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Exact Recovery Conditions for Sparse Representations

with Partial Support Information
C. Herzet⋆, C. Soussen, J. Idier, and R. Gribonval

Abstract—We address the exact recovery of a k-sparse vector in

the noiseless setting when some partial information on the support is

available. This partial information takes the form of either a subset of the

true support or an approximate subset including wrong atoms as well. We
derive a new sufficient and worst-case necessary (in some sense) condition
for the success of some procedures based on ℓp-relaxation, Orthogonal

Matching Pursuit (OMP) and Orthogonal Least Squares (OLS). Our
result is based on the coherence µ of the dictionary and relaxes the well-

known condition µ < 1/(2k − 1) ensuring the recovery of any k-sparse

vector in the non-informed setup. It reads µ < 1/(2k− g+ b− 1) when

the informed support is composed of g good atoms and b wrong atoms.

We emphasize that our condition is complementary to some restricted-
isometry based conditions by showing that none of them implies the
other.

Because this mutual coherence condition is common to all procedures,

we carry out a finer analysis based on the Null Space Property (NSP)
and the Exact Recovery Condition (ERC). Connections are established
regarding the characterization of ℓp-relaxation procedures and OMP in

the informed setup. First, we emphasize that the truncated NSP enjoys
an ordering property when p is decreased. Second, the partial ERC for

OMP (ERC-OMP) implies in turn the truncated NSP for the informed
ℓ1 problem, and the truncated NSP for p < 1.

Index Terms—Partial support information; ℓp relaxation; Orthogonal

Matching Pursuit; Orthogonal Least Squares; mutual coherence; k-step

analysis; exact support recovery.

I. INTRODUCTION

Sparse representations aim at describing a signal as the com-

bination of a few elementary signals (or atoms) taken from an

overcomplete dictionary A. In particular, in a noiseless setting, one

wishes to find the vector with the smallest number of non-zero

elements satisfying a set of linear constraints, that is

min ‖x‖0 subject to Ax = y, (P0)

where A ∈ R
m×n, x ∈ R

n, y ∈ R
m. Unfortunately, problem (P0)

is of combinatorial nature and, therefore, its resolution reveals to be

intractable in most practical settings [1].

In order to address this issue, suboptimal (but tractable) algorithms

have been proposed in the literature. Among the most popular pro-

cedures, let us mention: i) the algorithms based on the ℓp-relaxation

of the ℓ0 pseudo-norm; ii) the greedy algorithms, seen as suboptimal

discrete search algorithms to address (P0). On the one hand, the ℓp
relaxation of (P0) can be expressed as

min ‖x‖p subject to Ax = y, (Pp)
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with p ∈ (0, 1]. Practical implementations of (P1), also named

Basis Pursuit [2] can be done optimally using linear programming

algorithms, see e.g., [3]; suboptimal procedures looking for a solution

of (Pp) with p ∈ (0, 1) are for example derived in [4], [5].

On the other hand, (forward) greedy procedures build a sparse

vector by gradually increasing the active subset starting from the

empty set. At each iteration, a new atom is appended to the active

subset. Standard greedy procedures include, by increasing order of

complexity, Matching Pursuit (MP) [6], Orthogonal Matching Pursuit

(OMP) [7], Orthogonal Least Squares (OLS) [1], [8] and variants

thereof, namely regularized OMP [9], weak OMP [10], stagewise

OMP [11], etc.

In this paper, we focus on a variation of the sparse representation

problem in which the decoder has some information (possibly erro-

neous) about the support of the sparse vector. This new paradigm has

recently been introduced independently in several contributions and

finds practical and analytical interests in many setups.

In [12]–[17], the authors focussed on the problem of recovering a

sequence of sparse vectors with a strong dependence on their sup-

ports. This type of settings occurs for example in video compression

or dynamic magnetic resonance imaging where the supports of the

sought vectors commonly evolve slowly with time. More specifically,

this set of papers focusses on an ℓ1-relaxation of the following

problem (or some slightly different variants thereof):

min
x

‖xQ̄‖0 subject to Ax = y, (P0,Q)

where Q is an estimate of the sought support and xQ̄ represents the

vector made up of the elements of x whose index is not in Q.

More generally, the paradigm of sparse representation with side

support information is of interest when some of the coefficients of the

sparse decomposition can be easily identified a priori. For example,

as mentioned in [15], in wavelet image processing, the coefficients

weighting the scaling functions are likely to be non-zero and this

information should be (ideally) taken into account in any processing.

It also happens in many practical situations that some coefficients

of the sparse decomposition (typically those with high amplitudes)

can be identified by simple thresholding. This observation is the

essence of the algorithm proposed in [18] where the authors look for

a solution of (P0) by successively applying thresholding operations

on the solution of ℓ1-relaxations of (P0,Q) to obtain a sequence of

refined support estimates.

A slightly different, but related, perspective was considered in [19]

for OMP and in [20] for both OMP and OLS. In these papers,

the authors derived guarantees of success for OMP and OLS by

assuming that atoms belonging to some subset Q have been selected

during the first iterations. The goal of such approaches is to provide

a finer analysis of OMP/OLS at intermediate iterations by noting

that the standard uniform recovery conditions ensuring the success

of OMP/OLS from the first iteration are rather pessimistic. It is quite

obvious that the conditions derived in these papers also apply to

situations where OMP/OLS are initialized with support Q (rather than

with the empty support). In the sequel, we will refer to this variant of

OMP (resp. OLS) as OMPQ (resp. OLSQ). Clearly, OMPQ/OLSQ
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can be understood as greedy procedures looking for a solution of

(P0,Q).

In this paper, we derive uniform recovery conditions for

OMPQ/OLSQ and ℓp-relaxed versions of (P0,Q) in the paradigm of

partially-informed decoders. Our conditions are valid for y = Ax⋆

where x⋆ is any k-sparse vector. Let us briefly summarize the related

literature.

First, generalizing the well-known “Null-Space Property” (NSP)

derived in [21], the authors of [17], [18], [22] proposed a “truncated”

NSP, which is a sufficient and worst-case necessary condition for the

success of

min
x

‖xQ̄‖p subject to Ax = y, (Pp,Q)

with p ∈ [0, 1]. Secondly, in [14]–[16], a series of sufficient condi-

tions based on restricted isometry constants (RICs) were proposed to

guarantee the success of (P1,Q) (or some variants thereof).

Concerning OMPQ/OLSQ, the authors in [20] derived a partial

“Exact Recovery Condition” (ERC) extending Tropp’s ERC to the

partially-informed paradigm considered in this paper. The extended

condition was shown to be sufficient but also worst-case necessary

for the success of OMP/OLS when some support Q has been selected

at an intermediate iteration. In [19], the authors proposed a sufficient

condition based on RICs and depending on the number of “good”

and “bad” atoms selected in Q, that is the number of elements of Q
which are (resp. are not) in the support of x⋆.

In this paper, we derive a new simple recovery guarantee for

OMPQ, OLSQ and (Pp,Q) for p ∈ [0, 1]. Our condition only depends

on the mutual coherence of the dictionary µ and the number of good

and bad atoms selected in the estimated support Q:

µ <
1

2k − g + b− 1
, (1)

where g (resp. b) denotes the number of “good” (resp. “bad”) atoms

in Q. We show that (1) is sufficient for the success of (Pp,Q) with

p ∈ [0, 1], OMPQ and OLSQ. We emphasize moreover that (1) is

worst-case necessary in the following sense: there exists a dictionary

A with µ = 1
2k−g+b−1

, a combination y of k columns of A and a

support Q containing g good and b bad atoms such that neither (Pp,Q)

nor OMPQ/OLSQ can recover x⋆. Our condition generalizes, within

the informed paradigm, the well-known condition µ < 1
2k−1

ensuring

the success of Basis-Pursuit and OMP/OLS in the standard setup,

see e.g., [21], [23], [24]. In particular, we see that if the informed

support Q contains more than 50% of good atoms, (1) leads to a

weaker condition than its standard counterpart.

Although ensuring the success of (Pp,Q) and OMPQ/OLSQ, con-

dition (1) does not allow for a discrimination of the performance

achievable by these algorithms. In order to address this question, we

analyze some connections existing between the conditions previously

proposed in the literature. First, we show that the truncated NSP

derived in [17], [18], [22] enjoys a nesting property, namely: if the

truncated NSP is satisfied for some p ∈ [0, 1], then it is also verified

for any other q ∈ [0, p]. From a worst-case point of view, this result

tends to show that the resolution of (Pp,Q) with p ∈ [0, 1) is more

favorable than ℓ1-based approaches1. In particular, as a corrolary of

this result, we have that all uniform conditions previously proposed

for (P1,Q) also guarantee the success of (Pp,Q) with p ∈ [0, 1).
Second, we establish that the partial ERC derived in [20] for OMPQ
is also a sufficient condition of success for (P1,Q). This generalizes

the result derived by Tropp in the standard (non-informed) setup [23]

to the partially-informed context considered in this paper. On the

1We note however that, unlike the convex ℓ1 problem, reaching the global
minimum of ℓp problems is not guaranteed in practice.

other hand, we emphasize that, unlike in the standard setup, such a

connection does not hold between (P1,Q) and OLSQ.

Finally, we also study the connection between the proposed

coherence-based condition (1) and some RIC-based conditions previ-

ously proposed in the context of orthogonal greedy algorithms. First,

we illustrate the complementarity of (1) with the RIC guarantees

proposed in [19] for OMP. We emphasize that no condition implies

the other one. Secondly, we show that the RIC condition proposed in

[19] for the success of OMPQ also enjoys a form of quasi-tightness

for both OMPQ and OLSQ.

The rest of this paper is organized as follows. In section II, we set

the notations that will be used throughout the paper. In section III,

we review the main expressions defining the recursions of OMP/OLS

and briefly discuss their application to the informed problem (P0,Q).

Our contributions and their positioning within the current state of the

art are discussed in section IV. Finally, the remaining sections and

appendices are dedicated to the proofs of our results.

