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Transfer Learning of Fuzzy Spatio-Temporal 

Rules in a Brain-Inspired Spiking Neural 

Network Architecture: A Case Study on 

Spatio-Temporal Brain Data   
 

Nikola K. Kasabov, Life FIEEE, Yongyao Tan, Maryam Doborjeh, Member IEEE,  

Enmei Tu, Member IEEE, Jie Yang, Senior Member IEEE, Wilson Goh, Jimmy Lee

Abstract—The paper demonstrates for the first time that 

a brain-inspired spiking neural network (SNN) architecture 

can be used not only to learn spatio-temporal data, but also 

to extract fuzzy spatio-temporal rules from such data and to 

update these rules incrementally in a transfer learning mode. 

We propose a method, where a SNN model learns 

incrementally new time-space data related to new 

classes/tasks/categories, always utilising some previously 

learned knowledge, and presents the evolved knowledge as 

fuzzy spatio-temporal rules. Similarly, to how the brain 

manifests transfer learning, these SNN models do not need to 

be restricted in number of layers, neurons in each layer, etc. 

as they adopt self-organising learning principles. The 

continuously evolved fuzzy rules from spatio-temporal data 

are interpretable for a better understanding of the processes 

that generate the data. The proposed method is based on a 

brain-inspired SNN architecture NeuCube, that is structured 

according to a brain 3D structural template. It is illustrated 

on tasks of incremental and transfer learning and knowledge 

transfer using spatio-temporal EEG data measuring brain 

activity, when subjects are performing tasks in space and 

time. The method is a general one and opens the field to 

create new types of adaptable and explainable spatio-

temporal learning systems  across domain areas.    

Index terms — fuzzy spatio-temporal rules; spatio-

temporal learning; transfer learning; EEG data; spiking 

neural networks; explainable AI ; NeuCube.  
  

I.  INTRODUCTION  

 

Despite the advances in fuzzy systems and in the 

methods of transfer learning (TL), the problem of 

extracting fuzzy spatio-temporal rules (fSTR) from spatio-

temporal data and tracing their evolution through spatio-

temporal learning in a computational model or in the 

human brain is still an open problem. A main question is 

how to extract fSTR from incrementally trained models on 

spatio-temporal data of  new outcomes, how to trace the 

changes/evolution of knowledge and how to discover the 

spatio-temporal features that trigger these changes.   

 
 N.K. Kasabov* (nkasabov@aut.ac.nz), Y.Tan and M.Doborjeh are  

with KEDRI, School of Engineering, Computer and Mathematical Science, 

Auckland University of Technology, AUT WZ building, St.Paul st, 
Auckland,1010, New Zealand. N.Kasabov is also with the Intelligent 

Systems Research Centre at University of Ulster UK, with  IICT Bulgarian 

Academy of Sciences and with  Dalian University, China.. E.Tu and J.Yang 
are with the  Institute of Image Processing and Pattern Recognition, 

Shanghai Jiao Tiong University, China. W.Goh and  J.Lee are with NTU 

Singapore. 

 

Early research in the field of TL included methods for 

leaning to learn [21] and multitask learning [22]. TL 

methods were introduced in [23, 24], all concerned with 

learning vector-based or frame-based data and not spatio-

temporal data. Vector-based TL has been introduced and 

applied already on several tasks utilizing traditional 

machine learning techniques [2] [3] [23] [24]. In [52-54] 

methods of TL are developed for TSK fuzzy systems and 

applied on EEG data of epilepsy. Various methods for 

knowledge extraction from trained systems on vector-

based data have also been explored, such as fuzzy rules, 

decision trees, graphs, etc. In [4] [5] a single fSTR is 

extracted from a  SNN on EEG data, but not in a TL mode.   

The human brain represents learned knowledge as 

patterns of neuronal clusters, connected together and 

activated in time and space. The knowledge is learned 

incrementally from spatio-temporal stimuli in a TL mode, 

so that when new knowledge is learned, some of the 

previously learned knowledge can be partially recalled and 

utilized, for example learning multiple languages [29].  

Another example is the dynamic spatio-temporal 

knowledge learned through TL when humans acquire 

certain skills, such as recognising an object and moving a 

hand to grasp it, by utilising trajectories of activated 

neuronal clusters learned previously for different tasks 

[32, 49].  

Human knowledge can be represented as fSTR. A 

fSTR rule represents an outcome as a result of  a sequence 

of events, each happening to certain degree, at locations 

defined as fuzzy clusters (about spatial area), and at a 

time, defined as about time. The fuzzy terms are defined 

by membership functions, such as Gaussian, defining for 

example that neurons in the center of the cluster fire more 

in the middle of a time interval.    

As an example, the knowledge learned in the brain 

shown in Fig.1 can be represented as fSTR, such as:  
 IF (a person is seeing an object and lifting it)  

THEN (the following spatio-temporal activities take place)  

(at time about t1 information is transferred from the retina, 

through the Thalamus to the area around V1)  

(at  time about t2 the area around V1 is highly activated)  

(at time about t3 the area around V2 is moderately activated)  

(at time about  t4 the area around V4 is moderately  activated)  

(at time about t5 the area around IT is highly activated)  

(at time about t6 the area around PFC is highly activated)  

(at time about t7 the area around PMC is low activated)  

(at time about t8 the area around MC is highly activated) 

(at time about t9 muscles are highly activated for grasp and lift). 
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The challenge is, inspired by the TL ability of the brain 

and the already developed brain-inspired computational 

architectures, to achieve TL of spatio-temporal data in a 

computational model and to extract and trace the evolution 

of fSTR and their main features for a better understanding 

of the data and for the prediction of future events.    

