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Abstract

The vast majority of real-world optimization problems can be put into the

class of large-scale global optimization (LSOP). Over the past few years, an

abundance of cooperative coevolutionary (CC) algorithms has been proposed

to combat the challenges of LSOP’s. When CC algorithms attempt to ad-

dress large scale problems, the effects of interconnected variables, known as

variable dependencies, causes extreme performance degradation. Literature

has extensively reviewed approaches to decomposing problems with variable

dependencies connected during optimization, many times with a wide range

of base optimizers used. In this thesis, we use the cooperative particle swarm

optimization (CPSO) algorithm as the base optimizer and perform an exten-

sive scalability study with a range of decomposition methods to determine

ideal divide-and-conquer approaches when using a CPSO. Experimental re-

sults demonstrate that a variety of dynamic regrouping of variables, seen

in the merging CPSO (MCPSO) and decomposition CPSO (DCPSO), as

well varying total fitness evaluations per dimension, resulted in high-quality

solutions when compared to six state-of-the-art decomposition approaches.
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Chapter 1

Introduction

Large-scale global optimization (LSOP) problems, have been extensively re-

searched using meta-heuristics such as genetic algorithms (GA) [1], particle

swarm optimization (PSO) [2], Artificial Bee Colony Optimization (ABC)

[3], Ant Colony Optimization (ACO) [4], and differential evolution (DE) [5],

to name a few. LSOP’s can be found in a wide variety of problems such as

artificial neural network (ANN) training, universe exploring [6], and building

retrofitting [7]. LSOPs remain a popular field of study, due to the charac-

teristic of, the curse of dimensionality [8] and their increasing prevalence in

real-world issues. The curse of dimensionality, is the increase in difficulty

of finding an optimal solution, due to the added number of decision vari-

ables. As large scale problems increase in size, so too does the complexity.

One such complexity, known as variable dependencies, is the interconnected

decision variables, known as non-separable, separable or partially separable.
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Chapter 1 – Introduction

Non-separable problems are those in which all variables are inter-connected

and require optimization concurrently. Separable problems are problems

with fully unlinked variables and can be optimized individually. Finally,

partially separable problems combine separable and non-separable variables

that compose the optimization problem. Variable dependencies have less im-

pact to the performance of meta-heuristic algorithms, due to the variables

being optimized together in a group which address the variable dependen-

cies automatically. However, this technique suffers greatly from the curse of

dimensionality.

Cooperative coevolution (CC) [9], a divide-and-conquer approach to ad-

dress LSOPs, proves to be an invaluable technique on problem sets with

mainly separable variables [10]. This CC approach, first synthesised in a

GA, decomposes the decision variables into sub-sections, thus minimizing

the curse of dimensionality. This CC approach inspired the development of

other CC based meta-heuristics, including cooperative particle swarm opti-

mization (CPSO) [11], Ant Colony Optimization, DE, firefly, etc [12]. Despite

the growing interest in cooperative approaches, extensive consideration for

variable dependencies has not been fully evaluated in CPSO. This technique,

however, is valuable, as it minimizes curse of dimensionality while addressing

variable dependencies.

Although various decomposition approaches exist in the literature [13,

14, 15, 16, 11], their suitability has not been fully evaluated for various

meta-heuristic algorithms. A decomposition approach should be optimizer
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Chapter 1 – Introduction

independent for wider applicability. However, most of the recent compet-

itive decomposition approaches have been synthesized within the context

of self-adaptive differential evolution with neighborhood search algorithm

(SaNSDE) [17, 18, 19], due to its noticeable performance advancements over

non-differential evolution-based cooperative coevolutinary meta-heuristics.

Thus, to the author’s knowledge, there is lack of comprehensive comparison

of the suitability of a given decomposition approach across various meta-

heuristic optimizers. To narrow this gap, this thesis provides a comparative

study of various decomposition approaches within a PSO optimizer. This

thesis aims to address this by extending on our previous research of Douglas

et al. where two new decomposition approaches were proposed [20].

In this thesis, using a Cooperative PSO as the base optimizer, we com-

pare various decomposition approaches originally proposed for different meta-

heuristic algorithms found in the literature. The decomposition approaches

include differential grouping [15], dynamic [2, 20], self-learning [14], variable

clustering [13] and static [21]. The decomposition approaches analyzed are

all state-of-the-art techniques, which have been demonstrated as the best

performers within their respective meta-heuristic optimizer in the literature.

Additionally to the best of the author’s knowledge, this is the first study

providing a scalability across a wide range of dimensions.

As large scale optimization problems scale to larger dimensions, so does

the number of variable dependencies. A variety of decomposition and non-

decomposition approaches have been implemented to combat the increas-
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Chapter 1 – Introduction

ing number of variable dependencies. Unlike decomposition methods, which

break problems down into small sub-sets, non-decomposition approaches of-

ten focus on operators, hybridization, and parallel operations to address such

problems [22]. Some of the common non-decomposition approaches are vari-

ants of, PSO, GA, ACO, and firefly algorithm variants (FFA), to name a

few.

As mentioned above, decomposition methods utilize the divide-and-conquer

approach, breaking the original problem into many small sub-problems to be

optimized irrespective of the others. Static grouping based methods, orig-

inally seen in the context of cooperative GA [9] and CPSO [11], maintain

sub-groups throughout the optimization. This methodology in CPSO was

known as CPSO-S and CPSO-Hk [11]. Each of these algorithms statically

divides the n-dimensional problem into k sub-problems. The CPSO-S algo-

rithm divides the problem into 1-dimensional problems, each solved by vary-

ing swarms. The CPSO-Hk algorithm alternates between the meta-heuristic

algorithm PSO and the CPSO-S algorithm, to account for variable dependen-

cies. Early work from Liu et al. began the cooperative co-evolutionary trend,

when results showed impressive results using this framework [23]. Coopera-

tive DE (CCDE) was then proposed and showed increased performance over

other non-decomposition based approaches [12]. Building off this success,

a cooperative ABC algorithm was proposed [24], followed by a cooperative

Firefly algorithm [25]. All algorithms showed exceptional performance when

compared to other decomposition and non-decomposition based approaches.
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Chapter 1 – Introduction

These early approaches all lacked a dynamic component, which would give

the algorithm the ability to link inter-connected variables together through-

out the optimization. The CCPSO algorithm was the first cooperative PSO

to implement such an approach, inspired by the CPSO-Sk [11]. The CCPSO

alters the decision variables randomly throughout the run [26]. Following the

random regrouping approach, the merging CPSO (MCPSO) and decompo-

sition CPSO (DCPSO) approaches were proposed, both algorithms decom-

posed the variables over some fixed number of iterations into sub-swarms half

the size each split, or twice the size for DCPSO and MCPSO, respectively

[2]. The DCPSO begins as a single n-dimensional PSO and is split into sub-

swarms half the size ending in n single dimension sub-swarms; the MCPSO

is the opposite. Following the success of the random grouping approach, the

random adaptive grouping algorithm was proposed [21], where the problem

is decomposed into m s-dimensional sub-components, where m · s = n and

m and s are fixed throughout the run. Rather than changing the decompo-

sition sub-group sizes, the RAG algorithm selects the worst-performing m/2

sub-groups, and randomly shuffles them in hopes of finding linked variables.

Based on the early decomposition approaches, the recursive differential

grouping (RDG) algorithm was proposed [15]. This algorithm focused ex-

clusively on finding linked variables before optimization, resulting in fewer

fitness evaluations, but benefiting from fixed size optimal sub-groups. Other

decomposition approaches such as the affinity propagation evolutionary con-

sistency (APEC) algorithm were proposed in hopes of combating the dis-
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Chapter 1 – Introduction

advantages of the RDG algorithm. Unlike the RDG algorithm, APEC func-

tioned by finding variable dependencies throughout optimization without the

use of fitness evaluations by calculating the probability variables are inter-

connected using optimization data [13]. Recent literature has focused on

self-learning components, where more optimization evaluations are spent on

variable groups that contribute greater to the overall fitness. One such al-

gorithm is the circular sliding controller algorithm, where fitness evaluations

increase when the window is over optimal sub-groups [14].

1.1 Contributions

This thesis addresses several issues that contribute to the literature on large

scale optimization problems. The first is to determine which decomposition

approaches are most suitable for the CPSO paradigm. This thesis completes

a comprehensive empirical study through assessing various decomposition

methods, not currently reviewed with a CPSO optimizer. Secondly, this

thesis performs an extensive scalability study for a range of problem dimen-

sions. Finally, this thesis further evaluated the performance of two previ-

ously proposed decomposition approaches [2], with state-of-the-art modern

approaches implemented in a CPSO context. Comparison with decomposi-

tion approaches for other meta-heuristics is outside the scope of this thesis.

The rest of this thesis is as follows. Chapter 2 provides the necessary

background and related work. The empirical process is discussed in Chapter

13
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3. The results and experimental analysis are discussed in Chapter 4 and the

concluding remarks and future works are provided in Chapter 5.
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Chapter 2

Background

This chapter outlines the necessary background information about the exist-

ing problem decomposition variants. The vanilla PSO is reviewed in Section

2.1, followed by the CPSO methodology and inspired decomposition meth-

ods.

2.1 Particle Swarm Optimization

PSO use particles’ neighbourhood best and personal best positions to calcu-

late velocity [27]. The neighbourhood best, often refers to the entire swarm,

also known as global best. The next position is then calculated using the

following:

• Momentum: A fraction of the previous step size in the previous direc-

tion
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Chapter 2 – Background

• Cognition: Calculated stochastically based on the difference between

the current position and the personal best position

• Social: Calculated stochastically based on the difference between the

current position and the neighbourhood best positions.

Working with a swarm, a PSO aims to find optimal points in the land-

scape, usually referring to minima or maxima. PSO algorithms can be used

in a wide range of problems, including, LSGO, vehicle routing problems,

ANN training, or other continuous or discrete problems. [27].

Vanilla PSO

The PSO algorithm refers to the algorithm created in 1998 by Shi and Eber-

hart [28]. This PSO begins by randomly initializing the particle positions

within feasible search space associated with the problem. The particle po-

sitions are updated with the use of four pieces of information: the current

position, the previous velocity, the particle’s best position, and the global

best position.

The positions are then updated using the velocity determined in

~vi(t+ 1) = w~vi(t) + c1
−→r1 (t) · ( ~pbest − ~xi(t)) + c2

−→r2 (t) · ( ~gbest(t)− ~xi(t)) (2.1)

where ~xi refers to the particles current position, ~vi the particles velocity,

~pbest the particles personal best position and ~gbest is the swarms global best

position. The w refers to the inertia value. This refers to the momentum

16



Chapter 2 – Background

which moves the particles in the direction of the previous search space. The

constant c1 and c2 are the cognitive and social acceleration coefficients respec-

tively. The cognitive value, is used to determine how much the new position

moves towards the particles best position ( ~gbest). The social acceleration co-

efficient is used to determine how much the particle moves towards the best

position found by the entire swarm as from the first iteration. ~r1 and ~r2 are

vectors of random numbers, where each random value is a sampled from a

uniform distribution over the range [0,1]. This is then added to the current

position as shown in

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1) (2.2)

The Vanilla PSO algorithm is shown in algorithm 1. Where P refers to the

particle, yi refers to the local best, xi refers to the particle position and ŷ

refers to the global best. These values are all matrix values of size equal to

the total dimensionality of the problem being solved.

17



Chapter 2 – Background

Algorithm 1 Vanilla PSO

Init: n-dimensional PSO, P
while Stopping condition not true do

for each particle i = 1,..., P.s do
if f(P · xi) < f(P · yi) then

P · yi = P · xi // Update Local Best
if f(P · xi) < f(P · ŷ) then

f(P · ŷ) = P · yi // Update Global Best
end
for Each particle i = 1, ..., P.s do

Update velocity using Equation 2.1

Update position using Equation 2.2
end

end

2.2 Cooperative PSO

The cooperative PSO (CPSO) algorithm decomposes the problem into smaller

sub-sections, to minimize the curse of dimensionality [26]. The CPSO-S al-

gorithm divides the problem into n single-dimension problems, optimizing

each dimension with its own swarm from the original vanilla PSO algorithm.

The CPSO-Sk algorithm, divides the problem into k/n subswarms.

This technique brings into consideration the method to ensure the prob-

lem is optimized as its original size, that is, an n-dimensional problem, and

it must be optimized as such. This resulted in the creation of the context

vector, where the individual variables are substituted throughout optimiza-

tion. The context vector function is known as b(j, z), where the function

takes in variables j and z, variable j is then replaced with variable z and the

18
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resulting fitness is returned. This technique allows for each variable to be

tested, while continuing to optimize as a full size problem. Figure 2.1, shows

a context vector, where d1, d2...d10 is the original size of the problem and

the variable being optimized, z, is substituted for the corresponding variable

in the context vector. Once the variable is substituted, the context vector

now holds a complete solution and the fitness can be generated, we can then

determine if this variable change improved or hindered the fitness value.