II. NOTATIONS

The following notations will be used in this paper. 〈 . , . 〉 refers to

the inner product between vectors and ‖ . ‖ stands for the Euclidean

norm. ‖ . ‖p with 0 ≤ p ≤ 1 will denote the ℓp (pseudo) norm. Of

particular interest, the ℓ0 pseudo norm, ‖ . ‖0 , counts the number of

non-zero elements in its argument. With a slight abuse of notation

and for the sake of conciseness in some of our statements, we will

assume that ‖ . ‖00 , ‖ . ‖0. We will use the notation X† to denote

the pseudo-inverse of a matrix X. For a full-rank and undercomplete

matrix X, we have X† = (XTX)−1XT where .T stands for the

matrix transposition. When X is overcomplete, spark(X) denotes

the minimum number of columns from X that are linearly depen-

dent [25]. 1m (resp 0m) denotes the all-one (resp. all-zero) vector

of dimension m× 1. Im is the m×m identity matrix. Caligraphic

letters (as Q, R, S, etc) will be used to denote some subsets of

indices of the columns of the dictionary; the complementary of these

sets in {1, . . . , n} will be denoted as Q̄, R̄, S̄, etc. In the main

body of the paper, we will usually reserve the specific notations Q
and Q⋆ for, respectively, the informed support and the support of

the sought sparse vector. XQ is the submatrix of X gathering the

columns indexed by Q. For vectors, xQ denotes the subvector of x

indexed by Q. We will denote the cardinality of Q as |Q|. We use

the same notation to denote the absolute value of a scalar quantity.

Given a subset of the columns of the dictionary AQ ∈ R
m×|Q|,

PQ = AQA
†
Q and P⊥

Q = Im−PQ denote the orthogonal projection

operators onto span(AQ) and span(AQ)⊥, where span(X) stands

for the column span of X, span(X)⊥ is the orthogonal complement

of span(X). rQ = P⊥
Qy = y − PQy denotes the data residual

induced by the orthogonal projection of y onto span(AQ). Finally,

we will use the notation ker(X) , span(XT )⊥ to denote the null

space of X; ker0(X) is the null-space of X minus the all-zero vector.

III. OMP AND OLS

In this section, we recall the selection rules defining OMP and

OLS, and discuss their application to the support-informed problem

(P0,Q). Throughout the paper, we will use the common acronym Oxx

in statements that apply to both OMP and OLS.

First note that any vector x satisfying the constraint in (P0) must

have a support, say Q̃ = {i |xi 6= 0}, such that P⊥
Q̃y = 0m since

y must belong to span(AQ̃). Hence, problem (P0) can equivalently

be rephrased as

min
Q̃

|Q̃| subject to P⊥
Q̃y = 0m. (2)
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Oxx can be understood as an iterative procedure searching for a

solution of (2) by generating a sequence of support estimates {Q(ℓ)}
as

Q(ℓ+1) = Q(ℓ) ∪ {j},
where

j ∈
{

argmaxi |〈ai, r
Q(ℓ)〉| for OMP

argmini ‖rQ
(ℓ)∪{i}‖ for OLS,

(3)

rQ
(ℓ)

, P⊥
Qℓy is the current data residual and ai is the ith column

of A. More specifically, Oxx adds one new atom to the estimated

support at each iteration: OLS selects the atom minimizing the

norm of the new residual rQ
(ℓ)∪{i} whereas OMP picks the atom

maximizing the correlation with the current residual.

Oxx is commonly initialized with the empty set, i.e., Q(0) = ∅.

However, when some initial estimate of the support, say Q, is

available, nothing prevents us from initializing Oxx with Q(0) = Q.

We will refer to this variant of Oxx as OxxQ
2. On the one hand, OxxQ

can readily be seen as a greedy procedure looking for a solution of

(P0,Q). On the other hand, the behavior of OxxQ can be understood

from a different perspective, namely the analysis of the standard Oxx

algorithm at an intermediate iteration. Indeed, let us assume that Oxx

has selected atoms in Q during the first |Q| iterations. Then, the next

step of Oxx will be identical to the first iteration of OxxQ. Although

we will mainly stick to the former vision hereafter, the results that will

be derived in the paper can be interpreted from these two perspectives.

In the sequel, we will often use a slightly different, equivalent,

formulation of (3) based on orthogonal projections. For some subset

of the column indices R, let us define

ã
R
i , P

⊥
Rai,

b̃
R
i ,

{

ãR
i /‖ãR

i ‖ if ãR
i 6= 0m

0m otherwise.

ãR
i denotes the projection of ai onto span(AR)⊥ whereas b̃R

i is

a normalized version of ãR
i . With these notations, (3) can be re-

expressed as

j ∈ argmax
i

|〈c̃Q(ℓ)

i , rQ
(ℓ)〉|, (4)

where

c̃
R
i ,

{

ãR
i for OMP,

b̃R
i for OLS.

The equivalence between (3) and (4) is straightforward for OMP by

noticing that rQ
(ℓ) ∈ span(AQ(ℓ))⊥. We refer the reader to [26] for

a detailed derivation of the equivalence for OLS.

In the sequel, we will use the notations ÃR , (ãR
1 ãR

2 . . . ãR
n ) ∈

R
m×n, B̃R , (b̃R

1 b̃R
2 . . . b̃R

n ) ∈ R
m×n and C̃R ,

(c̃R1 c̃R2 . . . c̃Rn ) ∈ R
m×n to refer to the matrices whose columns

are made up of the ãR
i ’s, b̃R

i ’s and c̃Ri ’s, respectively. When the set

of indices R corresponds to the informed support Q, we will usually

drop the dependence on R and use the simplified notations ãi, b̃i,

c̃i, Ã, B̃ and C̃.

IV. CONTEXT AND MAIN RESULTS

Let us assume that y is a linear combination of k columns of A

indexed by Q⋆, that is

y = Ax
⋆

with x⋆
i 6= 0 ⇔ i ∈ Q⋆, |Q⋆| = k. (5)

2Let us note that, at the first iteration of OxxQ, the residual is initialized

by rQ , P⊥
Qy, i.e., the data y are being projected onto span(AQ)⊥. In

other words, OxxQ behaves similarly with y or P⊥
Qy as input vector.

In this section, we review some standard conditions ensuring the

correct reconstruction of x⋆ (with and without partial information on

the support) and recast our contributions within these existing results.

We will use the following conventions: the atoms whose indices are in

Q⋆ will be referred to as “good” atoms whereas atoms whose indices

are not in Q⋆ will be dubbed “bad” atoms. If an initial estimate of

the support Q⋆ is available, say Q, we will denote by g , |Q⋆ ∩Q|
the number of good atoms in Q and by b , |Q̄⋆ ∩Q| the number of

bad atoms in Q. We will always implicitly assume that g < k since

otherwise the informed problem (P0,Q) becomes trivial. Finally, we

will suppose that the columns of A are normalized throughout the

paper.

Our contributions will be both at the level of OxxQ and (Pp,Q).
In the next subsection we will focus on the conditions pertaining

to Oxx and OxxQ whereas in subsection IV-B, we will describe

the guarantees associated to the success of (Pp) and (Pp,Q). Let

us mention that our contributions are uniform conditions derived

within the context of worst-case analyses. Hence, hereafter, we will

essentially limit our discussion to the contributions in this line of

thought.

Before proceeding, we recall the standard definitions of the re-

stricted isometry constant (RIC) and mutual coherence that will be

used in our discussion:

Definition 1 The k-th order restricted isometry constant of A is the

smallest non-negative value δk such that the following inequalities

(1− δk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk)‖x‖2

are verified for any k-sparse vector x.

Definition 2 The mutual coherence µ of a dictionary A is defined

as

µ = max
i 6=j

|〈ai,aj〉|.

A. Results and state-of-the-art conditions for Oxx and OxxQ

OMP has been widely studied in the recent years, including worst-

case [23], [27] and probabilistic analyses [28]. The existing exact

recovery analyses of OMP were also adapted to several extensions

of OMP, namely regularized OMP [9], weak OMP [10], and stagewise

OMP [11]. Although OLS has been known in the literature for a few

decades (often under different names [29]), exact recovery analyses

of OLS remain rare for two reasons. First, OLS is significantly more

time consuming than OMP, therefore discouraging the choice of OLS

for “real-time” applications, like in compressive sensing. Secondly,

the selection rule of OLS is more complex, as the projected atoms are

normalized. This makes the analysis of OLS more tricky. When the

dictionary atoms are close to orthogonal, OLS and OMP have similar

behaviors, as emphasized in [10]. On the contrary, for correlated

dictionaries (e.g., in ill-conditioned inverse problems), their behaviors

significantly differ and OLS may be a better choice [20]. The above

arguments motivate our analysis of both OMP and OLS.

Let us first rigorously define the notion of “success” that will be

used for OxxQ throughout the paper:

Definition 3 (Successful recovery) OxxQ with y defined in (5) as

input succeeds if and only if it selects atoms in Q⋆\Q during the

first k − g iterations.

In particular, this definition implies that OxxQ exactly reconstructs

x⋆ after k−g iterations, as long as AQ⋆∪Q is full rank. When Q = ∅,

OxxQ reduces to the standard implementation of Oxx. In this case,
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Definition 3 matches the classical “k-step” analysis encountered in

many contributions of the literature.

We will assume that, in special cases where the OxxQ selection

rule yields multiple solutions including a wrong atom, that is

max
i∈Q⋆

|〈c̃Q(ℓ)

i , rQ
(ℓ)〉| = max

i/∈Q⋆
|〈c̃Q(ℓ)

i , rQ
(ℓ)〉|, (6)

OxxQ systematically makes a bad decision. Hence, situation (6)

always leads to a recovery failure.

Let us mention that the notion of successful recovery may be

defined in a weaker sense than in Definition 3: Plumbley [30,

Corollary 4] first pointed out that there exist problems for which

“delayed recovery” occurs after more than k steps. Specifically, Oxx

can select some wrong atoms during the first k iterations but ends up

with a larger support including Q⋆ with a number of iterations slightly

greater than k. In the noise-free setting (for y ∈ span(AQ⋆)), all

atoms not belonging to Q⋆ are then weighted by 0 in the solution

vector (under some full-rank assumptions). Recently, a delayed

recovery analysis of OMP using restricted-isometry constants was

proposed in [31] and then extended to the weak OMP algorithm

(including OLS) in [10].