   The main contribution of this paper is that it introduces 

for the first time a method for transfer learning (TL) of  

fuzzy spatio-temporal rules (fSTR) and for the discovery 

of  main features from spatio-temporal data using a brain-

inspired spiking neural network (BI-SNN) architecture. 

This research extends main principles of neural networks, 

fuzzy systems and brain data analysis, that have deep roots 

in the theory of computational intelligence [41,42,43].    

   The organisation of the paper is the following: Section II 

presents a brief description of brain-inspired SNN 

exemplified by NeuCube. Section III proposes new 

algorithms for TL of fSTR in  NeuCube. Section IV 

presents case studies of TL of fSTR from spatio-temporal 

EEG data, when a single subject is performing complex 

tasks one after another, and section V is extracting fSTR 

when multiple subjects perform same complex tasks in 

space and time. Section VI presents a discussion on the 

applicability of the proposed methods and  Section VII is 

a conclusion and an outline of future directions. 

 

 
Fig.1. A learned trajectory of activated neuronal clusters when a person 
is seeing an object and grasping it, that can be represented as a fSTR as 

shown in the text. When the person is learning to grasp another object, 

part of the already learned trajectory is used in a TL way for another fSTR 
(from Benuskova and Kasabov, 2007).     

 

II. SPIKING NEURAL NETWORKS (SNN) AND BRAIN-

INSPIRED SPIKING NEURAL NETWORKS (BI-SNN). 

NEUCUBE 
 

A. SNN 

Spiking neural networks (SNN) utilise important 

learning principles manifested in the human brain, 

including:  

1. Spike-time information representation.  

2. Evolution of knowledge as evolving connectivity 

of neuronal clusters in space and time. 

 Several types of SNN architectures and their learning 

algorithms have been introduced so far by many authors 

(see a review in [6]). In the dynamic evolving SNN 

(deSNN) [13] spatio-temporal data is learned 

incrementally in a supervised mode. deSNN is a two-layer 

feedforward SNN where the output neuronal layer evolves 

incrementally neurons that are generated to capture the 

temporal pattern of every spatio-temporal example 

/sample presented. It uses two parameters – modulation 

factor Mod, to set the initial connection weights for each 

generated output neuron i using the first incoming spike 

from input neurons  j [13], and a drift parameter D to 

modify these connection weights based on the following 

spikes coming to this neuron (Eq.1). Spatio-temporal data 

samples from different tasks (classes) are presented one-

by-one and learned incrementally in the deSNN model 

without any knowledge reinforcement from previously 

learned samples. Output neurons with similar connection 

weights, representing same class outputs, can be 

aggregated to represent prototypes. The deSNN 

incremental learning algorithm, denoted further as 

ImSNN, is presented in the Supplementary file and used in 

the experiments in this paper.  

 

(Eq.1)    wj,i  = α. Mod order (j,i)                                                     

              Δwj,i (t) =ej(t). D                                                               
 where: ej(t) =1 if there is a consecutive spike at synapse j at 

time t during the presentation of the learned pattern by the 

output neuron i; and (-1) otherwise. In general, the drift 

parameter D can be different for ‘up’ and ‘down’ drifts; α is a 

parameter.   

 

Incremental learning in a deSNN feedforward classifier 

can be very efficient, fast, and accurate for learning in 

changing environments [37,39,40] and it is not a TL. 

 

B. BI-SNN and NеuCube  

 

     Some SNN architectures, such as NeuCube [1] are 

structured according to structural 3D brain templates and 

designed to capture brain data [7].  They are used also for 

other spatio-temporal data [6]. NeuCube is schematically 

illustrated in Fig. 2. In NeuCube, a 3D SNN cube is 

spatially organised to map a 3D brain template, such as 

Talairach template [8], Montreal Neurological Institute 

(MNI) template [9], or other brain templates. Each spiking 

neuron corresponds to a small 3D area of the brain, having 

the same 3D coordinates,  and neuronal clusters represent 

functional areas. Input data can be brain EEG, fMRI, etc. 

and also sensory spatio temporal information related to 

pollution, earthquakes etc. [6]. Spike sequence data is 

entered in the 3D SNNcube via input neurons which 3D 

coordinates corresponding to the coordinates of the input 

variables when measuring the data. Learning in NeuCube 

is a two-phase process, including unsupervised learning in 

the brain-structured SNNcube and a consecutive 

supervised learning for classification or regression 

purposes in a deSNN module. While spike trains are 

entered into the SNN model incrementally, a spike time 

algorithm, such as Spike-time Dependent Plasticity 

(STDP) learning [10] [11] [12] (Eq.2)  is applied locally to 

each two neurons. The SNNcube learns to represent 

spatio-temporal patterns from the input data and is a 4D 

spatio-temporal learning machine (3D space and 1D time). 
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These patterns are learned and classified in a deSNN 

module [13]. 

 
(Eq.2)  𝑊(𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑜𝑠𝑡)  =

{
−𝐴 − 𝑒𝑥𝑝 (−

𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑜𝑠𝑡

𝜏−
)     𝑖𝑓 𝑡𝑝𝑟𝑒  >  𝑡𝑝𝑜𝑠𝑡

𝐴 + 𝑒𝑥𝑝 (
𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑜𝑠𝑡

𝜏+
)       𝑖𝑓 𝑡𝑝𝑟𝑒  <  𝑡𝑝𝑜𝑠𝑡

   

where 𝑊(𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑜𝑠𝑡) defines the magnitude of a synaptic 

change based on the time interval between spikes at pre- and pos-

synaptic neurons (𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑜𝑠𝑡), A+, A-, τ+ and τ- are parameters 

defining how much the weight W is increasing or decreasing. 

