_t
X is the transmltted codeword, Ad(X) is the number (multrphcrty) of codewc:rds B
Cat distance d from X and Ay = E[44(X )] is ‘the expected number of codewords :_'
at’ distance d from a codeword Equation (3.1) results from the hnearlty of the ‘
| “convolutional code ‘Equation (3.2) follows (3 1) by grouping e’s such that d(X X + o
e) = d. The 1neqUa,hty (3 3) holds because the decodlng error reglon {X te ]S |
, decoded} is a subset of the error reglon when X+e and X are the only two admissible
| ~.decoding optlons Equatron (3 3) is the “umon bound” of P Note that this bound
' valid only if the channel is AWGN. The expectatlons in (3 1)-(3.3) are taken wi’th‘

: the same for all codewords That is, Ad(xz) # Ad(xj) X 75 xJ For regular codesv.‘by" .
' deﬁnltlon we have Ad(x) Ad for all x, and thus P (X) ’ S

If the Vlterbl decoder we used is maxrmum hkehhood P, is the probablhty that

b

: glven ‘the decoded node ison the Correct path at some t1me 1ndex k, the next branchlng

‘dec1s1on mk+1 wdl be 1ncorrect Or equlvalently at th1s moment the decoder W1ll
ehmlnate the correct pa,th in favor of another path w1th a larger metrlc Th]‘s is
vbecause the drstance dlstrlbutlon of- paths dlvergmg from and merglng into a state
' “are 1dent1ca1 If the paths are forced to merge as 1s done in ‘the practlcal ﬁxed-leg

(near mammum hkehhood) decoder, (3.1) is an upper bound of P, [12]. Usually the -

_ respect to all codewords because for non-regular codes the d1sta.nce structures are no_t ‘_:
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truncation length is chosen to be 4-5 tlmes of the code constramt length and the
dlﬁ'erence is negligible. | | | |
Equation (3.1) is a sum over all’possible x and e which is divﬂlcult to compute
analytically even for a simple code. (Suppose that the codeWord length is 200 and
the lnput block length b = 2. ‘Then |C| = (22)*®.) The error bound (3.3) 1s more
computable. Its most signlﬁCant term, Ad!de!“;, can. be easily obtalned by com-
puter search and. is often used as a criterion for code designs. However, TCM codes
often have dense dlstance spectra — there may be many possible dlstances close to
dfree w1th comparable or even much greater multlphcltles than Aq,,.. The_refore, A
code design based on the free distance term alone is not necessarlly a better code
than another one w1th a greater dy,... This is especially true when at low SNR where
Py,,.. is not much more s1gn1ﬁcant than the values: of P, of its neighboring dxstances
Obviously there is.a need for us to be able to evaluate more terms in (3.3). ‘
The bit error probability, P, can be computed and upper bounded similarly, We.

have

. E[A(X)]
= B[J S MX+ P+ elX) e
eeC i ‘
_ 1 [i Bd(X)P(X+e|X)J |

N d=dgree

>

< bZBde, : | : h : @3
'where Nb(X X+e) is the number of bit errors if X +e is decoded and X is transmitted
(Nb(X X) = 0), B4(X) is the total number of bit errors for paths at distance d from
X, and B; = E[B;(X)] is the average number of bit errors for paths at distance
d from the correct path Note that by hnearlty of the convolutlonal code, we “have |
Np(X, X+ e) = ny(e), ie., the number of bit errors depends only on: the error sequence
‘e. We also remark that (3. 4) is in fact an upper bound of Py [64]. The bound 1s tight

and the d1st1nctlon has been usually neglected in the hterature



“v»,_-isequence is; transmxtted ThlS is a very large class of codes Wthh 1nc1udes the

‘dmary convolutlonal codes and many of the practlcal TCM codes Recall that

: .' in the 51mulat10n Therefore, let us- first examme the deﬁnltlon and propertles

o _;51gnal selector error of two s1gnal selectors whlch are produced by two state tran31t1(

. there ex1st a branch that leaves s and a branch’ that leaves s whose s1gnal selec

' .f’"‘error is. e Also 1n general we have P sr,e(z) = pslyse(z) Examm]ng the tre

A proﬁle of Ad or Bd w1th respect to the dlstance d is called the dlstance spectrum

.f”’_-iof the code Dlstance spectra prov1de us the necessary mformatlon to compute the .

L fithe error bounds as a way to conﬁrm the accuracy of our estlmates Many algorlth'

e umon hounds (3 3) and (3 5) We w1ll want to compare our snnulatlon results agalrnst' -

ms:

e .‘; have been proposed to. obtaln the dlstance spectrum [8] A fast b1 d1rectlonal stack -

: | algorlthm is glven by Rouanne and Costello in [44] Wthl‘l we: Wlll call the RC Al-

o gorlthm Wlth some modlﬁcatlon thelr algorlthm also prov1de valuable 1nformatlon

_Wthl'l can fac1lltate the srmulatlon The RC Algorlthm works for llnear, regular and '

G ;:the so-called qua31 regular codes For qua31 regular codes (llnear and regular codes

’ are spec1al cases), the dlstance spectrum can be computed by assummg the all- zero

or-

for’ ’

_,a hnear convolutlonal code W1th regular mapplng, the ED and HD are related by a e

. llnear functlon In th1s case the dlstance spectrum can be reduced to the commonly -

‘;';f..known welght spectrum after scahng

Qua31 regularlty of a code is an 1mp0rtant characterlstlc Wthh we w1ll exp
:‘,"quam regular codes Let s and s be two states in- the trelhs dlagram and e be 1

o orlgmatlng from s and s We deﬁne the “dlstance polynomlal p, o, (z)

"rf'"‘,where P(x|s) 1s the probablllty of producmg the s1gnal selector :1: glven that 1

: '»‘.:encoder is. 1n state 3 The polynomlal Ps,s', o(2) s deﬁned only for the e for wh

5 ‘"‘dlagrarns in Flgure 3 4 the elght pos31ble dlst;nce polynomlals are AR

cploit
of - i
the

ns

.'6)l’f -

tor

he
l‘Cl'l;f '

lhs,': B .
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e =001 ‘ e =011 e=101 e=111

e =000 . ¢ =010 o e=100 7 e=110

Figure 3.6 Signal _sejlector error and dista.nc_c for 8-PSK mapping.

ps',:;(joo(z):‘l, - Ps,s, 001( )
‘p;,3')01b(2) = 25?1 - Ds,s 011(2) + 126 Co

) 52 52 . (37)
Ps,s’;l_OO(z) =273, ps,s',IOI( ) 4 2, :
Ps,'s",ll’o(z) = 263, Ps,s'111(2 ) +

These polynomials can also be represénted gra.phica.lly'as in Fivgure‘3 6 where, for
every e, all terms in the sum of (3.6) are shown with z and T + e connected by lines.
A trellis code is quasi-regular if and only if [44] (1)it COIlSIStS of a linear blna,ry encoder
followed by a mapper and (2) the distance polynomials are mdependent of the pair
of states, i.e., for any two pairs of states (s1,57) and (82,8%), Psy,e),e(2) = Payoap.e(2)-
‘Regular codes can be considered as a special case of quasi—regﬁlar»code_s where the
distance between two codewords depends only on e (the Hamming distance between
them) and not on the signal selectors, hence, p, y.(2) is a monomial. In the abovev
examples, psys;,011(z) and p; ¢ 111(2) are not monomials. Therefore they are not regular

codes, but they are quasi-regular because the polynomials do not depend on (s, s'). ‘



- An example ‘of regular code is a convolutional code withQPSK and Gray coding.

that case the distance ‘p'olynomials are, independent of the number of states,

;-
Ds, s! OO(Z

ll

) ps s! Ol(z

Il

) =
) =
Ds,s' 10(2)
)=

ps s’ ll(z

where 6 = /2 and 6, = 2 for a normalized signal power. Note that they are all

" monomials and do not depend on (s, s').

" From thefpolynomials in (3.7) or from Figure 3.6, we note that for some signal ~ i
selector errors there are more than one distance. associated ‘with them. ,ThaL s,

,d(:r, x+e)is not ,uni"que'v‘ifhich depends on z. In our examples, there are only two such
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In

signal selector errors; they are e € {011,111} = . For those e, all possible distances :

“and their prob‘abilitiesof occurrences are contained in the information provided hy
011‘
3.6 ,

their distanCe polynomials. For example, in "(3.7), the distance polynomial of e=
(or e= 111) 1ndlcates that d(z, z+e) = 6 or &, with equal probabrhty And Figure

-~ tells us what exactly those palrs of z and z + e are. The “worst-case dlstance of

e 1s

defined as dy (e) = mmx d(x z +e). For a sequence e, d2 (e) Ek d2 (ek) Here, we:

.have d (011) = dw(lll) = 50 Note that for e ¢ 5 we have dy (e) =d(z,z+e

all x.

Return to the dlstance spectrum and RC Algorlthm The orrgmal RC Algorlthm

does not keep track of the signal se]ector error. sequences; e as it progresses For

for

the

r purpose of s1mulat10n we do hke to have a hst of e’ s whrch have small to—moderate

’worst -case dlstances Therefore we modrfy the RC Algorlthm a httle b1t and

algorlthm can be descnbed as follows. First we : assume that the all zero path is

|the
the

“ correct path In thxs case, the set of all s1gnal selector error sequences (1 e. the set [0} ) s

- srmply the set of ﬁrst event error paths of the all zero path on the trelhs dlagram This |

rset of ﬁrst event error paths can be sequentlally constructed by usmg a bi- dlrectlonalh ;

(forward and backward) stack: algorrthm The output of the algorlthm 1s therefore

a hst of s1gnal selector €ITOT sequences. The multlphc]tles Ad( ) and B4(0) can

.be.
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obtained from this list. Note that, from Figure 3.6, d(000,011) = d(000,111) =
50, i.e.; the first evénf, error paths of the all zero path'aiways .hravevthe Woist-‘czaSé
distances. Thefefore, Ad(ﬁ) ’(or B,4(0)) versus the diéﬁance d can be called the “wast—
case distance spectrum.” (This is slightly different from Rouanne and Costello’s
‘ deﬁnition of‘vvworsrt-case dis_ta‘r‘l’ce‘spectrum, but more ’intu'iti»vely‘satisfactory.) The

bi—directibnal stack algorithm is -described formally as follows.

Modified RC Algorithm:

e Input: Convolutional encoder conﬁgurati'on,'si_gnal mapping function, and the

desired maximum worst-case distance d 4.

o Output: A list of signal selector error sequences e such that dy(e) < dnaz, their

respective worst-case distances, lengths £(e), and information weights n;(e).
e Method:
1. Construct tables contaihing trellis diagram .inf_orma,tion. '

2. Forward (or backward alternatively) extension. For the successor (prede-
céssor) state is not the zero state, extend path. Push new pé.thé into the
forward (backward) stack with'bupdat:ed terminal ‘St‘ate.s, worst-case dis-
tances, information weights, lengths, and error sequences e. Delete old
path. |

3. For the newly created paths, check mergers with all paths in the oppo-

site direction stack. If mergers ha.ppeﬁ, push the complete paths into the

boutput stack. If d > dmaz, stop.
‘4. Choose the path with shortest distance and length in the stack. Go to 2.
The multiplicity A4(0), for d < dpaz, is obtained byvs‘im.ply counting the number
of e that have the same worst-case distance d. By(0) is obtained similarly except

~each count is weighted by ny(e). We are, however, more interested in the distance -
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spectrum For quasr regular codes, the d1stance spectrum can be easﬂy compu ted

‘usmg the. dlstance polynonuals For example suppose that Adf (0) = 6 ie., there

are 6 error sequences havmg the same worst-case d1stance d free-. For ‘a ﬁxed e/ let

ng(e) denote the number of appearances of ek,k = 1 .5 ¢(e), such that e € £

Assume that for these 6 error sequences, there - are two w1th ng(e) = 2, three with

ne(e) = 1 and one with ng(e) 0. See the dlstance polynomlals in’ (3. 7)
find that for each appearance of exr € £, there are 2 equally hkely distances

and 52) dependmg on the transmitted code symbol Tk- Therefore for a fixed e,

‘We
(b0
the

& ‘probablhty of havmg the worst-case distance is (1 /2)"5 (@), Hence, we have Ayl =

1-(1/2)° +3-(1/2)! + 2-(1/2)* =3. Note that 1f we are consrderrng Ad,d > dy,

free;

‘the contrlbutlon to the mult1p11c1ty from error sequences with worst -case dlstances

less than d must be also consrdered Furthermore ‘We are fortunate that for

8 PSK with the natural mappmg, the distance polynomrals for all elements in 5

thls

are

1dent1cal If thls is not the case, we have to count the appearance of each element (of

5) ine separately rather than using the total number ng(e)

Thls algorlthm works for all quasr regular codes Wthh 1nclude the codes that

be analyzed by Zehav1 and Wolf’s [71] transfer functlon bounds An even broader

can

class of codes than quas1 regular is defined in Schlegel [51] for whlch the dlstance

: spectrum is computable In there the Euchdean dlstance between two codewords is

expressed as a quadratlc form. This expressron makes poss1ble the computat1on of

'drstance spectrum for some codes ‘even when l1near ISI 18 present The utrllzatlo
. hrs method to our: S1mulat10n problem is left for future work _ ,
For small SNR’s the error bounds (3 3) and (3 5) are loose Also, they do

" ‘hold if the channel model is not the ideal AWGN In those cases, srmulatlons

nof

not,

are

desrred To estlmate P and Pb, we will be workmg w1th (3 1) and (3 4) Note that

-_the two equatlons are in nature event- orlented in Wthll the term P(X + elX)
. .probabrhty of the event “decodlng X + e while X 1s transmltted » 1s what we w1l
'estlmatlng One major advantage of thls event srmulatlon approach is that we

concentrate our computatlon on the terms that have s1gn1ﬁcant contrlbutxons to

the
l be :
can

the .




~ values of P. and P,. We will use the distance information to‘idenﬁtify these terms.in
Chapters 5 and 6. Details and justification, of the event simulation method for trellis
~ codes will be given in the next ch“:apter. As mentioned earlier, this event simula.tlon '
a,pproe,ch is conceptually different from the conventional stream simulation which is

simply an imitation of the system operation.

3.3 A‘SatelliteChannelz.vModel

The satelhte channel [16 23 55, 61] is the channel model we w1ll be malnly
concerned with beS1des the 1dea.l AWGN channel. A 31mphﬁed block dlagram of
. a dlgltal communlcatlon system operating on a “bend- p1pe (non regenera,tlve) type
satellite cha,nnel is shown in F1gure 3.7. A passband model is descrlbed below although -
‘the sunulatlon w1ll be conducted entirely on the baseband by us1ng the complex
baseband representation for all relevant waveforms and components |

The transmlt IF (1ntermed1a.te frequency) bandpass ﬁlter (BPF) Hl( f ) is rna,rnly‘
for pulse shapmg as Well as reducing the spectral energy spread Tts selection i is
an 1mportant part of the system design and is bas1ca,lly a tradeoff between the in- ¢
| band noise power, ISI and cross-channel 1nterference A Nyqulst Butterworth or
‘Chebyshev filter is often used For the most commonly used Nyqulst ﬁlter the pulse
~shaping funct1on.1s usually evenly shared by the transmit and receive filters and
thus Hy(f)isa square-root Nyquist filter. This filter is often cornpensated resulting
“1n a notch ﬁlter, because the Nyquist filter 1s ISI-free only 1f an impulse train 1s>
' transmltted The roll-off rate of the Nqust filter needs to be carefully de31gned
-Note that ﬁlterlng generates signal envelope variation, therefore the selectlon‘of Hl H
also depends on the modulation scheme and the nonlinearity of the channel. In our’ :
sirnula,tion-program,*iwe will allow the discrete baseband equi‘valents of all filters to be
any ﬁnite"irnpulse response functions (FIR). The has‘eb‘a'nd‘ equiyalent of a bandpass
filter can be easily COrnputed from the transfer functionHl (f) or the lmpulse response

hi(t) [43]. Our program will specify all filters dlrectly in the baseband
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Filter operations tend to be one of the more CPUV-:int.ensiv‘e parts of the}simula— -
tion. For this reason, many Monte Carlo s1mulat10ns are performed in the frequency
domaln and use the FFT for filtering rather than the more time consumlng con- v‘
volutlon The FFT is more efficient than convolutlon if the data length is large
For our 1mportance sampllng algorlthm employlng the event 31mulat10n method the
data length is usually small-to- moderate, and the computatlon requlred to ﬁnd the
opt1mal mean- translatlon simulation density turns out to be the dominant cost of
computatlon Therefore we w1ll simmulate the system entlrely in the tlme domaxn "

We have omitted the up converter follow1ng Hl( f) because it is transparent in our .
complex baseband simulation. The up-converter translates’ the carrier frequency from
“IF to RF (radio frequency), the latter is usually in the L band (1-2 GHz), C band (4—6
GHz) or Ku band (12-14 GHz) for commercial geostationary 'satelli‘te’syst‘ems_ such
as the MSAT (Mobile Satellite) and INTELSAT (International Telecommunications
| Satellite) systems The earth station high power arnpliﬁer (HPA) provides uplink' |
transm1tt1ng power which can be as hlgh as several thousand watts to overcome the
great (~ 200 dB in Ku band) free space loss. A w1deband BPF sometlmes appears ,
" after HPA to reduce the cross-channel interference. o B

The upllnk (UL) and downlink (DL) noises are assumed to be 1ndependent additive
white Gaussian processes As mentioned at the begmn]ng of this chapter they are
very good models for the satellite channel noise. Our algorithm actually allows the two
n01se processes to be correlated but the computatlon in this case will be cons1derably
more complex For some apphcatlons where the ﬁxed earth stat1on is able to provide
large uplink power such that, in spite of the small receive antenna size and antenna
gain at the satellite, the uplink enjoys a much greater SNR than the downlink which
has large e'arth receive antenna but limited satellite on-board power. In such cases, it
is a common practice to ignore the uplink noise (SNR = co) and add downlink noise
a’nalytically. This greatly simplifies the analysis and simulation since only the uplink
- noise is passed through the satellite nonlinear ampliﬁer.i This practice of course is

not valid [56] in many other applications such as the MSAT and VSAT (Very Small .
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function Likew1se a static t1rn1ng error AT can be modeled by sunply tirne shiftlng
the receive filter impulse response function. A perfect symbol t]rning will be also
assumed.

The coding and modulation schemes we will cover ’include the uncoded BPSK
QPSK and MSK convolutional codes with BPSK/QPSK and 8 PSK TCM codes
Time dornaln pulse shaplng is perrrussrble at the modulator although the rectangular |
pulse is the norm. Soft-decision ML Viterbi »decoders, which accept the complex
demodnlatgf sarnpler output without quantization, will‘be‘ used for convolutional
and TCMcodes. Theivhranchl metric function which compares a rsinglevclemodulatOr
oulput syrnbol r and a signal selector z is Res (x) r] where Re[ ] denotes “real part, "
s(z) is the complex sxgnal pulse amplltude selected by z, and the superscrlpt * is
the complex conJugate This is the maximum likelihood branch metric fora'l or
2-dimensional signaling operating on a linear memoryless channel. - ‘

The satellite HPA usually is the light-weight, srnall—vsized_ t'raveling: wave tube
“amplifier (TWTA). To ackieve power efficiency, it iisv of}ten driven at near saturation.
This introduces the so-called AM/ AM and AM‘/KPM conversion ei‘fects, where_ AM:
and PM stand for amplitude modulation and phase modulation respectively. T'his
amplitude ancl pha’se nonlinearity is the main reason which makes analysis‘ difficult.
~ Also, since there are usually many channels sharing one common lransponder, TWTA
is also known to cause intermodulation and spectral spreading and thus the ACL An
example of TWTA AM/AM and AM/PM characteristics is shown in Figure 3.8. This
is for the Hughes 261H TWTA used in the INTELSAT VI and V. The curves labeled
“Bessel” and “Spline” are curve fits to the measured data (not shown) using Bessel
functions and third order polynomials spline approximation respectively. They closely -
agree to the measured data in all normal operating regions and are indistinguishable
except in the low input power region of the AM/PM curve. A TWTA is usually
specified by its input poWer' backoff, IBO, or its corresponding output backoff. The
IBO is the difference in dB between the-actual average input power of the modulated

signal and the carrier power input to the TWTA required to saturate it. For exarnple, :
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in. Flgure 3. 8, a4 dB 1nput backoﬁ (IBO = 4 dB) from the saturatlon pomt (-2v
dBrnW) is equ1valent to aldB output backoff. |

For the purpose of simulation, we need a complex baseband imo_delv for the TWTA.

A querdrature model described in 13, 29] fits our purpose perfectly and the curves

lab‘eled “‘Bessel”' ih Figure 3.8 are the result of this model. FOr our IS a]gorithrrr,

| we prefer functional descrlptlons of the nonlinearity to be dlfferentlable ‘We now

mvestxgate thls quadrature model 'The output s1gna1 of the TWTA respondlng to an

mput s1gnal of the form

, z(t), = A(t‘)C(_v)‘S(wct +v9(t)) :
= Azl(t) cos(wet) — zQ(r) sin(w,t),

erere zI(t) (t) cos 0(t) and zQ(t) = (t)'sirl 0(t) can bele}.(pre:s"s:erl k‘ars -
z(t) = (A(t)) cosfw.t + 0(t) + G(A(t))]

| = RI(A(2)) cos(wet + (1)) — RQ(A(t))sm(wct-i-O(t))
= I(t)cos(wc )—ZQ(t)Sm(“’ct) -

The mstantaneous quadrature nonlinearity RI(A)=U (A) cos( (A)) and RQ (A) =
U (A) sm(G(A)) can be approxxmated by Bessel functions:

RI(A) = aAe V(e S 39)
RO(4) = slAe—azAQII(S-zA?) j L (3.10)

: where Io( ) and Il( ). are modified Bessel functions of the first klnd of order 0 and
1 respectlvely and the constants are ¢; = 1.61245, 02 = 0. 053557 8 = 1 71850 and
82 =0. 242218 for this particular TWTA. ' '

The- mput output relatlonshlp between the mstantaneous I and Q channel en-

velopes can thus be thalned.as follows.
= ’U(A)'cos(& + G(A))
= Rlcos(8) — R® sin(0) B o , ,
= 01710(02/1 )2! *'81771(3214 )z h @)



o where no(a) = e |°"Io(a) and nl(a) =e '“'Il(a) are- exponentlally scaled modlﬁed
o rBessel functlons Wthh are avallable as IMSL subroutlnes [30] Slmllarly, it can be

o shown that

2Q= 61770(62A2)2Q + 31771(32142)27'% B , (312) B

‘To ﬁnd the optlmal rnean translatlon s1mu1at10n den31ty, we w1ll show that it

= 1is necessary to take derlvatlves of (3. 11) and (3.12). An alternatlve to the Besselv. o

| -""i,'.'appromma,tlon whlch allows qulck computatlon of’ denvatlves is the sphne polynornlal,‘
| iapprox1mat10n ‘For example we can approx1mate RY (A) and RQ (A) pleceW1sely with 1

"_thlrd order polynomlals See Fi 1gure 3.8. In order to locate each reglon easﬂy, we.

'd1v1de the 1nput amphtude A 1nto 10 regions: [0 1) [1 2) o and [10 oo) Therefofe o -

v_the mteger part of A 1s the reglon mdex In each reglon the approx1matlons are |

RQ(A) = 53A3+52A2+51A+So - @)

v Next we have to ﬁnd the coefﬁaents C; and S,,z = 0 1 2 3 Note that the
’,derlvatlves of (3 13) and (3 14) are | '

R’(A) = 30,47 +202A+c'1
S R—Q(A)u‘. = 3.5'3A2 + 252A+ S

Takmg denvatlves of (3 9) and (3.10), C and S for each reglon can thus be obtalned ‘
* by solv1ng the {ollowmg hnear system equatlons Note that we use the beglnnmg and
| ‘end pomts of each reglon for boundary condltlons to ensure contmulty Hence there"

,'are 8 equatlons and 8 unknowns

C3A3 -I— CgAQ + ClA + CO‘ = l ClA’I]o(CzA )
53A3+52A2+51A+So.. = .slAm(SzAz) S TR P
30 A%+ 202A +C = cmo(C2A )+ 2c1c2A [nl(czAz) - no(cQA )] -
sasAts = amd) s
o 25132A [770(32/42) ~ (1 + A2)01(32A )]
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The derivatives of Bessel functions follovv’[l] I'(z) Il(:v) and I'(z) = Ib( )——%Ii‘(:’c).
The last region [10,00) should be handled differently. We set R! (A) RI (10) =

and R9(A)= R9(10) = So for A > 10. The curves labeled “Spllne in l"lgure 3.8 are

the result of thls model wh1ch agree closely to the Bessel approxxmatlon

Wlth the spllne approx1mat10n it is easy to show that the mput and output I and ‘

Q channel envelopes are. related by:

= R’(A) cos ) — RQ(A) sing -
. S

= ;(031‘12 +CrA+ O+ )2 = (547 + SiA+ Si 422 b7 )29 (3.15)
and_ o
| ~Q 2 SO 2 | CO ;
—(S3A +52A+Sl+ A)z +(03A +02A+Cl+ A) _ (3.16)

We have des'crlbed' a satellite channel model i in detall For system simulations,

,subroutlnes often are not only related by inputs and outputs but also some systemi

' parameters ThlS is espec1ally true for importance sampllng program Therefore, it is

“crucial to have a good understandlng of the system One 1mportant observatlon of a

;‘bandllmlted nonlmear channel such as the satelhte channel is that the probablllty of B

| deciding on. one codeword while the other is sent depends not only on the Euchdean

distance. between them but also the ISI and nonhnearlty Therefore the Euchdean

distance spectrum whlch we use to obtain the union bound of Pb for the AWGN

- channel i lS no longer valid. Nonetheless Euclidean distance 1nformat10n is Stlll useful

in de51gn1ng the 81gnal biasing which we will dlSCUSS in Chapter 6.
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4. IMPORTANCE SAMPLING THEORY

4.1 Systems with Gaussian Noise Inputs

In this Secti‘on" we will ‘develop the optimal Gaussian ‘simulatiou" distribution ‘for
systems w1th Gaussmn noise inputs. The reason for restnctmg our candldate fannly
’for the s1mulat10n denSJty to be Gaussran is stated 1n Chapter 2. Increasmg the size
of the candldate famlly surely increases the possfbrhty‘of a hlgher, eﬁimency gain. ‘l3ut. ’

while doing this, we must ‘rrlake sure that the expansiOu still permitsoptifnlzation as
well as easy"-generatiOﬁ of samplesand computatioh of the V‘IS'Weig'hts{”" S
COns’iderrthe general block diagram of Fi:gure 4.1 for a digital c‘omrhunicati‘ori
system whose smgle output deC1s1on is based on the norse input vector Y and the
“signal” 1nput vector *x. Let Y be an n- dlmenswnal zero rnean Gauss1an random
'vector W1th covarlance matrix o%L. (There is no loss of generallty by assummg a diag-
,onal covarlance matnx because any correlatlon structure can be reahzed by 1ncluding
a lmear transformatlon in the system model. Therefore, colored n01se can also be-
,conSIdered ) The m- d1men31onal vector x models any. other 1nputs (such as the 1SI

and Jor error event pattern Wh1ch we w1ll dlscuss in the followmg sectlons) that have

X ~ _
: ~output
_ Y T ‘
o ,:Y ‘ é(x | ) ‘;decision R TP

‘Figure 4.1 A general system block diagram with no_ise and signal in_[')‘ut;s‘:.-, _




' mﬂuence on the output deC1s1on Let f( -) be the system response function” such__ a
that the output dec1s1on statlstlc D can be expressed as D f(x Y) The functlon
{( s possrbly nonhnear may be falrly complex and need not be i in closed form Sup—
pose. that the dec1s1on is performed by a threshold test D 0 and the dec1sron error‘ a
occurs when D 2 0. This binary decision rule ‘may seem 1nappropr1ate at ﬁrst glance -

for some apphcatlons such as uncoded M- -ary mgnalmgs or coded commumcatrons

where more than two dec1s1on options are admlssrble But we can always p]Cl( one

_ partrcular decision ¢ error (one that would occur w1th hrgh probablhty) and formulate o

it as a bmary dec1s1on problem i.e., we are only mterested in one part1cular type of
decrslon error. How thls is. done and why wrll be dlscussed in more detalled later
We are mterested in estrmatmg the decision error probab1hty P (Y € E ( )) (or
the mean of 1 E(x)(Y) by the formulation of Chapter 2) where 'y = 1 Jo%is a normahzed :
SNR parameter and E(x) = {y f(x y) > 0} is called the error set” of x which in’ ‘
general depends strongly on X. However, at thls level of the srmulatlon algorlthm we |
‘will let x be a fixed parameter vector and thus E(x ) is a ﬁxed subset of R™. Therefore,
in thlS section we will usually suppress the dependency on xinthe notatlon and denote
the error set E = E (x). We are prlmarlly interested in | the high SN R case and we will
gain some important mS1ght by consrderlng asymptotlc behavror as’y — oo (02 — 0)
A special case of particular mterest is £(x, y) = a(x) + b(x) y, where a( ) ‘i:‘s a
real-valued functlon andb: R™ — R"isan n- dlmensmnal vector functlon Th1s isan

“affine” function of y. However we will refer to this as a “hnear system” (even though |

L *strlctly speakrng_ it is not linear in'y) because the _cont_rrbutxvon fro_mry to .the::dec_rs]on. .

voltage D is a linear function of y. We only require that the system be affine in Y,
any type of dependency for vector x is admissible. (a(x) is treated as a cOnstant"‘and :
b(x) as a constant vector. ) In this case, we have F = E(x) = {y : b(x)'y > —a(x)}

which is a “half space in R™. |
We will assume throughout that the error set E has a nonempty interior and no
isolated points, th_at is; E = FE° where E‘ and E° denote the closure and interior of

E reSpectiyely. We also assume 0 ¢ E. (0¢ E' means that the vsystem is more likely .
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to mal\e mcorrect decrsxons than correct decrslons for large 7. ) Deci'sion regioris.of -

‘ E wrll be denoted 8E E\E" The notatlon ay ~by means that hm,y_,oo a,]b, b

practlcal interest always. satlsfy these s1mple regularlty condltlons The boundal y of

= 1 ‘:'__'

b' “and: that thrs limit exrsts Also, Q(z) = f°°(27r) ~1/2 exp( (2/2) d( is the standard |

Gaussran complementary dlstrlbutlon futiction. o0y B ‘.
There are several concepts to be presented 1n thls sectlon For sake of clarlty

separate maJor arguments W1th numbered tltles

1 P(Y e E) yanishes v-exponentially, fast as a function of: 'y.] -

Expressmg the decxslon error probablhty as an 1ntegral we have P (Y E E

.‘fE fy (y) dy Note that the mtegrand fy(y) & exp( 'y|ly||2/2) vamshes exponent1

L exponentlal rate of decrease of fY (y) W1th respect to’ 'y By a class1cal asymptotlc" e

method due to Laplace, the rate of decrease of the mtegral Ie fy (y) dy is the mlnlrh"u:ﬁi“ -

rate of decrease of the mtegrand over the range of 1ntegrat10n E [14] Under

- regularlty condrtlon E E° ‘we may apply Laplace s method to conclude that

exponentlal rate of decrease of the decrs1on error probablhty P. (Y e E) is

) _:

a,ny

ithe '

th‘é

~ lim »rl'-log(P (Y € B)) = .inf___llyllz; o (41)

‘We wrll call a pomt v 6 BE such that ||v”2 1nfyeE ||y||’z a mlmmum rate Ppoin

» Therefore a mmlmum rate point is a boundary pomt of E w1th the smallest Lz nc

t"'”z‘_‘_ ’

rm,

] ie., it is closest to the or1g1n among all pomts in the error set E. Flgure 4. 2 shows an

: n= 2 example of an error set and a minimum rate p01nt Note that the mmlmum ra_te

RO pomt may not be unlque If there is only one minimum rate pomt we wrll call 1t'

the

':‘ “dommatmg pomt * Since we have assumed that 0 ¢ E at least one mlmmum rate'

'pomt always exrsts Hence the right hand side of (4 1) can be replaced by ||v|| /2.
| other words we have P (Y € E) = a.y exp( (l|v“2/2)~y) where the factor a., de<r

sléwer than the exponential rate, that is, lrm,,_,\oo 4! log (aa,) = 0.

fIn' |

ays”
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Figure 4.2 An n = 2 example of an error set and a minirhum rate point.

