407 research outputs found

    Improved Multi-Verse Optimizer Feature Selection Technique With Application To Phishing, Spam, and Denial Of Service Attacks

    Get PDF
    Intelligent classification systems proved their merits in different fields including cybersecurity. However, most cybercrime issues are characterized of being dynamic and not static classification problems where the set of discriminative features keep changing with time. This indeed requires revising the cybercrime classification system and pick a group of features that preserve or enhance its performance. Not only this but also the system compactness is regarded as an important factor to judge on the capability of any classification system where cybercrime classification systems are not an exception. The current research proposes an improved feature selection algorithm that is inspired from the well-known multi-verse optimizer (MVO) algorithm. Such an algorithm is then applied to 3 different cybercrime classification problems namely phishing websites, spam, and denial of service attacks. MVO is a population-based approach which stimulates a well-known theory in physics namely multi-verse theory. MVO uses the black and white holes principles for exploration, and wormholes principle for exploitation. A roulette selection schema is used for scientifically modeling the principles of white hole and black hole in exploration phase, which bias to the good solutions, in this case the solutions will be moved toward the best solution and probably to lose the diversity, other solutions may contain important information but didn’t get chance to be improved. Thus, this research will improve the exploration of the MVO by introducing the adaptive neighborhood search operations in updating the MVO solutions. The classification phase has been done using a classifier to evaluate the results and to validate the selected features. Empirical outcomes confirmed that the improved MVO (IMVO) algorithm is capable to enhance the search capability of MVO, and outperform other algorithm involved in comparison

    Developed Clustering Algorithms for Engineering Applications: A Review

    Get PDF
    Clustering algorithms play a pivotal role in the field of engineering, offering valuable insights into complex datasets. This review paper explores the landscape of developed clustering algorithms with a focus on their applications in engineering. The introduction provides context for the significance of clustering algorithms, setting the stage for an in-depth exploration. The overview section delineates fundamental clustering concepts and elucidates the workings of these algorithms. Categorization of clustering algorithms into partitional, hierarchical, and density-based forms lay the groundwork for a comprehensive discussion. The core of the paper delves into an extensive review of clustering algorithms tailored for engineering applications. Each algorithm is scrutinized in dedicated subsections, unraveling their specific contributions, applications, and advantages. A comparative analysis assesses the performance of these algorithms, delineating their strengths and limitations. Trends and advancements in the realm of clustering algorithms for engineering applications are thoroughly examined. The review concludes with a reflection on the challenges faced by existing clustering algorithms and proposes avenues for future research. This paper aims to provide a valuable resource for researchers, engineers, and practitioners, guiding them in the selection and application of clustering algorithms for diverse engineering scenarios

    A Hybrid Chimp Optimization Algorithm and Generalized Normal Distribution Algorithm with Opposition-Based Learning Strategy for Solving Data Clustering Problems

    Full text link
    This paper is concerned with data clustering to separate clusters based on the connectivity principle for categorizing similar and dissimilar data into different groups. Although classical clustering algorithms such as K-means are efficient techniques, they often trap in local optima and have a slow convergence rate in solving high-dimensional problems. To address these issues, many successful meta-heuristic optimization algorithms and intelligence-based methods have been introduced to attain the optimal solution in a reasonable time. They are designed to escape from a local optimum problem by allowing flexible movements or random behaviors. In this study, we attempt to conceptualize a powerful approach using the three main components: Chimp Optimization Algorithm (ChOA), Generalized Normal Distribution Algorithm (GNDA), and Opposition-Based Learning (OBL) method. Firstly, two versions of ChOA with two different independent groups' strategies and seven chaotic maps, entitled ChOA(I) and ChOA(II), are presented to achieve the best possible result for data clustering purposes. Secondly, a novel combination of ChOA and GNDA algorithms with the OBL strategy is devised to solve the major shortcomings of the original algorithms. Lastly, the proposed ChOAGNDA method is a Selective Opposition (SO) algorithm based on ChOA and GNDA, which can be used to tackle large and complex real-world optimization problems, particularly data clustering applications. The results are evaluated against seven popular meta-heuristic optimization algorithms and eight recent state-of-the-art clustering techniques. Experimental results illustrate that the proposed work significantly outperforms other existing methods in terms of the achievement in minimizing the Sum of Intra-Cluster Distances (SICD), obtaining the lowest Error Rate (ER), accelerating the convergence speed, and finding the optimal cluster centers.Comment: 48 pages, 14 Tables, 12 Figure

    Lightning search algorithm: a comprehensive survey

    Full text link
    The lightning search algorithm (LSA) is a novel meta-heuristic optimization method, which is proposed in 2015 to solve constraint optimization problems. This paper presents a comprehensive survey of the applications, variants, and results of the so-called LSA. In LSA, the best-obtained solution is defined to improve the effectiveness of the fitness function through the optimization process by finding the minimum or maximum costs to solve a specific problem. Meta-heuristics have grown the focus of researches in the optimization domain, because of the foundation of decision-making and assessment in addressing various optimization problems. A review of LSA variants is displayed in this paper, such as the basic, binary, modification, hybridization, improved, and others. Moreover, the classes of the LSA’s applications include the benchmark functions, machine learning applications, network applications, engineering applications, and others. Finally, the results of the LSA is compared with other optimization algorithms published in the literature. Presenting a survey and reviewing the LSA applications is the chief aim of this survey paper

