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PREFACE

The National Aeronautics and Space Administration (NASA) and the Department of
Defense (DoD) are actively involved in the development of a validated technology
data base in the area of controls-structures interaction (CSI) for flexible spacecraft.
The development of this technology is essential to the efficient and confident

development of future spacecraft to meet stringent goals in performance and cost.
Both NASA and Do D have programs in CSI, structural dynamics, and controls. The
activities of these programs provide a systematic approach to address technology
voids through development and validation of analytical tools, extensive ground testing
of representative structures, and future in-space experiments for verification of
analysis and ground test methods.

In order to promote timely dissemination of technical information acquired in these
programs, the NASA Langley Research Center and the Wright Laboratory alternately
sponsor a conference to report to industry, academia, and government agencies on
the current status of controls-structures interaction technology. This publication is a
compilation of the papers presented at the fifth NASA/DoD CSI Technology
Conference.

The use of trade names or manufacturers in this publication does not constitute an
official endorsement of such products or manufacturers, either expressed or implied,
by the National Aeronautics and Space Administration.

Jerry R. Newsom
Technical Program Chairman
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CSI Related Dynamics and Control Issues

in Space Robotics

Authors: Eric Schmitz and Madison Ramey

Robotics and Advanced Controls Section

Martin Marietta Astronautics Group

Outline

- CSI issues in space robotics

- Control of elastic payloads:

• 1-DOF example

• 3-DOF Harmonic Drive arm with elastic beam

- Control of large space arms with elastic links:

• Testbed description

• Modelling

• Experimental implementation of colocated PD and end-point tip
position controllers

- Conclusions

PRE"OED_NG P_E ,T.,_,_...,-.,,,..i'.'rP""F'LI'/IED

415



CSI MODELLING AND
CONTROL ISSUES
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Distributed flexibility
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Control of Elastic Payloads: 1-DOF Example

• 1-DOF rigid arm with 1-DOF elastic payload:

XA K e

• M x =Arm Mass

u ID..] M, j_l Mpi Vvvvv] Mp2li'_-ll_ll-'--'q ^ ^ AA C-_--I • Mp = M p, + Mp2 = Pa yload Mass

• Bpis small (lightly damped elastic mode)

Arm T Payload

Force

Sensor

• Payload dynamics can be defined by its dynamic stiffness:

_ 2

Xp Kp ZP(s)=FP(s_) = MP s2 S=+2_pS+O_P _P
2 2

•_ Xp(S) S2 + 2_,DpS + Qp [_P

2KIi+i I J K_

Payload

Equations of motion for arm/payload system can be expressed in terms of
the INDIVIDUAL arm & payload dynamics:

Arm Payload

• Assume standard PD control for robot arm:

C

u=--kA(XA--XA)--kRxA

• Arm is acting as a colocated actuator/

sensor pair for payload•

ELASTIC MODE ALWAYS STABLE

= tuned control &¢.,_ _Op

• detuned control "_°l_P
, I

-k A

k_

Payload closed-loop elastic mode is a function of the ratio
where:

t0 A

lip

0_A = Rigid Arm Closed-
Loop Bandwidth

_p = First Cantilevered
Vibration Frequency
of the payload

i Arm Acts as a:

free-flying _ inertially fixed

base-/v!brat!on_,,.._ baseia s°r er[
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Control of Elastic Payloads: 1-DOF Example (cont'd)
I

• For cases where arm controller is "detuned" ( _0A >> Dp ), we can
implement an additional IMPEDANCE control law to actively damp the
payload's elastic mode:

I
PD Control Arm Payload I

_+__kA+kss_ '

l xC J__L_L _r

Impedance
Control

• We Have:
c

xp =_xp (High-Gain PD Control)

c -Fp
xp - B_ s + K_ (Impedance Control)

Fp=-(BIS+KI) Xp

Force Fp applied to payload acts as a virtual spring/damper

selected by the user t!

Root-Locus vs. Force

Sensor Gain:

-Qp

( x _v(2)
KI

BI

With proper choice of [ Kl, B_ 1

gains, payload elastic mode is

actively damped !
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Control of Elastic Payloads: Planar Arm Example

Three DOF Arm with

Elastic Beam Payload: Yr

Shoulder eS

Payload linearized dynamics model is obtained from FEM techniques
applied to elastic body on moving base:

Mrr Mrc

{

Mr¢ Me¢

[xc1qr = Yc = rigid interface DOFs

L_j

In summary:

Fp = Fy = externalforces�torque extertedon payload
T¢ by arm.

_x,sl] [xc,,)]
Fyl,)/=Zp (s)[yo(s)/w"ere Zp (S) = DYNAMIC STIFFNESS of ELASTIC PAYLOAD

• Arm dynamics linearized around given
configuration:

xc

Tw

_-JTs

'" T
M(__Oo)O_= TA +J (9.0) F_c with

Can be transformed in terms of
end-effector coordinates xc:

-T

M_o) _xc = J (9.o)___A+ _Fc with

o:iol!A:[T]Ec:, yc 
o v LTo_j

M(O_o)= 3x3 inertia matrix

j (_Bo)= Jacobian matrix expressed
in end-effector frame

M (Xo) = "Cartesian" inertia matrix
-T T

= J (Oo) M@o) J CO.o)

• Coupled arm / payload dynamics:

T, , _- _ __._ _ _,.%.,11
T e

T w
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Control of Elastic Payloads: Planar Arm Example

3-DOF Harmonic
Drive Arm

ORIGINAL PAGE

A,_ WHITE PHOTOGRAPI_._[.ACK "' "
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Control of Elastic Payloads: Planar Arm Example

• System Block Diagram:

CH Joystl¢ k _'_

and ControlJ

,
(_ 386-Based "_ I (f Analog "_ ("

/ Digital _ Contro,er/ _ /
/ Controller I _ I (vel,,Torque_ _VM
/ (r,oa,re, & I _ _ _ I Control Loops) I - [Amps ) I
I Force Control _ & Sensor I _ I

Loops) J _ s,_tron,, j \

t Digital 'ha°0l t  ,coerooete*s _-_ Tachometers, ]

Strain Gauges J

D_.._JOInt Va. _ Resolvers _

3-DOF
Harmonic

Drive

Manipulator

I Force/'rorque _ (rForce/Torque_ _Processor L Transducer J--

Characteristic frequencies for

3-DOF Arm & Payload dynamic

system (derived using

TREETOPS multi-body software):

F2 (Hz)F1 (Hz) F3 (Hz)

Arm Joints 1.2 42.2
Locked

]

2.1 42.3Arm Joints

Free

14.0

14.3

Arm Mass

Properties:

Link Mass

(kg)

Center of

Mass (m)

MOI

(kg-m 2)

Link Length
(m)

Shoulder 13.8 0.406 0.77 0.56

Elbow 10.1 0.37 0.607 0.56

Wrist 13.7 0.14 0.106 0.254

Payload

Mass

Properties:

Part Mass Center of

(kg) Mass (m)

Beam 0.4 0.38

0.7Tip Mass

El Link Length

(N-m 2) (m)

7.28 0.765
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Control of Elastic Payloads: Planar Arm Example (cont'd)

• Arm controller is designed assuming a rigid payload:

- Independent analog torque loop controllers (elastic gearmotors behave as
direct drive actuators)

C

- Standard nonlinear control law: Ta=Mrr(e) [-Kp(e-e )- KRe ]

• For a rigid arm, closed-loop dynamics is approximated by 3
decoupled second-order integrators.

• For a rigid arm with elastic payload, arm can be treated as a
virtual cartesian 3-dof colocated actuator/sensor pair.

• Dominant payload closed-loop elastic mode is a function of the ratio 2____
where: _P

(o A

_'-_p

= Rigid Arm Closed-
Loop Bandwidth

= First Clamped
Vibration Frequency
of the Payload

_P

Arm Acts as a:

free-flying
base

.._ inertially fixed

base
vibration

absorber I _ _A

422

Experimental time responses for an initial payload elastic deformation:

Arm acts as a vibration absorber:

2
£'4

E

-_ 0

L)
O --1

O..

:': -2
2

E
Z

v 1
O"

"(31

u_
C

u_ --1

1

0
"C)

-2

o)A
--=}

_p

T'
.............. i .............. , ....

0 I 2 3 4 5 6 7
time (sec)

Arm acts as a rigid base:
mA

-2

Qp

.--. 2 : i :

i i : i

}

O_
u3

E

-_ 0
U
U
o -1

'_ --2
1

E
Z

v 0
O"

C

£,VV 

0 1 2 3 4 5 6 7
time (sec)



Control of Elastic Payloads: Planar Arm Example (cont'd)

• For cases where arm controller is detuned (COa> _p), we can implement an
impedance control law to actively damp dominant payload elastic modes:

_;couplerl Tc --I ,-_

' TorqueSensor

• We Have:
C

-= _ (High-Gain PD Control)

c -T,

- B_s + K, (Impedance Control)

T =_(Bcs+K¢) _

=> Torque T_ applied to payload acts as a virtual spring/damper

selected by the user !!

Experimental time responses for an initial payload elastic deformation:

Impedance controller:

e)A
-2

Qp
---, 2
Oq
u3

E 1

u 0
Q

{3.

..... . .......... f ......... _.................... +.......... :..........

.... ; .... i .... J .... ; ..............

E
Z

cr

(/)
E
E)

(,1

.5

0

-1

iV ....

-5

g-1
v

LE
#-_ .s

0 1 2 5 4 5 6

time (sec)

Arm acts as a rigid base:
(oA

------2

Qp
.--, 2 i
ON
o')

E

-_ 0

Uo -1

13-

'_ -2
1

E
z

v 0

¢-

_n --2

i

.5

o
.E

CL

-O --.,5

0 _ 2 3 4 5 5 7
time (sec)
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Control of Elastic Arms: Testbed Description

|

20x30 fl Epoxy
Fiat Floor A_r Pz_.d (!ypi

End Point

Force Torque
So_sor

8LACK AND WHITE PH()FOGf4APN
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Control of Elastic Arms: Testbed Description (cont'd)
ii

• System Block Diagram:

Digital Controller

• Modified Intel 310 System
• Two Inte_386/t2CPUs

• 16/VD Inl_JtS

• 16 D/A Oulputs

400 Hz Resolver Reterence

ETHERN ET Interlace

120Mb Hard Disk, 320K Floppy
Menu-Driven User Interface

It+
Wor"t*o°. 1

• HPIApolIoNetwork, PC-AT, l I " ControlLaw I

FFT Signal Analyzer: I I Subroutines I

- OataPo=P,'o_sir_ I I" Te_,r=er I
- Simulation & Cont_ Desen I ] Hand Control J

(TreetopS, MATRIXx, Matlab) I I Devices I

-_ Analog Controllers

• Ana_To_ue,_s I I
• Analog Velocity Loops I I

• By-Pass Swilches j ,

Motor Amplifiers
• Current-Controlled

PWM Amplifiers

Analog Sensor Electroni_

• Amplifiers / Low-Pass Filters

(adjustable gain and rolloff)

• Resolver-to-Digital Converters

• Analog Integrators

(for acceieromeler outputs)

• Analog Oifferemiaters

(lor straingauge outputs)

Large Space Manipulator

• ActuatorS:

Sh: DC Gean'notor

(20:1 Gear Ratio)
- El: DC Direct Drive

- Wr: DC Harmonic Drive

(80:1 Gear Ratio)
• SOI_sore:

Joint ResoNers

- Moter Tacbomelers

Strain Gauges along Links

Tip Aocelerometers (X, Y)

2-D Tip Position Sensor

Wrist Force/Torque Sensor

- Pay_KIS:

- Rigid and/or Flexible

- Adjustable Mass Properties

Fluid Sk>shTanks
J

i

Control of Elastic Arms: Dynamic Modelling

• Modelling tool is the multi-flexible body dynamic analysis code TREETOPS:

Code developed by Dynacs for NASA-MSFC can simulate controlled
dynamics of a general chain of articulated rigid and elastic bodies.

Preprocessor generates finite element mass, damping and stiffness matrices
for each link with user-selectable end boundary conditions.

Linearized models can be loaded in the control analysis software packages
MATLAB and MATRIXx.

Nonlinear TREETOPS simulation can be run with the MATRIXx/System-Build
nonlinear simulator. This allows to easily design and simulate control laws
with the TREETOPS-generated dynamic models.

Simple analytical models have also been derived to understand the basic
characteristics of the system to control: linear and nonlinear models for a
1-DOF, and 2-DOF planar slender elastic arms with a rigid payload and with
nonlinear or linear geared actuators.
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Control of Elastic Arms: Dynamic Modelling (cont'd)

Equations of motion for 2-DOF elastic arm numerically assembled by TREETOPS:

iMp(x,)Moo +[o_Doojx + _K_j x =_0_T :o [F_,j
where Xr and Xe are respectively the joint angles and the generalized elastic coordinates

• Equations of motion are linearized around a given arm configuration. A

state-space model is derived with the two control actuators as inputs. The model
outputs are the joint angles, motor rates and linearized tip displacements (dx,dy).

• Characteristic System frequencies: JL= free joints FF = joint locked.

System Frequencies (Hz) l

for No Payload Configuration [

Modeil <=0 ° ° '
' JE

; I [ " "- [1.50 6.70 _

3 753 18.30.9_6._4r7.2?t 18.21
4 i 14.5 125.3 14.3 ] 25.1 I
5 a27.1_4o.976.6i_o.91

Control of Elastic Arms: Colocated PD Control

• Closed-loop system block diagram:

PD controller with joint position and motor velocity feedback:

_=-[_,(o_-<)+_ o,] _-2_(_
Te=-[kpe(0e-0;)+kRe0e] L2e(S)

where L2s and L2e are two second-order lag filters:

L2(sI =
s'+.g=%s +co;__
s:+2;,o,p_+o,;o,_
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Control of Elastic Arms: Colocated PD Control (cont'd)

• Example of gain-stabilization of the 4th vibration mode (85 Hz) with PD

controller implemented at 200 Hz. Second-order lag filter provides

high-frequency roll-off in compensator:

Open-loop shoulder transfer function G (s_ K (s)

20

.20

40

q

Sheuldl6_k_-L_pTrtm_rFtI_O_I

" 7

; ; I It i I I I _ i""? ;// I 1 I'1 i

100

0

.100

.200

-- NoS_prt F,_

---- WithSl=cmlFI_

I I I I I :11 I I I I I L I I L I I J
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Control of Elastic Arms: End-point Controller

Y t Lead-Lag L

C°mpensat°r i - I

Y -_Yt

X Xt

End-point controller is designed for configurations with the elbow angle nearly
equal to 90 degrees:

- Tip sensor Xt channel is fed back to elbow actuator.
- Tip sensor Yt channel is fed back to shoulder actuator.

For each channel, the tip controller consists of a second-order lead compensator
with motor rate feedback:

C

(s+a) (zi_zi)+kR ioi] L2i(s)Yi=- [kpi (s +b)(s +c)

with {a << b & c} andL2i is a second-order lag filter.
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Control of Elastic Arms: PD Control vs End-point Control
I II I I I

Arm is commanded to move along a straight line in the y-direction:

- A fifth-order spline command profile is used for the tip position command

- For the independent joint controller, equivalent joint command profiles are
computed using inverse kinematics (assuming arm is rigid).

• Arm configuration for reference slew maneuver:

tip sensor

field-of-view _ i p--_--]

I Pl = (2.1,-2.0)m

I-./_'- fi.,,,

/ F\x" initial x l

p s
k\\\\\\\\\\',.\\\_ (a)
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Experimental Time Responses for Slew Maneuver
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Control of Elastic Arms:

• Experimental set-up:

Disturbance Response to Tip Forces

I

I

I

I

I_NN.\\\\\'__\\'ll

constant tip force ____

._Fy _xt

i

- The arm is under closed-loop control in a given configuration

(joint or tip control).

- A constant force is applied at the tip using a force gage.

- After steady-state has occurred, tip force is removed.
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Control of Elastic Arms: Disturbance Response toTip Forces (cont'd)
!

Experimental Data for 0.5 Lb Tip Force Applied along Y axis:

x

Z
,o

o.
F--

,06

.04

.02

0

-,02

.04

T1¢> Otlturbonce:O.5 Lb In Y-DIr

l i-- Ttp Cntrl .04 -- Tip Cntrl i

\ ---+ Jnt Cntrt , _'_ ..... Jnt _ntrl i

_.j I i ' ........
' -+02 [

2 4 ' 6' ' 8 10 0 2 4 6 8 tO

flme lime

.04

,03

.02

.01

0

+.0!

-- TI_ Cntrl

.... Jnt Cntrl

\

2 4 6 8 10

time

.06 Tip Dhlturbonce:O.5 Lb Tn Y-O]r

+O3

,_ .02

o

-.01

-- T|p Cntr+

.... Jnt Cntrl

t

i

2 4 6 8 10

tlme

• Effective cartesian stiffness with tip position control is one order of
magnitude larger than with joint feedback.

• With joint control, tip disturbance forces excite fundamental
low-frequency and the lightly-damped elastic mode of the arm (0.5 Hz
frequency). With tip controller, transient response is well damped.
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Conclusions

With additional sensing capability, simple and robust control laws can be
used for active damping of space robots:

wrist-mounted force/torques sensors can be used to damp out large elastic
payload vibration modes with a simple impedance control law.

sensors which directly sense the wrist motion can be used to damp out link
elastic modes for RMS-class arms.

output torque sensors can also be used to damp out gearmotor elastic
modes.

Experimental testbeds have been designed to validate modelling
techniques and to demonstrate in 2-D the feasibility of new
control/sensing implementation for FTS/SPDM-class and RMS-class
manipulators. These testbeds are useful as a complement to 3-D
simulation studies.

• Space-based experiments should be planned to demonstrate
CSI-technology for FTS/SPDM-class and RMS-class manipulators.
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INTRODUCTION

The efficiency of a structure-control system is a nondimensional parameter which indicates the

fraction of the total controi power expended usefutly in controliing a finite-dimensionaI system. The

balance of control power is wasted on the truncated dynamics serving no useful purpose towards

the control objectives. Recently, it has been demonstrated that the concept of efficiency can be

used to address a number of control issues encountered in the control of dynamic systems such as

the spillover effects, selection of a good input configuration and obtaining reduced order control

models. Reference (1) introduced the concept and presented analyses of several Linear Quadratic

Regulator designs on the basis of their efflciencies. Encouraged by the results of Ref. (1), Ref.

(2) introduces an efficiency modal analysis of a structure-control system which gives an internal

characterization of the controller design and establishes the link between the control design and

the initial disturbances to affect efficient structure-control system designs. The efficiency modal

analysis leads to identification of principal controller directions (or controller modes) distinct from

the structural natural modes. Thus ultimately, many issues of the structure-control svstem revolve

around the idea of insuring compatability of the structural modes and the controller modes wi:h

each other, the better the match the higher the efficiency. A key feature in controlling a reduced

order model of a high dimensional (or oc-dimensional distributed parameter system) structural

dynamic system must be to achieve high efficiency of the control system while satisfying the control

objectives and/or constraints. Formally, this can be achieved by designing the control system and

structural parameters simultaneously within an optimization framework. The subject of this paper

is to present such a design procedure.

An important aspect of the efficiency approach to structure-cot_troi system is that the behavior

of the full-order system can be ascertained based on the reduced-order design model without any

knowledge of the truncated system dynamics. In case of finite element models (FEM) of structural

systems the full order system is the high-dhnensional first-cut model of the system known as the _\,th
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order evaluation model, where Ar is the total finite-element model structural degrees of freedom. In

the case of distributed parameter partial differential equation formulation, the full-order model is

tile ac-dimensional system.

Two types of efiqciency are defined for structure-control systems in Ref. 1. The first is the

global efficiency e* which compares the total control power expended on the full-order system

by a spatially discrete finite number of point inputs, to the control power that would have been

expended to control the full-order system by a spatially continuous input field. Thus, the global

efficiency is a predominant indicator of the effect of nature of input configuration on utilizing the

available control power. The second efficiency e compares the control power lost to the

truncated dynamics thereby not serving the purpose of control to the total control power expended

on the full-order physical system via the reduced-order control design model. In the case of global

efficiency there is an interest in the performance of a spatially distributed control design which is

dynamically similar (Ref. 3) to the point-input control design. The performance of the distributed

input design constitutes a globally optimal performance. In the case of relative model efficiency e,

both control powers compared pertain to the same control design model employing point-inputs.

hence e constitutes a relative measure of power performance. In this paper, the focus will be on

the relative model efficiency. References 1, 2, and 4 include more details on the efficiency approach to

structure-control systems.

