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ABSTRACT
To combat susceptibility of modern computing systems to cyberat-
tack, identifying and disrupting malicious traffic without human
intervention is essential. To accomplish this, three main tasks for
an effective intrusion detection system have been identified: moni-
tor network traffic, categorize and identify anomalous behavior in
near real time, and take appropriate action against the identified
threat. This system leverages distributed SDN architecture and the
principles of Artificial Immune Systems and Self-Organizing Maps
to build a network-based intrusion detection system capable of
detecting and terminating DDoS attacks in progress.
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1 INTRODUCTION
The size of the internet sphere has seen explosive growth in the last
10 years, and the rate of growth is expected to accelerate into the
near future [46]. This accelerated growth is attributed to two main
factors: the rise of the Internet of Things (IoT) and the emergence
of cloud computing. The Internet of Things is the term attached to
the growing network of small embedded devices that frequently
serve the automation and security needs of homes and businesses.
Designed to send and receive data with remote logging servers, or to
be remotely controllable by a user’s smartphone or web application
software, these devices communicate over IP networks with or
without requiring a human to be in the loop. While this offers
increased consumer convenience and control, it also opens the door
to new avenues of cyberattack, as the domain of potential targets
grows and there is less human monitorization.

Much of this growth is attributed to consumer “Internet Con-
nected Things" which include household appliances, security cam-
eras, televisions, digital video recorders, and smart electric meters
[46]. These devices are broadly connected to the internet through
normal IP networks and thus can send/receive traffic to/from any
device reachable from the internet. As of 2017, few of these de-
vices possess adequate security measures, and thus are subject to
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infiltration [3]. Infiltrated or compromised devices can continue
to provide expected consumer function and generally do not give
any indication to the consumer that they have been compromised.
Since these devices have the ability to connect to any remote in-
ternet endpoint and are very unlikely to be discovered once they
are, internet connected things perfect candidates for inclusion into
networks of malware infected devices (botnets).

At the other end of the spectrum, cloud computing has evolved
as a resource sharing computing model in which large service
providers provide infrastructre (infrastructure as a service), plat-
forms, (platform as a service), software (software as a service), and
everything in between as leasable services. These services are prof-
itable for the service providers once a sufficient level of resource
utilization is reached, and this gives rise to multiple customers shar-
ing resource space at the CPU, storage, and network levels. This is
known as multi-tenancy. This availability has driven a centraliza-
tion of enterprise class computing into the cloud computing model,
which offers convenience and quality for businesses. However, this
also entails new challenges as cloud providers contend with the
technical and security issues of multi-tenancy, which open up novel
cyberattack methods as potential attackers may now reside within
the same server or even the same physical CPU as their intended
victims.

A common and problematic cyberattack is the denial-of-service
attack. It is characterized by an attempt by a remote device to send
more traffic to a target system than that system is able to handle.
Once this threshold capacity is reached, normal/benign traffic can
no longer be serviced, and the target becomes unavailable for use.
The security community has been able to create effective firewall
and filtering techniques to mitigate such DoS attacks, a state of
affairs which then caused the attacks to evolve into distributed-
denial-of-service (DDoS) attacks. DDoS attacks achieve the same
end as their DoS ancestors, but do so by overwhelming the target
with requests from a myriad of source devices called bots. In this
way, the true source of the attack is very difficult to detect, as
each attacking device does not send enough individual traffic to
raise firewall/ filtering alarms. The effect, however, is the same: the
summation of all the botnet traffic is enough to render the target
resource unavailable. Effective protection against DDoS attacks
remains an open problem in the security community.

To contend with the technical challenges of resource sharing,
most cloud providers have developed concepts of software-defined
networking (SDN) and network virtualization. In contrast with
previous packet or circuit switching networks, software defined
networks allow for software management of network traffic. This is
enabled by centrally gathering network traffic information from a
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management network of distributed devices capable of monitoring
and reporting traffic, then making intelligent decisions that lead to
the highest resource utilization in the given situation. Because these
networking models are associated with increased traffic metadata,
they are well suited to tackling the problems of cyberattack[47].