To some extent, the definition of success considered in this paper

also partially covers the setup of delayed recovery. Indeed, keeping

in mind that OxxQ can be understood as a particular instance of

Oxx in which atoms in Q have been selected during the first g + b
iterations, any condition ensuring the success of OxxQ in the sense

of Definition 3 also guarantees the success of Oxx in k+ b iterations

as long as atoms in Q are selected during the first g + b iterations.

Conditions under which g good and b bad atoms are selected during

the first iterations are however not discussed in the rest of the paper.

Regarding k-step analyses, the first thoughtful theoretical study of

OMP is due to Tropp, see [23, Th. 3.1 and Th. 3.10]. Tropp provided

a sufficient and worst-case necessary condition for the exact recovery

of any sparse vector with a given support Q⋆. The derivation of a

similar condition for OLS is more recent and is due to Soussen et al.

in [20]. In the latter paper, the authors carried out a narrow analysis of

both OMP and OLS at any intermediate iteration of the algorithms.

Their recovery conditions depend not only on Q⋆ but also on the

support Q(ℓ) estimated by Oxx at a given iteration ℓ. Recasting this

analysis within the framework of sparse recovery with partial support

information, Q(ℓ) plays the role of the estimated support Q, and the

main result in [20] can be rewritten as:

Theorem 1 (Soussen et al. ’s partial ERC [20, Th. 3]) Assume

that AQ⋆∪Q is full rank with |Q⋆| = k, |Q⋆ ∩ Q| = g < k, and

|Q̄⋆ ∩Q| = b. If

max
i/∈Q⋆

‖C̃†
Q⋆\Qc̃i‖1 < 1, (7)

then for any y ∈ span(AQ⋆), OxxQ only selects atoms in Q⋆\Q
during the first k − g iterations. Conversely, if (7) does not hold,

there exists y ∈ span(AQ⋆) for which OxxQ selects a bad atom

j /∈ Q⋆ at the first iteration.

The proof of Theorem 1 is a straightforward adaptation of [20,

Th. 3]. For conciseness reasons, we therefore skip it. Let us just

mention that the original formulation of [20, Th. 3] involves a vector

y ∈ span(AQ⋆∪Q). Because any vector y ∈ span(AQ⋆∪Q) can

be uniquely decomposed as y = y1 + y2 with y1 ∈ span(AQ⋆),
y2 ∈ span(AQ̄⋆∩Q) under full-rank conditions, and because OxxQ
has the same behavior with y and y1 as inputs (the component y2

indexed by Q is not taken into account), both sufficient and necessary

parts in Theorem 1 involve data vectors y ∈ span(AQ⋆).

Interestingly, when Q = ∅, Theorem 1 reduces to Tropp’s ERC

[23]:

max
i/∈Q⋆

‖A†
Q⋆ai‖1 < 1, (8)

which constitutes a sufficient and worst-case necessary condition for

Oxx when no support information is available (or, equivalently, at the

very first iteration of the algorithm).

A tight condition for the recovery of any k-sparse vector from any

support estimate Q such that |Q⋆ ∩ Q| = g, |Q̄⋆ ∩ Q| = b can

therefore be expressed as

θOxx(k, g, b) < 1,

where

θOxx(k, g, b) , max
|Q⋆|=k

max
|Q̄⋆∩Q|=b
|Q⋆∩Q|=g

{

max
i/∈Q⋆

‖C̃†
Q⋆\Qc̃i‖1

}

. (9)

Unfortunately, the main drawback of (9) stands in its cumbersome

(combinatorial) evaluation. In order to circumvent this issue, stronger

conditions, but easier to evaluate, have been proposed in the litera-

ture. We can mainly distinguish between two types of “practical”

guarantees: the conditions based on restricted-isometry constants and

those based on the mutual coherence of the dictionary.

The contributions [27], [32]–[36] provide RIC-based sufficient

conditions for the exact recovery of the support Q⋆ in k steps by

OMP. The most recent and tightest results are due to Maleh [34],

Mo&Shen [35] and Wang&Shim [36]. The authors proved that OMP

succeeds in k steps if

δk+1 <
1√
k + 1

. (10)

In [35, Th. 3.2] and [36, Example 1], the authors showed moreover

that this condition is almost tight, i.e., there exists a dictionary A

with δk+1 = 1√
k

and a k-term representation y for which OMP

selects a wrong atom at the first iteration (this result was actually

first conjectured by Dai&Milenkovic in [37]). Let us mention that, by

virtue of Theorem 1, these results remain valid for OLS. Indeed, when

Q = ∅, (8) is a worst-case necessary condition of exact recovery for

both OMP and OLS. Moreover, since (10) is a uniform sufficient

condition for OMP, (10) implies (8). Very recently, Karahanoglu and

Erdogan [19] showed that the condition

δk+b+1 <
1√

k − g + 1
(11)

is sufficient for the success of OMPQ when some support information

is available at the decoder. Similar conditions are still not available

for OLSQ and remain an open problem in the literature.

In this paper, we emphasize that the RIC-based condition (11) also

enjoys a type of worst-case necessity. In particular, the following

result shows that (11) is almost tight for the success of OMPQ in the

following sense:

Lemma 1 (Quasi worst-case necessity of (11) for OxxQ) There

exists a dictionary A, a k-term representation y and a set Q with

|Q⋆ ∩ Q| = g and |Q̄⋆ ∩ Q| = b, such that: (i) δk+b+1 = 1√
k−g

;

(ii) OxxQ with y as input selects a bad atom at the first iteration.

The proof of this lemma is reported to section IX. Let us mention

that the result stated in Lemma 1 is valid for both OMP and OLS.

Hence, although (11) has not been proved to be a sufficient condition

for the success of OLSQ, this result shows that one cannot expect to

achieve much better guarantees in terms of RICs for this algorithm.



5

Regarding uniform conditions based on the mutual coherence of

the dictionary, Tropp showed in [23, Cor. 3.6] that

µ <
1

2k − 1
(12)

is sufficient for the success of OMP in k steps. As a matter of fact,

(12) therefore ensures that (8) is satisfied and thus also guarantees

the success of OLS (Theorem 1 with Q = ∅). Moreover, Cai&Wang

recently showed in [38, Th. 3.1] that (12) is also worst-case necessary

in the following sense: there exists (at least) one k-sparse vector x⋆

and one dictionary A with µ = 1
2k−1

such that Oxx3 cannot recover

x⋆ from y = Ax⋆. These results are summarized in the following

theorem:

Theorem 2 [µ-based uniform condition for Oxx [23, Cor. 3.6],

[38, Th. 3.1]] If (12) is satisfied, then Oxx succeeds in recovering

any k-term representation. Conversely, there exist an instance of

dictionary A and a k-term representation for which: (i) µ = 1
2k−1

;

(ii) Oxx selects a wrong atom at the first iteration.

In this paper, we provide a coherence-based sufficient and worst-

case necessary condition for the success of OxxQ. Our result gener-

alizes Theorem 2 as follows:

Theorem 3 (µ-based uniform condition for OxxQ) Consider a k-

term representation y = Ax⋆ and a subset Q such that |Q⋆∩Q| = g
and |Q̄⋆ ∩Q| = b. If µ < 1

2k−g+b−1
holds, then OxxQ recovers x⋆

in k − g iterations. Conversely, there exist a dictionary A and a k-

term representation y such that: (i) µ = 1
2k−g+b−1

; (ii) OxxQ with

y as input selects a bad atom at the first iteration.

The proof of this theorem is reported to sections V, VI and VIII.

More specifically, we show in section V (resp. section VI) that (1) is

sufficient for the success of OMPQ (resp. OLSQ) in k−g iterations.

The proof of this sufficient condition significantly differs for OMPQ
and OLSQ. The result is shown for OMPQ by deriving an upper

bound on Soussen et al. ’s ERC-OMP condition (7) as a function

of the restricted isometry bounds of the projected dictionary Ã. As

for OLSQ, the proof is based on a connection between Soussen et

al. ’s ERC-OLS condition (7) and the mutual coherence of the

normalized projected dictionary B̃. Finally, in section VIII we prove

that (1) is worst-case necessary for OxxQ in the sense specified in

Theorem 3. This proof is common to both OMPQ and OLSQ. If

b = 0, we also prove a slightly stronger result by showing that the

subset Q appearing in the converse part of Theorem 3 can indeed be

“reached” by Oxx, initialized with the empty support. More formally,

the following result holds:

Lemma 2 (µ-based partial uniform condition for Oxx) There

exist a dictionary A, a k-term representation y and a set Q ⊂ Q⋆

with |Q| = g, such that: (i) µ = 1
2k−g−1

; (ii) Oxx with y as input

selects atoms in Q during the first g iterations and an atom ai,

i /∈ Q⋆\Q at the (g + 1)th iteration.

This result is of in interest in the analysis of Oxx at intermediate

iterations since it shows that if µ < 1
2k−g−1

is not satisfied, there

exist scenarios where Oxx selects good atoms during the first g
iterations and then fails at the subsequent step.

3and actually, any sparse representation algorithm.

B. Results and state-of-the-art conditions for (Pp) and (Pp,Q)

The performance associated to the resolution of (Pp) has been

widely studied during the last decade. Among the noticeable works

dealing with uniform and (worst-case) necessary conditions, one can

first mention the seminal paper by Fuchs [39] in which the author

showed that the success of (P1) only depends on the sign of the

nonzero components in x⋆. More recently, Wang et al. provided in

[40] sufficient and worst-case necessary conditions for the success

of (Pp), with p ∈ (0, 1), depending on the sign-pattern of x⋆. On

the other hand, Gribonval&Nielsen derived in [21] the “Null-Space

Property”, a tight condition for the recovery of any k-sparse vector

via (Pp).
Other conditions have also been proposed in terms of RIC and

mutual coherence. On the one hand, the use of RIC-based conditions

was ignited by Candes, Romberg and Tao in their seminal work

[41]. Candes refined this result in [42] and some improvements were

proposed by other authors in [5], [43].

