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Identification of Matrices having a Sparse

Representation
Götz E. Pfander, Holger Rauhut, Jared Tanner

Abstract

We consider the problem of recovering a matrix from its action on a known vector in the setting where the

matrix can be represented efficiently in a known matrix dictionary. Connections with sparse signal recovery allows

for the use of efficient reconstruction techniques such as Basis Pursuit. Of particular interest is the dictionary of

time-frequency shift matrices and its role for channel estimation and identification in communications engineering.

We present recovery results for Basis Pursuit with the time-frequency shift dictionary and various dictionaries of

random matrices.

I. INTRODUCTION

Inferring reliable information from limited data is a key task in the sciences. For example, identifying a channel

operator from its response to a limited number of test signals is a crucial step in radar and communications

engineering [1], [2], [3], [4], [5], [6]. Here we consider the canonical setting where an operator is approximated

by a linear map, that is, by a matrix Γ ∈ Cn×m. While it is clear that Γ is determined by its action on any m

vectors that span Cm, significantly fewer measurements may be sufficient if a-priori information about the operator

is at hand. For instance, one commonly considers the question whether a single test signal h, referred to also as

identifier, can be used to identify Γ from Γh. A priori information guaranteeing that such an h exists is generally

deduced from physical considerations which may ensure that Γ can be efficiently represented or approximated using

relatively few basic matrices from a known matrix dictionary.

In wireless communications ([7], [8], [9] and references within) and sonar [10], [11], for example, the narrowband

regime of a transmission channel can generally be well approximated by a linear combination of a small number

of time-frequency shift matrices. Signals travel from the source to the receiver along a number of different paths,

each of which can be modeled by a time shift (delay dependent on the length of the path traveled) and a frequency

shift (Doppler effect caused by the motion of the transmitter, of the receiver, and of reflecting objects) [12], [8].
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It is frequently assumed, that the number of relevant (but unknown) paths, that is, in slightly simplified terms the

number of involved time-frequency shifts is relatively small when compared to the symbol length. For example,

for mobile communications the number of paths required to well approximate a channel in rural areas or typical

urban regiments does not exceed 10 [9, pages 266,283], see also [13], [7]. In wireless communications the benefit

of recovering the operator at the receiver is clear. Knowledge of the operator is necessary to invert it and to recover

the information carrying channel input from the channel output.

Complexity regularization has recently seen a resurgence of interest in the signal processing community under

the monikers sparse signal recovery and sparse approximation. In sparse signal recovery, one seeks the solution

of an underdetermined system of equations Ax = b, A ∈ Cn×N , n < N , with x having the fewest number of

non-zero entries from all solutions of Ax = b. We show in Section II that the identification of a matrix from its

action on a single test signal falls into the same setting as sparse signal recovery when the matrix is known to have

a sparse representation. This observation allows us to adopt efficient algorithms from sparse signal recovery for

the sparse matrix identification question. Examples of applications include the channel identification, estimation, or

sounding problem described in part above, which also have been considered in the case of time-invariant channels

in [14], [15], [16]. Numerical results based on Basis Pursuit have been obtained for time-varying channels in [17].

Further, the application of recovery methods of sparsely represented operators to radar measurements is discussed

in [2].

In brief, the content of this paper is organized as follows. In Section II we formalize the matrix identification

problem for matrices with sparse representations. We establish a connection to the recovery problem of vectors

with sparse representations and state the main results that are proven and discussed in greater detail in Section IV

and Section V. In particular, we consider matrix ensembles of random Gaussian or Bernoulli matrices as well as

partial Fourier matrices (Section II-A and Section IV).

In Section II-B and Section V we consider matrix dictionaries of time-frequency shift matrices which are of

particular interest due to their efficacy in approximating time-varying transmission channels. We would like to

emphasize that the common framework of the identification problem for matrices with a sparse representation and

the sparse signal recovery problem implies that the results achieved on the recovery of matrices with a sparse

representation in the dictionary of time-frequency shift matrices are at the same time results for the recovery of

signals with a sparse representation in Gabor frames.

In Section VI we briefly discuss the use of several test vectors instead of just one, and comment on how this

improves corresponding recovery results.

We conclude with numerical experiments in Section VII. They verify our main results concerning sparse represen-

tations with time-frequency shift matrices stated in Theorem 2.3, and show that the precise recoverability thresholds

follow those proven for Gaussian random matrices in [18]; that is, for matrices having a k-sparse representation we

observe Basis Pursuit to successfully recover the matrix from its action on a single vector provided k ≤ n/(2 log n).
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II. MAIN RESULTS AND CONTEXT

Before comparing the matrix identification problem with sparse signal recovery, we formalize the notion of a

matrix having a k-sparse representation.

Definition 2.1: A matrix Γ has a k-sparse representation in the matrix dictionary Ψ = {Ψj}N
j=1 if

Γ =
∑

j

xjΨj with ‖x‖0 = k,

and ‖x‖0 counts the number of non-zero entries in x, that is ‖x‖0 = |suppx| = cardinality{xj : xj 6= 0}.

The set of elementary matrices comprising Ψ may form a basis for Cn×m but it may as well only span a subspace

of Cn×m and/or contain linearly dependent subsets. In Definition 2.1 we place no restrictions on the dictionary Ψ.

Identification of matrices having a sparse representation from their action on a single vector (henceforth referred

to simply as sparse matrix identification, which is not to be confused with the notion of sparse matrices in numerical

analysis) can be formulated as sparse signal recovery problem through the simple observation that the action of Γ

on a test signal h ∈ Cm can be expressed as

Γh =
( N∑

j=1

xjΨj

)
h =

N∑
j=1

xj

(
Ψjh

)
= (Ψ1h |Ψ2h | . . . |ΨNh) x=(Ψh)x (1)

where x = (x1, x2, · · · , xN )T and (Ψh) = (Ψ1h |Ψ2h | . . . |ΨNh).

In classical sparse signal recovery the sparsest vector x satisfying Ax = b is sought given b and A; to identify

the matrix Γ, Γh takes the place of b and the jth column of A is Ψjh for j = 1, 2, . . . , N .

As mentioned above, we note that in case of the Ψj being time-frequency shift matrices, the columns in A =

(Ψh) form a Gabor system with window h [19], [20], [21]. Consequently, all our identifiability results concerning

representations with time-frequency shift matrices are also results for the recovery of signals that are sparse in a

Gabor system.