Figure 2.1: Diagram of Context Vector

With the context vector enforced, the CPSO algorithm can now optimize

freely as a single dimensional vanilla PSO for each decision variable in the set.

This is shown in Algorithm 2. Where n refers to the number of sub-swarms

to be solved, j refers to the sub-swarm in scope the fitness value is calculated

through function b(j, z) discussed above. Figure 2.1 shows a visualization of

the sub-swarms each optimizing one dimension of the context vector.
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Algorithm 2 CPSO-S

Init: n one-dimensional PSOs, Pj, j = 1,...,n
for each sub-swarm j = 1,...,n do

for each particle i = 1,..., P.s do
if b(Pj.xi, y) < f(Pj.yi) then

Pj.yi = Pj.xi // Update Local Best of j subswarm
if b(Pj.xi, ŷ) < f(Pj · ŷ) then

f(Pj · ŷ) = Pj.yi // Update Global Best to context vector
end
for Each particle i = 1, ..., P.s do

Update velocity using Equation 2.1

Update position using Equation 2.2
end

end

20



Chapter 2 – Background

Figure 2.2: Diagram of CPSO-S algorithm and its mechanics
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2.2.1 Decomposition and Merging Cooperative Parti-

cle Swarm Optimization

The decomposition cooperative particle swarm optimization (DCPSO) and

the merging cooperative particle swarm optimization (MCPSO) are discussed

in section 2.2.1.

DCPSO

The DCPSO algorithm utilizes the exploration and exploitation benefits of

a vanilla PSO and CPSO algorithm by beginning optimization as one n-

dimensional PSO swarm that splits at a fixed rate over the total number of

iterations until ending optimization as a CPSO algorithm optimizing an indi-

vidual decision variable per swarm [2]. The fixed frequency of decomposition

is given by

nf =
nT

1 +
(

log(n)
log(nr)

) (2.3)

where nT is the total number of iterations, nf is the number of iterations

between decomposition steps, n is the total number of dimensions, and nr is

the number of resulting sub-swarms from each split. In this thesis nr is 2.

During each phase of the decomposition, the decision variables are shuffled

to ensure a variety of variable interactions being considered. Algorithm 3

shows the pseudo-code for the DCPSO algorithm.
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Algorithm 3 DCPSO

Init: n-dimensional PSO, P
while Stopping condition not true do

if Decomposition condition is true then
decompose each Pj into nr sub-swarms // Decomposes problem
into nr size sets

for each sub-swarm j = 1,...,k do
for each particle i = 1,..., P.s do

if b(Pj.xi, y) < f(Pj.yi) then

Pj.yi = Pj.xi // Update Local Best of j subswarm
if b(Pj.xi, ŷ) < f(Pj · ŷ) then

f(Pj · ŷ) = Pj.yi // Update Global Best to context vector
end
for Each particle i = 1, ..., P.s do

Update velocity using Equation 2.1

Update position using Equation 2.2
end

end

end

MCPSO

The MCPSO algorithm utilizes exploration and exploitation by benefiting

from a CPSO being merged into a vanilla PSO. This algorithm works in re-

verse order to the DCPSO by spending its beginning iterations as a CPSO-S

and finalizing its run as a vanilla PSO [2]. The inner decomposition steps

(CPSO-Sk), are a size of the original sub-swarm multiplied by two, and ran-

domly shuffled each merging step. The MCPSO algorithm utilizes Equation

2.3, in this case, nf is the number of iteration between merging steps, nr is

the number of sub-swarms merged together from each joining, also a static
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value of two. The merging will take place when nf iterations have hap-

pened between each merging. Algorithm 4 shows the pseudo-code for the

MCPSO algorithm. Figure 2.3 clearly shows the structure of the DCPSO

and MCPSO.

Algorithm 4 MCPSO

Init: n one-dimensional PSOs, Pj, j = 1, ..., n
while Stopping condition not true do

if Merging condition true then
merge each nr sub-swarms // merges problem into nr size sets

for each sub-swarm j = 1,...,k do
for each particle i = 1,..., P.s do

if b(Pj.xi, y) < f(Pj.yi) then

Pj.yi = Pj.xi // Update Local Best of j subswarm
if f(Pj.xi, ŷ) < f(Pj · ŷ) then

f(Pj · ŷ) = Pj.yi // Update Global Best to context vector
end
for Each particle i = 1, ..., P.s do

Update velocity using Equation 2.1

Update position using Equation 2.2
end

end

end
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Figure 2.3: Decompose and merging mechanics
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2.2.2 Recursive Differential Grouping

The recursive differential grouping (RDG) decomposition strategy is the only

static decomposition method implemented in this paper. The RDG method

utilizes directional derivatives to determine variable dependencies prior to the

execution of the evolutionary algorithm (EA). Directional derivatives use the

formula below to determine the amount of change the other variables notice.

This is known as perturbing as shown in Equation 2.4:

Duf(x) =
n∑

i=1

∂f(x)

∂xi
ui

(2.4)

If the fitness change by perturbing decision variable xi varies for different

values of xj, xi and xj interact [15]. Perturbing is the act of slightly altering

a single decision variable to examine its effects on other variables and how

they react to the change.

RDG uses Equation 2.4 to perturb the decision variables X1 of xl,l and

xu,l, where X1 is a subset of decision variables and xl/u,l is a single decision

variable where l and u refers to the lower bound and upper bound respec-

tively. The same then happens for subset X2, for variable xl,m and xu,m which

are the variables of a different subset to compare for interactions, where m

is the middle between the lower bound and upper bound. The fitness differ-
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ence between xl,l and xu,l, known as (δ1) and the fitness difference between

xl,m and xu,m is (δ2). Both values refer to the fitness difference between the

lower and upper bound after perturbing the decision variables. If the fitness

difference between (δ1) and (δ2) is greater than a threshold, ε, then some in-

teraction exists between the subsets X1 and X2. The magnitude, ε is shown

in Equation 2.5.

ε = α ·min {|f (x1)| , · · · , |f (xk)|}

(2.5)

Where, x1, ...., xk are k randomly generated candidate solutions, and α is

the control coefficient [15].

The RDG method determines interactions by using a recursive method

to traverse all the variables, resulting in some number of fitness evaluations

being utilized prior to the execution of the EA. This algorithm is completed

as follows:

1. Determine the interaction between the first decision variable x1 and all

remaining decision variables using equation 2.4

2. If the interaction is not found, x1 is placed in its own grouping and the

algorithm moves to x2 and repeats the interaction tests.
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3. If any interactions are noticed, the remaining decision variables are

divided into two equally-sized groups G1 and G2.

4. Interactions are then x1 and G1, and x1 and G2 will be identified

recursively until all variables that interact are placed into subset X1.

5. X1 is then compared to all other decision variables (not including deci-

sion variables in X1) to identify any individual variables that interact

with x1.

6. These variable interactions will now be placed in a group that is non-

separable.

7. The RDG method next moves to the next decision variable not already

grouped and repeats the process.

8. The algorithm then outputs groups of separable and non-separable de-

cision variables

.

This procedure is shown in algorithm 5 and the interaction method is

shown in algorithm 6.
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Algorithm 5 RDG

Init: seps and nonseps as empty groups
Set all decision variables to the lower bounds: xl,l = lb
Calculate fitness: yl,l = f(Xl,l)
Assign the first variable x1 to the variable subset X1

Assign the rest of variables to the variable subset X2

while X2 is not empty do
[X∗1 ] = INTERACT(X1, X2, xl,l, yl,l, ε)
if [X∗1 ] is the same with X1 then

if X1 contains one decision variable then
Add X1 to seps

else
Add X1 to nonseps

Empty X1 and [X∗1 ]
Assign the first variable of X2 to X1 Delete the first variable in X2

else
X1 = [X∗1 ]
Delete the variables of X1 from X2

end

Algorithm 6 INTERACT function

xu,l = xl,l; xu,l (X1) = ub (X1)
Calculate the fitness change: δ1 = yl,l − f (xu,l)
xl,m = xl,l; xl,m (X2) = (lb (X2) + ub (X2)) /2
xu,m = xu,l; xu,m (X2) = (lb (X2) + ub (X2)) /2
Calculate the fitness change: δ2 = f (xl,m)− f (xu,m)

if |δ1 − δ2| > ε then
if X2 contains one variable then

X1 = X1 ∪X2

else
Divide X2 into equally-sized groups G1, G2

[X1
1 ] = INTERACT (X1, G1,xl,l, yl,l, ε)

[X2
1 ] = INTERACT (X1, G2,xl,l, yl,l, ε)

[X1] = X1
1 ∪X2

1

return X1
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2.2.3 Circular Sliding Controller

Circular sliding controller (CSC) algorithm utilizes a variety of decomposi-

tion techniques to address LSGO problems [14]. The CSC algorithm uses

a window which slides circularly around the context vector, changing the

sub-swarm size, also known as the window size, each full completion of the

context vector. The context vector in this case is used as the circular struc-

ture as shown in figure 2.4. The sliding step is how large the step size is for

each optimization step. It is decided dynamically by determining whether

the window centers on an active, inactive or regular region. The activity of

each sub-region is calculated as follows

ris =
ni
s

ni
s + ni

f

(2.6)

where ni
s equals the number of successes in optimizing that sub-regions and

ni
f is the number of fails, that is the optimization in that iteration was un-

successful at finding a new optimum. These values are then used to calculate

the activity of these regions, where the top 30 percent most active areas are

marked as active, the bottom 30 percent as inactive and the rest are regular.

These active regions then indicate that more time should be spent in these

areas as they tend to find more optimums than their inactive counterparts.

The sliding step size is then calculated by max{1,m/5} for active re-

gions, max{1,2m/5} for regular regions and max{1,3m/5} for inactive re-

gions, where m is the window size. The window size is statically selected
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prior to the optimization as W = {w1, w2..., wt}, these values are selected as

parameters for the run. The values, however, are selected based on roulette

strategy, allowing the most optimal window sizes to be selected a higher

amount of iterations. Roulette strategy selects the more ideal window size

a greater number of times, while less ideal will be selected less [14]. The

window sizes, use a window fitness:

riw =
|v − v′|
|v|

(2.7)

where riw is the window fitness, v is the best fitness of the previous cycle, v′

is the best fitness value of the current cycle. The Roulette strategy:

piw =
10riw∑t
j=1 10riw

(2.8)

where the fitness of the current window, divided by the sum of all fitness

values determines the probability of window selection, thus favoring more

ideal window sizes.

The CSC framework can be summarized as follows:

1. Begin a new cycle, where i is the first location on the circular structure

2. Randomly select a window size from the window pool.

3. Optimize the variables in the current window and record the number

of success ns and failing nf .

4. Identify the activity of the sub-regions.
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Figure 2.4: CSC algorithm mechanics

5. Update context vector.

6. If window is not back at the beginning, i = i + s, and go back to step

3.

7. Record the best optimization results of the current cycle, Terminate

algorithms stop condition if satisfied.

8. Re-calculate selection probability for the selected size of the window.

9. Randomly permute the order of decision variables in inactive regions

and go to step 1 for a new cycle.
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2.2.4 Affinity Propagation Evolution Consistency-Based

Decomposition

Affinity propagation evolution consistency (APEC) based decomposition is

an adaptive decomposition approach that group’s variables without the use

of additional fitness evaluations by examining the interaction probability of

each variable paring. The APEC algorithm uses the fitness evaluations within

the cooperative co-evolutionary algorithm to determine relationships dynam-

ically through the process of the optimization.

APEC algorithm begins with the evolution consistency between variables,

that is, the amount the variables interact throughout evolution as shown in

Equation 2.9.

Ik,mi =


1 xki > xmi

0 xki = xmi k,m ∈ [1, T ]

−1 xki < xmi

Ik,mj =


1 xkj > xmj

0 xki = xmj k,m ∈ [1, T ]

−1 xkj < xmj
(2.9)

where Ik,mi is the evolution direction of the ith variable between the kth and

mth generation, and Ik,mj represents the jth variable [13]. Ik,mi = 1 indicates

that the value of the variable becomes smaller from the kth generation to

the mth generation, Ik,mi = -1 indicates the value of the variable becomes

larger from the kth to mth generation, and Ik,mi = 0 signifies the value of

this variable remains unchanged from the kth to mth generations. Given

this information, we can calculate the evolution consistency between these
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two variables by adding them into matrix ECi,j, where this represents the

relationship between two variables. This process can be shown in Equation

2.10:

ECi,j =
1

T (T − 1)

∑
k∈[1,T ],m∈[1,T ]k 6=m

Ik,mi Ik,mj (2.10)

where T represents the number of iterations between evolutionary steps.

This information is then processed through an Affinity Propagation Clus-

tering Algorithm (AP) [29] which processes the groups and clusters them

based on the relationships they contain. These groups are then optimized

by the cooperative evolutionary algorithm. AP is discussed in section 2.2.4.

This is shown in algorithm 7. Where X refers to the historical evolution data

of size T ·D, with T and D being the steps and total dimensions respectively.