On the other hand, guarantees for (P0) and (P1) based on the

mutual coherence were early proposed in [44] for the particular

case of sparse representations in a union of two orthogonal bases.

Several authors later proved independently that condition (12) ensures

the success of (P0) and (P1) for any k-sparse vector in arbitrary

redundant dictionaries, see e.g., [21], [39]. This condition was then

shown to be valid for the success of (Pp) with p ∈ [0, 1] in [24].

Finally, Cai&Wang emphasized in [38, Th. 3.1] that (12) is also

worst-case necessary (in some sense) for the success of (Pp).
Recently, several authors took a look at conditions ensuring the

success of (Pp,Q) when some partial information Q is available about

the support Q⋆. First, a “truncated” NSP generalizing the standard

NSP has been derived in [17, Th. 2.1], [18, Th. 3.1] and [22, Th.

3.1]:

Theorem 4 (Truncated NSP) Assume that spark(A) > k + b and

let

θp(k, g, b) , max
|Q⋆|=k

max
|Q̄⋆∩Q|=b
|Q⋆∩Q|=g

max
v∈ker0(A)

{ ‖vQ⋆\Q‖pp
‖vQ∪Q⋆‖pp

}

. (13)

For any p ∈ [0, 1], if

θp(k, g, b) ≤ 1, (14)

then any k-sparse vector x⋆ is a minimizer of (Pp,Q) for any partial

support estimate Q such that |Q⋆ ∩ Q| = g and |Q̄⋆ ∩ Q| = b.

Moreover, if the inequality in (14) holds strictly, x⋆ is the unique

solution of (Pp,Q). Conversely, if (14) is not satisfied, there exist a

k-sparse vector x⋆ and a support estimate Q satisfying |Q⋆∩Q| = g
and |Q̄⋆ ∩ Q| = b, such that x⋆ is not a minimizer of (Pp,Q) with

y = Ax⋆ as input.

We note that the denominator in the right-hand side of (13) is always

non-zero because of the hypothesis spark(A) > k + b = |Q⋆ ∪ Q|
(see also Appendix C). The direct part of Theorem 4 is proved in

[18] and [22] for (P1,Q) and (Pp,Q), respectively. In [17], the authors

demonstrated both the direct and converse parts of Theorem 4 for

(P1,Q). We verified that the converse part of Theorem 4 also holds

for (Pp,Q), p ∈ [0, 1]. The proof is very similar to the exposition

in [17] and [21], and is therefore not reported here. We note that

Theorem 4 reduces to the standard NSP as soon as g = b = 0.

Several authors also proposed recovery guarantees in terms of

RICs, see [14]–[16]. In [14], the authors identified a sufficient

condition for the success of (P1,Q) and show that the latter condition

is weaker than a condition derived in [41] for the non-informed

setting as long as Q contains a “sufficiently” large number of good
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atoms. This result was later extended by Jacques [15] to the cases

of compressible signals and noisy observations. Finally, in [16],

Friedlander et al. generalized the RIC condition derived in [41],

[42] to the partially-informed paradigm considered in this paper. In

particular, the authors showed that the following condition4

δ2k <

(

1 +

√

2

(

1 +
b− g

k

)

)−1

, (15)

is sufficient for the success of (P1,Q). Interestingly, if g = b = 0,

one recovers the standard condition δ2k < (1 +
√
2)−1 by Candes

for the success of (P1), [42]. Finally, we also mention the work by

Khajehnejad et al. [13] where a Grassman angle approach was used

to characterize a class of signal which can be recovered by (a variant

of) (P1,Q).

In this paper, we will show that the quantities θp(k, g, b) involved

in the truncated NSP obey an ordering property and can be related to

the partial ERC stated in Theorem 1 (see Theorems 6 and 7 below).

As a consequence of these results, together with Theorem 3, we

obtain that a coherence-based condition, similar to the one obtained

for OxxQ, holds for the success of (Pp,Q):

Theorem 5 (µ-based uniform condition for (Pp,Q)) Consider

a k-term representation y = Ax⋆ and a support Q such that

|Q⋆ ∩ Q| = g and |Q̄⋆ ∩ Q| = b. If µ < 1
2k−g+b−1

holds, then

x⋆ is the unique minimizer of (Pp,Q). Conversely, there exist a

dictionary A and a k-term representation y = Ax⋆ such that: (i)

µ = 1
2k−g+b−1

; (ii) x⋆ is not the unique minimizer of (Pp,Q).

The direct part of Theorem 5 is proved in section VII. The converse

part will be shown in section VIII.

Interestingly, similar to the result by Friedlander et al. in (15), we

notice that our coherence-based condition becomes weaker than its

standard counterpart (12) as soon as g > b, that is, when at least

50% of the atoms of Q belongs to Q⋆. In other words, the success

of (Pp,Q) is ensured under conditions less restrictive than for (Pp)
as soon as Q provides a “sufficiently reliable” information about Q⋆.

C. Relationships between conditions for (Pp,Q) and OxxQ

In this section, we discuss the implications (or non-implications)

existing between some of the conditions mentioned above. First, we

emphasize that an ordering property, similar to the one derived by

Gribonval&Nielsen in [24, Lemma 7] for (Pp), still holds for the

truncated NSPs defined in Theorem 4:

Theorem 6 (Ordering property of truncated NSPs) If 0 ≤ q ≤
p ≤ 1 and spark(A) > k + b, the following ordering property

holds:

θ0(k, g, b) ≤ θq(k, g, b) ≤ θp(k, g, b) ≤ θ1(k, g, b). (16)

The proof of this result is reported to section VII. Clearly, one

recovers Gribonval&Nielsen’s ordering property as a particular case

of (16) as soon as g = b = 0. This ordering property implies that any

uniform condition for (Pp,Q) is also a sufficient condition of success

for (Pq,Q) with q ∈ [0, p]. In particular, the guarantees derived in

[14]–[16] for (P1,Q) also ensure the success of (Pp,Q) for p ∈ [0, 1].

Secondly, we show that the truncated NSPs share some connections

with the partial ERC for OMP defined in (9). Specifically, we have

4We have adapted the formulation of the condition derived in [16] to the
particular setup and notations considered in this paper.

Theorem 7 If spark(A) > k + b, then

θ1(k, g, b) ≤ θOMP(k, g, b). (17)

The proof of this result is reported to section VII. This inclusion

generalizes Tropp’s result [23, Th. 3.3] to the paradigm of sparse

representation with partial support information, namely ERC-OMP is

a sufficient condition of success for (P1,Q) (and thus for any (Pp,Q)
with p ∈ [0, 1] by virtue of Theorems 4 and 6). As an important by-

product of this observation, it turns out that any uniform guarantee

of success for OMPQ is also a sufficient condition of success for

(Pp,Q).

It is noticeable that an ordering similar to (17) does not generally

hold between θ1(k, g, b) and θOLS(k, g, b) for all k, g, b. Indeed,

on the one hand, θOLS(k, 0, 0) ≥ θ1(k, 0, 0) since θOLS(k, 0, 0) =
θOMP(k, 0, 0). On the other hand, we exhibit hereafter an example

in which θOLS(k, g, b) < θ1(k, g, b):

Example 1 In this example, we construct a dictionary such that

θ1(k, g, b) > 1,

θOLS(k, g, b) < 1,

for some k, g, b. Let n ≥ 3 and define the matrix

G =





In−2 β1n−2 β1n−2

β1T
n−2 1 α

β1T
n−2 α 1



 , for α, β ∈ R,

which will play the role of the Gram matrix of the dictionary, that

is G = ATA. Since G is symmetric it allows for the following

eigenvalue decomposition:

G = UΛUT ,

where U (resp. Λ) is the unitary matrix whose columns are the

eigenvectors (resp. the diagonal matrix of eigenvalues) of G. Letting

α =
1

2
γ2(n− 2)− 1,

β = −γ

2
,

with

|γ| < (n− 2)−1,

it is easy to see that G is a semi-definite positive matrix with one

single zero eigenvalue. The zero eigenvalue is located in the lower-

right corner of Λ and the corresponding eigenvector writes, up to a

normalization factor, as

v = [γ1T
n−2 1 1]T . (18)

We define A ∈ R
n−1×n as

A = ΥU
T ,

where Υ ∈ R
n−1×n is such that

Υ(i, j) =

{ √

Λ(i, i) if i = j,

0 otherwise.

Hence, ΥTΥ = Λ and ATA = UΥTΥUT = UΛUT = G.

Now, A is such that θOLS(k, g, b) < 1 < θ1(k, g, b) for k =
2, g = 1, b = 0. Indeed, on the one hand it can easily be seen

that ker(A) = ker(G) and ker(A) corresponds therefore to the

one-dimensional subspace defined by v in (18). This implies that

spark(A) = n. Moreover, considering Q⋆ = {n − 1, n} and Q =
{n− 1}, we have

θ1(2, 1, 0) ≥
‖vQ⋆\Q‖1
‖vQ⋆∪Q‖1

=
1

(n− 2)γ
> 1
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where the first inequality follows from the definition of θ1(2, 1, 0)
and the last one from the fact that γ < (n− 2)−1.

On the other hand, since spark(A) = n ≥ k + 1 and there is

only one atom in Q⋆\Q, we have from [20, Th. 6] that necessarily

θOLS(2, 1, 0) < 1.

In the previous example, we provided a simple scenario where

OLSQ succeeds in recovering x⋆ when g = k−1. It can be observed

that (P0,Q) also succeeds in this particular example. Indeed, using

the definition of v in (18), we have

θ0(2, 1, 0) =
1

(n− 2)
< 1.

More generally, it can be shown that there exists an equivalence

between the success of (P0,Q) and OLSQ when g = k − 1. This

follows from the fact that the problem resolved by OLSQ when

g = k − 1, that is (3), is exactly equivalent to (P0,Q). From a

more technical point of view, it can easily be seen that condition

θ0(k, k − 1, b) < 1 can be rephrased as

k + b+ 1 < spark(A).