Remark 2.1: Although sparse matrix identification can be cast as sparse signal recovery, two important differences

should be noted.

• In most applications, sparse signal recovery is only of interest for k-sparse vectors with k < n, as the linear

dependence of the N columns of A ∈ Cn×N , n < N , implies that n-term solutions x for Ax = b are

never unique. However, in some cases an n-term solution might be of interest if there is no sparser solution

of Ax = b. In contrast, the goal in sparse matrix identification is not to represent b = Γh efficiently, but to

recover Γ. The non-uniqueness of n-term solutions to (Ψh)x = Γh implies that there always exist infinitely

many n−sparse matrices Γ′ consistent with the observations Γ′h = Γh. As such, the recovery of an n-sparse

x in the sparse matrix identification setting does not give any information about the matrix to be identified, Γ.

• In sparse signal recovery the columns of A are used to represent or to approximate b, whereas for sparse

matrix identification the matrices Ψj are used to represent or approximate Γ. However, unlike sparse signal

recovery where the columns of A appear explicitly in the reconstruction, the Ψj do not appear explicitly
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when sparse matrix identification is cast as sparse signal recovery (1); rather, only the action of Ψj on the

test vector h is utilized. The test vector h ∈ Cm has no analog in traditional sparse signal recovery, and can

be exploited in sparse matrix identification to design desirable characteristics in Ψjh. This design freedom is

utilized extensively in our main results concerning the matrix dictionary of time-frequency shifts, Theorem 2.3.

Note that the computational difficulty in sparse signal recovery, sparse approximation, and our formulation of

sparse matrix identification arises from the fact that the support set of the non-zero entries in x is unknown. While

the direct solution of finding the sparsest representation of Γ in the dictionary Ψ

min ‖x′‖0 subject to (Ψh)x′ = Γh, (2)

involves a combinatorial search of the support set and is therefore computationally intractable, a number of

computationally efficient algorithms have been shown to recover the sparsest solution if appropriate conditions

are met. We concentrate here on recoverability conditions for the canonical sparse signal recovery algorithm Basis

Pursuit (BP) where the convex problem

min ‖x′‖1 subject to (Ψh)x′ = Γh, (3)

‖x‖1 =
∑

j |xj |, is solved as a proxy to (2).

The convex program (3) can be solved efficiently using well established optimization algorithms for second-order

cone programming and linear programming [22], [23], [24], for complex and real valued systems, respectively. We

give theoretical and numerical evidence for conditions where the solution of (3) coincides exactly with that of (2).

Many other algorithms may also be used as proxys for (2), including Orthogonal Matching Pursuit (OMP) [25],

[26], [27], stagewise orthogonal matching pursuit (StOMP) [28], and an algorithm based upon error correcting codes

[29]–to name a few. Our principal technical results in Section V-A also give results for OMP, but for conciseness

we do not state them here, leaving them to the interested reader.

In practice, the measured vector Γh will be contaminated by noise, and, in addition, the operator Γ will not

be strictly sparse, but will instead be well approximated by a sparse representation; in this case the minimization

problem (3) will be replaced by its well known variant

min ‖x′‖1 subject to ‖(Ψh)x′ − Γh‖2 ≤ ε, (4)

where ‖z‖2 =
√∑

j |zj |2 as usual.

A. Dictionaries of random matrices

Many known results in sparse signal recovery, sparse approximations and their companion theory of compressed

sensing involve random matrices [30], [31], [32], [18], [33]. Based on these results, we obtain recovery results

for matrix dictionaries where all its member matrices are chosen at random. From a practical point of view such

random matrix dictionaries do not seem to be useful in the sparse matrix identification setting; nevertheless, the

statements give some insight into the sparse matrix identification question as they give guidance in what kind of

results to seek in the mathematical analysis of structured and more application relevant matrix dictionaries.

January 24, 2008 DRAFT
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Theorem 2.1: Let h be a non-zero vector in Rm.

(a) Let all entries of the N matrices Ψj ∈ Rn×m, j = 1, . . . , N be chosen independently according to a standard

normal distribution (Gaussian ensemble); or

(b) let all entries of the N matrices Ψj ∈ Rn×m, j = 1, . . . , N be independent Bernoulli ±1 variables (Bernoulli

ensemble).

Then there exists a positive constant c so that for ε > 0,

n ≥ c
(
k log(N/k) + log(ε−1)

)
implies that with probability of at least 1 − ε all matrices Γ having a k-sparse representation with respect to

Ψ = {Ψj} can be recovered from Γh by Basis Pursuit (3).

Using Theorem 3.5, this recovery result can be made stable under perturbation of Γh by noise, and also applies

when Γ is not exactly k-sparse, but can be well approximated by a k-sparse operator.

Precise information on the constant c will be given in Section IV. In case of the Gaussian ensemble Donoho

and Tanner [34], [35], [36], [37], [18] obtained sharp thresholds separating regions in the (k/n, n/N ) plane where

recovery holds or fails with high probability; Section IV-A recounts these and additional results on Gaussian

systems. Theorem 2.1(b) is proven in Section IV-B, and similar results for certain diagonal matrices are proven in

Section IV-C.

B. The dictionary of time-frequency shift matrices

As outlined in the introduction, the matrix dictionary of time-frequency shifts appears naturally in the channel

identification problem in wireless communications [12] or sonar [11]. Due to physical considerations wireless

channels may indeed be modeled by sparse linear combinations of time-frequency shifts M`Tp, where the periodic

translation operators Tp and modulation operator M` on Cn are given by

(Tph)q = h(p+q) mod n, (M`h)q = e2πi`q/nhq. (5)

The system of time-frequency shifts,

G = {M`Tp : `, p = 0, . . . , n−1}, (6)

forms a basis of Cn×n and for any non-zero h, the vector dictionary Gh is a Gabor system [20], [38], [39], [21].