This project proposes a system for recognizing and mitigating
DDoS attacks in progress. The system’s distributed detection and
intervention strategies are bio-inspired and take inspiration from
the function of human immune systems in detecting and disrupting
unknown pathogens. Like its biological counterpart, this AIS is
designed to be highly adaptive by using the distributed monitor-
ing approach afforded by SDN systems with the malicious pattern
generation techniques of a modified artificial immune system. The
system is shown to be capable of being highly effective in monitor-
ing, detecting, and mitigating unknown DDoS attacks in progress.

1.1 Proposed System
This work proposes a network-based[38] SOM-modified-AIS Open-
Flow network application to meet the primary challenges of effec-
tive DDoS detection and mitigation in cloud computing environ-
ments. The system features collaborative profiling to meet the dis-
tributed monitorization needs of such environments, a time-series
toxicity “overwhelm-factor" to model the effect a DDoS attack has
on network terminal equipment, a network capable of simulating a
DDoS attack in an SDN network environment, and a SOM-modified
AIS network application to handle attack detection and the immune
response. As a proof of concept, this work implements the SDN
DDoS network, collaborative profiling monitorization scheme, and
toxicity modeling AIS application while assuming a functional SOM
block.

2 RELATEDWORK
This section explores related work in developing SDN network-
based[38] or AIS intrusion detection systems (IDSs).

The work of Jha and Archaya [24] builds an AIS-based IDS featur-
ing network-based[38] monitorization and unsupervised learning
they call I3DS. I3DS is built around the function of two modeling
techniques, one probabilistic-based and one decision tree-based.
The probabilistic technique uses a Hidden Markov Model[12] struc-
ture to adaptively learn and provide a preliminary self vs non-self
classification on novel traffic. The decision tree structure then takes
the non-self candidate data and performs a final self non-self classi-
fication. I3DS is then compared against other learning-based IDS
techniques (k-means, SOM, etc.) in testing utilizing the KDD Cup
99 Training Dataset [43] from [44]. I3DS outperforms all competi-
tion. Though I3DS is purely theoretical, and thus does not offer a
network monitoring scheme, it should be the goal of this work’s
SOM module to outperform I3DS in the same test conditions.

Hong [22] develops a network-based[38] malware detection
method that detects anomalies in Domain Name System (DNS)
traffic, rather than IP application traffic. The method (DTA) uses
captured DNS traffic to build two graphs: DNS Lookup and DNS
Failure. DNS Lookup is a weighted bipartite graph [16] whose edge
set provides a mapping from a domain name to its corresponding IP
address, and logs the query’s frequency for a given time period. As
DNS Lookup can only contain information on successful queries,

DNS Failure is created to provide a mapping between failed DNS
queries and the hosts originating the query, where the edge weight
represents its frequency. Once created, the graphs are monitored
for presentation of well-defined graph artifacts that are known
to correspond with malicious network activity. However, graph
presentation of these artifacts alone is insufficient to complete self
non-self classification, so a decision tree module is included. While
this method offers promise, it is a purely theoretical model and does
not offer any kind of network monitoring scheme. DTA should
ultimately be outperformed by the work of this project.

Braga[14] builds an OpenFlow-based DDoS detection method
utilizing the SOM technique. Their SOM is trained using a 6-tuple
of native OF switch statistics gathered from the NOX[10] SDN
controller. While effective, [14] does not allow for communication
between multiple networks nor statistical methods which analyze
OF switch ports to delineate attacking hosts from benign hosts.
Further, this paper does not address the effects that DDoS attacks
have on SDN controllers themselves.

3 CHALLENGES AND HYPOTHESIS
This chapter articulates the general challenges associated with
designing a system capable of detecting DDoS attacks in cloud
computing environments, and the specific challenges in developing
and implementing the primary work of the design. It concludes
with a statement of the hypothesis the project intends to affirm.

3.1 Primary Challenges
The primary challenges are those identified as the basic and essen-
tial tasks a general system must perform in order to protect a cloud
network from a DDoS attack.