Now, by slightly extending the arguments developed in [20, Th. 6],

the latter condition is also sufficient and worst-case necessary for the

success of OLSQ when g = k−1. This observation thus demonstrates

the optimality of OLSQ when the informed support contains all the

correct atoms but one.

D. Non-implication between the mutual and RIP conditions for OxxQ

In Theorem 3, we derived a novel guarantee of success for OxxQ in

terms of mutual coherence of the dictionary. On the other hand, other

conditions were previously proposed in terms of RICs for OMPQ, see

(11). Hence, one legitimate question arises: is there any implication

from (1) to (11) or vice versa? We show hereafter that the answer

to this question is negative. In particular, we exhibit two particular

instances of dictionary such that (1) is satisfied but (11) is not, and

vice versa. We construct our examples in the case where b = 0 for the

sake of conciseness. Similar constructions can however be applied to

derive examples in the general case b 6= 0.

Example 2 (A satisfies (1) but not (11)) Let us consider A ∈
R

(k+1)×(k+1) such that

G , A
T
A

and

Gi,j =

{

−µ i 6= j
1 i = j

with µ ≤ 1/k. We have therefore

λmax(G) = 1 + µ (with multiplicity k),

λmin(G) = 1− kµ,

and

δk+1 = max{1− λmin(G), λmax(G)− 1}
= kµ.

We can freely set µ = α/(2k−g−1) with 0 ≤ g < k and α ∈ (0, 1)
since this yields µ < 1/k. Then, µ trivially satisfies (1). On the other

hand, δk+1 can be written as

δk+1 =
αk

2k − g − 1
≥ α/2. (19)

For any g < k− 1, there exist α ∈ (0, 1) and k such that (11) is not

verified. For example, for k sufficiently large and fixed g < k − 1,

δk+1 in (19) does not satisfy (11) since the right-hand side of (11)

tends towards 0 when k tends to infinity.

Example 3 (A satisfies (11) but not (1)) Let

A ,
(

a1 a2 H
)

∈ R
(k+1)×(k+1)

(20)

be such that

a
T
1 a2 = µ,

H
T
a1 = H

T
a2 = 0k−1,

H
T
H = Ik−1.

Then, we easily have

λmax(G) = 1 + µ,

λmin(G) = 1− µ,

and

δk+1 = max{1− λmin(G), λmax(G)− 1}
= µ.

Let us set δk+1 = µ = α/(
√
k − g+1) with α ∈ (0, 1). Then, δk+1

trivially satisfies (11). On the other hand, µ > 1/(2k− g− 1) holds

for sufficiently large k and a fixed value of g < k.

Finally, we mention that, following the same procedures as above,

one can derive examples for which (15) is satisfied but (1) is not for

some value of k, g, b, and vice versa. The details are however not

reported here for the sake of conciseness.

V. SUFFICIENCY OF (1) FOR OMPQ

In this section, we prove the direct part of Theorem 3 for OMPQ.

The result is a direct consequence of Proposition 1 stated below,

which provides an upper bound on the left-hand side of (7) only

depending on the mutual coherence of A:

Proposition 1 Let Q⋆ and Q be such that |Q⋆| = k, |Q⋆ ∩Q| = g
and |Q̄⋆ ∩Q| = b. If

µ <
1

k + b− 1
,

then

max
i/∈Q⋆

‖Ã†
Q⋆\Qãi‖1 ≤ (k − g)µ

1− (k + b− 1)µ
. (21)

The sufficient condition for OMPQ stated in Theorem 3 then derives

from Proposition 1 and Theorem 1. Indeed, we see from Proposition

1 that

(k − g)µ

1− (k + b− 1)µ
< 1 (22)

implies (7). Moreover, by reorganizing the latter expression, it is

easy to see that (22) is equivalent to (1). To prove Theorem 3

it thus remains to apply Theorem 1. Now, the full-rankness of

AQ⋆∪Q in the hypotheses of Theorem 1 is implicitly enforced by

(1). Indeed, as shown in [23, Lemma 2.3], µ < 1
k+b−1

implies that

AQ⋆∪Q is full rank whenever |Q⋆ ∪ Q| = k + b. Hence, since

k + b− 1 < 2k − g + b− 1, (1) in turn implies that any submatrix

AQ⋆∪Q with |Q⋆ ∪ Q| = k + b is full rank. Then, applying

Theorem 1, we have that (1) is sufficient for the success of OMPQ
in k − g iterations.

Before proving Proposition 1, we need to define some quan-

tities characterizing the projected dictionary Ã appearing in the
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implementation of OMP (see (4)) and state some useful lemmas.

In the following definition, we generalize the concept of restricted

isometry property (RIP) [41] to projected dictionaries, under the name

projected RIP (P-RIP):

Definition 4 Dictionary A satisfies the P-RIP(δq,l,δ̄q,l) if and only

if ∀R,S with |R| = l, |S| = q, R∩ S = ∅, ∀xS we have

(1− δq,l)‖xS‖2 ≤ ‖ÃR
S xS‖2 ≤ (1 + δ̄q,l)‖xS‖2.

The definition of the standard (asymmetric) restricted isometry con-

stants corresponds to the tightest possible bounds when l = 0 (see

e.g., [5], [45]). For l ≥ 1, δq,l and δ̄q,l can be seen as (asymmetric)

bounds on the restricted isometry constants of the projected dictionary

ÃR. Note that δ̄q,l might be negative since the columns of ÃR

are not normalized (‖ãR
i ‖ ≤ 1). Note also that many well-known

properties of the standard restricted isometry constants (see [46,

Proposition 3.1] for example) remain valid for δq,l and δ̄q,l.
The next lemma provides an upper bound on the left-hand side of

(7) only depending on the P-RIP constants:

Lemma 3 Let Q⋆ and Q be such that |Q⋆| = k, |Q⋆ ∩Q| = g and

|Q̄⋆ ∩Q| = b. If δk−g,g+b < 1, then

max
i/∈Q⋆

‖Ã†
Q⋆\Qãi‖1 ≤ (k − g)

δ̄2,g+b + δ2,g+b

2(1− δk−g,g+b)
. (23)

The proof of Lemma 3 is reported to Appendix A. The next lemma

provides some possible values for δq,l and δ̄q,l as a function of the

mutual coherence of A:

Lemma 4 If µ < 1/(l− 1), then A satisfies the P-RIP(δq,l,δ̄q,l) for

any q ≥ 0 with

δ̄q,l = (q − 1)µ, (24)

δq,l = (q − 1)µ+
µ2ql

1− (l − 1)µ
. (25)

The proof of this result is reported to Appendix A. We are now ready

to prove Proposition 1:

Proof: (Proposition 1) We rewrite the right-hand side of (23)

as a function of µ. From Lemma 4, we have that A satisfies the

P-RIP(δq,l,δ̄q,l) with constants defined in (24)-(25) as long as

µ <
1

l − 1
. (26)

Now, we have µ < 1/(k + b − 1) by hypothesis, which implies

µ < 1/(g + b− 1). Thus, Lemma 4 can be applied with l = g + b.

Using (24) and (25), we calculate that:

δ̄2,g+b + δ2,g+b

2
= µ+

µ2(g + b)

1− (g + b− 1)µ

=
µ(µ+ 1)

1− (g + b− 1)µ
,

1− δk−g,g+b = 1− (k − g − 1)µ− µ2(k − g)(g + b)

1− (g + b− 1)µ

=
1− (k + b− 2)µ− (k + b− 1)µ2

1− (g + b− 1)µ

=
(µ+ 1)(1− (k + b− 1)µ)

1− (g + b− 1)µ
. (27)

Therefore, the ratio in the right-hand side of (23) can be rewritten as

δ̄2,g+b + δ2,g+b

2(1− δk−g,g+b)
=

µ

1− (k + b− 1)µ
. (28)

According to (27), µ < 1/(k + b− 1) ≤ 1/(g + b− 1) implies that

1 − δk−g,g+b > 0. Lemma 3 combined with (28) implies that (21)

is met.

VI. SUFFICIENCY OF (1) FOR OLSQ

We now prove the sufficient condition for OLSQ stated in Theorem

3. The result is a consequence of Proposition 2 and Lemma 5 stated

below. We first need to introduce the coherence of the normalized

projected dictionary B̃R:

Definition 5 (Coherence of the normalized projected dictionary)

µOLS
l = max

|R|=l
max
i 6=j

|〈b̃R
i , b̃R

j 〉|.

The following proposition gives a sufficient condition on µOLS
g+b

under which (7) is satisfied:

Proposition 2 Let Q⋆ and Q be such that |Q⋆| = k, |Q⋆ ∩Q| = g
and |Q̄⋆ ∩ Q| = b. Assume that AQ⋆∪Q is full rank. If µOLS

g+b <
1/(2k − 2g − 1), then

max
i/∈Q⋆

‖B̃†
Q⋆\Qb̃i‖1 < 1. (29)

Proof: When b̃i = 0, the result is obvious. When b̃i 6= 0,

apply [23, Cor. 3.6] (that is: if A has normalized columns and µ <
1/(2k−1) then Tropp’s ERC is satisfied, i.e., ∀Q⋆ such that |Q⋆| =
k, maxi/∈Q⋆ ‖A†

Q⋆ai‖1 < 1) to the matrix B̃ and to Q⋆\Q of size

k − g. The atoms of B̃Q⋆\Q are of unit norm (actually, B̃Q⋆\Q is

full rank) because AQ⋆∪Q is full rank [20, Cor. 3].

The next lemma provides a useful upper bound on µOLS
l as a

function of the coherence µ of the dictionary A:

Lemma 5 If µ < 1/l, then

µOLS
l ≤ µ

1− lµ
. (30)

The proof of this result is reported to Appendix B. The sufficient

condition stated in Theorem 3 for OLSQ then follows from the

combination of Proposition 2 and Lemma 5. Indeed, (1) implies

µ < 1/(k + b − 1) ≤ 1/(g + b) since 2k − g + b − 1 =
k + b − 1 + (k − g) > k + b − 1 ≥ g + b. Hence, the result

follows by first applying Lemma 5 and (1):

µOLS
g+b ≤ µ

1− (g + b)µ
<

1

2k − 2g − 1
,

and then Proposition 2, which implies (29). µ < 1/(k+b−1) implies

that the full rank assumption of Proposition 2 is met for any Q⋆ ∪Q
of cardinality k + b [23, Lemma 2.3].