Below, we focus on the so-called Alltop window hA [40], [41] with entries

hA
q =

1√
n

e2πiq3/n, q = 0, . . . , n−1, (7)

and the randomly generated window hR with entries

hR
q =

1√
n

εq, q = 0, . . . , n−1, (8)

where the εq are independent and uniformly distributed on the torus {z ∈ C, |z| = 1}.
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Invoking existing recovery results [42], [43], [27], [44] (see Theorems 3.1 and 3.2 below) and our results on the

coherence of Gabor systems GhA and GhR in Section V-A, see Section 2.2, we will obtain

Theorem 2.2: (a) Let n be prime and hA be the Alltop window defined in (7). If k <
√

n+1
2 then Basis Pursuit

recovers from ΓhA all matrices Γ ∈ Cn×n having a k-sparse representation, Γ =
∑

(p,`)∈Λ xp`M`Tp, |Λ| = k,

with respect to the time-frequency shift dictionary G given in (6).

(b) Let n be even and choose hR to be the random unimodular window in (8). Let t > 0 and suppose

k ≤ 1
4

√
n

2 log n + log 4 + t
+

1
2

. (9)

Then with probability of at least 1 − e−t Basis Pursuit recovers from ΓhR all matrices Γ ∈ Cn×n having a

k-sparse representation with respect to the time-frequency shift dictionary G given in (6).

A slight variation of part (b) also holds for n odd, but is omitted for conciseness. Further note that Theorem 2.2

also holds with Basis Pursuit literally being replaced by Orthogonal Matching Pursuit [27]. Moreover, Theorem 3.2

shows that recovery is stable under perturbation of ΓhA and ΓhR by noise.

In contrast with Theorem 2.1 for random matrices, where k is allowed to be of order O(n/ log n), Theo-

rem 2.2 requires k to be of order
√

n or
√

n/ log n. Substantially larger order thresholds, O(n/ log n) for hA and

O(n/ log2(n)) for hR, are also possible to identify a matrix Γ which is the linear combination of a small number

of time-frequency shift matrices. However, this larger regime of successful recovery necessitates passing from a

worst case analysis for sparse Γ to an average case analysis in the sense that the coefficient vector x is chosen at

random. Theorem 2.3 will follow from recent work by Tropp, [45], and our coherence results in Section V-A, see

Section V-C.

Theorem 2.3: Let k ≥ 3 and let Λ be chosen uniformly at random among all subsets of {0, . . . , n−1}2 of

cardinality k. Suppose further that x ∈ Cn has support Λ with random phases (sgn(x`p))(`,p)∈Λ that are independent

and uniformly distributed on the torus {z, |z| = 1}. Let

Γ =
∑

(`,p)∈Λ

x`pM`Tp.

(a) Let n be prime and choose the Alltop window hA from (7). Assume that for ε > 0

k ≤ n

8 log(2n2/ε)
(10)

and

s :=
1

144

(
e−1/4/2− 2k

n

)2
n

k log(k/2 + 1)
≥ 1 (11)

Then with probability at least

1− (ε + (k/2)−s)

Basis Pursuit (3) recovers Γ from ΓhA.

(b) Let n be an even number and choose the random window hR from (8). Assume

k ≤ n

32(σ + 2) log(n) log(2n2/ε)

January 24, 2008 DRAFT
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for some σ > 0 and

s :=
1

576(σ + 2)

(
e−1/4/2− 2k

n

)2

· n

k log(k/2 + 1)
≥ 1

Then with probability at least

1− (ε + 4n−σ + (k/2)−s)

Basis Pursuit (3) recovers Γ from ΓhR. (A similar result also holds for n odd.)

In simple terms, Theorem 2.3 states that Γ can be recovered from ΓhA or ΓhR with high probability 1 − ε

provided that the sparsity of Γ satisfies k ≤ Cεn/ log n in case of hA and k ≤ C ′
εn/ log(n)2 in case of hR.

In Section V-D we use a simple argument from time-frequency analysis to obtain

Corollary 2.4: Theorems 2.2, 2.3, and 5.1, also hold with the windows hA and hR replaced by their Fourier

transforms ĥA and ĥR, with entries defined as ĥj = 1√
n

∑n−1
j=0 hqe

2πijq/n.

III. TOOLS IN SPARSE SIGNAL RECOVERY

It was shown in (1) that for any test signal h, we have Γh = (Ψh)x where x is the sparse coefficient vector of

Γ. This observation links the sparse matrix identification question with sparse signal recovery where one seeks the

sparsest solution (2) to the underdetermined system Ax = b; in the sparse matrix identification setting (Ψh) =

(Ψ1h |Ψ1h | . . . |ΨNh) takes the place of A and Γh the place of b. In contrast to sparse approximation, where

the dictionary A is usually fixed, for sparse matrix identification we have the additional freedom of designing the

test signal h in order for (Ψh) to have desirable properties.

Let us shortly recall known results in sparse signal recovery and sparse approximation that we apply to the

sparse matrix identification question. In Section III-A we review the notion of coherence (12) and its implications

for sparse signal recovery and approximation using Basis Pursuit, (3) and (4), as well as Orthogonal Matching

Pursuit. In Section III-B we review the restricted isometry property, allowing for improved recoverability results

for Basis Pursuit.

A. Coherence

The recoverability properties of sparse signal recovery algorithms for an underdetermined system Ax = b is

often measured by the coherence of A,

µ = max
r 6=s

|〈ar,as〉|, (12)

where ar is the rth column of A and ‖ar‖2 = 1 for all r. The following theorem was proved by Donoho and

Elad [46], and independently by Gribonval and Nielson [47], see also [27].

Theorem 3.1: Let A be a unit norm dictionary with coherence µ. If

(2k − 1)µ < 1

then Basis Pursuit (as well as Orthogonal Matching Pursuit) recovers all k-sparse vectors x from b = Ax.

Recovery is also stable under perturbation by noise when Basis Pursuit (3) is replaced with (4).
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Theorem 3.2 (Donoho et al. [42], Theorem 3.1): Let A, µ be as above and suppose that (4k−1)µ < 1. Assume

that x is k-sparse and we have perturbed observations b = Ax + z with ‖z‖2 ≤ ε. Then the solution x# of the

Basis Pursuit variant

min ‖x′‖1 subject to ‖Ax′ − b‖2 ≤ δ

satisfies

‖x# − x‖2
2 ≤

(ε + δ)2

1− µ(4k − 1)
.

