167 research outputs found

    Development of behaviors for a simulated humanoid robot

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaControlar um robô bípede com vários graus de liberdade é um desafio que recebe a atenção de vários investigadores nas áreas da biologia, física, electrotecnia, ciências de computadores e mecânica. Para que um humanóide possa agir em ambientes complexos, são necessários comportamentos rápidos, estáveis e adaptáveis. Esta dissertação está centrada no desenvolvimento de comportamentos robustos para um robô humanóide simulado, no contexto das competições de futebol robótico simulado 3D do RoboCup, para a equipa FCPortugal3D. Desenvolver tais comportamentos exige o desenvolvimento de métodos de planeamento de trajectórias de juntas e controlo de baixo nível. Controladores PID foram implementados para o controlo de baixo nível. Para o planeamento de trajectórias, quatro métodos foram estudados. O primeiro método apresentado foi implementado antes desta dissertação e consiste numa sequência de funções degrau que definem o ângulo desejado para cada junta durante o movimento. Um novo método baseado na interpolação de um seno foi desenvolvido e consiste em gerar uma trajectória sinusoidal durante um determinado tempo, o que resulta em transições suaves entre o ângulo efectivo e o ângulo desejado para cada junta. Um outro método que foi desenvolvido, baseado em séries parciais de Fourier, gera um padrão cíclico para cada junta, podendo ter múltiplas frequências. Com base no trabalho desenvolvido por Sven Behnke, um CPG para locomoção omnidireccional foi estudado em detalhe e implementado. Uma linguagem de definição de comportamentos é também parte deste estudo e tem como objectivo simplificar a definição de comportamentos utilizando os vários métodos propostos. Integrando o controlo de baixo nível e os métodos de planeamento de trajectórias, vários comportamentos foram criados para permitir a uma versão simulada do humanóide NAO andar em diferentes direcções, rodar, chutar a bola, apanhar a bola (guarda-redes) e levantar do chão. Adicionalmente, a optimização e geração automática de comportamentos foi também estudada, utilizado algoritmos de optimização como o Hill Climbing e Algoritmos Genéticos. No final, os resultados são comparados com as equipas de simulação 3D que reflectem o estado da arte. Os resultados obtidos são bons e foram capazes de ultrapassar uma das três melhores equipas simuladas do RoboCup em diversos aspectos como a velocidade a andar, a velocidade de rotação, a distância da bola depois de chutada, o tempo para apanhar a bola e o tempo para levantar do chão. ABSTRACT: Controlling a biped robot with several degrees of freedom is a challenging task that takes the attention of several researchers in the fields of biology, physics, electronics, computer science and mechanics. For a humanoid robot to perform in complex environments, fast, stable and adaptable behaviors are required. This thesis is concerned with the development of robust behaviors for a simulated humanoid robot, in the scope of the RoboCup 3D Simulated Soccer Competitions, for FCPortugal3D team. Developing such robust behaviors requires the development of methods for joint trajectory planning and low-level control. PID control were implemented to achieve low-level joint control. For trajectory planning, four methods were studied. The first presented method was implemented before this thesis and consists of a sequence of step functions that define the target angle of each joint during the movement. A new method based on the interpolation of a sine function was developed and consists of generating a sinusoidal shape during some amount of time, leading to smooth transitions between the current angle and the target angle of each joint. Another method developed, based on partial Fourier Series, generates a multi-frequency cyclic pattern for each joint. This method is very flexible and allows to completely control the angular positions and velocities of the joints. Based on the work of developed by Sven Behnke, a CPG for omnidirectional locomotion was studied in detail and implemented. A behavior definition language is also part of this study and aims at simplifying the definition of behaviors using the several proposed methods. By integrating the low-level control and the trajectory planning methods, several behaviors were created to allow a simulated version of the humanoid NAO to walk in different directions, turn, kick the ball, catch the ball (goal keeper) and get up from the ground. Furthermore, the automatic generation of gaits, through the use of optimization algorithms such as hill climbing and genetic algorithms, was also studied and tested. In the end, the results are compared with the state of the art teams of the RoboCup 3D simulation league. The achieved results are good and were able to overcome one of the state of the art simulated teams of RoboCup in several aspects such as walking velocity, turning velocity, distance of the ball when kicked, time to catch the ball and the time to get up from the ground