3.1.1 Monitorization. Sufficiently monitoring network behavior
is the first challenge to be met. The network monitoring scheme
is the ultimate source of all information from which AIS decisions
are made, so no data down the data pipeline may be of a finer
resolution than the monitoring scheme itself supports. Further, the
more network traffic monitoring data that can be generated, the
more applicable the resulting model represents the network. As
cloud virtual networks become more complex and more distributed,
no single network device has a global network view, and destination-
based monitoring becomes infeasible. Instead, network-based[38]
monitoring methods composed of multiple distributed monitoring
agents must be implemented.

3.1.2 Detection. To effectively secure a system from attack, the
security system must be able to accurately and precisely predict
when an attack is going to take place, or detect an attack in progress
before damage is done. Due to the imperfect nature of prediction
and detection, an amount of error will invariably exist. There are
four types of detection events[24][22]:

(1) True Positive (T+)– the system detected an event that oc-
curred

(2) False Positive (F+)– the system detected an event that did
not occur

(3) True Negative (T−)– the system did not detect an event that
did not occur
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(4) False Negative (F−)– the system did not detect an event that
occurred

The error types are related in a trade-off scheme. To achieve a
higher T+ rate, a system would likely experience an increase in F+

rate as well. The situation is the same for F+ and F− rates. Based
on the type of network traffic, some detection applications will be
more tolerant of certain error types than others. For example, a
government agency internal network may have access to sensitive
data. Such an environment would have a very low tolerance for
F− type errors, with the understanding that an increase in F+ type
error tolerance would be necessary. Conversely, a public media
server would seek to minimize F+ errors, and would likely have
a higher tolerance for F− errors. Due to this reality, the detection
module should be configurable such that it can be tuned to the per-
formance requirements of the specific application implementation
environment.

3.1.3 Intervention. An effective system must be able to take
action against an identified threat. The action taken must be able
to stop or mitigate the harmful effects of the attack and should
provide some sort of attack memory should a similar attack occur
in the future. Given a distributed environment, the action taken
should include a broadcast of the attack signature to potentially
affected network devices such that other network devcies may stop
or mitigate the attack. The attack mitigation technique should max-
imize effect on the targeted threat while minimizing the disruption
to normal (benign) traffic.

3.2 Hypothesis
This paper aims to meet all core challenges by developing a self
organizing map (SOM) modified AIS OpenFlow network applica-
tion with a monitorization module utilizing native SDN features in
OpenFlow v1.3 to both monitor and intervene. This work hypoth-
esizes that an SDN environment with OFv1.3 compliant switches
is capable of monitoring a cloud environment’s network to a level
sufficient to enable a SOM based AIS network application to de-
tect a DDoS attack in progress. The AIS module resides on top of
the OF network controller as a network application. Upon success-
ful detection, the AIS network application defines a new network
policy capable of mitigating the attack and then instructs the OF
controller to enforce the attack mitigation policy. Native OFv1.3
switches are sufficient to execute the monitorization scheme and
mitigation policy without custom development.

4 PROPOSAL
This work seeks to support its hypothesis by building a proof-
of-concept system. This system is intended to demonstrate the
effectiveness of an OpenFlow v1.3 based network application in
monitoring network traffic and detecting DDoS attacks in progress,
assuming a suitably accurate detection signature is provided by the
SOM module.

4.1 Collaborative Profiling
This project leverages an OpenFlow v1.3 switched network to
build its network-based detection scheme. In contrast to traditional

ingress switch or destination-based methods, network-based meth-
ods compile traffic data from many distributed traffic monitors.
To take advantage of OpenFlow’s strength in centrally handling
distributed network architectures, it proposes the monitorization
scheme be based on OpenFlow flow statistics collection native to
the protocol.