The subject of structure-control systems is inherently multidisciplinary. A variety of objectives

and constraints can be proposed both a_ the system-level and subsystem level (structure or control

subsystems) to bring about an interdisciplinary study of the problem. For space-structures an

ultimate objective is to have a minimum mass structure subject to structural and/or control system

constraints. References 5-8 include a variety of optimization formulations of the problem. One

aspect of structural-control system optimization seems to be the variety of objective and constraint

function formulations that are proposed. While abundance of various formulations is desirable at

one hand, many different formulations also point out the need for being able to pose objective and

constraint functions that are truly multidisciplinary and therefore can address a variety of design

issues for the structure-control system. It is here that the power efficiency of the structure-control

system as a non-dimensional indicator of the merit of the system design seems to offer a unique

potential.

In our recent work in Ref. 9, as a further enhancement of the optimization formulation pre-

sented in Ref. 10, we included alower bound on the minimum efficiency achievable under _11 possible

initial disturbances as a system-level constraint. Other constraints included in Refs. 9, 10 were on

closed-loop damped frequencies and damping ratios. Furthermore, the question of a reduced-order

design model was not addressed in Ref. 10. The inclusion of the efficiency constraint in lq_ef. 9, on

436



the other hand, brought the controller reduction problem into the picture which is implicit in the

definition of the relative model efficiency. The feasibility of the optimization procedure for minimum

mass including an efficiency constraint was clearly demonstrated in Ref. 9, by several examples

using the ACOSS-FOUR structure (Fig. 1). The evaluation model had 12 degrees of freedom and

the reduced order control design model included the lowest 8 structural modes. The control law

was designed via the linear quadratic regulator theory (LOR) for apriori assumed unit weighting

parameters for the states and the control inputs. The design variables were the 12 cross-sectional

areas of the members of the structure.

From a broader perspective for the structure-control system, the design variables can and should

include control system design parameters as well as structural system design variables. To this end,

if the control law is designed via the LQR theory, the state and control weighting parameters can be

considered as additional design variables. Recently, Ref. 11 included the control and state weighting

parameters as design variables along with the member cross-sectional areas of the ACOSS-POUR

structure for an optimization problem with robustness constraints. However, Ref. 11 used the

full-order (12 modes, 24 states) system model in its illustrations.

In view of the illustrations given in Refs. 9 and 11, the next evolution in optimization of the

structure-control system with a focus on the efficiency of the design with a reduced-order model

is to include the control weighting parameters as design variables along with the structural design

variables. This paper represents this next step in the system optimization. Thus an optimization

problem that is not only of more practical interest but also of a more genuine interdisciplinary

character is presented in this paper.

EFFICIENCY ANALYSIS FOR A STRUCTURE-CONTROL SYSTEM

Consider an N _h order FEM evaluation model of the structural system

M;_ + E//+ Kq = D F(t) (1)

where M,K and D are the mass, stiffness and input influence matrices, q(t) is the N-vector of

nodal displacements and F(t ) is the m-vector of point inputs. To control the structure described by,

(1), reduced-order modal state-space equations are considered

= + Bg(t) (2)
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where r/z are the rl < N structural modes controlled. Hence, considering the structural modal

problem associated with (1) and denoting the orthonormalized modal matrix q) of the full order

evaluation model we have

r/R

where R denotes truncated structural modes. The modal-state space system of (2) is the reduced

2n th order control design-space model. The ,4 and B matrices have the form

[ slA - -- , B = (4,5)

where _.2 __ diag [02 1 .... 02n] with 02r a natural frequency and I is the n ta order identity matrix.

Due to any arbitrary input F(t) the control power associated with the input on the actual

full-order evaluation system (1)is given by the integral

S R = f F TDTM-1DFdt (6a)

The portion of this total expended power on the actual physical system that is projected onto

a reduced-order dynamic system represented by (2) is

S M = f -FTBTB- Fdt

We refer to S R as the real (total) control power expended and S_, I as the modal control power

expended on the modal control design model. One has (Ref. 1)

s > sy (7)

and the control power wasted to the truncated dynamics is

The relative model input power efficiency is defined as

sg
e%- SR × 100 (9)

with a maximum possible etficiency of 100%.

Associated with e, a power spillover quotient can be defined as

s3J
Sq% = S_ × 100 = (l-e) × 100 (10)

\¥e note that while ScM is indicative of a quantity for the reduced control design model through

lhe appearance of the B matrix, S R is a quantity for the evaluation model through the appearance
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of tile evaluation model mass matrix M. This observation establishes that the model efficiency

relates the power performance of the full-order evaluation model of the actual physical system.

Most importantly the definition of model efficiency is valid regardless of the specific functional

dependence of the input field F(t) which is the physical input to the real system. For example, it

does not matter from the point of definition whether F(t) is a control input or not.

Specifically, however, if the input F(t) on the physical system has the functional form of the

state-feedback of the reduced-control design model (2) as:

_ (]1)

where G is a stabilizing constant control feedback gain matrix of dimension m x 2n, then it can

be shown that Sa_, S R become:

S R T R S_I T_,M=  _oP = =  (to) (12)

pR and PcM are symmetric positive definite matrices referred to as real and modal control power

matrices, respectively. They are the solutions of the Lyapunov equations associated with the closed-

loop control system
T R

AdP + PRA d + GDTM-1DG = 0 (13)

ATDM nM_
d_C + rC _cl + GBTBG = 0 (14)

Ad = A-BG (15)

Both power matrices are 2n th order; they are computed based on the reduced control design

model. However, note that the real power matrix pR still inherently involves the evaluation model.

It follows that, for a stable structure-control system, the model efficiency becomes

T_]ll

x-°rex-° (16)
e = x oTPRx_°

Hence, the efficiency of the system in general depends on the initial disturbance state and the

structure and control system parameters carried into the power matrices via the Lyapunov Equations

(13, 14). As simple as definition (16) of efficiency of the system appears, it does hold a host of

internal information about the working of the structure and control system thereby characterizing

the control/structure interactions uniquely as we outline below.

Since the control power matrices are Hermitian matrices, the efficiency quotient (16) essential-

ly represents a Rayleigh's quotient. Consider the eigenvalue problem associated with the power

matrices (Ref. 2)
M

Pcti= A_PRti i = 1,2,...,2n (17)
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whereA_ and t¢ are defined as the i ¢h characteristic efficiency and the i th controller efficiency mode.

respectively. The eigenvector ti is also referred to as the principal controller direction. Introducing

the efficiency modal matrix T:

T it_ t2 ... t_l 18)

tile following orthonomality relations can be stated

TTpRT = I2r_x2n_ TTp_IT = A e

where

: 1 e e... _ ...± ,X2_ < 1 (20)

From the properties of a Rayleigh_s quotient, for any arbitrary vector (initial disturbance state)

aeo, the value of the quotient (16) is bracketed by

,x_ < _ < ),_ _<1 (21)

where the upper bound of 1 follows from the property (7). We shall refer to A] as the fundamental

efficiency. It is the minimum efficiency achievable by the structure-control system regardless of the

initial state a:o.

Again, since the Rayleigh's quotient is stationary around an eigenvalue Af it follows that if

the initial disturbance xo = ti, that is if it matches the ith controller efficiency mode exactly, the

efficiency will be exactly A_. Next, defining an efficiency modal transformation

= T_, __o= T__o (22)

an efficiency expansion expression can be written as

2n 2
2 e 2 Czo

e = _ ei, ei = ciA i, ci - (23')

where ci and ei represent the i th efficiency state and the i th efficiency component, respectively.

From the above analysis, we note that the controller efficiency modal matrix T and the characteristic:

efficiencies A_ are uniquely determined for a particular structure-control system design. For different

initial disturbances a:o, the resultingefficiency e can readily be computed via the efficiency expansion

of Eqs. (23). There wi]l be no need for reanalysis of the system when the disturbance changes. The

controller efficiency modal analysis presented above and characterized by {A e, T} is unique for the

structure-control system and is in addition to the purely structural modal properties characterized

by (w2, (]_]. For the sake of brevity and without elaborating further, the structure and control system

analysis revolves around how compatible the modal properties _ and T are. The modal matrix T
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gives an internal characterization of the structure-control system and should prove to be a valuable

analysis/design tool (Ref. 4).

OPTIMIZATION PROBLEM FORMULATION

In the design of structural-control systems it is natural to strive for a high model efficiency

e regardless of initial state disturbances. The consequence is that a high efciency of any given

reduced-order control design model will imply that there is low control power spillover to the

truncated dynamics and hence minimized residual interaction with the design model. Furthermore,

bv definition, a high efficiency simply means a more efficient use of resources available, which is

a common sense engineering design principle. We can then pose a structure-control optimization

problem which incorporates the system efficiency.

Optimization Problem

Objective:

MirLimize the total structural weight

subject to

Constraints on the reduced-order control design modeh

_i min _ _;

(24)

(25a)

(25b)

> e*% (25 )

Control System Design Performance Index (CDPI):

oO

CDPI = Minimize: _/(x_TQx + f_T_f_)dt (26)
O

where Q > o, R > O are weighting matrices defined by

where Q and R are specified constant matrices and _ and "7 are the control system design variables.

Design Variables: {Structural design variables, "Y, _}
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in (25), i denotes a chosen set of modes from a set of n modes in the design space. (i is the

damping ratio of the control]ed system and wi is the closed-loop frequency. An * denotes minimum

desirable constraint values. The minimum weight optimization problem using only the first two

types of constraints has been studied in Ref. (10). The novel feature of the problem posed here is

the inclusion of the nondimensional structure control system parameter, the efficiency e in addition

to the already too familiar other nondimensional parameter, the damping ratio (. The constraiat

on _ reflects a concern on the quality of response, whereas the constraint on e reflects a concern on

the use of the control power. An equally important feature of this optimization formulation is that

the goodness of the reduced order design model relative to the full order system is explicitly but

intricately incorporated to the design via the introduction of the efficiency constraint.

Returning to the efficiency constraint (25c) and the definition of efficiency (16) it is certain that

the solution of the problem will also be sensitive to the initial modal state disturbance which is

affected by the structural design variables. To circumvent this dependence of the problem solution

on a:o we invoke a feature noted in the previous section that the minimum efficiency achievable is

the fundamental efficiency ,_ regardless of the initial disturbance. Hence, the efficiency constraint

(25c) can be substituted by a constraint on the fundamental efficiency

guaranteeing a lower bound on the model efficiency regardless of initial disturbances where sensi-

tivity of )_ depends only on the system matrices via the efficiency eigenvalue problem (17). Hence,

we solve the optimization problem subject to the constraints (25a), (25b) and (25d).

The sensitivity expressions for the objective function and the damping ratio _ and the closed-

loop frequencies a,'i are exactly the same as given in Ref. (10) where it is assumed that the control

gain matrix G is the steady-state solution of the 2n th order matrix Riccati equation associated with

the minimization of the Control Design Performance Index (CDPI). The sensitivity expression of

efficiency ,_ is given in Ref. 9. The sensitivities with respect to the control design variables are

given in Ref. (11).

ILLUSTRATIVE EXAMPLES

The ACOSS-FOUR structure shown in Fig. 1 was used to design a minimum weight structure

with constraints on the closed-loop eigenvalues and the fundamental efficiency. This structure has

twelve degrees of freedom (N = 12) and four masses of two units each attached at nodes 1 through 4.

The dimensions and the elastic properties of the structure are specified in consistent nondimensional

units in Ref. (7). Six colocated actuators and sensors are in six bipods. The control approach used

is the linear quadratic regulator with steady-state gain feedback via minimizing the control design
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performanceindex, (Eqs. 26_27). In Eqs. 27, the weighting matrices Q and R for the state and

control variables were assumed to be equal to the identity matrices and the parameters 5 and "_'

were used as design variables along with the 12 structural member cross-sectional areas.

The nominal initial design is denoted by Design A with cross-sectional areas of the members

equal to those given in Table 1. This initial design weighs 43.69 units. The initial values for the

control parameters 3- and 7 were chosen as unity.

The constraints imposed on the optimum designs were as follows:

2 1.425 (2Sa)

w2 _> 1.757

(1 __ 1.5 (1(initial)

A_ = e_ > 1.75 Aj(initial) = 1.75 emz_(initial)

(28b)

(28 )

(28d)

The first two constraints on the closed-loop damped frequencies correspond to a 10% increase

over the initial closed-loop damped frequencies which were practically equal to the corresponding

structural natural frequencies. The damping constraint demands a 50% increase in the damping

of the first mode over that of the initial design. The fundamental efficiency constraint, which is

the minimum possible efficiency (the worst case) for all conceivable initial state disturbances _o,

requires a 75% increase over the minimum efficiency of the initial design. We should note that the

designation with subscript "1" in this constraint has no connotation with the first structural mode,

quite differently it refers to the first efficiency mode or first principal controller mode, the significance

of which is brought about through the definition of concept of efficiency of the structure-control

system.

The NEWSUMT-A software based on the extended interior penalty function method with

Newton's method of unconstrained minimization (Ref. 12) was used to obtain optimum designs.

Two optimization problems were solved each with a different reduced-order control design model

and a different input configuration. These designs were denoted as Design B and Design C. Design

B used the first eight natural structural modes in the reduced-order control design model (n = 8)

with 6 inputs (m = 6) located on the six bipods of the structure. Design C used the first six natural

structural modes in the reduced order control design model (n = 6) with 2 inputs (m = 2) located

on the two bipods attached to node 2.

The results of optimizations are given in Table 2 which includes values obtained for the con-

strained quantities wl,w2, A_ and _1 and the objective functio'ns, weights of the structures. In

addition, the resulting real control powers expended, S R and the amount of this power that was

absorbed by the reduced-order design models, ScM and the respective model efficiencies, e/% are
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listed in Table2. As the initial disturbancestate a:o,a unit displacementin the x-direction at node

2 wasassumed.Note that the initial disturbanceaffectsonly the valueof model efficiency e, but

not the value of the fundamental efficiency A_.

The design variables, cross-sectional areas of elements and the control weighting parameters

are listed in Table 1 for all Designs A-C. The structural frequencies, the characteristic controller

power efficiency spectrum and the damping ratios of the closed-loop designs are also listed in Tables

3-5, respectively.

]t is observed from Table 2 that all optimum designs result in considerable weight reduction

in comparison to the initial weight and the constraints are satisfied. Particularly, fundamental

efficiencies of optimum designs have been increased resulting in significant improvements also in the

model efficiencies as intended. From Table 2 we note that the total control powers S/_ expended on

the 12 th order evaluation models have been affected with larger percentages of them absorbed by the

8 _h and 6_h-order control design models of the optimum designs. While the control design models

of the optimum designs have higher structural frequencies than the initial design, the truncated

frequencies have been lowered, thus making the response of the truncated dynamics more susceptible

to excitation by the control powers spilled over inefficiently in the optimum design. Thus it becomes

even of more concern that the optimum designs have higher e_ciencies than the initial design. For

both control design models this has been achieved.

The control power oc_I absorbed by a design model increases with the cube of the structural

frequencies and may increase or decrease with the damping ratios depending on the separation

between the closed-loop natural frequencies (moduli of the closed-loop eigenvalues) and the open-

loop structural natural frequencies (Ref. 13). Therefore, the increases in the control powers S_ I

absorbed by both of the optimum designs are expected. From an alternate perspective, the initial

strain energies in the design models of the optimum designs B and C are higher than the initial

design A for the assumed unit initial displacement at node 2. However, much higher damping ratios

realized in the optimum designs as listed in Table 5 by virtue of the required increase in the damping

ratio of the fundamental structural mode, result in considerable decrease in the settling time of the

closed-loop system. Thus; from this perspective also, power absorbed by the optimum designs oc_I

must increase to remove higher levels of initial strain energy in a much shorter time. Again note

that the optimum designs have higher levels of efficiencies in using the control powers.

The line-of-sight error responses at node 1 of both optimum designs for the evaluation models

and the control design models are shown in Figures 2 and 3 for (n = 6, ra = 2) and (n = 8, m = 6),

respectively. Figure 2a shows the responses of the 12-mode evaluation models of the initial design

(Design A - solid curve) and the optimum design (Design C - dashed curve) for the control design

model of 6 lowest natural modes and 2 inputs. Design C has an efficiency of 95.1% versus the 53.6%
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efficiency of the initial Design A. Figure 2b shows the responses of the 12-mode evaluation model

(solid curve) and the 6-mode control design model (dashed curve) of optimum Design C. Similarly,

for the control degign model of 8 lowest natural modes and 6 inputs, Figure 3a shows the responses

of the 12-mode evaluation models of the initial design (Design A - solid curve) and the optimum

design (Design B - dashed curve) with respective efficiencies of 61.5_ and 88.6%. Figure 3b shows

the responses of the 12-mode evaluation model (solid curve) and the 8-mode control design model

(dashed curve) of optimum Design B.

The relative model efficiency e is a figure of merit which can also be used to ascertain the quality

of response of the evaluation model of a controlled structure based on the study and simulation

of a reduced-order control design model without any need for simulation of the evaluation model

which can be very taxing on computational resources. It is shown in Ref. 4 that the mean square

response of truncated dynamics is inversely proportional to the fourth power of the truncated

natural frequencies and directly proportional to the time-weighted control power spilled over to the

truncated dynamics which is quantified by the spil]over quotient-inefficiency defined by Eq. (10).

Certainly, if the controlled frequencies and the truncated frequencies are well-separated, specifically,

if the truncated frequencies are high frequencies and a high system efficiency is realized, then one

would hardly expect any degradation of the response of the reduced-order control design model due

to excitation of truncated dynamics. In other words, in such cases, the inefficiency figure would

further be attenuated when it is translated to its effect on the system response. In contrast, if the

truncated frequencies are not well-separated from the controlled frequencies and they are of low

natural frequencies, then the inefficiency figure will further be magnified when it is correlated to the

system response. In case of such low frequencies in the truncated dynamics it becomes even of more

concern to obtain very high system efficiencies. With efficiency of the system obtained based on the

reduced-order design model and its implications on the evaluation model response known apriori

through such observations, the designer will not have to simulate the evaluation model. Due to

such aspects of the structure-control system, consideration of the efficiency of the system becomes

essential for the designer. Furthermore, even if the effect of truncated dynamics on the response is

ascertained to be insignificant, still striving for higher efficiency to conserve control power makes

sound design engineering.

As for the optimum designs B and C illustrated in this paper, from Table 3 it is noted that the

first truncated frequencies, mode 9 for Design B and mode 7 for Design C are almost coincident

with the highest controlled frequencies, modes 8 and 6, respectively. Thus although the highest

controlled frequencies and the first truncated frequencies are clearly separated in the initial Designs

A, in the optimum designs, this feature is lost. In spite of the higher efficiencies obtained for the

optimum Designs B and C one may expect that the near resonance excitation of the truncated mode

7 for Design C and the truncated mode 9 for Design B by the 6 th and 8 _h modes, respectively, will
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be discernible in the evaluation model responses over the responses of the reduced control design

models. This is clearly verified in the evaluation model responses, especially in Fig. 2b, in spite

of the 95/% efficiency' obtained for the optimum design. One may seek to improve the situation by

either attempting a higher efficiency design or by putting a frequency separation constraint between

the control design model and the truncated frequencies.

Finally, some remarks are in order as to the choice of different input configurations for the two

optimum designs B and C. As discussed in Ref. 1, efficiency is a genuine parameter that reflects

the interdisciplinary nature of the structure-control system design. As such it is also an indicator

of the effects of changes in the input configuration and the design model order as well as of the

comparability of the particular input configuration with the reduced-order design model. Indeed,

it is illustrated in Ref. 1 that for the initial Design A with the 6-mode design model inclusion

of inputs 3-6 degrades the efficiency of the system, whereas their inclusion improves the efficiency

of the system for the 8-mode design model. Thus, for the optimization problems formulated and

illustrated in this paper with the objective of improving the efficiencies of the 8-mode and 6-mode

reduced-order designs, from the study of efficiencies of the initial design A, the input configurations

were chosen with 6 inputs and the first 2 inputs, respectively, culminating in satisfaction of our

objectives for both designs.