    Embodied Cognitive Science of Music. Modeling Experience and Behavior in Musical Contexts

    Get PDF
    Recently, the role of corporeal interaction has gained wide recognition within cognitive musicology. This thesis reviews evidence from different directions in music research supporting the importance of body-based processes for the understanding of music-related experience and behaviour. Stressing the synthetic focus of cognitive science, cognitive science of music is discussed as a modeling approach that takes these processes into account and may theoretically be embedded within the theory of dynamic systems. In particular, arguments are presented for the use of robotic devices as tools for the investigation of processes underlying human music-related capabilities (musical robotics)

    14th Conference on Dynamical Systems Theory and Applications DSTA 2017 ABSTRACTS

    Get PDF
    From Preface: This is the fourteen time when the conference “Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 250 persons from 38 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 375 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference proceedings [...]

    The biomechanical structure of the seahorse tail as a source of inspiration for industrial design

    Get PDF

    Design and control of a soccer-playing humanoid robot

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    単層カーボンナノチューブ/ポルフィリン-ポリ酸ランダムネットワークを用いたマテリアルリザバー演算素子 —次世代機械知能への新規アプローチ

    Get PDF
    In a layman’s term, computation is defined as the execution of a given instruction through a programmable algorithm. History has it that starting from the simplest calculator to the sophisticated von Neumann machine, the above definition has been followed without a flaw. Logical operations for which a human takes a minute long to solve, is a matter of fraction of seconds for these gadgets. But contrastingly, when it comes to critical and analytical thinking that requires learning through observation like the human brain, these powerful machines falter and lag behind. Thus, inspired from the brain’s neural circuit, software models of neural networks (NN) integrated with high-speed supercomputers were developed as an alternative tool to implement machine intelligent tasks of function optimization, pattern, and voice recognition. But as device downscaling and transistor performance approaches the constant regime of Moore’s law due to high CMOS fabrication cost and large tunneling energy loss, training these algorithms over multiple hidden layers is turning out to be a grave concern for future applications. As a result, the interplay between faster performance and low computational power requirement for complex tasks deems highly disproportional. Therefore, alternative in terms of both NN models and conventional Neumann architecture needs to be addressed in today’s age for next-generation machine intelligence systems. Fortunately, through extensive research and studies, unconventional computing using a reservoir based neural network platform, called in-materio reservoir computing (RC) has come to the rescue. In-maerio RC uses physical, biological, chemical, cellular automata and other inanimate dynamical systems as a source of non-linear high dimensional spatio-temporal information processing unit to construct a specific target task. RC not only has a three-layer simplified neural architectural layer, but also imposes a cheap, fast, and simplified optimization of only the readout weights with machine intelligent regression algorithm to construct the supervised objective target via a weighted linear combination of the readouts. Thus, utilizing this idea, herein in this work we report such an in-materio RC with a dynamical random network of single walled carbon nanotube/porphyrin-polyoxometalate (SWNT/Por-POM) device. We begin with Chapter 1, which deals with the introduction covering the literature of ANN evolution and the shortcomings of von Neumann architecture and training models of these ANN, which leads us to adopt the in-materio RC architecture. We design the problem statement focused on extending the theoretical RC model of previously suggested SWNT/POM network to an experimental one and present the objective of fabricating a random network based on nanomaterials as they closely resemble the network structure of the brain. Finally, we conclude by stating the scope of this research work aiming towards validating the non-linear high dimensional reservoir property SWNT/Por-POM holds for it to explicitly