VII. ORDERING PROPERTIES AND SUFFICIENCY OF (1) FOR THE

SUCCESS OF (Pp,Q)

In this section, we elaborate on the proofs of Theorems 5 (direct

part), 6 and 7. These results have been gathered in this section

since they are all related to some guarantees of success for (Pp,Q):
Theorem 5 shows that (1) is a sufficient and worst-case necessary

condition for the success of (Pp,Q); Theorem 6 establishes an

ordering property between the truncated NSPs for different values

of p ∈ [0, 1]; Theorem 7 emphasizes that the ERC-OMP (9) is also a

sufficient condition for the success of (P1,Q) and in turn, of (Pp,Q)
for p < 1.
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Theorems 6 and 7 follow from some technical lemmas which are

stated below and proved in Appendix C. The proof of the direct part

of Theorem 5 is a consequence of Theorems 6, 7 and is discussed at

the end of this section. The proof of the converse part of Theorem 5

is reported to the next section.

We first turn our attention to the proof of the NSP ordering stated

in Theorem 6. The result follows from the following lemma:

Lemma 6 Assume spark(A) > k + b and let ∀v ∈ ker0(A):

θp(k, g, b,v) , max
|Q⋆|=k

max
|Q̄⋆∩Q|=b
|Q⋆∩Q|=g

{ ‖vQ⋆\Q‖pp
‖vQ∪Q⋆‖pp

}

. (31)

Then, the following inequality holds for 0 ≤ q < p ≤ 1:

θq(k, g, b,v) ≤ θp(k, g, b,v). (32)

Obviously, taking the supremum with respect to v ∈ ker0(A) of

both sides in (32) leads to the result stated in Theorem 6.

Secondly, the inequality relating θ1(k, g, b) to θOMP(k, g, b) in

Theorem 7 is a consequence of the next result:

Lemma 7 If spark(A) > k + b, then

‖vQ⋆\Q‖1
‖vQ⋆∪Q‖1

≤ max
i/∈Q⋆

‖Ã†
Q⋆\Qãi‖1 (33)

for any v ∈ ker0(A) and Q⋆, Q with |Q⋆| = k, |Q⋆∩Q| = g < k,

|Q̄⋆ ∩Q| = b.

Theorem 7 then follows by taking the supremum of both sides of (33)

with respect to v ∈ ker0(A) and Q⋆, Q with |Q⋆| = k, |Q⋆∩Q| = g
and |Q̄⋆ ∩Q| = b.

We are now ready to prove the sufficiency of (1) for (Pp,Q):

Proof: (Direct part of Theorem 5) On the one hand, let us

first note that (1) is sufficient for the success of OMPQ for any k-

sparse representation y = Ax⋆ (Theorem 3). Hence, (1) implies that

θOMP(k, g, b) < 1 since the latter condition is worst-necessary for the

success of OMPQ (Theorem 1). On the other hand, from [23, Th. 2.4],

we have that (1) is sufficient for spark(A) > 2k − g + b > k + b.

Applying successively Theorems 7 and 6, we have

θp(k, g, b) < 1 ∀p ∈ [0, 1].

The result then follows from Theorem 4.

VIII. WORST-CASE NECESSITY OF (1)

A. General case b ≥ 0

Cai&Wang recently showed in [38, Th. 3.1] that there exist

dictionaries A with µ = 1
2k−1

and a vector y ∈ span(A) having two

disjoint k-sparse representations in A. In other words, if µ < 1
2k−1

is not satisfied, there exist instances of dictionaries such that no

algorithm can univocally recover some k-sparse representations. In

the context of Oxx, their result can be rephrased as the following

worst-case necessary condition: there exists a dictionary A with

µ = 1
2k−1

and a support Q⋆, with |Q⋆| = k, such that Oxx selects

a wrong atom at the first iteration.

In this section, we show that (1) is worst-case necessary for (Pp,Q)
and OxxQ in the sense defined in Theorems 3 and 5, respectively.

To prove the result for (Pp,Q), we will construct a dictionary A

satisfying µ = 1
2k−g+b−1

and such that

θp(k, g, b) = 1 ∀p ∈ [0, 1]. (34)

The result then immediately follows from Theorem 4. Invoking

Theorem 7 and the converse part of Theorem 1, (34) also leads to

the result for OMPQ: in particular, θOMP(k, g, b) ≥ 1. On the other

hand, since θOLS(k, g, b) and θ1(k, g, b) do not enjoy a nesting

property similar to (17), specific arguments need to be derived to

prove the worst-case necessity of (1) for OLSQ. Regarding OLSQ
(and actually, also OMPQ), we will show using the same dictionary

as for (Pp,Q), that there exists a k-term representation y = Ax⋆

satisfying the hypotheses of Theorem 3 and such that OxxQ selects

a wrong atom at the first iteration. The proofs for OxxQ and (Pp,Q)
use a dictionary construction similar to Cai&Wang’s in [38].

Let G ∈ R
(2k−g+b)×(2k−g+b) be the matrix with ones on the di-

agonal and −µ , − 1
2k−g+b−1

elsewhere. G will play the role of the

Gram matrix G = ATA. We will exploit the eigenvalue decompo-

sition of G to construct the dictionary A ∈ R
(2k−g+b−1)×(2k−g+b)

with the desired properties. Since G is symmetric, it can be expressed

as

G = UΛUT ,

where U (resp. Λ) is the unitary matrix whose columns are the

eigenvectors (resp. the diagonal matrix of eigenvalues) of G. It

is easy to check (see Example 2) that G has only two distinct

eigenvalues: 1 + µ with multiplicity 2k − g + b − 1 and 0 with

multiplicity one; moreover, the eigenvector associated to the null

eigenvalue is equal to 12k−g+b. The eigenvalues are sorted in the

decreasing order so that 0 appears in the lower right corner of Λ.

We define A ∈ R
(2k−g+b−1)×(2k−g+b) as

A = ΥU
T , (35)

where Υ ∈ R
(2k−g+b−1)×(2k−g+b) is such that

Υ(i, j) =

{ √
1 + µ if i = j,

0 otherwise.

Note that ΥTΥ = Λ. Hence, A satisfies the statement (i) in the

converse part of Theorems 3 and 5 since

A
T
A = UΥTΥU

T = UΛUT = G,

and therefore

〈ai,aj〉 = −µ ∀i 6= j. (36)

Since G = ATA, we have Gx = 02k−g+b if and only if Ax =
02k−g+b. Moreover, since G has one single zero eigenvalue with

eigenvector 12k−g+b, the null-space of A is the one-dimensional

space spanned by 12k−g+b. Therefore, any l < 2k − g + b columns

of A are linearly independent, i.e., spark(A) = 2k− g+ b > k+ b.

Taking these observations into account, it easily follows that (34)

holds since

‖vQ⋆\Q‖pp = ‖vQ⋆∪Q‖pp = k − g,

for v = 12k−g+b ∈ ker0(A), and ∀Q⋆,Q with |Q⋆| = k,

|Q⋆ ∩ Q| = g and |Q̄⋆ ∩ Q| = b. This proves the necessary part of

Theorem 5.

We now address the case of OLS. Although the OMP necessity

result is already obtained from the (Pp,Q) necessity result, the

construction related to OLS is also valid for OMP. For the sake

of generality, we develop our arguments for both OMP and OLS

hereafter. We first need the following technical lemma whose proof

is reported to Appendix D:

Lemma 8 Let A be defined as in (35). Then, for any subset Q
with |Q| = g + b, there exists a vector ỹ having two (k − g)-
term representations with disjoint supports in the projected dictionary

C̃\Q , C̃{1,...,2k−g+b}\Q ∈ R
(2k−g+b−1)×(2k−2g).
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We are now ready to prove the worst-case necessity of (1) for

OxxQ:

Proof: (Converse part of Theorem 3) We show that there exists

a k-sparse representation y such that OxxQ selects a wrong at the

first iteration with the dictionary A defined in (35). Our construction

of such y is as follows. Let Q be a subset of cardinality g + b,

arbitrarily chosen (say, the first g + b atoms of the dictionary). We

consider the following decomposition Q = Qg ∪ Qb where Qg and

Qb are the subsets collecting respectively the good and the bad atoms

in Q, with Qg ∩ Qb = ∅. Let ỹ2 be a vector having two (k − g)-
term representations in the projected dictionary C̃\Q. We note that

such a vector ỹ2 exists by virtue of Lemma 8. We will denote the

respective supports of the two representations of ỹ2 by Q1 and Q2

with Q1 ∩Q2 = ∅. Hence,

ỹ2 = C̃Q1xQ1 = C̃Q2xQ2 ,

for some vectors xQ1 and xQ2 . We then define the k-sparse repre-

sentation

y , y1 + y2,

where y1 = AQg1|Qg | and y2 = AQixQi ∈ span(AQi) with

i = 1 or i = 2. The specific value of i will be determined hereafter

so that a failure situation occurs.

The selection rule (4) indicates that the atom ãj selected by OxxQ
at the first iteration satisfies:

j ∈ argmax
i

|〈c̃i,P⊥
Qy〉| = argmax

i
|〈c̃i, ỹ2〉|,

since P⊥
Qy = P⊥

Qy2 = ỹ2. Now, we set Q⋆ in such a way that

j /∈ Q⋆:

Q⋆ =

{

Qg ∪Q1 if j ∈ Q2,
Qg ∪Q2 if j ∈ Q1.

(37)

To complete the proof, it is easy to check that y = y1 + y2 ∈
span(AQ⋆): indeed, y1 ∈ span(AQg ) ⊂ span(AQ⋆) and y2 ∈
span(AQ⋆\Q) ⊂ span(AQ⋆).