CONCLUSIONS

Incorporation of the efficiency concept as a norm of the structure-control system design and

analysis enhances the overall quality of the system. Structure-Control system efficiency is a physi-

cally based nondimensional parameter indicating the degree of usefulness of a fundamental quantity

in the design and analysis of many engineering disciplines, namely, the power. Our work hereto-

fore demonstrates that a focus on the system efficiency does not curtail the designer's ability in

monitoring other important quantities of the overall design; on the contrary, it brings in an added,

but necessary, dimension to the structure-control system which is a time-tested proven concept in

engineering design. The improvement of efficiency, in the least, simply makes better use of available

control power since it results in reduced power spillover to the unmodelled dynamics. Furthermore,

this reduction is not merely qualitative but it is quantified via efficiency. Consequently, monitoring

of efficiency of the system is tantamount to gauging the goodness of any reduced-order control design

model relative to the full-order physical system, which is characterized typically by a higher-order

evaluation model in the case of FEM models or the oc-dimensionM model in _,he case of distributed

parameter systems. More importantly, all control design computations only involve the reduced-

order control design model while extracting information about the behavior of the full-order system

which makes efficiency a practical design tool for the structure-control engineer. Our work
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demonstrates that efficiency is an essential feature that must be addressedin the designof

structure-control systemsfor flexible systems.
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Table I: Design Variables

Element Design A Design B Design C

Number n = 8, m = 6 n = 6, m = 2

1

2

3

4

5

6

7

8

9

i0

ii

12

i000.0

i000.0

i00.0

i00.0

i000.0

I000.0

I00.0

i00.0

i00.0

I00.0

i00.0

i00.0

246.9

403.6

175.4

257.2

228.2

253.9

54.2

226.1

224.6

528.2

604.9

597.4

126.5

280.7

575.5

576.2

407.9

271.1

84.7

68.2

547.8

171.8

416.2

270.8

Weight 43.69 21.97 26.79

1.00 4.24 2.45

? 1.00 0.24 0.41
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Table 2: Optimum Designs

Constraints Design A Design B Design C

Initial Design n = 8 modes n = 6 modes

n = 8, 6 m = 6 inputs m = 2 inputs

1

_2

S R

M

S c

e%

Weight

1.295

1.596

0.056, 0.031

1.425

1.757

0.290

40.7, 52.5

4.88, 17.88

3.00, 9.59

61.5, 53.6

43.69

71.2

89.00

78.91

88.6

21.97

1.425

1.757

0.130

92.1

26.02

24.74

95.1

26.79

2
Table 3: Structural Frequencies

S

Structural Design A Design B Design C

Mode n = 8, m = 6 n = 6, m = 2

1

2

3

4

5

6

7

8

9

I0

ii

12

1.68

2.55

7.31

7.52

9.98

16.06

20.01

20.17

66.24

77.46

97.42

151.30

2.11

3.27

7.83

11.17

17.34

22.80

44.61

50.40

50.52

96.96

107.40

110.70

2.06

3.15

8.43

13.85

19.27

24.17

24.43

43.32

55.84

70.42

92.49

112.86
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Table 4: Characteristic Efficiency Spectrum 1% 1%

Controller Design A Design B Design C

Efficiency Mode n = 8, 6 n = 8, m = 6 n = 6, m = 2

1 99

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

.98, 59.95

99.98, 59.95

99.62, 59.95

99.57, 59.95

98.32, 59.95

98.10, 59.95

76.90, 52.65

76.21, 52.65

62.92, 52.65

61.98, 52.65

56.92, 52.65

53.29, 52.65

42.87,

42.81,

42.77,

40.77,

99.89

99.82

99.22

98.56

94.01

93.78

92.88

91.99

89.57

88.51

81.21

78.98

76.88

74.14

72.63

71.24

97.85

97.85

97.83

97.83

97.77

97.73

92.24

92.23

92.16

92.14

92.14

92.14

Table 5: Closed-Loop Damping Ratios

Mode Design A Design B Design C

n = 8, 6 n = 8, m = 6 n = 6, m = 2

1

2

3

4

5

6

7

8

0.056, 0.031

0.067, 0.034

0.074, 0.009

0.081, 0.063

0.085, 0.077

0.087, 0.049

0.076,

0.072,

0.290

0.107

0.335

0.106

0.I00

O.189

0.205

0.196

0.130

0.171

0.121

0.120

0.160

0.124
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Figure 3a: Line-of-sight error evaluation model responses for

the 8 th order control design model; initial design A (solid)

and optimum design B (dashed)
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C-SIDE: THE CONTROL-STRUCTURE INTERACTION

DEMONSTRATION EXPERIMENT

James B. Mohl and Hugh W. Davis

Ball Aerospace Systems Group

Boulder, CO

INTRODUCTION

The Control-Structure Interaction Demonstration Experiment (C-SIDE) is sponsored by the

Electro-Optics and Cryogenics Division of Ball Aerospace Systems Group. Our objective is to

demonstrate methods of solution to structure control problems utilizing currently available

hardware in a system that is an extension of our corporate experience. The larger space structures

with which Ball has been associated are the SEASAT radar antenna, Shuttle Imaging Radar

(SIR) -A, -B and -C antennas and the Radarsat spacecraft. The motivation for the C-SIDE

configuration is to show that integration of active figure control in the radar's system-level design

can relieve antenna mechanical design constraints.

The radar system's effectiveness depends on the success of antenna orientation and

structural motion control. Orientation control has been provided by the attitude control system of

the supporting vehicle. Figure control has been passive by means of exotic materials, construction

and deployment techniques. Active figure control, however, offers advantages from the standpoints

of adaptability and enhanced response. For example, equipment-, crew- and maneuver-induced

vibrations may be damped or anticipated to both steady the platform and maintain the figure of

the radiating surface. Related applications where active structure control can be the final stage of

a precision controller are large optical systems and pointing systems.

This presentation is primarily an introduction to the C-SIDE testbed. Its physical and

functional layouts, and major components are described. The sensor is of special interest as it

enables direct surface figure measurement from a remote location. The Remote Attitude

Measurement System (RAMS) makes high-rate, unobtrusive measurements of many locations,

several of which may be collocated easily with actuators. The control processor is a 386/25

executing a reduced order model-based algorithm with provision for residual mode filters to

compensate for structure interaction. The actuators for the ground demonstration are

non-contacting, linear force devices. Results presented illustrate some basic characteristics of
control-structure interaction with this hardware.

The testbed will be used for evaluation of current technologies and for research in several

areas. A brief indication of the evolution of the C-SIDE is given at the conclusion.
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CURRENT SYNTHETIC APERATURE RADAR SYSTEM

The challenges when defining a spaceborne radar system are observing the packaging and

launch weight constraints while maintaining precise geometry of the operational antenna. The

current approach is to use very stiff antenna panels and to maintain strict alignment and thermal

control. The fixed arrays are relatively heavy with sophisticated mechanisms for deployment from

their launch envelopes. An example of the current technology is the Radarsat spacecraft shown in

figure 1.

Radarsat is a Canadian Space Agency program to operate a synthetic aperature radar

(SAR) satellite for research and commerical remote sensing applications. The C-band radar

module, built by Spar Aerospace, has an antenna which is 15 meters tip to tip, 1.4 meters wide

and supported from behind by an extendible support structure. The radiating surface is a series of

waveguides which give it a steering capability in the elevation (cross-track) direction. Since the

waveguides provide substantial structure, the operational antenna is quite stiff. The antenna's

in-plane and out-of-plane bending modes occur near 4.2 and 5.2 Hz. The solar arrays are less

substantial with out-of-plane and in-plane bending modes near 0.3 and 0.9 Hz. The attitude

control system (ref. 1), in the bus module built by Ball Space Systems Division, has sufficiently

low bandwidth to avoid interaction with the solar arrays and yet provides pointing stability to 0.1

deg. The primary attitude determination system provides attitude knowledge to better than 0.05

deg to facilitate registration of images by ground processing.

Array

Battery

Radiator _ _-_Bus Module Zenith-S-Band

Antenna

SAR Antenna

Extendible SAR Antenna

Support Tie-downs
Structure

Thruster
Tie-down '\

X-Band _ ESS Depioymenl

Antenna \. Mechanism

Thermal Blankets- __ Payload

Earth _ Module

Sensor \,

Nadir S-Band

Antenna ASCAA_

FA3 Misc3lh25q3]JIM'3
2J2_92

Figure 1. Radarsat uses precision deployment mechanisms and material stiffness to maintain an-

tenna figure and strict attitude stability requirements for orientation control.
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ACTIVE FIGURE CONTROL BENEFITS

A functional diagram for anSAR system is shown in figure 2. Microwave energy is generated,

passed through the transmitters and phase shifters and radiated by the antenna to illuminate the

target. The return energy is collected by the antenna, passed back through phase shifters and

receiver and saved in mass storage. Some image processing is done on-board but much of the

post-processing is a ground operation.

Benefits accrue from integration of active figure control through relief of antenna and

spacecraft mechanical design constraints. A physically large antenna can have finer control to

produce a more planar outgoing wavefront; shaping techniques to lower the sidelobes of the beam

used in ground-based radars can be considered. Static misalignments at hingelines or distortion of

panels can be readily removed; when extreme mechanical precision is not required, on-orbit

assembly is an option. Low frequency, dynamic distortions can also be removed, such as those due

to thermal shocks passing through an eclipse; this would reduce the need for strict thermal

management. Lightweight construction or novel deployment options can be considered.

Disturbance from the attitude control system, equipment or crew motion can be rejected so that

operational restrictions can be relaxed.

The figure control system is independent of the radar function as shown by the loop at the

bottom of figure 2. The sensors and actuators interface the antenna to the core structure. The

figure control system maintains the position of the antenna relative to the core.

Signal
Generation

.__ Transmit-
Receive

Beam
Forming

Logic

• Potential benefits

- Larger antenna

-Correct static alignment

- Compensate thermal shock

- Lighter construction

- Lower precision mechanisms

Signal

Processing

Radar

Image

Antenna Structure
Phase

Shifters

Actuators

Figure
Control

System

Sensors

FA3:M_c3[A259_IF 1

2/28_2

Figure 2. Integration of figure control in the radar system definition relieves mechanical design
constraints.
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ENHANCEMENT FOR DISTRIBUTED ELEMENT RADAR SYSTEM

The radar platform contains the basic features of control-structure interaction that are the

motivation for C-SIDE. However, there is an extension of the figure control capability peculiar to

an antenna with a distributed element architecture. Control beyond the attempted correction of

physical figure is possible because the radar system can use the results of the control process in a

second path, shown in figure 3. The outgoing wavefront would become planar to fractions of a

wavelength.

The figure control system uses a modal state estimator that can provide figure error

estimates over the entire antenna face. The individual radiating elements receive phase shift

commands appropriate for the estimated error at their physical position on the surface. Phase

shifts of 1/32 of a wavelength are practical; that corresponds to a linear distance of 10 to 1 mm
for an L- to X- band.

The spacecraft's attitude determination system provides the orientation of the core structure

and defines the antenna boresight. This information could be used as other input to the beam

forming logic to provide wide angle steering. Time delay in the transmission from widely

separated portions of the array allows steering away from the antenna boresight. This has

implication in the spacecraft design by allowing the antenna to be operated from a convenient

attitude rather than being articulated by the vehicle.

Signal
Generabon

Transit-

Receive
Signal

Processi ng

Beam

Forming Phase
Logic Shifters

Electronic

Rgure

Compensation

Actuators

Figure
Control

System

(----.--)

N_tenna Structure

_nsors

FA 3:Mlac3(A25_}F 2

_2

Figure 3. Figure control system facilitates on-board electronic compensation by the radar system

for enhanced performance.
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C-SIDE OVERVIEW

In the initial demonstration, we are assembling one-half of an antenna-like structure which is

cantilevered from a massive central body as illustrated in figure 4. The "antenna" is a thin flexible

facesheet one meter in height, three meters in length and 1.5 millimeters thick. A graphite/PEEK

truss is placed behind the facesheet to act as a reaction structure. The figure control system is

composed of a pair of single-axis Remote Attitude Measurement Systems (RAMS), up to ten

linear force actuators and a single digital processor.

The physical size of our "large structure" is modest to reduce laboratory space requirements

but is scaled to provide features modelling the large structure problem. The frequencies for the

controlled surface start below 1 Hz. The low frequencies have the added advantages of reducing

computational loading on the control system processor and lessening the impact of air damping in

the laboratory environment. The reaction structure is specially fabricated to have bending

frequencies starting in the neighborhood of the facesheet's sixth mode.

Suspension
to Ceilin(

I

I

Non-Contacting Actuator

Composite Reaction
Structure

Remote Attitude
Measurement Sensor
(RAMS)

A1489_98.002

Figure 4. The C-SIDE is representative of a lightweighted spaceborne radar system that requires

figure control of a thin, flexible plate supported by a structure from the rear.
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FUNCTIONAL BLOCK DIAGRAM

The block diagram in figure 5 indicates the layout of the equipment and control system. The

displacements of several facesheet locations are obtained by the RAMS by viewing targets on

struts. The RAMS data is transferred through the interface box to the system controller. The

controller interprets the RAMS data, performs the digital control algorithms and transmits the
calculated actuator commands. The commands are distributed to the remote actuator drivers

through the interface box. The actuators create motion in the facesheet and react on the reaction
structure.

The interface box contains the force command decoder and the -I-15 volt DC power supply.

Its front panel allows access to the computer's analog input/output channels for use with the

structural dynamics analyzer. The -I-24 volt DC actuator drive power is supplied externally.

The system controller is an 80386 with a coprocessor operating at 25 Mhz. There are three

communication support cards. The digital I/O card is required for communication with the

RAMS. One digital to analog channel is multiplexed for commanding the remotely located

actuator electronics. Five other digital to analog channels are available for real-time display of

selected "probe" points within the control algorithm. An analog to digital card allows injection of

analog test signals and command waveforms into the digital system. MATLAB is available for

control system design, data post-processing, analysis and documentation. Programming for the

executable programs is done in Microsoft C 6.0.

0.0015rn x 3m x 1 rn Aluminum sheel

Itluminatect sensor field-of-view

Actuator armature

L

'- ......... : aAMS

i
t

I i

Figure 5. The initial C-SIDE provides physical figure control for the passive facesheet using a

distributed array of actuators.
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ASSEMBLED HARDWARE

Our control objective is to maintain the facesheet position, as measured by a remote sensor,

by actuating against a well-behaved "reaction base" employing active or passive damping.

Stiffness of the reaction structure provides one component of the reaction base with a passive

"recentering" action. The mass of the reaction structure, augmented by the mass of cabling and

drive electronics placed along its length, provides an inertial component to the reaction base. The

reaction structure is placed well behind the facesheet to reduce interference with the RAMS field

of view and to provide a standoff for actuator mounting. Abnormal stiffness is not to be required

in the reaction structure as it is only necessary to maintain the actuators in the vicinity of their

nominal positions.

Obtaining a stiff structure would not be a problem for this size of experiment. To get a

better scaling for the large structure problem, a unique attribute of composite material fabrication

is used to intentionally reduce material stiffness and lower the bending frequencies. The

lamination orientation of the fiber is changed from alignment with the truss member axis to a 45

deg offset which reduces the modulus from 10 Mpsi to 2 Mpsi. The truss bay dimensions are small

also, for appropriate scale: 0.11 m wide by 0.50 m long by 0.16 m high. The resulting modes

shapes are: bending in the vertical plane at 2.8 Hz, first and second torsions about its long axis at

3.3 and 8.4 Hz, and bending in the horizontal plane at 4.0 Hz. The reaction structure is shown in

figure 6. It is supporting its own mass of 11 kg and 65 kg of other components.

Non.Contacling

Figure 6. This view of C-SIDE shows the facesheet backside, reaction structure, actuators, drive

electronics and cabling.
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FACESHEET ACTUATOR

The non-contacting actuators shown in figure 7 reduce damping of the facesheet motion and

avoid the nonlinear effects of stiction. The heavy, iron section (the stator) is attached to the

reaction structure. The iron completes the magnetic circuit for two samarium cobalt magnets to

establish a fixed field across the two air gaps. The light, coil section of the actuator (the

armature) is attached to the facesheet by a yoke. The actuators produce force proportional to the

coil current in the direction normal to the facesheet. The range of motion is -4- 17 mm. The lateral

and longitudinal clearances were modified in-house but are as small as practical to avoid

compromising the actuator's force capability. Restraint of the facesheet motion is provided by the

captured armature configuration. Overtravel snubbers protect the actuator element from excessive

disturbance inputs (from overzealous observers). The force output capability is 2.5 N.

The armatures are mounted on spreader bars extended in the vertical direction from the

reaction structure. The actuator locations are adjustable along the spreader bar. The connection

of the armature to the facesheet is a slotted hole that allows small lateral adjustments.
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ACTUATOR DRIVE ELECTRONICS

Five remotely located decode and drivers electronics units are commanded from the control

processor. Actuator commands are output in two parts. A single digital to analog converter

channel transmits amplitude. A digital code is transmitted simultaneously to select the actuator

drive circuit which reacts to the command. The five remote driver boxes each support two

actuators. Each box contains sample and hold circuitry, to maintain the force command

amplitude between updates, and linear drive, current loop electronics to energize the actuators.

Figure 8 shows the closed loop bandwidth of the current loop is 32 kHz; actuator gain and phase

errors can be ignored since our frequency range of interest will be below 100 Hz.

BLACK At,;D V',H, IE iHr)l-OG_ApH

Figure 8. Actuator drive reponse is unity gain for frequencies below 10 kHz.

actuator dynamics is required in system modelling.

No adjustment for
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REMOTE ATTITUDE MEASUREMENT SYSTEM

Measurement of the facesheet surface figure is required for feedback to the control system.

RAMS can provide data for a small number of target locations at a high rate (to capture local,

high frequency motions) or data for many targets at a lower rate (for identification of distributed

effects over the entire structure). The passive retro-reflective target tape used by RAMS is

lightweight and can be located on the actuator armature. It eliminates the added complexity and

weight of power and signal lines to each sensor location.

The RAMS optics are positioned to view most of the facesheet backside and a portion of the

reaction structure. A single-axis RAMS is sufficient for this case since only facesheet-normal

translations are of interest; the location of targets in the other two dimensions on the facesheet

can be measured. An operational schematic for RAMS is shown in figure 9. The view shown

would be looking down from the ceiling for the C-SIDE installation. The RAMS boresight is at a

high angle of incidence so that the field of view fans out over a large target area. The resolution in

the sensitive direction varies along the facesheet. The worst condition is at the free end, farthest

from RAMS motions of 0.015 mm are resolvable there. Targets on the facesheet are placed on the

actuator armature yokes. Targets on the reaction structure are also provided for system

identification. The view looking out of the RAMS porthole is shown at the right of the figure.

¢C0 krr_iy -]- i _ A_mfJ_ve Tatge!

ExaggeratedTop View

• Insensitive to vertical target placement

• Resolution is most coarse for distant targets

Figure 9. Each single-axis RAMS measures horizontal position at actuators and locations on the
reaction structure.
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STRUCTURAL DYNAMICS

The orientation of the facesheet is chosen to reduce modification to the familiar low

frequency "cantilevered modes". However, this requires the facesheet to be supported along its

length to prevent buckling due to gravity. Lateral stiffness of the support is reduced by using a

long suspension wire with only small displacements being allowed.

The facesheet is solid aluminum stock, rather than honeycomb, expressly to create low

frequency modes. The mass of the facesheet is less than 14 kg and needs only a single support

wire at 2 m from the base. The support wire length is limited by the lab ceiling height to about 2

m. NASTRAN results for this thin, constrained, cantilevered beam under the influence of gravity

are given as mode shapes in figure 10. The first and second modes are predominantly cantilevered

beam modes occurring at 0.28 and 0.89 tlz. The third mode is torsion about the longitudinal axis
at 1.08 Hz. The fourth mode is another beam mode at 2.55 Hz. The fifth and sixth modes are

torsional.

