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Abstract

This paper proposes a new dynamic multi-objective optimization algorithm by integrating a

new fitting-based prediction (FBP) mechanism with regularity model-based multi-objective

estimation of distribution algorithm (RM-MEDA) for multi-objective optimization in changing

environments. The prediction-based reaction mechanism aims to generate high-quality pop-

ulation when changes occur, which includes three subpopulations for tracking the moving

Pareto-optimal set effectively. The first subpopulation is created by a simple linear prediction

model with two different stepsizes. The second subpopulation consists of some new sam-

pling individuals generated by the fitting-based prediction strategy. The third subpopulation

is created by employing a recent sampling strategy, generating some effective search indi-

viduals for improving population convergence and diversity. Experimental results on a set of

benchmark functions with a variety of different dynamic characteristics and difficulties illus-

trate that the proposed algorithm has competitive effectiveness compared with some state-

of-the-art algorithms.

1 Introduction

The progress of optimizing multiple mutually conflicting objectives simultaneously and

obtaining a set of tradeoff solutions is regarded as Multi-objective optimization problems

(MOPs) [1], which involves different fields, including controller design [2], weapon selection

[3] and machine learning [4]. Simultaneously, various multiobjective optimization algorithms

have been proposed for solving MOPs successfully. Considering a minimization multiobjective

optimization problem as follows,

min
x2O

FðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fmðxÞÞ
T

ð1Þ

where O ¼
QD

i¼1
½Li;Ui� � RD is the feasible area of the decision space, and F consists ofm

time-varying objective functions. x = (x1, x2, . . ., xD) defines the decision vector involving D
variables, Li and Ui represent the lower and upper bounds of the ith variable xi, respectively.
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For two given decision vectors x and y, if 8j 2 [1,m], fi(x)� fi(y) and 9l 2 [1,m]fl(x)< fl(y),
then, x dominates y regarded as x� y. If a vector x� can dominate any other solutions, x� is

defined as Pareto optimal solution.

However, recent years, there exist an increasing number of multi-objective optimization

problems recognised in various fields, such as scheduling [5, 6], planning [7, 8], resources allo-

cation [9, 10], constrained optimization [11], and machine learning [12], needed to be solved

in dynamic or uncertainties environment, which are named dynamic multi-objective optimi-

zation problems (DMOPs). The main characteristic of this kind of problem is that the con-

straints, the Pareto optimal set (POS) or Pareto-optimal front (POF), and the relevant control

parameters can change dynamically, which brings great challenges to optimization algorithms.

It has attracted a growing attention for exploring efficient optimization algorithms and obtain-

ing high quality optimal solution sets. Although there may exist different classes of dynamic

optimization problems, according to [1], this paper considers the following mathematical

model of DMOPs.

min
x2O

Fðx; tÞ ¼ ðf1ðx; tÞ; f2ðx; tÞ; . . . ; fmðx; tÞÞ
T

ð2Þ

where t is the time instant of the problem.

Compared with MOPs, dynamic dynamic multi-objective optimization problems have two

important features: multiobjectivity and dynamism. It is generally known that multiobjectivity

usually involves multiple conflicting objectives, which means the optimal solution of the prob-

lem will no longer be a single optimal value, but an optimal solution set containing tradeoff

solutions. Dynamism in constraints and/or parameters causes the change of POF or POS and

poses big difficulties to evolutionary algorithms. DMOPs are challenging due to the dynamic

nature. They can be divided into a sequence of MOPs over the course of time. That is, the opti-

mization goal is to obtain a sequence of approximations to the moving POS/POF.

2 Related work

In recent years, much effort has been devoted to designing efficient and effective dynamic

multi-objective evolutionary algorithms (DMOEAs). A widely used framework of DMOEAs

in literature can be described as Algorithm 1. As shown in this framework, the whole proce-

dure of solving DMOPs contains two main components: change detection and multi-objective

algorithms including MOEAs and DMOEAs.

Algorithm 1 The basic framework of DMOEA
1: Initialize time instance t = 1;
2: Generate an initial population Popt;
3: While the termination criterion is not satisfied
4: Change Detection
5: If change is not detected, evolve population using MOEA;
6: Otherwise, evolve population using DMOEA;
7: Return 3.

2.1 Change detection

As a significant component of DMOEAs, change detection is responsible for determining

whether the environment has changed and in turn whether to implement a reaction mecha-

nism. The existing dynamic extraction methods contain two categories: re-evaluating solutions

[13–15] and checking population statistical information [16]. The former is more widely used

in many algorithms because it is simple and easy to implement, but it is likely sensitive to
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noise. In contrast, the latter is robust to noise, but it needs some additional parameters. Each

method has its advantages and limitations for different DMOPs.

2.2 Multi-objective optimization algorithms

Apart from the dynamic reaction mechanism, MOEAs are significant components of solvers

for DMOPs, since DMOPs can be regards as a sequence of MOPs. That is, any MOEAs can be

directly used to evolve the population during the (short) period of any static environments.

As one of the most attractive and popular areas in intelligent computing field, the existing

Multi-objective optimization algorithms can be classified into three categories as follows. The

first class is Pareto ranking-based algorithms, which are designed based on the dominated rela-

tionships among population individuals. Some representative algorithms include the nond-

ominated sorting genetic algorithm II (NSGA-II) [17], and strength Pareto evolutionary algo-

rithm (SPEA2) [18]. Besides that, some classic and recent proposed efficient swarm intelli-

gence algorithms inspired by different nature behaviors have also used to solve MOPs, such as

multi-obejctve particle swarm optimization (MOPSO) [19], Multi-Objective Grasshopper

Optimisation Algorithm (MOGOA) [20], Multi-Objective Multi-Verse Optimizer (MOMVO)

[21], Multi-Objective Ant Lion Optimizer [22], and Multi-objective Salp Swarm Algorithm

(MSSA) [23], and so on. Although the non-dominant ranking strategy can well screen out

excellent individuals, it also produces marginal individuals, which generate negative effect on

the whole optimization process. These algorithms can obtain good local optimal solutions, but

it is difficult to achieve ideal global optimal solutions.

The second class is indicator-Based algorithms, which are designed based on the perfor-

mance indicators. The hypervolume [24], the epsilon indicator and the R2 one are the most

utilized for proposed various algorithms, such as, indicator-based EA (IBEA) [25], S-metric

selection EMO algorithm [26], R2 EMO algorithm (R2EMOA) [27], and approximation-

guided EMO (AGE) [28]. The last class is decomposition-Based algorithms, which aim to

decompose the MOP into some optimization sub-problems and solve them simultaneously.

The most used algorithms are NSGA-III [29, 30], and MOEA based on decomposition

(MOEA/D) [31, 32]. Although this kind of algorithm is efficient, the division of sub-problems

depends on the weight deeply.

2.3 Dynamic multi-objective optimization algorithms

Depending on the frequency or severity of change, changes may present various challenges,

such as the finite computational time or resources to overcome the change, time-varying feasi-

ble region and constraint conditions. Therefore, effective and efficient dynamic multi-objec-

tive optimization algorithms are indeed important. Diversity and convergence are two

important aspects in designing high-quality optimization methods, since the former aims to

prevent the search from local optima whereas the latter helps algorithms to find promising

solutions rapidly. Designing an effective strategy that is able to balance the diversity and con-

vergence is one of the key topics in DMOPs. Existing Dynamic multi-objective optimization

algorithms can be divided into four categories: diversity based algorithms, memory based algo-

rithms, multi-population based algorithms, and prediction based algorithms.

The main purpose of diversity based algorithms is to maintain the search population diver-

sity for avoiding local optima when a change is detected. Recently, a increasing number of

diversity maintenance methods have been proposed. A general framework proposed by Li [33]

maintains the diversity by utilizing hierarchical linkage clustering, which is able to generate

subpopulations with good diversity while avoiding overlapping. Query-based strategy pro-

posed by Chang et al [34] increases the population diversity by providing a guidance to
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particles. Immigration-based strategy aims to prevent local optima and achieve better search

ability, such as hybrid immigration [35], memory-based immigration [36] and elitism-based

immigration [37]. Besides that, hyper-mutation has been employed to combine with the non-

dominated sorting genetic algorithm II (NSGAII) [38] to create two different dynamic ver-

sions for DMOPs.

The main idea of memory based algorithms is to record some historical information, which

can be reused to accelerate the convergence of algorithms whenever a change occurs. Branke

[39] suggests that the best individuals in previous change environments were stored in an

archive firstly, and used to replace some members of the existing population. Goh [40] pro-

posed a strategy that employs an new population to replace the out-of-date archived members,

which integrates competitive and cooperative mechanisms for DMOPs. In [41], memory, local

search and random techniques are integrated, and an adaptive hybrid population management

strategy is proposed by authors. Jiang and Yang [42] used a steady-state manner to respond to

changes. These kinds of algorithms performs well on problems with periodical changing

feature.

The main idea of multi-population based algorithms is that multiple subpopulations can be

advantageous at maintaining diversity. In [43], a self-organizing scouts method is proposed by

dividing the search population into two subpopulations, which are used to search in feasible

regions. Li [44] combined an island model with particle swarm optimization for dealing with

dynamic vehicle routing problems. Yang [45] employs hierarchical clustering to divide the

population into several subpopulations of different sizes for effective diversity maintenance

[46].

Prediction based algorithms aims to predict a possible POF/POS locations of new environ-

ments based on the solutions in previous environments. These algorithms are much popular

in DMOEAs, since prediction-based mechanisms could help tracking the moving POS/POF if

solutions in new environments are well predicted. Muruganantham [47] proposed a DMOEA

by combining Kalman filter with evolutionary methods for solving DMOPs. The multimodal

prediction approach proposed by Rong [48] refers to generate an effective initial population

for the subsequent evolution. Population Prediction Strategy (PPS) [49] proposed by Zhou

et al. is used to predict the manifold of the whole search population by using the univariate

auto-regression (AR) model. Besides that, many other prediction approach have been pro-

posed in different ways, such as multi-directions [50], knee points [51], center points [52], and

boundary points [53].

Most of the existing DMOEAs have been proposed, showing promising performance in

various applications. However, they neglect properties of decision variables, which is an

important part of discovering high-quality search individuals. Simultaneously, according to

[54, 55], curve fitting technique is a classic and popular technique, which can reflect the distri-

bution relationship between variables to a certain extent and predict possible regions or direc-

tions. Motivated by this, this paper proposed a novel method for predicting a high-quality

population based on the distribution and classification characteristics of variables after a

change is detected. The proposed algorithm contains three different parts, firstly, a simple lin-

ear prediction strategy with two different stepsizes is designed to predict non-dominated solu-

tions based on the information of previous environments. The second strategy is proposed by

integrating fitting-based strategy for generating new members and improving the quality of

population based on the probability distribution of variables. The last strategy aims to generate

well-distributed individuals based on the classification features of decision variables. Numeri-

cal results on 14 benchmark functions show that the proposed algorithm performs well on

tracking time-varying POF or POS.
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The following summarizes the organization of this work. Section 2 presents the related

work. The proposed algorithm is provided in Section3. In Section 4, the performance of the

proposed technique is validated and analyzed on a comprehensive set of benchmark functions.

Section 5 gives further discussion about the proposed algorithm. Section 6 concludes the

paper.

3 Proposed DMOEA

This section mainly provides the main content of the proposed algorithm in detail. Like other

predicted algorithms, our hypothesis is that there is sort of similarity between two consecutive

changes. As obtained from the basic framework of the proposed algorithm listed in Algorithm

2, the main idea combines RM-MEDA with a new prediction-based dynamic reaction mecha-

nism, which has three different strategies for predicting a new high-quality search population

that tracks the new POS/POF efficiently and effectively.

Algorithm 2 The overall framework of the proposed algorithm
1: Initialize parameter settings.
2: Initialize and evaluate population (PopGen) and set Gen = 1.
3: If the stop condition is not satisfied.
4: If change detected, go to step 5; otherwise, go to step 10.
5: Generate the first subpopulation (SubPop1) using a linear predic-
tion model.
6: Generate the second subpopulation (SubPop2) based on new fitting-
based strategy.
7: Generate the third subpopulation (SubPop3) by recent proposed sam-
pling strategy [56].
8: Merge these subpopulations MixPop = SubPop1[SubPop2 [ SubPop3.
9: Obtain a population of Popsize by non-dominated sorting the merged
population.
10: Optimize population using RM-MEDA.
11: Gen = Gen + 1, return to 3.

3.1 Linear prediction model

This subsection mainly employs a simple linear prediction model with two different stepsizes

for predicting non-dominated set. From statistical point of view, the geometric center is an

important characteristic and can be used to represent the changing trend of population to

some extent. Here, we compute the moving direction of the center points of the last two conse-

cutive populations and use it to predict the position of the non-dominated members of current

population in the new environment.

Suppose that Pct is the centroid of population (Popt) and Post is the non-dominated sets of

Popt at the time t. Then, the pct can be calculated as follows.

Pct ¼
P

xt2Popt
xt

jPoptj
ð3Þ

where |Popt| is the population size, xt ¼ ðx1
t ; x

2
t ; . . . ; xDt Þ defines the decision vector of a solu-

tion at time t. Then, the moving direction (dirt) of center points at time t can be calculated by

dirt ¼ pct � pct� 1: ð4Þ

Then, the new position of members in Post at time t + 1 can be obtained by dirt and Post
according to the following formula:

Postþ1 ¼ Post þ dirt � step ð5Þ
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where step refers to the moving stepsize along the moving direction of dirt. Here, two different

values of step (i.e., 0.3 and 1.0,) are used, representing a small and large movement of Post,
respectively. Fig 1 illustrates the prediction process.

As shown in Fig 1, pct and pct−1 (black points) are utilized to obtain dirt. Post moves to three

different regions described by Pospr1tþ1 and Pospr2tþ1 using the suggested step values. A combination

of these two solution predictions is more likely to approximate the true POS of population

(Postrtþ1
) at time t+ 1. Algorithm 3 provides the implementation of this prediction strategy.