Theorems 3.1 and 3.2 ensure that the solutions of (3) and (4) correspond (exactly and approximately, respectively)

to the solution of (2) for all k-sparse x. For a broad class of dictionaries the coherence is of order O(1/
√

n), see

Sections 4 and 5 for random and Gabor dictionaries, respectively. Hence, Theorems 3.1 and 3.2 ensure (stable)

recovery provided k = O(
√

n).

In contrast to these O(
√

n) thresholds, which are valid for all x, Tropp [45] developed a general framework for

the analysis of Basis Pursuit (3), which is still based on the coherence of a general dictionary, but shows that (3) is

often successful for substantially larger k than those considered in Theorems 3.1 and 3.2. This comes, however, at

the cost of assuming a random model on the sparse signal to be recovered. It allows us to prove order O(n/ log n)

for hA and O(n/ log(n)2) for hR recoverability result for the time-frequency-shift dictionary, Theorem 2.3. We

state the results of Tropp, where ‖ · ‖2,2 denotes the operator norm given by ‖A‖2,2 = sup‖x‖2=1 ‖Ax‖2, and

AΛ is the restriction of a matrix A to the columns indexed by Λ.

Theorem 3.3 (Tropp [45], Theorem 12): Let A be an n × N vector dictionary with unit norm columns and

coherence µ. Suppose that Λ is selected uniformly at random among all subsets of {1, . . . , N} of size k ≥ 3. Let

s ≥ 1. Then √
144sµ2k log(k/2 + 1) +

2k

N
‖A‖2

2,2 ≤ e−1/4δ (13)

implies

P (‖A∗
ΛAΛ − Id‖2,2 ≥ δ) ≤ (k/2)−s.

Theorem 3.4 (Tropp [45], Theorem 13): Let A be an n×N dictionary with coherence µ. Suppose Λ ⊆ {1, . . . , N}

of cardinality k (|Λ| = k) is such that

‖A∗
ΛAΛ − Id‖2,2 ≤ 1/2.

Suppose that x ∈ CN has support Λ with random phases sgn(xr), r ∈ T , that are independent and uniformly

distributed on the torus {z, |z| = 1}. Then with probability at least 1 − 2Ne−1/(8µ2k) the sparse vector x can be

recovered from b = Ax by Basis Pursuit.

B. Restricted isometry property

Candès, Romberg and Tao introduced the Restricted Isometry Property (RIP) which is an alternative perspective

to coherence [48], [31].
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Definition 3.1: Let A ∈ Cn×N and k < n. The restricted isometry constant δk = δk(A) is the smallest number

such that

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2

for all k-sparse x.

A is said to satisfy the restricted isometry property if it has small isometry constants, say δk < 1/2; such matrices

allow stable sparse recovery by Basis Pursuit.

Theorem 3.5 (Candès, Romberg and Tao [48]): Assume that the restricted isometry constants of A satisfy

δ3k + 3δ4k < 2.

Let x ∈ CN and assume we have noisy data y = Ax + η with ‖η‖2 ≤ ε. Denote by xk the truncated vector

corresponding to the k largest absolute values of x. Then the solution x# of (4) satisfies

‖x# − x‖2 ≤ C1ε + C2
‖x− xk‖1√

k
.

The constants C1 and C2 depend only on δ3k and δ4k.

Note that for x k-sparse and noise level ε = 0, Theorem 3.5 guarantees exact recovery of x by (3).

IV. RANDOM MATRICES

Many of the recent results in sparse signal recovery with recoverability thresholds for k ≤ Cn/ log n either

assume that A is a random Gaussian or Bernoulli matrix [30], [31], [32], [33], or partial random Fourier matrix

[49], [26], [50], [51], [52]. Recoverability results in these cases can be obtained by establishing the restricted

isometry property, see Definition 3.1, or through a careful analysis of the geometric structure of the convex hull

associated with the columns of A [34], [35], [36], [37], [18]. We apply these results to the matrix identification

problem when the matrix has a sparse representation in terms of certain random matrices.

A. Gaussian matrix ensemble

Assume all entries of the N matrices Ψj ∈ Rn×m in Ψ are independent standard Gaussian random variables and

h is an arbitrary non-zero vector in Rm. Then the entries of the dictionary A = (Ψh) ∈ Rn×N whose columns are

given by Ψjh, j = 1, . . . , N , are jointly independent and of the form Z =
∑n

`=1 g`h` where the g` are independent

standard Gaussian random variables. By rotational invariance of the distribution of the Gaussian vector (g1, . . . , gn)

the random variable Z has the same distribution as ‖h‖2g where g is a (scalar-valued) standard Gaussian. Hence,

the dictionary (Ψh) has the same distribution as ‖h‖2A ∈ Rn×N , where A is a random matrix whose entries are

independent standard Gaussians. Thus, the existing literature in sparse approximation concerning Gaussian matrices

applies, see for instance [30], [31], [32], [18], [33] and additional results discussed in the remainder of this section.

In particular, the restricted isometry property ensures stable recovery with probability at least 1− ε provided

n ≥ c(k log(N/k) + log(ε−1)), (14)
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see [30, Theorem 5.2], [33, Theorem 2.2] or [31]. Hence, by Theorem 3.5 we have stable recovery by (4) in this

regime and the statement of Theorem 2.1(a) follows.

The work of Donoho and Tanner [35], [36] actually allows for a stronger statement than (14) in the context

of noise-free and exact k-sparse vectors x. A simple version of their results says that most k-sparse Γ can be

recovered with high probability by Basis Pursuit provided k ≤ n
2 log(N/n) . For details we refer to [35], [36], and

for extension to the noisy setting to Wainwright’s work [53].

B. Bernoulli matrix ensemble

The recoverability results for Bernoulli matrices in Theorem 2.1(b) are based on establishing the restricted

isometry property given in Definition 3.1.

To this end, we assume that the entries of the N matrices Ψj ∈ Rn×m in Ψ are selected as independent ±1

Bernoulli variables, that is, +1 or −1 with equal probability, and let h be an arbitrary non-zero vector. Then an

entry of the dictionary A = (Ψh) is given by

apq =
n∑

`=1

εpq
` h`, p = 1, . . . ,m, q = 1, . . . , N, (15)

where the εpq
` are independent Bernoulli variables, that is, the apq are independent Rademacher series [54].

