190 research outputs found

    Getting ahead of the arms race: hothousing the coevolution of VirusTotal with a Packer

    Get PDF
    Malware detection is in a coevolutionary arms race where the attackers and defenders are constantly seeking advantage. This arms race is asymmetric: detection is harder and more expensive than evasion. White hats must be conservative to avoid false positives when searching for malicious behaviour. We seek to redress this imbalance. Most of the time, black hats need only make incremental changes to evade them. On occasion, white hats make a disruptive move and find a new technique that forces black hats to work harder. Examples include system calls, signatures and machine learning. We present a method, called Hothouse, that combines simulation and search to accelerate the white hat’s ability to counter the black hat’s incremental moves, thereby forcing black hats to perform disruptive moves more often. To realise Hothouse, we evolve EEE, an entropy-based polymorphic packer for Windows executables. Playing the role of a black hat, EEE uses evolutionary computation to disrupt the creation of malware signatures. We enter EEE into the detection arms race with VirusTotal, the most prominent cloud service for running anti-virus tools on software. During our 6 month study, we continually improved EEE in response to VirusTotal, eventually learning a packer that produces packed malware whose evasiveness goes from an initial 51.8% median to 19.6%. We report both how well VirusTotal learns to detect EEE-packed binaries and how well VirusTotal forgets in order to reduce false positives. VirusTotal’s tools learn and forget fast, actually in about 3 days. We also show where VirusTotal focuses its detection efforts, by analysing EEE’s variants

    Toward Network-based DDoS Detection in Software-defined Networks

    Get PDF
    To combat susceptibility of modern computing systems to cyberattack, identifying and disrupting malicious traffic without human intervention is essential. To accomplish this, three main tasks for an effective intrusion detection system have been identified: monitor network traffic, categorize and identify anomalous behavior in near real time, and take appropriate action against the identified threat. This system leverages distributed SDN architecture and the principles of Artificial Immune Systems and Self-Organizing Maps to build a network-based intrusion detection system capable of detecting and terminating DDoS attacks in progress

    Evolution of detectors in neural network immune system for pattern recognition

    Get PDF
    Секция 9. Распознавание образов, информационные системы управленияIn this paper we present the basic principles of the evolution of detectors in intelligent system for pattern recognition, such as malicious code detection. This system based on integration of both AI methods: artificial neural networks and artificial immune systems. The goal of the evolution is adaptation of detectors to new, unknown malicious code for increasing of quality of detection

    Specialized Genetic Algorithm Based Simulation Tool Designed For Malware Evolution Forecasting

    Get PDF
    From the security point of view malware evolution forecasting is very important, since it provides an opportunity to predict malware epidemic outbreaks, develop effective countermeasure techniques and evaluate information security level. Genetic algorithm approach for mobile malware evolution forecasting already proved its effectiveness. There exists a number of simulation tools based on the Genetic algorithms, that could be used for malware forecasting, but their main disadvantages from the user’s point of view is that they are too complicated and can not fully represent the security entity parameter set. In this article we describe the specialized evolution forecasting simulation tool developed for security entities, such as different types of malware, which is capable of providing intuitive graphical interface for users and ensure high calculation performance. Tool applicability for the evolution forecasting tasks is proved by providing mobile malware evolution forecasting results and comparing them with the results we obtained in 2010 by means of MATLAB

    Malicious botnet survivability mechanism evolution forecasting by means of a genetic algorithm

    Get PDF
    Botnets are considered to be among the most dangerous modern malware types and the biggest current threats to global IT infrastructure. Botnets are rapidly evolving, and therefore forecasting their survivability strategies is important for the development of countermeasure techniques. The article propose the botnet-oriented genetic algorithm based model framework, which aimed at forecasting botnet survivability mechanisms. The model may be used as a framework for forecasting the evolution of other characteristics. The efficiency of different survivability mechanisms is evaluated by applying the proposed fitness function. The model application area also covers scientific botnet research and modelling tasks. Article in English. Kenkėjiškų botnet tinklų išgyvenamumo mechanizmų evoliucijos prognozavimas genetinio algoritmo priemonėmis Santrauka. Botnet tinklai pripažįstami kaip vieni pavojingiausių šiuolaikinių kenksmingų programų ir vertinami kaip viena iš didžiausių grėsmių tarptautinei IT infrastruktūrai. Botnettinklai greitai evoliucionuoja, todėl jų savisaugos mechanizmų evoliucijos prognozavimas yra svarbus planuojant ir kuriant kontrpriemones. Šiame straipsnyje pateikiamas genetiniu algoritmu pagrįstas modelis, skirtas Botnet tinklų savisaugos mechanizmų evoliucijai prognozuoti, kuris taip pat gali būti naudojamas kaip pagrindas kitų Botnet tinklų savybių evoliucijai modeliuoti. Skirtingi savisaugos mechanizmai vertinami taikant siūlomą tinkamumo funkciją. Raktiniai žodžiai: Botnet; genetinis algoritmas; prognozė; savisauga; evoliucija; modeli

    Deep Learning Methods for Malware and Intrusion Detection: A Systematic Literature Review

    Get PDF
    Android and Windows are the predominant operating systems used in mobile environment and personal computers and it is expected that their use will rise during the next decade. Malware is one of the main threats faced by these platforms as well as Internet of Things (IoT) environment and the web. With time, these threats are becoming more and more sophisticated and detecting them using traditional machine learning techniques is a hard task. Several research studies have shown that deep learning methods achieve better accuracy comparatively and can learn to efficiently detect and classify new malware samples. In this paper, we present a systematic literature review of the recent studies that focused on intrusion and malware detection and their classification in various environments using deep learning techniques. We searched five well-known digital libraries and collected a total of 107 papers that were published in scholarly journals or preprints. We carefully read the selected literature and critically analyze it to find out which types of threats and what platform the researchers are targeting and how accurately the deep learning-based systems can detect new security threats. This survey will have a positive impact on the learning capabilities of beginners who are interested in starting their research in the area of malware detection using deep learning methods. From the detailed critical analysis, it is identified that CNN, LSTM, DBN, and autoencoders are the most frequently used deep learning methods that have effectively been used in various application scenarios

    A Critical Analysis Of The State-Of-The-Art On Automated Detection Of Deceptive Behavior In Social Media

    Get PDF
    Recently, a large body of research has been devoted to examine the user behavioral patterns and the business implications of social media. However, relatively little research has been conducted regarding users’ deceptive activities in social media; these deceptive activities may hinder the effective application of the data collected from social media to perform e-marketing and initiate business transformation in general. One of the main contributions of this paper is the critical analysis of the possible forms of deceptive behavior in social media and the state-of-the-art technologies for automated deception detection in social media. Based on the proposed taxonomy of major deception types, the assumptions, advantages, and disadvantages of the popular deception detection methods are analyzed. Our critical analysis shows that deceptive behavior may evolve over time, and so making it difficult for the existing methods to effectively detect social media spam. Accordingly, another main contribution of this paper is the design and development of a generic framework to combat dynamic deceptive activities in social media. The managerial implication of our research is that business managers or marketers will develop better insights about the possible deceptive behavior in social media before they tap into social media to collect and generate market intelligence. Moreover, they can apply the proposed adaptive deception detection framework to more effectively combat the ever increasing and evolving deceptive activities in social medi

    Artificial life meets computational creativity?

    Get PDF
    I review the history of work in Artificial Life on the problem of the open-ended evolutionary growth of complexity in computational worlds. This is then put into the context of evolutionary epistemology and human creativity
    corecore