Note that compensation for gravity has a major qualitative effect on the experiment. If the

facesheet were in zero-g, NASTRAN would predict the first beam mode at 0.15 Hz and the first

torsional mode at 0.8 Hz. The support wire adds significant resistance against the first beam

(effectively quadrupling the stiffness) and causes a neutrally stable torsional mode to become a

stable double-pendulum-like mode.

0.15 _ 0.28 Hz 0.89 Hz

I
2.55 Hz 2.70 Hz 4.91 Hz

Figure 10.

significantly.

Suspension cable modifies the first cantilever and torsional mode frequencies most
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REDUCED ORDER MODEL-BASED CONTROL

The control algorithm is based on a reduced order model of the significant vibration

dynamics of the facesheet represented in modal coordinates. The definition of "significant" is

determined by the system performance requirements. For the purposes of demonstration, the

control actions are applied so that disruptive interaction with unmodelled flexible dynamics

occurs. It is subsequently suppressed to restore desirable performance.

The context of the ROM controller is given in figure 11. The system to be controlled

includes the actuator and sensor dynamics as well as those of the structure. The ROM controller

takes a subset of the system dynamics, which must include any open-loop unstable modes, to be

used in an state estimator model. It receives a set of measurements from the system and returns a

set of actuation commands. A by-product of the process is its estimate of physical measurements

at the sensors (and possibly other locations) for the modelled modes. The states of the estimator

can be given an external reference command to position the system. This general configuration

can be viewed as the control system for the figure of a surface, the pointing of a gimbal set, or the
rigid body attitude of a spacecraft.

Physical System

Actuators -_ Structure ]_
RAMS

Actuation
Vector

Measurement
Vector

:: :: : : n

Reduced Order Model-Based Control

._ Sensor

Coefficients

ControlGains

Controlled
Modes

Modified
Dynamics

Estimation ?Coefficients

Command ?Translation Command
Vector

FA3:Misc3[A2593]F6
2/28/92

Figure 11. Reduced order model-based (ROM) control processes sensor measurements to define
actuation commands.
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CONTROL FOR FIRST TWO MODES

The performance objective for the initial demonstration is to increase the response frequency

and damping of the first two beam modes of the facesheet. MATLAB's pole placement routine

defines gains for the ROM controller. The algorithm selects the actuator and sensor locations with

the highest modal gains. To control the first two modes, two collocated actuator-sensor pairs are

used: at the free end of the facesheet and at the bottom below the suspension cable.

Pole placement is so aggressive in this case that it gives a pathologically interesting result.

The root locus for the combined controller and structure model is shown in figure 12 with the

control gains being varied from 0 to 100 percent of their design values. The first seven modes of

the facesheet are used with a natural damping of 1 percent assumed. The first and second modes

begin migrating in the desired direction. The third mode is immediately driven unstable. The

interaction with unmodelled dynamics at higher gains causes the controlled modes to move to the

right and destablizes the first mode. Some damping is applied to higher frequency cantilever

modes while higher frequency torsional modes are slightly destabilized.

35
POLE PLACEMENT ROM GAINS 0 TO 100%

30

25

"_ 20

15

10

REAL r/s

Figure 12. ROM control is intended to add damping and stiffness to the first two modes. Interaction

with dynamics not modelled in the controller causes instability in both the first and third mode.
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ROM CONTROL ALONE

The responsefor this ROM controller aloneis unstableasexpected.The result in figure 13 is
the responseto a 1 N, 0.02secpulseapplied at the freeend of the facesheet,30 cm belowcenter.
This location drives all the cantileverand torsionalmodeswell. This sameperturbation is usedfor
the other transient casesto follow. The sensedposition and input locationsare shownbelow.

SENSOR 2

SENSOR 6

,¢
_d

0.02

0.0l _-

-0.01

-0.02

SENSOR 2 SENSOR 5

0.o2

0.01

-0.01

-0.02
L I

5 1'0 lt5 20 25 30 0 5 10 15 20 25 30

TIME (seconds) TIME (seconds)

SENSOR 6 SENSOR 9

TIME (seconds)

0.02 _- ....

-0.01

-0.02 _-
0 5 1'0 II5 20 2'5 30

TIME (seconds)

Figure 13. The pole placement design ROM controller alone cannot recover from a perturbation.
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RESIDUAL MODE FILTER

The ROM design ignores the effect the control system may have on the rest of the modes of

the structure, i.e., the residual system. As was shown, it is possible for some small number of the

residual modes to be driven unstable by the ROM controller. The residual mode filter (RMF) is

introduced at this point to correct the problem (ref. 3). The RMF is added in parallel to the

controlled system, as shown in figure 14, to process the commanded control action and define

expected responses at the sensor locations. The signal is subtracted from the incoming sensor

measurements, having the effect of opening the feedback path for the destabilized modes. This

action returns the destabilized modes to their uncontrolled, stable response character. The RMF

signal is well-phased to actual motions and does not suffer from the phase error introduced by a

series notch-filter.

Physical System

Actuators
Structure RAMS

Actuation

Vector : :: .... :.: .... :
Residual Mode Filter

-"'-I Actuator I_Coefficients

Destabilized
Modes

Dynamics

Sensor
Coefficients

/
Measurement
Vector

_iiil
ilili_

Reduced Order Model-Based Control

I Sensor

Coefficients

I ControlGains

Controlled
Modes

Modified
Dynamics

.,,,,11

..,il

Estimation __=Coefficients

t

Translation

Command
Vector

Figure 14. Residual mode filter (RMF) removes destabilizing interaction with unmodelled dynam-

ics.
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INTERACTION COMPENSATION

The root locus for inclusion of the RMF in figure 15 shows the third mode returns to its

uncontrolled location. Removal of the strong third mode interaction allows the controlled

structural modes and the state estimator poles to migrate toward their intended positions. In

general, these roots approach, but do not achieve, the locations specified in the ROM control

design. This is due to the remaining interaction with stable, uncompensated, high frequency

modes. This is not usually a notable discrepancy because the interaction is seldom so severe.

35

3O

25

20

15

10

RMF GAINS 0 TO 100%, POLE PLACEMENT ROM

5

0.3.5

7 6
.............................. : ...................... _ ..... = . _............. . .... Z ...................... z .............

5_
: 4 •

: : i i

: i i

, : RMF,3 _.

)... -.-_-....... + 2 14-
........ : : _ : 7:..:-.:..:..:: ; ..: ................_........ \-.*,. ......:........ _ ........................................................

-3 -2.5 -2 -1.5 -1 -0.5 d 0.5

REAL r/s

Figure 15. The RMF returns the third mode to its uncontrolled character and allows the first mode
to become stable.
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RMF REMOVES INSTABILITY

The response given in figure 16 is for the same perturbation as before. It is stable now but

the performance is hardly acceptable. This result motivates a second design that includes control

of the third mode.

This example is included as a reminder that residual modes can be driven by the ROM

control. For the present case, the second mode control frequency is essentially the same as the

uncontrolled third mode. Energy used for damping the second mode is also input to the third

mode. The amplitude of the third mode excursion continues to increase until the control input for

the second mode settles. Residual mode motion persists until it can be damped by material

properties.

r_

_d
i-,

r_

t_
rrl

x 0-3 SENSOR 2 x10-3 SENSOR 5

x10-3

-5

I I I I I

5 10 15 20 25 30 0 5 10 15 20 25

TIME (seconds) TIME (seconds)

SENSOR 6 Xl0 -3 SENSOR 9
i i i i

-5

i i i i I

3O

-5

0 5 li0 15 20 25 30 0 5 10 15 20 25 30

TIME (seconds)TIME (seconds)

Figure 16. Control for an impact at the free end of the facesheet drives the uncontrolled residual

mode. This motion will be damped by mechanical properties only.
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LQR CONTROLLER

A pole placementdesignfor three modescould be usedand is better behavedthan the
precedingcase.However,considera frequencyweighted(ref. 4) linear quadratic regulator (LQR)
and estimator designfor the first threemodes.The weightings,in the Q matrix of the performance
index for the modal displacementand velocity statesi areset asthe squareof eachmodefrequency.
The control weightings,in the R matrix, are the identity matrix multiplied by a parameter,_.
The LQR solution is lessaggressiveand drives controlled roots to the left on the root locus plot
along trajectories of constant frequency;the damping factors for all controlled modesincreaseat
approximately the samerate. An RMF is not requiredfor this designwith a = 1.

The response for the same pulse is shown in figure 17. This ROM controller settles quickly

to the desired flat surface figure. The fourth and fifth modes are harder to drive with commanded

actuation so there is little residual motion.
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Figure 17. The LQR controller designed to create equal damping coefficients for the first three

modes succesfully recovers from the impact.
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FUTURE DIRECTIONS

The immediate usage of C-SIDE is for technology evaluation and research in several areas:

structures, actuators, sensors, control, and processing.

The composite structure was fabricated under a separate internal development effort. It may

be upgraded as new materials and fabrication methods are investigated and converted to an active

(smart) structure. Current activities include embedded, distributed actuation and sensing.

Eventually, these may be incorporated in an active facesheet.

Possibilities for future enhancements to the sensing capabilities include alignment transfer,

inertial sensors and local sensing at the actuators. There is interest in using combinations of

RAMS units to provide alignment transfer from a remote "navigation base" back to the core

structure. Inertial sensors may be used to stabilize the structure against local laboratory

vibrations. This is of interest for isolated benches in optical experiments. Local position sensing

can be added at the actuators. The relative position is useful in localized control to recenter the

actuator at low bandwidth or in a distributed control to drive an active reaction structure.

Several different actuator mechanisms can be applied to the structure and interfaced to the

control system. A precision actuator for the reaction structure is a small reaction wheel.

Interesting issues here are the effect of stored momentum during repositioning of structure

sections and momentum unloading schemes. Active struts may be used as a primary control

source between the facesheet and reaction structure or at the root of the structure. Thrusters

probably are most applicable for coarse positioning of the reaction structure behind the vernier

positioning system on the facesheet. Experience with many actuators types will enable recognition

of novel solutions to difficulties in current and future products.

C-SIDE will provide experience with various strategies for ROM design such as variations on

the basic LQR, Positivity and Ha methods. We are also investigating system identification

techniques such as the eigensystem realization (ref. 5) and residue identification (ref. 6)

algorithms. We have had success with feedforward and recursive neural networks functioning as

RMFs in the C-SIDE simulation (ref. 7); verification with the hardware is planned for this year.

Research areas include adaptive residual mode filters and the possibility of control during

assembly of an additional structure.

Computational capabilities can be increased by segregating the control functions. The

formulation of the ROM structure model and RMF bank lends itself to use of parallel processors.

Additional control functions, such as disturbance accommodation and system identification, can

be delegated to other processors with results being passed to the main control processor.

Although control-structure interaction is most often associated with large, flexible space

structures, it is not necessary to narrowly limit its consideration. The expertise developed on

C-SIDE is transferable to other high performance products: whenever a structure supports, or is

itself, an actively positioned device. With processing speed increases, parallel processing and

hybrid circuitry, the control method will be targeted at smaller structures also.
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AN EXPLICIT SOLUTION TO THE OPTIMAL LQG PROBLEM

FOR FLEXIBLE STRUCTURES WITH COLLOCATED RATE SENSORS*
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Electrical Engineering Department
UCLA

Los Angeles, California

ABSTRACT

We present a class of compensators in explicit form (not requiring numerical computer

calculations) for stabilizing flexible structures with collocated rate sensors. They are based on the

explicit solution, valid for both Continuum and FEM Models, of the LQG problem for minimizing

mean square rate. They are robust with respect to system stability (will not destabilize modes even

with mismatch of parameters), can be instrumented in state space form suitable for digital

controllers, and can be specified directly from the structure modes and mode "signature"

(displacement vectors at sensor locations). Some simulation results are presented for the NASA

LaRC Phase-Zero Evolutionary Model -- a modal Truth model with 86 modes I showing

damping ratios attainable as a function of compensator design parameters and complexity.

1. INTRODUCTION

In this paper we present a clasa of compensators for stabilizing flexible structures with

collocated rate sensors for Continuum as well as Finite Element or truncated Modal models. They

are derived by solving explicitly the optimal control corresponding tO an LQG problem. The

Compensator Transfer Functions are strictly positive real and as a result they are robust with

respect to system stability. They can be determined based solely on the mode frequencies and

mode "signatures" (displacements at the sensor sites) and can be instrumented directly in "state-

space" form.

We begin in Section 2 with the LQG problem and its solution. Section 3 highlights the

features of the Compensator Transfer Function. Section 4 is devoted to Continuum models where

the transfer function is nonrational. The main result on controller design is in Section 5 which

shows how to design the compensator from a modal model of the structure, and in particular, how

to construct a hierarchy of compensators of increasing order. Simulation results, confined to

stability properties (damping ratios), are by no means exhaustive and are presented in Section 6 based

on the modal model of the NASA LaRC CSI Phase-Zero Evolutionary Model [4].f Noise response

performance is not included but is expected to be good because of the LQG criterion optimization.

Conclusions are in Section 7.

* Research supported in part under NAS-1-19158, NASA LaRC.

t References 1-6 are cited in text.
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For recent related work on controller design for collocated sensors see [5, 6] and the
references therein.

2. THE LQG PROBLEM AND ITS SOLUTION

To state the LQG problem, we begin with the canonical time-domain dynamics of a flexible

structure with collocated rate sensors which, whether it is a Finite Element Model (and hence finite

dimensional) or Continuum Model (and hence infinite-dimensional) can be expressed in the form:

M2(t) + Ax(t) + Bu(t) + BNa(t ) = 0

J
v(t) = B*2(t) + N_(t)

where in the case of FEM,

M is the

A is the

B is the

u(.) is the

x(.) is the

Na()

v(.)

B*

Nr(')

mass matrix (nonsingular, nonnegative definite)

stiffness matrix (nonsingular, nonnegative definite)

control matrix (rectangular matrix)

control vector (nx 1, assuming n actuators)

"displacement" vector

(2.1)

is the actuator noise assumed white Gaussian with spectral

density dal, I being the nxn Identity matrix

is the sensor output

represents the transpose of B

is the sensor noise assumed white Gaussian with spectral density drl.

For the Continuum Model such a representation is still possible with x(') now allowed to

range in a Hilbert space (however complicated the structure), with A, M, and B being linear operators:

M bounded linear, self-adjoint, nonnegative definite with M-1 bounded;

A closed linear, self-adjoint, nonnegative definite with compact resolvent,

resolvent, the resolvent set including zero

maps E '_ Euclidean n-space into :_, and

represents the adjoint.

B

B*

See [1 l, [21.

The LQG problem we shall consider is that of finding the control u(') (or compensator) that

minimizes the mean square time average:
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lira IIB*..t(t)]l 2 dt + _ hu(t)}J2 dt (2.2)
7'_, 0

where )v > 0. The optimal compensator transfer function (nxn matrix function) can be given in

explicit form (see [1]):

_(p) = gpB*(peM + A + ypBB*)-IB , Re. p > 0 (2.3)

where

g

under the assumption that

"]-da / dr . 1 (2.4)
= 47(, ' _1 = Q'_da/d r 4- 4_

B'C, k :l: 0 (2.5)

for any k, where Ck are the modes orthonormalized with respect to the mass matrix:

AOk = c020k ; [MO/,, %1 = 1 . (2.6)

In the finite-dimensional (e.g., FEM) case, the compensator can be realized in the (finite-

dimensional) state space form:

u(t) = gB*Y(t) (2.7)

Mf'(t) + AY(t) + 7BB*Y(t) = Bv(t). (2.8)

The corresponding mean square control power:

7"

l im If ilu(t)]]e dt -
1"-4_ 0

The corresponding mean square displacement:

1 im _ f [IB*x(t)]{ 2 dt =
0

da

2"_

+

Tr. (B*MB)- 1

da) 12 Tr.B*A- B .

Formulas (2.9) and (2.10) hold as well in the infinite-dimensional (Continuum Model) case.

(2.9)

(2.1 O)

3. FEATURES OF THE COMPENSATOR TRANSFER FUNCTION

Some significant features of the compensator transfer function which are noteworthy are:

(i) As )_ -4 0, gt(p) -4 I_l-da/d r we note that

v(p) = sqk /4

is the optimal "static" or "direct connection" or "PID" controller. Note that as _. -4 0, the control

power given by (2.9) becomes infinite, as we expect.
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(ii) _t(p) is "positive real" -- that is to say:

holomorphic in Re.p > 0

+ _(p)* nonsingular, and positive definite, for Re. p > 0

where * denotes conjugate transpose. Of course _(') _ _o0.

For the importance of positive realness for robustness, see [6].

Let a compensator transfer function be defined by (2.3) where g and y are arbitrary, subject

only to the condition that

yz > 4g. (3.1)

Then for d a =0 (no actuator noise), the corresponding mean square displacement

T dr g
1 i m 1 f iiB.x(t)ll2 dt Tr. (B'A- 1B).
r-,_ - 27

0

This follows from [ 1, (6. I 1)].

(3.2)

4. EXAMPLES: CONTINUUM MODELS

For a given Continuum Model for structures (see [1], [3]) it is possible to reduce (2.3) further

to yield finite-dimensional matrix transfer functions which are, however, not rational functions of p.

Thus (2.3) becomes:

V(P) = gpB*(p2Mb + T(p) + ypBuB*)-1Bu

T(p):

where

B,, is dxn where

d:

n :

self-adjoint nonnegative definite nonsingular matrix for p _> O.

Nonrational meromorphic function of p, Re. p > O.

number of nodes x dimension of displacement vector at each node

number of actuators/sensors

M b is the dxd mass/moment of inertia matrix corresponding to the nodes. For the SCOLE

configuration [1], d = n = 5,

B,,B* = I5x5

and an explicit expression for T(p) is given in [3], and involves hyperbolic sine and cosine

functions of p. An example where d _ n is given by the NASA LaRC Phase Zero Evolutionary

Model [4] for which n = 8 and d = 48. See also [3] for some "textbook" examples for d = n = 1,

Bernoulli beam bending or torsion.

The system modes are given by

MbP 2 + T(p) -- 0. (4.1)
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5. MODAL APPROXIMATION

Let {Ok} denotethe eigenvectors(mode"shapes")of the stiffnessoperatorA with cok the

corresponding eigenvalue (angular frequency). Let bj, denote the corresponding mode "signature"
row vector:

b k = (B*Ok)* 1 ×n row vector

where n is the number of actuators. Let for each N > 1,

bl

B N = i , D u = Diagonal(c0_,...,c@).

bu

For arbitrary g, T > 0, define the compensator transfer function

gtN(p) = gpB_(p2IN + O u + yPBNB_)-IBIv , Re. p > 0. (5.1)

Then

(a) gt f (.) is positive real as soon as B_B N is nonsingular;

(b) For g, y defined by (2.4), _u (P) converges to the optimal compensator _(p)

given by (2.3) as N _ _ (and holds afortiori in the finite-dimensional case,

where the sequence terminates).

Note that the modal approximation requires only the modes and the "modal signature":

modal displacement at the sensor sites. Note also that (5.1) automatically yields a strictly positive

real rational transfer function approximation for the case of the Continuum Model -- yielding, in

fact, a new technique for such approximation. Moreover it has the direct state space representation:

u(t) = gB_ f'(t) 1,

Jf'(t) + DNY(O + 7BNBI#t'(t) = BNv(t).
(5.2)

It is also important to note that for a given finite-dimensional modal model with m modes,

say, we can choose any N modes for the approximation, not necessarily the first N. Moreover the

stability properties of the system are determined by the ("closed-loop") eigenvalues of the "system"

2(m + N) x 2(m + N) matrix:

W

Omxm Imxm OmxN OmxN

-Din Omx m On XN -gB,, B_

ONxm ONxrn ONxN INxN

ON x m BIv B* -DIv -yBlv B_

(5.3)
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This is readily seen to be a stable matrix under our condition that BNB _ is nonsingular and

g, _' > 0. Moreover, including a damping matrix D > 0 in the Truth Model (replace 0,, ×,, in

(5.3) by -D), we see that

Trace W = -Tr. D - 7 Tr. Blab N = 2(sum of real parts of eigenvalues) (5.4)

again illustrating the robustness. Also we have

product of roots = }WJ = IDml " IDNI (5.5)

where t'[ denotes determinant. Finally let us note that the eigenvalues are the roots of

Ipl - WI = Ip 2 + D,,, + pDI Ip 2 + O N + yPBNB _ + pZgBNB* (p2 +Dm +pD)- 1 Bm B_ I = 0 (5.6)

where the first factor is an mxm determinant and the second factor is an NxN determinant, if

g = 0 structure modes are unaffected. We can see from (5.4) - (5.6) that the total damping increases

as y is increased but the damping in the structure modes can decrease depending on how large y is.