Theorem 4.1 shows that the matrix A has the restricted isometry property with high probability for sparsities

k that are nearly linear in m. Hence, by Theorem 3.5, for an arbitrary non-zero choice of h we can recover any

Γ having a k-sparse representation in terms of random Bernoulli matrices from the action of Γh through Basis

Pursuit (3).

Theorem 4.1: Let h ∈ Rm be normalized by ‖h‖2 = 1/
√

m. Let A be the random matrix with entries defined

in (15). Assume δ ∈ (0, 1) and t > 0. If

n ≥ C1δ
−2(k log(N/k) + log(2e + 24e/δ) + t). (16)

Then with probability at least 1− e−t the restricted isometry property is satisfied, that is, for all Λ ⊂ {1, . . . , N}

of cardinality at most k it holds that

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2

for all x supported on Λ. The constant satisfies C1 ≤ 23.15.

Proof: Let v ∈ RN be an arbitrary vector. We form the inner product of a row of A with v,

Xp =
n∑

q=1

apqvq =
N∑

q=1

n∑
`=1

εpq
` h`vq.

By independence of the εpq
` , the Xp are similarly independent. By Khintchine’s inequality the even moments of X

can be estimated by the moments of a standard Gaussian variable g [54], [55]

E[|Xp|2z] ≤ ‖v‖2‖h‖2
(2z)!
2zz!

= ‖v‖2‖h‖2E[|g|2z], z ∈ N.
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Following Lemma 5 and the proof of Lemma 6 in [56] this implies the concentration inequality,

P(|‖Av‖2
2 − ‖v‖2

2| ≥ ε‖v‖2
2) ≤ 2 exp

(
−n

2 (ε2/2− ε3/3)
)
.

By Theorem 2.2 in [33], see also Theorem 5.2 in [30], this implies that the restricted isometry property holds under

the stated condition on n. The estimate of the constant C1 follows from [33, Theorem 2.2] as well.

Note that for fixed δ and t condition (16) can be rewritten as

k ≤ cn/ log(N/k)

for some constant c.

Combining Theorems 3.5 and 4.1 yields Theorem 2.1(b).

C. Diagonal matrices

Diagonal matrices act as multiplication operators on Cn. Using a Fourier expansion of the diagonal, we observe

that any diagonal matrix can be expressed as linear combination of modulation operators M` ∈ Cn×n, ` =

0, . . . , n−1, defined in (5). We now consider the case that only a small number of components of the output of a

diagonal operator Γ can be measured; the assumption that Γ is sparse in the dictionary of modulation operators

shall be used to recover Γ from these components.

To this end, let Ω be a subset of {0, . . . , n−1} of cardinality m and denote by MΩ
` ∈ Cm×m the submatrix of

M` with columns and rows restricted to the index set Ω. Let

ΨΩ = {MΩ
` , ` = 0, . . . , n−1}

and h = 1 = (1, . . . , 1)T . If ΓΩ =
∑n−1

`=0 x`M
Ω
` then ΓΩ1 coincides with the restriction of Γ1 =

∑n−1
`=0 x`M`1

to the indices in Ω.

The matrix A whose columns are the elements of the dictionary (ΨΩ1) = {MΩ
` 1, ` = 0, . . . , n−1} is precisely

a row submatrix of the Fourier matrix,

A = AΩ = (e2πir`)r∈Ω,`=0,...,n−1 ∈ Cm×n.

If the subset Ω is chosen uniformly at random among all subsets of size m then AΩ is a random matrix. This

random partial Fourier matrix was studied in [49], [31], [52], see also [50] for a slight variation. Indeed, under the

condition

k ≤ c
m

log4(n) log(ε−1)

the restricted isometry property holds with probability at least 1 − ε [52] and by Theorem 3.5 we obtain stable

recovery of all matrices having a sparse representation in terms of ΨΩ.

V. TIME-FREQUENCY SHIFT DICTIONARIES

In this section we establish coherence results for the dictionary of time-frequency shift matrices and prove

Theorems 2.2 and 2.3.
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A. Coherence for the time-frequency shift dictionary

We apply known recovery results [42], [43], [27], [44], [45] for dictionaries with small coherence (12). Assuming

‖h‖2 = 1, the coherence, (12), of Gabor systems is

µ = max
(`,p) 6=(`′,p′)

|〈M`Tph, M`′Tp′h〉|. (17)

Based on results by Alltop in [40], Strohmer and Heath showed in [41] that the coherence (17) of GhA given in

(7) satisfies

µ =
1√
n

(18)

for n prime. This is almost optimal since the general lower bound in [41] for the coherence of frames with n2

elements in Cn yields µ ≥ 1√
n+1

.

Unfortunately, the coherence (17) of hA applies only for n prime. For arbitrary n we consider the random window

hR.

Theorem 5.1: Let n ∈ N and choose a random window hR with entries

hR
q =

1√
n

εq, q = 0, . . . , n−1,

where the εq are independent and uniformly distributed on the torus {z ∈ C, |z| = 1}. Let µ be the coherence of

the associated Gabor dictionary (17), then for α > 0 and n even,

P
(
µ ≥ α√

n

)
≤ 4n(n−1)e−α2/4,

while for n odd,

P
(
µ ≥ α√

n

)
≤ 2n(n−1)

(
e−

n−1
n α2/4 + e−

n+1
n α2/4

)
. (19)

Up to the constant factor α, the coherence in Theorem 5.1 comes close to the lower bound µ ≥ 1√
n+1

with high

probability. Theorems 2.2 and 2.3 will follow from these order O(1/
√

n) coherence results in this section and the

Theorems 3.1 and 3.2 of [42], [43], [27], [44] and Theorems 3.3 and 3.4 of Tropp [45] respectively.

Proof of Theorem 5.1. The technical details for n even and odd are slightly different, for conciseness we only

state the proof for n even, and outline the proof for n odd.

A direct computation shows that

|〈M`′Tp′h
R,M`Tph

R〉| = |〈M`−`′Tp−p′h
R,hR〉|

and, therefore, it suffices to consider 〈M`Tph
R,hR〉, `, p = 0, . . . , n−1; furthermore, as 〈M`h

R,hR〉 = 〈M`1, |hR|2〉 =

0 for ` 6= 0, we consider only the case p 6= 0.