Example 4.1:
Let us take the above special case of linear systems for example. The minimum

rate point can be obtained by solving the following minimization problem:

min ly|l?, -

{ subject to  £(x,y) = a(x) + b(x)'y = 0. ,
The nﬁi;imizdtion problem is torﬁnd y which are dosést to the origin under the con- -
straint that y € OF. Assume that { : R’ﬁ x R™ — R is continuous and differentiable :
with respect to y. By continuity, we have 9E = £10)={y: D = f(x,v_y) _ 0},
and thus the constraint. Usihg the Lagrange method [35], 1t is éasy to show that the
unique minimum rate point (dominating point) is v = v(x) = —(a(x)b(x))/|[b(x)]|%
- Also, the error set can be written as E = {y :vi(y = v) >0} which is a half space
tangent to the dominating point vector v. It follows that P, (Y € E) = P(D >
0) = Q(’»yi‘l/za(x)/]]b(x)ﬂ) = Q( 7”v||2). (D is a real Gaussian random vari- o

able with mean a(x) and variance |[b(x)||*/~.) Using the well-known approximation



( ) (27rz )T 1/2 exp(‘—- 2/2) for large z, we have P. (Y € E) = a,, exp( (||v||2 )7)

where ar, ~

‘2 L, (’y) the requlred number of s1mulatlon runs for estlmatmg P (Y € E) may -

“1ncrease exponentlally fast asa functlon of : 7

Con81der the 31mu1atlon dlstrlbutlon to: be Gaussmn whlch is specified by its mean

: vector vy a,nd 1ts covarlance matrlx C* ThlS is the most general formulatlon for'fi"

any Gaussmn mmulatxon dens1t1es beca.use both: v and C* can be functlons of 'y

v‘ ! Let L (v ) be the number of 51mula.t10n runs requxred to’ estlmate P (Y € E) or a-‘- |

' standard error €. L (7) is found to be as (2 9) except now it is also a functlon o) the".' B
SNR factor 7. Smce per sample COmPUtatlonal costs are the same for any Gauflan' x N

51mulat10n dlstrlbutlons, we can use L.(v ) as the measure of computatlonal

‘ Usmg var[Z] [Zz] - E[Z] we can rewrlte (2 9) as
_ S

, m): [ (E [(1E(Y>w(Y)) ] - 1)] 42) o

P(Y € E)*

Proposition 1; A-s‘sume'thatfthe limit

Y00

ost. “

o ,,:_ lim 47! 1og( [(1E(Y) (Y )) ]) o 43) s

'cexis‘ts‘.’l,il‘hen,; .
| nm;w.log(Le(v)) =P -

' ’, s the “exponentlal rate of lncrease of the number of s1mulat10n runs L (’y) More()ver,. :.

Cp< ||v||2, and hence the exponentlal rate of 1ncrease in (4 4) is always > 0

e Proof Followmg the result of prev1ous dlscuss1on, P (Y € E) vamshes with ex-

‘ponentxal rate 2 x (||v||2/2) = ||v||2 Notrce that for any gl < 00, we should have -
: var’ [IE(Y)w(Y)] E*[(lE(Y) ( N2 = P (Y € E) > 0 Therefore, if p > |v||2 S




s 5

(p is-the exponentlal rate of decrease of E*[(lE(Y)w( ))2]) then E“ [(IE(Y) (Y))?]
would vamsh faster than P(Y.€ E)?*and this’ would violate var [ E(Y)w(Y)] >0 for :
large 4. Therefore we must have p< Iv||2. . o

If p < ||v|?, then (4. 4) follows by 51mply takmg the logarithm of (4 2) Hp= ||v||2
there is a possibility of cancellation in the ar.gumen;t_of the [-] functlon in (4.2) causing
this argurrrent to decrease possibly even faster than exponentially, | (For exarhpie,« in
the case of the unconstrei'ned minimum variance solution (2. 10') the cance'l»latiOn is
1 -1 =0 because E* [(IE(Y)w(Y)) ] = (Y € E)2 ) However even if this happens
we stlll have L(y)> >1 (because of the [-] functlon) Therefore the exponent1a1 rate -

of increase (~ v~ log(L. ('y))) cannot be negative. . T . 9

'Now, our goal is to specify vy arrd C’ to minimize L.(~). Or, asymptotically we
should minimize the rate of growth of L.(y). The term HVH2 in (4. 4) is ﬁxed because
the rmmmum rate points do not depend-on the SNR Hence, we should maximize .
p < vII?. We say that an xmportance sampling scheme is “exponentially efficient”
if p= ||‘v||2 (ThlS is called the asymptotic efﬁc1ency in [49].) Clearly, any scheme:
for which p < ||V”2 is ultlmately very inefficient due to its exponentlally mcreasmgli

computational cost as indicated by (4.4).

3. For any “stable” variance-scaling scheme, Le(v) does not increase exponentially
fast if the simulation density is the optimized mean-translation biasing-and the “for-

bidden set condition” is satisfied.

' To maximize p with hope of achieving the exponential eﬂiciency, we must char-
acterize p in terms of v,’;; and C;. To do this, we first express the expectation

Ex[(1e(Y)w(Y))?) as an integral
E; [(15(Y)w(Y))’]

fY(Y)z' d

- /E ‘w(y)sz}(y)dy T s R )
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‘k ‘7.’"/,2, e

= (27r>, det(c")j B P
» N 2 1 _ "‘*C*;'i _ *d :
x Joexp | =alyl® + 5 (= Vvi)CT (y = v3) ) dy

; *Assumlng v ~ Vi and FyC* ~ C}

00’

po= - 11rn v llog (det('yC*)l/Q)

’7“"00

+ inf {uynz - —<y-'*v* )fc:*'f'-l(y!-*v*)}. S .{,4.6);_1- .

|60

we apply the ?Leplac_ess method and (4.3)

bis)

For later use (in Proposmon 3) we note that (4. 6) continues to hold even 1f sorne o‘f_

Call elements of 'yC* tend to +oo

Propos1t10n 2: Assume that there exists a domlnatlng pomt v G aE Con51der

* Gaussian’ 1mportance samphng schermies such: that vy~ vy € R and 'yC"’ -

as -

Pz = {yi bl - 3@ -vren Ty - v) '<;uv§|f|2:},_..-.? @

Then, p=[vi[* if and only ifv ——Vand EnF(C )— R

| Proof Slnce C is. assurned to be finite, we hayve hrn,,_.o0 'j/’l 1og(det(7C* )1/2) =

any

Sloe

o where C"‘ is a finite positive definite matnx, and- deﬁne the “forbldden set” F(C"‘--

0in

(4 6). The lnﬁmurn in the second term of (4. 6) can be upper bounded by evalua;tmg

“the a,rgument at any pomt in E. In partlcular since v € aE' we have =

| p: i {“yllg _ §(y_—- v) ik (y voo) }

YEE

:'f-fi A

VP - vy ' —oo> ¥

o< v

""""mequahty If ‘and only if v = v . When v = voo, the forbldden set, condltlon

(C“‘ ) = 0) is necessary and sufﬁment for equahty in the first- mequahty

;We have a3sumed that C* is posxtwe deﬁmte hence equahty holds in the second v

E N
1
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Figure 4.3 The forbidden set condition.

The assurhption '7C2‘1 ~ C:o inPrOposition 2 ‘considé'rsvt}?le‘ca,seyrin which thé '
impqrtancé sa,mpling covariance matrix is asyﬁlptOtically s_table relative to the model
covariance matrix y~'I. Notice that v is a boundary point of the forbidden set F(Cz,)
(but v ¢ F(C~)), and if 2I — C%~" is positive definite (which will usually be the
cé,se) this set is an ellipsoid. In the case of uniform variance scali,n‘gs (Cx, =), (4.7)

reduces to, for ¢ > 1 /2,

' - 2c | |
F) = {y:ly+@e-17vl < ==V},

which is a sphere with center —(2¢ — i)‘lif and radius 2c||ﬂ'/(2c —1). | Figure 4.3.
illustrates the situation for ¢ = 1 and ¢ = 2. In the case of linear systems, OF = {y :
vly = ||v||?} is a hyperplane that is tangent to the sphere F(CY,). Assuming only
that 2I — C%, 7" is nonnegative definite, it follows that E N F(C* ) = @ always holds
for.vlinea,r systems. So, in general the forbidden set condition EN F(Cz,) = 0 can be

viewed as a restriction on the admissible “degree of nonlinearity.”



.

‘ Proposmon 2 says asymptotlcally, ‘the ‘mean vector of the Gauss1an mmulatlon
- vdens1ty should be the dommatmg point provided that the forbldden set condition
is satisfied. - By (47),the forbldden set depends on’ the choice of the covarlance
1 ‘vvm'a;trix C* Itturns out t'hat. the optimal choice of C"‘ :is difficult to determine for -

: vgeneral systems However for hnear systems a more prec15e result can ‘be obtameci

: ’v_'_"whlch will prov1de us some useful 1ns1ghts Con51der the case in which we employ

the asymptotrcally optlmal (efﬁaent) mean translatlon V=V and unlform variance s

e ':scahng C* = c*}‘ll (We cons:der here only the unlform variance sca,hng because it

e _’.;only as a multnphcatwe factor c"/z(c/(26 - 1))(“‘1)/2 The optlmal ¢ can be obtamed

*can be characterlzed by a parameter and it can be easily 1mplemented Non unlform b

varlance scahngs w1ll be dlscussed in the next Propos1tlon ) We want to determme "

the optlmal varlance—scahng constant ¢. Forc > 1 / 2 express1on (4 5) reduces to|. o
o e e (] N
Evlugrrvyrr)xJ,;f.e,v (2c+-1) exp (10 ) el

B S Y St
o~ 1/2 n/2 i C. , ) ‘ .
@ﬂwnv)‘ C_(%_4 8

Sy

eXP(—IIVH 'r) (:

When ¢ < 1/2 we have E"‘ [(lE(Y)w(Y))2] = oo. Piugglng (4 8) and P (Y € E)2 ~ .
"(21r||v||2f7)’ exp(—||v||2 ), whrch we ha,ve obtalned in Example 4. 1, 1nto (4 2), we

Vﬁnvn””(%c>mqufN.‘<'“$>

‘

’Note that the exponentlal factors in the numerator and the denomlnator of (4 2) h\ave

have :

cancelled The approx1ma.t10ns in (4.8) and (4 9) involve only Gaussmn Q functlon
approx1matlons Wthh are still qulte accurate for only moderately large argumen S. .
Therefore for exponentlally efficient mean. translatlons, , ('7) grow like o 1/2 ;

- Moreover notlce that the Varlance-scallng constant ¢ 1mpa,cts the computa,tlonal cost

= by rrummlzmg thlS factor and the result 1s found to be B L

| 2n -~ 1
T on

: Copt
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- (n-1)2

n/2 Y
¢ (2c'-1

e

Figure 4.4 Dimensions in the Opitir:ial mean translation.

That is, no variance scaling (c= 1) is approximately asymptotically orpt'iklrnaLl, at leaL;st
for linear systems. Moreover, notice _thét when ¢ = 1, E:[(1e(Y)w(Y))?] (and hence
L.(%)) 'ddes not depend on the dimension n. In other words, for linear systems,
exponentially efficient mean-translation biasing with no variance ‘scalibng' (uniform or
non-uniform) is free of the dimensionality effect. Figure 4.4 S_hoWs the multiplicative
factor ¢*/?(c/(2c — 1))("~1/2 as a function of n when ¢ =1 and ¢ = ¢, The saving
bq L.(v) by employing a uniform variance skcaling in addition_td the optinia_l mean
tr'gé:mslation quickly diminishes as the dimension n goes up Therefore, hereafter unless
otherwise stated, when we consider an optimal mean-translation biasing; we will mean
“the asymptotically efficient mean translation without scaling the covariance matfix.
Another observation of (4.10) is that, if we plot c,,: against the dimension n, the
optimal variance scaling factor increases from 1 /2 (n =1)to1 (n = co). Recall

that C% = ¢y~'I. A variance-scaling factor ¢ < 1 actually means variance reduction -

rather than increase! Thus, in contrast to the variance-scaling biasing where the noise



- variance ‘is increased, our exponentially efficient mean-translation biasing requ

‘._‘64 o

ires

a variance reduction. As an aside, some workers have been able to reduce many

For n = 1 the asymptotical optlmal variance- scaling factor for mean-translat

e

B -1S problems to 1- d1mens1onal (13, 52] and thus ehmlnate the dlmensmnahty effect.

ion

blasmgs is 1/2 This solution, however, is unstable because E* [(IE(Y)w(Y))2] =

B

o0

for c = 1/2. Therefore as seen from Figure 4. 4 although the potential saving on

L(v) by vanance-scahng the optimal mean-translation blasmg is great for the n =

‘ v'case, the chance of drsaster is great too The optlmal variance-scaling factor Copt I
- be chosen carefully (copt = 1/2 is an asymptotical solutlon) Thls is an open quest
But i in most cases, we would rather settle for ¢ = 1.

The last two 'paragraphes present results forhnear systems Wh‘ich;we mlghth
to extra,po]ate to e “moderately nonhnedr” system "Such arguments are comr
practrce in the hterature However th1s appeal to hnear system beha.vrors negl(
the forbldden set condltlon E A F(Cy, )= (0 which. must be satlsﬁed by a “moderat
nonlinear” system NOthC that if C* 'm0, then F(C7,) = {y yll?> < ||v”2

=1
st

on.

ope

non N

dly
)=

the sphere centered at the origin of radlus ||v|| But by the deﬁnltlon of a minimum

| rate point, we always have EnN {y Iyli? < IIv]? } = @ Thus varlance scahng

mcreasmg the n01se vana.nce weakens the forbldden set condltron and hence provi

by
ides

~a degree of 'robustness by admlttlng more severely nonhnear systems as 1llustrated

~ in Figure 4.3. (An optlmal mean-translation blasmg with forbldden set F(ZI) is more

robust than the one w1th F( )- ) Of course, the cost of this robustness i 1s an 1ncrea,se in

: computatlon But in practlce srnce it is normally not possrble to verlfy the forbldden'

set condltlon, the robustness obtanned by some degree of varlance scahng may

Justlﬁed in some cases.

In parallel to the above exponentially efﬁc1ent mea.n translatlon, it 1s pos31ble

' to achleve thls exponentlal efﬁcrency w1th Just vana.nce scalmg Proposrtlon 3 be

ErN states the necessary and sufﬁcrent condltrons of the opt1ma1 vanance—scahng Gauss

R den51ty, Wthh follows dlrectly from (4 6), so we om1t the stralghtforward proof

be

ow

‘1an

>cts



Proposition 3: Assume that there is a dominating point v and consider any Gaussian

| 1mp0rtance samphng scheme such that Vi~V :;é v. Then'p = ||v||2 if. and only if L

hm y 1log (det(7C*) /2> = 0 | N e (4.11).

and- |
im0 -vR6C)-vE) S P - P @)
for all ye E with equality for some y € E. EEEE S R o 1[ E

" Notice that c'ohditi»on (4.12) fory =v cE tgivés'-‘vtﬁls the'ne‘cesssrylsondition '

lim (v vi) (163 v W) =0

=00
. J
In other words, 4C}, must tend to infinity at least in the dlmensmn of A Vi

Condition (4 11), on the other hand says that the rate of growth must be less than -
: “exponentlally fast. ’ ‘ R ‘ |
PropOS1t10n 3 suggests a non~un1form variance scahng which scales the covarlance_
matrlx only in the dimension of v — v . Before we cornment on thxs approach let us.l, :
first examlne the CIS algorithm mentioned in Chapter 2 which is umform varlance_ '
scaling with unscaled mean vector. Therefore, we have vy =0 and C; = ¢y -1, In

" the case of CIS applied to a linear system, (4.5) reduces to, for ¢, > 1/2,

o S\ 2 K
By [s(Vu(V)] = & (—&—~) Q(Ve—eiviEr)

2¢,~1

~ n/2 N L A -1/2 _ 2 .
o (e () en (v

If ¢, £1/2, as in the case of (4.8), we have E,’;[(IE(Y)w(Y))Q] = o00. The asymp-.'.,
~ totically optimal,vz‘a,'ria,nc"e-scaling factor ¢, is found by tnihilhiZiﬁg the term in the e
brac‘keti{“}. The result is ¢, o1 ~ ||[V]|2y/n. Note th&t n c‘.":‘xn_"t be too large such that -
¢y < 1/2. (This implies that the CIS scheme would b’]ow up heyond'sorne ditnensiori

n for large ~. ) Plugging this ¢, . back into the express1on above and then pluggmg' i
1nto (4 2), we get



e sectlon

S »'convex combmatlon of Gaussmn mean translatlon densxtles (For example, decr

L (7) \/57;2 (n+l)/2 "v”(n+l) exp(n/2) ,),(n+1)/2 T (113) :
- -Therefore, for an optlmlzed CIS and a fixed n, L(7) grows 111 propor txon to 'Y(n“)/ 2 = |
 Thisis: substantlally Worse than the “/1/ 2 (for all n) behav1or obtalned in (4 9) for the,""-r o :

' ~opt1mlzed mean translatlon Moreover the CIS computatlonal growth does depend'-_:__' =

‘on the dlmens1on nin an undesrrable way. A more prec1se descnptlon of the dlmen—_' -

sionality effect like in Fi igure 4.4 is dlfﬁcult to obtam However, note that (4 13)5-is

'»"‘approx1mately the L. (v) for a large 4. In that case, the’ growth of the last term, _":f'_-:_ E
| "V>7(n+l)/2 relatlve to n far outwelghts the others Thus, it is clear that the CIS is very': ._ . -

flnef’fiaent for a large n and SNR. Thrs w1ll be conﬁrmed by an exarnple in the next e

The’ techmque proposed by Davrs [18)in an effort to reduce the dxmensmnaht‘j’_‘ o

ffect of the CIS method is precrsely a non umform vanance scahng only in tha di_-

menswn of v - Vo ThlS method reduces the computatlonal growth back to

; 'would play the same role as’ the forbldden set condltlon of Propos1t10n 2. ) Howeve'r',“ i

. 'thls approach grves up the magor advantages of unlform varlance scahng over_.

: In addli

'mean translatlon blasmg is. stlll more efﬁc1ent Takmg n = 1 in (4 9) and (4

v mean translatron, namely, the robustness and ease. of 1mp1ementat10

_ we have the computatlonal cost of varrance scalmg grows llke 7 compared to

th? ,

"

1on R

the

7 1/2 growth for' the mean translatlon In our opinion, if we are to go to the trouble

of computmg v, then we mlght as well apply thls 1nformat10n to the more efﬁ(

1ent '

estrmator — mean translatlon, posmbly in conjunctron w1th a moderate degree of :

varlance scahng for sake of robustness v
In Proposmons 2 and 3 we have assumed the ex1stence of a dommatmg pomt

“f.,,‘fanalys1s of Sadowsky and Bucklew in [49] demonstrates that exponentlal efﬁcu

*fcan be achreved in the case of multlple mlnlmum rate pomts by takmg fY( ) to 1

= reglons for a QAM demodulator w111 have multlple mlmmum rate pomts ) We fur

o remark that in companson to [49] here we have consxdered a more restrlcted prob

The .
"
bea
51on. 3
ther

lern' '

1 d1mensronal case. (One would st111 have to deal w1th the Condltlon (4 12) hlch o

13),
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forrnula,t'ion but: Within‘ this context we have obtained some deeper. res‘ults’(cornbin’ed
mean translation and variance scaling, and the conclus1ons about robustness obtalned
from the forbldden set- condition). Extenswns of these. 1deas to some exponentlally

efﬁcrent non—Gaussmn simulation distributions are ;vgl_.ven‘by- Schulebusch in [52].

4.2 Variance Scaling vs ‘Mean Transla,tion

The unlforrn varlance-scahng blasmg and the optlmlzed mean- translatlon brasrng
. have been the two mamstreams along the line of the IS development and are also the
‘methods appea.r to be most pra,ctlca,l In the hxgh SNR reglon (4 9) and (4 13) show
that the computatlonal cost’ of the variance scalmg mcreases more rapldly than the
mean tra.nsla,tlon b1a31ng relatlve to the increased SNR Therefore the mean trans-
lation is more efﬁcrent than the va.rlance scahng at a large SNR Another 1mportant
 factor in (4 9) a.nd (4. 13) is the dimension n. L «(7) for the optlmlzed mean translation
- with no variance sca,hng is independent of n Equatlon (4 13), on the other hand,
suggests that the umforrn variance- scalmg is very 1nefﬁcrent at a la.rge n and would
break down at some pomt o |
For a moderate SNR the above asymptotlc beha,v10r may not apply We are inter-
L ested i in knowmg how the two biasings cornpare to each other i 1n this case. However
| it is dlfﬁcult to obtain general conclusmns such as what we have obtained for large
SNR’S in the last sectlon (ThlS is why we go to the asymptotlc analysw in the ﬁrst |
place ) In thls sectlon, we will examine the uniform varlance-sca,lmg biasing and the
A mean-translation blasmg usmg some heuristic arguments: which apply to all SNR’
~This approach. also helps to explain more clearly the dlmensmnahty effect of the uni-
form variance scahng At the end of this sectlon we W1ll use a sunple rnatched ﬁlter"
example to compare the two bla.smgs numerically. |
Consider Figure 4.5 which shows the n =2 model density fy (y1 %2),.an error set
(on the y1—y. pla.ne) and a dominating pomt This ﬁgure can be seen as a Slde view
“of Figure 4.2 which is v1ewed from the top. Recall from Chapter 2 the crlterlon we. :

-'have established for a good sxmula,t1on densrty whlch we restate here
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~An- efﬁc1ent s1mulat10n dens1ty fy(y) should sarnple v (lmportant sam::
ples) from the 1mportant error regions where 16(y) fy(y) are relatlvely

large.

Smce the Gauss1an probablhty dens1ty fy(y) decreases as the dlstance between y
and the orlgm (the mean of the Gaussian dlstrlbutlon) lncreases 1t is obv1ous that
the domlnatmg pomt v has the largest probablhty den51ty fy (v) among all pomts 1n‘

the error set E(x) ie. fy(v) = maxyeE(x) fy( ). Hence, the domlnatmg pomt is

. the most 1mportant sample This i is the phyS1cal 1nterpretat10n of (4 1) Wthh also o

’ "explams Why we perforrn the m1n1mlzat10n m Example 4 1to ﬁnd the dommatmg
: pomt An efﬁc1ent 81mulat10n den81ty therefore should be able to sample more often»
from the reglons that are close to the | ongln in the error set In particular, the
-'dommatmg point should have a probablhty den31ty that 1s the peak of fY(y), i e

- should be the pomt that i is most. hkely to be sampled ‘ B e

- Recall that the model dens1ty is fy(y) ~ N (0, 0'21), Where N (m C) denotes‘
a Gauss1an d1str1but1on with a mean vector m and covanance matrlx C To in-
crease the relatlve frequency of samphng those 1mportant samples the strategy of o
varlance scahng is to use fY(y) N(0,co?); whereas for mean" translatlon it 1s
fY(y) ~ N (v 021) ‘Therefore, mtmtwely, the varlance—scahng method pushes the
vprobablhty mass away from the mean and spreads 1t into the error set The mean
translatlon, on the other hand “moves” the entlre probablhty distribution toward
the error set. The dlfference between these two approaches can be seen eas1ly in the
bone-dlmensmnal plcture of Flgure 4.6. The shaded areas in Flgure 4.6(a) . and (b) are-‘
the mcreased probablhty mass in the error set due to blasmgs compared to onglnal, .
rnodel dlstrlbutlon funct1on_s The superlorlty of mean translations is evident from
this illustration. The mean-translatlon biasing causes more probabﬂlty-mass increase
in the error set, especially‘,in the (irnportant) error_'re:gion; close to the threshold t. -

Note that in Figure v4v.6(a), a significant arnount of pr_obability rn,ass has been spread
in the negative y-axis direction — the “wrong” direction by the :variance scaling.