Thus, for each fixed value of the gain g, there is apparently an optimal choice for % which may

depend on the mode frequency in general.

6. SIMULATION RESULTS: PHASE ZERO EVOLUTIONARY MODEL, NASA LaRC

For evaluating control performance by simulation, the NASA LaRC CSI Phase-Zero

Evolutionary model data [4] is used _ specifically, the modes and modal signatures.

We denote by m the number of modes in the truth model of the structure, and let N = the

number of modes in the compensator, as in (5.2) and (5.3). The compensator is thus characterized by

the "gain" parameter g, the "damping" parameter y, and N the number of "control" modes

(or 2N = number of states). Note that for each N

/]/N (p) _ k/ ( - "direct connection" or "static controller")

as g .-.) oo,

fixed. Also for N = m,

y _ ,,o, keeping the ratio

g
- k (6.1)

Y

we can use (3.2) to determine the mean square displacement where now

Tr.B*A-1B = £
llbkll 2

so that the mean square displacement can be expressed

dr g ,_. ]]bk I]2

- 2v

and thus increases with g and decreases as y increases.

y2 > 4g , (6.2)
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Data for the modal model of the NASA LaRC Phase Zero Evolutionary Model is taken from

[4]. Here n = 8 so that each b k is 8xl, and m for the Truth model is 86, and D = 0 (no

damping). In this case the optimal compensator will use all 86 modes. Table I_ shows the mode

frequencies and a typical mode shape (by). B_B8 is nonsingular.

Figures 1, 2, and 3 show the behavior of the damping ratio for fixed g as a function of the

damping parameter y, for angular frequencies 314 (the 86th mode), 106 (the 43rd mode) and 9.25

(the 7th mode), respectively. Note the occurrence of the maximum for all around 3' = 8. Figures 4,

5, and 6 show the attainable damping ratios for a compensator with N = 30, and the same gain

§ Personal communication, S. M. Joshi, NASA LaRC, 1992.

(Angular) (Angular) (Angular) (Angular)
Mode Frequency Mode Frequency Mode Frequency Mode Frequency

Number rad/sec Number rad/sec Number rad/sec Number rad/sec

1 = 0.9243 23 = 38.8269 45 = 120.5899 67 = 195.1799
2 = 0.9365 24 = 39.1489 46 = 133.1399 68 = 196.9100
3 = 0.9752 25 = 40.6580 47 = 137.8399 69 = 198.1300
4 = 4.5872 26 = 41.9080 48 = 139.5700 70 = 198.7400
5 = 4.6985 27 = 46.3219 49 = 147.2599 71 = 203.3300
6 = 5.4913 28 = 52.1080 50 = 154.2500 72 = 209.7299
7 = 9.2580 29 = 52.8380 51 = 156.5399 73 = 231.7400
8 = 10.9209 30 = 53.1319 52 = 156.9199 74 = 232.9499
9 = 11.8310 31 = 55.4410 53 = 161.0299 75 = 239.8899

10 = 14.4600 32 = 56.0859 54 = 164.6499 76 = 241.4499
11 = 15.9259 33 = 56.3370 55 = 165.1399 77 = 244.9299
12 = 17.8349 34 = 58,0239 56 = 166.9100 78 = 244.9900
13 = 21.4850 35 = 59.8600 57 = 170.8300 79 = 247.8300
14 = 21.9050 36 = 62.2190 58 = 173.7700 80 = 255.7700
15 = 22.5400 37 = 78.4509 59 = 180.0099 81 = 268.6499
16 = 25.2250 38 = 85.5439 60 = 181.9100 82 = 270.5499
17 = 25.3349 39 = 89.9440 61 = 183.1300 83 = 275.7200
18 = 26.4249 40 = 92.4779 62 = 186.6199 84 = 287.5299
19 = 27.5949 41 = 99.8170 63 = 187.7500 85 = 308.7500
20 = 31.6009 42 = 105.8899 64 = 191.2400 86 = 314.2399
21 = 31.6289 43 = 106.7699 65 = 192.0599
22 = 34.5660 44 = 116.1500 66 = 193.7899

-0.9084100127220
0.0009075700073

Table I.

Mode Shape b7

-0.0009229300194 0.4756200015545

-0.4345000088215 -0.0070441002026

0.0040255999193
1.1181999444962

Mode Frequencies And Sample Mode Shape
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g (= 20), but here there is no maximum for the mode frequency of 314 which is not included in

the controller modes. For the mode frequencies 9 and 106, the maximum occurs around 7 = 5 and

_'--- 30, respectively. Table II shows the damping ratios for all (angular) frequencies (both control

and structure modes; the former have higher damping) between 1 and 150 for g = 20 and 7 = 5 for

the optimal compensator (N = 86). Table III shows the same for N = 30. The damping ratios are

seen to compare favorably with those reported in [5, 6], depending of course on the appropriate gain

setting, but detailed comparative evaluation will need further study. Table IV shows the damping

ratios for zero gain (g = 0) with N = 86 and T = 10 which should help distinguish the control

modes from structure modes (the latter have zero damping). Figure 7 shows the damping ratio as

a function of g for N = 86, y = 10 and mode frequency 21.485. The damping increases for the
structure mode and decreases for the control mode.

10^5.Damping Ratio

0.75-

0.25-

I I I I I I Gamma
5 10 15 20 25 30

Figure 1. Damping ratio vs. damping parameter y: mode angular frequency 314; N = 86.
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100xDamping Ratio

0.4-

0.3-

0.2-

0.I-

I I I I I I
5 I0 15 20 25 30

Gamma

Figure 2. Damping ratio vs. damping parameter 3': mode angular frequency 106; N = 86.

Damping Ratio

0.2,

0.15.

0.i.

0.05 _

I I I I I I
5 i0 15 20 25 30

Figure 3. Damping ratio vs. damping parameter 7: mode angular frequency 9.25; N = 86.
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10^7 .Damping Ratio

1.4

1.2

1

0.8

0.6-

0.4

0.2

I I I I
i0 20 30 40

Figure 4. Damping ratio vs. damping parameter 7: mode angular frequency 314; N = 30.

Ga_aa

10^4.Damping Ratio

I0.

8.

6.

4,

2.

I I ! I
10 20 30 40

Figure 5. Damping ratio vs. damping parameter 7: mode angular frequency 106; N = 30.
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Damping Ratio

Figure 6.

I I I I
i0 20 30 40

Damping ratio vs. damping parameter y: mode angular frequency 9.25; N = 30.

Gamma

10^4 x Dam

4-

2.

Figure 7.

_ing Ratio

S

•Gain g

5 I0 15 20 25 3O

Damping ratio vs. g" mode frequency 21.49 r/s; N = 86; y = 10; C: control; S: structure
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Angular

F_quency

.17106E+01

.25233E+01

.38285E+01

.40291E+01

.50981E+01

.55010E+01

.62846E+01

.65389E+01

.73598E+01

.88473E+01

,96096E+01

.98633E+01

,14333E+02

.14370E+02

.15912E+02

.15918E+02

.16858E+02

.17438E+02

.17615E+02

.18676E+02

.21478E+02

.21491E+02

.21897E+02

.21913E+02

.22536E+02

.22544E+02

.23354E+02

.23666E÷02

,25234E+02

.25241E+02

.25492E+02

.26321E÷02

.26361E+02

Table

Damping

Ratio

.48814E+00

.42349E+00

18903E+00

53048E+00

53701E-01

27S00E+00

48991E+00

15363E+00

.25791E+00

.28576E+00

.23182E+00

.46814E-01

.26440E-02

.13551E-01

.g4853E-03

.L2789E-03

.34110E+00

.15497E-01

.36468E-02

.27518E+00

.26988E-03

.25982E-03

.29663E-03

.24238E-03

.20344E-03

.20967E-03

.22881E÷00

.31516E-01

.I0998E-02

.24057E-03

.34385E-01

.16274E-02

,82509E-03

II. Damping

Angular

Fmquency

.27975E+02

.30735E+02

.30903E+02

.31554E+02

.31573E+02

.31601E+02

.31601E+02

.33265E+02

,35339E+02

.36245E÷02

,38097E+02

.39485E+02

.39715E+02

.40253E+02

.42723E+02

.47595E+02

.49116E+02

.50628E+02

.52567E+02

.52612E+02

.52923E+02

.53030E+02

.53116E+02

.55388E+02

.55476E+02

.55627E+02

.55777E+02

.56012E+02

.56120E+02

.57973E÷02

,58058E+02

.59857E+02

.59860E+02

Ratio Vs. Angular

Damping

Ratio

.I0362E+00

.22514E+00

.16990E+00

.I0862E-02

.34084E-02

.36615E-05

.60475E-05

.29600E-01

.12758E-01

.22248E-01

.15841E-01

.23587E-01

.64462E-02

.96291E-02

.40264E-01

,20357E+00

.37251E-01

.74785E-01

.48805E-03

.36127E-03

.23978E-01

.65234E-03

,39229E-02

.51163E-03

.I1573E-02

.47474E-01

,20228E÷00

.50958E-03

.32213E-02

.33939E-03

.22112E-02

.16844E-04

.I0358E-03

Frequency: N = 86;

Angular

Frequency

.61950E+02

.62123E+02

.62301E+02

.77219E+02

.79869E+02

.85536E+02

.85554E+02

.89610E+02

.90357E+02

.92127E+02

.92875E+02

.99737E+02

.99912E+02

°10474E+03

.I0629E+03

.10703E+03

.I0757E+03

.I1586E+03

.11648E+03

,12059E+03

12059E+03

13306E+03

13322E+03

13759E+03

13809E+03

13957E+03

13957E+03

14684E+03

14771E+03

g=20; 7=5

Damping

Ratio

10323E+00

77622E-03

15341E-02

89300E-02

16028E-01

45737E-04

13440E-03

18167E-02

56712E-02

21810E-02

35775E-02

.42099E-03

.I0766E-02

.62417E-02

.21788E-02

.53890E-02

.10741E-01

.14946E-02

.24414E-02

.22062E-04

,32178E-04

.38080E-03

.42566E-03

.12103E-02

.12406E-02

.3971flE-05

.50153E-05

.17338E-02

.22478E-02

Angular

Frequency

.17111E+01

.25240E+01

.38283E+01

.40268E'01

.50982E÷01

.55074E÷QI

.62704E+01

.65413E+01

,73966E+01

,88395E+01

.96114E+01

.98657E+01

.14333E+02

.14371E+02

.15912E+02

.15918E+02

.16873E+02

.17439E+02

.17615E+02

.18473E+02

.21478E+02

.21491E+02

.21897E+02

.21913E+02

.22536E+02

.22544E+02

.23367E+02

.23680E+02

25234E+02

.25241E+02

.25495E+02

.26323E+02

.26362E+02

Table

Damping

Ratio

,48787E+00
.42289E+00

.18850E+00

.53155E+00

.53764E-01

.27646E+00

.49202E+00

.15327E+00

.25589E+00

.28765E+00

,24204E+00

.46669E-01

26268E-02

13622E-01

94628E-03

12646E-03

34829E+00

15483E-01

.36319E-02

.29242E+00

,26755E-03

.26123E-03

.29369E-03

.24459E-03

.19617E-03

.21245E-03

.23050E+00

.29890E-01

.II092E-02

.24125E-03

.33946E-01

.16797E-02

.80854E-03

Angular

Frequency

.27681E+02

.30664E+02

.30908E+02

.31554E+02

,31573E+02

.31601E+02

.31601E+02

.33268E+02

.35300E+02

.36246E+02

.38090E+02

.39472E+02

.39716E+02

.40247E+02

.42747E+02

.47582E+02

.49299E+02

.50456E+02

.52567E+02

.52615E+02

.53031E+02

.53108E+02

.55446E+02

.55694E+02

.55773E+02

.56112E+02

.58052E+02

.58417E+02

.59861E+02

.62235E+02

.78798E+02

.85547E+02

.90088E+02

III. Damping Ratio vs. Angular

Damping

Ratio

.10975E+00

.22748E+00

.16861E+00

.10567E-02

.34060E-02

.36214E-05

.60906E-05

.29376E-01

.13261E-01

.21919E-01

.15162E-01

.24008E-01

.61748E-02

.98628E-02

.38763E-01

.20393E+00

.30838E-01

.78217E-01

.50746E-03

.32023E-03

.60754E-03

.36922E-02

.30132E-03

.20493E+00

.44503E-01

,13185E-02

.72573E-03

.24337E-01

.78116E-04

.19700E-03

.19928E-02

.18896E-04

.74096E-03

Frequency: N = 30;

Angular

Frequency

.92550E+02

.99846E÷02

.I0612E+03

,10689E+03

.11618E÷03

.12059E+03

.13315E+03

,13785E+03

,13957E+03

,14728E+03

g=20; 7=5

Damping

Rauo

.19914E-03

.13752E-03

.41269E-03

.23571E-03

42708E-04

81852E-06

42638E-05

64145E-05

88491E-07

89389E-05
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Angular

F_quency

.45872E+01

46986E+01

. i3549E+01

, i4914E+01

89044E+01

)2581E+01

I0921E+02

I1831E+02

13632E*02

14263E+02

14460E+02

15914E+02

15926E+02

17552E+02

17835E+02

21485E+02

21487E+02

21905E+02

21907E+02

22375E+02

22540E+02

22541E+02

24459E+02

25225E+02

,25243E+02

.25335E+02

.26335E+02

,26425E+02

.27595E+02

.30456E+02

.31563E+02

.31601E+02

.31601E+02

Damping

Ratio

00000E-d0

00000E+00

I0629E+00

O0000E+O0

84249E-01

00000E+00

00000E+00

00000E+00

17079E+01

77629E-02

00000E+00

28005E-03

00000E+00

82357E-02

00000E+00

00000E+00

78458E-03

00000E+00

90374E-03

13007E+00

00000E+00

24691E-03

13332E+00

00000E+00

45734E-03

00000E+00

13181E-02

.00000E+00

.00000E+00

.13725E+00

.30544E-02

.000O0E+00

.II152E-04

Table IV.

Angular Damping Angular

F_quency Ratio Fmquency

.31629E+02 .00000E+00 .89479E+02

.34566E+02 .00000E+00 .89944E+02

.35259E+02 .24327E-01 .92185E+02

.38762E+02 ,32907E-01 .92478E+02

.38827E+02 .00000E+00 .99727E+02

.39149E+02 .00000E+00 .99817E+02

.39744E+02 .22024E-01 .10466E+03

.40658E+02 .00000E+00 .I0589E+03

.41118E+02 .24327E+00 .I0616E+03

.41908E+02 .00000E+00 .I0677E+03

.46322E+02 .00000E+00 .I1595E+03

.46630E+02 .20336E+00 .I1615E+03

.50739E+02 .80977E-01 .12059E+03

.52108E+02 .00000E+00 .12059E+03

,52588E+02 .42582E-03 .13312E+03

.52838E+02 .00000E+00 .13314E+03

.52988E+02 .21608E-02 .13783E+03

.53132E+02 .00000E+00 .13784E+03

.55387E+02 .22200E-02 .13957E+03

.55441E+02 .00000E+00 .13957E+03

.55964E+02 .17243E-02 .14705E+03

.56086E+02 .00000E+00 .14726E+03

.56337E+02 .00000E+00

.57938E+02 .I1515E-02

.58024E+02 .00000E+00

.59855E+02 .51996E-04

.59860E+02 .00000E+00

62125E+02 .34738E-02

62211E+02 .00000E+00

77305E+02 .39799E-01

78451E+02 .00000E+00

85533E+02 .19002E-03

85544E+02 .00000E+00

Damping: Zero Gain: N= 86; %'= 10

Damping

Ratio

73662E-02

00000E+00

99239E-02

00000E+00

17443E-02

00000E+00

29513E-01

00000E+00

92339E-02

00000E+00

63634E-02

00000E+00

97457E-04

00000E+00

15997E-02

00000E+00

49739E-02

00000E+00

16752E-04

00000E+00

77790E-02

00000E+00

7. CONCLUSIONS

A class of compensators in explicit form (not requiring computer calculations) has been

presented for stabilizing flexibility structures with collocated rate sensors. They are optimized for

the LQG criterion for minimizing the mean square rate and hence have inherently good noise

response features. They are robust with respect to system stability, can be instrumented in state

space form suitable for digital control and above all can be specified to any complexity desired

directly from the structure modes and mode signatures at the sensor sites. Simulation results are

presented for the modal model of the NASA LaRC Phase Zero Evolutionary Model -- mainly

damping ratios attainable and their dependence on compensator design parameters and complexity.

The damping ratios compare favorably with those reported in [5, 6], but any detailed comparative

evaluation of course is possible only after further study.
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N 9 3 - 1 8 9 3

A Synopsis of Test Results and Knowledge Gained

From the Phase-0 CSI Evolutionary Model

W. Keith Belvin, Kenny B. Elliott and Lucas G. Horta

Abstract

The Phase-0 CSI Evolutionary Model (CEM) is a testbed for the study of space
platform global line-of-sight (LOS) pointing. Now that the tests have been
completed, a summary of hardware and closed-loop test experiences is necessary
to insure a timely dissemination of the knowledge gained. The testbed is
described and modeling experiences are presented followed by a summary of the
research performed by various investigators. Some early lessons on implementing
the closed-loop controllers are described with particular emphasis on real-time
computing requirements. A summary of closed-loop studies and a synopsis of
test results are presented. Plans for evolving the CEM from phase 0 to phases 1
and 2 are also described. Subsequently, a summary of knowledge gained from the
design and testing of the Phase-0 CEM is made.
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Introduction

The Phase-0 CSI Evolutionary Model (CEM) testbed design was driven by the
interaction of flexible body dynamics and active pointing control systems expected
on future space platforms. The testbed structure, shown below, consists of a 55'
long aluminum truss with several appendages. A laser, mounted to one

appendage, is used to illuminate an optical path from the laser source to a 16'
diameter reflector. The optical path continues from the reflector to an LOS scoring
detector mounted inertially on the ceiling of the test facility. The structure,
instrumentation and data acquisition and control computers are described in detail
in Refs. [1-3].

This paper summarizes the types of tests and experimental results obtained using
the CEM testbed. Hardware experiences are described in terms of gravity
influences and modeling requirements. System identification tests and results are
presented to show the accuracy of pre-test and post-test finite element modeling
procedures. Results of dissipative controller tests are compared to model based
controllers in terms of stability and performance. It is shown with the level of

uncertainty that exists in the CEM analytic models, a combination of dissipative
and model based controllers give the best performance. The implementation of
digital controllers is also discussed in terms of the effects of time delay. Plans for
evolving the testbed are also presented.
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Phase-O CEM Actuators/Sensor Pairs

Acceleration sensors have been used as the primary control sensor in conjunction
with linear bi-directional thrusters. The actuators and sensors were spatially
collocated at the 8 locations shown below. The low frequency nature of the
testbed requires sensors with a bandwidth down to 0 Hz. As such, the
accelerometers detect the acceleration due to gravity. This poses a classic
ground-based measurement problem whereby the acceleration of the "pendulum"
suspension modes is nearly exactly canceled by the change in the gravity
acceleration vector. For the Phase 0 CEM, this phenomenon only occurs in mode

2. Hence the measured acceleration of mode 2 differs significantly from that
predicted by linear (small angle) analysis. Another experience with low frequency
accelerometers is DC drift and/or biases which require special considerations when
integrating the measured acceleration particularly if the controller has a DC gain.