Writing εq = e2πiyq with yq ∈ [0, 1) we obtain

〈M`Tph
R,hR〉 =

1
n

n−1∑
q=0

e2πi q`
n εq−pεq

=
1
n

n−1∑
q=0

e2πi(yq−p−yq+ q`
n ),
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where εq−p = εn+q−p if q − p < 0, that is, the indices are understood modulo n. Set

δ(p,`)
q = e2πi(yq−p−yq+ q`

n ),

and note that δ
(p,`)
q is uniformly distributed on the torus T. However, the δ

(p,`)
q , q = 1, . . . , n, are no longer jointly

independent. But nevertheless, as we demonstrate in the following, we can split all variables into two subsets of

independent variables.

If p = 1, p = n−1, or if neither p nor n−p divide n, then the n/2 random variables ε0εp, εpε2p, . . . , εp(n/2−1)εpn/2

are jointly independent, as well as the remaining n/2 variables εpn/2εp(n/2+1), . . . , εp(n−1)ε0. The indices are again

understood modulo n. If p ≥ 2 or n− p ≥ 2 divides n, then we form the p random vectors

Y1 =(ε0εp, εpε2p, . . . , εn−pε0),

Y2 =(ε1εp+1, εp+1ε2p+1, . . . , εn−p+1ε1),

...

Yp =(εp−1ε2p−1, ε2p−1ε3p−1, . . . , εn−1εp−1).

These vectors are jointly independent. Moreover, p ≤ n/2 allows partitioning the entries of a single vector Y into

two sets Λ1
p and Λ2

p with |Λ1
p|, |Λ2

p| ≥ 1 and the elements of each set are jointly independent. Indeed, this can be

seen by forming subsets of two adjacent elements of the form {εk+jpεk+(j+1)p, εk+(j+1)pεk+(j+2)p} with possibly

a remaining single element subset. Then all subsets are jointly independent and the two elements inside a subset

are independent as well.

Now by forming unions ∪p
i=1Λ

1
i and ∪p

i=1Λ
2
i we can always partition the index set {0, . . . , n−1} into two

subsets Λ1, Λ2 ⊂ {0, . . . , n−1} with |Λ1| = |Λ2| = n/2 such that the random variables {δ(p,`)
q , q ∈ Λi} are jointly

independent for both i = 1, 2.

In the following, we will use the complex Bernstein inequality, see for example [45, Proposition 15] and [55].

It states that for an independent sequence εq, q = 1, . . . , n, of random variables which are uniformly distributed on

the torus,

P

(∣∣∣∣∣
n∑

q=1

εq

∣∣∣∣∣ ≥ nu

)
≤ 2e−nu2/2. (20)

Using the pigeonhole principle and the inequality (20) we obtain

P
(
|〈M`Tph

R,hR〉| ≥ t
)

= P
(∣∣ n−1∑

q=0

δ(p,`)
q

∣∣ ≥ nt
)

≤ P
(∣∣ ∑

q∈Λ1

δ(p,`)
q

∣∣ ≥ nt/2
)

+ P
(∣∣ ∑

q∈Λ2

δ(p,`)
q

∣∣ ≥ nt/2
)

≤ 4 exp(−nt2/4).

Forming the union bound over all possible (p, `) ∈ {0, . . . , n−1}2 \ {(0, 0)} and choosing t = α/
√

n yields the

statement of Theorem 5.1 for n even.
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The proof of Theorem 5.1 for n odd uses essentially the same technique as for n even, with the difference that

the random variables δ
(m,`)
k are grouped into sets of unequal cardinality, |Λ1| = (n−1)/2 and |Λ2| = (n + 1)/2.

For large n the probability tail bounds are nearly the same for n even (21) and n odd (19). �

B. Proof of Theorem 2.2

Part (a) follows directly from Theorem 3.1 and the coherence of GhA (18).

Part (b) follows from Theorem 3.1 and Theorem 5.1. In fact, the probability that the condition µ < (2k − 1)−1

of Theorem 3.1 does not hold for GhR is estimated by

P(µ ≥ (2k − 1)−1) ≤ 4n2 exp
(
− n

4(2k − 1)2

)
.

Requiring that the latter term is less than e−t and solving for k gives (9). �

C. Proof of Theorem 2.3

Having established coherence results for GhA and GhR in Section V-A, Theorem 2.3 follows from Theorems 3.3

and 3.4 of Tropp [45] as shown below.

(a) Recall from (18) that the coherence for GhA satisfies µ = n−1/2. Next, observe that hA unimodular implies

that the columns of GhA form n orthonormal bases, and, hence, n = ‖(GhA)∗‖2
2,2 = ‖GhA‖2

2,2. Plugging this

into condition (13) of Tropp’s theorem with δ = 1/2 we require that

√
144s

√
k log(k/2 + 1)

n
+

2k

n
= e−1/4/2.

Solving for s yields (11). Applying Theorem 3.4, which requires s ≥ 1, shows that condition (13) in Theorem 3.3

holds for A = GhA and we conclude that ‖A∗
ΛAΛ − Id‖2,2 ≤ 1/2 with probability at least 1− (k/2)−s.

Now let δ = ‖A∗
ΛAΛ − Id‖2,2. Then

P(BP does not recover Γ from ΓhA)

≤ P(BP does not recover Γ from ΓhA|δ ≤ 1/2)

+ P(δ > 1/2).

Thus by Theorem 3.4 we can lower bound the probability that recovery is successful by

1− ((k/2)−s + 2n2 exp(− n

8k
)).

Furthermore, observe that 2n2 exp(− n
8k ) ≤ ε under condition (10).

(b) Let µ be the coherence associated with the random Gabor window hR. Setting α2 = p log n in Theorem 5.1

we obtain that the probability that µ exceeds
√

p log n
n is smaller than

4n(n− 1) exp(−α2/4) ≤ 4n−p/4+2 .
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Set σ = p/4 − 2, i.e., p = 4(σ + 2), and assume for the moment that µ ≤
√

p log n
n . Then condition (13) with

δ = 1/2 of Theorem 3.4 is satisfied if

√
144s

√
4(σ + 2)

k log n

n
+

2k

n
= e−1/4/2.

Requiring s ≥ 1 yields condition (22). Invoking Theorem 3.4 we obtain that ‖A∗
ΛAΛ−Id‖2,2 ≤ 1/2, A = (GhR),

with probability at least 1− (k/2)−s.