 

 

 

 
Fig 2. A general diagram of the BI-SNN NeuCube [1], showing that input data, encoded as spike sequences, learned into a 3D reservoir module 
shaped by a brain template (e.g., Talairach [8]). The patterns of activity of the now 4D SNN are learned and classified in a deSNN [13] 

classifier/regressor. 

Catastrophic forgetting is avoided here through the 
flexibility of the 4D SNN cube, that does not require 
predefined layers for its local learning using STDP, and 
through the evolving output neurons and connections in 
the deSNN classifier.   

 

III. TL OF SPATIO-TEMPORAL DATA AND FSTR IN THE 

NEUCUBE BI-SNN 

 

While incremental and on-line learning in BI-SNN 

have been studied [1,6,13], TL of spatio-temporal data and 

of fSTR in BI-SNN have not been studied and this is the 

topic of this section. 

In the SNNcube of the NeuCube architecture (Fig.2) 

connections, that are created during learning of previous 

tasks can be used to support the learning process of a new 

task when also new connections are created, thus TL in BI-

SNN (denoted as TrSNN) facilitates sharing and reuse of 

knowledge.  

Here, TL relates to incrementally training a SNN 

NeuCube model on new data related to new tasks/classes 

(Algorithm presented in Table 1) and at the same time 

extracting and analysing the connectivity of the SNN as 

knowledge represented as fSTR, accumulated and evolved 

after every new task (Algorithm presented in Table 2). As 

a partial case, data can be EEG brain data and the tasks can 

be human movements, as is in this paper.  

First, connections in a SNNcube model are initialised 

using the small-world connectivity method, resulting in a 

3D SNNcube(0) [1,6]. For every new task Ti (i=1, 2, …, 

N), presented to the SNNcube to learn incrementally, new 

connections are created along with the use of some old 

connections, resulting in new SNNcube(i) and new output 

neurons generated in the deSNN for the recognition of task 

Ti. Learning in the SNNcube is a local, spike time 

learning, e.g., STDP (Eq.2), which changes the connection 

weights between every two connected neurons based on 

their time of spiking. Two connected neurons Ni and Nj 

have their connection weight Wij increased during 

learning if there are sufficient number of examples 

(temporal or spatio-temporal data) of task Ti  to create 

SNNcube(i). Learning of next task T(i+k) will be 

enhanced even with the use of a small number of learning 

examples/samples for this task, if the two tasks share same  

patterns in the data. So, learning  task T(i+k) will be easier 

and faster if it shares connections with task Ti learned 

before. At the same time, data of task Ti have created  

connections between neurons (e.g., Nc and Nd) that are not 

relevant for the next task T(i+k)  and data for task T(i+k) 

can create other connections between other neurons 

relevant to this task (e.g. Ne and Nf) (see Fig.3). The 

simple diagram illustrates the concept of stability vs 

plasticity when a connectionist system is learning new 

class/task data T(i+k) after it has learned  the task Ti data.   

If, for task T(i+k) there are many negative activations 

of the neurons Nc and Nd, that are positively involved in 

task Ti, the classification accuracy for future samples 

belonging to class Ti may decrease and the SNNcube 

model, while using TL method and retaining knowledge in 

the SNNcube connectivity, may achieve lower 

classification accuracy than using ImSNN algorithm for 

deSNN, thus manifesting forgetting of previous examples. 

The paper addresses this problem by introducing special 

operations, such as pruning/zeroing  of small connections 

(Eg.3) and aggregation of output neurons that have similar 

connection weights and represent the same class (Eq.4), 

but other methods related to life-long learning can be  

investigated too [51].   
 

(Eq.3)   𝑓𝑜𝑟 𝑤𝑗,𝑖 > 0, 𝑖𝑓 𝑤𝑗,𝑖 <  𝜃𝑝𝑜𝑠 𝑡ℎ𝑒𝑛 𝑤𝑗,𝑖 = 0 

𝑓𝑜𝑟 𝑤𝑗,𝑖 < 0, 𝑖𝑓 𝑤𝑗,𝑖 >  𝜃𝑛𝑒𝑔  𝑡ℎ𝑒𝑛 𝑤𝑗,𝑖 = 0 

 

(Eq.4)  𝑤𝑗,𝑖 =  
𝑤𝑛𝑒𝑤  + 𝑤𝑗,𝑖

𝑀+1
 

where:  𝜃𝑝𝑜𝑠   and 𝜃𝑛𝑒𝑔   are the thresholds used to prune positive 

or negative connection weights; M is the number of output 

neurons being already aggregated previously into a neuron i, for 

every input j to this neuron.  
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The following experimental design is proposed here to 

demonstrate transfer learning (TL) of fSTR from spatio-

temporal brain data, exemplified by EEG: 

(a) Multiple class spatio-temporal data is split into 50/50 

for training and testing. 

(b) A baseline model is trained/tested in a batch mode and 

used as a benchmark for comparison of the accuracy of the 

models incrementally obtained through TL. 

(c) In section IV a model is trained on the first task  EEG 

data from one subject and incrementally trained on the 

other 3 tasks performed by the same subject, one by one.  

(d) The 3D SNN connectivity is visualized to evaluate 

what are the new connections for the currently learned task 

(Fig.4).   

(e) Each trained model is finally tested on all class data. 

(f)  fSTR are extracted and compared to evaluate the level 

of knowledge transfer (stability vs plasticity) (Fig.6).     

(g ) In  section  V all the above procedures are applied and 

presented as a TL across multiple tasks and multiple 

subjects.    