    Solving dynamic multi-objective problems with a new prediction-based optimization algorithm

    Get PDF
    Funding Information: This work is supported by the National Natural Science Foundation of China under Grants 62006103 and 61872168, in part by the Jiangsu national science research of high education under Grand 20KJB110021. The authors express sincerely appreciation to the anonymous reviewers for their helpful opinions.Peer reviewedPublisher PD

    The Application of PSO in Structural Damage Detection: An Analysis of the Previously Released Publications (2005–2020)

    Get PDF
    The structural health monitoring (SHM) approach plays a key role not only in structural engineering but also in other various engineering disciplines by evaluating the safety and performance monitoring of the structures. The structural damage detection methods could be regarded as the core of SHM strategies. That is because the early detection of the damages and measures to be taken to repair and replace the damaged members with healthy ones could lead to economic advantages and would prevent human disasters. The optimization-based methods are one of the most popular techniques for damage detection. Using these methods, an objective function is minimized by an optimization algorithm during an iterative procedure. The performance of optimization algorithms has a significant impact on the accuracy of damage identification methodology. Hence, a wide variety of algorithms are employed to address optimization-based damage detection problems. Among different algorithms, the particle swarm optimization (PSO) approach has been of the most popular ones. PSO was initially proposed by Kennedy and Eberhart in 1995, and different variants were developed to improve its performance. This work investigates the objectives, methodologies, and results obtained by over 50 studies (2005-2020) in the context of the structural damage detection using PSO and its variants. Then, several important open research questions are highlighted. The paper also provides insights on the frequently used methodologies based on PSO, the computational time, and the accuracy of the existing methodologies

    Novel analysis–forecast system based on multi-objective optimization for air quality index

    Full text link
    © 2018 Elsevier Ltd The air quality index (AQI) is an important indicator of air quality. Owing to the randomness and non-stationarity inherent in AQI, it is still a challenging task to establish a reasonable analysis–forecast system for AQI. Previous studies primarily focused on enhancing either forecasting accuracy or stability and failed to improve both aspects simultaneously, leading to unsatisfactory results. In this study, a novel analysis–forecast system is proposed that consists of complexity analysis, data preprocessing, and optimize–forecast modules and addresses the problems of air quality monitoring. The proposed system performs a complexity analysis of the original series based on sample entropy and data preprocessing using a novel feature selection model that integrates a decomposition technique and an optimization algorithm for removing noise and selecting the optimal input structure, and then forecasts hourly AQI series by utilizing a modified least squares support vector machine optimized by a multi-objective multi-verse optimization algorithm. Experiments based on datasets from eight major cities in China demonstrated that the proposed system can simultaneously obtain high accuracy and strong stability and is thus efficient and reliable for air quality monitoring

    Comparative Study On Cooperative Particle Swarm Optimization Decomposition Methods for Large-scale Optimization

    Get PDF
    The vast majority of real-world optimization problems can be put into the class of large-scale global optimization (LSOP). Over the past few years, an abundance of cooperative coevolutionary (CC) algorithms has been proposed to combat the challenges of LSOP’s. When CC algorithms attempt to address large scale problems, the effects of interconnected variables, known as variable dependencies, causes extreme performance degradation. Literature has extensively reviewed approaches to decomposing problems with variable dependencies connected during optimization, many times with a wide range of base optimizers used. In this thesis, we use the cooperative particle swarm optimization (CPSO) algorithm as the base optimizer and perform an extensive scalability study with a range of decomposition methods to determine ideal divide-and-conquer approaches when using a CPSO. Experimental results demonstrate that a variety of dynamic regrouping of variables, seen in the merging CPSO (MCPSO) and decomposition CPSO (DCPSO), as well varying total fitness evaluations per dimension, resulted in high-quality solutions when compared to six state-of-the-art decomposition approaches

    A Survey on Natural Inspired Computing (NIC): Algorithms and Challenges

    Get PDF
    Nature employs interactive images to incorporate end users2019; awareness and implication aptitude form inspirations into statistical/algorithmic information investigation procedures. Nature-inspired Computing (NIC) is an energetic research exploration field that has appliances in various areas, like as optimization, computational intelligence, evolutionary computation, multi-objective optimization, data mining, resource management, robotics, transportation and vehicle routing. The promising playing field of NIC focal point on managing substantial, assorted and self-motivated dimensions of information all the way through the incorporation of individual opinion by means of inspiration as well as communication methods in the study practices. In addition, it is the permutation of correlated study parts together with Bio-inspired computing, Artificial Intelligence and Machine learning that revolves efficient diagnostics interested in a competent pasture of study. This article intend at given that a summary of Nature-inspired Computing, its capacity and concepts and particulars the most significant scientific study algorithms in the field
    corecore