The thrusters [4] have proved to be reliable control effectors with minimal
dynamics in the 0 to 10 Hz bandwidth. Eight pairs of thrusters were mounted
such that a net force was applied to the model at the 8 locations shown below.
Although pure collocation of the sensors and actuators was attempted, results,
shown herein, indicate limited success was achieved.
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Structural and Line-Of-Sight Modeling

The Phase-0 CEM truss structure was designed to simulate the generic dynamic

behavior of space platforms with 1 to 2 Hz global vibration modes coupled with
higher-frequency, localized or appendage vibration modes. For ground testing, a
structural suspension system was designed to permit all 6 "rigid-body" modes
while not overstressing the truss struts due to gravitational preload. The resulting
structural system, including the suspension, was modeled by the NASTRAN finite

element program. The inclusion of nonlinear differential stiffness was required to
predict the "rigid" body modes and the effect of the suspension on the flexible
body modes.

As indicated below, the NASTRAN model was used to compute an eigen basis for

control design and simulation using the MATLAB program. Various levels of
model reduction were performed. Typically a 40 mode "truth" model was used for
simulation of the closed-loop response of the Phase-0 testbed.

Once a time history of the modal states was computed, a linear transformation of
the response was performed to predict the line-of-sight pointing performance [5].

Modeling

Line-of-sight
Transformations

i_:!_!_!_:!_!_!_i_!_i:!_!:_!_!:!_:i_i:!:i_!:!_!_!_!_!:_:_:_:_:_:?_
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Test and Analysis Frequency Correlation

Modal vibration tests of the CEM have been performed using 24 servo and 195

piezo channels of accelerometer data. Multi-input, multi-output (MIMO) tests
were performed to measure the frequency response functions between the
acceleration output to the force input from each of the 8 thrusters. The data below
show the experimental frequencies as identified from the frequency response
functions using the Polyreference method of data reduction. The mode numbers
are based on the order of the analytical mode shapes. It is interesting to note the
measured damping decreases with increasing mode number.

The frequency error between test and analysis is also shown. Two values of error
are shown, one for the original finite element model (FEM) and one for an updated
FEM using measured thruster air hose stiffness and component test data from the
Phase-0 truss. The refined model was much more accurate in predicting the modes
up to 2.5 Hz; however, considerable error still remained in the prediction of modes
involving the reflector appendage.

.......:: ..............................._ _ ....:::::: .........::::::::::::::::::::::_:::::::: ::::::.A_IyS!Si i i i
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Phase-O CEM Investigators

A wide variety of research was performed on the Phase-0 CEM. The table below
shows the investigators and their major area of research. Two teams at Langley
performed most of the system studies. Within the Spacecraft Dynamics Branch,
the CSI Ground Test Methods team performed hardware implementation and
HAC/LAC control studies. The CSI Analytical Design Methods Team of the
Spacecraft Controls Branch performed much research on advanced controllers and
integrated controls/structures design.

A number of guest investigators (external to NASA LaRC) pursued CSI
technology development using the Phase-0 testbed. The work by JPL is of
particular merit and will be described later.

It must be stated that each of the investigators were supported by a large
contingent of NASA LaRC and Lockheed Engineering and Sciences Corporation
employees. Without this technical support, only a fraction of the studies could
have been completed during the Phase-0 CEM operational period (May 21, 1991

to September 5, 1992).

tane
Spacecraft Dynamics Branch

Spacecraft Controls Branch, GCD

Electrical Systems Section, SED

Flight Software and Graphics
Branch, ACD

Guest

Martin Marietta Corporation
Harris Corporation
MUSYN
JPL
laBG Germany)

System Hardware, High Authority/
Low Authority Control

Advanced Controllers,
Integrated Design

SCI/RIU Hardware

SCl Real-Time ADA Software

Passive Damping Analyses
Proof-Mass Actuators
p-Synthesis Controllers
Piezoelectric Struts, D Struts
System Identification
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Controller Delay and Non-Collocation Effects

Among the first closed-loop controllers that was executed on the testbed was a
dissipative controller with "guaranteed stability" if actuator and sensor collocation
was realized. The figure below shows neither spatial nor temporal collocation was
realized in the initial experiments.

The time delay introduced by digital implementation of the controllers can result
in instabilities. The real-time controller update rate was set to 80 Hz for the first
experiment which is more than an order of magnitude greater than the controller
bandwidth. Nevertheless, a 7 Hz mode was being destabilized. By simply
increasing the controller update rate to 350 Hz, the decrease in time delay
stabilized the response. This early lesson indicated that the controller update rates

should approach two orders of magnitude higher than the controller bandwidth
when trying to implement a continuous time controller with discrete computations.

It was also learned that the original accelerometer mounting violated spatial
collocation. The original non-spatial collocation of sensors and actuators involved
coupling of bending and torsion vibrations. The figure on the right shows the
response with the original accelerometer installation (on the corner of the truss).
The accelerometer detected torsional vibration which was fed-back to a thruster

pair which could only produce bending. Hence, significant performance
degradation was observed. By moving the accelerometers to prevent the
torsion/bending coupling, good closed-loop performance was obtained.
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Real-Time Computing

To implement the control laws in digital (discrete) form, several real-time
computing systems have been developed. The figure below highlights a flight like
SCI computer system, programmed in ADA and implemented using a flight
qualified 1553B bus structure. The system software for implementation of general
control laws and digital filtering was successfully demonstrated using the Phase 0
testbed.

The controller update rates, which have already been shown to influence stability,

are one of the key parameters to assess the adequacy of a real-time computer for
closed-loop testing. The data below show the SCI computer can achieve rates
exceeding 200 Hz for an 8 input-8 output controller. However, the remote
interface unit (RIU) is limited to 200 Hz. This 200 Hz rate proved adequate for
most of the Phase-0 experiments. Test results and development documentation for
the SCI/RIU system can be found in Ref. [6].

It is noted the primary controller for the Phase-0 testbed was a VAX 3200. The
enhanced version of this computer, coupled with tridiagonalization of the
controller A matrix could achieve 280 Hz rates for a 40 state controller with 8

inputs and 8 outputs. The VAX based primary control system development is
described in Ref. [71.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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Closed-Loop Studies

A number of controllers have been designed for the Phase-0 CEM using both
model independent and model based approaches as indicated below. The
performance goals have been to add damping to prescribed modes and to minimize
LOS pointing errors due to applied disturbances. Stability determination of the
controllers was based on experimental transient response data.

Among the dissipative controllers that were tested, an active vibration absorber
(AVA) concept [8, 9] has been used to dissipate energy from the first nine modes
of the Phase-0 CEM. TheAVA controller is guaranteed to be stable forcollocated
actuators and sensors. LQG and H-infinity model based controllers have been
designed for the Phase-0 CEM. The LQG controllers usually result in instabilities
due to controller spillover in higher-frequency, unmodeled modes when high

performance is desired. Results from H-infinity controller testing show that to
maintain stability with the model error that existed in the FEM, relatively low gain

(low performance) controllers were obtained. H-infinity and _ synthesis controller
results are also described in Refs. 110, 11].

The AVA controller and a combination LQG/AVA (HAC/LAC) controller will be

described and compared in the next few pages. In addition, a novel second-order
observer for use with acceleration measurements will be described. Closed-loop
LOS pointing results are presented and stability enhancement using strut actuators
will be demonstrated.

O :Dissipative Controllers ....
-:Active Vibration Absorber (AVA)
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Active Vibration Absorber (AVA)

Several collocated controllers have been tested to verify stability and performance.
An active vibration absorber (AVA) concept [8, 91 has been used to dissipate
energy from the first nine modes of the Phase-0 CEM. The AVA controller is
guaranteed stable for collocated actuators and sensors; however, as already shown
collocation is only approximated on the Phase-0 testbed.

As shown below, the AVA controller emulates a spring-mass-damper system by
using acceleration feedback and a second-order control law. An added advantage
of the AVA controller is that the control law gains can be synthesized on a mode
by mode basis since the only stability constraint is that positive definite controller
mass, damping, and stiffness matrices be used.

Tests of this controller on the Phase-0 testbed have shown good performance and
high stability as long as the thruster and accelerometer pairs are "nearly"
collocated. The combination of actuator dynamics and computational delay
limited the use of the AVA controllers to a bandwidth of 0 to 10 Hz.

iiii_ii_i!_i_ii_!i:i!!!i!_!!!!!!!_i!_i!ii!_!!_!i!_!i!i!_!i!_i_iii_i!i!ii!_!i:i?!_iii_i!_i!iii_ii_ii_ii_i!!!_iTi!

498



HAC/LAC Control

The HAC/LAC controller developed for the Phase-0 testbed was formed by using
the LQG controller for performance (high authority) and designing AVA
controllers for stability (low authority); i. e. AVA control of those modes being
destabilized by the LQG controller. In the figure below, the HAC and LAC loops

are shown to operate in parallel. It is noted that the LAC loop does not
appreciably add to the amount of force produced by the thrusters. The low
authority "stability" modes require very little energy to control. The HAC/LAC
controller, with the first nine modes of the testbed controlled by the LGQ loop and
six modes in the AVA loop, was the primary controller used for LOS pointing
demonstrations.

An alternative approach to stabilize the LQG controller, by decreasing the LQG

gains for gain stabilization and adding damping with an AVA controller to the
same modes to recover performance, was met with limited success. A third
approach to improve the stability of implementing LQR (model based) gains was
through the use of a second-order observer in place of the Kalman Filter. This
new observer is described next.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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Second-Order State Estimation

Using Acceleration Measurements

A second-order observer has been developed and applied to the Phase-0 testbed for
state estimation with direct feedback of acceleration measurements. The observer

uses the concept of the AVA controller as applied to the observer model error
equation. Hence the model independent stability and mode-by-mode gain
synthesis properties of the AVA controller also apply.

To verify the second-order observer performance and stability, LQR gains were
synthesized and used with both the Kalman Filter and the second-order (AVA)
observer. The figures below show the experimental response of the structure at
accelerometer location 2. The data for the LQG shows an instability which
required the actuators to be disabled at t=16.6 sec. This instability of a mode near
7 Hz is due to unmodeled dynamics since a nine mode model with frequencies
less than 2 Hz was used in the LQR and Kalman filter gain synthesis. Although
the AVA observer used the same nine-mode control gain, the AVA observer
produced a stable closed-loop response. Hence, the second-order (AVA) observer
is useful in reducing observation spillover instabilities. Details of this work are
found in Ref. [12].

Second-Order Observer
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Line-Of-Sight Pointing Results

Using the HAC/LAC controller described previously, the LOS pointing

performance has been measured and simulated using the reduced order state space
models. Typical tests consisted of 10 seconds of excitation followed by either
free-decay or closed-loop control.

As indicated in the figures below, the test and simulated LOS pointing is
qualitatively in very good agreement, although some quantitative differences are
apparent. This indicates that control law design for flexible structures using finite
element derived design models is quite viable.

The performance of the HAC/LAC controller can be described in terms of the LOS
pointing error decay rates. The damping is increased from less than 1% to more
than 10% between open- and closed-loop, respectively. While this limitation was
partially due to actuator saturation, the stability margin of the high-gain HAC/LAC

controller limited performance as described next.
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Controller Merit

To assess the performance of various controllers, a merit index was used that

measures the RMS LOS error and the RMS energy used by the controller. The
lower the merit index, the "better" the controller. As shown below, the HAC/LAC
controller merit was among the best tested. The HAC/LAC controller was formed

by using the LQG controller for good performance and designing AVA controllers
for those modes being destabilized by the LQG control.

The LQG controller was found to have the best merit index if stability could be
maintained. In the data below, a 7 Hz mode is destabilized by the LQG controller
as shown in the LOS pointing error. The AVA controller was stable but produced
a poor merit index. By combining the two controllers as described above, good
stability and a reasonable controller merit index were obtained. The next page
further describes the HAC/LAC controller.
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Controller Stability

The high-gain HAC/LAC controller used to produce the closed-loop line-of-sight

pointing results shown on the previous page shows lower stability than desired.
The figure below shows the open-loop and closed-loop frequency response for the
acceleration magnitude at location 8 to a force input at location 1. This particular
HAC/LAC controller consisted of an LQG design for the first 9 modes (modes
below 2 Hz) and 6 single mode AVA controllers. The AVA controllers were

designed to enhance stability of the HAC (LQG) controller in the 6 to 10 Hz
frequency range. Nevertheless, there remained a laser tower bending mode which
showed very low stability at a frequency near 7 Hz as noted by higher vibration

magnitudes in closed-loop than in open-loop!

To enhance the stability of the HAC/LAC controller the use of induced strain
actuators at the base of the laser tower was proposed. The next page describes the

implementation of two JPL piezoelectric struts and four viscous damped struts to
augment the HAC/LAC controller stability.
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Appendage Control With Strut Actuators

Two active struts and four passive struts were incorporated in the Phase-0 CEM
testbed to augment the damping of modes in the frequency range of 5 to 8 Hz. The
active struts, which replaced two longerons at the base of the laser tower, were
developed at JPL and are described in Ref. [13]. The passive struts, used to
replace four existing diagonal truss members, were jointly developed at Honeywell
and JPL as described in Ref [14].

The figures below show the effects of the active and passive struts on the
frequency response magnitude function shown previously. Modes in the range of
5 to 8 Hz were successfully attenuated. The figure on the right shows that the
combination of the HAC/LAC controller and the decentralized appendage
controller using strut actuators. It is shown that the laser tower appendage mode
no longer poses a stability concern.

From these results it is shown that the addition of actuators and sensors to control

appendage vibrations can be successfully achieved using strut actuators. The
ability to implement the appendage controllers in a decentralized manner helps to
reduce the complexity of the centralized platform controllers. These results are
more fully documented in Ref. [15].
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Evolution Of The CEM Testbed

Tests on the Phase-0 CEM were successfully concluded on September 5, 1991.

The Phase-1 testbed will be built based on an integrated design [16] of 21 different

strut stiffness/mass properties and a static dissipative controller. The Phase-1
CEM will have the same geometry as the Phase-0 testbed. Tests of the Phase-1

CEM are planned for the spring and summer of 1992.

The Phase-2 CEM will entail a modification of the Phase-1 geometry and

suspension. Moreover, Phase-2 will also include three two-axis gimbals and
advanced scoring systems to simulate pointing of multiple science instruments.
The Phase-2 CEM will permit 2.5 arc-sec pointing using piezo struts for flexible

body control. Phase-2 also enables the study of multiple-payload platforms
whereby a combination of centralized, hierarchical and/or distributed control
schemes may be evaluated. Initial capabilities of the Phase-2 CEM should be
operational in the late fall of 1992.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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Summary

The Phase-0 CEM has been a very fruitful testbed for the study of global LOS
pointing and active vibration suppression. The testbed dynamic behavior was

sufficiently rich that spillover instabilities were common in model based
controllers. The Phase-0 testbed has proved to be very valuable in advancing
flexible body control technology, training researchers, and building a knowledge
base for future testbeds with similar objectives. Some important findings are
offeredbelow:

Design And Modeling
O Integrated suspension and structural design is needed to allow
low-frequency dynamic behavior without violating static stress
constraints.

O Finite element models should be based on component (and perhaps
subassembly) tests to obtain sufficient accuracy for controller design
models.

O Although differential stiffness (due to gravity preload) may not
significantly affect flexible body vibrations, it must be included in the
analysis to predict suspension cable effects.

Har_lware
O Truss joints fabricated to carry 1600 lbs of load have typically
produced 0.1 - 0.3 % critical damping in the flexible body modes of
vibration.

O Linear bi-directional thrusters can be used for laboratory control of
flexible structures.

O Servo accelerometers can be used, in conjunction with software bias
removal, for feedback control of low frequency (0.15 Hz) structural
vibrations.

O Digital implementation of continuous time controllers requires nearly
two orders of magnitude faster update rates than the highest mode
frequency in the controller design model.

Control

O Dissipative (static and dynamic) controllers are highly stable provided
both spatial and temporal collocation can be approximated.

O Model based controllers, when stable, are usually more energy
efficient for the same level of performance than dissipative controllers.

O Appendage control, using a decentralized control approach, can
enhance stability and simplify the centralized platform controller.
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ABSTRACT

During the assembly flights of the Space Station Freedom (SSF), the Orbiter will ei-

ther dock with the SSF and retract to the final berthed position, or will grapple the SSF

using the Shuttle Remote Manipulator System (SRMS) and maneuver the SRMS coupled

vehicles to their final berthed position. The SRMS method is expected to take approxi-

mately one to one and a half hours to complete and require periodic attitude corrections

by either the Orbiter or the SSF reaction control system (RCS) or continuous control by a

control moment gyro (CMG) system with RCS desaturation as required. Free drift of the

attached vehicles is not currently thought to be acceptable because the desired system atti-

tude will quickly deteriorate due to unbalanced gravity gradient and aerodynamic torques

resulting in power generation problems, thermodynamic control problems, and communi-

cations problems. This paper deals with the simulation and control of the SRMS during

trunnion/latch interaction dynamics and during RCS maneuvers. The SRMS servo drive

joints have highly non-linear elastic characteristics which tend to degrade sensitive control

strategies. In addition the system natural frequencies are extremely low and depend on

the drive joint deflections and SRMS geometric position. The lowest mean period of oscil-

lation for the Orbiter/SRMS/SSF(MB6) system in brakes hold mode positioned near the

final berthed position is approximately 120 seconds. A detailed finite element model of the

SRMS has been developed and used in a newly developed SRMS systems dynamics simu-

lation to investigate the non-linear transient response dynamics of the Orbiter/SRMS/SSF

systems. The present SRMS control strategy of brakes only recommended by the Charles

Draper Labs is contrasted with a robust controller developed by the authors. The ro-

bust controller uses an optimal linear quadratic regulator (LQR) to optimally place the

closed-loop poles of a multivariable continuous-time system within the common region of

an open sector with the sector angle +45 ° from the negative real axis, and the left-hand

side of a line parallel to the imaginary axis in the complex s-plane. This guarantees that

the critical damping ratio for the desired control modes is equal to or in excess of 0.707.

The matrix sign function is used for solving the Riccati equations which appear in the

controller design procedure. Fast and stable algorithms have recently been developed for

the computation of the matrix sign function (ref. 1). Simulation results are given which
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demonstrate the potential CSI involvement for the current SRMS control system and the

proposed control system.

INTRODUCTION

The Space Station Freedom (SSF) will be assembled and supplied by the Orbiter.

Each visit to the SSF will require a rigid structural attachment between the vehicles in

order to assemble the mission build (MB) segments, and/or to resupply and exchange crew

members. During the assembly flights of the SSF, the Orbiter will either dock to the SSF

and retract to form a rigid and stable structural connection between the docking vehicles,

or an Orbiter crew member will grapple the SSF using the SRMS and maneuver (see

figure 1) to the berthed position. An intensive engineering study involving many Johnson

Spacecraft Center (JSC) divisions, their subcontractors, together with the Canadian SPAR

Aerospace Limited, is being conducted to determine the viability of the SRMS berthing

approach for attaching the large space structures. The viability of the docking approach

to mating vehicles with similar weight properties has been established in previous NASA

projects.

The SRMS attachment method for MB2 through MB6 is expected to take from one to

one and a half hours to complete and requires the Orbiter to maneuver the SRMS attached

system from the initial grapple attitude to the combined vehicle torque equilibrium attitude

(TEA). Free drift of the attached vehicles at this point in the mission is not thought to

be acceptable because the desired system TEA will quickly deteriorate to large attitude

excursions due to the unbalanced gravity gradient and aerodynamic torques acting on the

system. This will result in power supply problems, thermodynamic control problems, and

communication problems. Alleviating these problems requires periodic attitude corrections

by the Orbiter Reaction Control System (RCS), or the SSF RCS, or continuous control

by the Control Moment Gyro (CMG) system with RCS desaturation as required. Where

possible, the CMG system will be employed to maintain the TEA since its control is less

likely to move the SRMS joints significantly. However, during the SRMS retraction while

using the CMG's it may be necessary to desaturate the moment build up of the CMG's

using either the Orbiter or the SSF RCS jets. The SRMS must not allow the berthing

vehicles to contact each other with sufficient relative kinetic energy to damage any part of

either structure. Thus for the SRMS attachment system to be viable, with regards to a

structural loads standpoint, it must be able to withstand some form of attitude maneuvers

using RCS jets, and be able to control and limit the relative contact kinetic energy and

the constrained motion loading at the structural latch interfaces.