The proposed framework develops a collaborative traffic moni-
toring model for attack detection, shown in figure 1. In it, each OF
switch features a profile extractor that collects flow statistics for a
subset of the network traffic flowing through the switch. The profile
extractor is implemented as a low table ID, high priority flow table
entry, and does not perturb any network traffic flowing through
the switch. The OF switch collects the desired traffic data according
to native OpenFlow matching rules on fields given in Section 4.3.2
on page 5. Periodically, a profile aggregation network application
instructs the SDN controller to collect the captured data from each
switch, then aggregates the data to obtain a global network view
of network traffic. In this way, network-based monitorization is
achieved and the monitorization primary challenge is met.

Figure 1: Collaborative traffic analysis model.

4.2 Toxicity
The nature of DDoS attacks is to overwhelm a computing resource.
If a sufficient amount of traffic arrives at the attack target within
a defined period of time, the destination becomes overwhelmed
and inaccessible. This concept of time is very important, as 10Mb
of network traffic in ten seconds is a very different task to handle
than 10Mb in one millisecond. Native OpenFlow flow statistics are
able to give precise packet counts, byte counts, and even average
bitrates. While these figures may be able to give a good instanta-
neous snapshot of network traffic, they alone are not enough to
track the overwhelming effects of time sustained abuse. To track a
flow’s capacity to overwhelm, we define a function of time: toxicity.

A single packet traveling through a network requires a non-
zero amount of resources in order to be processed by network
devices including switches, wires, routers, and destination servers.
This amount varies based on packet size, L2, L3, and L4 protocols,
etc, and may be quite small per packet, but can accumulate to
an overwhelming amount very quickly. It becomes very useful to
think of a packet as containing a fundamental amount of inherent
toxicity. Asmore packets travel through a network en route to a final
destination server, the general toxicity of the network increases. As
more requests arrive at a server than it can handle per unit time,
the toxicity level accumulates at a rate proportional to the number
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and type of packets it is receiving. If traffic increases enough, the
destination server becomes overwhelmed and becomes unreachable,
an event analogous to poisoning. As network traffic subsides, the
toxic effects subside as a function of time as the server is able to
clear its queue. In seeking to protect a resource from attack, it
becomes useful to think about the problem as trying to keep the
resource’s toxicity level from reaching a poisonous threshold. As
general existing IP and SDN monitoring mechanisms are effective
in keeping network infrastructure from being overwhelmed, our
focus is on protecting the destination servers themselves.

Toxicity is modeled by considering how destination servers re-
ceive and process service requests. The amount of fundamental
toxicity a flow accumulates with each packet reception is related
to the server’s maximum queue size, the packet size, and the L4
protocol, but not to the current size of its buffer or queue. Therefore,
toxicity increases with each event. Further, toxicity levels are kept
for both packet statistics and byte statistics, and thus we define the
value τk , where k can take the value P for packet toxicity and B
byte toxicity as,

τk (t ) = τk (t − ∆t ) + δkbk (t ) (1)
where τk (t ) is the toxicity level at time t, ∆t is the elapsed time
since the last toxicity update, δk is a tuneable damping constant,
and bk (t ) is the fundamental toxicity deposit amount for this flow.
The deposit equations are given below.

bk (t ) = α
ηk,t − ηk,t−∆t

∆t
(2)

where α is a configurable constant and η is the number of packets
or bytes.

Toxicity dissipates at a rate relative to the number of packets in
the queue left to be processed and the time to service one request.
Since the rate is relative to its current value, this process is modeled
by the differential equation,

dτ

dt
= −λτ (3)

with solution,
τ (t ) = τ0e

−λt (4)
where λ is the exponential decay constant. Combining increasing
and decreasing factors gives the composite function for a flow’s
toxicity as a function of time,

τk (t ) = τk (t0)e
−λ (t−t0 ) + bk (t ) (5)

where t0 is the time of the most recent update. In this way, an
accurate, configurable model capable of capturing the ability of a
flow to overwhelm a destination server is developed.

