23,453 research outputs found

    Exact Recovery Conditions for Sparse Representations with Partial Support Information

    Get PDF
    We address the exact recovery of a k-sparse vector in the noiseless setting when some partial information on the support is available. This partial information takes the form of either a subset of the true support or an approximate subset including wrong atoms as well. We derive a new sufficient and worst-case necessary (in some sense) condition for the success of some procedures based on lp-relaxation, Orthogonal Matching Pursuit (OMP) and Orthogonal Least Squares (OLS). Our result is based on the coherence "mu" of the dictionary and relaxes the well-known condition mu<1/(2k-1) ensuring the recovery of any k-sparse vector in the non-informed setup. It reads mu<1/(2k-g+b-1) when the informed support is composed of g good atoms and b wrong atoms. We emphasize that our condition is complementary to some restricted-isometry based conditions by showing that none of them implies the other. Because this mutual coherence condition is common to all procedures, we carry out a finer analysis based on the Null Space Property (NSP) and the Exact Recovery Condition (ERC). Connections are established regarding the characterization of lp-relaxation procedures and OMP in the informed setup. First, we emphasize that the truncated NSP enjoys an ordering property when p is decreased. Second, the partial ERC for OMP (ERC-OMP) implies in turn the truncated NSP for the informed l1 problem, and the truncated NSP for p<1.Comment: arXiv admin note: substantial text overlap with arXiv:1211.728

    Coherence-based Partial Exact Recovery Condition for OMP/OLS

    Get PDF
    We address the exact recovery of the support of a k-sparse vector with Orthogonal Matching Pursuit (OMP) and Orthogonal Least Squares (OLS) in a noiseless setting. We consider the scenario where OMP/OLS have selected good atoms during the first l iterations (l<k) and derive a new sufficient and worst-case necessary condition for their success in k steps. Our result is based on the coherence \mu of the dictionary and relaxes Tropp's well-known condition \mu<1/(2k-1) to the case where OMP/OLS have a partial knowledge of the support

    Relaxed Recovery Conditions for OMP/OLS by Exploiting both Coherence and Decay

    Full text link
    We propose extended coherence-based conditions for exact sparse support recovery using orthogonal matching pursuit (OMP) and orthogonal least squares (OLS). Unlike standard uniform guarantees, we embed some information about the decay of the sparse vector coefficients in our conditions. As a result, the standard condition μ<1/(2k1)\mu<1/(2k-1) (where μ\mu denotes the mutual coherence and kk the sparsity level) can be weakened as soon as the non-zero coefficients obey some decay, both in the noiseless and the bounded-noise scenarios. Furthermore, the resulting condition is approaching μ<1/k\mu<1/k for strongly decaying sparse signals. Finally, in the noiseless setting, we prove that the proposed conditions, in particular the bound μ<1/k\mu<1/k, are the tightest achievable guarantees based on mutual coherence

    Inferring Rankings Using Constrained Sensing

    Full text link
    We consider the problem of recovering a function over the space of permutations (or, the symmetric group) over nn elements from given partial information; the partial information we consider is related to the group theoretic Fourier Transform of the function. This problem naturally arises in several settings such as ranked elections, multi-object tracking, ranking systems, and recommendation systems. Inspired by the work of Donoho and Stark in the context of discrete-time functions, we focus on non-negative functions with a sparse support (support size \ll domain size). Our recovery method is based on finding the sparsest solution (through 0\ell_0 optimization) that is consistent with the available information. As the main result, we derive sufficient conditions for functions that can be recovered exactly from partial information through 0\ell_0 optimization. Under a natural random model for the generation of functions, we quantify the recoverability conditions by deriving bounds on the sparsity (support size) for which the function satisfies the sufficient conditions with a high probability as nn \to \infty. 0\ell_0 optimization is computationally hard. Therefore, the popular compressive sensing literature considers solving the convex relaxation, 1\ell_1 optimization, to find the sparsest solution. However, we show that 1\ell_1 optimization fails to recover a function (even with constant sparsity) generated using the random model with a high probability as nn \to \infty. In order to overcome this problem, we propose a novel iterative algorithm for the recovery of functions that satisfy the sufficient conditions. Finally, using an Information Theoretic framework, we study necessary conditions for exact recovery to be possible.Comment: 19 page

    A* Orthogonal Matching Pursuit: Best-First Search for Compressed Sensing Signal Recovery

    Full text link
    Compressed sensing is a developing field aiming at reconstruction of sparse signals acquired in reduced dimensions, which make the recovery process under-determined. The required solution is the one with minimum 0\ell_0 norm due to sparsity, however it is not practical to solve the 0\ell_0 minimization problem. Commonly used techniques include 1\ell_1 minimization, such as Basis Pursuit (BP) and greedy pursuit algorithms such as Orthogonal Matching Pursuit (OMP) and Subspace Pursuit (SP). This manuscript proposes a novel semi-greedy recovery approach, namely A* Orthogonal Matching Pursuit (A*OMP). A*OMP performs A* search to look for the sparsest solution on a tree whose paths grow similar to the Orthogonal Matching Pursuit (OMP) algorithm. Paths on the tree are evaluated according to a cost function, which should compensate for different path lengths. For this purpose, three different auxiliary structures are defined, including novel dynamic ones. A*OMP also incorporates pruning techniques which enable practical applications of the algorithm. Moreover, the adjustable search parameters provide means for a complexity-accuracy trade-off. We demonstrate the reconstruction ability of the proposed scheme on both synthetically generated data and images using Gaussian and Bernoulli observation matrices, where A*OMP yields less reconstruction error and higher exact recovery frequency than BP, OMP and SP. Results also indicate that novel dynamic cost functions provide improved results as compared to a conventional choice.Comment: accepted for publication in Digital Signal Processin

    Identification of Matrices Having a Sparse Representation

    Get PDF
    We consider the problem of recovering a matrix from its action on a known vector in the setting where the matrix can be represented efficiently in a known matrix dictionary. Connections with sparse signal recovery allows for the use of efficient reconstruction techniques such as Basis Pursuit (BP). Of particular interest is the dictionary of time-frequency shift matrices and its role for channel estimation and identification in communications engineering. We present recovery results for BP with the time-frequency shift dictionary and various dictionaries of random matrices

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem
    corecore