Similarly to the proof of part (a), we estimate the probability of successful recovery by

P(BP recovers Γ from ΓhR)

≥ 1− P
(
BP fails|δ ≤ 1/2 & µ2 ≤ p log n

n

)
− P

(
δ > 1/2|µ2 ≤ p log n

n

)
− P

(
µ2 >

p log n

n

)
.

By Theorem 3.3, the probability that Γ can be reconstructed from ΓhR by Basis Pursuit (3) exceeds

1− (2n2 exp(− n

8p log(n)k
) + (k/2)−s + 4n−σ).

Finally, observe that the term 2n2 exp(− n
p log(n)k ) is less than ε provided

k ≤ n

32(σ + 2) log(n) log(2n2/ε)
.

D. Proof of Corollary 2.4

Plancherel’s theorem and M̂`Tph = T`Mn−pĥ = σMn−pT`ĥ with |σ| = 1 implies that the coherence remains

the same under Fourier transform of the window, that is,

µh = sup
(`,p) 6=(`′,p′)

|〈M`Tph,M`′Tp′h〉|

= sup
(`,p) 6=(`′,p′)

|〈M̂`Tph,M̂`′Tp′h〉|

= sup
(`,p) 6=(`′,p′)

|〈Mn−pT`ĥ,Mn−p′T`′ĥ〉| = µĥ.

Since all of the results concerning the dictionary of time-frequency shift matrices stated above are based on the

coherence this proves the claim.

VI. MULTIPLE TEST VECTORS

In addition to the goal of recovering the operator Γ from the operator output caused by a single test signal, we

may also consider using two or more test signals h1, . . . ,hr to identify Γ. In this case, the vector of concatenated

observations Γh1, . . . ,Γhr is given as
Γh1

...

Γhr

 =


Ψ1h1 . . . ΨNh1

...
...

Ψ1hr . . . ΨNhr

x =


Ψh1

...

Ψhr

x,
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and our sparse matrix identification task is again reduced to a sparse signal recovery problem. Although we will

not pursue this task in depth here, we will make some remarks and state extensions of our results to this more

general setting.

Intuitively, using several test vectors instead of a single one should increase the maximal sparsity k that allows

for perfect reconstruction as more information can be exploited. However, it is only interesting to consider r < m

since any operator Γ ∈ Cn×m can be characterized by its action on m basis vectors. The following lemma on

coherence of concatenated measurement matrices suggests that the maximal recoverable sparsity does not decrease.

Its proof is straightforward and therefore omitted.

Lemma 6.1: Let h1, . . . ,hr ∈ Cm such that the matrices (Ψhj) have coherence µj . Then the coherence µ of

the normalized concatenated matrix

Ah1,...,hr =
1√
r


(Ψh1)

(Ψh2)
...

(Ψhr)

 =
1√
r


Ψ1h1 . . . ΨNh1

...
...

Ψ1hr . . . ΨNhr


satisfies µ ≤ 1

r (µ1 + µ2 + · · ·+ µr) ≤ maxj=1,...,r µj .

A straightforward extension of the proof of Theorem 5.1 yields the following result in the setting of time-frequency

shifts and several randomly chosen hR
j , j = 1, . . . , r.

Theorem 6.2: Let n ∈ N be even and choose random windows hR
j , j = 1, . . . , r, with entries

(hR
j )q =

1√
n

εqj , q = 0, . . . , n−1,

where the εqj are independent and uniformly distributed on the torus {z ∈ C, |z| = 1}. Let µ be the coherence of

the concatenated matrix

1√
r


(GhR

1 )
...

(GhR
r )


where G is defined in (6). Then for α > 0

P
(
µ ≥ α√

rn

)
≤ 4n(n−1)e−α2/4. (21)

Similarly as in Theorem 2.2(b) we deduce that the condition

k ≤ 1
4

√
rn

2 log n + log 4 + t

implies that Basis Pursuit (or Orthogonal Matching Pursuit) recovers all k-sparse Γ from ΓhR
1 , . . . ,ΓhR

r with

probability at least 1− e−t. Hence, the maximal provable sparsity increases at least by a factor of
√

r.

Of course, we may as well apply Tropp’s result based on random support sets and phases to arrive at a statement

analogous to Theorem 2.3.
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Theorem 6.3: Let n be even and k ≥ 3 and let Λ be chosen uniformly at random among all subsets of

{0, . . . , n−1}2 of cardinality k. Suppose further that x ∈ Cn has support Λ with random phases (sgn(x`p))(`,p)∈Λ

that are independent and uniformly distributed on the torus {z, |z| = 1}. Let

Γ =
∑

(`,p)∈Λ

x`pM`Tp.

Choose r independent random windows hR
1 , . . . ,hR

r according to (8). Assume

k ≤ rn

32(σ + 2) log n log(2n2/ε)

for some σ > 0 and

s :=
1

576(σ + 2)

(
e−1/4/2− 2k

n

)2

· rn

k log(k/2 + 1)
≥ 1 . (22)

Then with probability at least

1− (ε + 4n−σ + (k/2)−s)

Basis Pursuit (3) recovers Γ from ΓhR
1 , . . . ,ΓhR

r .

Roughly speaking, with the chosen probabilistic model on the sparse coefficient vector x, the provable maximal

sparsity k that allows for recovery, increases by a factor of r when taking r test vectors instead of only one. This

fact is illustrated in Figure 5 in Section VII.

VII. NUMERICAL RESULTS

Theorem 2.3 can be tested empirically for various values of n by trying a number of sparsity levels k and

recording the fraction of times (3) recovers the true k-sparse coefficient vector x.

But before doing so, we illustrate in Figure 1 the recovery method for matrices which have a sparse representation

in the dictionary of time–frequency shift matrices as considered in Theorem 2.3. A 7-sparse coefficient vector x

in the time-frequency plane is chosen and reconstructed from ΓhA =
∑

`,p x`pM`Tph
A by Basis Pursuit. As

comparison, x is reconstructed by a traditional reconstruction by `2-minimization,

min ‖x‖2 subject to (ΨhA)x = ΓhA . (23)

For the Alltop window hA in (7) we consider the values of n prime from 11 to 59, for the random window hR

in equation (8) we consider the values of n prime from 11 to 59 as well as n = 10 + 4j for j = 0, 1, . . . , 12. Each

empirical test consists of generating a random k-sparse x ∈ Cn2
with non-zero entries xq = rq exp(2πiθq), with

rq drawn independently from the Gaussian N(0, 1) distribution, and θq drawn independently and uniformly from

[0, 1).