demonstrate the RC benchmark tasks of optimization and classification. Chapter 2 describes the methodology including the chemical repository required for the facile synthesis of the material. The synthesis part is divided broadly into SWNT purification and then its dispersion with Por-POM to form the desired complex. It is then followed up with the microelectrode array fabrication and the consequent wet-transfer thin film deposition to give the ultimate reservoir architecture of input-output control read pads with SWNT/Por-POM reservoir. Finally we give a briefing of AFM, UV-Vis spectroscopy, FE-SEM characterization techniques of SWNT/Por-POM complex along with the electrical set-up interfaced with software algorithm to demonstrate the RC approach of in-materio machine intelligence. In Chapter 3, we study the current dynamics as a function of voltage and time and validate the non-linear information processing ability intrinsic to the device. The study reveals that the negative differential resistance (NDR) arising from redox nature of Por-POM results in oscillating random noise outputs giving rise to 1/f brain-like spatio-temporal information. We compute the memory capacity (MC) and prove that the device exhibits echo state property of fading memory, but remembers very little of the past information. The low MC and high non-linearity allowed us to choose mostly non-linear tasks of waveform generation, Boolean logic optimization and one-hot vector binary object classification as the RC benchmark. The Chapter 4 relates to the waveform generation task. Utilizing the high dimensional voltage readouts of varying amplitude, phase and higher harmonic frequencies, relative to input sine wave, a regression optimization was performed towards constructing cosine, triangular, square and sawtooth waves resulting in a high accuracy of around 95%. The task complexity of function optimization was further enhanced in Chapter 5 where two inputs were used to construct Boolean logic functions of OR, AND, XOR, NOR, NAND and XNOR. Similar to the waveform, accuracy over 95% could be achieved due to the presence of NDR nonlinearity. Furthermore, the device was also tested for classification problem in Chapter 6. Here we showed an off-line binary classification of four object toys; hedgehog, dog, block and bus, using the grasped tactile information of these objects as inputs obtained from the Toyota Human Support Robot. A one-ridge regression analysis to fit the hot vector supervised target was used to optimize the output weights for predicting the correct outcome. All the objects were successfully classified owing to the 1/f information processing factor. Lastly, we conclude the section in Chapter 7 with the future scope of extending the idea to fabricate a 3-D model of the same material as it opens up opportunity for higher memory capacity fruitful for future benchmark tasks of time-series prediction. Overall, our research marks a step stone in utilizing SWNT/Por-POM as the in-materio RC for the very first time thereby making it a desirable candidate for next-generation machine intelligence.九州工業大学博士学位論文 学位記番号:生工博甲第425号 学位授与年月日:令和3年12月27日1 Introduction and Literature review|2 Methodology|3 Reservoir dynamics emerging from an incidental structure of single-walled carbon nanotube/porphyrin-polyoxometalate complex|4 Fourier transform waveforms via in-materio reservoir computing from single-walled carbon nanotube/porphyrin-polyoxometalate complex|5 Room temperature demonstration of in-materio reservoir computing for optimizing Boolean function with single-walled carbon nanotube/porphyrin-polyoxometalate composite|6 Binary object classification with tactile sensory input information of via single-walled carbon nanotube/porphyrin-polyoxometalate network as in-materio reservoir computing|7 Future scope and Conclusion九州工業大学令和3年

    The Fifth NASA/DOD Controls-Structures Interaction Technology Conference, part 2

    Get PDF
    This publication is a compilation of the papers presented at the Fifth NASA/DoD Controls-Structures Interaction (CSI) Technology Conference held in Lake Tahoe, Nevada, March 3-5, 1992. The conference, which was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense, was organized by the NASA Langley Research Center. The purpose of this conference was to report to industry, academia, and government agencies on the current status of controls-structures interaction technology. The agenda covered ground testing, integrated design, analysis, flight experiments and concepts
    corecore