Algorithm 7 APEC

Init: The collected historical evolutionary data X with T ·D
for i = 1 : D - 1 do

Compute the indicator Ii according to Equation 2.9
for j = i + 1 : D do

Compute the indicator Ij according to Equation ??
Compute the evolution consistency ECi,j according to Equation 2.10
ECj,i = ECi,j

end

end
Obtain the median vector p of |EC| in row

Cluster variables using the AP algorithm with |EC| as the similarity matrix
and p as the preference vector

Obtain the variable groups G according to the clustering results
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Affinity Propagation (AP) Clustering Algorithm

As previously mentioned, ECi,j represents the relationship between each vari-

able i and j. This matrix is then able to be clustered into groups based on

relationships with other variables using the AP clustering algorithm [29].

This clustering algorithm can use any clustering algorithm of choice. AP

was chosen here as it has shown to have good results as well as adaptively

determines the number of clusters [29].

The AP clustering algorithm begins by taking the similarities S between

data points as input. Each entry s(i, j) is a subset of S and it indicates

the similarity amount between the jth and ith input. There are two kinds

of information that are exchanged between data points: responsibility and

availability, where r(i, k) is the responsibility and a(i, k) is the availability

matrix. The responsibility matrix is the similarity of point i and point k. The

availability matrix is the points suitability of becoming a clustering center,

known as exemplar.

Initially, each entry a(i, k) in A is set to zero. Then, each entry r(i, k) is

updated as shown in Equation 2.11

r(i, k) = s(i, k)− max
k′s.t.k′ 6=k

{a (i, k′) + s (i, k′)} (2.11)

where a(i, k) is then set to Equation 2.12.
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a(i, k) = min

0, r(k, k) +
∑

i′s.t.i′ /∈{i,k}

max {0, r (i′, k)}

 (2.12)

The diagonal values a(k, k) are updated differently, and are shown in

Equation 2.13:

a(k, k) =
∑

i′s,t.i′ 6=k

max {0, r (i′, k)} (2.13)

After the calculations above are completed, those with r(i, i)+a(i, i) > 0 are

chosen as the exemplars, which are the cluster groups.

2.2.5 Random Adaptive Grouping

The Random Adaptive Grouping (RAG) decomposition method is a random

and adaptive grouping strategy with fixed sub-swarm size throughout the

optimization process [16]. The RAG algorithm works as follows. The n-

dimensional problem vector is divided prior to execution intom s-dimensional

sub-components, where m is the amount of sub-swarms and s is the size of

each sub-swarm. These original groups are randomly assigned as current

information on variable dependencies is unknown. The CPSO algorithm is

then performed over a number of fitness evaluations, known as T . During the

optimization of T fitness evaluations, the difference in fitness evaluation in

each sub-component ∆fi. This value will be used to determine the bottom
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m/2 sub-components with the worst performance (smallest ∆fi) over the

length of T fitness evaluations. The smallest ∆fi sub-components will then

be randomly reassigned variables from the other similarly poor-performing

sub-components. The ∆fi value is then reset back to 0, and the optimization

process is redone for T iterations with the newly arranged decision variables.

This process is completed until the total fitness evaluations are used up,

continuously arranging the poorest performing sub-components. This process

is shown in pseudo-code in algorithm 8.

Algorithm 8 RAG

Init: FEVGlobal, T, FEVLocal = 0
An n-dimensional problem vector is randomly divided into m s-dimensional
sub-components
Randomly mix indices of variables
i = 1
Evolve i sub-component with CPSO algorithm, record CBS and PBS
∆fi = |PBS − CBS|
if i < m then

Continue to optimize variable groupings with CPSO
if FEVLocal < T then

Re-initialize i = 1 and optimize this sub-component with CPSO

Choose m/2 sub-components with the worst performance (m/2 smallest ∆fi)
and randomly mix sub components
Init: T, FEVLocal,∆fi = 0

if FEV < MaxEvals then
Optimize new groupings with CPSO and repeat algorithm

else
Return best solution

37



Chapter 2 – Background

2.3 Previous Work

Previous work in the field of decomposition is increasing as problem search

spaces become increasingly large and evolutionary algorithms struggle to find

optimal solutions without decomposing the problem. Most previous work is

completed on algorithms such as genetic algorithms, Differential Evolution

(DE), and Self-Adaptive DE [30] due to there noticeable advantages and ease

of implementation.

Cooperative co-evolution originated with use in the GA meta-heuristic [9],

where the researches discovered the benefits of the divide-and-conquer ap-

proach when solving LSGO problems. This research was quickly expanded

into various other meta-heuristics, including ACO [4], PSO [26], FF [25],

DE [12] and ABC [24], all of which showed promising results across various

benchmark problems in contrast to their non-decomposition based counter-

parts.

The CPSO approach was one of the earlier techniques, proposed shortly

after the cooperative GA. This paper expanded on a few variants of cooper-

ative co-evolution. The CPSO-SK and CPSO-HK technique, the CPSO-SK

technique looked into changing the sub-grouping sizes using the variable k,

with this the CPSO would hopefully mitigate the effects variable dependen-

cies cause in fully separating the variables in a traditional CPSO approach.

The CPSO-HK attempted to build on this further, by decomposition the

problem into k subsets, however with the addition of alternating between
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this CPSO-Sk and a PSO algorithm, this built a foundation for the need for

connecting inter-connected variables and was shown in the literature to have

benefits across many problems.

Shortly after the cooperative co-evolutionary foundation was built, liter-

ature quickly proposed a variety of techniques aimed to mitigate the effects

of variable dependencies [14, 13, 15, 16, 21, 2]. Majority of these techniques

are proposed on the DE meta-heuristic as the technique to evaluate the per-

formance of the decomposition approach.

The range of approaches to solving the issue of variable dependencies has

been broken into a variety of techniques since the inception of the original

cooperative co-evolutionary technique. Many of the techniques are adaptive

in nature, meaning they change the variable grouping sizes and variables dy-

namically as the base optimizer is running [2, 13, 14], while others perform

static grouping where the grouping sizes stay unchanged through optimiza-

tion [15, 21, 16]. Of these techniques, benefits and drawbacks to both can be

noted. Primarily, with the dynamic approach, variables and grouping sizes

are constantly changing, thus being more likely to find optimal sub-groups.

This however, is unnecessary if variable groupings are optimally chosen prior

to the run. Choosing variable groupings prior to optimization, as used in the

RDG approach, causes a number of fitness evaluations to be taken prior to

optimization, hence resulting in less fitness evaluations for the meta-heuristic

to find ideal solutions.

Research on decomposition approaches implemented on the CPSO base
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optimizer is much more scarce, with few researchers choosing to display re-

sults with this meta-heuristic algorithm. Research on cooperative PSO de-

composition is shown in detail in Douglas et. al. [20]. Where the researchers

compared various cooperative PSO decomposition techniques against the

proposed decomposition approaches from the paper, known as DCPSO and

MCPSO. Their paper showed promising results for CPSO decomposition and

revealed that decomposing the problem size dynamically increased the per-

formance against traditional CPSO methodology and techniques as well as

gave valuable insight into decomposition based on the PSO meta-heuristic.
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Experimental Setup

Each test was run 30 times, and an average of all global best fitness values

was taken. Section 3.1 examines the PSO parameters used across all tests,

section 3.2 discusses the parameters used over the different decomposition ap-

proaches, section 3.3 determines the benchmark functions compared against

and Section 3.4 refers to the statistical analysis completed in this thesis.

3.1 PSO Parameters

The PSO parameters were chosen based on values that tend to converge well

[31], these values were later compared by Harrison et al, and shown to have

reasonably good results [32]. These values are static throughout all tests for

equal comparison. These values are shown below in Table 3.1.

The velocity begins at zero, the starting random values are initialized
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Parameter Value
Particles Per Swarm 20

w 0.7298
c1 1.49618
c2 1.49618

Fitness Evaluations 3000*d

Table 3.1: PSO parameters

within the bounds of each benchmark problem. Velocity clamping is set to

δ = 0.1.

3.2 Decomposition Parameters

Subsection 3.2.1 determines the DCPSO parameters, 3.2.2 refers to the MCPSO

parameters, 3.2.3 looks at the RDG parameters, 3.2.4 discusses the CSC pa-

rameters, 3.2.5 determines the APEC parameters and 3.2.6 determines the

RAG parameters. All algorithms use the same set of PSO parameters from

table 3.1.

3.2.1 Decomposition Cooperative PSO

The number of resulting sub-swarms from each split, nr is two. Swarms are

decomposed every nf iterations as shown in Equation 2.3.
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3.2.2 Merging Cooperative PSO

The number of resulting sub-swarms from each split, nr is two. Swarms are

decomposed every nf iterations as shown in Equation 2.3.

3.2.3 Recursive Differential Grouping

The RDG algorithm uses the control coefficient α = 10−12 and k = log2(n)

as the static parameters throughout all benchmark functions.

3.2.4 Circular Sliding Controller

The parameter set used within this algorithm is chosen asW = {1, 5, 10, 20, 50, 100}

for problem dimension of 1000. These values are scaled down to the following

for W = {d0.001∗ne, d0.005∗ne, d0.01∗ne, d0.001∗ne, (0.02∗n), d0.05∗ne}.

The values were scaled up in equal proportion for the test of 2000 dimensions.

3.2.5 Evolution Consistency Based Decomposition

The APEC algorithm utilized a variable T = 50 as shown in the literature

[13]. This variable has been shown to not vary results significantly from

tested values between T = 10 to T = 60.

3.2.6 Random Adaptive Grouping

The RAG algorithm is completed with a T value set to 0.1 of the total fitness

evaluations, resulting in 10 variable reassignments. The sub-swarm size was
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statically set to 10 throughout all tests completed. These parameters were

chosen as they are shown to achieve optimal results over most situations as

shown in Sopov et al. [21].

3.3 Benchmark Functions

The benchmark functions tested are from the CEC’2010 Special Session and

Competition on Large-Scale Global Optimization [33]. These functions uti-

lize a range of separable, partial separable, and fully non-separable functions.

This benchmark also has a variety of multi-modal and uni-modal functions

allowing for a range of functions to test. The CEC’2010 benchmark suite is

composed of the following benchmark functions:

1. Three separable functions

2. Five single-group m non-separable functions

3. Five D
2m

-group m non-separable functions

4. Five D
m

-group m non-separable functions

5. Two non-separable functions

Separable functions refer to problems where no variables are inter-connected.

Single-group m non-separable functions are those which have a single group of

size, m, with inter-connected variables and the rest are separable. D
2m

-group

m non-separable functions are those which have the total dimensionality of
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the problem, divided by 2m groups. For example, in a problem with 1000

dimensions (D), and m of 50, these group sizes would be 1000/100, that is,

10 groups of size m, non-separable variables, the rest (50 variables) are sep-

arable. D
m

-group m non-separable functions are total dimensions divided by

the value m group, so in the example above this would be 20 groups, each of

size 5. Finally, Non-separable functions are those in which all variables are

inter-connected.

3.4 Statistical Analysis

The algorithms were run for 30 independent runs for each of the benchmark

problems outlined in Section 3.3. A Friedman test was then used to de-

termine if distributions between any pair of the algorithms were considered

significantly different with a confidence interval of 95 percent. After com-

pletion of this test, if a significant difference was found the algorithms were

tested with a Mann Whitney test utilizing the Holm-Bonferroni statistical

test [34] to mitigate the family-wise error rate (FWER). The highest number

of winning algorithms for each tested criterion was recorded, that is, overall

best fitness and consistency of the fitness values was ranked based on these

criteria.
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3.4.1 Friedman Test

The Friedman test is used to determine if a significant difference exists be-

tween any of the two algorithms [35]. The Friedman test functions by ranking

row-wise per problem, for example, each problem instance i ∈ [1, . . . , n], each

algorithm j ∈ [1, .., k] is ranked from 1 to k. Ties are then broken by us-

ing average ranks to derive the p-value. The Friedman test has no way of

showing where significance exists between two of the algorithms and is uti-

lized to determine if any two pairs show significant difference which will then

be tested with a suitable post-hoc test to obtain the p-value for each pair-

wise comparison, the Mann-Whitney U test was utilized in this thesis as the

post-hoc comparison.

3.4.2 Holm-Bonferroni Family Wise Error Rates (FWER)

The Holm-Bonferroni FWER ranking is a technique used to deal with testing

multiple algorithms against each other [34]. Without this technique, the Type

1 error change becomes increasingly high as more algorithms are tested. This

error can be shown as

1− (1− α)(k−1) (3.1)

where k is the number of algorithms. With k = 6 and α = 0.05, which is

the case in this thesis, the probability of a false discovery would increase to

approximately 0.23 which is unacceptably high. The Holm-Bonferroni test

reduces this change of a type 1 error. This algorithm uses the following
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formula:

α/(n− rank +1) (3.2)

The p-values are then ranked in order from lowest to highest and updated

based on Equation 3.2 to decrease the chances of receiving a type 1 error.
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Results

This chapter discusses the results for different dimensions, which provides

the scalability study.