Figure 4.7 shows the variance scaling for the aboye n = 2 example by which the



- E®

E(x)

(b) Mean translation. T

. Figure 4.6 One-dimensional variance scaling vs. mean translation. -
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“Figure 4.7 Diménsionality effect of variance scaling.

piob@bility mass is pushed out of the origin in “all” d‘il“‘e’CtiOI‘lS‘. Clearly, as in the

one-dimensional case, only p.;xrt of the probability mass réélly gbes in the “right” dif

rections and ends up.ih the error set. As the dimension ihcreasés, f,héré will be rﬁdrej;

and more Wrdng directions. This explains th‘e‘ra‘pid decrease of efficiency for un‘iforr'n

variance scélings, i.e., the dimensionality effect, documeﬁted in tvh'ebliterature’as wellz'
as the discussion followed (4:13). Even with the »non—'uvniform Vériance: scaling, which

is equivalent to the n = 1 case, mean-traﬁslation biasing is still more efficient as seen

from Figure 4.6. | | v

It is also important ,toinoticebfrom Figure 4.6(b) that the mean-translation bi-

asing is signal-dependent. If the transmitted signal is the othérv,polarity (e.g., +1)
and hence the error set is E(z) = (—o0, —t] instead of [t,00), then the probia,bility '
diétribution should be moved toward fhe negative y-axis. In general, because the er-
ror set E(x) and thus the dominating point is strongly signal—dependent, the optimél
mean translation has to be tailored for each x. In coﬁtrdsf, the variance scaling is
independent of the transmitted signal as is obvious frorn Figure 4.v6(a)'. (As noted

in Section 1.2, we can still have signal-dependent variance scalings. But because of



o :’;’;i vonly be sub optlmal )

o ' _h(t)q

g f_:b1as1ng conﬁlcts, the optlmal varlance scahng can t be used and hence the b1as1ng can

In summary‘”

' the varlance scahng, especxally at a hlgh SNR and/or a large n. But because of 1ts |

costly in makm i_ each dv

- ISJmulatlon method its efﬁaency can be boosted by also bxasmg the 31gna.l dlstrlbu

= i‘f“ »the problem of

- sxgnal dependency it 1s also more dlfﬁcult to 1mplement and computatlonally more'f :

1810n (due to the need of computmg the dormnatlng pomt for' R
+ each X) In the next sectlon we w1ll see that thls dlsadvantage of mean translatlon canf‘

K

: v_be reduced When the mean translatlon blasmg is used 1n conjunctlon w1th the e\t'Jent«

i
| .'wh1ch is called the condltlonal 1mportance samplmg technlque ThlS 81gnal blasd)g g
B g can not be used in the stream s1mulat10n where the vanance scahng has been moLtly

= ‘,.used

We now use.a SImple example to 1llustrate how the model dlmensmn 1ssue 1mp cts.' -

rete—tlme modehng of a contmuous t1me system The optlmal m an )

translatlon and unlform vanance scahng Wlll be compared K he dlmensmnahty eb ect

s almg W1ll be shown Flgure 4. 8 isa recelver block dlagram of a blnary' ,

e of the vananc'

pEs v',fv_vbasl band commumcatlon system T he matched ﬁlter xmpulse response functlon h(t): o

[ is matched to —-x(t) le h(T - t) S —fv(t) Whefe $( ) the t _ nsmltted sxgnal, 1s

o a pulse of duratlon {0 T] Assume that fo h(t)2 dt = 1 and fo h(T = t)x(t) dt <0

& optlmal mean translat1on has a much hlgher efﬁcxency galn th"@@:;: S

on:
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Suppose that we are interested in estlmatmg the dec131on error probablhty P. (D > 0)
where the decision statistic is the convolution D = fo h(T - t)( (t) + Y (t)) dt and
Y(t) is a white Gaussian noise process with power spectral den51ty‘No/2. -Define
& = (f(;‘rvh(T — t)z(t) dt)? to be the received sig"nal‘energ'yi.l Let v = 2'8/‘N0.‘“ Then
the exact expression for the decision error probability can be found, which is P,,(D >
0) = Q).

For the purpose. of simulation, a discrete-time model can be obtained by first
approximating Y(t) with /26 7 Ya(t) where Y.(t) is a bandhmxted white Gaussian
" noise process with power spectral den31ty NOT/(2n£) and bandwidth n/2T (Recall :
from Section 3.1 that mﬁmtebandwxdthwhlte noise can not be sampled directly.)
Then the discrete-time noise sarn’ples‘ Y= Yn(kT/‘n), k=1,.,n, areii.d. zero mean
Gaussian random variables with variance o2 = (26/Np)~1y~1. Ne‘x’t‘, we approximate
the convolutional integral as a finite sum. Let a = [T A(T — t)x(t)b dt/\VE, n = the
number of samples in the interval [0,T], and A = T/ n be the sarnplmg perlod Then

we get

/; BT ~ 1)(z(t) + Y (1)) dt

~ VEa + 3 h(T—kA)\/—_i—EYn(kA)A |
‘ k=1 : . o .

{a + 5_: h(T kA)Yk}

The above approximation leads to a linear discrete-time model of the form ((y) =
a + bty where by = \/gh(T — kA). This is precisely the format of the linear system
example in the last section except that the signal factors have been simplified because -
here we are considering only a fixed transmitted signal ‘a:(it). We will also make one
more approximation. Notice that Z}:ﬂ(\/—gh(T‘—. kA))2 R~ fOT MT - t)?dt =

We will set by o< h(T'"— kA) where the constant of proportionality is set so that
Ib||? = Tha b =1 Prqvided,that z(t) and h(t) are lowpass, these approkimations

are insignificant for large n. The reason for this normalization is that P,(Y € E) =



o ) _(Of course, thrs is only true because of the hnearlty of the problem ) Fmally, not

- ‘and C* = c’“y‘l c: ), and the unbiased Monte Carlo (v =0 and C, ; '}‘II) wh

. better than the asymptotrcally optlmal solutlon &~ 'y/n In contrast the me

close but not 1dent1cal to the finlte ’y optlmal mean translatlon whlch is derr

y "pacts on the output dec151on We will keep this vagueness in thls sectlon to deve

: ]dependent and W111 not be fully clear untll we formally mtroduce the event sunulat

(D > 0) t‘hat is,’there is 'no' modeling errorlnt‘roduced by the dis‘crete tirne model.

‘ i '-that the dommatlng pomt is, from the example in the last sectlon, v = b and hence,

?]]v]]z—lfor alln,

Flgure 4.9 c compares the computatlonal costs of three estlmators for various valu‘es_

4

ice

~of the model dimension. n L (7) is plotted but for any € > 0 we can easrly compute "

L) = Li(7) /€% For the plotted range of T 4to 16 dB, the probabrhty P (D > >

0).

ranges from 5.6 x 10—2 down to 1.4 x 10‘10 The three estimators are the pure méan

,translatron (v = v and C: =77') Wthh is denoted MT the optimized CIS (v =0 -

ich

| is denoted MC By opt1m1zed CIS we mean that the scallng factor ¢y has been

numerlcally optlmrzed for each ¥ < co. In some cases thls could be substantlallyl‘

‘ \translatron in Flgure 4.9 is the asymptotlcally optlmal solu‘tlon v = v, Wthl’

by Lu and Yao in [36] We also. remark that the performance of Dav1s non -unifo

115
ved

rm

varrance—scahng scheme [13] is equlvalent tothen =1 CIS curve for all n. Apparently,

' whlle the mean—translatlon suffers from no d1mens1ona11ty effect the computatronal'

| cost for CIS increases exponentlally At large n, the performance of CIS is almost

B better than the ordmary Monte Carlo method.

4.3 " Condit"-i'onal lmpo'rtance :Sampling‘

oy So far ‘we: haven’t talked much about the srgnal 1nputs x except 1t was deﬁmed

ey

S at the: beglnnlng of thls chapter to represent ° anythmg else but n01se” that have im- '

no

lop-

M"the general concept of condltlonal 1mportance sampling. The ‘context. of X 1s systern- “'

B jrnethod. n ,t-he next ch_apter, In this sectlon,_;rwe w1l_l ﬁtrthe mean-translatlon, b.1as

ion

Ing L

=ar“1’v S



Ly(Y)

Y (dB)

Figure 4.9 L, () for three estimators.
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i ence Recall that in the event simulation we put X1 = —1 and Z= (XO, 1, YE”Y ) |

AL Streé:n Simulation :

X o

e 'y
g IS SR N

\

Yo . Y

Time k= 1

'B. Event Simulation :

Trial 1 =

' Figure 4.10 - Event simnla;tion”vs;y stream simulation.

mto a condltlonal mean estlmatlon env1ronment and 1ntroduce the condltlonal 1rnpor-:‘
i tance samplmg technlque Wthh hnks the mean-translatlon blasmg of the noise w1th -
the 51gnal biasing. - : |
- The followmg exarnple prov1des a motlvatlon for developmg the condltlonal im-

portance samphng Also, we w111 be able to be a little more spec1ﬁc about X, which B 'U

g may clear some cloud over the d1scuss1on we have had in thls chapter

| 'Ex'ampl-e'zx % | | o
Let us rev151t the SJmple example in Section 1. 2 Wthh 1llustrates the dlffererllce

‘ between event SJmulatlon and stream simulation. F igure 1. 3 is redrawn here for reﬁer-

v'The b1t error probabxhty is Pb P(f(Z) 2 0). Instead of generatlng L sets of i.id. L
random vectors Z(") f = 1,. ., L, and dlrectly estlmatlng Pb as is done in (1 3) We_,;

. can ﬁrst partltlon Pb as follows _‘ '

i (‘E(Z)ZQ)V o




M

= TP 0o=aPu) - 4ag)

= §P(5(Z)‘> 0[Xo =1)+ —’P( (2) 201X =-1),
where Pxo (xo) is the margmal probablhty mass functlon of the random varlable Xo )

We have assumed that Py, (Xo = 1) Py, (Xo = —1) = 1/2 Suppose that Yo and Yi

are i.i.d. zero mean Gau531an random va,rlables w1th varlance 02 Theén the random

variable §(Z) =-1+Y+ )\(Xo + Yo) has a condltlonal mean ( 1+ /\) if Xo -1
and (—1 — A) 1f Xo = ~1. Apparently, 1f A > 0 we have P(f(Z) > OIXO = 1) »
P(¢(Z) > OlXo = )—-1) ‘That is, some “ISI patterns are more llkely to cause a b1t
error than others. In the language of importance samplmg, the error event {E (Z2) =
0, given, Xo = 1} is' a more 1mportant error event than {¢& (Z) > 0 given X = 1}
It is then natural that we would like to devote more of our computatlonal effort to .
. the es}tlmatlon of dominant terms of By, which is P(6(Z) > 0| X, = 1) here. -This can
be done b’y biasing the 'proha.b"ility' mass functiOn of Xg such tha,t. XO =1 weuld be
‘sampled more often. The biased probablhty ‘mass functlon can be PX (Xo = 1) |
p>1 / 2. Slmllar to (2.6), (4:14). can then be rewritten as |

zzé<¢(z> 2 0% = 20) 200 Pi(on).

After,samphng Xo, we have the system 51gnal inputs x = (mo,,xlb).- and Gaussian noise
1nputs Y = (YO,YI) which is exactty the formulation of Section‘4 1 and the optimal
2-dimensional Gaussian mean- -translation simulation dens1ty can be apphed to the

‘noise mputs _ , : . o 1[

~We now fermally introduce the conditional impor’tancevsamplingr Consider Fig-
ure 4.1 except now we also Iet the signaI inputs be a random wrectOr X. Let (X, Y) be
jointly distributed as epeci_ﬁed by the conditio'nal density fy|x (-|x) and the marginal
~density fx(-). (We use the term “density” in a generic sense. In our application, Y
will be a continuours‘randolrn vector while X will be discrete, so fx () will aetuelly be
a probability mass function.) We wish to estimatte a =E[g(X,Y)]. Asin Chepter 2,

the special case g(-,:) = 1g(+,-), i.e., the decision error probability,is what we are '



| .vv"fof the successwe cond1t10n1ng formula a= E[ﬂ(x)] Where ﬂ(x) E[g(x Y)IX =

b""f:'i;'Successwe condltlonmg suggests the condltlonal 1mportance samphng estlmat

Prop031t10n4Thevarlanceof ‘the estir'nat‘er‘(4..v1‘7) IS

most 1nterested in:, Often, 1t is convement to thlnk of thls J01nt expectatlon in ter

"‘descnbed as follows [5] Independent samples X(‘) l Lx, are samp
‘from ‘a margmal 81mulatlon dens1ty fx() For each ﬁxed Z (condltlonally) in
' ':bvpendent samples Y(“) 8' = 1, ,Ly, are sampled from the condltlonal S1mulat

: _v,:denSIty fY|X( |X(e)) It w1ll be convenlent to denote these samples as one blg vec

v .1‘» 'L
A (X“) z“)) B
t'_1 .

_ ,_jwhere lex (y|x) fYIx(y|x) / fYIx(ylx) It 1s easy to show that

w lﬂ(X“) z“’) |X“’l = [g(x“) Y(“’)wy.x(Y““IX“’)IX“’l

3»"1 €. ,8 (X(‘) Z(e)) 1s an unb1ased estlmator for the condltlonal expectatlon ,3( ’)) . .,

: The estlmator for a 1s

 a- Lk ﬁ(?‘“) ) wx(xw) o wm

= : where wx(x) fx(x) / fx(x) Agaln, we have an unblased estlrnator o e
E{a} .:{1=. E*[ﬂ(X Z)wx(xn

L e e

-— [wx(x) BN = o e

,';‘.‘;:Notlce that the total number of samples is L LxLy.;’T‘._‘,J : .‘: cenl

B tzar [a] -

LL

ms”’

ion

tor

i Z(g) s (Y(l 1) Y(z Ly)) For each Z = 1, o L X, we compute a cond1t10nal estlmate -

g(x(t) Y(N’)) @YQX (Y(fl’)|x(f)) _b " (415)
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where
vwo= B [vart [oX, Veyx(YIXIX] we(x?] é4l26)_'
and | |
w = W@l "”_'-:r<4;'2'ﬁ1-5,_ o
Proof: Since the pairs (X®,Z®), £ = 1,.., Ly, are i.i.d. random vectors, it follows -
that var*[&] = var*[B(X,_,z)wx(X)] /Lx. Next we have |
& D)
=B [var B, Zux (X)[X] | 4 var® [ EIBC, Zyox(X x]]
o [ wk (X)var[B(X, 2)[X] | + var” [ wx (X)E"[A(X, 2)X] | . |

The second term in the last summation can be reduced to va,r*[wx(x').ﬂ (X)] = v, by
(4.16). Furthermore, because Y&, Y®LY) are conditionally independent given |

X®, var*[3(X,2)|X] in the first term is simply |

(A, Z)X) = 7 var lg(X, Yywyix (YR

Therefore the first term 1sv1 / Ly

We have used in the proof a conditional variance formula whi(;h is.
var[f(X, 2)] = E [ var[f(X, Z)|X]] + var E_[f(X,-Z)IX] .
This can be shown as follows. W¢ have | |
varlf(X, 2)] = EIf*(X, 2)] - (E[f(X, Z)]»)2

where

E[f*(X,2)] = E[E[f'(X,2)X]]

= Blwlf(X, Z)X)] + B[ (BI(X, Z)X)?].



 The second term-in the last eduetlon can be expressed as
B [(E[f(x.,.znx])?] = var[E[f(X, Z>|X] ]+ <E [ E[f(x Z)|x1 1) R

= var[E[f(X Z)]X]]+ (Elf(x Z)l)

vvvhir'ch'COrnpletes,the proof. - i PR k: o - -' 9

In Section 4.1, we‘h’atve:cons’idered the optimiz’etionorfv the estimattof by mmlmmng o
» LE of (4.2) v1a, themmlmlzatlon of the "one‘sdmple variance "We. now h‘a'l.ye“ two Bt
' parametersl to"select Lx and Ly. One mlght ﬁrst thmk that we should set| Ly _.
'sufﬁc1ently large so that each 38 (X(e) Z(l)) forms a prec1se estlmate of the condltlonal _“ L
: ,expectatlon B(X([)) However it turns out that th1s is not a good strategy Suppos_el : o
that we want to select Ly to minimize var [a] (v1 + Lyvz) / (LXLy) for a fi_xed =
total number of samples L= L X Ly Clearly, the best ch01ce 1n thls sense 1s Ly =1 B
' because both vy and v1 > 0 & . : T
‘More generally, the ch01ce of Ly should be 1nﬂuenced by per sarnple computa,tu)nétl_ |
' 'cost Let Cx and Cy denote the costs of samphng and cornputmg ‘the assocmted_‘
o 'welghtlng functlons for smgle samples of, respectlvely, X("') a,nd Y(“) Then ‘.the:
oy total cost is C LX(CX + LyC'y) We should set Lx and Ly to mlmmlze C sub]ect "
to the prec1510n constramt var® [a] < ezaz That is, Lx a.nd Ly are solutlons to |the

‘ 'constrauned optlmlzatlon problem

. o mln Lx(Cx + LyCy) _
: sub]ect to (v + Ly'vg)/(LxLy) < e2a2

o Applymg the Kuhn Tucker COIldlthIlS [35], we ha,ve the followmg hnea,r system equa-

o ’by.tlons : L )

Cx-l—LyCy—x\LyC Oz -—'01 ’
| "f_"ﬁLny + /\(’U2 - Lxe a2) =0

"'"‘vl + Lyvz LXLY 6202 =0
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‘where ) is the Lagrange multiplier. We thus get

SE e
Ly = [2 2(vl/Lervz)l BRI (4.23)

Note that Ly does not. depend on €.

Asa practlcal matter, the solution (4. 22) cannot be used to numerlcally set Ly.
While -computational costs C X and Cy can be determlned experlmentally, we w1ll not
know the factors vl and 1)2 Whlch are constants. once we have Selected the sunulatlon
dens1_t1es %) and Frx (- [x)- (Although we can empirically estlmate them no good
strategy has been found which can effectively determine the ratio_Cx /Cy for the
~ purpose of setting Ly.) In our application to coded di‘gital»communication systems
the cost ratio C'X /Cy will be usually large (e.g., 100) due to the computation of
.the optlmal mean translatlon, hence, setting Ly > 1 W1ll be Justlﬁed For uncoded
systems the difference between Cx and Cy narrows. (e & Cx /Cy ~ 0°) We will
have a more concrete idea about Cx and Cy in the examples of Chapter 6. In any
. cases, we should not be tempted subJectlvely set Ly extremely large because of the,
square root in (4.22). Once Ly is set, from’ (4 23), the requlred Lx depends on the
standard error € and «, or emplrically, on the relatlve prec1s1on ¢ and the estlmate &.

There is also the issue of selectmg the s1mulatlon dlstrlbutlons as represented by

- fx(-) and fLx(-Ix). The minimum total cost, using (4.22) and (4.23), is

Conin EL (\/vlcy+\/vzcx) .

Therefore, we should choose f%(-) and lex( |x) to minimize vy and v1. See (4. 20)

The latter density 1mpacts only v1, and, regardless of the choice of fx( ); vy is min-
imized by minimizing the conditional variance var [g(x,Y)lex(le)lx x| for
each x. In particular, if Y is Gaussian distributed then the biasing strategies devel-
~oped in Section 4.1 apply directly to the design of the conditional simulatiOn density
fyx(-[x). Next, consider the selectlon of x(¢) Wthh involves Jomt minimization

of both v; and v,." The factor v, is _]ust the variance expressmn that one would
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" have for estunatmg a= E[ﬂ(X)] and hence, to minimize this factor we should seek . -

:"a 51mulat10n dens:ty that ‘approximates f(x) o ,B(x) fx(x) Mmlrmzatlon of vy

2

s not. so clear because thls factor also depends on our ch01ce of leX( [x). Hov

: "ever 1f we have done a good job selecting f{x (- |x) then the conditional variante
var* [g(X Y)wylx(YlX)IX] will be roughly proportlonal to E(X)2 In the case of the
v exponentlally efﬁc1ent Gaussmn simulation schemes developed in Sectlon 3 for ex-
ample; the exponentlal factor (as a function of the SNR parameter ~) of the variance

B does in fact satxsfy this proportlonahty Thus, v is approx1mately proportlonal to .
[ (X)zwx( )% which is agam minimized by fx(x) « ﬁ’(x)fx(k)'. O |
Flnally we rema,rk that we may estlmate the emplrleal Pprecision. of our ‘e'sti’matesv

‘ usmg a sample variance estlrnator as in Section 2.2. Smce (X(’) Z(Z)) £=1,..,Lk,
_are iid. , an appropnate estlmator for va,r[ﬁ(X Z)wx(X)] is : ]

11— B(x(f) z(‘)) wx(x(f)) | -—a2 S (424 "

i M}:

| And the variance of the estlmator (4.17), var[a] is estlmated by 8'2 / L X;
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5. EVENT SIMULATIONS AND AWGN CHANNEL EXAMPLES

5.1  Event Simulations for Uncoded Systems

In this ‘section Wé’Will discuss the event ‘simulatildri method forbzlincoﬂded systéms'
and channels :wi,th Iﬁémory. This fnetho'd waé orig:inal“l.y.'pr'eseﬁ‘te’(‘i'bAy LuandYao
in [36). It i‘sy," in fact, sirﬁpiy an enlarged version of the event simulation we have
describéd in Section 1.2. Consider a baseband biriary digivtal coxﬁﬁiunicétion éystefn‘
with memory ds shown in‘Figure 5.1. This is also the ’syst’.em model used in'[36] and
by Shanmugan and Balaban in [53]. We use this simple system model to illustrate the
formulation of the event sifnulatjon method. Its generalization to more complicated
-systems will follow. L o v | | |

The trahsmitted sigﬁal in Figure 5.1 is X (t) = Y4 Xi p(t — kT'), where X takes .
on the value +1 or -1 with equal probability (this equ.al' a priori pfobability actuall:y "
" is not 'krequired)k, p(t) is a rectangular signaling pulse over the dura,tion‘ [0,7) and
T is the signaliﬁg périOd. The additive noise process Y(t) is a WHité'Gaussian noise
process Wifh_zero mean and two-sided p.s.d. Np/2. The ,‘sam:pl,,er‘ 6utp’ut Ry is obtained
by taking 'on>e sample every T seconds from the system output ‘wavefo'r‘m R(t). The

‘decision device then decides on X} by imposing some decision rules on Ry.

R(t)
b — ’& — R,

Y(@)

Figure 5.1 A binary communication system with memory. o o
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To sxmpllfy present d1scussron we assume that the system is hnear so that We can
‘*repreSent the above contmuous time model with only one sample per srgnalmg interval
o T for both the s1gnal and noise. Therefore, the s1gnal samples can be represented by -

v the : sequence {X k} The dlscrete time system w1th memory mcorporatlng the effe cts

Iv of all the relevant ﬁlterlng and the sampler can be modeled by -
' Rk[_—_— 4 (Xk,Xk”_'l; Xk—(n-l), Yk,Yk 15- Yk (n—-l)) R (51)

where {( ) is the dlscrete—tlme system response functlon, n is the system memory
v :vlength and. {Yk} are i.i.d. noise samples with zero mean and variance 0 = No /2.
| Equatlon (5 1) is really the format we only need for derlvmg the event simula-
thIl method Any uncoded commumcatlon system whose dec1sron statrstlc can be
expressed as a functron of the current data sample plus the ISI samples and the -
noise samples can be s1mulated in an event 51mulat10n fash:on If the system is tlrne ’

_‘ 1nvar1ant a more general formulat1on than (5. 1) can be wrltten as. .
R : é (XO,X17 : ’Xirt—la Yb’ Ka’}/"—l)

: wh'ere Xo. deno‘tes 'the current'data sample and"(Xi, Gy Xmer) is called an “ISI pat-

o ‘tern which is- the mﬁuence on R coming from adjacent srgnal samples Note that this.

o v‘representatron has also removed the' causality lmplled by ‘the time 1nd1ces in (5 1),

B R can be complex and the dlmensron of X, m, need not be the same as that of Y n,

' : hence the system ca have noncausal filtering. The" random varlables {X k} {Yk} dnd

: i. e the srgnal memory does not have to be equal to the n01se memory The latter sit-

' 'uatlon may happen when say, p (t) is a partial- response functlon Or. the noise process ,

S E .'-'1s not added to the s1gnal at the same pomt in the system, that is, they go throu gh

. different ﬁltermg Furthermore if {( ) is nonlinear, we may have many samples per
:transmltted symbol In that case, every Xk (and Yk) is 1tself a vector e |

We now work ¢ ‘on the general form (5 2) The 1deas of the event 31mulatlon meth‘ofd"' _

| _‘and the conventlonal stream 81mulatlon method depart from here Whlle the stre im




simulation se'quentia.lly'; generates Ry as in (5.'1), the event simulation can bé consid-
ered as taking only a snap shot at (any) one decision statistic. Suppose that X, = ﬁ:o
is transmitted and the decision rules are such that an i'rvlcorrect decision on' Xy will be -
made if R € E(zo) = E, where E is the decision error region of zo. Then the decision

error probability P = P(R € E|X, = :cg) = [g fRI'Xo(flxo) dr can be expressed as

P = P(E(X,Y) € E|Xo=20)

= [15(€00y) rvin(aylegdxdy (53)
= [ 15 (E0x ) Frixo(xlzo) fy (v) dxdy BN
= 5% / 1e (= ,y))‘fyv(‘y){iy 69
; | 1 i p x(’))

J = ’

~ where the first compbnentof x(j),bj =1,...,J,1s :1:‘0, and

, P(x9) = 16 (f(x“);y)) P (yIx9) dy
= Efle (69, 7)) x]
= E-,[lE (€%, Y)) x| | | | | | | (5.6)

is the conditional dec1510n error probability glven a specific ISI pattern X = x0), We
have assumed that fx Y|Xo(x ylzo) = fX|xo(X|$0)fY(y), i.e., the signal and noise
samples are independent, and that all of the ISI patterns (total number = J) are
equally likely and therefore Jxix,(x|zo) = 1/J. For the earller blnary system example,’
we would have P = P, and J = 2(m-1), |

Lu and Yao’s importance sampling event simulation 'phén empirically estimates

(5.5) by the following estimator:

LjJ o ' ‘
f:z P60, 0N uy (Y00, )



'We note that E*[P ] =1 21—1' (x(J)) =P,ie. P* is an unblased estlmator of P.

| , ‘jwhere wy(y) fy(y) / fY( ) is the IS welghtmg functlon and Y(J") is the £th sample

- : v,of the noise Y for each of the N / J s1mulat10ns condltloned on each x(J) sample of X. ‘. -

: In the 1mportance samphng simulation of the form (5 7) only the margmal noise
'den51ty functlon fy( () is blased Recall from Sectlon 4.3 that we can bias the
‘ marginal signal densxty functlon xxs(x|zo) in (5.4) too. The advantage of havmg
- a signal b1as1ng is twofold Flrstly, recall from the dlscuSS1on following (4. 14) that
some ISI patterns X = x(J) are more llkely to cause a decision error than othe‘*rs.
That is, see (5 5) those x(]) have more s1gn1ﬁcant correspondmg condltlonal decision
“error probablhtles P(x(J)) Therefore we can design a signal. blasmg fX|X (x]zg)'to
encourage the generatlon of more of these 1mportant” ISI patterns As long‘as .
we do th1s ina revers1ble way as we do for the noise dlstrlbutlon, we. can make “‘,Se,
| -of our computatlonal resource more efﬁaently Secondly, 1f the total number of- ISI

patterns (J ) 1s a large number -which is the case for most practlcal systems w1th

- memory, the number of s1mulat10n runs, L/ J, devoted to each condltlonal de01s on

" error probablllty Wlll be small or conversely L must be large In thls case s1m1lar to
the n01se, we should randomly generate an ISI pattern 1n each s1mulat10n run rather
than dlstrlbutlng the total number of simulation runs evenly among all poss1ble lSI -
‘ patterns Thus 1f we can blas the samplmg of the n01se, there is no reason why \ e
can’t do 50 to the s1gnal (Slgnal b1as1ngs have not been a common practlce in the
1mportance samphng hterature or for that matter, any s1mulatron study ThlS is
becatse the conventlonal stream s1mulat10n rnethod has been the norm for Wthh ‘he
s1gnal b1as1ng 1s not very productlve As mentloned in Sectlon 1. 2 the b1as1ng for
v_.s1gnal or norse in the stream 81mulat10n env1ronment would create b1as1ng conﬂlcts
vbdue to correlated dec1s10n statlstlcs in successive 81mulat10n runs ) »

| Lookmg at (5 3), one mlght 1mmed1ately thlnk of a stralghtforward form of esti-j .