4.3 System Architecture
The proposed system architecture is composed of an OF v1.3 SDN
NS-3 network, a Floodlight SDN controller, and an AIS network
application module. The OF v1.3 network simulates the behavior of
a UDP flood DDoS attack on a single target, and includes normal
background UDP traffic. The NS-3 network features ofswitch13 [15]
OF v1.3 switches that are externally controlled by the Floodlight
SDN controller [5] running in the same Linux user space as the NS-3
simulation. The NS-3 Floodlight interface is made through a Linux
TAP interface [29], whose L2 and L3 addresses NS-3 associates

with the controller through its native ns3::TapBridge module. The
AIS network application module interfaces with the Floodlight
controller via HyperText Transfer Protocol (HTTP) REpresentation
State Transfer (REST) API to monitor the network and detect DDoS
attacks in progress.

The AIS process is given in figure 2. The process is split into
two logical entities, the central coordinator is composed of the net-
work controller and network application (including SOM module),
while the distributed detectors are the OF v1.3 switches. Potential
detectors are initially generated by analysis of an initial dataset,
and continually generated by analysis of network traffic. These
potential detectors compose the self set. The self set undergoes
the negative selection training process to become the antibody set,
which is then distributed to the appropriate distributed detector(s).
The detectors then collect flow statistics on incoming traffic, and
match flow patterns against their antibody subsets. Flows that do
not match antibody patterns are processed normally according to
OpenFlow v1.3 processes, and flow statistics are periodically gath-
ered and sent to the central coordinator for continued adaptive
learning. Upon discovering a flow that does match an antibody, the
detector alerts the central coordinator and the expressed antibody
is added to the pathogen library.

Figure 2: AIS process.

4.3.1 Network Architecture. The NS-3 network built for this
project simulates the behavior of a UDP flood type DDoS attack
converging on a single target. The network features ofswitch13[15]
switches externally controlled by the Floodlight SDN controller. In
keeping with general SDN practices, the data and control planes are
logically separated into independent networks. This type of network
in which control signaling is carried in a different network than user
data is called an out-of-band network [34]. Out-of-band networks,
while good general SDN practice, afford the additional benefit of
control plane insulation against application-level DDoS attacks. An
entire in-band control network could easily be taken down by an
application-level DDoS attack, as the OF control messages would
be dropped due to attack congestion. The control network, also
called the OpenFlow channel, is configured as a single Carrier Sense
Multiple Access (CSMA) ethernet [6] channel. The OF switch L2
and L3 addresses are configured within the NS-3 simulation, while
the controller L2 and l3 addresses are configured by the Linux TAP
interface, external to the NS-3 environment. Any changes to the
OpenFlow channel topology must be reflected in both the TAP
interface and the NS-3 environment.
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The data plane network topology is contained entirely within the
NS-3 environment. In it, each host is connected to a single switch by
a dedicated CSMA ethernet channel. The dedicated channel allows
for high traffic monitor resolution, suitable for this proof of concept
system. The host switches are connected to the target switch in a
star topology, again with dedicated ethernet channels. The target
switch then uses singly dedicated ethernet channels to connect
with the destination servers.

4.3.2 AIS Network Application Data Structure. The AIS Network
Application is intended to enable decisions to be made on large
networks which generate encumberingly large volumes of network
statistics (metadata). As the entirety of this metadata must travel
over the limited OpenFlow channel, care must be taken to minimize
the channel bandwidth utilization by the module, or risk interfering
with normal network operations. Further, as network, memory, and
CPU resources are marketable commodities in cloud computing
environments, the application’s data and processing considerations
must also be taken into account. For the end system, every effort
should be made to reduce resource consumption wherever possible.
As a result, the proof-of-concept AisTable and associated entries
are developed with this in mind. The structure of the an entry in the
AisTable is composed of the fields: Signature, SwitchCountsEntry,
Packet Tox, and Byte Tox.

The AisTable is a hash table [16], keyed on a hashing of the
Signature. Each network profile (see section 4.1) of interest gener-
ates a unique Signature and thus a unique AisTableEntry in the
AisTable. Table 1 gives the possible fields a Signature might contain.
These fields are developed from the OXM match fields required
by OpenFlow v1.3 specification [41], and represent the maximum
view resolution the AIS system has into the network. A Signature
instance may contain as many Signature fields as desired, but must
contain at least one.