  

 
 
Fig.3. Task T(i+k) learned in the SNN cube shares some neuronal clusters 

and connections with task Ti, along with creating new ones as explained 

in the text. 

 

IV. TL OF FSTR FROM EEG DATA MEASURING 

COMPLEX TASKS PERFORMED BY A SINGLE SUBJECT 
 

A. Problem and Data Specification  

A TL scenario of the evolution of the SNN cube 

when a single subject is learning incrementally 3 simple 

movements of his wrist is illustrated as Fig.2S in the  

Supplementary file.  
Here, in this section, the proposed TL and fSTR 

algorithms are applied on a case study of EEG data 
based on the scenario of task-to-task TL of complex 
tasks performed by a single subject. We used the 
functional upper limb movements dataset [15], which 
was recorded at the New Zealand College of 
Chiropractic and Aalborg University, Denmark under 
the ethical approval of the local ethics committee (N-
20130081). The data consists of EEG data from 12 
healthy subjects, recorded from 64 EEG channels at 512 
Hz. Each subject was instructed to perform four 
complex tasks of motor imagery. They are different 
classification tasks learned incrementally to trace the 

 

 

 

----------------------------------------------------------------- 

Table 1: The proposed TL algorithm (TrSNN) 

Input: Spatio-temporal data as sequences of samples 

exemplifying different tasks T1,T2,…,Ti,Tj,..,Tn for 

incremental and transfer learning.  

Parameters: encoding parameters; SNNcube parameters; 

deSNN parameters. 

Algorithm: 

1. Initialise a NeuCube model as SNNcube(0) and deSNN(0)  

2. FOR every task Ti (i=1 to N) 

3.  FOR every spatio-temporal input sample Sij of task Ti  

do 

4. Encode Sij into spike sequences 

5. Perform unsupervised learning in the SNNcube(i) using 

STDP learning rules 

6. Perform supervised learning for classification in the 

deSNN(i) classifier.  

7. END FOR 

8. Perform pruning of week connections in SNNcube(i) 

using defined pruning thresholds 𝜃𝒑𝒐𝒔 for positive 

connections and  𝜃𝒏𝒆𝒈 for negative connections, (Eq.3).  

9. Perform output layer deSNN(i) neural pruning [13] 

(Eq.3)  

10. Perform output layer deSNN(i) neuronal aggregation [13] 

(Eq.4).   

11. Using the proposed algorithm in Table 2, extract fSTR(i) 

and feature interaction network FIN(i) from SNNcube(i) 

(see [6]) and compare this knowledge with the fSTR(i-1) 

and FIN(i-1), extracted from SNNcube(i-1) for task T(i-1).   

12. Recall and test the SNNcube(i) model on all 

incrementally learned tasks T1, T2, … ,Ti and compare 

results.     

END FOR 

Table 2 Algorithm for extracting and tracing fSTR in a 

trained NeuCube model in TL mode.  

Goal: Extract rules from a  SNNcube(i) and deSNN(i) and  

compare them with the previously learned knowledge in    in 

SNNcube(i-1) and deSNN(i-1) to define the common  

knowledge and the new knowledge acquired when the  

task Ti is incrementally learned from task T(i-1)  

1. FOR every output neuron Nk (k=1; Nmax) from the  

output layer deSNN(i) do 

2. Get connection weights between neurons of  

the SNNcube(i) and the output neuron Nk.  

3. Cluster the connection weights according to the  

average time of their spiking activity in each time bin 

t1<t2<…<tk (first activity is registered at time t1). 

4. Generate a set of fSTR of the form of: 

            IF (cluster of neurons with a center (𝑿𝟏, 𝒀𝟏, 𝒁𝟏) and  

        a cluster radius 𝑹𝟏 is activated at a time “bin” t𝟏) AND 

           (cluster of neurons with a center (𝑿𝟐, 𝒀𝟐, 𝒁𝟐) and  

         a cluster radius 𝑹𝟐 is activated at a time “bin” t2) AND 

            …………………………….  

            (cluster of neurons with a center (𝑿𝒌, 𝒀𝒌, 𝒁𝒌) and a cluster 

radius 𝑹𝒌 is activated at a time “bin” tk)  

   THEN (The output is a prototype Nk from its  

                corresponding class) 

5. Subtract  SNNcube(i-1) from SNNcube(i) and extract a a 

fSTR from the new SNNcube to trace  

knowledge evolution. 

END FOR.   
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transfer of knowledge through observing the changes in 
the connection weights after learning a new task and to 
represent them as fSTR.   

   Each of the following complex four tasks is 

represented as a class for classification purposes: 

Task 1: Reach for a glass of water, drink, and place the 

glass on the table.  

Task 2: Throw a ball from the right hand to the left hand.  

Task 3: Lift a tray from the table and place the tray on 

the table again.   

Task 4: Push a glass from position A to position B. 

 

The baseline experiment creates one SNN model and 

trains/tests it with all task data in a batch mode, using 

50/50 training/testing cross validation. The same data 

split was used through all TL experiments. For the 

TrSNN-CP (TrSNN with Cube Pruning of small 

connections) experiments (see Table 2), the following 

parameter values are used: Drift: 0.005; Mod: 0.8; 

SNNcube pruning percentage: 0.995. For the TrSNN-

CP-NG (TrSNN-CP plus neuronal aggregation of the 

neurons in the deSNN) the following parameters are 

used: Drift: 0.005; Mod: 0.8; SNNcube pruning 

percentage: 0.995; SIM parameter: 2. 