‘ _mator Wthl’l 1ncorporates the 31gnal blasmg That 1s, we employ a Jomt s1mulatlon
* | den51ty fx Yo (x yl:vo) lex Xo (ylx :co)fXIXo (xlxo), and the estlmator Whlch ern-

pmcally evaluates (5 3) becomes
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Ei ‘ ( x(f) Y 9)) wxixy (XO20) wyix x, (Y(”Xw o) 59
where
xixo(x|zo) L
 WX|Xo (X|"’0) fX|X0(x|:co) Jfquo(xl%)
f(y)

Rl Y

are IS welghtmg functlons for signal and noise respectlvely (Note that if ‘a signal-

1ndependent,no1se b1as1ng is'used, we would have leX,Xo( yix; zo) = fY( ) However

we have demonetrated in Chapter 4 that signal-dependent noise Biasings generally
Yield higher efficiency.) Therefore, in each of the L simulation runs, we randomly
generate a srgnal' sample X and a noise sample Y® from the biased joint den-
sity function fx v x, (x,yl:ro). It is easy to show that P* is an unbiased estimator:
E[P*] = E[1g (€(X, Y)) | Xo = z0] = P o _ o |
l Equation v(5.8v')vac'tually corresponds to the Ly = 1 case in Section‘ 4.3 where
we have shown that Ly = 1 rnay not be the optimal choice to minimize the total '
computatlonal cost. Hence, ‘the appropriate forrnulatlon for this: problem is exactly |

what we have presented in Section 4.3, i.e., we want to estimate
P = F[15 ({(X,Y)) Xo= 2] = BB (€, Y) X Xo = 2] (59)

The estimator is therefore the combination of (4.15) and (4.17):

1 Lx
*22—; x;xo(X()|$0)

{ }: 15 (&( (X0 Y(“))) WYX X, (Y(“)|x<‘> )} (5.10)

el__
The proof of the unblasness of (5.10) proceeds as in (4 18) and ‘we omit here.
~ Since Yk,k = 1 ,n, are conditionally 11d Gaussmn randorn varlables the
- optimal Gauss.i_an" simulation density obtained in Section 4.1 applies readily to the

design of f{x x,(¥[X, o). _.Th'e choice of fx x,(X|zo), as discussed in Section 4.3, -



n':rshould be proportlonal to ﬂ(x) fx|Xo(x|:co) = P(x)/J where ,B(x) P(x) is the
e cond1t10nal decrslon error probablhty deﬁned by (5 6) P(x) is unknown but for the

¥ (xlmo) we can obtam an approx1mat10n by appeahng to the

.-_;,.“"purpose of de51gn1ng fx

‘ "';-vvtrdeal channel behav1or v Examples of opt1ma1 de31gns for lex Xo (ylx, :co) for linear

| 'systems can be found in Lu and Yao [36] The desrgn of leX Xo (ylx a:o) as well as S

: le Xo (x[mo) for a. more general case — nonlinear systems with mernory will be glven' ‘
E "m Chapter 6 via the example of an MSK modulatlon operatlng ona satelhte channjel}' o
52 Event “Simnlat§6r15'.for_'Tréllis Codes
521 EVent-Slmulatlon Estimator

Recall from Chapter 1 that in the stream srmulatlon of a Vlterbl decoder the dei

coder s branchmg dec1s1ons are correlated which 1ncludes scattered error events and

1nterva1s of correct paths lylng 1n between The b1t error probablhty Pb is easIfly R

O "‘_estlmated by the relatlve frequency of erroneous decoded 1nformat10n blts Accom
. nymg w1th thxs srmulatlon method however, are the dlmlnlshmg d1mens1onahty effect g
“ : When the lmportance samplmg technlque is apphed and the dlfﬁculty to compute the .

o -'estxmator s variance: S

Slmxlar to the development of the event s1mulat10n method for uncoded systems,_.
o v1n the last sectlon let us do some analysis on the decision error probablhty before
E ‘Jumpmg to. the 1ntu1t1ve stream simulation. (The whole idea of an’ efﬁcxent 1mportance '
samp]mg IS to construct an analy81s based sxmulatlon and the analy31s w1ll pay oﬁ) '

obablhty P a.nd

In Sectlon 3 2 2 We have demonstrated that - the ﬁrst event erro' ' v
l the b1t error probablhty Pb for a trelhs code can be expressed- as (3 1) and (34)

‘ respectxvely Whlch are rewrltten as.

= EPCCHeX) e

o e#£0,e€C
SRRl
pb 2.an(e)E[P(X+eIX)] _' (51[2)

eEC

a-



where we ha\re moVed the ex\pectations (with respect to the rdndorn jsigna'l. selecfor |
sequence X) inside the summatlons assuming that the mﬁnlte sums do converge
Also the random varlable Nb(X X + e) in the summand of (3. 4) has been replaced
by ny(e) due to the hnearlty of the convolutional code. Note that . (5 11) and (5.12)
are also true for block codes Thus, most of the followmg d1scuss1on also apphes at
least in pr1n01p1e to block codes. | “ | ‘ _

See (5 11) and (5. 12) 1t is logical for us to suspect that there are ‘so'rne" sig-
nal selector error sequences e whose correspondmg expected spec1ﬁc decodmg error_ 7 :
probablhty” E[P(X + e|X)] P(e is decoded) are the dominant terms of the values. R
of P, and Pb That is, some error sequences are more hkely to be decoded than others.
Hence it would be nice if we can estimate P and P, by 1dent1fy1ng those * 1mportant”
e’s and summing only their estimated E[P(X + e|X)]. This will mevxtably 1ntroduce
anuestimat'ion “truncation bias.” But we will show that if the pool ofeis large enough
and/or the SNR is high, the truncation bias will be neghglble ' ‘

For regular codes and the AWGN channel, the task of identifying 1mportant error
sequences e is relatlvely easy. ‘Recall from Section 3.2.1 that for regular codes the‘_
Euclidean dlstance between two codewords depends only on the Hamming dlstance'
between their input information sequences (or s1gnal selector sequences if the dls'crete _
‘encoder is linear). Also, on the AWGN channel, the Euclidean distance between two

| codewords determines the likelihood of decoding one codeword while the other one is
sent, using a maximum likelihood decoder. Hence, P(X +elX) = P(eIO), Where 0 is
the all zero signal selector sequence, and thus impo’rta‘nt error sequences are those e -
with small Hamming weights (number of non-zero bits).

For non-regular codes, the Euclidean distance betvreen' two codewords depends
not only on the Hamming distance between them but also what the two codewords
actual are. Furthermore, for channels with memory, P(X + e|X) depends also on the
ISI pattern, i.e., adjacent signal selectors. Therefore, instead of looking for important

error sequences e, we need to find important error sequence and signal selector pairs,
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(x e), with x taklng into account the intersymbol interference. To do th1s we require

more general and expll(:lt formulas than (5 11) and (5.12). .

Let M= and M + denote the “backward” and “forward” memory lengths respec— ‘

- tively of the channel measured in numbers of symbol duratlons T. More spec1ﬁcctlly‘,‘ ,

: "because of ISI the dernodulator output symbol Rk is, affected by s1gnal select
(XM Xk+M+) The total channel memory length is thus M= M- 4 M*
- allow M 75 M* here and in the snnulatwn program for sake of generahty If

system is causal we have M + = 0, and hence Rk depends only on the current

tors
We
the

and

M= prev1ous signal selectors. For each £ =1,2,..., let X (Z) denote the set of signal

selector sequences of length é’ + M beginning in a random 1n1t1a1 state at trellis stage

k= ——M ConS1der a ﬁxed error. sequence e of length Z(e) The expected spe( ific

decodlng error probablhty E[P(X + e|X)] for e can be expressed as
E[:P(X'+_ elX)] = :'P(e is decoded)
‘i, . ,v'_“,:EX Y [1{e is bdecoded}:-(»x’Y)] |
= ’Ex [EY [l{e is decoded}(X Y)|X”
.= Ex [P(e is decoded)|X]

2 S Pe isde‘codédl)”c’)Pi-{(ic)
L ReX(Ke) .

C= Y PEeR) o g
| XeX(e)) o '

where Y is the Gaussian noise samples vector. We 'have ."used a subscript for

: veXpectatioﬁ ‘to indicate the underlying probability measure. The factor 2*b(e(e')'+ M)

is Just the rnargmal probablhty P( = X). The smgle term probablllty P(x + e|%) B

a13)

the

i '1n (5 13) is determmed by the Gaussian noise dlstrlbutlon and, since the Viterbi

t

‘decoder has a random decoding delay, P(x +e|%) i 1s also averaged Wlth respect to

- “tail sequence X l(e)+ M+ +1 X ((e)+ M+ 42, - More prec1sely,

‘P(x+elx) = E[Px+e|X)| ‘ ]

the




o1

where X = '(XI‘;M—,. . ,Xg(e)%M+) € X({(e)) is a finite subseqdence of the inﬁniter' |

sequence X. Combining (5;13) and (5.12') deev have e |
= ) fil()f—) P(x + e|x) g-bl(e)+1) (5.14)
ecC xeX(fe)) ' '

For a fixed e, it will be convenient to write X = (X-,X X*) where X~ =
(Xl M-y, X0)y, X = (Xq,.. Xg(e)) and X+t = (X[(e)+1, $1(9)+M+) In -the
case of a memoryless channel i.e., no ISI, we have M = 0 and X = X. |

We are now ready to de81gn an event simulation based on the expressmn (5. 14)
Define D = {(e X):e€ Cand % € X({(e)) }. Let Px . (e %) be a discrete distribu-
tion on D, and let (E, X(‘)) ¢=1,...,Lx,be mdependent samples from Pe % % (e, x).
The estimator of P, which evaluates (5.14) is o

h=r Z P (X0 + EOXO) wp g (BO,XO)  (519)
~ where

L ()2

?”Efx(e’x) T b Ppgle®)

is tlie impbrtanée s‘fampl’iﬁg wéighting fﬁnction for the sigriadl‘ X v’a;nd error s‘equ‘ér‘lce E,
and P(X(e) + E®|X®) is a conditional estimate of the first event error probablhty
’ glven (E(l) X, P(X(l) + E®|X®), which is

o ) | Ly o S }

P(X(Z) + E(£)|X(l) = z_ E {E( is decoded} (X(l)’Y(M)) X

wyEX (YO E®, X )  (5.16)

where

fy(y)
R x(lex)

wY|E,X(Y|e, X) =

It is easy to show that'E“‘[IA’(i+e|)~()]' = P(% + e|%). Hence, provided that
Pp ¢ (e,%) > 0 for all (e,%) € D, it follows from (5.14) and (4.18) that E*[B)] =
- E* [E*[P”E,X]] =B, that is, P, is an unbiased estimator for F;. In practice, since -
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1D is an lnﬁmte set we w1ll have to restrlct ‘the support of (e x) to a finlte subsetr
», This will introduce a truncatlon bias. However 1f the support of X(e %) includes

| the dommant terms in. (5 14) then this truncation bias w1ll be 1ns1gn1ﬁcant

- The optlmal Gauss1an snnulatlon dens1ty developed in Sectlon 4.1 agaln apphes
‘:here for fY|E x(y|e x) Note that e and X together decides the error set, and thus the
error set’ notation in Chapter 4 is really E(e x) Therefore, the optlmal sunulatlon ‘
densrty will depend on both the signal X and the specific error e. The de51gn of ’the
signal blasmg P (e X) is more comphcated than the uncoded case, espec1ally.for :
~non-regular codes'and channels with memory. We postpone »1ts" dlscu_ssron until we

study sorne'exarnples later in this chapter and the next' Chapter;

5 2 2 The Error Event Slrnulatlon Method

.To estimate P (x + elx) Wl’llCh is. the probablllty that the specxﬁc error event x+ e“ |

is decoded whlle x is- the correct path anew therbl decoder srmulatlon method whlch

: is error event orxented is in order The error event (s1rnulat10n) method for Viterbi -

\

' decoders developed by Sadowsky in [46] is an- -answer to this call. For a detalled'

g " descrlptlon of thls method, the readers are directed to [46] The advantages of th1s |

|

' method as: rnentloned in Chapter 1 and have become clear through the d1scussron SO
far, are ‘the mdependence between s1rnulat10n runs, allow1ng s1gnal dependent nblse
; b1a51ngs and that ‘the code distance lnformatlon ‘can be utlllzed to desxgn a slgnal -
b1as1ng to further speed 1 up the simulation. | TR o R ]

- The, error event s1mulat10n method for Viterbi: decoders can. be surnrnarlzed as
: follows Flrst the decoder is 1n1t1ahzed in a known state, randomly selected each

trme at tlrne 1ndex (stage) k= 0 ThlS 1n1t1ahzat10n is because we are 1nterested in -

X te is a ﬁrst event error path Wthh dlverges frorn the correct path x at stage 0.

- (The X~ part of % is to s1mulate the ISI and since ek =0, k < 1, we don’t 1n1t1all1ze
the decoder at stage —-M although X starts from there ) The V1terb1 algorlthm then .
B proceeds untll the ﬁrst merger of the error event path w1th the correct path after stpge -

: 0 is detected We call this a 31mulat10n run.” In the case that the ﬁrst branchlng -
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correct. path

\\mwal error

b’ events

~nontrivial
" error event

Figure 5.2 ' Trivial and nontrivial error events in the event svi'mulatiron'.v :

dec1s1on 1s correct and thus the error event cannot be a ﬁrst event error we call 1t a
“tr1v1a1 error event.” Therefore ‘each 51mulat10n run 51mulates one and only one error
event Whenever a tr1v1a1 error event or the completlon of a nontr1V1al error event :
18 detected that srmulatlon run is terminated. See Flgure 5.2 for examples of ter1al
B and nontrlwal error events Note that the correct path need not be the all Z€ero path

" In thls manner, the V1terb1 decoder is simulated in an event fashlon srrnllar to the
event srmulatlon method for uncoded systems discussed in the last sectlon where, by
condltlonmg on an IST pattern the receiver in each 81mu1atlon run makes a bmary ’
' correct / error de01510n More specifically, the recéiver dec1des in each run 1f the event
“test blt error” has occurred. Decrslons in consecutlve runs are mdependent because '
dlfferent sets of random vectors Y are used. Here by condltlonmg on the correct
; path, the decoder deCIdes in each run whether or not an error event has occurred
A trivial error event corresponds to a correct declsron in’ the uncoded case, whrle’; :

a nontr1v1al error event is an “error.”

The Viterbi decoder also makes lndependentv
trivial/nontrivial error event decisions in successive runs, again because thev use of
independent sets of random vectors. |

Without importance sampling, the simulation runs will'consist‘of mostly trivial
: -error events The obJectlve of IS then is to increase the frequency of nontrivial error

: events more preasely, to cause the particular nontr1V1al error event x+e In the event

: s1mulat10n for a binary uncoded system, every declslon error is counted in computmg



o that a complete error event is decoded = length- of 81mulatlon run In the exam;

v error event

194

the estrmated b1t error probablhty Pb Here, the V1terb1 decoder has more than two

decodmg optrons Some nontrrvral error events may- not be: the desrred specrﬁc er

% + e and w1ll be drscarded in computmg P(x + elx)

TOT

The mdependence between srmulatlon runs requlres some explanatron 'Firstv .

though we review brleﬂy the mechanism of the V1terb1 algorrthm [17, 62, 63] Con- |

. sider the example shown in ‘Fi igure 5. 3. At every stage, the Vlterbr decoder perfor ms', '

for. each of the 2” states, ACS (Add Compare and Select) functlons and keeps track

reduce the memory srze requ1red for storlng surv1vor paths and back tracmg by us

U of the surv1vor path and its accurnulated metrlc (A progra.mmmg trrck whrch an

v,’.ga size 2” pointer array is grven in [46] ) ‘The key prmc1ple of the V1terb1 decoding‘ e

| ,process 1s that the surv1VOr path for any state at stage k+ 1 is a one- branch extensuon -

‘ of some survrvor path at stage k Note that the decoder does not dlscard paths enfl :

o terlng a state W1th smaller metrlcs untll after the transrent stages or when candldate o

paths have reached all states For the example in Flgure 5.3, the tran81ent stages a'r'e -

| Let TD(z) = the trme that zth branch 1s decoded = the tlme all survrvor paths agriee ‘

: on the ith branch J = the tlme of the completlon of an, error event and T M= the tlme ‘

we have TD(l) - TD(2) = 4 Tp(3) = 5, and TD(4) = TD(5) ) TM = 7, and her
’J i 5 The subscrlpts D and M stand for “decoded” 'and “merger respectlvely 1

mmrmum s1mulat1on length is TM = 3 for the earhest poss1ble detectron of a trlv

Because of the random norse the ﬁrst t1me that the maxrmum metrrc path

merges w1th the correct path J and the. tlme of the detectlon of thls event TM
are random var1ables Furthermore they are stoppmg tlmes” [11] That is, 1he

| ‘ Ievent {TM = t} is measurable by the 1 noise statlstlcs up to t1me t + M g Note that

Tre-

le,

nce

_ial

’ :f‘.TM 1s also the trme that the decoder decrdes whether or not the specrﬁc error even‘t e

- x + e ha been decoded Therefore the decrsron 1n the é’ th mmulatron run of t_he

' "-'-estlmator (5 16) depends only on n01se samples generated by the s1mulatlon density

The

P




Figure 5.3 An example of event simulation. Correct path = all 0 path.
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R notatlonal conven1ence we often use quaternary representatlons for code symb

‘ fY]EX( [e x) up to tlme TM + M+ Th1s conﬁrms the clalm that S1mulat10n runs

‘are 1ndependent Also 1t is necessary to generate s1gnal selector a:k and n01se sam

. _yrlIl each s1mulat10n run only up to tlme TM + M+ s

5.3 'Iideal_'Channjel lSimulat__jiOns ,"

In th1s sectlon we w1ll put together those pr1nc1ples for efﬁc1ent IS s1mulat10ns we

have been dlscussmg SO far — event srmulatlon condltlona.l 1mportance samphng

and

‘ Gaussxan mean translatlon blasmg and use two trellls code examples to demonstrate -

o the technlques and procedures in carrymg out the sxmulatlon The channel mod‘el

w1ll be the 1deal hnear memoryless AWGN channel whlle the nonlmear satelhte

'channel w1th memory case ‘will be covered in the next chapter S1mulat10_n results' SR

. vfand analytlcal €rror: bounds w1ll be glven ‘

5.3'._1 A Convolutional 'Code

" Cons1der a 16 state code rate R = 1/2 convolutlonal code w1th BPSK or QPSK !

(w1th Gray codmg) modulatron operatmg on the lmear memoryless AWGN channelcp-

‘Flgure 5. 4(a) shows the dlscrete convolutlonal encoder conﬁguratron whose code gen-

erator. is (35 23) [12] The left- most shift reglster elernent b(l) contams the most

recent 1ncommg 1nformat10n bit and is also the least “significant- blt of the enco

sder

: state 1ndex The 2 b1t encoder output Tp = (:c;c 15Tk, 2) respondmg to an 1nformation i

' b1t mput Up is called a code symbol or a s1gnal selector as deﬁned in Chapter 3

(0 O) = O (0 1)-— 1 (1 0) = 2,(1, 1) = 3. The code’s trelhs dlagram is she

Cin Flgure 5. 4(b) where trelhs branches are labeled with quaternary representatlon

| ‘code symbols The only two dmm paths are also shown w1th the correct path be'
_the all zero path By deﬁnltlon, dmm 1s the mlnlmurn Hammmg dlstance betwv

,"‘la,ll possrble codewords (31gnal selector sequences) ThlS code appears 1n Heller &

ols‘,‘ -
wn
s of
cing -
o

ind?

ples
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(b) Trellis diagram.

Figure 5.4 A 16-state, R = 1/2 and dpin = 7ICOnvo‘luti0nal" code.



R Jacobs s1mulat10n study [26] and is: known to be optlmal for R=1/ 2 l6-state codes -

S dn the sense that it a.chleves the ma.x1mum dm,n = 7 [12]

A Uﬁiéh,souﬁas: et

As mentloned in Sectlon 3 2 1, th1s isa regular code Performance evaluatlon can

: be greatly srrnphﬁed by assummg that the all'0 sequence is the transmltted codewT)rd e

‘Therefore lettmg X = 0 in (3:1) and (3 4), we have EERE N,

P :Pe<-;‘f’;>?= T oPe) a0

' e;éO,eeC
| S Z Ade
R d-dmm B
B = B ban(e)P(eIO) o shey
< Y BiPi
e d—-'dvmn .

,i"‘where Ad —‘number of codewords at dlstance d from 0 and Bd total lnformat

jon

__’werght for codewords at dlstance d from 0. The dlstance measure d here is the

. Hamming dlstance Wthh is.a hnear functlon of the Euchdean dlstance Py is th‘e

'two decodlng optxons, whlch is an upper bound of P(e]O) Note that b 1

probabxhty that eis decoded while 0 is transmltted assumlng o and e are the only

for

thls code. The mult1p11c1t1es Aq and B, are. obtamed by countmg the output of the'

‘,vv,modlﬁed RC Algorlthm which i is a hst of e such that 7 d(O e) < 17 where d(0

L v’1s also the Hammlng welght of e. The algorlthm takes less 5 rn1mutes CPU t1me ona

SUN SPARC 1 statlon to obtaln this list. Table 7 in Appendlx A shows the begmn
H -part of the hst for d(O e) <10 The resultmg dlstance (welght) spectrum is sho
in Table 5. 1 We w1ll compare our s1mulatlon results agamst umon bounds compu

= from thls table

o)

wn

ing .
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Table 5.1 A convolutional code Weight spect,'rumb.‘

Ad| Bl d| A Ba|
2| 413 176 1324 |
3| 1214 | 432 3680 |
| 4| 20 15| 925 | 8967 ||
|10 16| 72 | 16 | 1966 | 19686
11| 87 | 225 || 17 | 3003 | 30017
2] es|so0) | P

O 00 1| A
)

" B.IS Simulation: SRR

As mentloned in the last sectlon, we can estlmate P(e|0) for those 1mportant e

only, which are e’s w1th small Hammmg welghts See Table 5 1. In the snnulahon we |

choose two cutoff dlstances dm,w = 10 whlch con51sts of 25 e’s and dmay = 11 for B v

~ which there are 62 terms in the summatlons of (5.17) and (5. 18) For each e, P(e[O) A
s estlmated by (5 16) whlch is reduced to '

P*(e]O) — Z 1{9} (0,Y" )) wYle O(Y()|e o) R B  (5.19)

~where l{e}(O,y) is the 1nd1cator function which is umty if e is decoded when 0 is

transrmtted and y is the noise vector, and 0 otherwise. The eva]uatlon of l{e}(O, y) o

in the Zth run is nothmg but one execution of the decodmg process and checking if -

e is decoded. The variance of (5 19) is estimated by a sample variance estlmator of

the form (2.11), 52(8)/Ly, where S”"(e) is
o $(e) = 1= Z o (0, ¥ >) Yoo (YOle,0) = Pr(el0).  (5.20)

Fma,lly, the IS estimator for Pb is.

. dmaz - - - o o
b"=% D nb(e)P"(‘eIO)»,' S (5.21)

e: d(O,e) dm.,.
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(a) BPSK. T ‘.f('b) Q?SK;,;,

RAEETE e B true mean

| Figure 55 Bl’SK’and QPSK signal,map}:)ing's“and‘mean translations“.‘v ST

‘and the varian'c‘e of 'P}, is e‘s‘timated as

dma:x:

Est var [Pb]
e:d(0,e)=dmin

The remammg problem is to design the noise blasmg fYIex(y|e x) glven X =

and e. Followmg the formulatlon in Chapter 4, we need to ﬁrst ﬁnd the decrsxo‘n" L

statlstrc D in terms of the system response functlon £ ( ) Recall that the code rate 1s

'lamplltude s(:ck) selected by xk is a complex number, or equlvalently a 2- dlmensmnal o

vvector 1 the modulatlon i’ BPSK a:k is transmltted by two BPSK srgnal pulses

i1/2 Le., ) = (:z:k 1 a:k 2) If Ty 18 transmltted by a QPSK srgnal pulse the s1gnal pulse . -

a_nd‘.'

hence e(zk) is still complex with the real part s(xk) = s(:z:k 1) and thei 1magmary pa‘rt_

(wk)Q = s(a:k 2) Both cases can be reduced to an equlvalent dlscrete codmg channelf

’ >‘w1th s(mk) = (:l:l :tl) Flgure 5.5 shows the BPSK and QPSK sxgnal mappmg

' "'the s1gnal space Recall from Chapter 3 that the ML metrlc functlon for comparn
demodulator output symbol Tk and a signal pulse amphtude s(a:k) is- Re[s(xk) T
(a:k)I + s(mk)Qrk Thus glven that X and x + e are the only two decodmg opt1

B 'the Vlterbvi ecoder w111 favor the ﬁrst event error path X + e over the correct pat

}"ly 1f the decxslon statlstlc is

s.in
1g a

—

ons,

B, OO <> |
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£(e) i ) ‘ ’ ‘
D= Z ( (zr +ex)! — ;s("x'k')l) i+ (sr(xk +ex)® — q(xk)Q) er >0 .

where for the AWGN channel we haverk = s{zx) + yx- To simplify the\following
discussvion, we represent a E(e)—dimensional complex vector by a 2Z(e)-dimensional

real vector and define

e = s(wl) s(:cl) ,‘s(:c((e)v)l,s(x,g(ei)Q]t"

>
il

o - : - P t:
(21 + e1)!, s(21 + €1)2,. ., 5(Ta(e) + €ae))’, 5(2e(e) + €8e))?)

e _ 3
y = y{ay?3"’1y;(e)vyt?(e)] .

Note thaf with the BPSK or the QPSK signal mapping in Figure 5,.5“, we have s =

[1,1,...,1] for x = 0. The decision statistic D can then be expressed as
D = {x,y)=(-5)s+(5-58)y
= a(x) 4 b(x)'y Co N (523)
\:thich'is an affine function of Y and hence this ie a ‘li‘neja‘r‘sysbternrby the deﬁnition in
Section 4.1. Note t‘hat bot‘hz efand § are treeted as constant vectofé at: this level of

" the simulation.

. Therefore, recall from Example 4.1, the domlnatmg pomt v = [v,]ﬂ@) is
a(x) |
v = — b(x
oo
(8—98)s - .
N Che 5—s) | - (524

which is also the simulation mean vector. Note that the multiplicative factor in (5.24),
—(8—s)'s/||s —s]|?, is a real number. Furthermore, if ||s{|? = ||§||2 that is, a constant
envelope modulation scheme is used (e g, an M-ary PSK or an M- ary FSK), we get

(8=s)'s _ (s—s) B |

I8 —sliz "~ 2sfE - 28 ~ 2

o ie., the multlpllcatlve factor is always 1 /2 in thlS case Let us now examme each

' component of v. Denote s. and 4 as ith components, i = 1 ., 2{(e), of s and



3 Hence the mean- of yk 1s one—half the dlfference bet

R ;y’jof movr

:v'.f?‘.?.s respectlvely If e = 0 and consequently s(:ck)I =: 52k-1 _' 32k 1 and s(mk)Q-._‘.
E -'32k = szk, we have ’ng 1 = ’ng O That 1s, the means of the Gaussran rand'
' " :i.l.f;”i-’iva,rlahles yk and yk are not shlfted 1f e = 0 On the other hand if ek :;é 0

ﬁ,have 'Uzk 1 0 5% ( (a:k + ek)l ~ .s(:ck) ) and vgk v= 0 5 * (s(:ck + ek)Q - s(:ck)-'

e

“"”"""':dlmenmon Note that W1th thls blasmg the mean of the transmltted s1gnal plus

n .s(:r:;c + ek) and s(wk) in eac

B ’zero mean random Gauss;an n01se s+y, has been translated from s to s+V (S+ 8); -

L “.:'Wthh is: the mldpomt between the two s1gnal poxnts representlng s a,nd 8. Thlf

| ‘, Gaussum mean trans]atlon for BPSK and QPSK Fmally, we rernark that the. ab

- derlvatlon and cor c]usmn are not restrlcted to X = O or < 2- d1mens1onal modulatlons_.v, e :

BT v'-,also true 1n each 1nd1v1dual dlmensmn Flgure 5. 5 shows thls asymptotlcally optlmal ," o

ove

The non-u form, : iv‘gnal dependent mean- translatlon blasmg is therefore 5 S

"ﬁ'the mea“of the transmltted s1gnal from s(:z:k) = (1

o H‘,:'i;between (:ck) and .s(:ck + ek) = (1 —1) as shown in Flgure 5 5(b) The 1mporta

i g we1ght1ng »functlon wYIex(yle x) is s1mp1y fy( )/leex(yle x), and Sl

W '._‘fy(y )= k_l fo (yk)fYQ (y,? )is-a product form denmty, the welghtmg functlor

o lalso in. product forrn

: fto the rmdpc.

efar,; |
ary
éﬁ,t .
int

ince

1;is,,‘:



The above mean- translatlon biasing deSIgn can be also derived from a s1mple umon -
bound argument given in Sadowsky [46] Recall that the goal of IS is to “trlck” the
decoder into decodlng the. spec1ﬁc error event x +e. Given that x and x +e are .
the only two decodlng options, we don’t have to blas transmltted 81gnal samples if | |
they are the same as those of the error event path For those d1mens10ns in whlch
~ they dlffer the variance of a Bernoulli trial is s minimized when the success rate p is’

1/2. This explalns why we translate the mean of the Gaussian random variable to the
mldpomt Note that we use this union (upper) bound argument or the bmary decision
statistic D of (5. 23) only to de51gn the noise blasmg In the SJmulatlon the actual
Viterbi algorlthm is performed which admlts all poss1b1e decodmg optlons Some
nontr1V1al error events W1ll be decoded which are not the desued x +e. Therefore the
b1as1ng we have de51gned can be considered suboptlmal in the sense that the overall

“success rate” (of decodlng X+ e) W1ll be less than 1/2 In any way, with our event
‘simulation method and the optlmal mean- transla,tlon biasing, we are not estlmatmg
an upper bound of P(x + e|x) but just use it to derive the biasing. ,

. See the tljeliis diagrem of Figure 5.4(b). Notice that the two admissible transition
branChes ‘leaving a node el'Ways differ in two bits, i.e., it is either the pair (0,1) and
(1,0) or the pair (0,0) and (1,1). Suppose that e; = (0,1). Then, ,see Figure 5.5(b),
with the mean being shifted to (1,0) — the midpoint- between s(zx) = (1,1) and
s(zy + ex) = (1, —i), the chance of that branch being decoded as ex = (1,0) is much.
smaller then e = (0,1). (This is particularly true for a high SNR and/or a long error
sequence.) Ther’efore; although the Viterbi decoder has many decoding options, it
can be predicted that approximately 50% of the decoded error events will be trivial.
And with high prohability the remaining 50% will be the attempted e. In simulations,
it is verified that less than 5% of the total runs result in nontrivial error events other
than e for SNR > 5 dB. |

The simulation algorithm can be described as follows.