Table 1: Signature fields (required OXMmatch fields).

Field Description
OXM_OF_IN_PORT Ingress port.
OXM_OF_ETH_DST Ethernet destination address.
OXM_OF_ETH_SRC Ethernet source address.
OXM_OF_ETH_TYPE Packet payload ethernet type.
OXM_OF_IP_PROTO IPv4 or IPv6 protocol number
OXM_OF_IPV4_SRC IPv4 source address.
OXM_OF_IPV4_DST IPv4 destination address.
OXM_OF_IPV6_SRC IPv6 source address.
OXM_OF_IPV6_DST IPv6 destination address.
OXM_OF_TCP_SRC TCP source port.
OXM_OF_TCP_DST TCP destination port.
OXM_OF_UDP_SRC UDP source port.
OXM_OF_UDP_DST UDP destination port.

Due to the collaborative nature of the network-based monitor-
ization scheme, a single Signature may receive traffic data contribu-
tions from separate switches throughout the network. To allow for
this, the AisTableEntry includes an array of SwitchCountsEntries,
with a unique SwitchCountsEntry belonging to a single switch for

the given profile. The SwitchCountsEntry keeps track of packet
and byte counts for the individual flow, and the timestamp when
these network statistics were last collected. These data are neces-
sary and sufficient to calculate the toxicity contributions per time
aggregation event as part of the calculation of Equation 5. The struc-
ture of the SwitchCountsEntry is composed of the fields: SwitchID,
Timestamp, Packet Count, and Byte Count.

5 EXPERIMENT
The experimentation is designed to support the project’s hypothesis.
Included are descriptions of the experiment’s topology, and specific
limiting implementation challenges. Further, experiment results and
analysis are presented that demonstrate support of the hypothesis.

5.1 Description
The project experimentation is designed to demonstrate the AIS
application’s nature as a network-based AIS and its capabilities of
meeting the monitorization and detection primary tasks. To accom-
plish these, experimentation is built on the integration of several
software modules within a single Linux userspace, as described in
chapter 4. The experimentation consists of a series of separate 900
second network traffic simulations in which network configuration
and traffic patterns are generated by the NS-3 network as input,
and the AIS module toxicity and hazard message responses are
recorded as output. The project hypothesis is supported if:

(1) Monitorization: the AIS is able to aggregate the distributed
profile information into a network-based global view of traf-
fic.

(2) Detection: the AIS is able to outperform other detection meth-
ods for a sufficiently realistic simulated DDoS attack in the
measured performance indicator metrics.

The NS-3 component gives the ability to simulate representa-
tively realistic network traffic in order to test network configura-
tions, external SDN controllers, and SDN network applications. To
test themonitorization and detection capabilities of the AIS network
application, an NS-3 realtime network is created. The experimental
traffic scenario is then run.

5.1.1 Profile Gathering Experiment Description. The experiment
feeds a realistic traffic pattern to the system. In this experiment, a
second destination is created, and is not the subject of an attack.
Normal application UDP traffic flows from even numbered IP hosts
to both the benign destination server and to the attack target. This
traffic serves as background noise for the DDoS detection module,
and should be neither detected as attack traffic nor disrupted as
part of any attack mitigation efforts. This normal application traffic
starts shortly after the simulation begins, and steadily continues
through the simulation. Attack application UDP flood traffic flows
from odd numbered IP hosts to the attack target. As all host clients
generate the same amount of individual network traffic, no single
IP source address can be categorized as malicious. These flows
come online in regular intervals, and reach warning and alert level
thresholds at well defined times. It is the end goal of the project to
be able to classify subflows within the detected flows, and filter out
specific IP sources as a result. It is this ability that the SOM module
is intended to provide, and thus is not required here.
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However, a demonstration of the subflow classification behavior
is possible before the SOM module is developed. This behavior is
available through the concept of bit-mapping. OpenFlow v1.3 flow
tables support arbitrarily bit-masked IP address match fields[41].
This allows flow table entries to match IP source addresses to spe-
cific bit patterns, rather than specific or wildcarded full addresses.
These bit patterns can be generated randomly, and can go through
a negative-selection training process in a “pseudo-SOM" module,
with the bitmasks taking the role of detector. In following along
the SOM AIS process, the selected bitmasks can be given to the AIS
module. Once there, the AIS module can instruct the SDN controller
to monitor IP addresses matching the bit pattern, rather than moni-
toring specific IP addresses or subnetworks. In this experiment, the
pseudo-SOM module has generated such a bitmask, and the results
of its use are given in section 5.2.1.