The connectivity of the TrSNN models at each stage 

of incremental training is visualized in Fig. 4 (a)-(d).  It 

can be seen that stronger connectivity is observed with 

further training the SNNcube. To perform a better 

analysis of the TL, the connection weights of each 

SNNcube(i) learned for Task Ti were subtracted from 

the ones of SNN(i+1) for task T(i+1), which allows 

visualising the changes in neural connectivity as a result 

of TL over time. Figs. 4 (e), (f), and (g) show that further 

trained SNNcubes resulted in a similar pattern of 

changes in some regional activation across all new 

classes. However, the size of the activated connectivity 

was higher in SNNcube trained with class 3, compared 

to class 2 as Tasks 2 and 3 are very different. The 

connection weights varied to different degrees as new 

tasks were added. 

Fig.5 gives a comparative analysis of the accuracy of 

the tested models on the same data. The results confirm 

that the new algorithms for TL present competitive 

results to the benchmark off-line learning algorithm in 

addition to having the significant advantages of  TL, 

including fSTR extracted. Connection pruning and 

neuronal aggregation are used. 

Statistical results of neurons pruned and aggregated 

in the TrSNN-CP (with cube pruning) and TrSNN-CP-

NG (with cube pruning and neuronal aggregation in the 

deSNN classifier) are given in the Supplementary 

material, Fig.3Sa. 

 

 
 

Fig. 4. The connection weights of the TrSNN models incrementally 
trained on the EEG data of a single subject: (a) after task 1; (b) after 

task 2; (c) after task 3; (d) after task  4. Differences between the 

connectivity in the incrementally trained SNN models are shown in 
figs (e),(f),(g). The more number of new classes are added, the less 

new connections are added, as for learning new classes, some of the 

previously created connections are utilized. 

 
 

Fig. 5 Final per-task accuracy for each of the compared methods when 

learning four tasks/classes’ data in a NeuCube model of a single 

subject. The models are finally tested on an independent test data.  
While the base line batch learning is expected to produce a better 

accuracy, one-iteration incremental and TL produce similar results 

overall, despite the complexity and the diversity of the tasks (see also 
Fig.3Sa in the Supplement) 
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B.  TL of fSTR  

 

Quantitative analysis of the connectivity patterns of 

SNNcube is here used for the extraction and for tracing 

the evolution of fSTR. Using the algorithm from Table 

2, a neuronal cluster in the SNNcube is considered 

active if the normalized firing rate in the cluster 

surpasses a set threshold. 

The activation of different clusters of neurons 

associated with each output class neuron Ni (prototype) 

at different time windows are here analysed and fSTR  

are extracted. For each output class neuron Ni, a chain 

of  fSTR, associated with this output neuron Ni is 

extracted and presented in the following form, e.g.: 
 IF (firing rate of 𝑎𝑟𝑒𝑎1,1 is A1 and 𝑎𝑟𝑒𝑎2,1 is B1 and 𝑎𝑟𝑒𝑎3,1 is F1, 

at time about t1)  

AND (firing rate of 𝑎𝑟𝑒𝑎1,2 is A2 and 𝑎𝑟𝑒𝑎2,2 is B2 and 𝑎𝑟𝑒𝑎3,2 is 

F2, at time about t2)  

AND (firing rate of 𝑎𝑟𝑒𝑎1,3 is A3 and 𝑎𝑟𝑒𝑎2,3 is B3 and 𝑎𝑟𝑒𝑎3,3 is 

F3, at time about t3)  

AND (firing rate of 𝑎𝑟𝑒𝑎1,4 is A4 and 𝑎𝑟𝑒𝑎2,4 is B4 and 𝑎𝑟𝑒𝑎3,4 is 

F4, at time about t4)  

THEN (The output is prototype Ni of class Ci), 

where Ak, Bk and Fk (k=1,..m) are fuzzy values represented 

by their membership functions, such as Gaussian (Fig.5S in 

the Supplement), Ci is the corresponding class label for the 

output neuron Ni. 

As each area of a SNNcube represents a brain area 

according to a brain template (e.g., Talairach template) 

the extracted fuzzy rules can be interpreted as spatio-

temporal activities in the human brain as the source of 

the EEG data. An example is shown in Fig.6, where 

extracted fSTR through the TL process on the data 

above are interpreted as spatio-temporal activities in 

brain areas indicating the difference between the latest 

learned task versus the previously learned tasks.    

In this analysis, we first calculated the average firing 

rates of different spatial clusters in the trained SNNcube 

models, each cluster corresponding to a lobe brain area, 

in four different time windows/bins (t = {0.5s, 1s, 1.5s, 

2s}), and the difference of firing rates for each stage of 

the TL process was computed through subtracting with 

the firing rate for the previous trained model, as shown 

in Fig. 6. Different activation levels of different clusters 

of neurons at different times are indicated. Strong firing 

rates were identified around the Frontal and Limbic 

lobes in Fig. 6 (b) after class 2 data was incrementally 

learned, while Frontal-Temporal lobe was more active 

in Fig. 6 (a), indicating that different knowledge is 

transferred at different stages of the TL process. The 

SNNcube activities from Fig.6 can be represented as a 

fSTR, that is formed by using the activation of different 

clusters of neurons at different times.   