The IS Simulation Algorithm for a Regular Convolutional Code:




bv ‘® Input Convolutlonal encoder conﬁguratlon, SNR number of srmulated error:
v sequences and Ly k ‘

o Output P*(eIO) for all srmulated e, percentages of desued érror events decoded, B

Pb and relatrve preclslons for estlmators
e “M.ethod:f"
1. Construct tables containing trellis diagram information. =

2. Read error sequenCe’ e, len’gthy £(e), and Weight ’n’;,‘(é) from the daté file

obtamed from the RC Algorlthm If all e ] have been 31mulated g0 to7
’M3.‘Pute—'0 e R N
o4 e=t41 IfK > Ly, go to 2.
. 5 ,:,Compute recelved data Imtlahze the Vlterbl decoder L

6. Compute recelved data Perform the Vlterbl decoder error event srmula— ‘
tlon When an error event is decoded update slmulatlon data accumula— '

tors then go tod.

7, Output 51mu_lat10n reSults. L

_ A samp]e mmulatlon output of the above a]gor1thm is given. 1n Appendlx A Table 7. "

- Slmulated Pb for varlous SN R’s and ‘their union bounds are shown in Flgure 5 6. We

' can see that ‘our estlma.tes agree closely to union bounds at moderate to—hlgh SNR’s.'
’The truncatlon blaS 1s the mam reason for the under estlmatlon at small SNR’S

(Recall from Sectron 3. 2 2. that the union bound is not tlght loose in th]S region

| __’elther ) For comparlson also shown in Flgure 5. 6 are: srmulatlon results for. the c_ase )

'm Wthh we employ a hard rather than soft dec151on Vlterbl decoder (thls in effect o

._annel or' BSC) The Tesult

e reduces the ch "*E'"nel model to the blnary symmetrrc

srmulatlon rus

o '1s termmated 1f the relatlve precrsron s for the estlmate of Pb is less_than 10%

Sva,bout a’2 dB loss due to hard quantrzatron. .The number':of“‘__;}cg_7- .

T every error sequence e 1s Ly = 1000 For each SN R the mmulatlonw“



Pb

Figﬁre 5.6 P, of the 16—state, R=1/2, d;,,,-n = 7 éénvolutidpal.code.

© BSC,d<10
BSC,d<1t
‘AWGN, d<«11
Union Bd.

- . AWGN, d<10 |

© EbNo {dB)
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: »5 3 2 A Qua31 Regular TCM Code

. ,:Ungerboeck s orlg;mal paper [57] The encoder conﬁguratlon and trellls dlagram with
a df,.ce path (correct path X = 0) are shown in Flgure 5. 7 The 51gnal mapplng
functlon (modulatlon) is as described in Section 3.2.1 and Flgure 3 5 Shift reglste'r

"elements b(l) and b(2) contam the most recent i mcommg 1nformatxon b1ts and are lalso v
B :the two least 31gn1ﬁcant b1ts of the new encoder state.

The fact that this is a non—regular code makes the union bound computatlon and

Next we consrder a 16 state R =2/3,8 PSK dfm, = 2 27 TCM code glven inl“

4 the IS s1mulat10n more drfﬁcult than the convolutlonal code example dlscusse:l in

the last subsectlon The major addltlonal complex1ty arlses from that dHD(O e) =
dHVD;(x,x + te) for all srgnal selector sequences X, but dED(O e) 9é dED(x x 4 e);
where as deﬁned in Chapter 3 dHD( ) and dED( ) are the Hammmg and Euclldean
,_:'dlstance measures repectlvely Consequently, we may have P(x + elx) 75 P(x +‘
; felx) X ;é x. Therefore we can no longer assume that X . 0 is the transm1 tted :

i .codeword in computmg Pb .

A. Union Bounds: £

| Fortunately, for many practlcal TCM codes that can be classrﬁed as quas1 regula‘rl .
the average mult1p11c1t1es Ad and By in (3. 3) and (3 5) are computable by assu ing
 {heall 0 sequence is transmltted ‘We have demonstrated th1s using the RC Algorl hm -
: .and the dlstance polynomlal mformatron in Sectlon 3.2. 2 The dlstance polynormals‘ |
in (3 7) apply dlrectly to. th1s code. Ta.ble 5.2 shows the dlstance spectrum of this | ,
 code for squared dlstance up ‘to 10.- The modlﬁed RC Algorlthrn takes 3.4 hours C‘;PU‘ K

L _tlme on a Gould PN9080 to obtam the llst of error sequences e used in computlng o

tlns table Table 7 ini Appendlx B shows the begmmng part of the rnodlﬁed RC

S _'Algorrthm output for squared dlstance < 5. 7574 (18 error sequences) There are a N .

total of 22 possrble dlstances a.nd 49 506 s1gnal selector error sequences e w1thm th'ifs' B

range Recall from Table 5 1 that for the regular convolutlonal code, there are only VRO
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4 possible distances and 25 e’s for distance d? ‘within the range of dfnm <d? <242,
In general, TCM codes have very dense distance spectra. Again,v we will comp,are
“our simulation results against union bounds computed from (3.3) and (3.5) using the

information in Table 5.2.

B. 4IS Simulation:

The nnportance samphng simulation algorrthm we propose for thls code is e re-
fined version of that for the convolutional code, We will estimate the expected specrﬁc
error probablhty P(e) [P(X + elX)] in (5 11) and (5 12) for only a few number
of “Jmportant’ error 'sequences e, assuming their existence and the resultmg trunca—
tion bias is msrgmﬁca,nt ata moderate to- high SNR We w1ll see from the followmg'
dlscussmn and’ verlfy through 51mulat10n results that thrs assumptron generally holds
in the case of the AWGN channel When there are too many e’s to be consxdered
the above techmque becomes very inefficient. This is the case when we consrder the.
satellite channel transmrssron in the next chapter. There, a ‘similar but more sophis-
ticated el'gorithrrr"and its rigorous r‘easoning"wiﬂ be presented. In this secti‘o'ri' our .
estimator for P, is thus still a specialized form of (5. 15) in the sense that we don t
jointly sample x and e in each simulation run.

~ The major drfference between the simulation of a TCM code and a convo‘l‘utiohal"
code is that we cannot a,ssurlle the all 0 sequence is the transmitted signal selector
- sequence. Also, there will be more e’s needed to be included in.the summations of
(5.11) and (5.12) beceruse of the dense diste,nce spectrum. More speciﬁcelly, since
E[P(X + e|X)] = Y (x + e[x)Px(x) we will have to estimate P(x + e[x) and
average over all x. To do this efficiently, note that P(e) E[X, Y] and hence we can
employ the condrtronal importance sa.mphng techmque of Section 4 3 with a signal
biasing Px(x) Followrng the discussion in Section 4. 3 the conditional IS estimator

for |

P(e) = 3 Plx + el ’;zg;

P (x)




L ’thus becomes c

=% (x< ) Y‘f’) - (Y“’IX“’) wx(X“’) G

‘where we have let Ly 1 because per sample costs for the same length X and

. ,‘ ‘i Y are approxunately equal and wyp{(ylx) fY|x(yIX)/fY|x(y|x) a.nd wx(x) =
Px( ) / Px(x) are IS welghtmg functions for the n01se and S1gna1 respectlvely I‘he .
“ lvarlance of (5 25) can’ be estlmated by 52( )/Lx where Sz(e) is

Sz(e ;_;_ E 1{ ) (X() Y(‘)) wY|X (y(e)Ixu)) (X(l))_P(e)2(526)

‘VFl_nally,‘the estlmator for,Pb is
e B om@Pe. e
. : ed.,,(e) d,,ec » T L R
- and the Variancei’:o‘f .;Pb, is estlmated as

: l 1 dmaz R ,\ G ¢ ‘if'
ez 3 COGCTNE
S eidi(€)=dyree o R O T R
' :Another 1ssue is how do we ldentlfy those e’s w1th 31gn1ﬁcant values of P(e) zthd‘
v:estlmate for as’ many of them as possﬂ)le Equatlon (5 27) md)cates that we sum over
those e w1th worst case dlstances < dmax and we also propose to: let the number‘:o‘f :
fs1mu1at10n runs for each e, L x, be a funct1on of e whxch decreases as P(e) decrectse, _

C We will explam these later F irst. though let us con31der the deS1gn of the signal -
' blasmg Px(x) | o ' o

1. The signal biasing P(x):

In the followmg dlscuss1on eisa fixed 51gnal selector error sequence Consu:feri'
the. expected specrﬁc error probablhty P(e) E[P(X + e[X)] where the expectatlvo"n_
- s with respect to the random 31gnal selector sequence X Recall that ng(e) is 1he :
e ,“»t»‘number of: appearances of ek,k = 1 K(e) such that k € 8 = {011 111} (More o

: 'generally, for a qua51 regular code 5 xs the set of 31gnal selector errors whose dlstarlce b o




1l

vpolyn'omials are riot monornials.) It is easy to show that there are ne(e) + 1 possible

distances a.ssoc1ated with e. The smallest or‘the worst-case diétance is d( ) =

" miny d(x x + e) If we denote the worst -case distance.as do and the next sma]lest

. distance dy, and so on. " “We find that
S @=eE@+iG-8, 6w
for i = 0,.. B ., ne(e), where 62 = 3.4142 and 52 — 0.5858 for“ar normah?ed slgnel |
: constellatlon of Figure 3.5. Then we can express P( ) i
e = §P<xi+ 'e|;c)P>g(x) .
e

-3 ¥ B(x+:e,|x)eg<x>’

d=do x:d(x+€)=d =

< | zsng(e) ne(e) ) (%0 w(e)) ( ‘ e( ) ) ( -
E {(ne(e) - 2 ne(e) =1 ) I
. ( nele) ) oz )} el  , R B
| 0 : .“0 ) S S .

where Q(d /20) is the union. bound for P(x + e|x) on the AWGN channel glven
- d(x X + e)= d;. For exarnple, suppose that Tlg(&) = 2 then 1

P(e)——cz(——)+ Q(—-)+ eE _(‘;.31)

" For all practlca] operatmg SNR’s we find that the ﬁrst term of the surnmatioh m
'(5 30) or (5.31) is more Sngﬁcant than all other terms in spite of its small propor— ’
tionality 2-7¢(®), That i is, for 1 > 1, we have | o

 Q(do/20)
Qdi Q(dif20)

| :7 However 1f the dlstrlbutlon of the random 31gnal selector sequence X is’ not blased

~ ‘d exp( 28284z)>>1 e S F'(5.32)

: only a small portlon 2“"5 (e) of the sampled X w1ll result in th1s worst case dlstance :

error event. As ng(e) 1ncreases, this percentage decreases exponentlally Therefore r



-“._V;,‘sampled more often

o . f,.,f, ing any encoder state the probablhty of enterlng elther one of the 2 posslble succe
S states pyis the same ie., p - 9-b, Hence Px(x) = 2'“(8) isa umformly dlstrlbut

o i'In our 8 PSK example 1f ek € 5 the 1nformat10n process w1ll walk 1nto a succe

o 'l'probablhty 1 /2 (2b =1 transrtlons for each case th1s 1nformat10n s pmV1ded by

L --tance polynormals) We

S :d(x x+e’)

in order to focus our computatxonal resource on the ﬁrst few (1mportant) term

_5'.'30) in partlcular the worst case dlstance term, we Want to blas Px(x) in s

a way that 51gnal selector sequences for Wthh the dlstance d(x x+ e) is. small

a1 'd"later properly welght the result

The true 1nformat n pr ",ess 1s a random walk through the trelhs dlagram Leav—’

- ! of those 1mportant xk :hlch result 1n bo mstead of 52 Our strategy is to change

o »random walk parameter P That 1s, W1th probablht O

’Wlll generate a code:syrnbol xk such ‘that" d(:ck,/:z:k' -

L _frq = 1 = p choosmg the greater (less favorable) dlsta i ce: 62

To ﬁnd an approprlate p , recall that P(e) ;

would hke to have the probablhty of choosmg X proportlonal to ‘1ts 1mportance; BEROAS =

because Px(x)‘— 2 be(e), 1sa .

o That is, Px(x) ocd .P ‘ + e|e)2 be) o P(x + el

,,,(e)

s of

are

ssor

lOIl

i ."7';“state Wthh produces a code symbol :r:k such that d(xk,:ck 4 ek) 50 or 52 w1th equalf».f o =

w1sh to “trlck” the 1nformat10n process 1nto generatmg more; -

tte,, .

ExP(x+elx)PX(X) bk ol

we .

9

s »Jconstant for a ﬁxed e Now conSJder two srgnal selector sequences x and x such that"‘f. . AR

do and d(x x+e) = d;: That 1s the random walk of x and that |

- of x drﬂ"er only in one chorce in Wthh p'd produces 50 whlle % results 1n 62 Therefcire:,-' o

( )e(e) =y ‘q'* L
Q(do/2a) g exp( 2 (e) /80" )
(d1/2cr) exp( d2/802) S

= exp( 52/80'2)
_ v,e’FP( ‘ 52‘,/8'.(7..2:),»’“ ‘

%-}3.355““‘; :

'5 29) that cl2 d2 (e) + (62 - 62) Therefore we get 1 '

uch Tl

Ssor .



= p ;%f:cz >i‘ =“2-” S o (5:34)

‘ Whic'h‘satisﬁes the'conditlon 2b-1p* 4 2b-1g7 = 1: Wenote tha,t p* is 4 function of 650_,‘7 '.
8, and the SNR Had we used the tighter upper bound Q(a) =/27a exp('—a?/fz),
p* would har(e been also dependent on the 'worst—ca,se distance dw(e).': But for all
practical SNR’s We find that the difference is*negli‘gihle because of the dominance of

: the exponentlal factor in (5.34). Therefore in the s1mulatlon we use the same random

walk parameter p* for all error sequences € in- conslderatlon : |

In: surnmary, the quasi-regularity of the code allows us to do the signal blasmg

on the per: ‘branch basm The biased probablhty mass functlon of the random s1gna1
~selector sequence X'is hence a product, form Py (x) = e(e) ka (a:k) where P, (x) is
| PP, e
COP@) =4 ex € £, d(zi, 24 + e)=68 -  (5.35)

| ¢, acbdmmte)=6h
" The IS Weight’ in the fth run ,wx(X(e)) is simply -

PX(X(‘)) Q-bnefe) .
Py (X(‘)) (r* )"f‘e)“(q)

(X"’)

1f in 7 out of ng(e) dec181ons an xj is chosen such that d(wk,xk + ek) = 52 (whrch
results in d(x,x + e) d;). For non- quasr -regular codes ‘whose distance polynornlals
are also functlons of the originating palr of states (see (3 7)) the 81gna1 blasmg w111

~ also have to depend on the encoder state.

2. Let the number of »sir_nula,tion runsifor e, vL X, be a function of dw(e) .

It can be seen from (5. 30) and (5.32) that the value of P(e) is generally doml- S
nated by the worst-case distance term 2“""5(9)P(x + e|x) given d(x,x + e) (e). |
Therefore, the nnportance "of e ca,n‘be roughly measured by: its worst-case distance
dy(e) (or more preCisely by the factor 2“b"f-(e)‘P(x + e|x)) It is then just naturatl '
that we should devote most of the ‘co‘mputation‘ '_t'o,the'estim@tion of P(x + e|x) for

those e’s with small worst-'c._":tse distances so that they have smaller relati_‘\'feprecisions. :



On the other hand a smaller value of L X can be ass1gned to error sequences e wrth
S f;‘relatlvely large da (e) a | ‘ |
' Let L X(e) be the number of srmulatlon runs ass1gned to the error sequence_;-e:.: -

g In partlcular L X (e 1) is the preset number of runs for ef, where ef denotes some

'error sequence e whose worst case distance is the free drstance d f,--"’ 'Our objective

: '1s to desrgn Lx(e) to- be decreasmg from the peak value Lx(ef) wrth respect to: the o

.mcreased d, (e) Suppose that for all e a fixed varlance for the estlmator P*(e) 1s' N
des1red For example we choose the variance of the estlmator for e f, v_ar [P“‘(e f)]

(Note that the re]atlve precrsron ‘will increase wrth the decreased P*(e), meanipg '

a poorer accuracy) We next approx1mate var [P"(e)] by

e )(P(e) P(e)) ()Pu

where the upper bound recall from (2. 3) 1s the Varlance for the Monte Carlo eStlfha; ,77'

va“r“‘{P"( )] < 5 (536)

o tor, and the last approx1mat10n holds if P(e) >> Pz(e) Whlch T:"‘generally t' e e |

Furthermore, we approxrmate P(e) by Q( w(e) / 20‘) Then 1t is found that

,(' S Lae)~ Ix(ey); u{ge)‘ ( (d (e) )) (537)

‘v:‘“whlch drops exponentlally fast relatlve to the 1ncreased worst'c _e dlstance d (e)».' v

It is noted: that (5 36) is the worst case approx1mat10n Wlth the optlmal meanf-' o

translatlon blasmg for Gauss1an noise samples the estrmator 'va"'ance'actually ‘can

be approxrmated by (1 /Lx (e))Pz(e) (Recall from Chapter 4 that the variance of -

i the optrmal estlmator decreases as fast as Pz(e) ) Therefore the actual number of
) srmulatlon runs requlred fore, e # ey is less than that computed by (5 37) We rem ark

jﬁ that thls techmque can be also used in the previous convolut10na1 code example and

', ”-v"'"f-'d (e) for all x; 1;e;;'

o fact more accurately For convolutlonal codes d(x x + e)
"(5 30) cons1sts of only one term ‘ | |
Fmally, glven x and e, the Gaussian noise blasmg is exactly the sarne as that
;_‘for the convolutlonal code except now the srgnal set is 8 PSK The dormnat ng
pomt obtamed in- (5 24) stlll ‘holds here because we d1d not requlre x to be 0i 1n the B

:denvatlon Therefore we have as before
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’ 3. ol
x,=0
o = true mean -
5° T simulation
© L. ‘mean

/ X+ €,=6
dcc1smn region
for ,cod,e symbol=6

Figure 5.8 An'eXamp]e of the optimal mean'jtfariSIat'ion for 8-PSK.

s+v=,1(s+’,§)

’where s and § are samples of channel symbol sequences representmg X and X + e

T

respectlvely The channel noise 51mulatlon den31ty is

fY|ex(Y|e X) H fY”chxk(yk'ek,xk)nyle zk(yk lek,rk) v S
‘ Where TM is the random s1mulatlon length and |

. 4* - RPN T N (05*( ((Ek+6k) ——S(:L‘k) ) ), ek"#o;
fYkIlek',xk(ykle’Hwk) =3 S :

’ N(0,0?), e o ek=0,

o o | N0 s(ack-}-ek)Q——s(xk) 2 e #0;

‘fyﬂQlek xk(yl?lek,xk) : ( ( » ) : ) S :
R N(Oa) . T ek'::(_),

An example is glven in Flgure 5.8 where the s1gnal selector is z; = 0= (0 0 0)

and e, =6 = (1, 1,0) Agam the s1mulat10n mean of Yk is located at the mldpomt

between the two signal points representing z; and. Tk + €. Note that the adm1s31ble
51gna,l selectors leavmg any “decoder state are elther the set, {0, 2 4,6} or the set

{1, 3, 5 7} Therefore with hlgh probability, the Vlterbl decoder w1ll choose between

Z) or zx + e, even the blased mean seems to fall into other decision. reglons It can

“also be’ predlcted that approx1mately 50% of the decoded error events w111 be tr1v1al '



| _;The' sirnulation _algorithm can be describ’ed»a‘s follows. b'

o ~'_ Q'uasi-:Regular;,TCM Co.dejs IS Simuiat:ion ‘Algorivthm:

e Input: Convolutlonal encoder conﬁguratlon, s1gnal mappmg functlon SNR,;

number of. srmulated error: sequences and L X (e f)

° Output P*(e) for all simulated e percentages of trivial a.nd desrred error events, |

P* Pb : their relatlve prec1s1ons and CPU time. -
e Method:

1. ,Construct"tables containing trellis diagram information. -

2. Compute noise'variance, random walk pare’meter p* .
3. Read error sequence e, length {(e), weight nb(e) and worst- Cdse di-stence::' 5

vd (e ) from the data file obtamed from the RC Algorlthm If all e s have

L , ‘-bbeen s1mulated go to 8.
4 'Compute Lx(e) Put = 0'

B, _E =y + 1. If 14 > Lx(e) go to 3. Select a random 1n1t1a1 state and correct o

"path X. Compute the s1gnal blasmg welght wx(x)

- 6. dCompute recelved data Inltlahze the Vlterbl decoder

ST »Compute recelved data Perform the Vlterb1 decoder error event simula-
: tlon When an error event is decoded update s1mu1at10n data accuanl_a:_-

'tors then go to 5

8. Output 51mulatlon results.

A more detalled s1mulatron program flow chart especmlly on the pa,rt of the Vlte rbf:

Algorlthm is glven in Appendlx B Flgure 7.

.‘H
e :

A sample srmulatlon output of the above algorlthm is glven in Appendlx B Tablq_
Estrmates P" and Pb for varlous SNRs are showrr in Fxgure 5. 9 and Flgure 5.11_0 - |
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Figure 5.9 P, for »the 16-state, B = 2/3, djree = 2.27 TCM code.
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 Figure 5.10 Py for the 16-state, R =2/3, djree = 2.27 TCM code.
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- Table 5.3° Average CPU time required per SNR for TCM simulations. =

# of e | CPU (Gould 9080) | CPU (Sun 3/50) ||

6 | Tmin 118 min.
18 | 11 min O 18lmin |

64 | 23min | 303 min

I;especti{rely. In all svirnulabutionvs,v Lx(es) = 1500 and ¢ <10%. We have also preseﬁ
the minimum number of simulation runs for any e to be 200 to ensure the reliability
of estimatés. We can ;é,ee, that our I‘Si estimates agree with the union bounds at
‘moderate-to-high SNR’s.. Table 5.3 lists average CPU it‘ir‘nes‘ réquired to estimate a
pair of P, and P, on a Gould PN9080 and a SUN 3/50 (\;vithv_4MB m‘e‘mory)‘for various
- numbers of errbr sequences e. In partiéular, for Pb én the ordér of 10¢, it takes CPU
~ time 400 seconds and 115 minutes for Gould PN9080 ‘and SUN; 3/50 respe‘ctively..
These CPU times are very close to thé avcféges. Thisbis expected because the IS"
computétional cost is theoretically independent of the P, being estimated. In cOntr#st,
the computational cost for the Monte Carlo esti>rnatvor is inversely proportional to the

true value.
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6. SIMULATIONS FOR THE SATELLITE CHANNEL

6.1 ‘The Complexity ;vin the Satellite Channel Simulation-

Slmulatlons for a satelhte channel such as that descnbed 1n Flgure 3.7 is more ‘. .
comphcated than for the ideal linear memoryless channel Flrst of all there are two
noise processes usually having different signal-to-noise ratios. The uphnk noise Y ( )
is passed through the satellite nonlinear TWTA while the downlink t noise Yd(t) is not
Hence the contrlbutlon from Ya(t) to the receiver dec131on statlstlc is a linear fUHCtIOIl
of Yd(t) Secondly, we need many samples per s1gnahng 1nterval T for both the s1gnal ‘ B
and the (uplirik) noise to model the nonlinear TWTA. As far as the Monte- Carlo.
simulatiyon is con‘cerned these are the major 'diﬂ"erences between the satellite ch‘annel"
SJmulatlon and the ideal channel simulation. For an effic1ent 1mportance samplmg{
smmlatlon which is strongly system-dependent, there are more.’

Two problems needed to be addressed before we can 1mplement'an. efﬁ'c_‘i_e’nt im-
‘porta'nc_e sampling simulationi such as what we have done for ideal linear memoryless.
channels (the AWGN channel and the BSC) in Section 5.3. As is clear from the dis-
cussion so far, the efficiency of our importance sampling algorithm is obtained byj‘the'
optimal Gaus31an mean- translatlon biasing for the channel noise and the s1gnal bla.s-
ing for the distribution of ISI patterns in the uncoded system case or the dlStl’]buthl’l
of random signal selector sequences in the trellis-coded system case. For trellis code
simulations, we can also utilize the code distance spectrum information to,emphasize
those»"‘impoftaht7”. signal selector sequences e, i.e., those with a high'evx‘pected speciﬁc
error probability .P(e) = E[P(X + ¢[X)]. Therefore, a question arises naturally here

is “How do we find the optimal Gaussian mean-translation »bi'atsing and an efficient



""'test b1t X is the IST pattern and the 1nd1cator functlon takes on the value 1if

R vlnputs Y. In fact the two examples in Sect1on 5 3 are- llnear systems wrth me

: sxgnal b1as1ng schcme for the satellite channel srmulatlon"” Also for trellls code,s',ﬂ_‘_

how the drstance property can be used to. facrhtate the s1mulat10n?