4.1 30 Dimensions

4.1.1 Accuracy

The algorithms performance is ranked in Table 4.1 and Table 4.2 for accuracy

and consistency respectively. These results are based on the 30-dimensional

problem set which is the smallest problem size tested. For separable prob-

lems, the CSC algorithm is the winner with the MCPSO algorithm being close

behind. In the partially separable problem sets the RDG algorithms perfor-

mance increases significantly over the higher dimensional problems with this

algorithm being the winner in D/2m and D/m non-separable problems. For
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Table 4.1: 30 dimension statistical tests. W/T/L refers to the total Wins,
Ties and Losses respectively
Algorithm Sep S-Non D/2m-Non D/m - Non Non

W/T/L W/T/L W/T/L W/T/L W/T/L
Rank Rank Rank Rank Rank

DCPSO
8, 1, 6 16, 5, 4 12, 5, 8 10, 2, 13 7, 0, 3

3 2 2 4 2

MCPSO
12, 0, 3 19, 5, 1 11, 9, 5 12, 4, 9 6, 2, 2

2 1 3 3 3

RDG
6, 1, 8 7, 3, 15 13, 7, 5 16, 4, 5 1, 2, 7

4 5 1 1 5

APEC
1, 0, 14 10, 4, 11 1, 2, 22 4, 4, 17 2, 2, 6

6 3 5 6 4

CSC
13, 0, 2 9, 2, 14 12, 8, 5 15, 0, 10 9, 0, 1

1 4 2 2 1

RAG
4, 0, 11 3, 3, 19 8, 5, 12 9, 4, 12 2, 0, 8

5 6 4 5 4

a single group non-separable, the MCPSO continues to be the winner in the

30 dimension problem group. In non-separable problems, the CSC continues

to be the winner in these tests.

4.1.2 Consistency

Table 4.2 shows the consistency for the 30 dimension problems. These results

show the CSC algorithm winning in separable, D/2m non-separable, and

non-separable problems. The MCPSO algorithm wins in a single group non-

separable and the RDG algorithm wins in D/m non-separable.
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Table 4.2: 30 dimension consistency statistical tests. W/T/L refers to the
total Wins, Ties and Losses respectively
Algorithm Sep S-Non D/2m-Non D/m - Non Non

W/T/L W/T/L W/T/L W/T/L W/T/L
Rank Rank Rank Rank Rank

DCPSO
8, 1, 6 16, 5, 4 12, 5, 8 8, 2, 15 7, 0, 3

3 2 3 5 2

MCPSO
11, 0, 4 19, 5, 1 8, 9, 8 12, 4, 9 6, 2, 2

2 1 5 3 3

RDG
6, 1, 8 8, 3, 14 13, 7, 5 17, 4, 4 1, 2, 7

4 5 2 1 5

APEC
1, 0, 14 10, 4, 11 0, 2, 23 3, 4, 18 2, 2, 6

6 3 6 6 4

CSC
13, 0, 2 9, 2, 14 15, 8, 2 16, 0, 9 9, 0, 1

1 4 1 2 1

RAG
5, 0, 10 2, 3, 20 9, 5, 11 10, 4, 11 2, 0, 8

5 6 4 4 4
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Table 4.3: Average of 30 runs for dimension of 30

DCPSO MCPSO RDG APEC CSC RAG

Function

Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev

f1 6.71E-02 1.29E-01 5.80E-10 3.11E-09 8.16E-10 1.21E-09 1.02E+04 1.03E+04 4.28E-02 3.29E-02 3.56E+02 5.52E+02

f2 6.97E-01 5.83E-01 2.65E-01 5.71E-01 1.33E+00 1.39E+00 1.57E+01 8.47E+00 1.96E-07 9.10E-08 2.76E+00 1.56E+00

f3 6.33E-04 3.12E-04 2.13E-02 1.14E-01 1.07E+01 7.23E+00 9.63E-01 4.33E-01 1.35E-04 3.16E-05 1.06E-01 2.14E-01

f4 2.07E+09 2.62E+09 1.80E+09 2.87E+09 5.56E+09 4.88E+09 8.98E+08 1.05E+09 1.29E+10 9.30E+09 5.95E+09 8.18E+09

f5 9.95E+04 2.98E+05 3.32E+04 1.79E+05 2.99E+05 5.23E+05 1.99E+05 7.45E+05 2.19E+06 1.61E+06 1.82E+06 1.72E+06

f6 1.87E-02 6.28E-02 7.39E-01 1.19E+00 1.48E+01 5.79E+00 3.73E+01 1.99E+01 5.39E+01 4.05E+01 1.87E+02 3.64E+02

f7 8.75E-03 4.59E-02 5.83E-16 2.54E-15 1.26E+05 4.70E+05 2.50E+01 2.05E+01 2.66E-01 5.18E-01 1.61E+02 6.42E+02

f8 1.14E+06 3.63E+06 8.76E+05 2.96E+06 2.95E+07 3.20E+07 6.45E+06 1.13E+07 1.85E+03 3.09E+03 5.50E+07 4.64E+07

f9 3.77E+04 9.41E+04 9.28E+03 4.98E+04 1.02E+05 1.34E+05 1.08E+06 6.10E+05 1.95E-01 1.29E-01 4.97E+04 1.03E+05

f10 3.18E+01 6.89E+00 2.16E+01 7.42E+00 1.07E+01 4.11E+00 4.32E+01 1.58E+01 1.96E+01 4.72E+00 2.64E+01 1.01E+01

f11 4.84E+00 6.98E+00 6.92E+00 5.88E+00 8.10E+00 8.48E+00 1.98E+01 1.16E+01 4.47E+00 2.40E+00 9.96E+00 1.00E+01

f12 8.60E-05 9.88E-05 1.66E-01 8.97E-01 2.56E+00 9.33E+00 3.11E+01 2.97E+01 5.59E-06 2.95E-06 3.42E-01 1.24E+00

f13 1.36E+02 7.62E+01 1.61E+02 1.04E+02 4.70E+01 4.74E+01 2.14E+02 1.04E+02 2.49E+02 5.65E+01 2.70E+02 9.38E+01

f14 7.46E+04 2.46E+04 8.62E+04 2.63E+04 4.93E+04 1.75E+04 5.83E+04 1.77E+04 1.03E+05 2.75E+04 6.38E+04 2.60E+04

f15 2.18E+01 5.45E+00 1.38E+01 3.77E+00 1.45E+01 4.18E+00 4.09E+01 1.13E+01 6.90E+00 2.16E+00 1.88E+01 5.32E+00

f16 9.33E+00 1.12E+01 6.60E+00 1.07E+01 3.69E+00 8.97E+00 4.23E+01 2.29E+01 2.00E-03 4.87E-04 3.02E+01 1.84E+01

f17 1.28E-01 1.20E-01 1.60E-02 5.99E-02 2.08E-01 8.16E-02 3.36E-01 1.42E-01 1.52E-05 5.24E-06 1.18E-01 1.18E-01

f18 2.71E+02 1.04E+02 3.49E+02 1.16E+02 5.60E+01 3.88E+01 4.20E+02 1.55E+02 4.93E+02 1.27E+02 4.06E+02 1.09E+02

f19 4.57E+01 9.88E+01 3.39E+02 4.53E+02 1.68E+03 4.01E+03 2.05E+02 1.77E+02 1.02E-02 5.34E-03 1.23E+03 8.00E+02

f20 7.63E+01 3.27E+01 2.34E+01 1.68E+01 1.21E+08 2.37E+08 1.31E+03 1.70E+03 5.13E+01 3.22E+01 1.87E+02 5.63E+02
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4.2 100 Dimensions

4.2.1 Accuracy

The algorithms performance is ranked in Table 4.4 and Table 4.5 for accuracy

and consistency respectively. The first table, that is, the accuracy table,

reveals that for non-separable problems the CSC algorithm is the winner

with the MCPSO algorithm following behind closely. For the partially non-

separable problems, the DCPSO and MCPSO win all these tests, with the

DCPSO being the winner for a single group non-separable and the MCPSO

winning in the other partially separable groups. The RDG algorithm is tied

with the RDG algorithm for D/2m non-separable for the first place. In the

non-separable benchmark problems, the CSC algorithm is the winner which

has the MCPSO algorithm following very close behind.

4.2.2 Consistency

Table 4.5 shows the consistency of the results, in these tests the CSC al-

gorithm is the winner for the separable set of benchmark problems. The

DCPSO is the most consistent in a single group non-separable. The MCPSO

and RDG tied for D/2m non-separable problems and the MCPSO wins in

D/m non-separable. In the non-separable problem set, the CSC algorithm

wins with the MCPSO algorithm being close behind.
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Table 4.4: 100 dimension consistency statistical tests. W/T/L refers to the
total Wins, Ties and Losses respectively
Algorithm Sep S-Non D/2m-Non D/m - Non Non

W/T/L W/T/L W/T/L W/T/L W/T/L
Rank Rank Rank Rank Rank

DCPSO
9, 1, 5 18, 6, 1 10, 8, 7 9, 4, 12 6, 1, 3

3 1 3 4 3

MCPSO
11, 1, 3 9, 10, 6 17, 4, 4 19, 1, 5 8, 1, 1

2 2 1 1 2

RDG
5, 1, 9 7, 11, 7 17, 3, 5 17, 1, 7 0, 1, 9

4 3 1 2 6

APEC
2, 0, 13 7, 11, 7 0, 3, 22 0, 3, 22 1, 1, 8

6 3 5 6 5

CSC
13, 1, 1 4, 10, 11 11, 6, 8 16, 1, 8 9, 0, 1

1 4 2 3 1

RAG
3, 0, 12 2, 8, 15 5, 6, 14 7, 4, 14 4, 0, 6

5 2 4 5 4

Table 4.5: 100 consistency dimension statistical tests. W/T/L refers to the
total Wins, Ties and Losses respectively
Algorithm Sep S-Non D/2m-Non D/m - Non Non

W/T/L W/T/L W/T/L W/T/L W/T/L
Rank Rank Rank Rank Rank

DCPSO
9, 1, 5 18, 6, 1 10, 8, 7 13, 4, 8 6, 1, 3

3 1 2 3 3

MCPSO
11, 1, 3 7, 10, 8 16, 4, 5 18, 1, 6 8, 1, 1

2 3 1 1 2

RDG
5, 1, 9 7, 11, 7 16, 3, 6 17, 1, 7 0, 1, 9

4 3 1 2 6

APEC
1, 0, 14 8, 11, 6 2, 3, 20 1, 3, 21 1, 1, 8

6 2 4 6 5

CSC
13, 1, 1 4, 10, 11 8, 6, 11 11, 1, 13 9, 0, 1

1 4 3 4 1

RAG
4, 0, 11 3, 8, 14 8, 6, 11 8, 4, 13 4, 0, 6

5 5 3 5 4
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Table 4.6: Average of 30 runs for dimension of 100