Two questions may arise here, on the one hand, the motivation about the two-step predic-

tion strategy to produce good individuals. In the ideal environment, The widely used one-step

strategy assumes the change between two continuous times is same to some extent. This proves

effective in various algorithms and we would also like to keep it in our algorithm. However, as

suggested by [38], sometimes a small variation to the population can be very effective. This

inspires us that a smaller stepsize than the previous stepsize would be helpful in creating popu-

lation individuals for environments that do not change significantly. That is, a smaller moving

step may ensure that the predicted solution is much closer to the new POS after a change. As a

result, this work attempts to design a two-step prediction strategy for DMOPs.

On the other hand, how to determine stepsize parameters is a major issue. The proposed

strategy employs two stepsize values (0.3 and 1.0), which represents two different moving lev-

els (small and normal). There are two reasons for this setting. First, step = 1 for the normal

level is set according to fuzzy systems [57], which means that the change is similar to the previ-

ous change (normal changes). Second, the stepsize step = 0.3 for the small level should be

Fig 1. Illustration of linear prediction model.

https://doi.org/10.1371/journal.pone.0254839.g001
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smaller than that for the normal level. The stepsize setting is chosen not only for simplicity but

also by sensitivity analysis as will be detailed in in Section 4.

Algorithm 3 Linear prediction model
1: Retrieve the populations Popt and Popt−1 at time t and t − 1,
respectively;
2: Calculate the population centers according to Eq (2);
3: Predict moving direction according to Eq (3);
4: Generate three subpopulations Pospr1tþ1 and Pospr2tþ1 using Eq (4) with dif-
ferent step values;
5: Save the subpopulations to SubPop1.

3.2 Curve fitting-based strategy

This subsection proposes a curve fitting-based strategy for generating high-quality search indi-

viduals based on the distribution relationship of variables. As suggested in [56], the variables

can be classified into two parts: principal and non-principal parts. We believe the correlation

between principal variables and non-principal variables can be exploited to speed up the

search. For example, if a variable x2 is highly correlated with another variable x1, then we can

generate values for x2 based on the values of x1. As shown in Fig 2, the curve fittings at time

t − 1 and t, denoted CFt−1 and CFt respectively, are computed by a polynomial fitting strategy

on the corresponding non-dominated set. Then, the relationship between variables in the new

environment (CFt+ 1) can be predicted using the last two consecutive CFt−1 and CFt.

movet ¼ CFt þ ðCFt � CFt� 1Þ ð6Þ

Fig 2. Illustration of curve fitting-based strategy.

https://doi.org/10.1371/journal.pone.0254839.g002
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Then, the possible curve fitting characteristic of at time t + 1 can be calculated as

CFtþ1 ¼ CFt þmovet ð7Þ

In addition, individuals in the third subpopulation can be generated using the following

formula,

Indtþ1 ¼ CFtþ1 þ cr � NDp ð8Þ

where cr is the compression radio, which ensures that the newly generated individual sur-

rounds the curve fitting closely. NDp refers to the normal distribution based on the pth vari-

able, since this can make that the newly generated variables meet the characteristics of curve

fitting as much as possible.

The implementation of this strategy is shown in Algorithm 4. Specifically, the the most

principal variable is identified by the correlation matrix of variables, and the other variables

are regards as non-principal variable. Then, for each non-principal variable, the corresponding

values can be predicted by the curve fitting model which uses the values of the principal vari-

able sampled from normal distribution. After, another subpopulation can be created by

concatenating all the variables.

Algorithm 4 Implementation details of Curve fitting-based strategy
1: Find the populations (Popt and Popt−1) at time t and t − 1,
respectively.
2: Compute the correlation matrix for each non-principal variable xi
at time t − 1.
3: Estimate the new curve fitting feature for each xi at time t + 1
according to Eq (7).
4: Create a subpopulation SubPop2 by sampling from the decision space.
5: Calculate the bounds of xi.

4 Experimental studies

This section evaluates the performance of the proposed algorithm through experimental stud-

ies. It includes details about benchmark functions, performance indicators, compared meth-

ods, parameter settings and numerical results.

4.1 Test instances

This work utilizes a set of recently proposed DF problems with various difficulties, such as var-

iable linkage, disconnectivity, irregular POF shapes, and time-dependent geometries. All

parameter settings keep the same with the suggestion according to the literature [58].

4.2 Performance indicators

This study employs three widely used performance indicators described as follows for evaluat-

ing the effectiveness of the proposed algorithm.

4.2.1 Mean Inverted generational distance (MIGD). The first performance indicator is

MIGD, which is utilized to evaluate the convergence and diversity of solutions obtained by an

algorithm, and the mathematical equation is provided as follows [56, 59].

IGDðPOF�t ; POF
ob
t Þ ¼

P
g2POF�t

dðg; POFobt Þ

jPOF�t j
ð9Þ

where POF�t is the true POF solutions, POFobt is a POF approximation, dðg; POFobt Þ is the mini-

mum Euclidian distance between g and the points in POFobt , and jPOF�t j is the number of
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solution in POF�t . Then, the MIGD can be computed as

MIGD ¼
P

t2TIGDðPOF
�
t ; POF

ob
t Þ

jTj
; ð10Þ

where T is a set of times instance and |T| is the total number of changes in a run.

4.2.2 Mean Schott’s Spacing Metric (MSP). The second performance indicator is the

Schott’s spacing metric, which is used to measure the distribution of the obtained solutions

POFobt using the following formula:

SPðPOFobt Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

jPOFobt j � 1
ð
XjPOF

ob
t j

i¼1

ðDi �
�DÞÞ

v
u
u
t ð11Þ

where Di represents the Euclidean distance between the ith point in POFobt and its nearest

point in POFobt . �D is the average value of Di. The MSP can be defined as follows:

MSP ¼
P

t2TSPðPOF
ob
t Þ

jTj
: ð12Þ

4.2.3 Hypervolume metric. The second performance indicator is Hypervolume (HV) [48,

53], which is a important metric for evaluating solutions. Different from the other indicators

mentioned above, HV needs to set a reference vector dominated by any points in the POF�t .

HVt ¼ HVðPOFobt Þ; ð13Þ

whereHVðPOFobt Þ refers to the hypervolume [52] of set POFobt . The reference point for the

computation of hypervolume is (zj + 0.5, j = 1, . . .,m), where zj is the maximum value of the

jth objective of true POF. The MHV can be calculated as follows:

MHV ¼
P

t2THVt
jTj

: ð14Þ

4.2.4 T-test. To determine whether the results obtained by the proposed algorithm are

essentially difference from the results computed by other algorithms, the t-test at a 0.05 signifi-

cance level is employed to check the experimental results of all optimization methods [60]. A

p−value less than 0.05 indicates that the performance of two compared techniques is statisti-

cally different (h = 1), otherwise, there is no significant difference (h = 0). Meanwhile, the bot-

tom of each Table summarizes the comparison results, ‡, † and o indicate that the performance

of FBP is better than, worse than and similar to that of the corresponding algorithm,

respectively.

4.3 Compared algorithms

In this section, several existing approaches are selected to compare with the proposed tech-

nique. A brief description of these algorithms and parameter settings is summarized as

follows.

4.3.1 Population Prediction Strategy (PPS). The main idea of PPS is to divide the PS/PF

into two parts: population center and manifold. Autoregression (AR) model is adopted to pre-

dict the next population center based on a time series of historical population centers.
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Similarly, historical manifolds are also used to predict new manifold. Then, A new population

will be assembled based on the predicted population center and manifold [48].

4.3.2 TrDMOEA. TrDMOEA is an approach integrating transfer learning strategy and

evolutionary algorithms to solve DMOPs. This main idea of this technique is that the agents at

different times have different distributions for generating an effective search population. More

details can be found in the literature [4].

4.3.3 MOE. MOE is a mixture-of-experts-based computation framework with multiple

prediction mechanism for generating robust POS and enhancing the overall prediction quality

in dealing with DMOPs. Experimental results illustrate that MOE has significant performance

with respective to other dynamic optimization algorithms. More details can be found in the lit-

erature [61].

4.3.4 MOEA/D-FD. First-order difference model-based MOEA/D algorithm (MOEA/

D-FD) [62] utilizes historical information to predict the location of the new POS after a change

is detected. The new population is composed of two kinds of solutions: the old solutions and

the predicted ones. The movement of population centroid defines a predicted direction. To

make the new population diversified, evenly-distributed individuals selected from the previous

population are used in the prediction.

4.3.5 MOGOA. The Grasshopper Optimisation Algorithm (GOA) models is proposed

according to the behaviour of grasshopper swarms in nature, and a multi-objective version of

Grasshopper optimization algorithm, MOGOA, is also designed for solving different multi-

objective optimization problems. To enhance the distribution of solutions, an archive and a

roulette wheel selection technique are integrated to the algorithm, and the individuals with

uncrowded distance tend to be deleted for avoiding premature convergence. More details can

be found in the literature [20].

4.3.6 MOMVO. The multi-verse optimization is proposed by imitating the white hole,

black hole and wormhole mechanisms, which correspond to three different search strategies,

exploration, exploitation, and local search, respectively. Meanwhile, a multi-objective ver-

sion of multi-verse optimization, MOMVO, is also designed for solving different multi-

objective optimization problems. In which, a leader selection strategy is utilized to choose

the better agents from the archive, in addition, all the individuals will be ranked based on

crowded distance with its neighbourhoods, and will be selected using the roulette wheel

strategy for maintaining the convergence and diversity. More details can be found in the lit-

erature [21].

4.3.7 MOALO. The ALO algorithm, a new population-based optimization technique, is

proposed by simulating the interaction and hunting behaviors of antlions in nature. Recently,

it is also considered as an extended version, Multi-objective ant lion optimizer (MOALO), in

which the non-dominated relationships and roulette wheel strategy are utilized to generating

promising solutions. In addition, a set of benchmark functions and some constrained engi-

neering design problems are cited to check the performance of MOALO. More details can be

found in the literature [22].

4.3.8 MSSA. The SSA algorithm is designed based on the swarming behavior of salps

when navigating and foraging in oceans for solving various optimization problems. Recently,

it is also considered as an extended version, Multi-objective Salp Swarm Algorithm (MSSA), in

which the guidance solution is selected from a set of non-dominated solutions based on rank-

ing process and roulette wheel selection strategies, and the individuals with low rank tend to

be deleted probability for maintaining the scale of archive. More details can be found in the lit-

erature [23].
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4.4 Parameter settings

The parameters of the MOEAs considered in the experiment were referenced from their origi-

nal papers. Some key parameters in these algorithms were set as follows.

4.4.1 Population size. The population size (N) in all the algorithms was set to 100.

Around 1000 points were uniformly sampled from the true POF for computing the perfor-

mance metrics in both bi- and three-objective cases.

4.4.2 Other parameters. All the parameters in the compared algorithms used the same

settings as in their original studies.

Parameters in FBP: the degree of polynomial fit (dpf) is set to 2, the size of SubPop2 was set

to 0.4N, the parameters of the third strategy are seen [56].

4.4.3 Stopping criterion and the number of executions. Each algorithm terminates after

a prespecified number of generations and should cover all possible changes. To minimize the

effect of static optimization, we gave 50 generations for each algorithm before the first change

occurs. The total number of generations was set to 3nt τt+ 50, which ensures there are 3nt
changes during the evolution. Additionally, each algorithm was executed 25 independent

times on each test instance.

4.4.4 Change detection. For all the algorithms, a maximum number of 10% population

are re-evaluated for change detection.

4.5 Experimental results

The severity of change (nt) and the frequency of change (τt) are two significant parameters in

benchmark functions. To investigate the influence of these parameters on algorithms’ perfor-

mance, they are set to different values (5,10,20) in this section. Tables 1–9 summarize the

numerical results obtained by different algorithms, and the best values are also highlighted in

bold face.

The MIGD results of all the algorithms are recorded in Tables 1–3, and it can be seen that

FBP has the best values compared with its peers for most of the benchmark functions. How-

ever, for two functions DF4 and DF8, FBP is not able to obtain the best value, but the differ-

ence is not large according to the statistical p-values. When the τt is set to 10, FBP generates

the best result on DF1. Meanwhile, for different levels of nt and τt, the proposed technique still

can achieve the best result on majority of the functions. This shows that the designed predic-

tion strategies can generate good population tracking the true POF closely in dynamic

environments.

As shown in Tables 4–6, which summarizes the MHV values of all the algorithms, although

FBP has great better MHV values than the other techniques on a majority of the problems, it is

not effective enough for solving DF5, DF6 and DF11 based on the statistical t − test results. In

addition, MOE has little advantage over the others on DF9 and DF14. Therefore, the MHV

metric further demonstrates that the proposed strategy responds to changes well.

It is observed from Tables 7–9, which lists MSP results obtained by all the algorithms, that

although FBP can obtain the best solution on most of two bi-objective problems, e.g., DF1,

DF5 and DF7, it seems ineffective in a few three objective problems, but the difference is not

significant according to the statistical p-values. MOEA/D-FD obtains best distribution of solu-

tions in other cases. MOEA/D-FD benefits from the even weights in its decomposition

approach that improves the distribution of solutions. On the contrary, the other MOEAs uti-

lizes dominance-based environmental selection approaches, which may not generate as uni-

form solutions as the decomposition-based technique, especially in three-objective problems.

Besides that, well-distributed solutions does not mean that they approximate the true POF

closely. MOEA/D-FD performs better than FBP in terms of MSP, but it is weaker than FBP on
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Table 1. Mean and standard deviation values of MIGD obtained by five algorithm for (nt, τt) = (5,20).