Flrst we consrder the srgnal biasing. For uncoded systems 1mportant ISI pattern_s )

P (those that are more hkely to cause a test bit error) can be found analytlcally if

the

Co channel is lmear and the memory length is short In the satelllte channel s1mulation, o

' the channel is nonhnear and the channel memory length is usually long Therefore,-'-

probabrlltles, E[ls(¢ (X Y))IX Xo = mo], in (5. 9), where Xo = z0 represents

IS palr (X Y) results 1n a test bit error and 0 otherw1se We w1ll demonstrate

B approach in the next sectlon when we consrder an MSK modulatlon example

quas1 regular trellls codes recall that we used the quas1 regularlty of the code and '

- we must find an efﬁcrent way to 1dent1fy 1mportant ISI patterns and plan the s1gnal

40 brasmg accordmg to thelr 1mportance, more spec1ﬁcally, thelr condltlonal blt error

the
our

Fo_rf' '

T Gaus31an Q functlon approxrmatron to- des1gn the srgnal brasmg Px(x) (see (53 )=

(5 34)) and to decrde on the 1mportant e’s Wthh should be estlmated w1th sI

relatlve prec131ons (see (5 37)) Note that the GauSSIan Q functlon Q(d/2cr)

unjon bound- for P(x + elx), glven d(x X+ e) = d wh1ch is accurate only for _

‘ vAWGN channel at a large SNR In Sectlon 6 3 the same TCM code operatlng on
g satelhte channel wrll be studled We W1ll show our samplmg scheme for e and X

-Justlfy the techmque by s1mulat10n data

Next We consrder the optlmal Gaussran mean- translatlon blasmg for nonlm'

' channels w1th memory Memory is really not the part that causes problem becar se’ |

we already know how to deal w1th llnear systems W1th memory The analys1<

'1n['

: .-Chapter 4 d1d not place a llrnlt on the dlmen51on of the srgnal 1nputs x or the noise

‘where the memory results from the channel encodlng rather than from the ISI
: matter where the memory comes from, as long as the dec1510n statlstlc D can

expressed as an aﬂine functlon in the noise vector Y the dommatmg pomt 1s w

»’rl."SvShOWIl in (524) For nonlmear systems our derlvatlons 1n Chapter 4 stlll hold.

oty

S

the ,

"Nb..;' | .‘
be i



is Just that the. system response functlon €(x, Y) is a nonlmear (and not an afﬁne)»
: functlon inY. However NOW the challenge is to. ﬁnd the dommatmg po1nt Note"
that for moderately nonhnear systems we. Wlll assume the ex1stence of a unrque
dornmatmg point. |

It is dlfﬁcult to find the dommatlng pomt analytlcally for nonhnear systems In—’

vstead we can solve the: orlgmal mmlmlzatlon problem (see Example 4. 1)

min [[yl2, SRR R
Ayl B o

subJect to f(x y)= 0. T

H for the domlnatlng pomt numer1cally However (6 1) needs to be modlﬁed for our‘

: satelhte channel model Wthh has two noise sources Recall in the d1scuss1on of Sec-

thIl 4. 1 the covarlance matrlx of the random norse vector Y is C = 021 and we showed ‘

that the deCIS]OIl error probablhty P. (Y €E) decays w1th an exponent1a1 rate ||vl|2/ 2, | o

_ where Vs the dommatmg point, because the J01nt probablhty densrty functlon of Y
‘, ,'1s fy(y) x exp(—“y|[2/202) ‘Now we have two noise processes Suppose that ‘the
complex baseband samples of the uplmk noise process Y. (1), Y, u,,z =10 N, are
id. d complex Gauss1an random variables with zero mean and varlance o2 in each
v d1mens1on Slmrlarly, Yd,,z =1,...,n4q, denote samples of the downhnk no1se Y:i(t){
W1th a common variance 02 in each dlmensmn Let Y, (Yu, 1 and Yd = (YQ,
be the uphnkvand downhnk noise vectors respectlvely. Then Y = [Yt Y‘] is an
. n =n, + ng dimensional z'ero mean complex Gaussian random vector ‘ The covar1-
ance matrix of Y, C,is an nxn diagonal matrix whose Ty upper left dlagonals
components are 20 and the lower right n4 components are 2ad Therefore we have'
| fy(y) - exp( y”C 1y/2) Consequently, what should be mlmmlzed in the mini-
",mlzatlon problem of (6 1) 1nstead of |ly||?, is ' B o “

R SN HyuIP ||ydl|2 S P e
.,2Vy,- y 4,( az'f o1 ST T (62)

Equatlon (6 2) 18 called the large deV1at10ns rate functlon by Sadowsky and Bucklew" -

Cin [49]. Tt is also noted that it would make no dlfference to the mlnlmlzatlon problemd




_if we consider Y as a 2n-dimensional real vector, which we will do in the following

d1scussrons unless otherwrse stated

Since the downlmk n01se 1s processed only by. lmear dev1ces before ‘arriving at

s dec1sxon dev1ce the contrlbutlon to the deasxon statlstlc from the dOWIlllIlk nois

a lmear functlon of Yd Therefore we can write the decmon statlstlc D as

»D=£(Y)-—~‘¢(Yu)‘+a’»Yd,~ - (6.3)
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the.

w0

is

‘where z/; R2"“ — Risa nonllnear function in Y and the 2n4- dlmenswnal vector a .

summarlzes  the linear operatlon on Y. To avoid confusmn in notatlons when taking

' de.‘rlvatrvesv ‘we have dropped the ‘dependency of the system response functlon on
31gnal inputs x. because at thls level of the 31mulat10n X 15 a constant vector Then
~dom1nat1ng pomt v = [v A%, if it exists, is the solution to the followmg constran

' mrnlmlzatlon problem »
min ||yu|| (o2 +lyal*/o?
S (ye) +aya=0

Applymg the Lagrange method to the above optlmlzatlon problem the domlnat

pornt Vis found to satrsfy

vy = Aol v«/f(vu) | | |
d = /\ada v S - AR . . (6
(vu)+avd—0

where )\ is the Lagrange multrpher and v denotes the vector gradlent To solve (?5) '

G

6.5)

the
the

ned

ing

numerrcally, the Newton s method can be used which is easy to lmplement and has a

second order convergence rate The method can be_descrlbed as ~follows. We defin

' ,(2n+ 1) d1mens1onal vector z = vi,vi, At and a vector functionG : R?H1 _, R
" Aa vzb(vu) “Va |
G(z): ‘ Aada - V4

P(vy) +atvy

€ a

+1,
b



a2

Then the Newton’s method which solves G(z) = 0 by numerical‘i‘terations can be
expressed as ‘ »

fog. 17! ,
Ty = B = [g(zk)] Gla).

One disadvantage of this method is that it requires the computation-ofvzd)(vuv;k)r: .
'and‘ the inversion of a high dimensional, non—diagonal matrlx '6G/?_6z. Both can be
done but are computatronally costly. ' | | |
| A modlﬁed Newton s method will be used thch does not requlre the mverse
matrix. or the knowledge of szp( ). We can fix VQ/)Vu)ln the:ﬁrst_,equatl__on_of: (65)

an_d solve for A ﬁrst. Thus we have
POdvea) anfllt=0. 6

| vApplylng the Newton s method to the last equatlon we get . k' '
¥ (e0? 7 ¥(vas) + Mecflal?

ST T alv e e v v P+ odllal?
v,;,k}l | 52, )\k+10 V¢(Vu k) ' , " L | T " v (6.8)
A',Vd,bkﬂ o= ‘/_\k+'10,1a« S R v, . :, (69) :

One reﬁnement of the above method is to run many 1terat10ns on (6 7) to obtam Akt1-
A convergence is sa1d to have reached i | Vit —vk” is less than some preset value,
Whlch we set to be 0 01||ka in the simulation program. Two 1n1t1al values are needed
for the above 1teratron method Vu,0 and Ao. We will set Vuo = ¢o(s s), where qSO is an’
-input parameter and Ao = —(vup)/(ol|a]|?). The parameter $o = 1/2 corresponds
‘ to the linear system solutron_(5.24). Dependmg on the ¢ 1mportance ratio” i _between
the uplink noise and the downlink noise and the severitv 'of nonlinearity, the optimal
value of ¢y can be determined ekperimentally at the_heginning of the simulation.
; G‘enerally, if 0'2 >>d§,that is, the uplink is noisier than"-the downlink' 'then‘ intuitively
the uplink 1 noise is the “important” noise (whlch has a greater 1rnpact on the dec1sron
: statlstlc) and we should bias the uplink noise more than the downhnk noise, and |

- vice versa A good ch01ce of the initial value will speed up the convergence of the




fae :“vv'f';.can apprOX1mate the system by a lmear system of the form D = a + bty ) and

o ne cessary for a convergence In contrast if the channel is: hnear, the dormna

j-f-event More w1ll be sald about thlS in followmg sectxons an e

,".‘,1terat10n The va]ue of /\o 1s snnply the SO]Utlon to. (6 6) Wlth Vu = ’V"O (Or:

ji:_On the dommatmg po t"" other tha.n the dlmensron n. For a rlarge 1, the modr"

solutlon is: )\ = 2a/ ”17”2 ) I the s}’stem is hlghly nonhnear, rnany 1teratlons wﬂl bé ‘-

tln‘g’-l ,

' o co ation a | this.
""'h‘»*The notatlons s and s‘ a,s in Chapter 5 denote the 81gnal vectors whlch are sa;mpledif ;

'f?_i;:".»;va,lues of s(x) and s(x + e) ie., the channel symbol sequences representmg X 'a;nd»' |

x + e respeCtlvely For uncoded systems, we can v1ew x + e as a one-branch» rror . L

It ls therefore obv1ous that whether or not the channel has memory has no eﬁ'ect .

ing-.ﬁ :

plifier
the ‘
h_le;

tors"‘ o




6’.‘24.1  Construction of the FD’iscrete IS Simulation-Model

The unﬁltered transrmtted srgnal at the satelhte transponder 1nput is of the fol o

lowmg form “
s(t) = 51(t) cos(2r f.t) = sQ(t) sin(?érfc»t)

where fc is the carrier frequency of the bandpass signal, and s ( ) and s ( v‘)ﬂare the
mforrnat]on bearmg lowpass quadrature 51gnals Let the mgnallng pulse be p( )
Asm(7rt/T) for 0 < t < T and p(t) = 0 for t < 0 and t > T, where T = 2Tb is
| called ‘the symbol (s1gnallng) 1nterval and 1 /Tb is the mformatlon b1t rate Then :
(t) = Zk ka(t ~ kT) and SQ(t) = ZkX (t - kT + T/2) where' Xk = :l:l and
Xk :l:l are 1.. d. with values +1 and —1 belng equally hkely as determmed by
| the 1nformatlon bits. An MSK signal is equivalent to two BPSK srgnals rnodulated'
in quadrature with half—sme pulse waveforms and with the Q- channel signal bemg N
.staggered by T/2. The average power of an MSK srgnal is A? /2.

We will employ. the event 31mulat10n method for uncoded systerns as descrlbed '

in Section 5.1 which cons1ders the specific event of a bit error. For example, we

choose the 0’th inphase bit as our test bit. By the symmetry of the channel,v we
can set XI = ‘-4‘1 which we take to correspond to a bit value 0. Let D denote the

demodulator output which is the decision statistic for the test-bit. “That is, the

decision dev1ce performs a threshold test D 2 0 and decides on 1 if D=0 and 0. 1f; N

D < 0. Hence, the decision error event is {D > 0} and the bit error probablhty can
be expressed as Py = P(D > 0). , : _ |

* In order to apply the techniques developed in Chapter 4 and Sectlon 5.1, we need'
| to first derive a discrete-time model of the form D = = ¢ (X,Y) where X is a random
ISI pattern and Y is a finite dimensional vector vwhi}ch models the Gaussian noise
1nputs | |

Flgure 6.1 showsa complex baseband equ1valent rnodel of Flgure 3.7 and notations

L | for mgnals and ﬁlters Wl’l]Cll we will use throughout th1s chapter Y/(t) and YQ( ) are

“the 1nphase (I-channel) and quadrature (Q- channel) lowpass components respectlvely '



3f) and H4(f) for the 31gna1 plus ﬁp i »-
', enotes the convolutlon of h3(t) and h4(t) Fo ‘notatior

L ;'fvanaﬁcé 0"2' Slrmla,rly, {Y; k'}k’ and {Yd kl}kl are sample’s f Y:i (t)

COII'llTlOIl varlance 0’ d

i1 ,aﬁd SN

‘Tésponse ©

“:',,’: |= h4 L ’

"t"‘ice-,: S

espectlvely They are 1 i. d zero mea” Gauss1an random varlables Wlth L

engted
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Figure 6.2 s'(t), s9(t) and sampl"i‘ng@vindices.;‘ ’

Suppose that fhe decisiofi s.tatistic D is the sa,rri‘pléd‘\'}alué ét “til‘he t = VtD of
themphase de“rrito"‘dfullélto.r output r!(t), which cOrfesp(;nds‘ to thé Ix”th'éamplé'oh the
| sampl_ingj a)‘(i's.i Recall from"Chapter 3 that we have assumed aiI,ﬁiferS have ﬁnlte
discrete impulse response functions. Let hy; = ha(iN),my <'i S"'m;,‘ahd’hé;ib =0
for ¢ < mg or i >mj. I the filter is causal, we have m; > 0. ‘,HQWe.ve,r,_ as mentibned
in Chapter 3,we éah use noncausal filters without loss of generali\vtyi; Atlme delay '
' ‘: Cén Be a,dded ‘to the r‘received waveform if we have ,causél‘ filters. It 1s n;)t feqﬁired.
~that the filter is symri‘letric about ¢ = 0, hence, we can have m; # —mj.:-Si}nilal'ly,‘
- h4;;~ # 0 for»’,"mz < i <mf, aﬁd has; # 0 when m; 75‘ z gi mgt",., If a]llﬁlters a_ré |
noﬁcausai, syfhme_tric and i;he channel is linear, the optifhal sampli;ig time wc_;u’ld,b:e_
tp =T/2 or _equivalen‘tly K = N,/2. Iﬁ the fdllowingidisgﬂssioh and the simulaf’ion
. program, we will consider the .general case and let K _be aﬁ input parameter. Or, '_
- with little mOdiﬁcafion;v't‘herprogra,m can search for theviéptima]‘ samplmg timé within

a signaling interval which is a common practice in satellite simulations. .. .
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We are Now. ready to ﬁnd the signal vector X and the noise vector Y in the

.'-‘statlstrc D=r (tD)f‘— 7'1\ depends on the h4(t) filtered downhnk noise process and_

.,expressron Dv = §(X Y). See the signal flow dlagram in- Flgure 6.3.. The dec1s1on o "'_"

' the h34(t) ﬁltered TWTA outputs That is, the contrlbutlon to D from the downlink -

noise samples {Y:i k’}k’ and. {Y:, k,}k: 18

+

'mA—A Z de :hu _ dK hm

z._m4

v The abOVe dlsplay is snnply a d1screte approxrmatlon of the real part of the complex

' :convolutlon

| (’(i)+1w <t>) (hl(t)"l’JhQ(t))

(‘ ()*h (i) :cQ(t)*hQ( )) ( I(t)*hQ(tHxQ(t)*h (t)) | (6.10) |

- Therefore the downhnk noise samples that are relevant to the decrslon are Yd ¥ K -
+ < % < K m4 Thrs is 1llustrated in the lower part of Frgure 6 3. Slmllarly,
( R : the dec1s1on statlstlc depends on the TWTA output complex samples S, K — m34 < |
| ‘k’ < K m34 The TWTA is memoryless i.e. zk: 1s a funct1on of the input af the‘ :
same 1nstance zk: only The 1nput sample Zp is in turn’ the output of hg(t) filtered
' ’transmrtted s1gnal and uphnk noise samples Hence each Zpy K — m34 <k < K —~mM3ay,
| depends on srgnal samples s; and uplink noise samples Y., for k’ < i< k— m;. )
Consequently, the relevant transmitted signal and uphnk noise samples are sk: and '
| ._} Yu,k,,‘I‘x - m§'4 -mjf <k < K- Mgy = my, respectrvely |

Therefore if wé define the uplink noise vector
y ..,(yfk,,yu o) K-mimmi <k 'gr](j;m;,—a}n; (611)

v ;nd the downlrnk noise vector | o ] S
Y= (Ydl,k',’,}.,ko’)’ K~mis'k’slfem:;id.tf» . Y

‘ v'_then the noise vector Y in the decrslon statistic expressron D= {(X Y)isY =
L [YfL,Yfi] . On the other hand ‘the transmltted signal samples which have impacts’







on D are sampled values of the transmltted waveforms s (t) = Z:k ka(t - kT) and
i sQ( )= Zk Xk p(t — kT + T/2) for some k. It then is found that the 1nformat10n blts e

o ‘whxch need to be conmdered in the event Slmlﬂatlon are -

m34+m2 K |m34+m2| N +K . | o
—————| <k < G (648
® (X") t N t i t Foeaa

and

e oy [kttt

o Hence the s1gnal vector is X [(XI)t XQ) ] For example 1fN = 16 K =8, m; = _
m34 = 31 and m; = m34 = ~32 ‘then we have X [XI4; X,,I,X_3,‘ Xf] and :
R recall that XIV.-— ~1is ﬁxed ' ’ ‘
Now we: have the deasnon stat1st1c of the form D = {(X Y) and we know pre—‘

C1sely what X and Y are. The event s1mulat10n method Wthh we. has developecl;in

,,Sectlon 5. 1 states that to estlmate |
A= .‘P(Diz 0)_£E[1E ‘(5(‘X;Y))- IZXZJ"# éof]*,
. ; [E[IE g(x Y)) |x XI -a:o]] i '.___.(6.15).
| ;the estlmator is | ey R T '

v P* : T Z wX|X' (X( )|$o) yb N

T

{ Z 1 E( X(‘) Y(f c'))) “"YlX,Xgﬂ(Y'(”?') lvx,(f),x'xlo)} , _(6. 6)
8’_ . - .
':where :1:0 = ,-—1 and E e {(x y) £(x,y) > 0} is the error set whxch although the

: nota,tlon does not show 1s a functlon of X.

‘ The SImulatlon program thus is executed m a double do loop structure F1]r.st'
owe select an ISI pattern x accordmg to the blased s1gnal probablhty mass functlon o o
| .{% PXIX;(xla:O) We then have ‘the same format D f(Y) ¢(Y ) + atYd as 1n (6 3)
e ‘,.of Sectlon 61 Therefore ‘a dommatmg pomt can- be computed by the modlﬁed -

‘Newton s method descrlbed in that section. For th1s ISI pattern and 1ts dommatinv'g"’




,”pomt Ly sarnples of the random n01se vector Y Wlll be taken from the optlmally » :', :

vaean translated Gaus31an srmulatlon d1str1butlon as represented by the Jomt den- o

. s1ty functlon lex X,(y|x xo) qu|xx1(yulx xo)delx X,(yd]x a:o) The s1gna1 and '

»n01se samples are then passed through the channel and a threshold test is: carr1ed S

g out at the dernodulator sampler output to see 1f the event of a test blt error has)‘

f»‘occurred If yes the 1nd1cator functlon in (6 16) reglsters a one and Welghts it by e

" the 1mportance sarnphng welght product wx| x1 (x( )Ixo) wy,x X; (y(e ) |x(‘) fvo) for I

the Z th sarnple of X and (E " )’th sarnple of Y Note that We need to compute the" .

LIS welght wx|xg (x( )Ixo) only once for each sample of X 1n Ly runs, Another ISL: i

‘»pattern then 18 chosen and the- above procedures repeated untll the relatlve preCJSlon ;

of the blt error estlmate falls below some pre determmed value Wl’l]Ch we set to be:‘f -

' .‘10% We next demonstrate techmques in ﬁndmg the dommatmg pomt and the des1gn -

: of an. eﬂicrent s1gnal b1as1ng scheme

» 6. 2 2 Fmdmg the Dommatmg Pomt

Recall the dlscussmn followmg (6 3) and the solutlon to the mmlrmzatlon problern,-_ - R

©in (6 7) - (6 9).. To ﬁnd the dommatmg pomt ‘we need to know the downllnk HOISe A
.lmear transformatron vector: a, the upllnk noise transfer functlon (- ) and and 1ts -

| gradlent Vzp( ) The test statlstlc D.can be expressed as

o where i K denotes the contrlbutlon from the s1gnal plus the uphnk noise samples,'
s + Yu Whlle rnk is solely from the downhnk noise samples yd SR

Hence, if we express the decrslon statlstlc D as D'= ¢(yu) + alyy We have.‘
o aYd—"'nK = Z ydK—zh4z : YdK gh?n’v” RV e '(6,-‘17),

) |—m4

e .‘where for convemence we have 1ncorporated the samphng perlod factor A into ‘the. -

'ﬁlter 1mpulse response function. ThlS practlce w1ll be also used for all other ﬁlters



Tt 1stheneasy to ﬁnd a= (ai,, a,?.) 9 ‘where

e = h4K k':" 3 o B (618) P
@ = ke '_ B R (111 R

forK m4 <k’<K m4

Next we wrll find the upllnk noise transfer functlon 1/)(yu) We have

L 'v: m“ K g F
S sl 2@ Q.
C = Z zl\ .haqs ’ ?K»—'ih34,e

t"m34 ’

: E Z ‘zklbk,-l-zk,bk, o R S (620)

w—K—m; :

R b = h341\ Sk

for I& - m34 S k' < K m34, and zk; is. the output of the TWTA respondmg to an | }
1nput sample k. R o ,. | v |

Recall from Sectlon 3 3 in Wthh we have shown that the memoryless nonlmearity v |
“of the. TWTA results in an 1nput output relatlonshlp as descrlbed by (3 11) and ( 12)

o Wl.'llCh are rewntten below for they will be of use later o

Zlf' = rfcll-ﬂh,(¢2A2)zzf".f 31771(32142)33 ' 1 "(6-21) e

z,?, = 81771(82A )zk' +Cl7]o(CzA )Zk' o S : - . _(6-*22) -

where cl,c2,sl,32 are constants, no(a) =e |°‘|lo(a) and 771(01) =€ ""lll(a) are expo—,. .
' nentlally scaled modlﬁed Bessel functlons of the ﬁrst klnd of order 0 and 1 respectlvely,r' - N o

E and A = (zk,)2 g (zk,) ‘is the 1nstantaneous 1nput squared arnphtude Or 1f we use_




k)

" the sphne functlon approx1mat10n also descrlbed in Sectxon 3 3, the 1nstantaneous

1/0 relatlonshlp is

A

Z]{: = (C3A2+02A+01+ i ) Zk. (S3A2+SQA+51+ SO) Q:

.z’?' = (53’42*’52“‘*5"*.?4)% (03A2+02A+CI+CO) _

A

where C and S,, i =0,. »3,.are constants

The uplink noise vector y. and the TWTA mput vector z are related by

zh =

where

Cp =

Q=

Ck' + Z hz tyu k’-: hz zyu k'—{ |

v 1—171.2 Lt

E f Ck' + E h2 :?/u ki + hl,d‘/u ki

z-—m2

l—m2

“' ) Q
Z h2t k’—t_ ] h2 tsk’

' Q
Z h2 tsk'—t 213k'—t_ Vet

1-—m2

(6.23)

(624)

7 (6.25)
| (6.26)

- (627) ;

. 629) .

~and s = (sf, sff,), K — méﬁ, —-mi £ k' '< K — mg, — m2 ,is the transmltted 51gnal

vector which has the same dimension as the uplink n01se vector yu ,

In summary, the uphnk noise transfer functlon is

"/"(Yu)

K- ~mg,

; E 'Ek’bk’ + Zk,bQ L
. &';K—mgq . . .
K-mg, . i VO
N : 34' ( I _ Q bl I . Q bQ
N : plzk" P22y | O + p2zkl + P12yr) O
k'=K-m3, ’ ’ S :
K‘—ma_4

= o (plbk, + pzbk,) 2 + (Plbk' - P2bk') 23’ o

: k'=K—m;4

| (6.29)



s __j“"faffects the value of z for * + my < i < L4 + my. This i 1s 111ustrated m Flgure

Kemy

’ Fxgure 64 'The’ra;nge of im_pa,'ct' of a uplviﬁ_‘k’l noise _»sai'nple yuk,

~where

= 3‘1711(-3'2-/4?)_‘ (e
Cif the Bessel approxnnatlon 1s used and

G
A

p1 : C3A +02A+01+— | o

s 53A +S2A+Sl+z°, e (e

‘ 1f the splme a,pprox1matxon is used Fmally, (zk,, zk,) is computed by (6. 25) ~ (6.
The last task is to compute the gradlent of 1,[)( ) -

5 7/) o ¢ m:u f"z
6yu K ayu K

k'—K—m“——m'{ S

v¢(yu) = (

1 'a,ssurmng 1t 1s everywhere dlﬁ'erentzable Wlth respectlve to Vu- We' note‘th‘at t/u',,;, -
- ‘Let us. ﬁrst con31der the real part of the last dlsplay From (6 29) we have .‘f,

135
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Note that Bél/ay,{ yY 8zQ/8yu K =0,if 4 < K~ m34 or i > K — m34 ‘because
¥(yu) depends only oh 2 for K — m34 <i< K —mjby (6. 29) Th]S is alvso clear |
from Flgure 6.4. For any one TWTA output sample z;, because the nonlinearity is
meniofyless, we get | , . ’
01 031 0 03! 9:°

(6.35
oyl ,, azl By , +raz‘9 oyl ,, (6:35)
u,k u,k : u,k

where, from (6.25) and (6. 26) 1t is easy to show.that

0z!

= hzl» i—k
Oyl '
0 Q
8” = hQ._,
oyl :

The derivation is 31m11ar for the i 1mag1nary part 9 / ayu w- lhen, after grouping

terms we have v

. Sy ». : I ) . ‘ ‘ . |
¥ o K Amg . v
_—If— - - Z wlhg’i_k; + w2h2Q'i?k: . . (636)
ay“vk' S i=kldmy ) L o S o
af | M

Il
,M

—w1h2, k/"i"'i,l)2h2t k! | ‘ (637)

~for K—-mj—mj<k<K- m3q — m{, where

oz!
gl Q
u = b‘ a I b I
3z
= b —5 47
s 0z Q 82

Agam terms are omltted in the summatlons of (6 36) and (6.37) if 1 < K — m3, or

1> K —m3,.
The derivatives in the above w; and w, displays are the 1 and Q channel TWTA
oufputs taken with respect to the I énd Q ‘char»inel‘ inputs. Taking the derivatives of
(6.21) — (6.24), we find that, after-some.manipulat‘i_ons,v' ' | |
e |

G = pteels +p4le R = O




- h37

9.8 "‘P2+Pazl Q*'/MZ %
Zg -
§ e s
N S pz+paz EX +P 2z (8
c’) ‘? P1+P3ZZ +leq SIS ‘(6

: As mentloned in Cha,pter 3 useful rules are I(',(x) = Il(:c) and I'(:c) = Io(x) -11
\ for the derlva,tlves of Bessel functlons [1] With the Bessel functlon approx1ma,
to the AM/AM and AM/PM nonhnearltles, 1 and p2 are as deﬁned in (6 30)
(6. 31) and .

P&ﬁ,%mfﬁwwﬁ+m®ﬁﬂ”

p4: 23132 [n0(32A )—(1+ A2) n,-(‘szAz})]}.