B. Special case b = 0

We now turn our attention to the proof of Lemma 2, which is

related to the standard version of Oxx, initialized with the empty

support. We first need to define the concept of “reachability” of a

subset Q:

Definition 6 A subset Q is said to be reachable by Oxx if there exists

y ∈ span(AQ) such that Oxx with y as input selects atoms in Q
during the first |Q| iterations.

The concept of reachability was first introduced in [20]. The

authors showed that any subset Q with |Q| ≤ spark(A) − 2 is

reachable by OLS, see [20, Lemma 3]. On the other hand, they

emphasized that there exist dictionaries for which some subsets Q
can never be reached by OMP, see [20, Example 1]. This scenario

does however not occur for the dictionary defined in (35) as stated

in the next lemma:

Lemma 9 Let A be defined as in (35) with b = 0. Then any subset

Q with |Q| = g < k is reachable by Oxx.

The proof of this result is reported to Appendix D. We are now

ready to prove Lemma 2:

Proof: (Lemma 2) Consider the dictionary A defined in (35)

with b = 0. Let Q be a subset of cardinality g, arbitrarily chosen

(say, the first g atoms of the dictionary). We will exhibit a subset

Q⋆ ⊃ Q for which the result of Lemma 2 holds.

We first apply Lemma 9: there exists an input y1 ∈ span(AQ) for

which Oxx selects all atoms in Q during the first g iterations. Then,

we apply Lemma 8: there exists a vector ỹ2 having two (k−g)-term

representations in the projected dictionary C̃\Q. We will denote their

respective supports by Q1 and Q2 with Q1∩Q2 = ∅. We then define

y2 as in the proof of the converse of Theorem 3.

By virtue of [20, Lemma 15], Oxx with y = y1 + εy2 as input

selects the same atoms (i.e., Q) as with y1 as input during the first g
iterations as long as ε > 0 is sufficiently small. Moreover, defining

Q⋆ as in (37) and applying the same reasoning as in the proof of the

converse part of Theorem 3, we have that y ∈ span(AQ⋆) and is

such that Oxx selects a bad atom at iteration g + 1.

IX. QUASI-TIGHTNESS OF (11) FOR OMPQ

In this section, we provide an instance of dictionary such that

δk+b+1 = 1/
√
k − g and OxxQ fails at the first iteration. Our

dictionary construction is along the same lines as [35, Th. 3.2].

Proof: (Lemma 1) We first consider the case g ≤ k − 2. Let us

define A ∈ R
(k+b+1)×(k+b+1) as

A =

(

Ig+b 0(g+b)×(k−g+1)

0(k−g+1)×(g+b) M

)

(38)

where

M ,













1
k−g

Ik−g

...
1

k−g

0 . . . 0
√

k−g−1
k−g













On the one hand, it can be seen that the eigenvalues of the Gram

matrix G = ATA are λ = 1 with multiplicity k + b − 1 and

λ = 1± 1√
k−g

with multiplicity 1. Hence, δk+b+1 = 1√
k−g

.

On the other hand, there exist Q⋆ and Q satisfying the hypotheses

of Lemma 1 and such that OxxQ fails at the first iteration for some

representation y = Ax⋆ indexed by Q⋆. Let us set Q = {1, . . . , g+
b}, Q⋆ = {b + 1, . . . , k + b} in such a way that there is only one

wrong atom outside of Q∪Q⋆, namely the last atom. We set

x⋆
i =

{

1 if i ∈ Q⋆

0 otherwise.

With this particular choice, we have y = AQ⋆1k and:

C̃{1,...,k+b+1}\Q = A{1,...,k+b+1}\Q =

(

0g+b×k−g+1

M

)

,

r
Q = C̃Q⋆\Q1k−g =





0g+b

1k−g

0



 ,

and therefore,

〈c̃i, rQ〉 = 1 ∀i ≥ g + b+ 1.

Since k + b+ 1 /∈ Q⋆, a failure situation as in (6) occurs.

The special case g = k − 1 leads to the degenerate situation

δk+b+1 = 1 in Lemma 1. This case is handled by proposing a

dictionary having two identical columns. We define A as in (38)

with

M =

(

1 1
0 0

)

∈ R
2×2.
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We have obviously δk+b+1 = 1 since that the dictionary has two

identical columns. OxxQ then trivially fails with y, Q⋆ and Q defined

as above.

X. CONCLUSIONS

We derived a new sufficient and worst-case necessary condition,

µ < 1
2k−g+b−1

, for the success of OMP, OLS and some procedures

based on ℓp relaxation. Our result both applies to the context of sparse

representations with support side information, and to the analysis of

greedy algorithms at intermediate iterations. Our condition relaxes

the well-known coherence-based result µ < 1
2k−1

derived in the non-

informed setup by several authors, see e.g., [21], [23], [39]. Moreover,

it is shown to be complementary with some similar conditions based

on restricted isometry constants [16], [19].

We also carried out a fine analysis of some relations existing

between conditions of success for OMP/OLS and ℓp-relaxed pro-

cedures in the informed setup. We showed that the truncated NSP,

characterizing the success of ℓp-relaxed procedures in the informed

setup, enjoys some ordering property. Moreover, we established a

direct implication between the ERC-OMP derived in [20] and the

truncated NSP for the informed ℓ1-relaxed problem.

APPENDIX A

PROOF OF THE RESULTS OF SECTION V

This section contains the proofs of Lemmas 3 and 4 together with

some useful technical lemmas.

Lemma 10 Assume A satisfies the P-RIP(δ2,l,δ̄2,l) and let

µOMP
l , max

|R|=l
max
i 6=j

|〈ãR
i , ãR

j 〉|.

Then, we have

µOMP
l ≤

δ̄2,l + δ2,l
2

.

Proof: By definition of δ̄2,l and δ2,l we must have for all R,S
with |R| = l, |S| = 2 and R∩ S = ∅:

1 + δ̄2,l ≥ λmax(Ã
T
S ÃS), (39)

1− δ2,l ≤ λmin(Ã
T
S ÃS), (40)

where λmax(M) (resp. λmin(M)) denotes the largest (resp. smallest)

eigenvalue of M and we used the short-hand notation Ã = ÃR.

Moreover, if S = {i, j}, it is easy to check that the eigenvalues of

ÃT
S ÃS can be expressed as

λ(ÃT
S ÃS) =

‖ãi‖2 + ‖ãj‖2 ±∆

2
,

where

∆ =
√

(‖ãi‖2 + ‖ãj‖2)2 + 4(〈ãi, ãj〉2 − ‖ãi‖2 ‖ãj‖2)
=
√

(‖ãi‖2 − ‖ãj‖2)2 + 4〈ãi, ãj〉2.
Hence

λmax(Ã
T
S ÃS)− λmin(Ã

T
S ÃS) = ∆ ≥ 2|〈ãi, ãj〉|.

Using (39)-(40), we thus obtain ∀i, j /∈ R:

δ̄2,l + δ2,l ≥ 2|〈ãi, ãj〉|. (41)

Now, this inequality also holds if i ∈ R or j ∈ R since the right

hand-side of (41) is then equal to zero. The result then follows from

the definition of µOMP
l .

Lemma 11 Let |R|=l and S ∩ S ′ = ∅, then ∀u ∈ R
|S′|,

‖(ÃR
S )T ÃR

S′u‖ ≤ µOMP
l

√

|S||S ′| ‖u‖.

Proof: Let us use the short-hand notation Ã = ÃR. We have:

‖ÃT
S ÃS′u‖ =

√

∑

i∈S
〈ãi, ÃS′u〉2

=

√

∑

i∈S

(

∑

j∈S′

uj 〈ãi, ãj〉
)2

≤
√

∑

i∈S

(

∑

j∈S′

|uj | |〈ãi, ãj〉|
)2

≤ µOMP
l

√

|S| ‖u‖1
≤ µOMP

l

√

|S||S ′| ‖u‖.

Using Lemmas 10 and 11, we can now prove Lemmas 3 and 4:

Proof: (Lemma 3) ∀ i /∈ Q⋆, the following inequalities hold:

‖Ã†
Q⋆\Qãi‖1 ≤

√

k − g ‖Ã†
Q⋆\Qãi‖,

≤
√
k − g

1− δk−g,g+b

‖ÃT
Q⋆\Qãi‖,

≤ k − g

1− δk−g,g+b

µOMP
g+b ,

≤ k − g

1− δk−g,g+b

δ̄2,g+b + δ2,g+b

2
,

where the first inequality follows from the equivalence of norms;

the second from RIC properties (see [46, Prop. 3.1]); the third from

Lemma 11 and the fourth from Lemma 10.

Proof: (Lemma 4) First, notice that A satisfies the P-

RIP(δq,0,δ̄q,0) ∀ q with

δ̄q,0 = δq,0 = (q − 1)µ,

see e.g., [23, Lemma 2.3]. Let R,S with |R| = l, |S| = q, R∩S =
∅. Then, (24) is a consequence of the following inequalities:

‖P⊥
RASxS‖2 ≤ ‖ASxS‖2 ≤ (1 + δ̄q,0)‖xS‖2.

Lower bound (25) is derived by noticing that

‖P⊥
RASxS‖2 = ‖ASxS‖2 − ‖PRASxS‖2,

and

‖ASxS‖2 ≥ (1− δq,0)‖xS‖2,
‖PRASxS‖2 = ‖(A†

R)TAT
RASxS‖2

≤ ‖AT
RASxS‖2
1− δl,0

, (42)

≤ µ2lq ‖xS‖2
1− δl,0

, (43)

where inequality (42) follows from standard relationships between

the RIC properties of A and transforms of A, and 1− δl,0 ≥ 0 is a

consequence of hypothesis µ < 1/(l − 1) [23, Lemma 2.3]; (43) is

a consequence of Lemma 11.

APPENDIX B

PROOF OF THE RESULTS OF SECTION VI

Proof: (Lemma 5) The proof is recursive. Obviously, the result

holds for l = 0 since µOLS
0 = µ.
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Let R with |R| = l ≥ 1 and assume that the result holds for

l− 1. If j ∈ R, the bound |〈b̃R
j , b̃R

j′ 〉| ≤ µ
1−lµ

trivially holds since

b̃R
j = 0m.