Fun. (nt, τt) MOEA/D-FD TrDMOEA MoE PPS FBP

DF1 (5,20) 1.179e-2(1.764e-4) 1.777e-2(2.139e-3) 6.941e-3(3.613e-4) 3.668e-1(7.186e-2) 1.065e-2(7.992e-4)

p 1.761e-1 6.696e-11 3.339e-3 7.196e-11 -

h 0 1 1 1 -

DF2 (5,20) 1.073e-2(3.404e-4) 6.565e-3(6.454e-4) 1.323e-2(4.886e-4) 2.440e-1(5.131e-2) 4.170e-2(3.022e-3)

p 3.324e-6 1.492e-6 6.356e-5 1.992e-7 -

h 1 1 1 1 -

DF3 (5,20) 4.606e-2(4.499e-3) 5.734e-2(1.981e-2) 1.364e-1(1.182e-4) 1.797e-1(1.494e-1) 1.882e-2(6.951e-3)

p 7.088e-8 4.616e-10 1.067e-7 5.163e-9 -

h 1 1 1 1 -

DF4 (5,20) 1.186e-1(2.085e-3) 5.872e-1(1.742e-3) 1.066e+0(1.578e-3) 1.370e-1(1.003e-2) 9.724e-2(3.504e-3)

p 1.373e-1 2.707e-1 5.494e-11 3.511e-1 -

h 0 0 1 0 -

DF5 (5,20) 2.027e-2(2.061e-4) 2.808e-2(3.792e-4) 1.533e+0(1.063e-3) 3.723e-1(1.041e-1) 1.541e-2(9.571e-4)

p 2.151e-2 5.072e-10 6.735e-1 5.588e-10 -

h 1 1 0 1 -

DF6 (5,20) 4.514e+0(4.384e-1) 9.798e-1(2.154e-1) 2.473e+0(1.437e+0) 6.897e+0(8.883e-1) 4.675e-1(1.882e-2)

p 1.260e-1 6.066e-11 2.838e-1 6.566e-11 -

h 0 1 0 1 -

DF7 (5,20) 8.858e-2(1.863e-2) 3.829e-2(1.287e-3) 5.978e+0(1.076e-2) 6.720e-2(1.938e-2) 1.066e-2(3.048e-4)

p 8.993e-11 4.200e-10 3.020e-11 4.700e-9 -

h 1 1 1 1 -

DF8 (5,20) 5.631e-2(1.418e-3) 8.208e-2(4.023e-4) 1.546e-2(2.405e-4) 4.636e-2(1.662e-3) 3.715e-2(3.864e-4)

p 1.597e-3 2.062e-1 2.170e-1 2.663e-1 -

h 1 0 0 0 -

DF9 (5,20) 8.535e-2(1.959e-2) 9.792e-2(2.423e-3) 1.109e+0(1.391e-3) 5.431e-1(1.111e-1) 9.557e-2(6.669e-3)

p 8.500e-2 8.101e-10 4.062e-2 8.610e-10 -

h 0 1 1 1 -

DF10 (5,20) 1.877e-1(4.411e-2) 2.804e-1(6.160e-3) 1.541e-1(5.677e-3) 1.931e-1(1.144e-2) 1.078e-1(3.876e-3)

p 2.236e-2 1.628e-2 2.154e-10 5.092e-8 -

h 1 1 1 1 -

DF11 (5,20) 6.514e-1(4.128e-4) 2.846e-1(3.159e-2) 9.541e-2(3.646e-4) 6.691e-1(2.447e-3) 6.574e-1(1.225e-3)

p 2.905e-1 7.652e-5 6.528e-8 2.581e-1 -

h 0 1 1 0 -

DF12 (5,20) 8.731e-1(3.021e-2) 3.266e-1(1.545e-2) 2.904e-1(1.510e-3) 3.123e-1(1.151e-2) 2.794e-1(6.227e-3)

p 5.533e-8 3.367e-5 5.494e-11 5.555e-2 -

h 1 1 1 0 -

DF13 (5,20) 2.530e-1(1.364e-2) 1.659e-1(2.258e-3) 2.522e+0(1.163e-2) 4.148e-1(4.258e-2) 1.608e-1(6.489e-3)

p 9.833e-8 3.318e-1 9.919e-11 1.026e-10 -

h 1 0 1 1 -

DF14 (5,20) 1.282e-1(2.850e-3) 7.204e-2(3.136e-4) 1.039e+0(4.048e-3) 1.552e-1(1.963e-2) 5.720e-2(1.533e-3)

p 3.255e-7 2.006e-4 1.287e-9 5.072e-10 -

h 1 1 1 1 -

‡/†/o 8/1/5 9/2/3 8/3/3 10/0/4 -

https://doi.org/10.1371/journal.pone.0254839.t001
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Table 2. Mean and standard deviation values of MIGD obtained by five algorithm for (nt, τt) = (10,10).

Fun. (nt, τt) MOEA/D-FD TrDMOEA MoE PPS FBP

DF1 (10,10) 9.522e-3(1.371e-4) 8.431e-2(9.136e-2) 1.487e-2(1.322e-3) 3.729e-1(6.416e-2) 5.844e-3(2.682e-4)

p 1.606e-6 1.094e-10 3.338e-11 3.348e-11 -

h 1 1 1 1 -

DF2 (10,10) 1.097e-2(2.093e-4) 8.149e-3(5.478e-4) 3.718e-2(2.567e-3) 2.261e-1(4.723e-2) 3.937e-2(4.765e-3)

p 2.126e-4 1.202e-8 3.953e-1 1.698e-8 -

h 1 1 0 1 -

DF3 (10,10) 3.386e-2(2.023e-3) 3.358e-2(1.542e-2) 1.447e-1(9.352e-4) 1.460e-1(1.323e-1) 1.162e-2(5.596e-3)

p 1.311e-8 3.256e-7 5.573e-10 1.777e-10 -

h 1 1 1 1 -

DF4 (10,10) 1.069e-1(1.686e-3) 5.644e-1(1.407e-1) 1.209e+0(3.958e-3) 1.162e-1(1.222e-2) 7.029e-2(2.230e-3)

p 1.221e-2 1.558e-8 3.020e-11 8.500e-1 -

h 1 1 1 0 -

DF5 (10,10) 1.455e-2(2.501e-4) 2.583e-2(4.359e-3) 1.228e+0(2.129e-3) 3.628e-1(9.444e-2) 6.832e-3(7.967e-4)

p 4.686e-8 4.195e-10 3.324e-6 4.504e-11 -

h 1 1 1 1 -

DF6 (10,10) 5.080e+0(5.327e-1) 1.209e+0(2.704e-1) 4.581e+0(6.182e-1) 7.477e+0(7.384e-1) 6.140e-1(4.412e-2)

p 4.675e-2 7.482e-2 1.087e-1 6.695e-11 -

h 1 0 0 1 -

DF7 (10,10) 9.106e-2(1.418e-2) 3.546e-2(9.378e-4) 3.318e+0(1.465e-3) 6.051e-2(1.616e-2) 9.785e-3(4.370e-4)

p 3.020e-11 6.066e-11 3.020e-11 1.329e-10 -

h 1 1 1 1 -

DF8 (10,10) 3.053e-2(2.051e-3) 7.954e-2(7.347e-3) 1.891e-2(6.910e-4) 1.569e-2(1.487e-3) 7.152e-3(5.012e-4)

p 4.504e-11 3.094e-6 6.528e-8 3.183e-3 -

h 1 1 1 1 -

DF9 (10,10) 8.732e-2(1.473e-2) 7.540e-2(1.771e-2) 1.078e+0(3.807e-3) 4.713e-1(1.280e-1) 6.755e-2(5.406e-3)

p 5.298e-1 2.708e-2 3.770e-4 8.153e-11 -

h 0 1 1 1 -

DF10 (10,10) 1.652e-1(3.667e-2) 2.775e-1(1.289e-2) 1.542e-1(4.819e-3) 1.816e-1(1.075e-2) 1.001e-1(3.921e-3)

p 1.628e-2 1.441e-2 7.958e-3 2.015e-8 -

h 1 1 1 1 -

DF11 (10,10) 6.373e-1(3.384e-4) 2.877e-1(1.657e-2) 1.020e-1(1.237e-3) 6.551e-1(2.509e-3) 6.436e-1(1.138e-3)

p 5.395e-1 2.275e-5 8.101e-10 5.493e-1 -

h 0 1 1 0 -

DF12 (10,10) 9.526e-1(1.738e-2) 3.559e-1(4.370e-2) 3.261e-1(4.656e-3) 3.043e-1(9.512e-3) 2.831e-1(1.074e-2)

p 3.831e-5 7.695e-8 2.380e-3 1.494e-1 -

h 1 1 1 0 -

DF13 (10,10) 2.239e-1(5.951e-3) 1.542e-1(7.866e-3) 2.107e+0(1.301e-2) 4.057e-1(2.940e-2) 1.500e-1(4.638e-3)

p 3.770e-4 9.926e-2 3.020e-11 8.153e-11 -

h 1 0 1 1 -

DF14 (10,10) 1.221e-1(4.208e-3) 6.943e-2(3.387e-3) 8.480e-1(3.783e-3) 1.620e-1(2.177e-2) 5.251e-2(1.619e-3)

p 7.727e-2 2.133e-5 4.118e-6 3.820e-10 -

h 0 1 1 1 -

‡/†/o 10/1/3 10/2/2 11/1/2 11/0/3 -

https://doi.org/10.1371/journal.pone.0254839.t002

PLOS ONE Dynamic multi-objective optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0254839 August 3, 2021 13 / 39

https://doi.org/10.1371/journal.pone.0254839.t002
https://doi.org/10.1371/journal.pone.0254839


the other two indicators, i.e., MIGD and MHV, which are more reliable to distinguish between

algorithms in terms of the overall performance.

As described before, it is obvious that the frequency of changes exerts a certain influence on

algorithms’ performance. In three-objective functions, frequent changes increase the difficulty

Table 3. Mean and standard deviation values of MIGD obtained by five algorithm for (nt, τt) = (10,20).

Fun. (nt, τt) MOEA/D-FD TrDMOEA MoE PPS FBP

DF1 (10,20) 6.546e-3(1.322e-4) 5.809e-2(1.091e-3) 7.599e-3(1.148e-3) 2.479e-1(5.558e-2) 6.461e-2(3.306e-4)

p 9.234e-1 5.011e-1 6.765e-5 1.254e-7 -

h 0 0 1 1 -

DF2 (10,20) 9.222e-3(1.670e-4) 8.197e-3(2.152e-5) 1.060e-2(6.531e-4) 1.508e-1(4.644e-2) 3.182e-2(2.665e-3)

p 1.370e-3 7.599e-7 5.322e-3 1.492e-6 -

h 1 1 1 1 -

DF3 (10,20) 9.217e-2(1.145e-3) 8.895e-2(1.175e-3) 1.416e-1(3.469e-4) 1.662e-1(1.457e-1) 7.838e-2(9.461e-3)

p 7.483e-2 5.395e-1 1.383e-2 5.607e-5 -

h 0 0 1 1 -

DF4 (10,20) 4.351e-1(5.528e-3) 5.588e-1(1.801e-2) 1.200e+0(9.368e-4) 4.808e-1(1.193e-2) 4.328e-1(3.871e-3)

p 9.234e-1 7.978e-2 6.283e-6 4.825e-1 -

h 0 0 1 0 -

DF5 (10,20) 2.580e-2(1.771e-4) 3.118e-2(2.894e-4) 1.221e+0(6.439e-4) 1.044e-1(2.204e-2) 2.219e-2(4.738e-4)

p 6.377e-1 1.508e-1 4.060e-2 2.669e-5 -

h 1 0 1 1 -

DF6 (10,20) 3.235e+0(1.072e+0) 1.953e+0(2.570e-1) 3.771e+0(6.838e-1) 4.032e+0(6.981e-1) 3.822e-1(3.328e-2)

p 5.943e-1 2.839e-4 1.958e-1 8.891e-10 -

h 0 1 0 1 -

DF7 (10,20) 1.241e-1(1.096e-2) 7.679e-2(9.822e-3) 3.310e+0(1.900e-4) 8.795e-2(8.222e-3) 5.523e-2(3.420e-4)

p 1.407e-4 2.416e-2 3.020e-11 5.084e-3 -

h 1 0 1 1 -

DF8 (10,20) 1.374e-1(3.063e-3) 8.472e-2(2.789e-5) 1.590e-2(6.270e-4) 1.390e-1(3.522e-3) 1.302e-1(1.222e-3)

p 6.843e-1 1.907e-1 6.356e-5 7.958e-1 -

h 0 0 1 0 -

DF9 (10,20) 7.396e-2(1.394e-3) 6.534e-2(1.396e-2) 1.057e+0(5.904e-4) 2.970e-1(1.167e-1) 5.778e-2(3.320e-3)

p 7.172e-1 9.047e-2 1.031e-2 1.464e-10 -

h 0 0 1 1 -

DF10 (10,20) 3.147e-1(1.227e-2) 2.867e-1(1.412e-2) 2.442e-1(3.273e-3) 2.491e-1(7.535e-3) 2.068e-1(4.280e-3)

p 1.335e-1 9.470e-1 9.000e-1 9.705e-1 -

h 0 0 0 0 -

DF11 (10,20) 7.480e-1(3.787e-4) 2.507e-1(2.641e-2) 9.407e-2(2.561e-4) 7.639e-1(1.988e-3) 7.561e-1(1.703e-3)

p 5.692e-1 1.148e-7 3.020e-11 5.793e-1 -

h 0 1 1 0 -

DF12 (10,20) 9.348e-1(2.987e-2) 3.369e-1(1.431e-2) 3.039e-1(3.915e-3) 3.099e-1(1.016e-2) 3.128e-1(6.493e-3)

p 6.121e-10 6.377e-3 2.002e-6 3.555e-1 -

h 1 1 1 0 -

DF13 (10,20) 2.782e-1(1.351e-2) 1.715e-1(2.208e-3) 2.049e+0(9.606e-3) 2.996e-1(1.908e-2) 1.705e-1(5.669e-3)

p 1.429e-8 3.871e-1 2.610e-10 2.592e-7 -

h 1 0 1 1 -

DF14 (10,20) 1.427e-1(4.208e-3) 7.995e-2(7.074e-3) 8.340e-1(2.587e-3) 1.095e-1(9.542e-3) 6.793e-2(2.561e-3)

p 1.429e-8 4.427e-3 7.394e-1 1.0278e-6 -

h 1 1 0 1 -

‡/†/o 5/1/8 3/2/9 6/5/3 9/0/5 -

https://doi.org/10.1371/journal.pone.0254839.t003
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Table 4. Mean and standard deviation values of MHV obtained by five algorithms for (nt, τt) = (5,20).