   A fSTR is shown below representing the activity from 

Fig. 6 (a) based on the following denotation of  

spatio-temporal clusters representing activity of SNN 

neurons, corresponding to brain areas at times t1 (0.5s), 

t2 (1s), t3(1.5s) and t4(2s).  
                       Denotations: 

        𝑎𝑟𝑒𝑎1,1(𝑡1)= {Temporal Lobe} 

𝑎𝑟𝑒𝑎2,1(𝑡1)= {Frontal-Temporal Space, Frontal Lobe, Posterior 

Lobe} 

𝑎𝑟𝑒𝑎1,2(𝑡2)= {Temporal Lobe} 

 𝑎𝑟𝑒𝑎2,2(𝑡2)= {Frontal Lobe, Temporal Lobe} 

  𝑎𝑟𝑒𝑎3,2(𝑡2)= {Frontal-Temporal Space} 

𝑎𝑟𝑒𝑎1,3(𝑡3)= {Parietal Lobe, Temporal Lobe} 

 𝑎𝑟𝑒𝑎2(𝑡3)= {Frontal- Temporal Space, Frontal Lobe} 

𝑎𝑟𝑒𝑎1,4(𝑡4)= {Temporal Lobe} 

𝑎𝑟𝑒𝑎2,4(𝑡4)= {Frontal-Temporal Space, Frontal Lobe, Posterior 

Lobe} 

         fSTR for Fig.6a  
IF (firing rate of 𝑎𝑟𝑒𝑎1,1(𝑡1) is SMALL and 𝑎𝑟𝑒𝑎2,1 (𝑡1) is 

MEDIUM (at time t1 about 0.5s)  

AND (firing rate of 𝑎𝑟𝑒𝑎1,2(𝑡2) is SMALL and 𝑎𝑟𝑒𝑎2,2(𝑡2) is 

MEDIUM and 𝑎𝑟𝑒𝑎3,2(𝑡2) is HIGH (at time t2 about 1s)  

AND (firing rate of 𝑎𝑟𝑒𝑎1,3(𝑡3) is SMALL and 𝑎𝑟𝑒𝑎2,3(𝑡3)  is 

MEDIUM (at time t3 about 1.5s) 

 AND (firing rate of 𝑎𝑟𝑒𝑎1,4(𝑡4) is SMALL and 𝑎𝑟𝑒𝑎2,4(𝑡4)  is 

MEDIUM (at time t4 about 2s)  
THEN (This is the difference in spatio-temporal knowledge in the 

SNNcube after the model, first trained on task 1 data,  was then 

trained with task 2 data, i.e. the novelty in task 2 data versus task 1 

data )   

The above fSTR captures changes in time and space, 

while the extracted feature interaction graphs from a 

NeuCube model [6] represent aggregated information as 

illustrated in Fig.3S in the Supplementary material.  

 
Fig. 6. Difference in firing rates of  clusters of a  SNNcube, corresponding to brain areas of a single subject during TL of 4 tasks: (a) task 2 is learned 
after task  1; (b) task 3 is learned after task 2; (c) task 4 is learned after task 3. This is represented as FSTR in the text. 
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V. TL OF FSTR FROM EEG DATA MEASURING 

MULTIPLE COMPLEX TASKS LEARNED BY MULTIPLE 

SUBJECTS  

 

A. General description 

Here we use the same data as in section IV, but the 

TL and fSTR in a NeuCube model are evolved from 

EEG data of  several subjects, one by one when learning 

the tasks. The same TL and fSTR procedures, that have 

been described in section IV are applied in this section. 

The following parameter values are used for the 

TrSNN-CP algorithm: Drift=0.005; Mod=0.8; 

SNNcube pruning percentage=0.7 and for the TrSNN-

CP-NG:  Drift= 0.005; Mod= 0.8; SNNcube pruning 

percentage=0.7; SIM parameter= 2.5 (defining the 

similarity of output neurons for their aggregation). 

In the TrSNN experiments, we created one SNN 

model and trained it incrementally in a TL mode with 

data from two tasks belonging to four subjects. Small 

connections of the SNNcube models are pruned after 

each stage of learning data from a new subject. The 

learning process, when data from different subjects are 

learned incrementally for  class 2, is visualized in Fig. 7. 

It can be seen from Fig. 7 (a-d) that stronger spatio-

temporal connectivity is observed with a further trained 

SNN cubes.  Connection weights of the TrSNN model 

for class 3 (task 3) trained incrementally with EEG data 

of  subjects 9, 10, 11 and 12 are shown in Fig.4S in the 

Supplementary material, along with the differences 

between the connectivity in the trained SNN models. 

For class 3 (Fig. 4S), the connections were particularly 

enhanced between neurons located in the areas of 

Occipital and Posterior Lobes, which were less observed 

in the case of class 2 (Fig.7). 

Fig. 8 shows the test classification accuracy of each 

experimental model for each of the subjects when their 

EEG data is learned incrementally in a SNNcube model 

and also the overall accuracy across all models and 

across all subjects when they have learned tasks 2 and 3. 

The results show that  the proposed TrSNN-CP (with 

Cube pruning) and TrSNN-CP-NG (with Cube pruning 

and Neuronal Aggregation) not only performed on par 

with the baseline model achieving accuracy above 80%, 

but they also outperformed the incremental learning 

method (ImSNN).  

To perform a better analysis of changes in SNNcube 

models between subjects, the differences between the 

SNNcube, for each stage of the learning process, and the 

previously trained SNNcube, were computed through 

subtracting their connection weights as explained in 

Table 1. That  allows for a better visualization of 

changes in neural activity as shown in Fig. 9.  

Statistical results of neurons pruned and aggregated 

in the TrSNN-CP and TrSNN-CP-NG) are given in  the 

Supplementary material, Fig.4Sa. 

 

 
 

Fig.7.  The 3D SNN model after incremental training on EEG data for   

task 2 by subjects 9 to 12 and the difference in the connectivity 
obtained after substruction of the connection weights of consecutively 

trained SNN.  Learning task 3 is presented in the Supplementary 

material. 