DCPSO MCPSO RDG APEC CSC RAG

Function

Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev

f1 1.31E+01 1.75E+01 1.71E+01 9.20E+01 1.71E+01 9.20E+01 2.67E+06 3.62E+06 9.69E-02 4.16E-02 4.80E+04 9.44E+04

f2 2.00E+00 1.26E+00 8.62E-01 9.86E-01 3.08E+00 1.95E+00 1.05E+02 3.18E+01 7.10E-07 2.98E-07 1.83E+02 2.23E+01

f3 5.89E-03 1.77E-03 3.61E-08 3.31E-08 1.90E+01 1.50E+00 2.37E+00 1.04E+00 1.49E-04 2.11E-05 1.09E+00 2.50E-01

f4 5.53E+09 6.19E+09 3.88E+10 1.30E+11 5.17E+10 6.06E+10 1.87E+10 1.58E+10 2.34E+10 2.69E+10 8.71E+10 7.16E+10

f5 1.06E+07 3.87E+06 1.00E+07 5.68E+06 1.30E+07 6.24E+06 1.05E+07 4.45E+06 1.60E+07 7.84E+06 1.39E+07 9.00E+06

f6 5.49E+04 2.96E+05 1.32E+05 5.02E+05 3.77E+05 1.41E+06 1.15E+03 5.45E+02 9.51E+06 9.12E+06 4.93E+06 7.56E+06

f7 3.95E-01 6.47E-01 2.52E+01 4.01E+01 1.60E+01 3.28E+01 6.76E+03 8.02E+03 3.65E+02 6.57E+02 1.98E+03 9.95E+03

f8 1.43E+06 4.72E+06 3.45E+07 3.78E+07 5.40E+07 1.23E+08 3.32E+07 2.70E+07 4.27E+07 3.81E+07 5.91E+07 4.15E+07

f9 1.39E+07 1.06E+07 6.00E+06 3.14E+06 1.40E+06 1.71E+06 4.38E+07 1.72E+07 3.87E+07 1.39E+07 1.20E+07 9.87E+06

f10 3.29E+02 4.17E+01 1.83E+02 3.67E+01 1.51E+02 2.71E+01 3.86E+02 6.74E+01 2.32E+02 4.78E+01 3.73E+02 4.86E+01

f11 7.85E+01 2.61E+01 6.85E+01 2.37E+01 4.11E+01 1.17E+01 1.02E+02 2.72E+01 6.61E+01 2.91E+01 9.96E+01 2.28E+01

f12 1.14E+01 1.56E+01 3.47E+01 3.88E+01 1.03E+03 1.37E+03 1.50E+03 1.00E+03 3.31E-01 1.28E-01 1.94E+02 1.76E+02

f13 5.42E+03 5.85E+03 4.36E+02 9.72E+01 9.58E+03 2.48E+04 4.20E+04 3.64E+04 3.85E+03 6.08E+03 3.88E+03 4.94E+03

f14 3.35E+07 2.05E+07 2.14E+07 1.67E+07 1.95E+06 1.75E+06 9.82E+07 2.52E+07 8.82E+07 2.17E+07 3.05E+07 1.96E+07

f15 6.08E+02 6.08E+01 3.59E+02 4.43E+01 3.13E+02 4.08E+01 6.36E+02 8.83E+01 4.58E+02 6.14E+01 5.58E+02 6.71E+01

f16 1.79E+02 3.04E+01 1.57E+02 3.59E+01 3.93E+01 1.48E+01 2.34E+02 3.71E+01 1.31E+02 5.00E+01 2.26E+02 3.07E+01

f17 1.12E+01 9.73E+00 2.38E+01 5.42E+01 4.48E+02 8.09E+02 1.72E+03 1.41E+03 6.85E-01 2.21E-01 3.47E+02 3.58E+02

f18 1.77E+04 1.61E+04 1.83E+03 3.11E+03 5.55E+05 1.38E+06 7.70E+05 1.41E+06 7.23E+03 6.85E+03 3.04E+04 3.44E+04

f19 6.51E+03 4.03E+03 7.54E+03 4.37E+03 3.22E+04 2.67E+04 3.00E+04 1.49E+04 8.47E-02 2.32E-02 1.27E+04 5.75E+03

f20 5.45E+02 1.10E+03 5.76E+01 4.04E+01 2.51E+09 1.80E+09 5.60E+05 7.00E+05 1.73E+02 5.03E+01 2.70E+04 6.18E+04
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4.3 250 Dimensions

4.3.1 Accuracy

The algorithms performance is ranked in Table 4.7 and Table 4.8 for accu-

racy and consistency respectively. As the dimensionality of the benchmark

problems decreases to 250 in these tests, the CSC algorithm is the clear win-

ner in separable benchmark problems, not losing a single test to the other

algorithms. The CSC algorithm shows its weakness however in a single group

non-separable where it ranks last and the DCPSO ranks first followed by the

MCPSO and RAG algorithm. In group sizes of d/2m and d/m non-separable

the MCPSO is the winner here followed closely by the RDG algorithm. Show-

ing an increase in performance for the RDG algorithm as the dimensionality

decreases. For completely non-separable benchmark problems the MCPSO

and CSC algorithm tie with the DCPSO being close behind. The accuracy

results overall show the MCPSO being the best performance ranking either

first or second across all benchmark problems in the 250 dimension problem

set.

4.3.2 Consistency

The consistency tests, shown in Table 4.8 reveal the DCPSO, MCPSO, and

CSC algorithm being the most consistent. The DCPSO algorithm either

wins or ties for first place in all partially non-separable problem sets and the

MCPSO ties with the CSC algorithm for non-separable benchmark problems.
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Table 4.7: 250 dimension statistical tests. W/T/L refers to the total Wins,
Ties and Losses respectively
Algorithm Sep S-Non D/2m-Non D/m - Non Non

W/T/L W/T/L W/T/L W/T/L W/T/L
Rank Rank Rank Rank Rank

DCPSO
9, 1, 5 18, 3, 4 14, 1, 10 13, 2, 10 6, 0, 4

3 1 3 3 2

MCPSO
11, 0, 4 13, 7, 5 22, 0, 3 19, 3, 3 9, 0, 1

2 2 1 1 1

RDG
4, 1, 10 6, 4, 15 15, 2, 8 16, 1, 8 2, 0, 8

4 4 2 2 3

APEC
3, 0, 12 9, 6, 10 3, 1, 21 5, 1, 19 2, 0, 8

5 3 6 6 3

CSC
15, 0, 0 4, 3, 18 11, 2, 12 9, 3, 13 9, 0, 1

1 5 4 4 1

RAG
2, 0, 13 13, 1, 11 6, 2, 17 6, 4, 15 2, 0, 8

6 2 5 5 3

The CSC algorithm is the winner for all non-separable problems being the

most consistent in ever problem test.
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Table 4.8: 250 dimension consistency statistical tests. W/T/L refers to the
total Wins, Ties and Losses respectively
Algorithm Sep S-Non D/2m-Non D/m - Non Non

W/T/L W/T/L W/T/L W/T/L W/T/L
Rank Rank Rank Rank Rank

DCPSO
9, 1, 5 14, 3, 8 18, 1, 6 15, 2, 8 6, 0, 4

3 1 1 1 2

MCPSO
11, 0, 4 14, 7, 4 18, 0, 7 14, 3, 8 9, 0, 1

2 1 1 2 1

RDG
6, 1, 8 5, 4, 16 9, 2, 14 12, 1, 12 1, 0, 9

4 5 3 3 5

APEC
2, 0, 13 7, 6, 12 7, 1, 17 10, 1, 14 3, 0, 7

5 4 4 4 3

CSC
15, 0, 0 11, 3, 11 16, 2, 7 14, 3, 8 9, 0, 1

1 3 2 2 1

RAG
1, 0, 14 12, 1, 12 3, 2, 20 3, 4, 18 2, 0, 8

6 2 5 5 4
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Table 4.9: Average of 30 runs for dimension of 250

DCPSO MCPSO RDG APEC CSC RAG

Function

Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev

f1 1.51E+03 7.92E+03 2.94E+03 1.10E+04 5.89E+03 1.50E+04 7.29E+07 5.40E+07 2.14E-01 8.58E-02 1.20E+07 5.49E+06

f2 4.91E+00 2.39E+00 2.58E+00 1.48E+00 5.22E+00 1.98E+00 3.25E+02 7.08E+01 1.66E-06 4.25E-07 1.09E+03 1.01E+02

f3 4.54E-02 4.53E-02 2.51E-02 4.32E-02 1.94E+01 6.02E-02 4.58E+00 1.46E+00 1.45E-04 1.64E-05 1.75E+01 1.55E+00

f4 9.13E+10 8.76E+10 1.94E+11 1.70E+11 2.34E+12 1.81E+12 2.08E+11 1.01E+11 3.86E+12 3.26E+12 4.34E+11 8.41E+11

f5 8.29E+07 2.12E+07 8.11E+07 2.53E+07 7.06E+07 2.04E+07 9.03E+07 2.76E+07 1.10E+08 4.55E+07 7.48E+07 2.82E+07

f6 5.70E+06 7.73E+06 1.67E+07 6.94E+06 1.05E+07 7.55E+06 1.19E+07 9.11E+06 1.86E+07 4.38E+06 1.37E+07 7.89E+06

f7 1.44E+04 6.74E+04 7.91E+03 6.72E+03 1.35E+09 1.79E+09 4.15E+05 1.42E+05 2.22E+08 1.89E+08 1.21E+05 7.68E+04

f8 6.78E+06 1.36E+07 4.71E+06 1.16E+07 5.54E+12 1.09E+13 2.39E+07 2.62E+07 3.62E+07 8.35E+06 7.50E+06 1.16E+07

f9 2.83E+07 8.03E+06 1.04E+07 3.84E+06 2.09E+07 2.91E+07 1.52E+08 7.47E+07 2.94E+07 9.79E+06 4.89E+07 2.30E+07

f10 9.60E+02 7.60E+01 8.61E+02 1.16E+02 6.14E+02 8.06E+01 1.29E+03 1.92E+02 1.15E+03 1.48E+02 1.52E+03 1.00E+02

f11 1.56E+02 1.05E+01 1.42E+02 2.19E+01 1.07E+02 2.07E+01 1.87E+02 7.83E+00 1.75E+02 7.79E+00 1.87E+02 1.25E+01

f12 1.28E+03 6.76E+02 6.96E+02 6.36E+02 7.88E+03 6.98E+03 2.36E+04 1.05E+04 6.26E+03 2.43E+03 9.75E+03 5.54E+03

f13 8.27E+03 7.73E+03 3.35E+02 1.07E+02 1.44E+08 2.53E+08 1.03E+06 7.24E+05 1.49E+03 3.83E+03 2.75E+05 1.96E+05

f14 1.16E+08 3.68E+07 4.19E+07 1.03E+07 3.95E+07 2.32E+07 2.03E+08 6.81E+07 1.12E+08 2.00E+07 1.02E+08 4.35E+07

f15 1.89E+03 1.12E+02 1.72E+03 1.77E+02 1.19E+03 9.06E+01 2.08E+03 1.43E+02 2.61E+03 4.25E+02 1.89E+03 1.56E+02

f16 3.37E+02 1.52E+01 2.99E+02 3.51E+01 1.70E+02 2.19E+01 3.54E+02 1.11E+01 3.64E+02 1.48E+01 3.62E+02 1.10E+01

f17 6.95E+03 2.58E+03 3.43E+03 2.35E+03 2.06E+04 9.74E+03 5.17E+04 1.99E+04 1.28E+04 3.01E+03 4.25E+04 1.83E+04

f18 2.20E+04 1.00E+04 2.32E+03 4.19E+03 3.02E+08 2.70E+08 1.20E+07 6.31E+06 2.16E+03 3.78E+03 2.39E+06 1.93E+06

f19 1.25E+05 4.32E+04 7.89E+04 2.39E+04 2.27E+05 1.34E+05 3.67E+05 8.89E+04 4.02E-01 7.13E-02 1.28E+05 4.72E+04

f20 9.11E+02 9.43E+02 1.88E+02 1.50E+02 1.26E+10 7.32E+09 1.84E+07 1.06E+07 3.80E+02 1.94E+02 2.24E+06 1.46E+06
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4.4 500 Dimensions

4.4.1 Accuracy

The algorithms are ranked in Table 4.10 and Table 4.11 for accuracy and

consistency respectively. As the dimensionality of the problem, and there-

fore the size of separable groups decreases it is clear that for accuracy the

DCPSO, MCPSO and CSC algorithms all perform well. The CSC algo-

rithm is the clear winner in separable and non-separable problems winning

all comparisons against other algorithms and only tying in a single compar-

ison. The DCPSO and MCPSO compete for the ideal algorithm examined,

for all forms of non-separable problems with the DCPSO winning in single

group non-separable problems and MCPSO winning in D/2m and D/m non-

separable problems. As the dimensionality decreased the DCPSO, MCPSO,

RDG, APEC and RAG algorithms stayed relatively consistent between tests

while the CSC algorithm took an increased drop in performance when com-

pared to the 1000 dimensionality problem set.

4.4.2 Consistency

The consistency of the algorithms is shown in Table 4.11. In these tests,

the results show a similar performance as to dimensionality of 1000 with

the DCPSO and MCPSO being ranked well although the MCPSO is op-

timal in all cases except the non-separable problems where they presented

a tie ranking. The CSC algorithm is the clear winner here again with the
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consistency being ranked first in separable and non-separable problems and

ranking second across all partially non-separable problems falling only behind

the MCPSO in these problems. The remaining algorithms all show similar

consistencies with the RAG algorithm being the least consistent in nearly all

instances.