Fun. (nt, τt) MOEA/D-FD TrDMOEA MoE PPS FBP

DF1 (5,20) 1.659e+0(7.233e-4) 1.637e+0(2.276e-3) 1.836e-2(9.513e-4) 9.759e-1(7.666e-2) 1.660e+0(4.520e-3)

p 9.117e-1 1.055e-1 6.414e-7 3.497e-9 -

h 0 0 1 1 -

DF2 (5,20) 1.892e+0(8.087e-4) 1.904e+0(8.154e-5) 3.805e-2(8.411e-4) 1.390e+0(8.652e-2) 1.796e+0(8.445e-3)

p 4.444e-7 4.200e-10 7.216e-1 3.324e-6 -

h 1 1 0 1 -

DF3 (5,20) 1.522e+0(2.334e-2) 1.537e+0(5.905e-3) 4.779e-1(3.447e-3) 1.256e+0(2.644e-1) 1.604e+0(1.667e-2)

p 1.273e-2 6.842e-1 3.254e-3 1.091e-5 -

h 1 0 1 1 -

DF4 (5,20) 7.408e+0(7.686e-3) 7.183e+0(5.905e-3) 7.336e-1(7.610e-3) 7.177e+0(6.985e-2) 7.594e+0(1.718e-2)

p 6.952e-1 5.298e-1 4.872e-5 5.692e-1 -

h 0 0 1 0 -

DF5 (5,20) 1.716e+0(5.630e-4) 1.741e+0(4.824e-3) 9.897e+0(8.611e-3) 1.055e+0(1.321e-1) 1.728e+0(2.713e-3)

p 5.971e-5 6.358e-7 6.824e-8 2.154e-10 -

h 1 1 1 1 -

DF6 (5,20) 1.296e+0(5.173e-2) 9.580e-1(2.451e-1) 2.173e+2(1.918e+2) 3.437e-2(3.222e-2) 1.241e+0(1.373e-2)

p 9.705e-1 1.496e-1 8.687e-1 9.050e-8 -

h 0 0 0 1 -

DF7 (5,20) 3.376e+0(1.475e-2) 3.412e+0(9.481e-3) 1.911e+0(9.785e-1) 3.271e+0(5.757e-2) 3.466e+0(2.495e-3)

p 2.052e-3 2.170e-1 7.454e-6 2.266e-3 -

h 1 0 1 1 -

DF8 (5,20) 1.776e+0(7.908e-4) 1.728e+0(5.059e-4) 1.709e-1(7.846e-4) 1.761e+0(4.778e-3) 1.788e+0(8.741e-4)

p 3.644e-2 7.645e-4 3.179e-10 5.368e-2 -

h 1 1 1 0 -

DF9 (5,20) 1.555e+0(2.818e-2) 1.626e+0(7.786e-3) 9.062e+0(1.181e-2) 8.214e-1(1.029e-1) 1.517e+0(1.751e-2)

p 8.500e-1 3.158e-4 7.456e-1 1.777e-10 -

h 0 1 0 1 -

DF10 (5,20) 1.357e+0(9.566e-3) 1.370e+0(2.002e-2) 5.961e-1(1.547e-1) 1.067e+0(3.106e-2) 1.377e+0(9.617e-3)

p 5.201e-1 7.287e-3 8.246e-10 2.602e-8 -

h 0 1 1 1 -

DF11 (5,20) 2.960e-1(1.461e-3) 8.041e-1(5.668e-2) 4.182e+0(2.323e-2) 3.386e-1(4.894e-3) 3.570e-1(2.654e-3)

p 1.488e-1 1.247e-4 2.604e-1 6.100e-1 -

h 0 1 0 0 -

DF12 (5,20) 3.262e+0(3.577e-2) 3.561e+0(1.336e-3) 2.403e+0(1.292e-1) 3.084e+0(3.766e-2) 3.368e+0(1.022e-2)

p 9.117e-1 1.096e-5 4.674e-6 1.041e-4 -

h 0 1 1 1 -

DF13 (5,20) 6.736e+0(1.178e-2) 7.080e+0(3.604e-2) 3.744e+2(1.391e+2) 5.536e+0(2.734e-1) 7.155e+0(3.007e-2)

p 1.370e-3 1.907e-1 5.476e-10 9.063e-8 -

h 1 0 1 1 -

DF14 (5,20) 9.132e-1(4.500e-3) 1.115e+0(1.136e-2) 3.049e+1(8.788e-1) 8.826e-1(3.799e-2) 1.072e+0(2.612e-3)

p 1.087e-1 7.506e-1 2.375e-2 3.032e-2 -

h 0 0 1 1 -

‡/†/o 5/1/8 3/4/7 8/2/4 11/0/3 -

https://doi.org/10.1371/journal.pone.0254839.t004
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Table 5. Mean and standard deviation values of MHV obtained by five algorithms for (nt, τt) = (10,10).

Fun. (nt, τt) MOEA/D-FD TrDMOEA MoE PPS FBP

DF1 (10,10) 1.661e+0(3.713e-4) 1.664e+0(1.427e-1) 4.188e-2(2.920e-3) 9.604e-1(7.314e-2) 1.668e+0(9.101e-4)

p 1.857e-9 4.075e-11 3.432e-10 1.174e-9 -

h 1 1 1 1 -

DF2 (10,10) 1.892e+0(5.494e-4) 1.900e+0(1.105e-3) 1.116e-1(9.048e-3) 1.423e+0(8.355e-2) 1.798e+0(1.307e-2)

p 2.610e-10 6.066e-11 4.210e-11 2.572e-7 -

h 1 1 1 1 -

DF3 (10,10) 1.559e+0(1.185e-2) 1.611e+0(4.851e-2) 4.200e-1(6.448e-3) 1.321e+0(2.166e-1) 1.614e+0(1.295e-2)

p 8.663e-5 3.368e-5 6.211e-9 1.430e-5 -

h 1 1 1 1 -

DF4 (10,10) 7.400e+0(3.674e-3) 7.528e+0(5.462e-1) 7.516e-1(1.778e-2) 7.230e+0(7.289e-2) 7.588e+0(1.027e-2)

p 9.470e-1 1.858e-1 5.414e-8 5.106e-1 -

h 0 0 1 0 -

DF5 (10,10) 1.720e+0(4.886e-4) 1.753e+0(1.809e-2) 7.931e+0(9.442e-3) 1.067e+0(1.035e-1) 1.734e+0(1.575e-3)

p 5.072e-10 6.466e-11 4.504e-10 6.696e-11 -

h 1 1 1 1 -

DF6 (10,10) 1.231e+0(8.906e-3) 1.115e+0(7.465e-2) 3.577e+2(6.934e+1) 2.707e-2(2.205e-2) 1.214e-1(3.713e-2)

p 1.511e-7 4.969e-9 6.751e-9 1.931e-7 -

h 1 1 1 1 -

DF7 (10,10) 3.374e+0(1.306e-2) 3.426e+0(1.283e-2) 1.805e+0(2.524e+0) 3.283e+0(5.049e-2) 3.465e+0(2.298e-3)

p 6.952e-1 1.120e-1 5.799e-5 8.315e-3 -

h 0 0 1 1 -

DF8 (10,10) 1.774e-2(5.440e-4) 1.735e+0(1.954e-2) 1.739e-1(2.639e-3) 1.750e+0(6.110e-3) 1.784e+0(1.653e-3)

p 9.117e-1 3.207e-7 8.314e-1 2.707e-1 -

h 0 1 0 0 -

DF9 (10,10) 1.548e+0(2.561e-2) 1.645e+0(4.368e-2) 8.884e+0(4.240e-2) 8.946e-1(1.307e-1) 1.571e+0(1.172e-2)

p 1.734e-9 8.516e-11 1.354e-9 4.504e-11 -

h 1 1 1 1 -

DF10 (10,10) 1.358e+0(1.102e-2) 1.908e+0(1.365e-3) 1.140e+0(3.321e-1) 1.087e+0(2.755e-2) 1.379e+0(1.174e-2)

p 4.733e-1 2.754e-3 6.414e-1 1.174e-9 -

h 0 1 0 1 -

DF11 (10,10) 3.097e-1(1.089e-3) 7.456e-1(4.820e-3) 4.339e+0(6.078e-2) 3.514e-1(5.745e-3) 3.714e-1(2.397e-3)

p 2.052e-1 4.978e-4 4.604e-5 5.493e-1 -

h 0 1 1 0 -

DF12 (10,10) 3.414e-1(1.211e-2) 3.560e+0(1.743e-5) 2.306e+0(5.445e-1) 3.200e+0(4.098e-2) 3.458e+0(1.013e-2)

p 7.394e-1 1.418e-5 8.726e-7 2.154e-6 -

h 0 1 1 1 -

DF13 (10,10) 6.674e+0(9.605e-3) 7.044e+0(3.101e-2) 3.067e+0(3.395e-2) 5.573e+0(2.023e-1) 7.105e+0(2.803e-2)

p 1.953e-3 1.004e-3 5.498e-8 5.186e-7 -

h 1 1 1 1 -

DF14 (10,10) 9.175e-1(7.023e-3) 1.116e+0(1.702e-2) 2.379e+1(8.617e-1) 8.552e-1(4.905e-2) 1.073e+0(1.995e-3)

p 9.334e-2 7.172e-1 4.350e-3 1.564e-2 -

h 0 0 1 1 -

‡/†/o 5/2/7 4/7/3 7/5/2 11/0/3 -

https://doi.org/10.1371/journal.pone.0254839.t005
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Table 6. Mean and standard deviation values of MHV obtained by five algorithms for (nt, τt) = (10,20).

Fun. (nt, τt) MOEA/D-FD TrDMOEA MoE PPS FBP

DF1 (10,20) 1.585e+0(5.552e-4) 1.534e+0(2.841e-3) 1.808e-2(2.391e-3) 1.498e+0(1.010e-1) 1.592e+0(1.755e-3)

p 6.972e-3 1.252e-7 8.214e-8 3.646e-8 -

h 1 1 1 1 -

DF2 (10,20) 1.896e+0(3.873e-4) 1.901e+0(4.106e-4) 2.995e-2(1.905e-3) 1.582e+0(8.767e-2) 1.822e+0(7.472e-3)

p 7.697e-4 4.686e-8 8.562e-7 8.292e-6 -

h 1 1 1 1 -

DF3 (10,20) 1.461e+0(1.215e-2) 1.520e+0(1.832e-2) 4.048e-1(3.253e-3) 1.312e+0(2.375e-1) 1.521e+0(2.277e-2)

p 7.088e-8 1.013e-6 7.257e-11 6.121e-10 -

h 1 1 1 1 -

DF4 (10,20) 7.850e+0(4.671e-3) 7.782e+0(2.463e-2) 6.952e-1(4.648e-3) 7.671e+0(6.295e-2) 7.984e+0(1.579e-2)

p 8.073e-1 8.534e-1 4.467e-7 6.375e-1 -

h 0 0 1 0 -

DF5 (10,20) 1.718e+0(4.654e-4) 1.741e+0(2.519e-4) 7.890e+0(4.997e-3) 1.536e+0(4.837e-2) 1.732e+0(1.038e-3)

p 6.356e-5 3.835e-6 5.671e-5 2.034e-9 -

h 1 1 1 1 -

DF6 (10,20) 1.693e+0(6.972e-3) 9.867e-1(7.302e-2) 2.827e+2(8.503e+1) 1.983e-1(1.478e-1) 1.699e+0(1.579e-2)

p 2.457e-1 3.279e-6 2.414e-6 1.654e-8 -

h 0 1 1 1 -

DF7 (10,20) 3.295e+0(1.129e-2) 3.285e+0(3.334e-2) 1.743e+1(1.940e+0) 3.219e+0(3.223e-2) 3.378e+0(3.420e-4)

p 5.084e-3 1.171e-2 9.341e-4 6.549e-4 -

h 1 1 1 1 -

DF8 (10,20) 1.775e+0(7.223e-4) 1.724e+0(3.578e-3) 1.715e-1(7.671e-4) 1.760e+0(5.633e-3) 1.786e+0(1.258e-3)

p 2.170e-1 2.530e-4 7.338e-4 3.112e-1 -

h 0 1 1 0 -

DF9 (10,20) 1.593e+0(2.881e-2) 1.632e+0(3.032e-2) 8.619e+0(2.569e-2) 1.161e+0(1.610e-1) 1.606e+0(9.745e-3)

p 4.464e-1 7.562e-3 6.751e-9 2.372e-10 -

h 0 1 1 1 -

DF10 (10,20) 1.676e+0(9.811e-3) 1.595e+0(4.367e-2) 6.541e-1(8.160e-2) 1.606e+0(2.226e-2) 1.759e+0(6.948e-3)

p 5.493e-1 3.112e-1 5.214e-3 3.183e-1 -

h 0 0 1 0 -

DF11 (10,20) 1.730e-1(6.925e-4) 8.559e-2(1.093e-2) 4.157e+0(2.013e-2) 2.013e-1(4.002e-3) 2.094e-1(3.150e-3)

p 2.051e-3 3.780e-7 4.211e-7 5.011e-1 -

h 1 0 1 0 -

DF12 (10,20) 3.454e+0(3.233e-2) 3.558e+0(1.486e-3) 1.826e+0(1.742e-1) 3.208e+0(3.708e-2) 3.470e+0(5.415e-3)

p 9.626e-2 4.857e-5 3.517e-5 1.249e-5 -

h 0 1 1 1 -

DF13 (10,20) 6.847e+0(1.276e-2) 7.208e+0(5.115e-2) 2.924e+2(1.759e+2) 6.398e+0(1.300e-1) 7.277e+0(2.841e-2)

p 7.200e-5 5.298e-1 5.917e-5 3.571e-6 -

h 1 0 1 1 -

DF14 (10,20) 9.242e-1(8.952e-3) 1.098e+0(7.441e-3) 2.210e+1(7.654e-1) 1.015e+0(1.820e-2) 1.100e+0(2.159e-3)

p 1.501e-2 9.352e-1 2.341e-3 2.398e-1 -

h 1 0 1 0 -

‡/†/o 7/1/6 5/4/5 9/5/0 9/0/5 -

https://doi.org/10.1371/journal.pone.0254839.t006
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Table 7. Mean and standard deviation values of MSP obtained by five algorithms for (nt, τt) = (5,20).