 
 

Fig.8. Classification accuracy of each of the incrementally trained 

model on EEG  data from different subjects learning tasks 2 and 3, 

tested on all data (see also Fig4Sa in the Supplement).   

 

B. TL of fSTR  

Here, the average firing rates of different spatial 

clusters in the SNNcube models (representing brain 

areas according to the Talairach atlas) are estimated at 

different times when data from 4 subjects are used for 
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TL of tasks 2 and 3.  In the graph shown in Fig. 9(a), the 

different knowledge of the model trained with subject 9 

data and then continued to be trained with subject 10 

data, was positioned around the areas associated with 

Anterior Lobe, Medulla, Midbrain, Pons, Posterior Lobe 

at each time bin. In Fig. 9(b), strong firing rates were 

mostly created around the Medulla, and less in the 

Posterior, Pons and Occipital lobes. Fig. 9(c) depicts the 

following spatio-temporal firing rates in the SNNcube: 

medium-to-low firing around the Sub-lobar, Pons and 

Temporal Lobe after 1s; low firing in Anterior and 

Limbic Lobes; very high firing in Medula at time around 

2 sec.  

The knowledge obtained above is converted into 

meaningful fSTR. The denotation of spatio-temporal 

clusters in the SNNcube, representing brain areas, and 

the evolved fSTR from Fig. 9(c) are shown in the text 

below. The fuzzy terms small or medium etc. represent 

the activity of the neuronal clusters measured during the 

learning process. They can be defined by Gaussian 

membership functions (Fig.5S in the Suppl.).  
 

𝑎𝑟𝑒𝑎1,1(𝑡1)= {Frontal Lobe, Anterior Lobe, Temporal Lobe, Parietal 

Lobe, Pons, Sub-lobar} 

𝑎𝑟𝑒𝑎2,1(𝑡1)= {Posterior Lobe, Occipital Lobe, Medulla} 

𝑎𝑟𝑒𝑎1,2(𝑡2)= {Limbic Lobe, Frontal Lobe, Frontal-Temporal Space, 

Parietal Lobe} 

𝑎𝑟𝑒𝑎2,2(𝑡2)= {Temporal Lobe, Occipital Lobe, Medulla, Sub-lobar, 

Midbrain, Posterior Lobe, Pons, Anterior Lobe} 

𝑎𝑟𝑒𝑎1,3(𝑡3)= {Parietal Lobe, Limbic Lobe} 

𝑎𝑟𝑒𝑎2,3(𝑡3)= {Temporal Lobe, Pons, Occipital Lobe, Sub-lobar, 

Posterior Lobe} 

area 1,4 (𝑡4)= {Midbrain, Frontal Lobe} 

𝑎𝑟𝑒𝑎2,4(𝑡4)= {Anterior Lobe, Posterior Lobe, Limbic Lobe, 

Occipital Lobe, Pons, Parietal Lobe, Temporal Lobe, Sub-lobar} 

𝑎𝑟𝑒𝑎3,4(𝑡4)= {Medulla} 

  

 

Fig. 9. Difference in firing rates of  clusters of a  single SNNcube, corresponding to brain areas according to Talairach atlas, during TL on EEG data of 

several subjects who learn Task 2 one after another:  (a) subject 10  after subject 9; (b) subject 11 after subject 10, (c) subject 12 after subject 11.These  

are represented as FSTR and validated using neuroscience information [4,5,30,32].   

 

fSTR for Fig.9c 
IF (the firing rate of 𝑎𝑟𝑒𝑎1,1(𝑡1) is SMALL, 𝑎𝑟𝑒𝑎2,1(𝑡1) is 

MEDIUM, at time about 0.5s)  

AND (the firing rate of 𝑎𝑟𝑒𝑎1,2(𝑡2) is SMALL, 𝑎𝑟𝑒𝑎2,2(𝑡2) is 

MEDIUM, at time about 1s)  

AND (the firing rate of 𝑎𝑟𝑒𝑎1,3(𝑡3) is SMALL, 𝑎𝑟𝑒𝑎2,3(𝑡3)is 

MEDIUM, at time about 1.5s) 

 AND (the firing rate of 𝑎𝑟𝑒𝑎1,4(𝑡4) is SMALL, 𝑎𝑟𝑒𝑎2,4(𝑡4) is 

MEDIUM, 𝑎𝑟𝑒𝑎3,4(𝑡4) is HIGH, at time about 2s)  

THEN (This is a spatio-temporal knowledge of how subject 12 

performs class 2 movement differently from subjects 9,10 and 11 whose 
data were used to train a SNNcube model in a TL mode).   

 
Both the visual representation and the extracted fSTR can 
be used to discover important features/biomarkers (e.g., 
EEG channels and brain areas in this case)  that are  
important to explain the learning process of each new 
subject when compared to previous ones. In the case of 
subject 12 learning Task 2 after subjects 9,10 and 11, the 
dominated brain  areas involved are: Temporal Lobe; 

Posterial Lobe; Ocipital Lobe; Midbrain (at time t2);  
Medulla (at time t4).     

VI. DISCUSSIONS ON THE APPLICABILITY OF THE 

PROPOSED ALGORITHMS FOR MODEL EXPLAINABILITY AND 

BIO-MARKER DISCOVERY FROM SPATIO-TEMPORAL AND 

LONGITUDINAL DATA 

 

       Overall, TL is about learning new tasks in one model 

(or by a subject) by utilizing previously learned knowledge 

and creating new ones. It is important to be able to evaluate 

the novelty in the evolution of the models. And that is what 

Figs.4 and 7 are about, showing not only the connectivity 

of the SNN model at each time of learning, but the 

differences between consecutively trained models. These 

differences are shown as connection weights in Fig.4 and 

7 and as corresponding fSTR in Figs. 6 and 9.  
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   For a first time, the paper illustrates the evolution of the  

activities of different neuronal clusters in space (location) 

and time of the now 4D brain-inspired SNN model that 

correspond to the activity of brain areas, after incremental 

learning of different tasks by a single subject (Fig.6) and 

incremental learning of a task by different subjects (Fig.9). 

