63 research outputs found

    Pemilihan kerjaya di kalangan pelajar aliran perdagangan sekolah menengah teknik : satu kajian kes

    Get PDF
    This research is a survey to determine the career chosen of form four student in commerce streams. The important aspect of the career chosen has been divided into three, first is information about career, type of career and factor that most influence students in choosing a career. The study was conducted at Sekolah Menengah Teknik Kajang, Selangor Darul Ehsan. Thirty six form four students was chosen by using non-random sampling purpose method as respondent. All information was gather by using questionnaire. Data collected has been analyzed in form of frequency, percentage and mean. Results are performed in table and graph. The finding show that information about career have been improved in students career chosen and mass media is the main factor influencing students in choosing their career

    Evolving Spatio-temporal Data Machines Based on the NeuCube Neuromorphic Framework: Design Methodology and Selected Applications

    Get PDF
    The paper describes a new type of evolving connectionist systems (ECOS) called evolving spatio-temporal data machines based on neuromorphic, brain-like information processing principles (eSTDM). These are multi-modular computer systems designed to deal with large and fast spatio/spectro temporal data using spiking neural networks (SNN) as major processing modules. ECOS and eSTDM in particular can learn incrementally from data streams, can include ā€˜on the flyā€™ new input variables, new output class labels or regression outputs, can continuously adapt their structure and functionality, can be visualised and interpreted for new knowledge discovery and for a better understanding of the data and the processes that generated it. eSTDM can be used for early event prediction due to the ability of the SNN to spike early, before whole input vectors (they were trained on) are presented. A framework for building eSTDM called NeuCube along with a design methodology for building eSTDM using this are presented. The implementation of this framework in MATLAB, Java, and PyNN (Python) is presented. The latter facilitates the use of neuromorphic hardware platforms to run the eSTDM. Selected examples are given of eSTDM for pattern recognition and early event prediction on EEG data, fMRI data, multisensory seismic data, ecological data, climate data, audio-visual data. Future directions are discussed, including extension of the NeuCube framework for building neurogenetic eSTDM and also new applications of eSTDM

    Personalised modelling with spiking neural networks integrating temporal and static information.

    Full text link
    This paper proposes a new personalised prognostic/diagnostic system that supports classification, prediction and pattern recognition when both static and dynamic/spatiotemporal features are presented in a dataset. The system is based on a proposed clustering method (named d2WKNN) for optimal selection of neighbouring samples to an individual with respect to the integration of both static (vector-based) and temporal individual data. The most relevant samples to an individual are selected to train a Personalised Spiking Neural Network (PSNN) that learns from sets of streaming data to capture the space and time association patterns. The generated time-dependant patterns resulted in a higher accuracy of classification/prediction (80% to 93%) when compared with global modelling and conventional methods. In addition, the PSNN models can support interpretability by creating personalised profiling of an individual. This contributes to a better understanding of the interactions between features. Therefore, an end-user can comprehend what interactions in the model have led to a certain decision (outcome). The proposed PSNN model is an analytical tool, applicable to several real-life health applications, where different data domains describe a person's health condition. The system was applied to two case studies: (1) classification of spatiotemporal neuroimaging data for the investigation of individual response to treatment and (2) prediction of risk of stroke with respect to temporal environmental data. For both datasets, besides the temporal data, static health data were also available. The hyper-parameters of the proposed system, including the PSNN models and the d2WKNN clustering parameters, are optimised for each individual

    Contemporary developments in neural networks: spiking neural networks for adaptive spatio-/spectro temporal pattern recognition

    Get PDF
    No abstract

    Information methods for predicting risk and outcome of stroke

    Get PDF
    Stroke is a major cause of disability and mortality in most economically developed countries. It is the second leading cause of death worldwide (after cancer and heart disease) [55.1, 2] and a major cause of disability in adults in developed countries [55.3]. Personalized modeling is an emerging effective computational approach, which has been applied to various disciplines, such as in personalized drug design, ecology, business, and crime prevention; it has recently become more prominent in biomedical applications. Biomedical data on stroke risk factors and prognostic data are available in a large volume, but the data are complex and often difļ¬cult to apply to a speciļ¬c person. Individualizing stroke risk prediction and prognosis will allow patients to focus on risk factors speciļ¬c to them, thereby reducing their stroke risk and managing stroke outcomes more effectively. This chapter reviews various methodsā€“conventional statistical methods and computational intelligent modeling methods for predicting risk and outcome of stroke

    Spiking Neural Networks for Computational Intelligence:An Overview

    Get PDF
    Deep neural networks with rate-based neurons have exhibited tremendous progress in the last decade. However, the same level of progress has not been observed in research on spiking neural networks (SNN), despite their capability to handle temporal data, energy-efficiency and low latency. This could be because the benchmarking techniques for SNNs are based on the methods used for evaluating deep neural networks, which do not provide a clear evaluation of the capabilities of SNNs. Particularly, the benchmarking of SNN approaches with regards to energy efficiency and latency requires realization in suitable hardware, which imposes additional temporal and resource constraints upon ongoing projects. This review aims to provide an overview of the current real-world applications of SNNs and identifies steps to accelerate research involving SNNs in the future

    Deep Learning of Explainable EEG Patterns as Dynamic Spatiotemporal Clusters and Rules in a Brain-Inspired Spiking Neural Network.

    Get PDF
    The paper proposes a new method for deep learning and knowledge discovery in a brain-inspired Spiking Neural Networks (SNN) architecture that enhances the modelā€™s explainability while learning from streaming spatiotemporal brain data (STBD) in an incremental and on-line mode of operation. This led to the extraction of spatiotemporal rules from SNN models that explain why a certain decision (output prediction) was made by the model. During the learning process, the SNN created dynamic neural clusters, captured as polygons, which evolved in time and continuously changed their size and shape. The dynamic patterns of the clusters were quantitatively analyzed to identify the important STBD features that correspond to the most activated brain regions. We studied the trend of dynamically created clusters and their spike-driven events that occur together in specific space and time. The research contributes to: (1) enhanced interpretability of SNN learning behavior through dynamic neural clustering; (2) feature selection and enhanced accuracy of classification; (3) spatiotemporal rules to support model explainability; and (4) a better understanding of the dynamics in STBD in terms of feature interaction. The clustering method was applied to a case study of Electroencephalogram (EEG) data, recorded from a healthy control group (n = 21) and opiate use (n = 18) subjects while they were performing a cognitive task. The SNN models of EEG demonstrated different trends of dynamic clusters across the groups. This suggested to select a group of marker EEG features and resulted in an improved accuracy of EEG classification to 92%, when compared with all-feature classification. During learning of EEG data, the areas of neurons in the SNN model that form adjacent clusters (corresponding to neighboring EEG channels) were detected as fuzzy boundaries that explain overlapping activity of brain regions for each group of subjects
    • ā€¦
    corecore