Table 4.10: 500 dimension statistical tests. W/T/L refers to the total Wins,
Ties and Losses respectively
Algorithm Sep S-Non D/2m-Non D/m - Non Non

W/T/L W/T/L W/T/L W/T/L W/T/L
Rank Rank Rank Rank Rank

DCPSO
7, 2, 6 18, 5, 2 16, 2, 7 15, 1, 9 6, 1, 3

3 1 2 2 3

MCPSO
11, 1, 3 12, 4, 9 19, 1, 5 16, 2, 7 7, 2, 1

2 2 1 1 2

RDG
5, 2, 8 7, 3, 15 13, 2, 10 15, 2, 8 2, 0, 8

4 4 3 2 4

APEC
3, 0, 12 11, 2, 12 4, 1, 20 7, 1, 17 2, 0, 8

5 3 6 5 4

CSC
14, 1, 0 5, 2, 18 10, 3, 12 10, 1, 14 9, 1, 0

1 5 4 3 1

RAG
2, 0, 13 13, 2, 10 8, 1, 16 8, 1, 16 2, 0, 8

6 2 5 4 4
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Table 4.11: 500 dimension consistency statistical tests. W/T/L refers to the
total Wins, Ties and Losses respectively
Algorithm Sep S-Non D/2m-Non D/m - Non Non

W/T/L W/T/L W/T/L W/T/L W/T/L
Rank Rank Rank Rank Rank

DCPSO
7, 2, 6 15, 5, 5 16, 2, 7 16, 1, 8 6, 1, 3

3 1 2 3 2

MCPSO
11, 1, 3 15, 4, 6 17, 1, 7 19, 2, 4 6, 2, 2

2 1 1 1 2

RDG
7, 2, 6 5, 3, 17 10, 2, 13 8, 2, 15 3, 0, 7

3 3 3 5 3

APEC
0, 0, 15 11, 2, 12 9, 1, 15 9, 1, 15 2, 0, 8

5 2 4 4 4

CSC
14, 1, 0 11, 2, 12 16, 3, 6 17, 1, 7 9, 1, 0

1 2 2 2 1

RAG
3, 0, 12 9, 2, 14 2, 1, 22 2, 1, 22 2, 0, 8

4 4 5 6 4
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Table 4.12: Average of 30 runs for dimension of 500

DCPSO MCPSO RDG APEC CSC RAG

Function

Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev

f1 6.84E+03 3.53E+04 3.61E+01 5.68E+01 6.69E+03 3.45E+04 4.47E+08 1.55E+08 3.90E-01 1.16E-01 1.65E+08 5.80E+07

f2 8.66E+00 3.10E+00 5.53E+00 2.54E+00 8.61E+00 3.64E+00 8.95E+02 1.57E+02 2.78E-06 4.77E-07 3.01E+03 1.20E+02

f3 4.21E-02 2.45E-02 5.01E-02 4.14E-02 1.96E+01 4.51E-02 1.45E+01 1.58E+00 1.37E-04 1.53E-05 1.91E+01 1.59E-01

f4 5.67E+11 5.53E+11 4.37E+11 4.34E+11 1.99E+13 8.79E+12 1.49E+12 6.27E+11 1.12E+13 6.65E+12 8.40E+11 1.04E+12

f5 1.40E+08 2.82E+07 2.27E+08 6.28E+07 1.53E+08 2.97E+07 1.65E+08 3.67E+07 3.20E+08 8.10E+07 1.51E+08 4.30E+07

f6 8.12E+06 7.41E+06 1.89E+07 3.59E+06 9.46E+06 6.49E+06 1.79E+07 4.95E+06 1.98E+07 9.42E+04 1.66E+07 6.81E+06

f7 5.41E+04 2.89E+05 1.89E+06 7.60E+06 4.45E+09 4.31E+09 7.24E+06 7.96E+06 2.87E+09 1.83E+09 2.16E+07 9.06E+07

f8 3.51E+07 5.07E+07 1.57E+07 3.34E+07 1.21E+14 1.97E+14 1.18E+09 3.31E+09 8.17E+07 3.71E+07 3.10E+07 3.68E+07

f9 1.43E+08 3.85E+07 3.86E+07 1.00E+07 1.36E+08 4.06E+07 5.59E+08 2.10E+08 1.30E+08 2.12E+07 3.38E+08 1.19E+08

f10 2.09E+03 1.32E+02 2.68E+03 2.89E+02 1.61E+03 1.03E+02 2.88E+03 2.03E+02 3.50E+03 2.66E+02 3.85E+03 2.32E+02

f11 1.92E+02 4.09E+00 1.96E+02 4.69E+00 1.79E+02 1.03E+01 2.16E+02 7.96E-01 1.98E+02 4.36E-01 2.16E+02 1.70E+00

f12 1.93E+04 6.66E+03 7.06E+03 3.52E+03 7.15E+04 2.03E+04 1.45E+05 8.24E+04 5.80E+04 9.70E+03 1.20E+05 3.17E+04

f13 8.34E+03 6.78E+03 6.79E+02 6.61E+02 3.29E+09 2.30E+09 1.32E+07 4.54E+06 2.17E+03 3.61E+03 4.48E+06 1.92E+06

f14 3.00E+08 6.19E+07 1.11E+08 1.53E+07 2.38E+08 7.92E+07 5.38E+08 1.13E+08 2.24E+08 2.59E+07 3.65E+08 1.51E+08

f15 4.24E+03 1.37E+02 5.49E+03 3.84E+02 3.20E+03 1.74E+02 4.63E+03 1.75E+02 7.22E+03 5.45E+02 4.43E+03 3.04E+02

f16 3.88E+02 1.60E+00 3.87E+02 1.06E+01 3.07E+02 1.93E+01 3.94E+02 1.57E+00 3.96E+02 8.05E-01 3.92E+02 2.21E+00

f17 7.13E+04 2.54E+04 3.01E+04 1.11E+04 1.05E+05 3.17E+04 1.89E+05 6.06E+04 1.43E+05 2.50E+04 2.67E+05 6.30E+04

f18 3.24E+04 1.88E+04 4.39E+03 5.23E+03 7.06E+09 3.69E+09 1.31E+08 3.92E+07 3.39E+03 5.56E+03 3.53E+07 1.32E+07

f19 3.68E+05 1.10E+05 3.33E+05 3.82E+04 4.59E+05 8.75E+04 1.06E+06 2.00E+05 1.26E+00 3.42E-01 4.90E+05 1.23E+05

f20 1.50E+03 7.86E+02 6.48E+02 8.18E+02 2.98E+10 1.40E+10 1.48E+08 3.79E+07 6.46E+02 3.29E+02 4.37E+07 1.12E+07
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4.5 1000 Dimensions

4.5.1 Accuracy

The algorithms are ranked in Table 4.13 for accuracy and Table 4.14 for

the consistency of the runs. The results demonstrate the performance of

these algorithms on a large scale. Table 4.13 shows the accuracy, that is,

which algorithms reached the best fitness value after the designated number

of fitness evaluations. In this table, the DCPSO dominated in 3 of the 5 test

sets. The DCPSO algorithm ranked first with very similar numbers to the

MCPSO in the partially separable set of functions. The MCPSO and DCPSO

also performed well in separable and non-separable and were both among

the top performers in these sections only being tied, or slightly behind for

the DCPSO, in non-separable benchmark problems. Separable benchmark

problems show the CSC algorithm performing well with the MCPSO and

DCPSO in second and third respectively. The static grouping technique

of the RAG algorithm seemed to perform worse in the separable functions

although showed some resilience in the s-non separable benchmark problems

ranking second.

4.5.2 Consistency

Table 4.14 reveals the consistency of these algorithms, that is, the differences

between each of the thirty runs revealing which algorithms vary the least

between runs. In this, the CSC algorithm is the clear winner in 3 out of the
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Table 4.13: 1000 dimension statistical tests. W/T/L refers to the total Wins,
Ties and Losses respectively
Algorithm Sep S-Non D/2m-Non D/m - Non Non

W/T/L W/T/L W/T/L W/T/L W/T/L
Rank Rank Rank Rank Rank

DCPSO
8,2,5 16, 6, 3 18, 0, 7 15, 1, 9 6, 0, 4

3 1 1 1 2

MCPSO
11, 1, 3 13, 4, 8 18, 2, 5 15, 2, 8 9, 0, 1

2 2 1 1 1

RDG
4, 1, 10 8, 1, 16 10, 0, 15 11, 3, 11 2, 0, 8

4 5 3 3 3

APEC
3, 0, 12 11, 1, 13 4, 2, 19 9, 0, 16 2, 0, 8

5 3 5 4 3

CSC
15, 0, 0 6, 2, 17 13, 1, 11 12, 2, 11 9, 0, 1

1 4 2 2 1

RAG
2, 0, 13 13, 2, 10 8, 3, 14 8, 2, 15 2, 0, 8

6 2 4 5 3

5 benchmark sets although lags slightly behind the MCPSO in single group

non-separable functions and D/M non-separable functions. The MCPSO

algorithms overall seem to perform similarly to the CSC algorithm, as they

both compete for the first or second ranking in all benchmark sets. Between

DCPSO and MCPSO the MCPSO algorithm tends to have slightly better

consistency between runs with fewer variations.

Based on these findings for large scale optimization of 1000 dimensions

the DCPSO, MCPSO, and CSC algorithms will all make viable choices with

DCPSO and MCPSO being the clear winners across all forms of partially

separable functions and the CSC algorithm being the ideal choice across

non-separable and fully separable.
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Table 4.14: 1000 dimension statistical tests. W/T/L refers to the total Wins,
Ties and Losses respectively
Algorithm Sep S-Non D/2m-Non D/m - Non Non

W/T/L W/T/L W/T/L W/T/L W/T/L
Rank Rank Rank Rank Rank

DCPSO
8, 2, 5 12, 6, 7 17, 0, 8 15, 1, 9 6, 0, 4

3 4 3 3 3

MCPSO
9, 1, 5 15, 4, 6 18, 2, 5 19, 2, 4 8, 0, 2

2 1 2 1 2

RDG
8, 1, 6 5, 1, 19 9, 0, 16 7, 3, 15 2, 0, 8

3 6 4 5 4

APEC
0, 0, 15 13, 1, 11 6, 2, 17 9, 0, 16 2, 0, 8

5 3 5 4 4

CSC
15, 0, 0 14, 2, 9 19, 1, 5 18, 2, 5 10, 0, 0

1 2 1 2 1

RAG
3, 0, 12 8, 2, 15 2, 3, 20 2, 2, 21 2, 0, 8

4 5 6 6 4
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Table 4.15: Average of 30 runs for dimension of 1000

DCPSO MCPSO RDG APEC CSC RAG

Function

Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev

f1 5.49E+04 1.36E+05 4.87E+02 5.11E+02 8.12E+04 1.65E+05 2.77E+09 6.02E+08 6.77E-01 1.50E-01 1.47E+09 3.24E+08

f2 1.97E+01 4.85E+00 1.30E+01 4.12E+00 1.86E+01 3.63E+00 2.19E+03 2.74E+02 4.44E-06 4.63E-07 7.30E+03 2.05E+02

f3 3.94E-02 2.23E-02 5.30E-02 4.54E-02 1.98E+01 3.70E-02 1.59E+01 7.48E-01 1.22E-04 5.38E-06 1.94E+01 4.77E-02

f4 3.00E+12 2.67E+12 1.03E+12 5.93E+11 9.64E+13 3.51E+13 6.58E+12 2.56E+12 7.90E+12 2.15E+12 4.60E+12 4.00E+12

f5 3.51E+08 4.52E+07 6.66E+08 1.19E+08 4.18E+08 5.92E+07 4.64E+08 7.10E+07 7.44E+08 1.18E+08 3.69E+08 7.08E+07

f6 1.09E+07 6.60E+06 1.98E+07 6.91E+04 1.39E+07 5.50E+06 1.93E+07 4.54E+05 1.99E+07 7.19E+04 1.89E+07 2.95E+06

f7 2.18E+08 2.28E+08 1.22E+08 2.19E+08 9.48E+10 4.46E+10 2.53E+08 2.11E+08 1.16E+10 7.63E+09 6.03E+08 8.75E+08

f8 4.95E+07 4.19E+07 1.35E+07 1.29E+07 8.75E+14 1.65E+15 8.64E+08 2.33E+09 8.01E+07 2.58E+07 5.58E+07 1.98E+08

f9 2.81E+08 4.69E+07 7.56E+07 1.20E+07 1.04E+09 1.88E+08 2.38E+09 5.74E+08 1.51E+08 1.99E+07 2.33E+09 6.16E+08

f10 4.56E+03 1.48E+02 6.99E+03 4.44E+02 4.14E+03 1.70E+02 6.54E+03 2.89E+02 7.65E+03 4.30E+02 8.32E+03 2.78E+02

f11 1.94E+02 4.83E-01 1.99E+02 3.08E-01 2.09E+02 3.65E+00 2.17E+02 7.80E-01 1.98E+02 2.46E-01 2.16E+02 8.08E-01

f12 1.81E+05 4.65E+04 4.89E+04 1.59E+04 4.92E+05 6.18E+04 6.64E+05 2.49E+05 2.29E+05 2.81E+04 8.52E+05 1.77E+05

f13 1.77E+04 1.01E+04 8.98E+02 1.54E+03 2.32E+10 7.13E+09 7.71E+07 2.26E+07 9.45E+02 1.05E+03 2.77E+07 1.13E+07

f14 8.40E+08 1.03E+08 2.39E+08 2.81E+07 1.66E+09 2.20E+08 1.49E+09 2.12E+08 3.69E+08 3.10E+07 2.00E+09 6.09E+08

f15 8.85E+03 2.39E+02 1.37E+04 5.44E+02 7.51E+03 1.90E+02 9.42E+03 2.50E+02 1.52E+04 4.66E+02 9.24E+03 4.53E+02

f16 3.90E+02 5.62E-01 3.97E+02 3.93E-01 3.83E+02 3.75E+00 3.96E+02 1.01E+00 3.97E+02 2.77E-01 3.93E+02 1.26E+00

f17 7.17E+05 1.36E+05 1.89E+05 2.14E+04 7.05E+05 8.46E+04 9.79E+05 1.94E+05 5.17E+05 4.48E+04 1.10E+06 2.27E+05

f18 4.01E+04 1.74E+04 2.83E+03 2.10E+03 5.19E+10 1.43E+10 1.04E+09 1.72E+08 4.01E+03 4.80E+03 2.98E+08 6.59E+07

f19 1.60E+06 2.81E+05 1.21E+06 8.62E+04 2.16E+06 5.62E+05 3.76E+06 9.82E+05 1.24E+02 1.25E+01 1.61E+06 2.17E+05

f20 3.66E+03 1.52E+03 1.15E+03 4.68E+02 9.48E+10 3.03E+10 1.10E+09 1.57E+08 1.71E+03 2.19E+02 3.13E+08 5.09E+07
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4.6 2000 Dimensions