For each value of n, 1000 tests are computed per value of k = 1, 2, . . . , n−1. A test is considered successful

if Basis Pursuit (3) recovers all components of the coefficient vector x with 10−10 error tolerance. The successful

recovery of x, and, hence, of Γ from ΓhA or ΓhR is recorded in Y n
k as a 1, and failure to recover as a 0. Following
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Fig. 1. (a) Original 7-sparse coefficient vector (n = 59) in the time-frequency plane. (b) Reconstruction by Basis Pursuit using the Alltop

window hA. (c) For comparison, the reconstruction by traditional `2-minimization (23).

the empirical examination of phase transitions in [23], we approximate the observed probability distribution by fitting

the mean response of Y n
k using the logistic regression model, [57],

E(Y n
k ) =

exp(β0(n) + β1(n)k)
1 + exp(β0(n) + β1(n)k)

. (24)

For illustration purposes, the fitted response for windows hA with n = 43 and hR with n = 30 is shown in

Figure 2 along with the mean response of Y n
k .

The phase transition behaviors are often observed through the fractional sparsity ratio k/n, and the matrix so-
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Fraction of successful recovery & Logistic regression

Fig. 2. Empirical verification of Theorem 2.3 without noise. For the random window hR with n = 30 the mean response of Y n
k (dash-dot)

and fitted logistic regression model E(Y n
k ), (solid), plotted against the fractional sparsity k/n. For the Alltop window hA with n = 43 the

mean response of Y n
k (dot) and fitted logistic regression model E(Y n

k ), (dash), plotted against the fractional sparsity k/n.

called undersampling rate n/N , here 1/n for GhA and GhR [18]. Contours of the fitted logistic regression models

for time-frequency shift dictionaries with identifiers hA and hR are shown in Figure 3 (a) and (b) respectively.

To facilitate a quantitative inspection of the contours in Figure 3 and the theoretical results of [18] we overlay the

contours in Figure 3 with the level curve for 93% success rate (dash) and 1/(2 log n) (solid). The curve 1/(2 log n)

is known to be the threshold for overwhelming probability of successful recovery in the case of Gaussian random

matrices for large n [18]. It is observed in Figure 3 that the curve 1/(2 log n) remains below the 93% success

rate level curve, indicating consistence of the empirical results with the phase transition 1/(2 log n) conjectured

for the class of time-frequency shift matrices applied to identifiers hA and hR. Moreover, the curve 1/(2 log n)

increasingly falls below the 93% success rate level curve as n increases, indicating improved agreement in the large

n limit. Note that this conjectured phase transition 1/(2 log n) is larger than that proven in the main Theorem 2.3,

both in order (as u = 0 here), as well as in the constant.

As stated earlier, in practice the measurements Γh are observed with noise and although Γ can be well

approximated by a k-sparse representation, it is rarely strictly k-sparse. For both of these reasons, the recovery

algorithm (3) is not often used in practice, rather (4) is used to allow for an inexact fit of the measurements.

In Figure 4 we empirically test Theorem 2.3 using (4) rather than (3) for the reconstruction algorithm. We choose

the same values of k and n, and the same number of tests were performed as for Figure 3. The non-zero entries in

x are also selected from the same distribution as was used to generate Figure 3. Additive noise is simulated at a

level of 25 dB signal to noise ratio; that is, η is added to Γh with the entries in η drawn independently from the

Gaussian N(0, 1) and η is normalized to ‖η‖2 = ‖Γh‖2 · 10−5/4.

Unlike the solution of (3) for which the exact solution can be exactly k-sparse, and for which numerical algorithms

can compute approximations of arbitrary precision, the solution of (4) from noisy measurements will not recover

the solution exactly. For our numerical experiments involving noisy measurements, the vector x associated with Γ

resulting from the solution of (4) is only considered to have been successfully recovered if the largest k entries of
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Fig. 3. Empirical verification of Theorem 2.3 for hA (a) and hR (b) without noise. Contours of the fitted logistic regression model (gray),

the 93% success rate contour (dashed), and 1/(2 log n) (solid). Figure 2 shows vertical slices for 1/43 (a) and 1/30 (b).
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Fig. 4. Empirical verification of Theorem 2.3 for hA (a) and hR (b) in the noisy setting, with (3) replaced by (4) and additive noise of 25

dB signal to noise ratio. Contours of the fitted logistic regression model (gray), the 93% success rate contour (dash), and 1/(2 log n) (solid).

the recovered x′ have the same support set Λ as x. Alternative metrics of successful recovery, such as `2 error or

Signal to Noise Ratio (SNR), are less demanding than requiring a match of the support set; moreover, the support

set metric was previously examined in this setting by Wainwright [53] and following this convention allows for a

more direct comparison. The inequality fit parameter ε in (4) is selected to be at the noise level 10−5/4.

As in the noiseless setting, we approximate the probability distribution of the empirical observations Y n
k using the

logistic regression model (24). Contours of the fitted logistic regression models for time-frequency shift dictionaries

with identifiers hA and hR are shown in Figure 4 (a) and (b) respectively. Overlaying these contours is the level

curve for 93% success rate (dash) and 1/(2 log n) (solid). Unlike the noiseless case (3), it was shown that the

threshold for overwhelming probability of successful recovery in the case of Gaussian random n×n2 matrices with
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Fig. 5. Empirical verification of Theorem 6.3 without noise. For the random windows hR
1 , hR

2 , hR
3 with n = 30 the fraction of successful

recovery based on GhR
1 (dash-dot), GhR

1 and GhR
2 (solid), and GhR

1 , GhR
2 and GhR

3 (dash) test vectors.

noise using (4) is 1/(4 log n), [53]; however, we observe in Figure 4 that 1/(2 log n) fits the empirical data better

in this instance. As Wainwright considered the Gaussian setting, this empirical observation for the Gabor system

does not contradict results in [53], but the difference is noteworthy.

In Figure 5 we illustrate the performance of Basis Pursuit when using multiple test signals as discussed in

Section VI, in particular in Theorem 6.3. Figure 5 was obtained using the same procedure that provided Figure 2.
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