5.2 Results
Results are now given which lend support to the hypothesis that a
network-based[38] AIS is capable of detecting and mitigating DDoS
attacks in cloud computing environments. These results center
around the detection performance indicators[24][22] detection rate
(D), accuracy (A), precision (P ), and F-score (F ). Where,

D =
T+

T+ + F−
(6)

P =
T+

T+ + F+
(7)

A =
T+ +T−

T+ +T− + F+ + F−
(8)

F = 2 ×
D × P

D + P
=

2 ×T+

2 ×T+ + F+ + F−
(9)

(10)

D represents the proportion of malicious packets the system is
able to detect to all of the malicious packets in the system. Precision
captures the likelihood that a packet detected as malicious truly is
malicious. Accuracy represents the ability of the system to prop-
erly classify a packet as benign or malicious, and the F-score is a
composite score that is used as a single “goodness metric". These
performance metrics are composed of the four detection event types
of section 3.1.2.

5.2.1 Profile Gathering Experiment. The profile gathering ex-
periment features the same network-based[38] AIS, and largely the
same network configurations as the baseline gathering experiment.
However, it differs in that it includes a benign destination server.
This new server receives a steady amount of benign UDP applica-
tion traffic throughout the simulation from each of its hosts. The
benign destination has the IP address 10.1.1.11, while the attack
target has the IP address 10.1.1.10. This experiment examines the
performance of two detection profiles on this new traffic scenario.

The first, WILDCARD, offers the simple network-based[38] de-
tection featured in the previous experiment. Its IP source address
field is wildcarded, resulting in this profile being unable to clas-
sify subflows or monitor specific IP source addresses. The second,
BITMASK, offers the pseudo-SOM bitmask concept discussed in
section 5.1.1, and is expected to outperform WILDCARD. The AIS

is seeded with these detection profiles in turn and identical network
simulations are run on each.

Figure 3: WILDCARD Single profile without bitmasking.

Figure 3 gives the details of the WILDCARD profile experiment.
Total network traffic is shown, as is a breakdown of traffic by desti-
nation, at the furthest resolution offered by the profile. Each plot in
the figure features ALERT and down lines, which illustrate the time
at which the AIS detected an incipient attack and the time at which
the target server was taken down by the attack. The accumulated
total number of positive detection events is also shown. Packet and
toxicity curves are given next, with the general patterns closely
following the input traffic patterns.

Figure 4: BITMASK Profile gathering experiment results
with pseudo-SOM supplied profile bitmask.

The results of the BITMASK profile are given in figures 4 and 5. It
runs an identical NS-3 network configuration, so the network input
traffic is the same. In the same method as the previous, this traffic
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Figure 5: BITMASK Profile gathering experiment results
with pseudo-SOM supplied profile bitmask, detail.

is broken down by destination at the furthest resolution offered by
the profile. It should be noticed that BITMASK is able to distinguish
subflows within the 10.1.1.10 flow: 10.1.1.10 A (attack) and 10.1.1.10
B (benign). The accumulated packet detections are given as well,
and when compared against WILDCARD’s result, show a more
shallow linear slope as a result of its fewer detection events.

The toxicity figures illustrate the real benefit of this model. The
benign subflow on the attack target does not surpass the alert
threshold, and thus is not detected as malicious. The attack subflow,
however, does, as is detected as malicious a result.