4.6.1 Accuracy

The 2000 dimension tests are ranked in Table 4.16 for accuracy and Table

4.17 for consistency. W/T/L refers to the wins, ties and losses from each

algorithm across each problem set. These results portray the performance

of the algorithms on the largest scale of this study. Table 4.16 discusses

the accuracy, in these tests DCPSO ranks the best in D/m−NonSeparable

problems, and shows a second place performance for almost all other bench-

mark sets except completely non-separable where the performance is second

from the last. The MCPSO algorithm, performed the best over fully sepa-

rable, partially non-separable and received a second and third place ranking

in non-separable and single group non-separable, respectively. The RDG

and APEC algorithms performed poor across almost all benchmark prob-

lems tested, ranking in the bottom half of algorithms in all tests. The CSC

algorithm, tied in fully separable problems with MCPSO and ranked first in

fully non-separable. The CSC algorithm ranked third across both partially

non-separable groups and ranked second last in single group non-separable

benchmark problems. Finally, the RAG algorithm performed well across sin-

gle group non-separable benchmark problems, and received a second place

ranking in D/mnon−separable problems, the other three rankings all showed

a poor performance ranking in the bottom half of algorithms against all.
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Table 4.16: 2000 dimensions statistical tests. W/T/L refers to the total
Wins, Ties and Losses respectively
Algorithm Sep S-Non D/2m-Non D/m - Non Non

W/T/L W/T/L W/T/L W/T/L W/T/L
Rank Rank Rank Rank Rank

DCPSO
9, 2, 4 18, 2, 5 16, 0, 9 15, 2, 8 5, 0, 5

2 2 2 1 4

MCPSO
12, 0, 3 12, 4, 9 18, 0, 7 15, 1, 9 7, 1, 2

1 3 1 1 2

RDG
5, 2, 8 2, 1, 22 2, 2, 21 8, 1, 16 1, 0, 9

3 6 6 4 5

APEC
3, 0, 12 11, 1, 13 14, 0, 11 8, 1, 16 1, 0, 9

4 4 4 4 5

CSC
12, 0, 3 5, 3, 17 15, 1, 9 12, 1, 12 9, 1, 0

1 5 3 3 1

RAG
2, 0, 13 21, 1, 3 8, 1, 16 13, 2, 10 6, 0, 4

5 1 5 2 3

4.6.2 Consistency

The consistency tests across 2000 dimensions are shown in Table 4.17, this

table shows the consistency of each test throughout the 30 runs, that is, how

much variation is in each result from the other 29 tests of that algorithm. In

these tests, the DCPSO performed in the second or third place ranking across

all benchmark problems, putting it as one of the better algorithms for consis-

tency in the results. The MCPSO algorithm, ranked first across all three of

the partially non-separable function groups. This algorithm performed sec-

ond in both the separable and fully non-separable benchmark problems. The

RDG and APEC algorithm, again show deterioration in the results as the di-

mensionalty of the problems reaches 2000 and both performed in the bottom
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half of the algorithms tested. The CSC algorithm, showed poor consistency

performance in the partially non-separable benchmark problems, ranking in

the bottom half, however, showed top performance in the fully separable and

fully non-separable groups with a rank of first, and either showing a win or

tie across all functions in each group. The RAG algorithm, performed poorly

with all groups being in the bottom half of the algorithms except single group

non-separable which achieved a second place ranking.

Table 4.17: 2000 dimension consistency statistical tests. W/T/L refers to
the total Wins, Ties and Losses respectively
Algorithm Sep S-Non D/2m-Non D/m - Non Non

W/T/L W/T/L W/T/L W/T/L W/T/L
Rank Rank Rank Rank Rank

DCPSO
7, 2, 6 13, 2, 10 15, 0, 10 13, 2, 10 5, 0, 5

3 3 2 2 3

MCPSO
9, 0, 6 16, 4, 5 20, 0, 5 21, 1, 3 8, 1, 1

2 1 1 1 2

RDG
6, 2, 7 7, 1, 17 5, 2, 18 7, 1, 17 1, 0, 9

4 6 6 4 4

APEC
0, 0, 15 8, 1, 16 12, 0, 13 6, 1, 18 1, 0, 9

5 5 3 5 4

CSC
15, 0, 0 10, 3, 12 11, 1, 13 12, 1, 12 9, 1, 0

1 4 4 3 1

RAG
6, 0, 9 15, 1, 9 10, 1, 14 12, 2, 11 5, 0, 5

4 2 5 3 3
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Table 4.18: Average of 30 runs for dimension of 2000

DCPSO MCPSO RDG APEC CSC RAG

Function

Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev

f1 4.06E+04 1.13E+05 6.31E+03 6.93E+03 9.33E+04 1.97E+05 1.06E+10 2.34E+09 1.14E+03 9.16E+01 7.86E+09 1.14E+09

f2 3.60E+01 5.38E+00 2.93E+01 3.87E+00 3.52E+01 6.27E+00 6.03E+03 3.47E+02 4.76E+01 3.46E+00 1.40E+04 1.95E+02

f3 4.15E-02 1.85E-02 7.73E-02 3.51E-02 2.01E+01 3.14E-02 1.68E+01 4.40E-01 3.79E-03 5.45E-05 1.93E+01 1.67E-02

f4 8.23E+12 3.66E+12 1.94E+12 6.69E+11 4.95E+14 1.37E+14 1.58E+13 1.30E+13 1.80E+13 5.45E+12 1.46E+12 6.86E+11

f5 6.46E+08 6.31E+07 1.39E+09 1.79E+08 9.51E+08 4.71E+07 9.14E+08 1.10E+08 1.40E+09 2.71E+08 8.01E+08 1.16E+08

f6 1.90E+07 1.49E+06 1.99E+07 4.08E+04 2.08E+07 1.21E+05 1.96E+07 1.40E+05 1.99E+07 5.54E+04 1.98E+07 1.21E+05

f7 1.98E+09 1.74E+09 6.32E+08 7.32E+08 2.48E+11 6.02E+10 4.80E+09 3.97E+09 6.64E+10 3.04E+10 8.20E+06 1.44E+07

f8 2.64E+07 3.17E+07 7.99E+06 1.24E+07 3.86E+15 2.33E+15 1.06E+11 2.56E+11 2.32E+07 1.48E+07 7.87E+06 3.25E+07

f9 6.41E+08 7.86E+07 1.64E+08 1.73E+07 6.05E+09 7.39E+08 2.79E+06 2.85E+06 3.53E+08 1.05E+08 4.35E+08 4.46E+07

f10 8.99E+03 2.30E+02 1.48E+04 6.98E+02 9.99E+03 2.63E+02 5.84E+01 3.24E+01 1.09E+04 2.16E+03 1.63E+04 7.09E+02

f11 1.95E+02 2.23E-01 1.99E+02 1.43E-01 2.18E+02 4.20E-01 2.16E+02 4.43E-01 1.99E+02 1.89E-01 2.18E+02 8.88E-01

f12 7.85E+05 1.71E+05 2.72E+05 3.29E+04 2.23E+06 1.75E+05 1.82E+06 1.27E+06 1.20E+06 2.18E+05 3.98E+05 5.18E+04

f13 1.73E+04 1.19E+04 2.07E+03 3.79E+03 1.08E+11 1.43E+10 8.56E+08 1.65E+08 5.20E+03 3.61E+03 7.58E+04 1.52E+04

f14 1.46E+09 1.88E+08 5.07E+08 3.21E+07 8.54E+09 6.83E+08 2.32E+09 2.42E+08 8.59E+08 2.35E+08 1.22E+09 5.96E+07

f15 1.79E+04 2.79E+02 2.97E+04 8.91E+02 1.78E+04 3.71E+02 1.89E+04 3.84E+02 2.36E+04 5.20E+03 1.86E+04 1.39E+03

f16 3.91E+02 4.68E-01 3.97E+02 2.24E-01 3.94E+02 9.86E-01 3.95E+02 6.94E-01 3.97E+02 6.32E-01 3.96E+02 1.86E+00

f17 2.09E+06 3.22E+05 1.02E+06 7.05E+04 3.23E+06 2.71E+05 2.39E+06 4.80E+05 1.85E+06 1.17E+05 1.13E+06 8.43E+04

f18 3.25E+04 1.47E+04 4.74E+03 4.13E+03 2.21E+11 4.21E+10 5.25E+09 6.79E+08 8.96E+03 5.99E+03 4.27E+04 8.43E+03

f19 4.41E+06 8.60E+05 3.75E+06 1.45E+05 6.02E+06 1.26E+06 7.33E+06 1.28E+06 1.38E+01 2.60E+00 2.97E+06 2.84E+05

f20 7.08E+03 1.63E+03 2.61E+03 7.74E+02 3.17E+11 4.47E+10 5.60E+09 4.13E+08 2.33E+03 1.31E+03 3.34E+04 3.12E+03
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Conclusion

The paper reviewed six current decomposition algorithms and implemented

them into a CPSO framework to address large-scale global optimization prob-

lems. The DCPSO algorithm decomposed problems at a fixed rate until opti-

mizing as an n-dimensional PSO. The MCPSO algorithm merged the subsets

together starting at an n-dimensional PSO and ended as a PSO. The RDG

algorithm used prior fitness evaluations to attempt to determine groupings

prior to optimizing and then optimized the problems based on the discov-

ered groupings. The CSC algorithm was the only algorithm to adaptively

determine the grouping sizes based on prior knowledge as well as spend more

time optimizing variables that tended to make bigger improvements to the

fitness. The APEC algorithm used a clustering approach that attempted to

cluster groups dynamically based on prior knowledge without using any fit-

ness evaluations. Finally, the RAG algorithm is a static algorithm that has
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a fixed grouping size and attempts to determine the top-performing groups

and randomly mix the groups not performing well.

The results showed the MCPSO, DCPSO, and the adaptive approach of

the CSC algorithm to perform best in the majority of cases with each of

these algorithms performing very well in almost all cases when compared to

the algorithms chosen. The CSC algorithm overall tended to perform best

in the separable and non-separable problems due to its adaptive features

and ability to spend more time optimizing groupings that perform better

and fewer fitness evaluations on undesirable groupings. The MCPSO and

DCPSO however, tended to perform best in the majority of partially sepa-

rable benchmark problems as a result of the constant regrouping. The RDG

algorithm seemed to be a better performer in the lower dimension problems

but seemed to stagnate as the group sizes got larger and no regrouping of

the variables happen to get it past stagnation. The other two algorithms

performed mediocrely in most tests and only performed the best in very few

if any of the tests.