For- the sphne functlon approx1mat10n p and pz are as deﬁned in’ (6 32) and (6
BT TR

| We. note that the computatlon of P1— Pa for the sphne approxnnatlon is 31mpler t
s for the Bessel a.pprox1matlon This completes our d1scuss1on of ﬁndlng the domina

. point numerlcally It is evident that thls is a difficult and CPU- 1nten51ve part of

- s1mulat10n algonthm and it will get even more comphcated when 1t comes to co

o systems However we: w1ll show via s1mulatlon data that thls hard work does pay

B .6 2 3 MSK Slgnal B1asmg
In thls subsectlon we d]SCllSS the des1gn of the 51gnal b1as1ng, i. e the blasm

- :'the probablhty mass. functlon of the ST patterns, Px|xz(xlmo) Recall from (6

0,0 _ o | @9

0
41)

@»
tlon

and

33)“,

than |
ting
the
ded
yoff.

gof'-

| 1)
| _"_"a,nd (6 14) the components of X_ = [ XI)t (XQ) ]t are the test b1t Xé = a:o\_‘
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and 1ts adjacent bits in the I and Q channels whose number depends on the channel
memory length and the demodulator output sampling tlme The pr1nc1ple we have
established in Section 4.3 for the 81gna] blasmg is that the blased 31gnal probablhty
mass function P}"‘(lxg(xlwo) should be proportional to ﬂ(X)PX|Xg(x|?0) = P(x)/J
where f(x) = P(x) is the conditional bit error probability given a particular ISI
pattern X = x is transmitted, i.e., P(x) = E[lg (f(X Y)) X = X, Xy = o], and J
is the total number of ISI patterns. We have J = 2M here if there are M ISI bits.

| For our s1mu1at10n study in the next subsectlon we w111 have M = 16 and hence‘
J = 216 ISI patterns It will be quite a task to de51gn an efficient biasing ,scheme
for all of them, and in fact is-unnecessary. In general, the most adjacent bits of X!
have greater impacts on the decision statistic than those that are farther away. That
is, they are the “important IST bits,”~_and thus we can bias their distributions only.
Suppose that, among the 16 ISI bits, we will only hiasthe two most adjbacent bits in
both the I channel and the Q channel Then we can write X as

X = (XoI,X X) |

where X = (X{,Xil,X(?,XlQ«) represents the 4-closest bits to.X(f (see Figure 6.2)"'
and X is'the collection of all other 12 ISI bits whose probability distributions will not

be biased. Therefore, our simulation signal density function is

Pxixy (X|zo) = Py y s (X|0) Py x 1 (X[2o)- (642)

- The importance sampling weighting function is

Pxixi(xleo) — Pxyxg(Xleo)
3*(|X1(x|x0) P;(|X’(XI$Q)’

wxmg(XImO) =

and here we have PX[XI(Xlxo) = 1/16. |

» The problem thus reduces to finding lex,(x|xo) o P(x ) For the nonlinear satel-
lite channel, the conditional bit error probability P(X) is difficult to obtain analyti-
cally. However, for the purpose of designing the signal biasing, we can a;pproximate the

channel with a linear channel and obtain an approximation of P(%x). Recall the linear -
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""f_system example Example 4 1'in Chapter 4. 1f the system is linear (D is an afﬁne func-,_ :

: ""tlon in the n01se vector Y) we have P(Y €E)= P(dec1S1on error) ‘ ( ||v||2/a)

'where v is the dommatmg point. Here, suppose that x = (a:o, X x) 1s transmltted and

- the dommatmg pomt is v(x) Then Q (,/ [v(x)|l / a) is the approxrmated condltlonal =
| b1t error probablhty P( ) (Note that the above P(x) actually should be averaged.,

over all pos51ble X. However for designing: the b1as1ng, we can choose X, say, a ﬁ;_;éd D

-alternatlng :l:l sequence) Therefore, we get ‘i- , s R |
(\/ |v(x) |2/0) i e (643) o
(V@) o T

» We can compute P %1% ,(xlmo) at the beginning of the s1mulatlon by us1ng the numer-

'P;z,XA 7o) =

: 1cal 1terat10n method to find the dominating point for all 16 ISI patterns The n01se

varlance o? can be' approx1rnated by the linear channel formula (3 8)
: .‘6.2.4 S:imulatiOn Parameter-s and Results

Inour s1mulat10n study, we use N, = 16 (a typlcal number for drgltal telecomr'nui,
nlcatlon satelhtes) samples per: symbol 1nterval T = 2Tb for both 1 and Q channels
' -"The demodulator output sampling time is set at- the middle of the s1gnahng pulse, o
i.e.,the 8 'th sample (K =8). Allfilters are speclﬁed in the baseband of the freque_ncy o

: domam as the 1deal “brlck wall” ﬁlters W1th bandwndth B such that BT = 1.5. I'he

1r1verse FFT then computes ﬁnlte impulse response functlons of the ﬁlters Wlth_the'

tlme domam truncat1on occurs at :I:2T The comb1ned downllnk ﬁlter h34 1s also' N

truncated to be W1th1n :l:2T although theoretlcally 1t spans over :t4T Therefore we . ._' i

‘ have m2 ='my, =mj ‘=‘—32 and m§ = m§L4 = m4 = 31

Consequently, the set, of information bits which are of concern in- our event s1mrula-_' -

tlon, 1. e the ISl pattern X, is (X£4, ) X{,X*s, ) where X({ _ _1 is ﬁx'ed; o
: Thus the total number of ISI bits i is 16. As dlscussed in the last subsectlon only

.lthe probablhty dlstrlbutlons of the four blts Wthh are closest to XI -;—1 w1ll be' IR

blased in. the s1gnal blasmg On the other hand the d1mens1on of the downhnk IIOISe "

}vector Ya (and that of the vector a) is 2 ><(m4 -—m4 +1) =. 128 and for the uplhnk:_' -
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nbise vector y, it is?x(rh'{#m&——m{——m&—f—l) = 254.-‘ Thus the noise vector yisa
382-dimensional real (or 191-dimensional complex) vector. In simulations, we found
that L, = 5 is an appropriate inner do-loop number for all SNR’

The satelhte TWTA input backoff power is IBO = 1 dB. To- cornpensate for
the phase rotation introduced by the TWTA AM/PM conversion, a phase shift corre-
sponding to the phasé of th‘ekoperating point is added to'the'impulse‘re‘sponse function
' h‘34>. The uplink and downlink noise samples are 1.i.d. Gaussian random variables with
zero mean and the variance is computed as (recall from Section 3.1). o
o = NoN,R=N,LE,R

| 2z
1 A?
= N
where R = l/T = 1/2T} is the symbol rate, E, = E,/2 is the‘energy per bit, z
is the given spec1ﬁcat10n of Ey/No and E,R = A2/2 is the carrier power which is
A?/2. The value of A is calculated from the TWTA 1BO and the AM/AM conversion
characteristic. The spline function approxxmatlon is used,” \

Table 6.1 shows simulation results for the equal uplink- and downlink SNR case.|
The columns labeled “MC” present data from a conv.entioﬁ\zil Stream, unbiaséd Monte
Carlo Simulation. "That is, data are continuo.vus]y injected into the channel and P, is
estimated by the relqtive frequency of bit decision errors. (We omit a desériptfon of the
algorithm because it is straightforward. The only thing that requires special caution
is keeping the timing and the sampling indices straight because, for both convenience

‘ and efficiency, the signal and noise samples are generated by long blocks instéad of
one symbol interval at a time.) A Monte Carlo simulation is termmated whenever
100 bit errors are detected which amounts to roughly a 10% relative precision. These
Monte Carlo simulation results can serve as baseline data for comparison with our

- -importance sampling da,\ta.i(‘The importance sampling simulation:is run until a 10%

‘relative precision is achieved for the P, estimate. The CPU-—tifné,data. are for a Sun
SPARC 1 workstation. We note that our importance sampling’ estimator is very

accurate and the computational cost is stable with respect to F;. In contrast, the



~ Table 6.1 MSK P, estimates and CPU time ;:compa'r.ison_s".'
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['SNR || Estimates of P, CPU Time (Min.)
J@s) Mc | IS - MC 15
9.0 [1371x10°° |356x10° | 50 | 18
95 || 212 x 10~ | 2.00 x 10~ 87 | 20
1 100 | 1.07 x 108 | 104 x 1073 || 173 24
105 [ 5.43 x 104 | 5.07 x 1074 || a5 |23
110 [ 277 x 1074 | 239 x 1074 || 674 27
“1‘1.5' 1.12 x 10~* | 1.02 x 10~4 .16747‘ ) 31 |
20| ¢ |ssexi0c| o+ | 38
13.0 * 422 %1070 | % 55
1B R P N

CPU time requlred for the Monte Carlo estimator increases with 1 / Fy. Figure
shows Py vs. downllnl\ SNR curves with the uplmk SNR as a parameter.

‘downlink SNR — 00, P, becomes domlnated by the uplmk norse and approachin

constant

6;3 A 'TCM:ECOde on ,the:gatellite Channel i

In th]S section we estlmate Pb for the quasi- regular TCM code of Flgure 5.7 o

atmg on the satelhte channel of Flgure 3.7.

6;3.1 The siginal »veetOI'X and the noiSeVector Y

The unﬁ]tered transmltted 8-PSK SJgnal at the satelhte transponder mput is

the. form '

sl(t) cos(27rfc )

SQ( )sm(27rfc )

6.5
'|the

ga

er-

5 of
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‘The information bearing lowpass quadrature signals are sI(t) =Yk s(Xk)I (t — kT)

o and sQ(t) = Zk S(Xk)Qp(t — kT), where s(X) = ( (Xe), s(Xx)?) is the complex

: bv8 PSK 31gnal pulse a,mphtude selected by the 31gnal selector Xk (see Flgure 3.5), ( )
_ is the s1gnahng pulse and T is the symbol (signaling) interval. For this code rate |
R =2/3, 8-PSK code, we have T = 2T;. The discretizations of the transmitted’si nal
| and the channel are identical to that described in Section 6.2.1. We will also use same
notations. 7 '
The event simulation method for trellis codes presented in Section 5.2 wi‘l‘1v be used.
In particular, the estimator is of the form (5.15) and (5.16) which for convenience we

v rewrite here
SR Z P(X(’Z) +E(£)|x(’)) (E(f) X(l’)) T (644)

where the ,estirna{t'e of the c»’ondvitiqnal'ﬁrst event error pr'qb‘athiylityj given (E(”),X 9),

~ P(X® + EOXO), is

P(X( '+ E( )‘X( )): L_' ZIE 1{E(l) is decoded} (X(e) Y(“)k) X

wY|E,x(Y“”')IE“’,5(“’)', o . (65)
and

o . | nb(e) 2—b(£(e)+M)
o vmxled) = b Py, 2 (6:%)

N wYIE;i(&I:é";i) - f;,Ef;(()}: I)e; %)

are, the 1mportance samphng weighting functions for the 31gnal and noise respectlvety.

The core of the a,bove ‘method is that we choose a palr of s1gnal selector sequence
(

X = (x x xt) and error sequence e then find the optlmal mean- translatlon blasﬁng-'

| for the dlstrlbutlon of the n01se vector Y. The ob Jectlve is to estimate the probablhty

of a speaﬁc error event that x+e 1s decoded whlle X is'the transmitted 31gnal seleotor

sequence ie., P(X+ e|x) As in the MSK case, let us ﬁrst clarlfy what are X and Y.
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For a fixed e, recall that X~ = (Xi_m-,-- -, Xo), X :v’(Xl\v’,... ,Xg(e))v ka,ndv Xt
= (Xg(e)ﬂ,...v, Toe)+M+) from Section 5.2 where {(e) is the lenlgth of e. That is,
X is the transmitted signal seleetor 'sequence x plus its adjaceht signal‘selector’sk
'Ivv‘e'uhderstand‘ this and to find M* and M, consider the 51gnal flow dlagram in
Figure 6. 6. By the definition of signal selector error sequence e, the trellis path
representmg x+e dlverges from the path of x at stage £k = 0 and 1ater remerges for
the first time at Stage k= f(e). Now, if the Viterbi deeeder'is to choose betWeen'fc_
and Xx+e (assummg for the moment they are the only decodlng optlons) ‘the errer

event, % + e Wlll be decoded if the decision statistic Di 1s '

s .
D = \;Re[s(xk+ek) 7] - Re[é(wkf’"'s]..

©le)

= kZ:Re (s(zk + ex) — s(xk)) k) 2 0 _b L :' t.6.46)

* where 7 is the k th demodulator sampler output. Note that the summatlon is only
over the range of the error event length (( ) because S(.’Ek + ek) = s(zk) for k <1 and‘
k> L(e). ‘

* Theréfore, D depends on 7 for 1 < k < £(e). Let k' still be the sarhple numbering
index as in the last section and the demodulator sampler takes the K’th sa‘Lr‘hp’le of a
‘ transmitted pulse, 0 < K < N, —1. Also, we a]ign the time axis and the sampling
axis such tha,t the sample at time ¢ = 0 (stage k = 0) c’orresp‘ondys to the 0’th sample.
Hence, ts the k' = K + (k — 1)N, sample of the demodulator output (before the
sampler) and we can write ry, = rnK+(k_1)N; + TR 4 (k=1)N, whet‘e 7"rkz;\»+(k_1-)Ns is
the contribution from the h4(t)-filtered downlink noise end Tk 4(k-1)N, 15 from the
- haa(t)-filtered TWTA outputs. See the lower part of Figure 6.6.- It is then clear
that the downlink hoise samples which have impacts on the decision statistic D are
Yor, K—mf < k' < K+({(e)—1)N,—mj. Similariy, the »decision‘ statistic depends on
the TWTA output complex samples %, K —mi, < k' < K + (f(e) — 1),N’ —’m':;‘. The
dimension of the TWTA output vector Z is the same as the input z because the TWTA
is memoryless. Each TWTAbinput sample zj is in turn the output of hy(t)-filtered -
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| Figure 6.6 TCM signal fiow diagram in the satellite channel. = |
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transmitted signal sample‘s plus the uplink noise samples. Consequently;. the relevant )
'tra,nsmltted signal and uphnk noise samples are sy and Yu K for K m§4 mé" <
k< K—!—(Z(e) — l)N —m3,—my respectlvely Tt is not difficult to see that Figure: 6 6
is really an expanded version of Flgure 6.3; or conversely Flgure 6 3 is a spec1a1 case -
of Flgure 6.6 w1th E(e) = 1 -

: In summary, the noise vector Y in thls problem is [Y Y where

K+(((e)—1)Ng—m34—m2 r (6 47) |

. Yu - (YUI’kl’Yu’k’)-k'=K—m;4 —m2+
and »
L K+(¢(e)— I)N,-m, G
.’ Yd = (Ydl,’kuydk') afe . _ (6.48)
The 51gnal selectors which need to be considered are ‘ » k 7
X = (Xi), l————~—m3“+m2 l <k < fe)+ ['m""‘+mj’v' s “l - (649)
| Thus, M~ = [(m34 +m3 — K)/N, l [(|‘m§4 + my| — N, + K)/N, ], and the

_‘ total 31gnal memory length M =M+ Mtisa function of the ﬁlter memory and

‘where the demodulator output samples are taken.

6.3.2 Fmdlng the Domlnatlng Pomt

As far as finding the dominating point is concerned as the SJgnal ﬂow dnagrams
Figure 6.3 and F]gure 6.6 indicate, the dernvatxon in Sectlon 6.2. 2 for the MSK 1s in
fact a special case of that for a trellis code with E(e) =1. We now show thls The
test statistic D, which is the dlfference between the metrlcs of the efror event path
X + e and the correct path X, is given in (6.46). That is,

£(e) . '
D = > rldl + erdf
k=1

l(e)

= 1:2: (7‘-"3K+(k -yn, + T”K+(k O, ) di + (r‘r?{ﬂk “UN, + rn2+(k l)N,)

= €(Yu)d"}5t'}’d ‘.



o have

B :‘,"K + (k )N,, it ‘can be shown that

' *weget N

where dk - (dl,d?) = (s(ek+ ) ~s(ax)!, s(ak + €)%~ (1)) Therefore
= . 'l(e)'
&

“and- FE
AR l(e)

"{(yu ‘ Zra:}\_i_(k I)Nsd +T$K+(k 1)N,dQ : e g (6.

k=1
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we

- 'i‘a Ya = E""K+(k yn.di +"'"K+(k 1)Nad_,Q” : : (6.50) |

5‘_1j

As before m order to ﬁnd the dommatlng pomt we need to know a, '(,b( ) and ,

vv,b( ). We ﬁrst show how to ﬁnd the vector a. Frorn (6 50) and lettlng k'(k) =

o de) m;*‘

k= 1 t-—m4

ooal Yd = Z Z (hﬁ,dk + héqqu) Ya k'(k)- +(h£,df—h2,d£) y?k'(k)-.

‘The obJectlve is to express aty, as

i “,v“‘Fll‘St we con81der ak,, K mj <K< K +( (e)’—‘—:l)N‘,v_’—_m;._ After :a‘\ehﬁa‘mge o,fﬁverieb‘le?

| l(e) k’(k)-—m,

s k=1 k"k'(k)-—m4
, '-It is then found that o
b ' l(e) : v,- . o S
ak’. = Zh“*ﬂk-l)Ns k'dk+"4 K- I)N, k'dQ (6

= where terms 1n the summatlon are omltted 1f Ix+(k—1)N ——k' < m4 or’ I(+(k—1)N a—l"

"m,l Slmllarly, af, is S
‘ Coee) IR S B R
A " ak( = Eh«; K+(k 1)N, k'dQ h«?K-i-(k-—l)N, k'dk e B f (6

for Kemps k< (e(e) [)N,+K—my. With fey=1,df=1 and a0, (6 53) and
S (6 54) reduce to (6 18) and (6 19) The uncoded MSK can be con51dered as: hav"‘
=0

1, -s(x + e) = s(l) = 1 and e is a one- branch error sequence
Next we find' ¢(yu) Followmg the above derlvatlon for a, we can rewrlte (6

5 v'm a forrn snnllar to (6 52) That is,

Z Z ( 4 k’(k) k'dk + h4 k’(k) k/dQ) yd k' = Zak,yd k'

.53)

I5d)

wnd

ing -

sy
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K+(£(e)—+‘1).N‘, ~m3y,

. k’:](,—m;’4 ) o o ‘
where
' Cfe) - . _
by o= Z'h§4,K+(k—1)N,—k'dile + h§4,x+(k—1)N,—kfdf (6.56)
k=1 '
fe) . e ;
I .
b = > Phskae-yNe-idr = Pan ks eon, ki (6.57)
k=1

Similarly, terms are omitted in the summations of (6.56) and (6.57) if K+ (A1) N~k <
m3; ot K+ (k—1)N,—k' > m3,. The ’rvelationslbetwléen‘ 2 and F are givenv‘i,n
(6.21) and (622) or (6.23) and (6:24) if using 'spline functions. The uplink noise
vector y, and the TWTA input vector z are also related by the same formulas as -
in the MSK: case, i.e., Equations (6.25) — (6.28), except now the dimension of the
uplink noise vector.y, = (yi,k,yg x)x and the transmitted signal vector s = (s )x is
K—mi—m§ <k < K+ (b(e)—1)N,—m3,—m;. |

In summary, the uplink noise transfer function is
; K+(£(€)-1)N,—m3, |
Y(y.) = > Fbl + 2063

p=Komi,

K+(£(e)~1)N,~m, |
= > (plbil + pzbg) zl + (plbg, — py,b,’c,) 2,8, (6.58)

k'=K-m},
where p; and pa are defined ins‘(6.30) - (6.33). Equation (6.58) reduc’esyto the uncoded
MSK case (6.29) for £(e) = 1. | . B o o
The corhputation of vvz,[)(’yu) = (0f /0y, af/ﬁy,?k) 1s also very similar to that for
| 1_;he uncoded MSK system except increased dimensions in the signal and up/downlink
noise vectors. Hence we only state the result. For K —m3,—m$ < k' < K+ (¢(e)— B

1)N8_m54_m.2_7

’ +
a k +m;
- }f = Z wlhg‘,-_k/ + wzhgi__k/ —_— (659)
P i=k'4m] -
'ymd
af k'4+mj

99 S —wihg ywahl EE (6.60)
yu,kl i:k’+m; v . )



where terms are omitted in the summations if i <'K =m3, ori > K+£(e)—1)N,~m3,,

‘and
0 8
3 : Bz
_ 1 Q

The four denvatlves 82’/62:1 3zl/az?, azQ/az and 35?/8z? are given i'n"(6.38
(6.41). e

6.3.3 Sa.mpling E‘and X

The event srrnulatlon estlmator (6. 44) calls for the Jomt samphng of the palr (e

) -

%)

accordlng to the srgnal blasmg den51ty (e %). Recall the notation % = (x x, x"’) E

- where X~ and x*, whose lengths are computed by (6. 49), represent the ISI. We will

 first derive the crlterron for a “good” desrgn of P 4 (e, %) and then propose a sampling

.~ scheme which satisfies this criterion. .

Beforg';proceeding, Tet ‘us‘fiﬁr"st recall the fundamental principle of impOrtance sém-

: ,pling‘_ass"pelbledv'out. in (2.10). Thatv is, to estimate a vquentity' o =E[g(U)], the

optimal simulation density is f*(u) o g(u)ft( u). The optimal mean—trenslation Gaus- 7. |

s1an noise simulation densrty satlsﬁes this proportlonahty Also, we ‘have used it

desrgn the: s1gna1 ‘biasing in Section 4.3 and found that Px(x) B(x )Px(x) where
B(x ) Elg(X, Y)Ix] The S1gna1 biasing des1gn in Sectlon 6.2. 3 for the MSk exampl_e N

follows precisely this rule

Now let us apply thls fundamental pr1nc1ple to the dlscrete sum of (5 14)

with

to

_U (B, X) Suppose that we have an exact condltlonal estlmate that lS, P(x +

‘elx) P(x + eix) Then frorn (5 14) it is apparent that the optlmal ch01ce

| PE_x(e x)

of

Figled) « m@PERIO. @)

- One reason that we cannot ‘implement thls samphng dlstrlbutlon is tha.t we do not

- “ have an exact fo_rmula for. P(x + e|%) and can only empirically estimate it by (6.4

5).
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However, for the purpose of desxgnmg the 31gnal b1asmg, we can approxunate P(x +
e|x) usmg the Euclidean dlstance information. - Recalhng the umon bound Px+

elx) < Q(d(x,x+e€)/20) (assummg % and X + e are the only decodmg optlons) in-

Section 3.2.2 and using Q(x) < exp(—z?/2), we have P(x + e|x) < exp( dz(x x + i

e)/80? ) (Note that % and % te dlﬁ"er only in the part of x. ) As prev1ously noted
v thls bound holds only for the 1deal AWGN channel. Nonetheless provxded that the __
IS1 and nonlmearlty are not too severe, to some degree P(x + e[x) should be roughly )
proportlonal to exp( dz(x x + e) /8a?). Hence, neglecting the less 1rnportant factor

‘ny(e)in (6.61), we will design a simulation dlstrlbutlon such that '

P,

Xv(_e,x) X . 2"“(9) exp (—adg(x,x + e;)) . o R (662)
where « is a free parameter that w1ll be roughly determined by SNR

Next we describe a two- step sampling scheme for 1mplement1ng a samphng dlS-
tribution that does satisfy the proportionality (6.62). The basw idea is to ﬁrst sam-
ple E from a precompiled list of error sequences and then sample X fro_rn a condi-
tional distribution. Hence, the sampling dlstrlbutlon will be of the form E:,X(e’ X) =
Py p(Xle)Pie). R
Given a'sampled error event E = e, the correct path X is sampled as that described
in Sectlon 5.3.2. A general formulation is presented below. First a , random mltlal
“state is generated for stage k = 0. The branches X, k=1,. (e) are then sampled
sequentially as a “biased random walk” through the trellis. At each stage there are
2% branching poss1b111t1es. When e ¢ £, the 2% branchmg p0531b111t1es are given .
equal probability, so the random walk is not biased on these branches. (Recall that
£ is the set of single branch signal selector errors e such that d(z,z + e) > w(e)
for‘ some z, i.e., their distance polynomials are not monomials. For example, for
the 8-PSK: signal set with the natural mapping, we have £ = {(011),(111)}.) Now
suppose that ex € & and that at.stage k — 1 the sampledv path X is in state s
and path X + e is in state s'. Notice that the set of branching possibilities for X} is
| indicated by the distance :pb‘ly.n.omial Ps,s' e (2) Of ex as defined m (3.6). Let us degote _



Iy drstrlbutlon the probablllty of selectmg a partlcular z € X(.s s’ ek) is -
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this set of branchlng possrbrhtles X (s, ek) We bias these branchrng probabrhties

'1n proportlon to exp(-ad2(z z+ ek)) Hence after normahzrng to a probablllty

‘, : exp (‘—ad2(a: :c+ek)) exp (—ad2($ :c+ek))
CXoieX(s,s, .-,;,C)QXP(—OKP(Slc $'+ek)) 2 Pss',ek(e “)

| 'Note that P(w|s) =9t m (3 6). For a quasr regular code the normahzmg fe
becomes (2 pe,‘(e“f’)) _. whrch does not depend on the partrcular palr of states (s
- This is the key property of quasr regular codes that allows us to ultlmately re
the proportronahty (6 62) via a sequentlal samphng procedure for X. For non-q
: regular codes the samplg will be state dependent For the 8 PSK s1gnal set. with
natural rnappmg, (6 63) results in . ‘

| : | 2 = 'ka|Ek($klék), ek 955 i
- ,P};I’Ek(wklét)’:’ % P oo Y : 6k €€, d(zk’zk + ek) = 50
_‘1’ L ' ekégd(wk,$k+ek)—52

= FWlllCl'l 1s precrsely what we have obtamed in (5. 35) for the signal blasrng of this TCM

L relatronsh1p between the union bound and the probab1hty P(x+e|x) becomes we

: .-_when the ISI and nonhnearrlty are present we should have a< 1 / 80 inthe satellite

' channel case.

: (6.'63)

wctor
).
alize
nasi-

1 the

i - code operatmg on- the AWGN channel In that i case, ‘we have a'= 1/80 Slnce the

aker

The samphng of X 18 completed by addmg the extensrons X‘ and X+ wh1ch are

’ samplcd sequentlally as unbiased random walks. Therefore thls procedure. lmple—

o ments the condrtlonal samphng distribution

xﬂalxle) _ 2—t(£(e)+M) H - exp (‘“adQ(wk, fb‘k + ek))

1<k<l(€)ex €€ : | Pex (e_a)

To complete the procedure we must descr1be the sampllng of the random error

' event E. We wrsh to realrze a dlstrlbutmn Py x(e X) = XIE(xle)PE(e) whlch

1sﬁes the proportronallty (6. 62) Us1ng d2 (e) = Ve o) d2 (ek) and d? (xk,xk + ek) =

o d2 (ek) whenever ek Q’ E 1t follows from (6 62) and (6 64) that

(6.64)

satd
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.,Pf.‘;’(e) =K ': H pe,‘(e_")] exp (—a (dfu(e) - Z ’d?u(ek)) ) . 665 .

kiex€E  kjex€E |
where K is a constant normalizing factor: To implement (6.65), we simply sampled
E from a pr’ecor'npilédl‘lis't"tha,t includes ‘a_ll error sequences with minimﬁfﬁ distance = -
d’ (e) S d?, ... In the simulation, we use the list of 49,506 e’s with d2 (e) < 10 which
we have used to compute Table 5.2. Since this is a subset of the inﬁnité_" set C of
~all possible error sequences, there will be a truncdtion bias as ment‘ionqd p.rfe?iously.
However, we can expect that this truncation bias will be negligible"a‘t mb‘dgra.ttho—- :

high SNR’s, and we will verify this in the next subsection’s simulation‘data." ‘

6.3.4 Simulation Algorithm, Parameters and Results

The simulation algorithm can be described as follbws,_ ‘

Quasi-Regular TCM Codes 15 Simulation Algorithm: |
e Input: Convolutional encoder configuration, signal mapping fimct_fon, ér_rof se-
quences' list, N,, product BT, uplink SNR, TWTA 1IBO, down.lin-k SNR, de-;
modulator sampling time K, L,, dominating point initial value qﬁovand signal
biasing factor a. |
e Output: f’-b*, its relative precision and CPU time. _
e Method:

1. Cénstruct tables containing trellis diagrarn ihférmation.
2. Compute noise variancé, random walk parameter p*.
3. Read error sequence e, length #(e), weight ny(e) avn’d worst-case distance
dy(e) from the data file obtained from the R;C Algorithm.
» 4. »Co.m’pbtbbxige Pf,‘;(e) . o |
; »5.“Sa,m1f)>le>: 1:7}(1'):» Seleéit a random ’initi‘al state anﬁ sample t'he‘c'orrect path

X0, C(_»)rnpute’;tkhe signal biasing weightwa'X(e,i), Put # = 0.
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: f 6 ,Z~‘:— Z’ + 1 If L” > Ly, compute P(X(l) + E(‘)|X(‘)) then go to 5
7 Compute the domlnatlng pomt o N |

8 Perform the V1terb1 decoder error event s1mulat10n When an error event

| is decoded update srmulatlon data accumulators then go to 6

As in the case of MSK complex baseband srmulatlon of Sect1on 6 2 we use N =16

"samples per symbol brxcl\ wall filters with bandw1dth B (BT = 1) 1mpulse resp(l)nse

S functlons for all ﬁlters belng truncated to be W1th1n :l:2T and the demodulator output -

5 sampllng tlme K N /2 The satellnte TWTA 1nput power backoff is IBO = 4 dB. A
phase shlft correspondmg to the phase of the operatlng pomt is added to the 1mpulse
response functlon h34 to compensate for the phase rotatlon 1ntr0duced by the TWTA

AM / PM conversmn The variances of the uplmk and downhnk norse samplestare'

o computed as in the MSK case, that is, o? N (NO/QEb)C where C’ is the carrier’

‘ ;-"fconversmn character1stlc “The sphne functlon approx1mat10n is- used

' *_'zr‘y(pure smusmd) power Wthh is ‘calculated from the TWTA IB. and the AM/ AM”"

Table 6 2 shows snmulatron results for equal uphnk and downhnk SNR cases C‘on- v

5 ventlonal stream unblased Monte Carlo 31mulat10ns whose data are presented in|the

‘columns labeled “MC 7’ vare performed for comparlsons w1th our 1mportance samplmg o
' f'algorlthm A Monte Carlo S1mulat10n 1s termmated whenever 100 mdependent el‘ror
‘“events are. detected Thrs number translates 1nto a. 10% relatlve prec1s1on for the estl-
rrnatlon of P For a Pb estlmate the relative precrsmn 1s shghtly worse. As an aslde,'
we: remark that for the low SNR ﬁgures in the table our convent10nal Monte Carlo,
, isunulatlon d1d produce a srgnlﬁcant number of e error events w1th d2 (e) > 10 Her‘ace,

a non- negllglble truncatxon bias is to be expected for these low SN R values We ban

' ,reduce thls blas by 1ncrea51ng the size of the list of error sequences However we note

o ,‘that the power of our. 1mportance sarnpllng algorlthm is. in the moderate to- hlgh SNR -

B f;reglon where truncatlon blas is neghglble Notlce that the Monte Carlo sxmulatlon‘for o
_11 dB requlred 14 CPU daysl The 1mportance samphng mmulatlon 1s run untll a 10%' ‘V

: relatlve prec1s10n is achreved for the Pb estlmate The CPU tlmes data are for a .>un .




Ta,hle 6.2 TCMv'Pb estima,tes'ahd CPU time ‘comperisonéﬁ.