Fun. (nt, τt) MOEA/D-FD TrDMOEA MoE PPS FBP

DF1 (5,20) 9.007e-3(1.134e-4) 1.482e-2(7.141e-3) 4.320e-3(9.857e-5) 1.002e-1(3.494e-2) 1.141e-2(3.280e-3)

p 3.183e-1 7.616e-3 5.714e-1 1.094e-10 -

h 0 1 0 1 -

DF2 (5,20) 1.142e-2(2.119e-4) 8.111e-2(5.302e-2) 8.417e-3(1.976e-4) 7.540e-2(3.698e-2) 1.440e-1(1.658e-2)

p 3.020e-11 1.373e-1 3.674e-5 5.188e-2 -

h 1 0 1 0 -

DF3 (5,20) 1.180e-2(6.091e-4) 1.914e-1(5.276e-2) 4.079e-2(2.568e-4) 6.683e-1(4.728e-1) 2.982e-2(1.264e-2)

p 8.684e-3 8.838e-7 6.414e-1 1.094e-10 -

h 1 1 0 1 -

DF4 (5,20) 8.899e-2(8.435e-3) 1.926e-1(1.559e-3) 1.538e-2(3.186e-4) 2.953e+0(8.708e+0) 1.441e-1(6.296e-2)

p 8.120e-4 8.469e-4 4.642e-4 8.684e-3 -

h 1 1 1 1 -

DF5 (5,20) 1.036e-2(1.994e-4) 2.973e-2(1.921e-2) 2.171e-2(6.409e-3) 3.986e-1(2.958e-1) 2.213e-2(6.724e-3)

p 1.031e-2 6.401e-1 7.380e-1 4.182e-9 -

h 1 0 0 1 -

DF6 (5,20) 2.009e-1(5.631e-2) 3.859e+0(1.792e+0) 6.104e-1(1.298e-1) 6.470e+1(4.073e+1) 2.831e+0(4.179e-1)

p 3.474e-10 1.054e-3 4.579e-4 9.533e-7 -

h 1 1 1 1 -

DF7 (5,20) 2.961e-2(1.732e-3) 1.372e+3(5.626e+1) 1.488e+1(1.146e+0) 2.068e-2(3.954e-3) 7.480e-3(2.149e-4)

p 3.020e-11 4.504e-11 5.641e-10 2.154e-10 -

h 1 1 1 1 -

DF8 (5,20) 1.730e-2(7.035e-4) 6.123e-2(4.043e-2) 1.630e-2(1.159e-3) 7.443e-2(2.676e-2) 2.027e-2(5.085e-3)

p 1.537e-1 6.412e-1 3.587e-1 1.407e-4 -

h 0 0 0 1 -

DF9 (5,20) 1.156e-2(1.397e-3) 2.522e-1(8.904e-2) 3.625e-2(2.658e-3) 8.843e-1(4.800e-1) 2.286e-2(4.963e-2)

p 3.020e-11 2.770e-1 8.502e-1 3.831e-5 -

h 1 0 0 1 -

DF10 (5,20) 3.024e-2(1.648e-2) 3.644e-1(1.845e-1) 2.684e-2(1.431e-3) 7.955e-1(2.165e-1) 9.794e-1(1.545e-3)

p 3.020e-11 9.593e-11 1.249e-6 1.003e-3 -

h 1 1 1 1 -

DF11 (5,20) 2.413e-2(4.173e-4) 7.066e-2(1.358e-2) 6.072e-2(3.346e-4) 5.470e-2(4.152e-3) 8.273e-2(1.377e-2)

p 3.020e-11 4.503e-7 2.178–9 5.678e-1 -

h 1 1 1 0 -

DF12 (5,20) 1.874e-2(8.696e-3) 3.253e-1(9.878e-3) 5.243e-2(1.158e-3) 7.505e-1(1.077e-1) 6.305e-1(2.762e-2)

p 3.020e-11 1.070e-9 8.245e-8 8.500e-2 -

h 1 1 1 0 -

DF13 (5,20) 1.562e-1(4.104e-3) 3.645e-1(1.788e-1) 4.294e-1(4.751e-2) 2.587e+0(7.769e-1) 9.457e-1(3.241e-2)

p 6.912e-4 4.553e-1 6.241e-3 1.167e-5 -

h 1 0 1 1 -

DF14 (5,20) 1.658e-2(5.116e-4) 3.095e-1(5.030e-2) 1.201e-1(1.787e-3) 3.700e-1(1.458e-1) 6.810e-1(1.404e-2)

p 3.020e-11 6.787e-2 9.271e-10 1.297e-1 -

h 1 0 1 0 -

‡/†/o 4/7/2 5/3/6 1/8/5 9/1/4 -

https://doi.org/10.1371/journal.pone.0254839.t007
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Table 8. Mean and standard deviation values of MSP obtained by five algorithms for (nt, τt) = (10,10).

Fun. (nt, τt) MOEA/D-FD TrDMOEA MoE PPS FBP

DF1 (10,10) 8.153e-3(1.007e-4) 1.155e-2(6.465e-3) 6.736e-3(2.778e-4) 1.110e-1(3.643e-2) 5.810e-3(1.984e-3)

p 3.020e-11 1.410e-9 7.515e-10 7.389e-11 -

h 1 1 1 1 -

DF2 (10,10) 1.157e-2(2.434e-4) 9.109e-2(1.584e-2) 1.407e-2(1.274e-3) 7.791e-2(2.159e-2) 1.309e-1(2.166e-2)

p 3.020e-11 1.453e-1 2.017e-1 1.120e-1 -

h 1 0 0 0 -

DF3 (10,10) 1.488e-2(4.903e-4) 1.934e-1(1.176e-1) 3.426e-2(4.130e-4) 5.324e-1(3.303e-1) 1.426e-2(7.014e-3)

p 3.020e-11 1.302e-3 6.717e-8 8.153e-11 -

h 1 1 1 1 -

DF4 (10,10) 9.628e-2(9.741e-3) 2.801e-1(2.005e-2) 1.707e-2(7.243e-4) 6.327e-1(2.152e+0) 7.809e-2(3.562e-2)

p 7.245e-2 2.283e-2 5.207e-3 1.681e-4 -

h 0 1 1 1 -

DF5 (10,10) 1.015e-2(1.539e-4) 2.073e-1(1.432e-1) 2.565e-2(7.398e-3) 3.102e-1(1.535e-1) 9.507e-3(3.978e-3)

p 3.020e-11 3.097e-1 3.418e-10 1.329e-10 -

h 1 0 1 1 -

DF6 (10,10) 1.569e-1(2.206e-2) 3.678e+0(3.714e-1) 6.180e-1(1.584e-1) 7.450e+1(3.365e+1) 9.134e+0(4.567e-1)

p 3.690e-11 3.010e-7 8.715e-9 5.106e-1 -

h 1 1 1 0 -

DF7 (10,10) 2.810e-2(7.358e-4) 1.906e+2(1.134e+1) 1.351e+1(2.711e+0) 1.812e-2(2.106e-3) 7.677e-3(2.650e-4)

p 3.770e-4 4.616e-10 6.185e-7 6.121e-10 -

h 1 1 1 1 -

DF8 (10,10) 1.951e-2(8.917e-3) 1.360e-1(1.541e-1) 2.326e-2(4.328e-3) 9.125e-2(3.940e-2) 1.933e-2(4.811e-3)

p 5.462e-6 1.759e-1 5.971e-5 2.597e-5 -

h 1 0 1 1 -

DF9 (10,10) 1.168e-2(1.170e-3) 4.862e-1(1.173e-1) 5.036e-2(8.679e-3) 6.686e-1(3.574e-1) 1.893e-1(3.860e-2)

p 3.020e-11 3.790e-1 4.065e-10 1.606e-6 -

h 1 0 1 1 -

DF10 (10,10) 3.947e-2(2.235e-2) 3.057e-1(1.941e-2) 3.375e-2(4.431e-3) 9.253e-1(2.448e-1) 9.422e-1(1.463e-2)

p 3.020e-11 4.349e-11 2.107e-9 2.608e-2 -

h 1 1 1 1 -

DF11 (10,10) 2.395e-2(3.900e-4) 1.288e-1(1.769e-2) 6.122e-2(8.664e-4) 5.418e-2(3.689e-3) 7.100e-2(1.135e-2)

p 3.020e-11 7.631e-9 1.303e-1 7.845e-1 -

h 1 1 0 0 -

DF12 (10,10) 1.097e-2(6.747e-3) 4.197e-1(7.550e-2) 5.162e-2(2.343e-3) 7.576e-1(1.038e-1) 6.442e-1(3.084e-2)

p 3.020e-11 1.157e-7 7.551e-9 4.515e-2 -

h 1 1 1 1 -

DF13 (10,10) 1.507e-1(3.759e-3) 5.447e-1(1.341e-1) 3.777e-1(6.890e-2) 2.267e+0(9.289e-1) 9.128e-1(3.035e-2)

p 2.433e-5 4.376e-1 5.517e-1 3.831e-5 -

h 1 0 0 1 -

DF14 (10,10) 1.634e-1(4.688e-4) 4.563e-1(1.826e-1) 1.097e-1(1.957e-3) 3.328e-1(1.062e-1) 6.349e-1(1.172e-2)

p 3.020e-11 8.187e-1 2.657e-11 1.494e-1 -

h 1 0 1 0 -

‡/†/o 5/8/1 5/3/6 5/6/3 9/1/4 -

https://doi.org/10.1371/journal.pone.0254839.t008
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Table 9. Mean and standard deviation values of MSP obtained by five algorithms for (nt, τt) = (10,20).

Fun. (nt, τt) MOEA/D-FD TrDMOEA MoE PPS FBP

DF1 (10,20) 8.483e-3(1.011e-4) 3.311e-2(1.079e-2) 4.070e-3(6.737e-5) 6.887e-2(2.043e-2) 7.835e-3(3.307e-3)

p 2.433e-5 4.205e-2 3.040e-9 2.669e-9 -

h 1 1 1 1 -

DF2 (10,20) 1.110e-2(2.392e-4) 2.654e-2(2.991e-3) 7.301e-3(2.132e-4) 7.160e-2(3.515e-2) 1.987e-1(2.254e-2)

p 3.020e-11 1.157e-7 3.564e-11 6.913e-4 -

h 1 1 1 1 -

DF3 (10,20) 1.166e-2(4.839e-4) 4.869e-2(4.307e-2) 3.348e-2(1.695e-4) 3.768e-1(2.157e-1) 2.138e-2(1.245e-2)

p 6.765e-5 8.722e-7 7.571e-6 1.957e-10 -

h 1 1 1 1 -

DF4 (10,20) 1.207e-1(8.165e-3) 3.124e-1(1.519e-1) 1.573e-2(2.944e-4) 2.843e+0(5.168e+0) 9.384e-2(4.569e-2)

p 1.108e-6 1.659e-1 8.105e-1 6.203e-4 -

h 1 0 0 1 -

DF5 (10,20) 9.809e-3(1.202e-4) 4.026e-2(1.164e-2) 1.887e-2(3.624e-3) 1.012e-1(5.111e-2) 9.622e-3(3.506e-3)

p 6.912e-4 7.283e-1 5.650e-3 1.287e-9 -

h 1 0 1 1 -

DF6 (10,20) 1.174e-1(2.998e-2) 4.886e+0(2.724e-1) 2.613e-1(4.861e-2) 4.765e+1(2.884e+1) 1.955e+0(3.041e-1)

p 1.777e-10 4.730e-6 1.662e-10 1.411e-9 -

h 1 1 1 1 -

DF7 (10,20) 1.865e-2(1.285e-3) 1.164e+3(1.147e+3) 1.384e+1(1.939e+0) 1.673e-2(1.982e-3) 6.568e-3(2.962e-4)

p 3.020e-11 3.338e-11 3.267e-11 7.119e-9 -

h 1 1 1 1 -

DF8 (10,20) 1.848e-2(1.100e-3) 7.476e-2(3.271e-2) 1.801e-2(3.692e-3) 1.015e-1(5.671e-2) 1.798e-2(7.534e-3)

p 4.675e-2 7.197e-5 6.581e-1 4.311e-8 -

h 1 1 0 1 -

DF9 (10,20) 1.054e-2(8.937e-4) 2.816e-1(8.860e-2) 3.886e-2(6.564e-3) 3.955e-1(1.687e-1) 5.778e-2(3.320e-3)

p 7.389e-11 1.453e-1 3.627e-2 3.778e-2 -

h 1 0 1 1 -

DF10 (10,20) 4.028e-2(1.551e-2) 3.042e-1(1.883e-2) 2.762e-2(1.463e-3) 1.060e+0(2.206e-1) 1.059e+0(8.679e-2)

p 3.020e-11 4.616e-10 2.374e-10 1.260e-1 -

h 1 1 1 0 -

DF11 (10,20) 2.347e-2(4.776e-4) 6.834e-2(1.956e-3) 6.086e-2(6.000e-4) 4.900e-2(2.209e-3) 5.014e-2(2.631e-3)

p 3.020e-11 1.330e-10 2.005e-10 7.618e-1 -

h 1 1 1 0 -

DF12 (10,20) 1.878e-2(1.032e-2) 2.425e-1(5.327e-2) 5.230e-2(2.110e-3) 7.050e-1(1.003e-1) 6.001e-1(2.135e-2)

p 3.020e-11 9.919e-11 8.601e-9 4.841e-2 -

h 1 1 1 1 -

DF13 (10,20) 1.661e-1(3.742e-3) 4.874e-1(4.391e-2) 3.324e-1(5.423e-2) 1.110e+0(3.715e-1) 2.025e-1(1.381e-2)

p 5.493e-1 5.462e-9 6.881e-1 2.610e-10 -

h 0 1 0 1 -

DF14 (10,20) 1.819e-2(5.114e-4) 2.086e-1(4.616e-2) 1.014e-1(9.106e-4) 1.491e-1(3.352e-2) 3.882e-1(1.177e-2)

p 3.020e-11 1.114e-3 4.518e-4 1.337e-5 -

h 1 1 1 1 -

‡/†/o 5/9/0 7/4/3 4/7/3 10/2/2 -

https://doi.org/10.1371/journal.pone.0254839.t009
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of finding high-quality approximations to the POF, as shown by the large MIGD and MHV

results recorded in Tables 1–9, respectively. Overall, FBP seems less sensitive to the frequency

and severity of change, as can be observed from its gradual improvement on the three mea-

sures when τt and nt increase in most cases, for which the compared algorithms have drastic

changes in their performance.

Fig 3 presents some convergence graphs of the mean IGD values for a majority of the

benchmark functions. It is obvious that FBP shows more stable ability and recovers faster from

dynamic changes in most case, thereby gaining higher convergence process compared with the

others. For DF10, FBP does not perform well for the first a few environments, but it has signifi-

cant advantage over its peers in later environments. The overall performance of FBP is better

than the others on DF8.