Given the success of the MCPSO, DCPSO and CSC algorithms future

work should investigate hybrid approaches to these. The adaptive features of

the CSC algorithm and the constant regrouping of the MCPSO and DCPSO

could create better-performing algorithms which are ideal on a vast majority

of large and small scale benchmark problems. Research into a larger number

of algorithms and a variety of PSO parameters could also be looked into to

determine optimal configurations for large scale optimization.
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Table A.1: Results for MCPSO Velocity Clamping Threshold

None 0.1 0.01
Function

Avg St.Dev Avg St.Dev Avg St.Dev

f1 2.57E-02 3.72E-02 4.87E+02 5.11E+02 6.50E+01 2.28E+02

f2 8.29E-01 8.93E-01 1.30E+01 4.12E+00 8.39E+01 1.12E+01

f3 3.06E-06 1.02E-06 5.30E-02 4.54E-02 1.18E+00 1.12E-01

f4 1.12E+12 5.37E+11 1.03E+12 5.93E+11 5.08E+11 2.26E+11

f5 7.12E+08 1.58E+08 6.66E+08 1.19E+08 6.65E+08 1.54E+08

f6 1.99E+07 4.68E+04 1.98E+07 6.91E+04 1.98E+07 6.65E+04

f7 2.78E+05 1.45E+05 1.22E+08 2.19E+08 3.64E+05 1.74E+06

f8 5.40E+07 4.52E+07 1.35E+07 1.29E+07 5.43E+05 2.08E+06

f9 8.96E+07 9.96E+06 7.56E+07 1.20E+07 7.68E+07 8.10E+06

f10 6.90E+03 3.63E+02 6.99E+03 4.44E+02 7.08E+03 3.87E+02

f11 1.98E+02 2.95E-01 1.99E+02 3.08E-01 2.00E+02 3.81E-01

f12 1.74E+04 2.78E+03 4.89E+04 1.59E+04 2.88E+04 3.47E+03

f13 1.56E+03 4.86E+02 8.98E+02 1.54E+03 8.68E+02 2.96E+02

f14 3.10E+08 2.67E+07 2.39E+08 2.81E+07 2.87E+08 2.74E+07

f15 1.40E+04 5.71E+02 1.37E+04 5.44E+02 1.38E+04 6.61E+02

f16 3.97E+02 3.25E-01 3.97E+02 3.93E-01 3.97E+02 4.08E-01

f17 1.17E+05 1.03E+04 1.89E+05 2.14E+04 1.42E+05 1.20E+04

f18 4.47E+03 1.04E+03 2.83E+03 2.10E+03 3.99E+03 1.32E+03

f19 1.12E+06 7.58E+04 1.21E+06 8.62E+04 1.05E+06 5.25E+04

f20 1.42E+03 1.87E+02 1.15E+03 4.68E+02 1.81E+03 2.46E+02
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Table A.2: Results for DCPSO Velocity Clamping Threshold

None 0.1 0.01
Function

Avg St.Dev Avg St.Dev Avg St.Dev

f1 1.15E+02 2.95E+01 5.49E+04 1.36E+05 6.59E+02 5.70E+02

f2 1.02E+00 7.66E-01 1.97E+01 4.85E+00 7.55E+01 1.14E+01

f3 3.08E-02 7.30E-03 3.94E-02 2.23E-02 1.55E+00 3.16E-01

f4 1.36E+12 5.48E+11 3.00E+12 2.67E+12 3.80E+11 2.83E+11

f5 3.13E+08 8.21E+07 3.51E+08 4.52E+07 4.18E+08 4.82E+07

f6 1.05E+07 6.20E+06 1.09E+07 6.60E+06 1.91E+07 1.61E+05

f7 3.20E+04 4.14E+04 2.18E+08 2.28E+08 3.48E+05 7.35E+05

f8 1.28E+10 6.80E+10 4.95E+07 4.19E+07 8.99E+06 2.26E+07

f9 1.26E+08 1.66E+07 2.81E+08 4.69E+07 6.03E+07 6.59E+06

f10 6.47E+03 3.59E+02 4.56E+03 1.48E+02 4.18E+03 9.79E+01

f11 1.98E+02 3.68E-01 1.94E+02 4.83E-01 1.96E+02 6.92E-01

f12 4.01E+04 6.63E+03 1.81E+05 4.65E+04 1.18E+04 1.99E+03

f13 3.06E+05 5.15E+05 1.77E+04 1.01E+04 3.67E+03 2.10E+03

f14 4.00E+08 3.67E+07 8.40E+08 1.03E+08 2.04E+08 1.59E+07

f15 1.28E+04 4.57E+02 8.85E+03 2.39E+02 8.00E+03 1.78E+02

f16 3.96E+02 4.86E-01 3.90E+02 5.62E-01 3.87E+02 3.75E-01

f17 1.79E+05 2.36E+04 7.17E+05 1.36E+05 7.69E+04 6.64E+03

f18 1.09E+06 7.67E+05 4.01E+04 1.74E+04 2.93E+04 1.34E+04

f19 1.94E+06 4.59E+05 1.60E+06 2.81E+05 7.35E+05 7.33E+04

f20 3.59E+04 9.21E+04 3.66E+03 1.52E+03 2.50E+03 1.45E+02
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Table A.3: Results for CSC Velocity Clamping Threshold

None 0.1 0.01
Function

Avg St.Dev Avg St.Dev Avg St.Dev

f1 1.67E+00 4.76E-01 6.77E-01 1.50E-01 5.20E-01 1.05E-01

f2 1.08E-05 1.79E-06 4.44E-06 4.63E-07 5.24E+00 1.41E+00

f3 2.02E-04 2.01E-05 1.22E-04 5.38E-06 1.07E-04 5.01E-06

f4 3.05E+13 9.97E+12 7.90E+12 2.15E+12 9.30E+12 2.72E+12

f5 8.55E+08 1.01E+08 7.44E+08 1.18E+08 7.20E+08 1.54E+08

f6 1.98E+07 4.71E+04 1.99E+07 7.19E+04 1.98E+07 8.84E+04

f7 9.83E+10 7.52E+10 1.16E+10 7.63E+09 2.27E+10 1.50E+10

f8 4.69E+09 4.94E+09 8.01E+07 2.58E+07 7.70E+07 2.30E+07

f9 4.09E+08 5.67E+07 1.51E+08 1.99E+07 1.78E+08 4.91E+07

f10 7.63E+03 4.56E+02 7.65E+03 4.30E+02 5.46E+03 1.16E+03

f11 1.99E+02 2.13E-01 1.98E+02 2.46E-01 1.98E+02 4.37E-01

f12 5.56E+05 1.13E+05 2.29E+05 2.81E+04 3.21E+05 7.57E+04

f13 1.34E+06 1.19E+06 9.45E+02 1.05E+03 4.58E+02 1.10E+02

f14 9.18E+08 1.09E+08 3.69E+08 3.10E+07 4.22E+08 6.43E+07

f15 1.52E+04 5.09E+02 1.52E+04 4.66E+02 1.25E+04 2.41E+03

f16 3.97E+02 2.73E-01 3.97E+02 2.77E-01 3.97E+02 7.12E-01

f17 1.24E+06 2.09E+05 5.17E+05 4.48E+04 5.78E+05 1.57E+05

f18 1.94E+06 1.59E+06 4.01E+03 4.80E+03 1.24E+04 6.10E+03

f19 2.71E+01 3.92E+00 1.24E+02 1.25E+01 3.34E+04 3.25E+03

f20 1.57E+03 5.55E+02 1.71E+03 2.19E+02 8.27E+02 4.51E+02
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Table A.4: Results for APEC Velocity Clamping Threshold

None 0.1 0.01
Function

Avg St.Dev Avg St.Dev Avg St.Dev

f1 8.04E+05 3.76E+05 2.77E+09 6.02E+08 3.95E+09 1.20E+09

f2 1.53E+02 1.99E+01 2.19E+03 2.74E+02 8.91E+02 8.32E+01

f3 1.40E+00 3.41E-01 1.59E+01 7.48E-01 1.18E+01 2.16E-01

f4 1.55E+13 9.98E+12 6.58E+12 2.56E+12 6.98E+13 4.58E+13

f5 4.93E+08 1.05E+08 4.64E+08 7.10E+07 4.78E+08 4.58E+13

f6 1.98E+07 4.28E+05 1.93E+07 4.54E+05 1.89E+07 2.37E+08

f7 4.39E+08 4.37E+08 2.53E+08 2.11E+08 6.41E+10 3.68E+10

f8 4.27E+09 2.05E+10 8.64E+08 2.33E+09 1.20E+14 8.49E+13

f9 7.03E+08 1.23E+08 2.38E+09 5.74E+08 4.19E+09 8.49E+13

f10 6.18E+03 3.33E+02 6.54E+03 2.89E+02 4.94E+03 2.30E+09

f11 2.17E+02 8.22E-01 2.17E+02 7.80E-01 2.11E+02 2.37E+03

f12 3.28E+05 9.79E+04 6.64E+05 2.49E+05 1.32E+06 8.53E+05

f13 2.34E+05 3.68E+05 7.71E+07 2.26E+07 2.87E+09 1.60E+09

f14 1.56E+09 2.30E+08 1.49E+09 2.12E+08 2.92E+09 7.93E+08

f15 1.23E+04 4.55E+02 9.42E+03 2.50E+02 8.56E+03 1.50E+09

f16 3.96E+02 8.66E-01 3.96E+02 1.01E+00 3.91E+02 4.09E+03

f17 1.07E+06 2.17E+05 9.79E+05 1.94E+05 1.47E+06 7.89E+05

f18 1.20E+06 9.75E+05 1.04E+09 1.72E+08 8.50E+09 4.36E+09

f19 8.78E+06 5.02E+06 3.76E+06 9.82E+05 5.49E+06 4.36E+09

f20 6.50E+04 8.61E+04 1.10E+09 1.57E+08 8.99E+09 4.66E+09
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Table A.5: Results for RDG Velocity Clamping Threshold

None 0.1 0.01
Function

Avg St.Dev Avg St.Dev Avg St.Dev

f1 1.79E-07 1.40E-07 8.12E+04 1.65E+05 9.40E-03 6.10E-03

f2 1.99E-01 3.98E-01 1.86E+01 3.63E+00 7.87E+01 9.50E+00

f3 2.01E+01 4.59E-01 1.98E+01 3.70E-02 1.97E+01 2.90E-02

f4 4.07E+14 2.48E+14 9.64E+13 3.51E+13 3.64E+14 1.36E+14

f5 5.75E+08 8.60E+07 4.18E+08 5.92E+07 5.18E+08 8.87E+07

f6 1.53E+07 4.09E+06 1.39E+07 5.50E+06 1.92E+07 2.38E+05

f7 2.63E+11 6.74E+10 9.48E+10 4.46E+10 5.88E+11 2.85E+11

f8 2.51E+15 1.52E+15 8.75E+14 1.65E+15 7.76E+15 2.79E+15

f9 2.11E+09 3.21E+08 1.04E+09 1.88E+08 2.26E+09 5.15E+08

f10 5.26E+03 2.03E+02 4.14E+03 1.70E+02 4.03E+03 1.73E+02

f11 2.18E+02 1.97E+00 2.09E+02 3.65E+00 2.13E+02 7.83E-01

f12 8.37E+05 9.67E+04 4.92E+05 6.18E+04 6.48E+05 6.81E+04

f13 1.78E+10 9.98E+09 2.32E+10 7.13E+09 1.82E+10 4.53E+09

f14 2.04E+09 3.48E+08 1.66E+09 2.20E+08 1.19E+09 1.46E+08

f15 9.63E+03 4.06E+02 7.51E+03 1.90E+02 7.27E+03 2.16E+02

f16 3.96E+02 1.86E+00 3.83E+02 3.75E+00 3.86E+02 8.68E-01

f17 7.94E+05 5.66E+04 7.05E+05 8.46E+04 4.72E+05 4.33E+04

f18 1.32E+09 1.44E+09 5.19E+10 1.43E+10 1.94E+09 9.14E+08

f19 4.68E+06 1.22E+06 2.16E+06 5.62E+05 7.76E+05 1.04E+05

f20 8.12E+12 1.13E+12 9.48E+10 3.03E+10 5.23E+10 1.09E+10
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Table A.6: Results for RAG Velocity Clamping Threshold

None 0.1 0.01
Function

Avg St.Dev Avg St.Dev Avg St.Dev

f1 8.38E+01 1.58E+02 1.47E+09 3.24E+08 1.81E+04 1.22E+04

f2 5.89E+03 2.99E+02 7.30E+03 2.05E+02 6.71E+03 1.41E+02

f3 1.98E+01 3.30E-02 1.94E+01 4.77E-02 1.93E+01 2.95E-02

f4 6.85E+11 3.23E+11 4.60E+12 4.00E+12 3.75E+11 1.60E+11

f5 3.56E+08 6.34E+07 3.69E+08 7.08E+07 3.99E+08 1.08E+08

f6 1.87E+07 4.12E+06 1.89E+07 2.95E+06 1.95E+07 7.42E+05

f7 5.25E+03 4.99E+03 6.03E+08 8.75E+08 5.32E+04 3.94E+04

f8 1.63E+08 4.62E+08 5.58E+07 1.98E+08 8.95E+06 2.94E+07

f9 1.61E+08 2.44E+07 2.33E+09 6.16E+08 6.85E+07 6.42E+06

f10 9.64E+03 2.90E+02 8.32E+03 2.78E+02 8.18E+03 2.91E+02

f11 2.18E+02 2.98E-01 2.16E+02 8.08E-01 2.18E+02 6.65E-01

f12 4.80E+04 1.31E+04 8.52E+05 1.77E+05 2.75E+04 6.72E+03

f13 1.28E+04 2.81E+04 2.77E+07 1.13E+07 2.44E+03 1.86E+03

f14 6.28E+08 9.26E+07 2.00E+09 6.09E+08 2.83E+08 2.78E+07

f15 1.32E+04 6.25E+02 9.24E+03 4.53E+02 9.37E+03 7.81E+02

f16 3.97E+02 4.24E-01 3.93E+02 1.26E+00 3.96E+02 1.08E+00

f17 2.73E+05 4.19E+04 1.10E+06 2.27E+05 1.26E+05 1.78E+04

f18 1.58E+05 2.52E+05 2.98E+08 6.59E+07 7.98E+03 7.18E+03

f19 1.39E+06 2.31E+05 1.61E+06 2.17E+05 7.09E+05 9.03E+04

f20 1.71E+04 4.95E+04 3.13E+08 5.09E+07 4.03E+03 3.52E+02
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