Let us then consider the case where j /∈ R and j′ /∈ R. First, from

the assumption µ < 1/l, we have that AR∪{j} is full column rank

as a family of l + 1 atoms [23, Lemma 2.3]. Let us then consider

S such that R = S ∪ {i} with |S| = l − 1 and let us apply [20,

Lemma 5]. We obtain the following orthogonal decomposition:

b̃
S
j = ηjb̃

R
j + 〈b̃S

j , b̃S
i 〉 b̃S

i ,

with

ηj , ±
√

1− 〈b̃S
j , b̃S

i 〉2 6= 0.

Exploiting this decomposition, we can thus write:

〈b̃R
j , b̃R

j′ 〉 =
〈b̃S

j , b̃S
j′〉 − 〈b̃S

j , b̃S
i 〉〈b̃S

j′ , b̃
S
i 〉

ηjηj′
.

Taking the absolute value of both sides and majorizing the inner

products on the right-hand side by µOLS
l−1 , we obtain:

|〈b̃R
j , b̃R

j′ 〉| ≤
µOLS
l−1 + (µOLS

l−1 )2

1− (µOLS
l−1 )2

=
µOLS
l−1

1− µOLS
l−1

≤ µ

1− (l − 1)µ− µ
=

µ

1− lµ
,

where the last inequality follows from the fact that (30) is assumed

to hold for l − 1. This proves the result for |R| = l and completes

the recursion.

APPENDIX C

PROOF OF THE RESULTS OF SECTION VII

Before proceeding to the proofs of Lemmas 6 and 7, we emphasize

that spark(A) > k + b and v ∈ ker0 (A) are sufficient conditions

for vQ⋆∪Q not to be equal to zero because Q⋆ ∪ Q is composed

of k + b elements. This implies that (13), (31) and (33) are always

well-defined, as their denominators are nonzero.

Proof: (Lemma 6) As an initial remark, let us mention that,

for any v ∈ ker0(A), a couple (Q⋆,Q) maximizing the right-hand

side of (31) should be such that vQ⋆\Q (resp. vQ⋆∪Q) collects the

elements of v with the largest (resp. smallest) amplitudes, because

t 7→ tp is an increasing function on R
+. In the rest of the proof, we

will therefore assume that Q⋆ and Q satisfy this requirement.

Let wT , [vT
Q⋆\Q,vT

Q⋆∪Q]. Taking our initial remark into

account, θp(k, g, b,v) can be expressed as

θp(k, g, b,v) =
‖vQ⋆\Q‖pp
‖vQ⋆∪Q‖pp

=

∑k−g
i=1 |wi|p

‖w‖pp −∑k−g
i=1 |wi|p

.

Showing (32) is therefore equivalent to proving that

∑k−g
i=1 |wi|q

‖w‖qq −
∑k−g

i=1 |wi|q
≤

∑k−g
i=1 |wi|p

‖w‖pp −∑k−g
i=1 |wi|p

.

which can also be rewritten as
∑k−g

i=1 |wi|q
‖w‖qq

≤
∑k−g

i=1 |wi|p
‖w‖pp

for q < p. (44)

Now, in [24, Th. 5], it is proved that (44) holds for any vector w

whose k − g first elements have the largest magnitudes. Observing

that w satisfies the latter condition, we obtain the result.

Proof: (Lemma 7) For any v ∈ ker0(A), we have

AQ⋆\QvQ⋆\Q = −AQvQ −AQ⋆∪QvQ⋆∪Q.

Applying the orthogonal projector onto span(AQ)⊥ to both sides,

we obtain

ÃQ⋆\QvQ⋆\Q = −ÃQ⋆∪QvQ⋆∪Q.

Let us note that AQ⋆∪Q is full-rank by hypothesis and, by virtue of

[20, Cor. 3], ÃQ⋆\Q is therefore also a full-rank matrix. This leads

to

vQ⋆\Q = −Ã
†
Q⋆\QÃQ⋆∪QvQ⋆∪Q.

Taking the ℓ1 norm of both sides and using the definition of the ℓ1
matrix induced norm, we have

‖vQ⋆\Q‖1
‖vQ⋆∪Q‖1

≤ max
i/∈Q⋆∪Q

‖Ã†
Q⋆\Qãi‖1. (45)

The result then follows from the fact that ãi = 0m ∀i ∈ Q.

APPENDIX D

PROOF OF THE RESULTS OF SECTION VIII

In this appendix, we provide a proof of Lemmas 8 and 9. We first

need to prove the following technical lemma:

Lemma 12 Let A be defined as in (35). Then, we have for all R
with |R| < 2k − g + b and i, j /∈ R, i 6= j:

〈ãR
i , ãR

j 〉 = −µ− µ2
1
T
|R|(A

T
RAR)−1

1|R|, (46)

‖ãR
i ‖2 = 1− µ2

1
T
|R|(A

T
RAR)−1

1|R|. (47)

Proof: First recall that spark(A) = 2k − g + b (see section

VIII). Therefore, AR is full rank when |R| < 2k − g + b and ãR
i

reads

ã
R
i = P

⊥
Rai = ai −PRai = ai −AR(AT

RAR)−1
A

T
Rai.

Using this expression, we have

〈ãR
i , ãR

j 〉 = 〈ai,aj〉 − a
T
i AR(AT

RAR)−1
A

T
Raj ,

‖ãR
i ‖2 = 1− a

T
i AR(AT

RAR)−1
A

T
Rai.

Taking into account that the inner product between any pair of atoms

is equal to −µ by definition of G = ATA, we obtain the result.

Proof: (Lemma 8) Using Lemma 12 for |R| = g+ b, we notice

that C̃Q
\Q = βÃQ

\Q for some β > 0 since ‖ãQ
i ‖ does not depend on

i. Moreover, ãQ
i 6= 0m (and therefore c̃Qi 6= 0m) since spark(A) =

2k− g+ b > g+ b+1, which implies that AQ∪{i} is full-rank and,

in turn, that ãQ
i 6= 0m. Defining v , 12k−2g , we obtain

C̃\Qv = βÃ\Qv

= βÃ12k−g+b = βP⊥
QA12k−g+b = 02k−g+b−1 (48)

since 12k−g+b belongs to the null-space of A.

Let us partition the elements of v = 12k−2g into two subsets

Q1∪Q2 with Q1∩Q2 = ∅ and |Q1| = |Q2| = k−g, and define ỹ ,

C̃Q1\Q1k−g . According to (48), ỹ rereads −C̃Q2\Q1k−g , therefore

ỹ has two (k − g)-sparse representations with disjoint supports in

C̃\Q.

Proof: (Lemma 9) Let us first recall that b is set to 0 in this

lemma. We prove a result slightly more general than the statement

of Lemma 9: for the dictionary defined as in (35), any subset R with

p , |R| ≤ 2k−g−2 can be reached by Oxx. Lemma 9 corresponds
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to the case p = g (p ≤ 2k − g − 2 is always satisfied as long as

g < k).

The result is true for OLS by virtue of [20, Lemma 3] which

states that any subset R of an arbitrary dictionary A is reachable

as long as |R| ≤ spark(A)− 2. In particular, the latter condition is

verified by the dictionary A and the subset R considered here since

spark(A) = 2k − g and |R| ≤ 2k − g − 2 by hypothesis.

We prove hereafter that the result is also true for OMP. Without

loss of generality, we assume that the elements of R correspond to

the first p atoms of A (the analysis performed hereafter remains valid

for any other support R of cardinality p since the content of the Gram

matrix AT
RAR is constant whatever the support R: see (36)). For

arbitrary values of ε2, . . . , εp > 0, we define the following recursive

construction:

• y1 = a1,

• yp+1 = yp + εp+1ap+1

(yp+1 implicitly depends on ε2, . . . , εp+1). We show by recursion

that for all p ∈ {1, . . . , 2k − g − 2}, there exist ε2, . . . , εp > 0
such that OMP with the dictionary defined as in (35) and yp as

input successively selects a1, . . . ,ap during the first p iterations. In

particular, the selection rule (4) always yields a unique maximum.

The statement is obviously true for y1 = a1. Assume that it is true

for yp (p < 2k−g−2) with some ε2, . . . , εp > 0 (these parameters

will remain fixed in the following). According to [20, Lemma 15],

there exists εp+1 > 0 such that OMP with yp+1 = yp+εp+1ap+1 as

input selects the same atoms as with yp during the first p iterations,

i.e., a1, . . . ,ap are successively chosen. At iteration p, the current

active set reads R = {1, . . . , p} and the corresponding residual takes

the form

r
R = εp+1ã

R
p+1.

Thus, ap+1 is chosen at iteration p+ 1 if and only if

|〈ãR
i , ãR

p+1〉| < ‖ãR
p+1‖2 ∀ i 6= p+ 1. (49)

Now, |R| = p < 2k − g by hypothesis, then Lemma 12 applies

(we remind the reader that we assume that b = 0). Using (46)-(47),

it is easy to see that (49) is equivalent to

µ+ 2µ2
1
T
p (A

T
RAR)−1

1p < 1. (50)

Since µ = 1
2k−g−1

< 1
p+1

< 1
p−1

, we have 1− (p−1)µ > 0. Then,

[23, Lemma 2.3] and ‖1p‖2 = p yield:

1
T
p (A

T
RAR)−1

1p ≤ p

1− (p− 1)µ
.

Using the fact that µ < 1/(p+ 1), it follows that:

µ+ 2µ2
1
T
p (A

T
RAR)−1

1p ≤ µ

(

1 +
2µp

1− (p− 1)µ

)

= µ

(

1 + (p+ 1)µ

1− (p− 1)µ

)

<
1

p+ 1

(

2

1− p−1
p+1

)

= 1

which proves that the condition (50), and then (49) is met. OMP

therefore recovers the subset R∪ {p+ 1} = {1, . . . , p+ 1}.
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