Figs 4–7 plot some POF approximation on DF3, DF5, DF7 and DF8, which are intuitive

representations of the solutions. It is obvious that FBP performs better than the compared

Fig 3. Mean IGD curves for different problems with nt = 10 and τt = 1.

https://doi.org/10.1371/journal.pone.0254839.g003
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algorithms. The approximations demonstrate clearly that FBP has excellent tracking ability in

varying environments, but it may generate some boundary individuals in DF8.

Apart from the above analysis, to investigate the performance of the proposed dynamic

dynamic multiobjective algorithm further, some recent MO algorithms (MOGOA, MOMVO,

MOALO and MSSA) are employed for comparisons. They are equipped with the same reac-

tion mechanism used in FBP, Tables 10–12 record the simulation results including mean val-

ues, standard deviation and t-test values. It can be seen that FBP outperforms the compared

algorithms on the majority of test problems based on MIGD and MHV results, and the p-val-

ues summarized in the bottom of Tables also indicate that the differences among them are sig-

nificant. For the MSP, the advantages of the algorithm are not obvious on the three functions

Fig 4. POF approximations of five algorithms for DF3 with nt = 10 and τt = 10.

https://doi.org/10.1371/journal.pone.0254839.g004
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(DF2, DF11 and DF13), but the p-values show that the differences among them are not signifi-

cant. Totally, FBP is able to generate competitive results with respective to other compared

approaches.

5 Discussion

5.1 Component analysis

As mentioned before, the proposed strategy contains three different key components. This

subsection aims to discuss the role that each component plays in dealing with dynamic envi-

ronment. Specifically, to demonstrate the importance of the linear prediction model with two

Fig 5. POF approximations of five algorithms for DF5 with nt = 10 and τt = 10.

https://doi.org/10.1371/journal.pone.0254839.g005
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different stepsizes, a one step prediction model is utilized to replace the proposed two steps

strategy for predicting non-dominated solutions. This is, the step value is set to one (step = 1),

which is a common setting in most existing prediction-based techniques, and the variant is

named FBPV1. To demonstrate that the fitting-based strategy has important effect on the pro-

posed strategy, FBPV2 is designed by removing the sampling strategy; in the other words,

FBPV2 just has two prediction strategies. Similarly, to study the role of the third strategy, FBP

is also modified by excluding the reference sampling strategy, called FBPV3.

These three variants are compared with the original FBP, and Table 13 report the corre-

sponding computing results. The following discusses the influence of each component in

detail.

Fig 6. POF approximations of five algorithms for DF7 with nt = 10 and τt = 10.

https://doi.org/10.1371/journal.pone.0254839.g006
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5.1.1 Linear prediction mode. It is clear that FBP is much superior to FBPV1 in terms of

MIGD on some cases, but the differences among them are not too significant in most of test

problems based on the p-values. The reason may come from the fact that FBP utilizes a two-

step based prediction strategy, which would generate more boundary individuals than FBPV1.

Fig 7. POF approximations of five algorithms for DF8 with nt = 10 and τt = 10.

https://doi.org/10.1371/journal.pone.0254839.g007
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Table 10. Performance comparison of different multiobjective algorithms variants on MIGD.

Fun. (nt, τt) MOGOA MOMVO MOALO MSSA FBP

DF1 (10,10) 4.738e-2(8.374e-3) 1.186e-2(3.281e-4) 4.146e-2(7.050e-3) 3.989e-2(4.897e-3) 5.844e-3(2.682e-4)

p 2.670e-9 4.182e-9 7.043e-7 6.046e-7 -

h 1 1 1 1 -

DF2 (10,10) 1.903e-1(1.041e-2) 1.193e-1(6.074e-3) 1.946e-1(7.243e-3) 1.535e-1(6.676e-3) 3.937e-2(4.765e-3)

p 5.895e-1 1.174e-3 5.895e-1 9.646e-2 -

h 0 1 0 0 -

DF3 (10,10) 7.898e-2(1.321e-2) 5.270e-2(8.431e-3) 7.648e-2(1.519e-2) 6.577e-2(1.529e-2) 1.162e-2(5.596e-3)

p 1.911e-2 4.637e-3 6.972e-3 2.709e-2 -

h 1 1 1 1 -

DF4 (10,10) 1.952e-1(2.347e-2) 9.334e-2(5.608e-3) 2.993e-1(4.554e-2) 1.359e-1(1.584e-2) 7.029e-2(2.230e-3)

p 5.692e-1 9.470e-1 4.119e-1 8.073e-1 -

h 0 0 0 0 -

DF5 (10,10) 3.651e-2(2.985e-2) 1.126e-2(6.515e-4) 4.380e-2(4.928e-3) 2.163e-2(1.498e-3) 6.832e-3(7.967e-4)

p 3.945e-8 2.154e-10 1.873e-7 5.967e-9 -

h 1 1 1 1 -

DF6 (10,10) 1.812e+0(3.526e-1) 6.598e-1(2.662e-2) 1.419e+0(1.912e-1) 1.482e+0(2.395e-1) 6.140e-1(4.412e-2)

p 1.787e-6 4.532e-8 5.135e-5 2.095e-7 -

h 1 1 1 1 -

DF7 (10,10) 5.798e-2(6.698e-3) 5.919e-2(1.181e-2) 5.541e-2(6.659e-3) 6.647e-2(4.721e-3) 9.785e-3(4.370e-4)

p 7.394e-1 4.290e-1 4.643e-1 7.845e-1 -

h 0 0 0 0 -

DF8 (10,10) 2.617e-2(2.368e-3) 1.378e-2(1.528e-3) 2.503e-2(2.139e-3) 1.835e-2(2.784e-3) 7.152e-3(5.012e-4)

p 5.895e-1 5.011e-1 6.414e-1 8.418e-1 -

h 0 0 0 0 -

DF9 (10,10) 1.879e-1(1.085e-2) 1.530e-1(4.694e-3) 1.871e-1(6.347e-3) 1.391e-1(6.706e-3) 6.755e-2(5.406e-3)

p 2.133e-5 6.528e-8 2.773e-5 2.028e-7 -

h 1 1 1 1 -

DF10 (10,10) 1.151e-1(8.943e-3) 8.616e-2(4.964e-3) 1.215e-1(7.780e-3) 1.117e-1(9.539e-3) 1.001e-1(3.921e-3)

p 1.628e-2 2.068e-2 2.678e-6 2.755e-3 -

h 1 1 1 1 -

DF11 (10,10) 6.833e-1(1.025e-2) 6.449e-1(2.818e-3) 6.567e-1(4.076e-3) 6.688e-1(3.715e-3) 6.436e-1(1.138e-3)

p 5.395e-1 9.234e-1 9.234e-1 7.394e-1 -

h 0 0 0 0 -

DF12 (10,10) 4.252e-1(4.889e-2) 5.188e-1(5.700e-2) 5.616e-1(6.027e-2) 5.951e-1(4.716e-2) 2.831e-1(1.074e-2)

p 3.831e-5 7.773e-9 2.921e-9 6.518e-9 -

h 1 1 1 1 -

DF13 (10,10) 2.004e-1(9.503e-3) 1.097e-1(6.769e-3) 2.290e-1(4.475e-2) 1.828e-1(2.534e-2) 1.500e-1(4.638e-3)

p 3.770e-4 5.533e-8 2.015e-8 1.766e-3 -

h 1 1 1 1 -

DF14 (10,10) 6.768e-2(2.941e-3) 4.598e-2(1.876e-3) 6.818e-2(4.887e-3) 5.744e-2(4.825e-3) 5.251e-2(1.619e-3)

p 7.727e-2 6.145e-2 1.188e-1 1.537e-1 -

h 1 0 0 0 -

‡/†/o 9/0/5 8/2/4 8/0/6 8/0/6 -

https://doi.org/10.1371/journal.pone.0254839.t010
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Table 11. Performance comparison of different multiobjective algorithms variants on MHV.

Fun. (nt, τt) MOGOA MOMVO MOALO MSSA FBP

DF1 (10,10) 1.555e+0(1.419e-2) 1.648e+0(1.857e-3) 1.558e+0(2.210e-2) 1.559e+0(1.638e-2) 1.668e+0(9.101e-4)

p 6.046e-7 7.088e-8 1.411e-9 1.429e-8 -

h 1 1 1 1 -

DF2 (10,10) 1.456e+0(2.049e-2) 1.695e+0(9.909e-3) 1.452e+0(1.791e-2) 1.546e+0(1.385e-2) 1.798e+0(1.307e-2)

p 6.046e-7 7.088e-8 1.411e-9 1.429e-8 -

h 1 1 1 1 -

DF3 (10,10) 1.443e+0(2.120e-2) 1.491e+0(1.724e-2) 1.448e+0(3.963e-2) 1.453e+0(4.203e-2) 1.614e+0(1.295e-2)

p 6.046e-7 7.088e-8 1.411e-9 1.429e-8 -

h 1 1 1 1 -

DF4 (10,10) 6.785e+0(1.086e-1) 7.280e+0(2.941e-2) 6.512e+0(5.560e-2) 7.098e+0(6.747e-2) 7.588e+0(1.027e-2)

p 6.046e-7 7.088e-8 1.411e-9 1.429e-8 -

h 1 1 1 1 -

DF5 (10,10) 1.660e+0(8.226e-3) 1.727e+0(1.175e-3) 1.646e+0(1.403e-2) 1.691e+0(4.786e-3) 1.734e+0(1.575e-3)

p 6.046e-7 7.088e-8 1.411e-9 1.429e-8 -

h 1 1 1 1 -

DF6 (10,10) 1.065e+0(2.146e-2) 1.152e+0(1.215e-2) 1.109e+0(1.326e-2) 1.151e+0(3.038e-2) 1.214e-1(3.713e-2)

p 6.046e-7 7.088e-8 1.411e-9 1.429e-8 -

h 1 1 1 1 -

DF7 (10,10) 3.312e+0(2.168e-2) 3.316e+0(1.895e-2) 3.310e+0(2.595e-2) 3.317e+0(1.804e-2) 3.465e+0(2.298e-3)

p 6.046e-7 7.088e-8 1.411e-9 1.429e-8 -

h 1 1 1 1 -

DF8 (10,10) 1.739e+0(1.104e-2) 1.780e+0(3.679e-3) 1.743e+0(6.805e-3) 1.756e+0(9.661e-3) 1.784e+0(1.653e-3)

p 6.046e-7 7.088e-8 1.411e-9 1.429e-8 -

h 1 1 1 1 -

DF9 (10,10) 1.290e+0(1.727e-2) 1.394e+0(1.317e-2) 1.281e+0(1.638e-2) 1.374e+0(1.895e-2) 1.571e+0(1.172e-2)

p 6.046e-7 7.088e-8 1.411e-9 1.429e-8 -

h 1 1 1 1 -

DF10 (10,10) 1.086e+0(3.402e-2) 1.213e+0(4.513e-2) 1.039e+0(2.902e-2) 1.116e+0(4.084e-2) 1.379e+0(1.174e-2)

p 6.528e-8 3.564e-4 2.227e-9 1.028e-6 -

h 1 1 1 1 -

DF11 (10,10) 2.741e-1(1.331e-2) 3.646e-1(2.381e-3) 2.889e-1(2.340e-2) 2.854e-1(8.379e-3) 3.714e-1(2.397e-3)

p 4.464e-1 6.375e-1 5.106e-1 6.414e-1 -

h 0 0 0 0 -

DF12 (10,10) 3.194e+0(8.433e-2) 3.468e+0(5.777e-2) 3.111e+0(8.543e-2) 3.428e+0(4.491e-2) 3.458e+0(1.013e-2)

p 4.353e-5 2.226e-1 1.996e-5 4.033e-3 -

h 1 0 1 1 -

DF13 (10,10) 6.611e+0(1.151e-1) 7.381e+0(1.326e-2) 6.358e+0(2.959e-1) 6.702e+0(1.776e-1) 7.105e+0(2.803e-2)

p 5.804e-3 5.746e-2 2.839e-4 3.644e-2 -

h 1 0 1 1 -

DF14 (10,10) 9.861e-1(1.291e-2) 1.080e+0(5.046e-3) 9.662e-1(2.176e-2) 1.011e+0(1.016e-2) 1.073e+0(1.995e-3)

p 3.329e-1 8.187e-1 2.226e-1 4.553e-1 -

h 0 0 0 0 -

‡/†/o 11/1/2 9/1/4 11/1/2 11/1/2 -

https://doi.org/10.1371/journal.pone.0254839.t011
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Table 12. Performance comparison of different multiobjective algorithms variants on MSP.