SNR Estimates of Py

CPU Time (Min.) |

(@B)| MC s | Mc | s |
85 | 653x10° [438x10 | 43 | 101 |
9.0 | 217x10° [137x10° | 115 | 190 |
05 | 4.66x10-|420x30~ | 401 | 362 |
10.0 | 9.35 x 1075 | 885 x 10~ | 1,653 | 245 |
105 || 219 x 107 [ 203 x 1075 | 6 047-'71'1_:."»283:
| 1.0 | 417 x 10 | 417 x 107 20114‘ | o200
s | o* |setxw07| £ | a7
li2of *  |iasxio7| x| 406 |

B SPARC 1 Worksta,tlon Flgure 6.7 shows Pb vs. downhnk SNR curves w1th the uplmk
| SNR fixed as a pa,rameter As the downhnk SNR — oo Pb becomes domlnated by
the uphnk noise and approachlng a constant. ERER v‘ SR |
Recall that our 51gnal blasmg scheme which achleves the proportlona.hty (6. 62) is |
based on the assumptlon that P(X+ e|%) is roughly proportlona,l to exp(——adz(x X+
e)) where o is determmed by some comblna,tlon of the uplmk and- downlink SNR’
‘ To. test this hypothesis, we performed the following experiment.. ‘We randomly se-
»lected various pairs (e, %) a,nd accurately estimated P(f( + e])”() hshig‘the efrot event -
s1rnulat10n algorlthm with Ly = 2000. ThlS amount of 51mulatlon was sufficient to
produce an empirical prec1510n of less than 10%. The results of thls experlment for .
SNR = 9/12 dB (uplink/ downhnk) are plotted in Flgure 6. 8 Smce these probabilities
are plotted on the logarlthmlc scale, we should. expect to see a hnear trend, and we
_do. The stralght hnes plotted in Flgure 6.8 are least. square. fits of the exponentlal
functlon cexp(—adz). For SNR = 9db, & = 1.92, and for SNR = 12 dB, & = 3.62.
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In'?the ';oi;erai‘l sirnuiation: algorithm, o is apararneter which Shou]d be s’dpeci»fied s -
a functionv of the SNR‘; To do this, we developed a formula « = f (SNRUL, SNRp L)?:l
08 tirnes the value of o for a crude linear .and memoryless AWGN approximation |
of the satellite channel model. The reason for the 0. 8. “fudge factor is as follows 3
‘ Settmg a on the small side of the (unknown) optlmal value 31mply causes some less
1mportant terms (WJth hlgher distances) to be over- sarnpled On the other hand, -
~ setting « too large will cause some important terms (with moderate dlstances,) to be
under-s’ar‘npled Hence, it is better to error by setting a to be Iess th.an the “optimai” g
value. For the two cases of Flgure 6.8, our formula produced o = 1,59 a.nd a =3.17,
respectlvely, for SNR 9 and ‘12 dB. This compares well to the empmcally measured ,
optimal values a=1. 92 and a= 3 62 in the last paragraph '



E 7.-,CoNCL’UsroNS o

We have presented a comprehenswe developrnent of the optlmal Gaussran mean-
', translatron brasrng, event s1mulat10n and condltronal 1mportance samplmg technrquesv
and demonstrated thelr usage in efﬁc1ently estrmatlng the bit error ‘rate for dlgrtal
communrcatron systems In partlcular we study the srmulatron of uncoded and trelhs—,

coded systems operatmg on lmear memoryless channels and nonlmear channels wrth

memory Quas1 regularlty of the codeé is utilized to fac1lltate the srmulatron as well as |

'to des1gn the 31gnal blasmg Uncoded systems can ‘be con51dered as special cases of
: coded systems from the vrewpomt of our 1mportance sampllng algorlthm Slmulatron

procedures and numerrcal results are presented which show the efﬁcrency and accuracy '

of our algorlthms The techniques presented in thrs thesis’ ‘can be readily applled to

other system srmulatlons as bu1ld1ng blocks for therr partrcular system conﬁguratlons‘
and channels ' »

Future work 18’ foreseeable in many areas. We are 1nterested 1n other coded systems |
| ‘whose decoding algorrthms may not be descrrbable by functronals e. gy many block -
-codes used in practrce or for which the system response functlon § € ) is d]scontlnuous v
‘ and thus not everywhere drfferentrable e.g., Vrterbr decoders with quantrzed demod- -
’ ulator outputs. (mstead of soft- decrsron decoders). The latter srtuatlon (dlscontmulty) ‘
also happens when the channel model contains componentswith discontinuous,char- |
acteristics, e.g., a hard limiter. For these systems, we may"have problems bboth in
'sthe theory and i in the 1mplementatron m ﬁndlng the domlnatlng pomt because we
may not be deahng with a moderately nonlmear system anymore _ |

Rotatlonal-mvarlant and multi- dlmensronal TCM codes are useful in practlcal

apphcatrons It may happen that many of them are not quas1 regular and hence for -



158

,fwhrch we must explore therr other propertres to a1d the s1mulatron Concatenated :

o codes (comblned block codes ‘and trelhs codes) are also w1dely used for wh1ch the .
B ‘ 1mplementat10n of the event srmulatron method and condltlonal 1mportance sampling -
Ea w1ll be more-complex than when only a smgle code is used The event srmulation

. method for some trellrs codes is also yet to be further 1nvest1gated such as CPM

'(Contrnuous Phase Modulatlon) codes whrch do not, have the llnear convolutronal
i encoder structure and thus we probably don’t have a hst of error sequences to sample .
L from For them we may have to find a pure « random sarnphng scheme whrch.;
o randornly generates the 1mportant 1nformat10n process and error event ineach .

X srmulatlon run. Trelhs codes whose dlstance spectra are computable and rnay even

1nclude the ISI effect as reported by Schlegel in [53] are also worth studymg

| The type of carrrer synchromzatxon error. for whlch our algorlthrn can readily‘

- handle is erther a constant phase error or a phase thter whose statlstlcs are kno_wn.,-”

. 1We would llke to study the case where only the phase estrmator is known for exarnp}le’_,v |

a Costas loop or a nonhnear estlmator as presented in [67] An adaptlve equallzatron |

" ( o ‘at the recerver end is often a popular means. to combat severe ISI We have not look‘r
| 1nto such system conﬁguratrons » ’ : | ., | ’ |
We have only consrdered rntersymbol 1nterference 1n our examples The presen‘ce |

: »»‘of ACI CCI and/or multrpath in the channel can often be modeled as an addrtrve

T norse process If the norse process is Gaussran then we srmply expand the drmen sion

: of the norse vector Y Bl the norse process is non Gaussran or it 1s correlated with

‘the srgnal process whrch is often true for the multlpath and CCI the condrtronal

. rmportance samphng technlque d1scussed in Sectlon 4. 3 can be used That is), we -

wrll let the srgnal 1nput” vector X 1nclude samples of thrs noise process In general,

we can express X as (x1,X2, ) The task then is. to deSrgn fX1 X2 (xl,x2,'.‘.’.‘) .

‘ 'V‘lor we can’ appeal to successrve condltlomng agam, e. g 1f X = (XI,X2) then a: ,
}E[g(Xl,Xg, ) \fE[E[E[g(Xl,Xg,Y)IXI,X2]|X1]] “This. procedure is partlcularly'v \ ‘

useful if Xl and X2 are correlated However by dorng thrs we need to consrder the

. /;)

‘ g‘Jomt mlnrmrzatlon of the total computatlonal cost as a functlon of Ly, LX1 and LX L
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as well as the des1gn of smmlatlon densmes The latter may becorne mcreasmgly
dlfﬁcult as the nurnber of levels of condltlonlng is 1ncreased |
Other channel and system models whose optimal simulation d’ensity designs are
not Covered by the method presented in this thesis can also bé future research sub-
jects. “For example, in optical channels, the noise process is not '»Gaussian-but often.
time-varying shot noise.y In spread épectrum commuﬁicatiqns, the’drom'inant»distorti(.)n
source is nvotv the Gaussian noise but the channel interférence and jamming. Finally, -
not much work has been done in applying the impov‘rta,nce samplin‘g to hetWork—layer _
~ simulations which are e\}ent-driven (often.with Poisson event arrival pfocess) in con-
trast to the time-driven nature of data-link layer simuléfions Network Ievel analysis
and simulations are becoming more important because of the increasing number '

complex1ty and interconnection of data networks.



BIBLIOGRAPHY

DV



160

BIBLIOGRAPHY

[1] M. Abramowitz and 1. A. Stegun, Handbook of Mathematzcal Functzons Dover, .
New York, 1965.

[2 ] S Bénedetto, M. Al Marsan G. Albertengo and E. Glachm, “Combmed codlng
and modulation: Theory and applications,” IEEE" Trans. Inform. Theory, vol.
IT-34, pp. 223-236, Mar 1988 : .

[3] V. K. Bhargava D. Haccoun R. Matyas and P P: Nuspl, ngzfal Commumca- _
tions by Satellite. leey, New York, 1981, : :

[4] J. A. Bucklew, P.' Ney and J. S. Sadowsky, “Monte Car]o simulation and la,rge..
deviations theory for uniformly recurrent Markov chams & J Appl. Proba. |, vol.

27, pp. 44-59, Mar. 1990.

[5] P. Bratley, B. L. Fox and L. E. Schra,ge A Guide to Simulation, 2nd ed Sprlnger
New York, 1987. Lot .

[6] A. R. Calderbank and N. J. A. Sloane, “New trellis codes based on lattices and
~cosets,” IEEE Trans. Inform. Theory, vol. IT-33, pp. 177-195, Mar. 1987.

[7] A. R. Calderbank and N. J. A. Sloane, “Four-dimensional modulation with an
eight-state trellis code,” ATET Tech. J., vol. 64, pp. 1005-1018, May-June 1985.

[8] M. Cedervall and R. Johannesson, “A fast algorithm for computing distance
spectrum of convolutional codes,” IFEFF Trans Inform. Theory, vol. 1T-35, pp.
1146-1159, Nov. 1989. -

[9] J. C. Chen and J. S. Sadowsky, “Simulation of treIliS~ct>ded modulétion using im--
portance sampling and error event simulation,” 1991 Conference on Information
Sciences and Systems, Baltimore, Maryland, March 20-22, 1991.

[10] J. C. Chen and J. S. Sadowsky, “Error event simulation for trellis-coded modula-
tion,” Proc. 1991 IEEE Int. Symp. Inform. Theory, p. 201, Budapest, Hungary,
June 23- 28, 1991. : .

[11] E. Cinlar, Introductzon to Stochastzc Processes. Plentlce Ha]] Englewood C]Jffs,
NJ 1981. ‘



cations. Plenum Press, New York 1981.

161

. []2] G. C C]ark Jr.. and J. B. Cam Error Correctzon Codmgfor ngztal Communi- .

[13] B. R Davis, “An 1mproved importance samphng method for digital communi-

cations system simulation,” IEEE Trans. Commun., vol. COM 34, pp. 715+
July 1986 '

[14] A. Erdely1 Asymptotzc Ezpansions. Dover, New York 1956.

719,

- [15] R. J. F. Fang, “A coded 8-PSK system for 140 Mblt/s information rate trans-

rmssmn over 80-MHz nonlinear transponders,” Proc. 7th Int. Conf. on D
Satellite Communications, ICDS-7, pp. 305-313, Munich, May 12-16, 1986

f

gital

[16] K. Feher, Digital Commaunications: Satellite/Earth Station Engineering. .

Prentice-Hall, Englewood Cliffs,- NJ, 1983.

[17] G. D. Forney, Jr.; “The Vlterbl a.lgorlthm,” Proc IE'EE vol. 61 PP 268—
March, 1973 S - R !

278,

[18] G D Forney, Jr. R G. Ga.l]ager G. R Lang, _F M. Longstaff and S. U. Qureshi,
' “Efficient modulatlon for band-limited channels,” IEEE J Select Areas (*Om-

mun.; vol. SAC-2, pp. 632-647, Sep. 1984.

[19] F. Fupno, Y. Moritani, M. Mlya,ke K. Murakami, Y. Sakato and H. Shnno,

“A 120Mbit/s 8-PSK modern with soft-decision Vlterbl decoder,” Proc. 7th
Conf. on Digital Satellzte Commumcatzons, ICDS-7, pp. 315 321, Mumch
12 16,.1986.

[20] R. G. Gallager lnformatzon Theory and Relzable C’ommumcatzon Wlley,
York 1968 ‘ :

Int.
May

New _

[21] P W Glynn and D. L. Iglehart “Importance samplmg for stochastlc 51mu1a- ‘

thIlS Management Sczence vol. 35, pp. 1367 1392 1989

, [22] S. A. Gronemeyer and A. L. McBrlde, “MSK and Offset QPSK Modulatr

IEEE Tmns Commun vol. COM-24, pp. 809- 820 Aug 1976

[23] T. T Ha ngztal Satellzte C’ommunzcatzons, 2nd ed McGraw-Hlll New York,,

:1990. .

[24] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods Chapman
Hall New York 1964 Vi e e

| [25] P M Hahn and M C. Jeruchlm “Developments in the theory and apphca ion
of 1mportance samphng,” IEEE Trans. C’ommun vol COM 35 pp. T06-714,

July, 1987

on,”

i

and




162

[26] A Heller and I. M. Jacobs, “Viterbi decoding for satellite and space communi- |
cation,” IEEE Trans. Commun., vol. COM-19, pp. 835-848, Oct. 1971.

[27] D. L. Hedderly and L. Lundauist ‘Com‘puter simulation of a'digital satellite
communications link,” IEEE Trans. Commun vo] COM-21, pp. 321-325, April
1973.

v[28]‘ M. A. Herro and'J . M. Nowack; “Simulated Viterbi decoding using‘importance
sampling,” IEE PrOceedings' vol. 135, pt. F.; ‘no.‘ 2, pp- 133-142, April 1988.

[29] P. Hetrakul and D."P. Taylor, “The effects of transponder nonlmearlty on binary
CPSK 81gnal transmission,” IEEE Trans. Commun., Vol COM 24, pp. 546-553,
May 1976. .

(30] IM‘SL, Inc.; SFUN/LIBRARY User’s Manual, \}ersion 2.0. IMSL; Houston‘, 1987. |

[31] M. C. Jeruchim, “Techniques for estimating the bit error rate in the simulation
of digital communication systems,” IEEFE J. Select. Areis Commun., vol. SAC-2,
pp- 153-170, Jan. 1984.

[32] M. C. Jeruchim, P. M. Hahn, K. P. Smyntek and R. T Ray, “An experimenfal
investigation of conventional and efficient importance sampling,” IEEE Trans

Commun vol COM 37 PP- 578 587 June 1989

[33] G. W Lank, | “Theoretical aspects of- 1mportance sampling ‘applied to false
alarms,” IEEE Trans. Inform. Theory, vol. IT-29, pp. 73-82, Jan 1983.

[34] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applzcatzons
Prentlce Hall Englewood Cliffs, NJ, 1983. i : :

[35] D. G. Luenberger LGear and Nonlinear Programmzng, 2nd ed AddlSOIl Wesley,
. Reading, MA, 1984. :

- [36] D. Lu and K. Yao, “Improved importance sampling technique for efficient simu-
lation of digital communication systems,” IEEE J. Select. Areas Commun., vol. -
SAC 6, pp. 67-75, Jan. 1988. '

'[37] D. Lu and K. Yao, “Estimation variance bounds of importance sampling simu-
lations in digital communication systems,” to appear in IEFEE Trans. Commun.

[38] M. A. Marsan, S. Benedétto, E. Biglieri, V, Castellani M. Elia, L. L. Presti
and M. Pent, “Digital simulation of communication systems with TOPSIM I11,”
IEEE J. Select. Areas Commun., vol. SAC-2, pp. 29-42, Jan. 1984.

‘ [39] G. Orsak and B. Aazhang, “On the theory of importance sampling applied to
- the analysis of detection systems,” IEEE Trans. Commun vol COM-37, pp.
332-339, Apr11 1989



1'[40] G Orsak and B Aa7hang, Constralned solutlons in lmportance samplmg via
robust statlstlcs,” IEEE Trans. on Inform Theory, vol. IT 37, pp 307 316 Mar_.
1991 SR o i

B [41] L C. Palmer “Computer modelmg and srmulat1on of commumcatrons satelllte S
' channels ” IEEE'J Select. - Areas Commun vol. SAC2 PP 89 102 Jan 1$l84 o

[42] S. Parekh and J. Walrand “A quick s1mulatxon method for excessive backlogs
"in networks of queues » IEEE Trans. Auto C’ontrol vol AC 34 pp 54—66 an.
1989 . t

" [ 3} J. G. Proakls ngztal Communzcatzons 2nd ed McGraw Hlll New York 1989.

g [ ] M Rouanne and D. 1. Costello, Jr “An algorlthm for computmg the dlstancef. -

spectrum ‘of trellis codes 7 IE'E'E' J Select Areas C’ommun vol SAC 7, pp
929 940 Aug 1989 : , 3

[45] R Y Rubmstem Szmulatzon and the Monte Carlo Method Wlley, New Yor‘k,-
S 198l L o '

[46] J S. Sadowsl\y,’ “A new method of Viterbi decoder s1mulat10n us1ng rmportance )
' samphng,” IEEE Trans on Commun vol COM 38 pp 1341 1351 Sep 1990

o [47] J. S Sadowsky,y “Large devratlons theory and eﬂiaent srmulatron of excesswe
backlogs in a G /G1/m queue,” to appear in: IEEE Trans Auto Control specral
. ,llssue on queuemg systems ; o , L

: [48] Ji S Sadowsky and R K Bahr, “Dlrect sequence spread spectrum multlple-
- access communications with random signature - sequences: - a large deviations -

V‘A“analysxs,” IEEE Trans Inform Theory, vol. IT-37 pp 514 527 May 1991.

[49] J S Sadowsky and J A Bucklew “On large devratlons theory and asymptot-'
0 ically efﬁclent Monte Carlo estimation,” IEEE Trans on. Inform Theory, vol..
L 'IT 36, pp 579—588 Mar 1990 ' - .

‘ [50‘] S M Schetzen, “The Volterra a.nd Wiener Theorles of Nonlmear Systems Wi-
' ley, New York 1980 : . o

o [51] C Schlegel “Evaluatmg distance spectra and performance bounds of trelhs codes

~on channels with intersymbol interference,” IEE'E' Trans on Inform Theory, vol.
IT 37 pp 627 634, May 1991. L ES

n [52] H J Schulebusch “On the asymptotical efﬁc1ency of 1mportance samphng tech4
L mques preprmt m review in- IEE'E Trans. on Inform Theory o

[53] K S Shanmugan and P Balaban “A modlﬁed Monte Carlo srmulatlon techmque‘

o the’ evaluatlon of error rate in dlgltal commumcat]ons systems ? IEE'E' Transf
Commun vol COM 28, pp 1916-1924, Nov. 1980




164

f[54] Spec1al issue on comblned modulatlon and codlng, IEEE' Trans Commun voI :
COM 29, Mar. 1981. - . : .

[55] 3. J Spilker, ngztal Communzcatzons by Satellzte Prentlce Hall Englewood
Chffs NJ 1977 . :

[56] M. L. Stemberger P Balaban and K. S. Shanmugan ‘On the effect of uplmk ‘
- noise on'a nonhnear digital satellite channel,” Proc. Int Conf on. Communzca-
tzons, ICC- 7, pp. 299-304, Munich, May 12-16, 1986

[57] G. Ungerboeck “Channel coding with multﬂevel/phase mgnals,” IEE'E Trans
Inform Theory, vol. IT- 28, pp. 55-67, Jan. 1982 . A

'[58] G Ungerboeck “Trelhs coded modulatlon with redundant 81gnal sets — Part I
Introduction’ and Part II: State of the art,” IEE'E Commun Mag " vol 25 pp
_ 5-21, Feb. 1087, EE

- [59] G Ungerboeck J. Hagenauer and T. Abdel- Nabl, “Coded. 8 PSK experlmen—
- tal modem for the INTELSAT SCPC system,” Proc. 7th Int. Conf on ngztal
Satelhte Commumcatzons ICDS 7 PP 299-304, Munlch May ]2 16 1986 '

[60] G Ungerboeck and L. Csagka, “ On improving data—hnk performance by increasing
_the channel alphabet and introducing sequence coding,” Proc. 1 976 IEEE Int
Symp Inform Theory, P- 53 Ronneby, Swedcn June 1976 '

5'[61] . L Van Trees Satellzte Commumcatzons IEEE Press New York 1979.

,[62] A.J Vlterbl, “Error bounds for convolutional: codes and an asymptotlcally opti-.

‘mum decodmg algonthm,” IEEE Trans. Inform Theory, vol IT- 13 pp 260~ 269
Aprll 1967 o AR T .

(63] A J. Vlterbl, “Convolutlonal codes and their performance in communlcatlon ‘
systems,” IEEE Trans. Commun Technol -vol. COM- 19 Oct. 1971.-

"[64] ALl V1terb1 andJ K. Omura Prznczples of ngztal Commumcatzons and C’odmg
McGraw-Hill, New York 1979. v , o

[65] A. J Vlterbl and A. M Vlterbr “Nonlinear estlmatlon of PSK modula,ted car- .
rier phase with application to burst digital transrmssron‘,” IEEE Trans. Inform
Theory, vol IT- 29 pp 543-551, July, 1983 ‘

[66] L. F. We1 : “Trelhs coded modulation w1th multldlmenswnal constellatlons
IEEE Trans Inform Theory, vol. IT-33, Pp- 483 501 July, 1987

[67] L F. Wel, “Rotatlonally 1nva,r1ant convolutlonal cha,nnel codmg w1th expanded
s1gna1 space — Part I: 180 degree and Part II: Nonhnear codes " IEEE J Select:
Areas Commun , vol. SAC 2, pp. 659-686, Sep 1984 SR



165

' [68] S B .Weinstei‘h“" Estirﬁatio’n of small prdb’abilities'by'lin‘ea'riz'atioﬁ"of the ftail
‘of the probability distribution function,” IEEE Trans. Commun Technol vol.
COM 19 Dec 1971.. ‘

- i[69]' S. B. Wemstem Theory and application of some classmal and generahzed, .
- asymptotic distributions of extreme values,” IE'E'E' Trans Inform Theory, vol.
~ IT-19, Mar. 1973 :

'[70] R. J. Wolfe; M. C. Jeruchim and P. M. Hahn, “On optlmum and suboptlmum ‘
- 'biasing procedures for importance sampling in communication simulation,” IKEE

‘Trans Commun Vol COM 38, pp. 639 647 May 1990

-7} E Zehavi and J. K. Wolf “On the performance evaluation of trelhs codes IEEE
. Trans. Inform Theory, vol. IT- 33 pp- 196-202, Mar. 1987+ v

[72] R. E. Ziemer and R. L. Peterson, Digital Commumcatzons and Spread Spectrum
_ ‘Systems Macmlllan New York, 1985. . ’ ' ’




APPENDICES




166

A. Sample Simulation Data for the Convolutional Code

Table A.1 is an output of the modified RC Algorithm for the conVolutional code

example in Section 5.3.1 with the Hamming weight of codewords d(O0, e) < 10. This
is also the input data file required by the importance sampling smlulatlon program.

Table A.2 shows a sample 1mp0rtance samplmg simulation output. data for the above "

code at the signal-to-noise ratlo Eb/No = 5.5 dB. The final bit error rate _estlmate S

is computed by (5.21) and the result is Pr=o. 200562E—05 Est. (Var*[f‘)bf«])l/z;:_
0.755697E-07 and 1/e = 26.54. : : : .



Table A1 The IS simulation input data file, d(0,e) S 10.

—.

L
S

| e

o o o o e el

s
'O

e
|
'E*Q:io.;_,“

o © @ o o e -1 -1

a--a

971110100111

f1101000000010111

‘| 110100111001
7,,111001000001001011 |

[ 110100000010000001001011

- 11011101001011 R
*,‘11010000110001001011
'[,511100100001010001011 e
711010000001000001010001011 .
'¢;f11100111010111 R

R T L = N 2 S SR T Rt Xy S

o
dul
\11_
Rig
u

= |-—l
==

=
<@

':.»— S S Y
oo e

b
S

jf1110101001100111neg~~?
i‘,'1101111010001011‘7"'“

| 111010000010000121
| t11010000001011010111
r:ff11100100110000010111 e
| 1110010000100110001011;;  f{ff}: |
1101000000011001100111 -~
1110101010000000010111' 1; 57“
'A.1101000011001010001011"ﬁg3fﬁf; x, 
110100000001010010100111 ||~

o2

B v
s |
Ju|

,'111010010001000000010111 s
v‘f11010000001000110000010111 e
| 11010000001000001001 10001011 ||
’ '1101000000011010000000010111;;J

<

' f110100000001010001000000010111 S

ler




Table A.2 A sample result of the convoliutio'nal cod‘e\ éimﬁlation;"
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 # | nu(e) [ d(0,) | % e decoded | Pr(e]0) | Est. (var[P*(ef0)])” | 1/e
1| 1 7 50 0.3226E-06 0.2341E-07 13.78 |
2| 3 7 52 0.2836E-06 0,2177E-07 13.26
3| 2 8 51 0.4900E-07 | 0.3927E-08 12.50
4| 1 8 50 | 0.5273307 0.4073E-08 12.94
5| 6 g 48 |04662E-07 |  0.3831E-08 12.17
6| 3 9 48 0.7068E-08 0.5906E-09 11.97 |
7| 5 9 48 0.6773E-08 | 0.5046E-09 | 1139 |
s| 5 | 9 52 |0.7000B-08 |  0.5756F-09 12.16 |
9| 7 9 47 0.7338E-08 0.6116E-09 12.00
10| 2 | 10 a7 0.1411E-08 | 0.1173E-09 12.03
1) 2 | 10 48 0.1127E-08 0.9939E-10 | 11.34
120 4 | 10 48 | 0.1164E-08 0.1055E-09 11.03
13| 2 | 10 5 | 0.1150E-08 0.1019E-09 11.29
14 4 | 10 48 0.1199E-08 | 0.1036E-09 11.57
5 4 | 10 46 | 0.1141E-08 0.9965E-10 11.45
16| 6 | 10 50 0.1380E-08 0.1110E-09 12.43
17| 4 | 10 47 0.1082E-08 0.9783E-10 11.06
18] 4 | 10 48 0.1080E-08 0.9313E-10 11.59
190 6 | 10 47 0.1316E-08 | 0.1094E-09. 12.03
20| 4 | 10 46 0.1158E-08 | 0.1011E-09 11.46
21| 4 | 10 48 0.1311E-08 | 0.1091E-09 12.01
22| 6 | 10 47 0.1217E-08 0.1034E-09 11.77
20 8 | 10 49 0.1165E-08 | 0.1023E-09 11.39
24 6 | 10 51 0.1222E-08 0.1061E-09 11.52
250 6 | 10 47 01137E-08 | 0.9735E-10 11.68



= BJ r Sampvle_,S'iihulation‘Datat"for the':QuéLsi-Regu"lar T‘CM’Cod‘e

Table B 1 is an, output of the modlﬁed RC Algorlthm for the quasx regular TL,M R

: samphng s1mu1at10n whlch shows in more detall the Vlterbl Algorlthm and the error s

' event mmulatxon method Table B.2. presents a sample n’nportance samphng sunula— T

[

icode example 1n Sectlon 5 3 2 and the worst -case dlstance of mgnal selector el'r'or_f'.:'

' sequerices d2 (e) < 5. 7574 Fxgure B.1 is a program ﬂow chart for the 1mportance' _

tion output data for the above code at the sxgnal to-noise ratlo Es/Ng=9.5 dB ‘The

lndex number in the ﬁrst column for an error sequence eis a one—to—one correspon— =

dence to that in Table B.1..The ﬁnal P. and Pb estlmates are

Pr = 0.280688E-05

o () = 0.622554B-07
e = oo
A& = oestiaeEos
T CartB)™ = onastoanos
e o= 4285 .
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Table B.1 The IS siinulation‘input data file with 18 €% and d2(e) < 5.7574.

) [ue) [ @) [e
1] 3 | 4 |5176 |6172
2| 4 | 4 |51716 (6336
3| 3 | 5 |5176|20132
| 4| 4 | 5 |5176|20376
51 5 | 6 |s1716 207016
6] 5 | 7 |5.1716 | 6700012
7] & | 5 |s7574 61332
8| 5 | 5 |57574 61176
9| 5 | 5 |57574 | 63772
0] 4 | 6 |57574 | 201732
1l 5 | 6 |57574 | 203372
12| 6 | 6 |57574 203136
13 6 | 7 |5.7574 (2011016
14| 7 | 7 |5.7574 | 2070736
15| 7 | 8 |5.7574 67000776 ||
16| 7 | 8 |5.7574 | 63100012
17| 8 | 9 |5.7574 | 670003016
18| 8 | 10 |5.7574 | 2070300012
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_ Table B2 A sample result of the TCM code simulation.
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