This evolution is represented as fSTR that are biologically 

plausible. They point to the most prominent features 

involved for future marker discovery.  
In order to evaluate the contribution of different 

elements of the NeuCube model, experiments are 
conducted with removal of connection weights (pruning) 
(model TrSNN-CP) and also pruning plus aggregating 
(TrSNN-CP-NG) connections of the model. Results are 
shown in the accuracy comparative graphs in Figs.5 and 8.      

The above features of the proposed methods make them 

applicable in several areas:  

•  Discovering predictive dynamic features from brain 

and longitudinal biomedical data  
   TL of fSTR from brain spatio-temporal data and 

from longitudinal biomedical data can be used to create  
multiple disease outcome predictive systems, such as co-
morbidity, psychosis, schizophrenia, depression, anxiety, 
ADHD, AD, dementia and other, that have some common 
manifestations and neurological backgrounds  [44, 45]. 
fSTR can be discovered from: longitudinal MRI data to 
predict dementia [46]; cognitive and clinical longitudinal 
data to discover features related to psychosis [47]; clinical, 
cognitive and genetic longitudinal data to predict 
schizophrenia [48]. For non-brain imaging longitudinal 
data, as it is the case in [48], input variables are mapped 
into the 3D SNN structure to preserve the temporal 
similarity between the variables [49]. In the proposed in 
this paper TL methods, only one model is trained 
incrementally on different class data and analyzed for 
features (biomarkers) that discriminate the classes, rather 
than new models created every time new data is collected.     

   All these and many other studies would benefit from the 

TL methods for an early prediction and a better 

explanation and understanding of the dynamics of a 

disease or co-morbidity cases, in addition to extracting 

statistically aggregated information as it is in the current 

state-of-the art methods.      

• BCI for neurorehabilitation robotics  

It has been established over the last decade that brain-

computer interfaces (BCIs) based rehabilitation systems 

can be used to induce neural plasticity, which is believed 

to be the underlying mechanism of motor recovery after 

neural injury such as stroke [17] [18]. The improvement in 

use of non-invasive BCI have been made possible with the 

synergistic efforts in the field of neurorehabilitation and 

neural engineering [19] [20]. One of the existing 

bottlenecks for BCI technology is the generalization 

ability of the results. In the current manuscript, 

generalizability issue has been investigated by using brain-

inspired neural network architecture, utilizing TL methods 

and fSTR. In [25] an invasive bi-directional BCI 

framework is proposed, where brain signals are sent to the 

prosthetic device and feedback from muscles is used to 

send to inserted electrodes in the brain. The proposed in 

our paper framework, that includes visualization of the 

incrementally trained NeuCube model reflecting brain 

activity, can be used to provide a visual feedback to the 

user, especially efficient when several brain modalities are 

integrated into a personalized predictive model [26] [35] 

[36] [50].    

• Speech, image and video data processing 

Multimedia data (speech, sound, image, videos) are 

important information sources and have wide applications 

across many fields. In this regard, TL in SNN has 

particular advantages as it makes it possible to learn time, 

space and frequency together and to use neuromorphic 

hardware, which is highly energy efficient and easy to be 

embedded into small portable devices [43].  

● Cognitive and communication studies  

Recently, an already existing method called “hyper-

scanning”, that measures the process of brain 

synchronization between people and also the process of 

learning new skills, was systematically studied in [27]. 

The proposed TL of fSTR can be used for such studies to 

model and understand brain synchronization across 

multiple subjects over time [28].   

● Towards brain-inspired life-long learning machines 

Recent studies have been looking for biological principles 

of life-long learning in the human brain [33, 34, 6]. The 

proposed TL learning of fSTR is a further step in this 

direction by introducing explainability during life-long 

learning processes as knowledge accumulation [51].    

    

VII. CONCLUSION AND FURTHER DIRECTIONS 

 

The paper presents a methodology for TL of fSTR in a 

brain-inspired SNN (BI-SNN), exemplified by the 

NeuCube architecture. The methodology is applied on a 

case study of EEG brain data, but the proposed methods 

have a wider applicability due to the following features:  

1. Flexible structure (no fixed number of layers and 

neurons in activated clusters).    

2. Incremental, potentially “life-long” and TL. 

3. Learning fSTR, explainability.   

4. Event based (asynchronous) learning. 

5. Fast learning (e.g., one pass).  

6. Low computational and power demand.      

New theoretical and application developments are 

anticipated for a full exploration of the BI-SNN and their 

capacity for improved TL of fSTR, such as:.  

1. TL of integrated multimodal data, such as audio-visual, 

EEG, fMRI, DTI etc.   

2. TL of integrated heterogeneous data, such as: 

quantum-, molecular-, brain signals-, environmental.   

3. Self-optimisation  of parameters during TL.    

4. Knowledge transfer between humans and machines.    

Overall, the concept of TL of fSTR, introduced here, 

extends the fundamental principles of fuzzy systems and 

neural networks, deeply rooted now in all sciences 

[41,42,43], and opens a new direction for the development 
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of adaptable and explainable spatio-temporal learning 

systems for AI applications.     
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