Fun. (nt, τt) MOGOA MOMVO MOALO MSSA FBP

DF1 (10,10) 2.119e-2(4.378e-3) 8.133e-3(4.404e-4) 2.244e-2(3.494e-3) 1.618e-2(2.992e-3) 5.810e-3(1.984e-3)

p 9.833e-8 3.020e-11 1.473e-7 2.921e-9 -

h 1 1 1 1 -

DF2 (10,10) 1.032e-1(2.179e-2) 1.971e-2(1.688e-3) 8.844e-2(1.769e-2) 1.478e-1(1.531e-2) 1.309e-1(2.166e-2)

p 1.260e-1 4.311e-8 2.838e-1 7.727e-2 -

h 0 1 0 0 -

DF3 (10,10) 6.572e-2(2.488e-2) 2.424e-2(5.338e-3) 3.950e-2(1.503e-2) 5.305e-2(1.778e-2) 1.426e-2(7.014e-3)

p 1.202e-8 3.020e-11 1.777e-10 2.439e-9 -

h 1 1 1 1 -

DF4 (10,10) 3.374e-1(9.633e-2) 5.516e-2(1.084e-2) 2.675e-1(1.511e-1) 5.777e-1(2.361e-1) 7.809e-2(3.562e-2)

p 6.669e-3 8.073e-1 1.628e-2 1.597e-3 -

h 1 0 1 1 -

DF5 (10,10) 3.609e-2(9.195e-3) 7.980e-3(1.189e-3) 4.291e-2(1.395e-2) 3.495e-2(8.841e-3) 9.507e-3(3.978e-3)

p 2.195e-8 4.077e-11 1.873e-7 3.081e-8 -

h 1 1 1 1 -

DF6 (10,10) 4.018e+0(7.480e-1) 1.507e+0(3.991e-1) 7.344e+0(1.046e+1) 3.918e+0(8.249e-1) 9.134e+0(4.567e-1)

p 1.729e-7 1.411e-9 5.600e-7 1.596e-7 -

h 1 1 1 1 -

DF7 (10,10) 3.234e-2(4.062e-3) 3.989e-2(4.618e-3) 3.097e-2(3.178e-3) 3.214e-2(5.375e-3) 7.677e-3(2.650e-4)

p 1.325e-4 5.092e-8 8.292e-6 2.499e-3 -

h 1 1 1 1 -

DF8 (10,10) 4.724e-2(1.823e-2) 2.187e-2(2.674e-3) 3.871e-2(7.640e-3) 3.894e-2(1.280e-2) 1.933e-2(4.811e-3)

p 6.353e-2 1.407e-4 2.709e-2 1.911e-2 -

h 0 1 1 1 -

DF9 (10,10) 2.794e-1(7.429e-2) 1.975e-1(2.446e-2) 2.361e-1(3.913e-2) 2.266e-1(8.619e-2) 1.893e-1(3.860e-2)

p 1.597e-3 5.462e-9 1.585e-4 1.493e-4 -

h 1 1 1 1 -

DF10 (10,10) 3.483e-1(6.588e-2) 2.552e-1(5.670e-2) 3.458e-1(4.913e-2) 3.047e-1(6.561e-2) 9.422e-1(1.463e-2)

p 1.287e-9 4.616e-10 4.573e-9 2.034e-9 -

h 1 1 1 1 -

DF11 (10,10) 6.543e-2(3.525e-3) 5.381e-2(2.150e-3) 5.371e-2(6.281e-3) 6.748e-2(2.277e-3) 7.100e-2(1.135e-2)

p 5.592e-1 3.848e-3 1.413e-1 2.905e-1 -

h 0 1 0 0 -

DF12 (10,10) 2.577e-1(4.956e-2) 1.323e-1(4.000e-2) 1.914e-1(3.848e-2) 1.788e-1(3.000e-2) 6.442e-1(3.084e-2)

p 3.474e-10 3.120e-11 1.464e-10 2.610e-10 -

h 1 1 1 1 -

DF13 (10,10) 3.758e-1(1.384e-1) 1.196e-1(2.152e-2) 3.075e-1(8.518e-2) 3.372e-1(7.603e-2) 9.128e-1(3.035e-2)

p 3.632e-1 5.462e-9 3.790e-1 9.626e-2 -

h 0 1 0 0 -

DF14 (10,10) 1.214e-1(4.976e-2) 4.191e-2(1.127e-2) 1.188e-2(4.057e-2) 9.399e-2(4.535e-2) 6.349e-1(1.172e-2)

p 7.088e-8 3.690e-11 5.600e-7 6.528e-8 -

h 1 1 1 1 -

‡/†/o 6/4/4 5/8/1 7/4/3 7/4/3 -

https://doi.org/10.1371/journal.pone.0254839.t012
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Table 13. Performance comparison of different FBP variants on MIGD.

Fun. (nt, τt) FBPV1 FBPV2 FBPV3 FBP

DF1 (10,10) 6.046e-3(2.750e-4) 5.934e-3(2.898e-4) 1.652e-2(6.447e-3) 5.844e-3(2.682e-4)

p 5.011e-1 1.260e-1 1.236e-3 -

h 0 0 1 -

DF2 (10,10) 3.844e-2(3.655e-3) 5.561e-2(5.542e-3) 3.877e-2(4.215e-3) 3.937e-2(4.765e-3)

p 9.352e-1 9.334e-2 9.941e-1 -

h 0 0 0 -

DF3 (10,10) 1.472e-2(9.277e-3) 2.610e-2(2.915e-2) 1.434e-2(1.053e-3) 1.162e-2(5.596e-3)

p 6.952e-1 2.643e-1 6.843e-1 -

h 0 0 0 -

DF4 (10,10) 7.058e-2(2.557e-3) 7.213e-2(2.659e-3) 7.247e-2(3.550e-3) 7.029e-2(2.230e-3)

p 8.303e-1 7.731e-1 9.234e-1 -

h 0 0 0 -

DF5 (10,10) 6.956e-3(5.116e-4) 7.040e-3(1.403e-2) 1.336e-2(3.222e-3) 6.832e-3(7.967e-4)

p 6.520e-1 4.204e-1 2.282e-1 -

h 0 0 0 -

DF6 (10,10) 6.248e-1(5.066e-2) 6.952e-1(7.643e-2) 1.831e+0(3.855e-1) 6.140e-1(4.412e-2)

p 9.117e-1 4.119e-1 1.335e-1 -

h 0 0 0 -

DF7 (10,10) 9.643e-3(2.833e-4) 9.564e-3(2.868e-4) 1.375e-2(2.474e-3) 9.785e-3(4.370e-4)

p 7.618e-1 4.825e-1 2.009e-1 -

h 0 0 0 -

DF8 (10,10) 7.188e-3(5.881e-4) 7.190e-3(4.454e-4) 8.510e-3(4.286e-4) 7.152e-3(5.012e-4)

p 7.506e-1 6.952e-1 3.329e-1 -

h 0 0 0 -

DF9 (10,10) 7.293e-2(6.506e-3) 7.189e-2(8.008e-3) 7.093e-2(7.740e-3) 6.755e-2(5.406e-3)

p 4.733e-1 6.627e-1 7.062e-1 -

h 0 0 0 -

DF10 (10,10) 1.119e-1(7.538e-3) 1.095e-1(5.610e-3) 1.027e-1(5.233e-3) 1.001e-1(3.921e-3)

p 3.020e-11 3.020e-11 3.020e-11 -

h 1 1 1 -

DF11 (10,10) 6.439e-1(1.579e-3) 6.441e-1(1.666e-3) 6.458e-1(1.975e-3) 6.436e-1(1.138e-3)

p 4.975e-11 4.972e-11 4.077e-11 -

h 1 1 1 -

DF12 (10,10) 2.947e-1(6.804e-3) 2.893e-1(7.764e-3) 3.157e+2(1.578e+2) 2.831e-1(1.074e-2)

p 3.338e-11 3.020e-11 3.020e-11 -

h 1 1 1 -

DF13 (10,10) 1.800e-1(1.115e-2) 1.529e-1(4.838e-3) 1.660e-1(8.410e-3) 1.500e-1(4.638e-3)

p 3.081e-8 5.462e-6 8.197e-7 -

h 1 1 1 -

DF14 (10,10) 6.105e-2(5.593e-3) 5.288e-2(1.826e-3) 5.229e-2(1.697e-3) 5.251e-2(1.619e-3)

p 4.504e-11 4.505e-11 6.066e-11 -

h 1 1 1 -

‡/†/o 5/0/9 5/0/9 5/1/8 -

https://doi.org/10.1371/journal.pone.0254839.t013
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Therefore, the population diversity can be affected by too much non-dominated boundary

solutions immediately. Despite that, the overall performance of the two-step technique per-

forms much better than one-step strategy for the majority of the benchmark functions.

5.1.2 Curve fitting-based strategy. It is not difficult to observe from the results that FBP

outperforms the modified variant FBPV2 on most of the test functions. This means that the

curve fitting-based strategy indeed helps improve the quality of population in varying environ-

ments. The reason may originate from the fact that the curve fitting-based strategy is designed

by considering interlinks between variables, which helps to generate promising solutions to

some extent.

The comparison between the three different variants and the proposed FBP illustrates that

each part has an significant effect on the performance of FBP, and removing any of them

reduces performance. Therefore, it is important to combine them together as in the FBP

strategy.

5.1.3 Sampling strategy. All the results illustrate that FBP performs much better than

FBPV2 for almost all test problems, although FBP is slightly weaker than FBPV3 for DF14

problem. Thus, the designed sampling technique is able to improve the search ability of popu-

lation in each varying environment clearly and can further improve the effectiveness of the

proposed dynamic multiobjective optimization algorithm.

5.2 Influence of step values

As described before, the linear prediction model employs two different stepsizes, which are set

to 1 and 0.3 for predicting non-dominated solutions, respectively. Here, to study whether the

step values are well configured, step = 1 is fixed as it has proven effective in many prediction

algorithms, and the other step is set to an increment of 0.2 from 0.1 to 0.7 (FBPS1-FBPS3).

Numerical results in Table 14 for the fourteen functions shows that the algorithms become

ineffective when step is too large shown by t-test values. The results illustrate that FBP outper-

forms other three versions on a majority of functions, although the differences between us are

not very large on some cases. Therefore, it can be concluded from the experiment that FBP

should utilize two different stepsize values (1 and 0.3) reasonably.

5.3 Influence of degree of polynomial regression

As a importance part of FBP, the curve fitting-based strategy has a significant parameter, the

degree of polynomial regression (dpf). Here, the dpf is set to different values, with an incre-

ment of 1, from 1 to 4 (FBPL1-FBPL3) for exploring its influence on algorithms’ performance.

The comparison results recorded in Table 15 show that the proposed technique is superior to

the other versions on almost all the test problems. Although the higher the degree, the better

the goodness of fit, too high degree may result in over-fitting. Thus, it is important to properly

select the degree of polynomial regression and the experimental analysis supports the decision

made to choose a degree of two.

5.4 Influence of cr values

In the third strategy, the new prediction fitting curve is obtained based on Eqs (6) and (7).

After that, it will be used to generate new individuals using (Eq 8), which involves two impor-

tant parameters, the compression ratio (cr) and subpopulation (Subpop2) size. The former is

discussed in this subsection, and the latter will be analyzed below. cr ranges from 0.1 to 0.7,

with an increment of 0.2 (FBPR1-FBPR3), and the results are summarized in Table 16. It is

obvious that the original variant performs much better than the other three versions in almost
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Table 14. Performance comparison of FBP variants on MIGD for (nt, τt) = (10,10).

Fun. (nt, τt) FBPS1 FBPS2 FBPS3 FBP

DF1 (10,10) 5.861e-3(3.024e-4) 5.939e-3(3.137e-4) 5.799e-3(3.571e-4) 5.844e-3(2.682e-4)

p 5.895e-1 8.187e-1 5.106e-1 -

h 0 0 0 -

DF2 (10,10) 3.695e-2(3.258e-3) 4.036e-2(4.304e-3) 4.084e-2(3.900e-3) 3.937e-2(4.765e-3)

p 8.766e-1 9.000e-1 6.843e-1 -

h 0 0 0 -

DF3 (10,10) 1.497e-2(9.258e-3) 1.236e-2(7.067e-3) 1.265e-2(5.964e-3) 1.162e-2(5.596e-3)

p 7.172e-1 8.187e-1 8.650e-1 -

h 0 0 0 -

DF4 (10,10) 7.054e-2(2.689e-3) 7.184e-2(3.091e-3) 7.183e-2(3.456e-3) 7.029e-2(2.230e-3)

p 8.650e-1 7.394e-1 7.394e-1 -

h 0 0 0 -

DF5 (10,10) 6.749e-3(4.252e-4) 6.529e-3(6.999e-4) 6.650e-3(7.786e-4) 6.832e-3(7.967e-4)

p 7.618e-1 4.643e-1 2.581e-1 -

h 0 0 0 -

DF6 (10,10) 6.252e-1(4.554e-2) 5.974e-1(4.961e-2) 5.763e-1(5.042e-2) 6.140e-1(4.412e-2)

p 9.941e-1 6.843e-1 5.997e-1 -

h 0 0 0 -

DF7 (10,10) 9.970e-3(2.978e-4) 9.849e-3(3.574e-4) 1.014e-2(4.601e-4) 9.785e-3(4.370e-4)

p 7.958e-1 8.543e-1 4.918e-1 -

h 0 0 0 -

DF8 (10,10) 7.178e-3(4.119e-4) 7.262e-3(3.803e-4) 7.296e-3(2.870e-4) 7.152e-3(5.012e-4)

p 8.650e-1 8.650e-1 7.172e-1 -

h 0 0 0 -

DF9 (10,10) 6.904e-2(5.571e-3) 6.425e-2(5.298e-3) 6.444e-2(5.086e-3) 6.755e-2(5.406e-3)

p 7.618e-1 5.592e-1 5.395e-1 -

h 0 0 0 -

DF10 (10,10) 1.048e-1(4.048e-3) 1.021e-1(4.865e-3) 9.985e-2(3.487e-3) 1.001e-1(3.921e-3)

p 3.020e-11 3.020e-11 3.020e-11 -

h 1 1 1 -

DF11 (10,10) 6.446e-1(1.322e-3) 6.437e-1(1.628e-3) 6.437e-1(1.571e-3) 6.436e-1(1.138e-3)

p 4.504e-11 4.504e-11 5.494e-11 -

h 1 1 1 -

DF12 (10,10) 2.841e-1(6.965e-3) 2.841e-1(6.633e-3) 2.851e-1(7.355e-3) 2.831e-1(1.074e-2)

p 3.338e-11 3.338e-11 3.338e-11 -

h 1 1 1 -

DF13 (10,10) 1.562e-1(6.031e-3) 1.458e-1(4.852e-3) 1.461e-1(4.106e-3) 1.500e-1(4.638e-3)

p 4.118e-6 2.278e-5 3.831e-5 -

h 1 1 1 -

DF14 (10,10) 5.336e-2(2.175e-3) 5.277e-2(1.527e-3) 5.263e-2(1.828e-3) 5.251e-2(1.619e-3)

p 4.504e-11 4.505e-11 4.504e-11 -

h 1 1 1 -

‡/†/o 5/0/9 4/1/9 3/2/9 -

https://doi.org/10.1371/journal.pone.0254839.t014
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Table 15. Performance comparison of FBP variants on MIGD for (nt, τt) = (10,10).