Table 2: Profile gathering performance indicators

D P A F
WILDCARD 96.329 55.555 85.902 70.469
BITMASK 96.452 100.0 99.381 98.194

This experiment’s performance indicator results are given in
table 2. As can be seen, the number of T+ events is the same (the 6
packet difference is negligible) for the two detection profiles. The
F− events with both profiles are associated with the 10 second
detection time lag as a result of the AIS’s polling period and toxicity
deposit amount configuration. The great benefit of the BITMASK
profile lies in the number of F+ events. WILDCARD’s wildcarded
IP source field results in over 23000 F+ events, giving a precision
of only 56%. This inadequate performance is expected here, as
it cannot distinguish subflows with such a wildcard when traffic
levels per host are identical. Thus, WILDCARD cannot distinguish
an attacking host from a benign host within a flow. BITMASK,
however, can, thanks to its inclusion of the bitmasking pseudo-
SOM. As a result, it creates 0 F+ events and properly classifies
WILDCARD’s 23000 F+s as T−. This proper classification gives
BITMASK perfect precision and an accuracy limited only by the
polling period, greatly supporting the project’s hypothesis.

Other works by Hong [22] and Jha and Archaya [24] have mea-
sured the same metrics for similar work, which is compared in table

3. The highest obtained F-scores are included here for comparison.
It should be noted that the experiments vary here, and therefore
the results of comparison should be taken lightly.

Table 3: Related Work Performance Comparison

IDS F-Score
Ais::BITMASK 98.2
DTA[22] 90.3
I3DS[24] 97.1

6 CONCLUSIONS AND FUTUREWORK
This work is intended to function as the laying of a foundational
proof of concept for the proposed AIS network application system
described in section 4. As demonstrated in section 5.2.1, when
given a perfect profile, the AIS system can express perfect behavior,
and thus is limited only by the strength of its detector generation
method. Therefore, the hypothesis of this experimental proof of
concept is well supported and should be extended.

The primary area of focus for future work should be on the de-
velopment of the SOMmodule for the AIS network application. The
development of this module would allow many of this project’s as-
sumptions to be removed and would allow the AIS to fully function
as it was intended. The AIS network application is fully ready to
accept network profiles from such an SOM module, so this develop-
ment can focus on the SOM itself. The implementation details of the
SOM module are not constrained by the AIS network application,
and thus the SOM module can be implemented using any tool most
suited to the task. The SOM generated profiles can be passed to the
AIS network application through any usual application communi-
cation means, such as interprocess communication (IPC) [31]. If the
developers of the SOM module choose to implement it in Python,
minimal integration effort will be required, and the SOM can simply
function as a separate thread/ process within the application.

Though the development of the SOM module will contribute
mightily to the overall goals of the project, challenges remain that
will limit its efficacy and accuracy. These challenges should be
co-developed with the SOM module, as they are not logically con-
nected and can be developed in parallel. These challenges include
coordinating with the developers of the ofswitch13 module [15] to
refine ns3::CsmaNetDevice modeling to solve the L3 Subnet Prob-
lem. Rectifying this problem will allow for a much more complex
and realistic SDN network to be developed in NS-3. Not only will
this result in more applicable real-world simulations, but it will
also provide for a better training environment for the SOM module.
It is possible the developers of the module will solve this problem
themselves, but it is not guaranteed.

The final workstream to be extended in the future is the de-
velopment of realistic and complete NS-3 service request model-
ing. The development of realistic µ values for destination terminal
equipment packet service modeling would allow for the desired
real-world effects of DDoS attacks on application servers to be mod-
eled in NS-3 and a high analyzation resolution would result. This
modeling must be able to account for load on the server, packet
protocol, available server memory, etc. This sort of analyzation will
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be necessary before any potential AIS system is fully tested, so
future developers will need this capability in testing.

Future parallel development of these three workstreams is rec-
ommended, as the results of this paper demonstrate that a network-
based AIS SDN network application is capable of detecting and
mitigating DDoS attacks in progress in cloud computing environ-
ments.
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