The SRMS servo drive joints have highly nonlinear elastic characteristics due to the

anti-backlash mechanisms in their gear boxes which tend to degrade sensitive control

strategies. In addition the natural frequencies of the combined system are extremely low

and nonlinear, depending on the drive joint deflections, the SRMS geometric position,

and the control system gains if the brakes are not applied. The lowest mean period of

oscillation for the Orbiter/SRMS/MB6 system during the SSF trunnion insertion into the
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Figure 1. Orbiter/SRMS/MB6 berthing orientation.

Payload Retention Latch Assembly's (PRLA's), a relatively stiff SRMS position, is around

120 seconds with the brakes on. The current SRMS system responds to external loads

with non-commanded motion and long transient response oscillations which add critical-

ly needed time to the retraction maneuver task. Evidence of this effect has been noted

by crew members on past shuttle flights where crew members waited for the oscillation to

decay before issuing new maneuver commands. The extremely low frequency response of

the heavy Orbiter/SRMS/SSF system will only aggravate this aspect of the control task.

A disturbance rejection methodology will greatly enhance SRMS operations.

In order to accurately represent the structural dynamics of the entire coupled sys-

tem and because of the complex nature of the SSF finite element component structures,

a detailed finite element model of the SRMS with nonlinear joints was developed by the

authors. This model has been coupled to the Orbiter and the finite element model of the

MB6. The MB stage modal models are contractually furnished by the McDonnell Dou-

glas Space System Company for the Space Station Freedom Loads and Dynamic Working
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Group. Modal frequencies to 50 Hertz are retained for the analysis to accurately form a

mathematical basis for the SRMS flexible body dynamics coupled with the joint servomo-

tor dynamics. The requirements for loads convergence during trunnion to PRLA contact

require modal frequencies to 25 Hertz. The coupled modal approach efficiently represents

the arm segment to arm segment interaction since it is included in the basic finite

element model with the correct boundary conditions. The modal model is then used in

a newly developed SRMS systems dynamics simulation program, Manipulator Docking

Dynamics Program (MDDP), to investigate the non-linear transient response dynamics of

the Orbiter/SRMS/SSF systems during attitude control maneuvers and during interface

trunnion/latch interaction dynamics. This approach has the advantage of accurately rep-

resenting the entire SRMS flexural dynamics coupled with the flexible body dynamics of
the attached vehicles.

The present brakes on control system response of the SRMS has been simulated for a

representative Orbiter PRCS jet firing. A single .080 second pulse dual jet +pitch maneuver

was executed and the system was allowed to ring out for 100 seconds. Next a similar case

was simulated with the optimum robust controller developed by the authors. The robust

controller uses a hnear optimal quadratic regulator to optimally place the closed-loop poles

of a multivariable continuous-time system within the common region of an open sector,

and the left-hand side of a hne parallel to the imaginary axis in the complex s-plane. The

open sector, see figure 2, is defined by a sector angle of +45 ° from the negative real axis.

This guarantees that the damping ratios for the desired control modes are in excess of

0.707 percent of critical. The matrix sign function (ref. 1) is used for solving the Riccati

equations which appear in the controller design procedure.

In summary, this paper deals with (1) the development and capabihty of the analytical

test bed MDDP used to simulate the systems dynamics and resulting transient structural

dynamics, (2) the theoretical basis for an optimal quadratic regulator with pole placement

controller developed by the authors and used as an optional control method in the SRMS,

and (3) the simulation results of controlling the SRMSwith two different controllers during

the transient dynamics occurring when the PRCS fires jets to begin a maneuver.

SIMULATION DESCRIPTION

A detailed finite element model of the SRMS has been developed to support the de-

cision to study berthing the MB elements of SSF to the Orbiter using the SRMS. This

model is intended to serve as a test bed in investigating the overall system dynamics dur-

ing attitude control firing transients and during the interaction dynamics of the berthing

vehicles as the SSF trunnions contact the Orbiter PRLA's. The interaction contact dynam-
ics have been correlated with result from a NASTRAN simulation. The NASTRAN run

simulated an initial impact velocity between the left front PRLA and the corresponding

SSF trunnion. The interface between the trunnion and PRLA was elastically represent-

ed with a high stiffness spring perpendicular to the PRLA latch surface and with weak

springs orthogonal to the load direction. Only the first compression loading segment of the
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NASTRAN response simulation is applicable for correlation of impact and bounce from

the surface. The MDDP has the simulation capability to bounce from surface contact

to surface contact while dynamically coupled with the SRMS system. Surface contact is

maintained as long as there is a compressive load on the surface. Figures 3 and 4 give the

resulting load history for the case of impacting the systems with a relative zo velocity of

0.1 fps. In figure 3, the NASTRAN load is perpendicular to the surface, while in figure 4

the MDDP load is given in component form. The bouncing characteristics predicted by

MDDP are shown in figures 5 and 6 for a case where the trunnion first impacts near the

apex of the latch then bounces from surface to surface. The load history is given in figure

5, and the motion history is given in figure 6. The MDDP simulation will also be used to

study the interaction dynamics of pre-integrated truss (PIT) to PIT berthing dynamics.

The detailed transient load histories will be processed in load indicator subroutines to

determine design limit loads for the SSF. The finite element model of the SRMS is cou-

pled with a rigid body Orbiter and a finite element model of the SSF-MB6. The MDDP

simulation of the SRMS includes the following capabilities:

• Physical and dynamical properties

• High frequency arm flexural dynamics (162 degrees of freedom ).

• SRMS joint servo control model adapted from the JSC Shuttle Engineering Sim-

ulator (SES), correlation in progress.
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• Nonlinear hysteresis SRMS joints.

• Second order servomotor dynamics.

• SRMS brake dynamics including motor friction.

• Locked or bottomed SRMS servo joints.

• Flexible body payloads (716 degree of freedom for MB6 ).

• Control Modes

• Manual single joint drive with remaining joints in position hold.

• Direct drive mode with remaining joints in brakes hold.

• Position hold submode.

• Optimal linear quadratic regulator with pole placement control system.

The RCS attitude control systems for the Orbiter and the SSF are under development.

The current program has the capability to apply a predetermined RCS pulse history to

either vehicle for testing maneuver disturbances.

The equations of motion for MDDP are linearized about the initial unstressed position

geometry. For geometry changes greater than some e, the modes and frequencies of the

system equations for the SRMS will be recomputed and the new modal state initialized

such that the physical states of the total system match at the transition. For a fifty

foot SRMS, a 5 percent geometry change would correspond to end deflections of 2.5 feet.

Practically, modal recomputations do not occur very often for the type of studies that

the MDDP is designed to handle. The relative motion interaction dynamics between the

trunnions and PRLA's are constrained by the latch geometry, thus limited to less than

!3 inches in the Orbiter Xo and yo directions. The Orbiter +z0 direction is unlimited;

however, the bottom of the PRLA latch limits the -Zo motion direction. The top of the

PRLA guides are a maximum of 24 inches tall. For the case of RCS excitement, a 2.5 foot

change in geometry indicates that the system is not performing very well in its position

hold capability.

The flexible body model of the SSF was constructed by a component mode synthesis

method using the Craig-Bampton (ref. 2) constrained boundary component mode reduc-

tion technique. This dynamic reduction technique was used in both MSC/NASTRAN

internally defined superelements and external superelements supplied by the different

Space Station Work Package contractors and by the international partners.
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The simulation is written in the FORTRAN 77 language and is computer based in

the Engineering Computation Facility (ECF) at JSC. The ECF consists of a Cray X-MP

EA/464 high speed vector processor (HVSP) and an Amdahl 5990-500 scalar processor,

both operating under the UNIX operating environment. The simulation program is typi-

cally submitted from the Amdahl front end to the Cray in batch form.

In the following section, the optimal quadratic-pole placement technique used in this

study will be presented together with an adaptation to the SRMS control system.

OPTIMAL QUADRATIC REGULATOR WITH POLE PLACEMENT

This section presents the mathematical basis for the optimal quadratic regulator as

developed by the authors, and the adaptation to the SRMS system. The flexible body

system equations of motion for the Orbiter/SRMS/SSF structure can be represented by

M_ + D2 + Kx = Cu; (1)

where x and u are an n × 1 physical vector and an m × 1 control input vector, respectively,

and M, D, K and C are of appropriate dimensions and represent the structural mass

matrix, the damping matrix, the stiffness matrix, and the control distribution matrix,

respectively.

Next we employ modal analysis to Eq. (1) to decouple and reduce the order of

the problem to a smaller size based on the dominate modes. The physical to modal

transformation is given by

x= y, (2)

where _b is the n × n mode shape matrix and y is the n × 1 modal vector. Using Eq. (2)

in Eq. (1) yields the decoupled modal equation (ref. 3) given by

I_ + 2_ +_2y = CTCu" (3)

where I = _bTM_b; 2_a = _bTD_b; and to2 = _bTK_b. The superscript T denotes the

transpose of a matrix.

We reorder our modal matrices to retain the elements we wish to design in the optimal

control section in the following manner
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[=r]Y: zo (4)

where zr are the regulated modal variables to be designed and Zo are the omitted modal

variables. We then obtain the following

0
where zr is an n_ × 1 vector, with appropriate dimensions for the remaining terms. The

equations to design by optimal controller can be separated from Eq. (5) as

(6)

Next we can express Eq. (6) in the first order state space form in terms of a new
vector w as

[+11[0 i ][wl]+[0]= 2 -2_ w2 C_ u. (7)]_r 2 --is/r

Equation (7) in compact notation becomes the linear controllable continuous-time

system described by

+ = Aw + Bu, w(0) (s)

where w and u are 2n_ × 1 and m × 1 respectively. A and B follow from Eq. (7) and

are constant matrices of appropriate dimensions. Let the quadratic cost function for the

system in Eq. (8) be

f0 °cJ = [wTq w + uTRuJdt, (9)

where the weighting matrices Q and R are 2n_ x 2n_ non-negative definite and m x m

positive definite symmetric matrices, respectively. The feedback control law that minimizes

the performance index J in Eq. (9) is given by (ref. 4) :
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u = -Kw + Er = -R-1BTpw + Er (10)

where K is an m × 2n_ feedback gain; E is an m × m forward gain; r is an m × 1 reference

input; and P, an 2n_ × 2n_ non-negative definite symmetric matrix, is the solution of the

Riccati equation,

PBR-IBTp - PA - ATp --Q = 0 (11)

with (A, Q) detectable. Thus the resulting closed-loop system becomes

@ = (A - BK)w + BEr (12)

The eigenvalues of (A - BK), denoted by rr(A - BK), lie in the open left-half plane

of the complex s plane. Our objective given a suitable R is to determine Q, P, and K so

that the closed-loop system in Eq. (12) has its eigenvalues on or within a specified sector

region shown in figure 2. The important results to achieve the desired design are presented

in the following.

Lemma 1. : (refs. 4 and 5) Let (A, B) be the pair of the given open-loop system in Eq.

(8) with the quadratic cost function in Eq. (9). Also let h > 0 represent the prescribed

degrees of relative stability. Then the eigenvalues of the closed-loop system (A - BK)

consist of the invariant eigenvalues of A lying to the left of the -h vertical line with the

matrix P being the solution of the Riccati equation:

PBR-IBTp - P(A + hi) - (A + hl)Tp : 0 (13)

Theorem 1 : (ref. 6) Let the given stable system matrix A C N,_x,, have eigenvalues

&_-(i -- 1,2,...,n-) lying in the open sector of figure 2 with the sector angle +45 ° from

the negative real axis and the eigenvalues &+(i = 1,2,... ,n +) outside that sector, with

n = n- + n +. Now, consider the two Riccati equations,

QBR-1BT(_ - Q(-A 2) - (A2)TQ = 0 (14a)

and

PBR-IBTp - PA - ATp --(_ = 0 (14b)
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Then, the closed-loop system,

A_ = A - 7BK = A - 7BR-1BTp, (15)

will enclose the invariant eigenvalues 5"-(i = 1,...,n-) and at least one additional pair

of complex conjugate eigenvatues lying in the open sector of figure 2, for the constant gain

7 in Eq. (15) satisfying

7 > max{_, b + x/_ + ac} (16)
a

where a: tr[(BR-1BTp)e], b=tr[BR-1BTpA], and c:(1/2)tr[BR-1BTQ].

Remark 1 : The steady state solutions of the Riccati equations in Eqs. (11 and 14) can

be found using the matrix sign function techniques (refs. 7, 8).

The steps to optimally place all the closed-loop eigenvalues in the hatched region of

figure 2 are described as follows.

Step 1 : Let the given continuous time system be as in Eq. (8). Specify h so that the -h

vertical line on the negative real axis would represent the line beyond which the eigenvalues

have to be placed in the cross hatched sector of figure 2. Also, assign A0 = A and the

positive definite matrix R = I. Set i = 1. If the system is unstable, then solve Eq. (13)

to obtain Po and the closed-loop system A1 = A -70BR-1BTp 0 = A -70BK0, with

7o = 1; else (stable system) go to Step 2 with A1 = A, P0 = 0 and 70 = 0.

Step 2 : Solve Eq. (14a) for 01 with A := Ai. Check if (1/2)tr[BR-1BTQi ] is zero. If

it is equal to zero, go to Step 4 with j=i; else, continue and go to Step 3. Note that, when

(1/2)tr[BR-1BTQi] = 0, all eigenvalues of the matrix A; lie on or within the open sector

of figure 2.

Step 3 : Solve Eq. (14b) for P; with A := A_ and Q := Qi. Then the constant gain 7;

can be evaluated using Eq. (16). The closed-loop system matrix is

A;+I = Ai - 7;BR-1BTp{ = Ai - 7{BKi (17a)

Set i := i + 1 and go to Step 2.

Step 4 : Check if tr[(Aj + hi)] + (sum of the eigenvalues to the right of the vertical hne at

-h) is zero. If it is equal to zero, go to Step 5 with Pj+I = 0 and 7j+1 = 0; else_ solve Eq.
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(13) for P j+l with A := Aj and obtain the closed-loop system Aj -Tj+IBR-1BTpj+I =

Aj - 7j+IBKj+I, with 7j+1 = 1 and Kj+I = R-1BTpj+I.

Step 5 : The designed closed-loop system is

j+l

A0 - BR-1B T _TkPk (17b)
k=0

and its eigenvalues lie in the hatched region of figure 2. Note that the above system matrix

in Eq. (17b) is equal to the system matrix in Eq. (12), with

J

Q = 2hP,, + Z(QI + ATiPiBR-1BTpi)Ti (18)
i=1

In the above equation, ATi = 7i - 1 and the matrix R is as originally assigned. Also,

the optimal continuous time regulator can be given as

j+l

u =-(_7iKi)w + Er =-Kw + Er (19)
i=0

where r is any reference input and K is the desired state feedback gain matrix.

Next we transform back to the modal state y in order to apply our control gains back

in our test bed simulation. Note that control input u becomes

(20)u=-Kw---[Kal K12] _ ,

and further rearrangement yields

u=-[Kla 0] z_ _[K12 0] _oZo
(21)

and using Eq. (4) we obtain the desired input

u = -[Kla 0 ]y - [Ka2 0 ]_. (22)
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In the test bed we solve for u and substitute back into Eq. (3) and use a variable step

fourth order Runge Kutta integrating method to propagate a time history of the system

dynamics.

The control system feedback gain matrix, K, was obtained by following the above de-

sign steps for the case of the Orbiter SRMS handling the MB6 spacecraft. The complex fre-

quencies for the dominate modes of the open loop system with soft torsional springs at each

of the SRMS servo joints are { -.0001534- j.00766; -.000235 4- j.0112; -.000595± j.0297;

-.0009234- j.0461;-.00128 4- j.0638;-.00535 4- j.268 }. The value of h = .004 was

chosen to place the closed loop poles in the phase plane such that the joint torque require-

ments u do not exceed the system capability for the given PRCS disturbance. The closed

loop system eigenvalues _r(A- BK) after design are { -.00785 4- j.00766; -.0145 ± j.118;

-.054 4- j.0468; -.103 5= j.0937; -.166 ± j.157; -1.594 4- jl.594 } all within the required

stability sector given in figure 2. The feedback gain matrices for this design are given as

and

[Kll] =

[K12] =

-.2981el +.2026el -.5281e0 +.3582el +.2090e2 -.8834e3

+.1588el +.1997e0 -.2833el -.3350e2 -.8016el -.1452e2

-.2854e0 -.5697e0 +.1168e2 +.1785e2 +.5723e2 +.1112e2

+.1249e2 -.4620e0 -.2918el +.6502el -.5299e2 -.1330e4

-.2795el +.2346el +.1060e2 -.5890el -.4631e2 +.4805e3

+.5814el -.5165el +.6126el -.8879el +.1820e2 -.1574e4.

+.3766e3 +.2269el -.4313e2 +.1937e2 +.1539e3 -.5734e3

+.3493e3 -.1078e3 -.1035e2 -.3947e3 -.4719e2 -.1115e2

-.3622e3 +.4103e2 +.1935e3 +.1719e3 +.4239e3 +.1438e2

+.2473e4 -.6692e3 +.2952e2 +.1214e3 -.3278e3 -.8417e3

+.7537e3 +.7676e2 +.3337e3 -.3160e2 -.2773e3 +.3002e3

-.1587e4 -.1212e3 +.1609e3 -.9004e2 +.1312e3 -.9929e3

SIMULATION RESULTS

The SRMS was designed to handle payload weights up to 45,000 lbs. with the Orbiter

attitude control system in a free drift mode. Current plans to grapple vehicles such as SSF-

MB6, which weighs approximately 250,000 lbs., and to maneuver the combined spacecraft

require a close engineering look at the systems and careful testing. The new alternative

digital auto pilot (ALT DAP) control mode for the Orbiter, which wasn't available when

the SRMS was originally designed, will greatly help reduce the dynamic excitation of the

system. The ALT DAP allows both selectable burn times and delay times between firings,

so conceivably the elastic response disturbances can have a chance to damp out between

firings. With this in mind, a test case representing a .08 second Orbiter PRCS dual jet
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pitch axis firing was simulated to determine the dynamic response motion between the

Orbiter PRLA's and the MB6 trunnions.

The first case was simulated using anSRMS brakes hold mode for all servo joints with

the arm geometry placing the pressurized berthing adapter (PBA) in the cargo bay of

the Orbiter with the SSF trunnions inside the PRLA's. The interaction loads dynamics

between the trunnions and the PRLA's was turned off in MDDP in order to see the

unrestrained motion. The case was simulated for 100 seconds with the initial state of

the system being zero. Shown in figures 7, 8, and 9 are the Orbiter's angular rate vector

history together with the total system angular rate vector history, the velocity history of

the left front trunnion with respect to the left front PRLA, and the motion of the left

front trunnion with respect to the left front PRLA in a Xo,-Yo plane, respectively. Figure 7

shows that the system damps very slow after the brakes quit slipping. This represents a poten-

tial problem, since additional thrusting can easily reinforce the excitation level, causing

additional slip of the motors and payloads. The relative velocities shown in figure 8 are less

than .013 fps after 20 seconds. The relative motion shown in figure9 did not exceed

The second case simulated used the optimal controller for 100 seconds of simulation

time. The results shown in figures 10, 11, and 12 are for the same parameters as in the first

case. The angular rate results shown in figure 10 exhibit the optimal characteristic of a

slight dynamic overshoot of approximately 0.008 dps for the Orbiter roll axis, and remain

below this value after about 17 seconds as the controller brings the Orbiter rates to match

with the overall system rates. The relative velocities between the trunnion and PRLA

in figure 11 stay below 0.005 fps after 12 seconds from the initial transient PRCS firing.

Very small amplitude modal coupling can be seen in the results for the optimal controller

as compared to the coupling seen in previous cases. The optimal controller quickly rejects

the PRCS disturbance, reducing the system state to a level where additional firings can

be made. The motion of the trunnion with respect to the Orbiter shown in figure 12 was

very smooth and peaked at 0.26 feet, slightly more than for the case with applied brakes.