Fun. (nt, τt) FBPL1 FBPL2 FBPL3 FBP

DF1 (10,10) 5.802e-3(2.648e-4) 5.817e-3(2.360e-4) 5.878e-3(2.505e-4) 5.844e-3(2.682e-4)

p 7.958e-1 9.234e-1 8.534e-1 -

h 0 0 0 -

DF2 (10,10) 4.474e-2(4.117e-3) 4.165e-2(4.243e-3) 4.435e-2(4.543e-3) 3.937e-2(4.765e-3)

p 5.793e-1 9.117e-1 5.793e-1 -

h 0 0 0 -

DF3 (10,10) 1.199e-2(6.526e-3) 1.518e-2(1.194e-2) 1.319e-2(8.732e-3) 1.162e-2(5.596e-3)

p 9.587e-1 9.234e-1 8.073e-1 -

h 0 0 0 -

DF4 (10,10) 7.126e-2(2.506e-3) 7.098e-2(2.851e-3) 7.043e-2(2.710e-3) 7.029e-2(2.230e-3)

p 8.534e-1 8.650e-1 9.587e-1 -

h 0 0 0 -

DF5 (10,10) 6.870e-3(8.297e-4) 6.704e-3(7.194e-4) 6.736e-3(7.136e-4) 6.832e-3(7.967e-4)

p 8.534e-1 9.117e-1 8.883e-1 -

h 0 0 0 -

DF6 (10,10) 6.212e-1(4.999e-2) 6.137e-1(4.644e-2) 5.932e-1(4.410e-2) 6.140e-1(4.412e-2)

p 8.418e-1 9.117e-1 8.766e-1 -

h 0 0 0 -

DF7 (10,10) 9.825e-3(3.817e-4) 9.804e-3(3.990e-4) 9.803e-3(3.770e-4) 9.785e-3(4.370e-4)

p 8.418e-1 9.234e-1 8.766e-1 -

h 0 0 0 -

DF8 (10,10) 7.104e-3(5.527e-4) 7.155e-3(4.678e-4) 6.994e-3(3.990e-4) 7.152e-3(5.012e-4)

p 7.958e-1 9.352e-1 5.106e-1 -

h 0 0 0 -

DF9 (10,10) 6.728e-2(6.911e-3) 6.655e-2(4.605e-3) 6.479e-2(4.734e-3) 6.755e-2(5.406e-3)

p 8.187e-1 8.650e-1 6.627e-1 -

h 0 0 0 -

DF10 (10,10) 1.010e-1(5.205e-3) 1.005e-1(3.651e-3) 9.989e-2(5.214e-3) 1.001e-1(3.921e-3)

p 3.020e-11 3.020e-11 3.020e-11 -

h 1 1 1 -

DF11 (10,10) 6.465e-1(1.292e-3) 6.441e-1(1.271e-3) 6.475e-1(1.436e-3) 6.436e-1(1.138e-3)

p 4.975e-11 4.975e-11 5.494e-11 -

h 1 1 1 -

DF12 (10,10) 2.843e-1(7.265e-3) 3.143e-1(1.567e-2) 2.931e-1(1.315e-2) 2.831e-1(1.074e-2)

p 3.338e-11 3.020e-11 3.020e-11 -

h 1 1 1 -

DF13 (10,10) 1.503e-1(5.011e-3) 1.517e-1(6.104e-3) 1.587e-1(5.111e-3) 1.500e-1(4.638e-3)

p 1.635e-5 1.337e-5 1.635e-5 -

h 1 1 1 -

DF14 (10,10) 5.318e-2(2.072e-3) 5.295e-2(1.852e-3) 5.299e-2(2.060e-3) 5.251e-2(1.619e-3)

p 4.975e-11 4.504e-11 4.504e-11 -

h 1 1 1 -

‡/†/o 5/0/9 5/0/9 4/1/9 -

https://doi.org/10.1371/journal.pone.0254839.t015
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Table 16. Performance comparison of FBP variants on MIGD for (nt, τt) = (10,10).

Fun. (nt, τt) FBPR1 FBPR2 FBPR3 FBP

DF1 (10,10) 6.377e-3(2.337e-4) 6.404e-3(2.941e-4) 6.730e-3(3.582e-4) 5.844e-3(2.682e-4)

p 2.324e-2 2.416e-2 4.033e-3 -

h 1 1 1 -

DF2 (10,10) 3.503e-2(3.508e-3) 3.478e-2(3.890e-3) 3.397e-2(3.457e-3) 3.937e-2(4.765e-3)

p 8.883e-1 9.234e-1 7.062e-1 -

h 0 0 0 -

DF3 (10,10) 1.527e-2(7.933e-3) 1.186e-2(4.311e-3) 1.478e-2(7.774e-3) 1.162e-2(5.596e-3)

p 6.669e-3 1.564e-2 4.217e-4 -

h 1 1 1 -

DF4 (10,10) 7.054e-2(2.689e-3) 7.350e-2(3.801e-3) 7.238e-2(2.734e-3) 7.029e-2(2.230e-3)

p 7.062e-1 6.952e-1 7.172e-1 -

h 0 0 0 -

DF5 (10,10) 8.473e-3(6.716e-4) 8.871e-3(9.179e-4) 9.923e-3(1.029e-4) 6.832e-3(7.967e-4)

p 2.499e-3 2.380e-3 1.784e-4 -

h 1 1 1 -

DF6 (10,10) 7.340e-1(3.647e-2) 7.413e-1(4.230e-2) 7.495e-1(5.301e-2) 6.140e-1(4.412e-2)

p 2.838e-1 2.838e-1 2.519e-1 -

h 0 0 0 -

DF7 (10,10) 9.764e-3(5.243e-4) 9.811e-3(4.268e-4) 9.528e-3(3.826e-4) 9.785e-3(4.370e-4)

p 8.073e-1 8.073e-1 5.592e-1 -

h 0 0 0 -

DF8 (10,10) 8.419e-3(6.807e-4) 8.155e-3(5.792e-4) 8.814e-3(7.317e-4) 7.152e-3(5.012e-4)

p 1.628e-2 4.207e-2 3.183e-3 -

h 1 1 1 -

DF9 (10,10) 6.938e-2(4.694e-3) 7.013e-2(5.815e-3) 7.453e-2(6.473e-3) 6.755e-2(5.406e-3)

p 8.534e-1 6.627e-1 3.555e-1 -

h 0 0 0 -

DF10 (10,10) 1.039e-1(4.889e-3) 1.079e-1(6.567e-3) 1.113e-1(5.343e-3) 1.001e-1(3.921e-3)

p 3.020e-11 3.020e-11 3.020e-11 -

h 1 1 1 -

DF11 (10,10) 6.442e-1(1.673e-3) 6.442e-1(1.033e-3) 6.448e-1(1.783e-3) 6.436e-1(1.138e-3)

p 4.975e-11 5.494e-11 4.504e-11 -

h 1 1 1 -

DF12 (10,10) 2.942e-1(8.063e-3) 2.958e-1(7.183e-3) 2.951e-1(9.245e-3) 2.831e-1(1.074e-2)

p 3.338e-11 3.338e-11 3.338e-11 -

h 1 1 1 -

DF13 (10,10) 1.547e-1(6.811e-3) 1.594e-1(4.87e-3) 1.576e-1(7.544e-3) 1.500e-1(4.638e-3)

p 6.283e-6 2.491e-6 2.879e-6 -

h 1 1 1 -

DF14 (10,10) 5.271e-2(1.840e-3) 5.316e-2(2.267e-3) 5.367e-2(2.809e-3) 5.251e-2(1.619e-3)

p 4.504e-11 4.504e-11 4.504e-11 -

h 1 1 1 -

‡/†/o 9/0/5 9/0/5 9/0/5 -

https://doi.org/10.1371/journal.pone.0254839.t016
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all the problems. Especially in some cases, the difference between them are quite significant

i.e., DF1, DF5, DF10. Therefore, 0.1 is the best one for cr in this study.

5.5 Influence of Subpop2 size

Another important parameter is the Subpop2 size. To investigate its influence, the Subpop2 size

changes with an increment of 0.1 from 0.2 to 0.5 times of the total population size

(FBPQ1-FBPQ3). The comparison results recorded in Table 17 show that there is no best val-

ues for this parameter for all the test functions. For instance, some cases (e.g. DF3 and DF13)

are sensitive to the parameter value, while other cases (e.g. DF1 and DF2) are not affected by

this parameter too much. This experiment supports that FBP has much better performance

compared with the other variants when Subpop2 is defined as around 0.4N, although it is not

always the best. Thus, 0.4N is chosen for this parameter in FBP.

5.6 Different Multi-objective algorithms

This subsection aims to verify the feasibility of the proposed dynamic reaction mechanism by

combining it with four efficient and new proposed multiobjective algorithms.

5.7 More discussion

Apart from the aforementioned component and parameter analysis, this subsection further

discusses the advantages and disadvantages of each strategy of the proposed technique. Firstly,

the linear prediction strategy utilizes the two-step strategy for predicting non-dominated solu-

tions, which increases the quality of the population in dynamic environments and improves

the optimization performance. However, improvement comes at the cost of complexity, since

compared with one-step strategy, the two-step strategy tends to generate more solutions.

Meanwhile, these solutions contain some boundary individuals, which are not beneficial for

global search, as shown in the numerical results where these boundary individuals are non-

dominated. Therefore, this strategy should be modified by controlling the boundary members

effectively.

Secondly, to obtain well-distributed solutions, FBP employs a recent sampling strategy by

classifying decision variables into two groups. Experimental results also show that it is also an

effective way for solving multiobjective problems in varying environments. However, the strat-

egy heavily depends on variable classification. This study assumes that there exists principle

and non-principle variables, but it not clear about the generalisation of this assumption. Thus,

this strategy also needs to be improved effectively to avoid the principal being misidentified.

Thirdly, the curve-fitting based strategy aims to predict a subpopulation based on the distri-

bution characteristic among variables in two consecutive environments. Simulation results

show that it enhances performance in bi-objective problems, but is not helpful for triple-objec-

tive problems. Therefore, further improvement should be make on this strategy.

6 Conclusion

This paper proposed a new dynamic multiobjective optimization algorithm, named FBP, for

dealing with multiobjective problems in changing environments. FBP mainly includes three

different components, that is, a two-step approach for predicting non-dominated solutions, a

sampling strategy and a curve-fitting strategy. Each component has an important role for cre-

ate high-quality population, improving either diversity or convergence, when a change occurs

in the environment. To verify the effectiveness of our algorithm, a recent test suite with differ-

ent characteristics is utilized. Experimental comparisons demonstrate that FBP has better
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Table 17. Performance comparison of FBP variants on MIGD for (nt, τt) = (10,10).

Fun. (nt, τt) FBPQ1 FBPQ2 FBPQ3 FBP

DF1 (10,10) 5.911e-3(3.821e-4) 5.858e-3(1.873e-4) 5.948e-3(3.004e-4) 5.844e-3(2.682e-4)

p 9.705e-1 9.234e-1 8.187e-1 -

h 0 0 0 -

DF2 (10,10) 3.973e-2(4.259e-3) 3.852e-2(3.999e-3) 3.938e-2(5.429e-3) 3.937e-2(4.765e-3)

p 9.000e-1 9.941e-1 9.117e-1 -

h 0 0 0 -

DF3 (10,10) 1.352e-2(1.137e-2) 1.214e-2(8.241e-3) 1.494e-2(7.493e-3) 1.162e-2(5.596e-3)

p 9.823e-1 9.352e-1 9.352e-1 -

h 0 0 0 -

DF4 (10,10) 7.070e-2(2.6506e-3) 7.076e-2(2.721e-3) 7.118e-2(3.231e-3) 7.029e-2(2.230e-3)

p 9.000e-1 9.117e-1 9.941e-1 -

h 0 0 0 -

DF5 (10,10) 7.061e-3(9.695e-4) 6.897e-3(7.156e-4) 6.744e-3(5.833e-4) 6.832e-3(7.967e-4)

p 9.470e-1 9.823e-1 9.352e-1 -

h 0 0 0 -

DF6 (10,10) 6.650e-1(4.967e-2) 6.261e-1(4.250e-2) 5.806e-1(3.250e-2) 6.140e-1(4.412e-2)

p 7.172e-1 8.883e-1 6.843e-1 -

h 0 0 0 -

DF7 (10,10) 9.732e-3(3.982e-4) 9.779e-3(3.525e-4) 9.744e-3(3.357e-4) 9.785e-3(4.370e-4)

p 9.352e-1 9.470e-1 8.766e-1 -

h 0 0 0 -

DF8 (10,10) 7.104e-3(3.891e-4) 7.085e-3(3.684e-4) 7.092e-3(3.835e-4) 7.152e-3(5.012e-4)

p 9.823e-1 8.650e-1 9.823e-1 -

h 0 0 0 -

DF9 (10,10) 6.762e-2(5.423e-3) 6.641e-2(5.793e-3) 6.461e-2(4.087e-3) 6.755e-2(5.406e-3)

p 9.352e-1 8.073e-1 6.735e-1 -

h 0 0 0 -

DF10 (10,10) 1.024e-1(5.649e-3) 1.013e-1(4.576e-3) 1.024e-1(6.013e-3) 1.001e-1(3.921e-3)

p 3.020e-11 3.020e-11 3.020e-11 -

h 1 1 1 -

DF11 (10,10) 6.442e-1(1.810e-3) 6.445e-1(1.437e-3) 6.439e-1(1.635e-3) 6.436e-1(1.138e-3)

p 4.504e-11 4.975e-11 6.066e-11 -

h 1 1 1 -

DF12 (10,10) 2.793e-1(4.853e-3) 2.795e-1(7.997e-3) 2.887e-1(7.027e-3) 2.831e-1(1.074e-2)

p 3.338e-11 3.338e-11 3.338e-11 -

h 1 1 1 -

DF13 (10,10) 1.521e-1(6.115e-3) 1.516e-1(5.229e-3) 1.518e-1(5.559e-3) 1.500e-1(4.638e-3)

p 9.514e-6 1.249e-5 1.091e-5 -

h 1 1 1 -

DF14 (10,10) 5.269e-2(1.620e-3) 5.328e-2(1.980e-3) 5.293e-2(1.755e-3) 5.251e-2(1.619e-3)

p 4.504e-11 4.504e-11 4.504e-11 -

h 1 1 1 -

‡/†/o 4/1/9 4/1/9 5/0/9 -

https://doi.org/10.1371/journal.pone.0254839.t017
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performance than the other algorithms on most cases, showing the proposed algorithm has a

good tracking ability and responds fast to environmental changes. Besides, the role that each

component and parameter plays in the proposed algorithm is also analysed and discussed

extensively. In our future work, we will further improve the proposed algorithm by addressing

some parameter issues as discussed previously.
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