CONCLUSIONS

This paper has presented a description of MDDP, a high fidelity finite element model

simulation of the SRMS specifically designed to study SRMS structural transient responses

while connected to a flexible body payload. Of particular interest to structural engineers

are the interaction dynamics computed between structural elements in the simulation and

also the familiar finite element form of the equations. The simulation addresses two specific

dynamics events, (1) constrained motion transient dynamics and the resulting structural

loads occurring during interface contact, and (2) system transient dynamics resulting from

the firing of RCS jets. The constrained motion loading relies entirely on the finite element

representation of the contacting structures since no attenuation mechanism has been allo-

cated for this interface. A new optimal LQR control method has been presented and shown

to be very effective for rejecting the transient responses caused by the firing of the Orbiter

PRCS. Future work will test the optimal LQR controller during the interaction dynamics
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contact phase. The multivariable state-space optimal controller is stable and has good

robustness properties. The state-space approach mathematically decouples the actuators

from each other thereby greatly reducing the unwanted dynamic motion typically seen in

the SRMS transient response.
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N93
MODEL REDUCTION IN INTEGRATED

CONTROLS-STRUCTURES DESIGN

P. G. Maghami and S. P. Kenny
Spacecraft Controls Branch

NASA Langley Research Center
Hampton, VA 23665

It is the objective of this paper to present a model reduction tech-

nique developed for the integrated controls-structures design of flexible

structures. Integrated controls-structures design problems are typically

posed as nonlinear mathematical programming problems, where the

design variables consist of both structural and control parameters.

In the solution process, both structural and control design variables

are constantly changing; therefore, the dynamic characteristics of the

structure are also changing. This presents a problem in obtaining a

reduced-order model for active control design and analysis which will

be valid for all design points within the design space. In other words,

the frequency and number of the significant modes of the structure

(modes that should be included) may vary considerably throughout

the design process [1,2]. This is also true as the locations and/or

masses of the sensors and actuators change. Moreover, since the

number of design evaluations in the integrated design process could

easily run into thousands, any feasible order-reduction method should

not require model reduction analysis at every design iteration. In

this paper a novel and efficient technique for model reduction in the

integrated controls-structures design process, which addresses these

issues, is presented.

OBJECTIVE

• Develop a model reduction technique for use in the integrated

controls-structures design.

-->Address the problem of a changing structure: the number

and frequency of the significant modes may vary.

-->Address the problem of control system implementation:
sensor and actuator locations and masses.

--->Address computational efficiency issues.
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The approach presented in this paper is first to use a first-

order Taylor's Series approximation of the open-loop eigenvalues and

eigenvectors with the aid of their respective analytical derivatives with

respect to both the structural and control design variables. Then,

evaluating the significance of each mode through cost measures related

to its controllability and observability [3], the number and frequency

of the significant modes at the nominal design point, as well as the

number and frequency of modes that might become significant in a

prescribed neighborhood of the nominal point, are determined using

a worst-case scenario approach. If the current design is within the

prescribed neighborhood of the nominal design, the modes identified

in the above are used in the control design and analysis. However,

if the current design is outside the neighborhood, a single-point order

reduction is performed.

APPROACH

• Evaluate the significance of each mode through its controllability
and observability cost measures.

Use a first-order Taylor's Series approximation of the open-

loop eigenvalues and eigenvectors in a prescribed "linear"

neighborhood about a nominal design.

Identify the number and frequency of modes that may become

significant within a neighborhood of a nominal design using a

worst-case scenario approach.

• Perform "single-point" model reduction for design points

outside the "linear" neighborhood.
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The equations of motion for a flexible structure, in state-space

form, are shown below, where A, B, and C are the plant, the

actuator influence, and the sensor influence matrices, respectively.

The plant matrix, in general, is nonsymmetric and fully populated.

For a large flexible structure, the order of the initial model can be in

the thousands, which makes it unsuitable for design and analysis. The

classical approach for reducing the size of the problem is to introduce a

model reduction method to eliminate dynamics characteristics that are

outside the bandwidth of interest, hence reducing the computational

burden. This naturally leads to the question whether the problem

can be reduced even further, i.e., are there modes within the

bandwidth that do not contribute much to the dynamic response? In

order to distinguish a significant mode from an insignificant mode, a

measure of modal significance must be adopted and compared. In this

paper, the controllability and observability cost measures presented in

[3] are used.

CONTROLLABILITY AND

OBSERVABILITY COST MEASURES

The equations of motion, in state-space form, are given as"

('t = Aq + Bu

y=Cq

A measure of controllability and observability may be defined as:

= ¢/t¢i

Where C_ci and C_oi are measures of the closeness of the ith mode

w.r.t, the controllable (observable) range spaces, defined by
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Transforming the equations of motion from physical coordinates

to modal coordinates results in a plant matrix that is block diagonal.

Normalizing the modes of the structure for unity modal mass results

in 2 × 2 blocks of the form shown below. Due to this particular

block-diagonal nature of A, its eigenvectors have a special form as

well, such that there are complex conjugate vector pairs associated

with each 2 x 2 block. This considerably simplifies the expressions

for controllability and observability cost measures.

CONTROLLABILITY AND OBSERVABILITY

COST MEASURES (CONT'D)

If the modes of the structure are normalized to produce unity

modal mass, i.e.,

The plant matrix can be written in modal form as:

A1 0 0
A- 0 ... 0

0 0 An_

Ai's have a 2x2 diagonal block form:
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Because of this special form of the eigenvectors of A, it becomes

apparent that the controllability and observability cost measures do

not require full multiplication of the matrices and vectors, but rather

may be reduced to a series of 2 x 1 vector and 2 x 2 matrix

multiplications. The components of the 2 x 1 vector are the two

nonzero components of the eigenvectors of A, and the 2 x 2 matrices

are block diagonal components of the controllability and observability

grammians. In other words, the modal controllability and observability

cost measures decouple, i.e., they depend only on the corresponding

modal parameters.

CONTROLLABILITY AND OBSERVABILITY

COST MEASURES (CONT'D)

Simplified expressions for the controllability and observability

cost measures are given as:

OLci ---

_oi ---

Wci and Woi represent the ith 2x2 block on the diagonal of the

grammians Wc and Wo, respectively.
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The 2 x 2 block diagonal elements of the controllability and ob-

servability grammians may be obtained analytically. Here, the vectors

l_i, "Ydi, and "Yri represent the input, displacement output, and rate

output influence coefficients, respectively. These solutions may then

be combined with the reduced expressions for the controllability and

observability cost measures yielding simplified modal cost measures,

O_ci and O_oi, as shown below.

CONTROLLABILITY AND OBSERVABILITY

COST MEASURES (CONT'D)

Simplified controllability and observability grammians"

f 1
w i-

0 4_iw i

1+4(. 2 T COi T

4(iw_ _di')'di -{- -_i _ri')/ri

1 T
2_o_._di_'di

-_w. _di')'di

1 T z 1 T

_/ri _ri -t- _"/diTdi

Simplified modal controllability and observability cost
measures:
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The model reduction algorithm computes the sensitivity of the

open-loop eigenvalues and eigenvectors each time that the optimiza-

tion requests gradient information (gradient of the objectives and

constraints with respect to the design variables). Then, upper bound

values for the modal controllability and observability cost measures

c_U and c_U are computed and compared with preset threshold values in

order to identify the significant modes for designs within the prescribed

neighborhood of the nominal design. Now, if an upcoming design is

within this neighborhood, these identified modes are used to form a

design model for control synthesis. However, if an upcoming design is

outside this neighborhood, a single-point model reduction is performed

to identify the significant modes for control design. This process is

repeated until the integrated design optimization converges.

MODEL REDUCTION ALGORITHM

EVALUATE OPEN-LOOP
EIGENSENSITIVITIES

APPROX. OBJECTIVE
AND CONSTRAINT

FUNCTIONS

DETERMINE SIGNIFCANT MODES
FOR DESIGNS WITHIN "LINEAR"

NEIGHBORHOOD
(WORST-CASE MODEL)

H H
NO

t USE WORST-CASEMODEL

PERFORM "SINGLE-POINT"
MODEL REDUCTION

t
EXACT OBJECTIVE
AND CONSTRAINT

EVALUATIONS
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Consider the real symmetric structural eigenvalue problem, as

stated below, where If and M are symmetric positive semi-definite

stiffness and symmetric positive-definite mass matrices, respectively.

Differentiating the defining eigenvalue problem with respect to a

structural design variable, pj, gives expressions for both the eigenvalue

and eigenvector derivatives. Premultiplying by the eigenvector yields

a simple expression for the eigenvalue derivative. However, due to

the rank deficiency of the defining eigenvalue problem, the eigenvector

derivative cannot be uniquely determined from this expression.

STRUCTURAL EIGENSYSTEM (OPEN-

LOOP) SENSITIVITY ANALYSIS

Structural Eigenvalue Problem: (K- AiM)Xi = 0

Eigenvalue Derivative:

Eigenvector Derivative:

OXi OAi
(K- -

Opjupj
_MXi

Opj

Note that (K- AiM) is rank deficient.
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Expressing the eigenvector derivative as a linear combination of

all the eigenvectors and substituting it into the defining eigenvector

derivative equation gives an expression for the particular solution, V_j.

Noting that the particular solution is mass-orthogonal with respect to

the eigenvector provides a set of linear constraints that may be used

to eliminate the singularity problems of the unconstrained expression.

The constant, Cij, may be obtained by differentiating the eigenvector

normalization condition XTMXi = 1. For a detailed development of

the eigensystem sensitivity equations, see [4].

STRUCTURAL EIGENSYSTEM

SENSITIVITY ANALYSIS (CONT'D)

A solution for the eigenvector derivative may be obtained by

expressing it as a linear combination of all of the eigenvectors

72

OXi _ E CkjXk q-- CijXi -- Yij -_- CijXi
Opj -- k=l

k¢i

Where V/j and Cij are defined as follows:

Opj

Cij-
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Both modal controllability and observability cost measures, a,ci

and aoi, are functions of the design variables p. As the current design

moves away from the nominal design point, the number and frequency

of the significant modes measured by o%i and O_oi might change.

Consequently, if upper bound values, c_U and o_oU/,can be established

for the modal controllability and observability cost measures for design

points within a prescribed neighborhood of a nominal design, they may

be used to identify the modes that are currently significant and modes

that might become significant as the design optimization progresses.

MODAL COST APPROXIMATIONS

Compute upper bound values for the

observability cost measures if the new

neighborhood of the nominal design:

controllability and

design is within the

-->Find an upper bound value for the controllability cost

measure:

-->Find an upper bound value for the observability cost measure"

P Ic_°i(P) = 2(1 + co2(p))_i [_7ditP)Tdit( ) + wi(P)_'71(p)?ri(P) JJ
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Upper bound values for the modal controllability and observability

cost measures may be established by using a worst-case scenario

approach, wherein the maximum possible contribution from each term

is used in the computations. These terms involve functions of the

open-loop eigenvalues and the input and the output influence vectors

which are approximated by a first-order Taylor's Series expansion.

MODAL COST APPROXIMATION (CONT'D)

Obtain upper bound values for the modal controllability and
observablhty cost measures

a<i(p) <t/(4_i) [mpax {1/w_(0)(1 + w_(o))} +

max p)_bi( p =__
P

max
p

aio(P) < [(4,_ 4- 1) /(2,i)] { {mpax [llwi(p) (1 + w_(p))] mpaX {'TTi(p)q, di(P) } } } +

[1/(2,i)]{ {mpaX [wi(p) / (1 + w?(p))] mpaX {"fT(p)'yri(p)} } } _ ao U

Use a first-order Taylor's Series approximation for the open-loop
eigenvalues and the influence coefficients

na Owi I"n(P) _ "n(Po) + _ _ (Pi -- t'oi).= Opj Poj

na O_bi poj
¢i(o) ,_ ¢_(t,o) + _ _ (p; - poj)

-7--1"=Opj
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Upper bound values for terms in the modal controllability and

observability cost measures that involve the influence vectors _i,

7di, and ")/ri may be obtained by evaluating these terms at a design

point in the direction of the steepest ascent and at the boundary of

the neighborhood. Here, it is assumed that the coupling between

the influence vectors corresponding to different modes is small.

The remaining terms in the cost measures involve functions of the

open-loop eigenvalues. All but one of these functions of _/ have

no maximum. Only the function f* = _i(p)/(1 +_(p)) has a

maximum at _i(P) -- 1. Consequently, upper bound values for all

these functions except f* can be obtained by computing the maximum

value of these functions at the smallest and the largest possible values

of _i (_L and _U) within the prescribed neighborhood. As for f*,

if _i(P) = 1 is within the prescribed neighborhood, then f_a:c = 1/2.

Otherwise, the same procedure as for other functions is used.

MODAL COST APPROXIMATION (CONT'D)

Upper bound value for the influence coefficient terms:
nd

+T(,,o)+,(oo)+ Z
j=l

71d n d

S __. [o+,1ooA_to+,/opk]._.,{+T(po)[o0,/oos]}._., {+_"(Oo)[O+,/opk]}++so+,,.2
j=l k:l

Upper bound values for the scalar functions of col may

obtained by computing these functions at cog and coL.
lid

,.,_(p) = .,i(po) - __. 1,9_i/Opjlpoj_
3=1

lid

,,4'(p)-- ,,,,(po)+ Z Io,,,,/opslpoi_
j=l

be
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The CSI Evolutionary Model is a laboratory testbed designed and

constructed at the NASA Langley Research Center for experimental

validation of the control design methods and the integrated design

methodology [5]. The Phase-Zero Evolutionary Model, shown in the

figure, consists of a 62-bay central truss, with each bay 10 inches

long, two vertical towers, and two horizontal booms. The structure is

suspended using two cables as shown. A laser source is mounted

at the top of one of the towers, and a reflector with a mirrored

surface is mounted on the other tower. The laser beam is reflected

by the mirrored surface onto a detector surface 660 inches above the

reflector. Eight proportional, bi-directional, gas thrusters provide the

input actuation, while collocated servo accelerometers provide output

measurements. An integrated controls-structures design of this test

article is sought.

To perform the integrated design, the structure was divided into

seven sections, three sections in the main bus, and one section each

for the two horizontal booms and two vertical towers. Three structural

design variables were used in each section, namely, effective cross-

sectional area of the longerons, the battens, and the diagonals, making

a total of 21 structural design variables.

STRUCTU_>,_¢L DESIGN "v:_.RIABLES

• Structure is divided into seven sections

• The effective cross-sectional areas of longerons, battens and

diagonals are chosen as design variables

• Total of 21 structural desig_n variables

z

:3:1

/ 'i!:i:i_
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The static (or constant-gain) dissipative controller which employs

collocated and compatible actuators and sensors, and consists of

feedbacks of the measured attitude vector yp and the attitude rate

vector Yr using constant, positive-definite gain matrices Gp and Gr, is

used for feedback control. This controller is robust in the presence of

parametric uncertainties, unmodelled dynamics, and certain types of

actuator and sensor nonlinearities [6]. However, the performance of

such controllers is inherently limited because of their structure. Here,

two of the eight available actuators were used to generate persistent

white-noise disturbances, while the remaining six actuators were used

for feedback control. The static dissipative controller uses a 6 x 6

diagonal rate-gain matrix with no position feedback ( since this system

has no zero-frequency eigenvalues, position feedback is not necessary

for asymptotic stability). Thus, in the integrated design with the static

dissipative controller, the total number of design variables was 27 (21

structural plus 6 control design variables).

CANDIDATE CONTROLLERS

Static Dissipative Controllers

u = -Gryr

• Collocated sensors and actuators

• Positive definite gain matrices

• Robust in presence of model uncertainties

• May have limited performance

• Elements of the Cholesky-factor matrix of the rate gain matrix

are used as control design variables (no position feedback)

Gr- LrL T
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An integrated controls-structures design was obtained by minimiz-

ing the steady-state average control power in the presence of white-

noise input disturbances with unit intensity (i.e., standard deviation

intensity = 1 lbf.) at actuators No. 1 and 2 (located at the end

of the main bus nearest to the laser tower). A constraint was

placed on the steady-state rms position error at the laser detector

(above the structure) for reasonable steady-state pointing performance.

Additionally, the total mass of the structure was constrained to

facilitate a fair comparison with the phase-0 design. The six remaining

actuators were used in the control design, along with velocity signals

(required for feedback by the dissipative controllers) obtained by

processing the accelerometer outputs. Side constraints were also

placed on the structural design variables for safety and practicality

concerns. Lower bound values were placed on these variables to

satisfy structural integrity requirements against buckling and stress

failures. On the other hand, upper bound values were placed on these

variables to accommodate design and fabrication limitations.

DESIGN PROBLEM

Pose the integrated controls-structures design as a simultaneous

optimization problem

Minimize the average control power

,1 =- Trace{E{uuT} }

subject to

-/_/lto t _ ]_/lbudget

Side constraints on the structural design variables to accommo-

date safety, reliability, and fabrication issues
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The controls-structures integrated design results are shown be-

low. The results indicate that the evaluation (fifty-mode) model and

reduced-order model converged to essentially the same final design.

This is a clear indication that the model reduction method presented

in this paper can handle possible discontinuities associated with the

changing dynamic characteristics of the evolving structure.

The controls-structures integrated design results were obtained

using the Automatic Design Synthesis (ADS) software package [7].

All solutions were computed using an interior penalty function method

with a Broyden-Fletcher-Goldfarb-Shanno method for the uncon-

strained subproblem.

INTEGRATED DESIGN RESULTS

EVAL. MODEL

REDUCED-ORDER

MODEL

CONTROL

POWER

2.64

2.57

RMS

POINTING

2.999

2.998

TOTAL MASS

1.896

1.918
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The table below presents a computational performance comparison

of the evaluation model and reduced-order model. The results

indicate that the model reduction scheme yielded approximately a

49 percent reduction in CPU time. This increased performance can

be attributed to CPU time reductions in both the closed-loop analysis,

as well as those gained by introducing open-loop eigenvalue/vector

approximations. It should also be noted that the model reduction

method required 8 percent more function evaluations to obtain an

optimal design. This may be attributed to inaccuracies induced by the

open-loop eigensystem approximations.

COMPUTATIONAL REQUIREMENTS

ii i i|

EVAL. MODEL

REDUCED-ORDER

MODEL

CPU TIME *

(TOTAL)

28 hrs. 19 min.

14 hrs. 30 min.

i

cPu TIME

(AVG. PER

EVALUATION)

82.7 sec.

38.9 sec.

* SUN SPARC 2 workstation.
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The bar charts shown below present the resulting structural design
variables for both the full model and the reduced-order model in terms

of initial versus final design. The results indicate that the two methods
converged to basically the same final design.

STRUCTURAL DESIGN VARIABLES

Full Model Reduced-Order Model

0.4 0.4 tI , _ o,
- I J

Io la 20 _ Io I_ 20
design variable design variable
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In the bar charts below, controllability and observability cost

measures for the first 20 modes are listed. The controllability and

observability cost measures are for a nominal point and the worst-case

values within a 5 percent perturbation from the nominal. Using the

worst-case scenario approach described earlier, the number of modes

retained for closed-loop analysis was increased from 36 to 38. This

chart also indicates the relative sensitivity of O_ci and O_oi with respect

to changes in the structural design variables. It can be observed

that the first three suspension modes (1-3) are the most controllable

and observable modes. However, the last two modes (5 and 6)

along with the first three flexible modes (7-9) are quite controllable

and observable as well. Moreover, it can be seen that modes that

are not significant at the nominal design point (modes 17 and 19)

are as sensitive to design perturbations as lower frequency modes,

and, therefore, might become significant as the design optimization

progresses. Although not shown, the same level of sensitivity was

found in modes 21 through 50. It should be noted that in this design

problem the sensors and actuators are collocated, thereby producing

values for the controllability and observability cost measures which

are similar, but different in scaling.

CONTROLLAB [LITY AND

OBSERVABILITY COST MEASURES

Controllability Observability

.1oo- _ 600..

°[c _- 4o0-

too- 20o-

IIIIll_,l , _._., IlUlll 
C o

..... _ i i ........ _' '1'8'2 4 6 8 10 1 1 16 t8 20 2 4 6 8 I0 i 14 16 20

mode number mode number

547



A novel and efficient method for model order reduction in the

integrated controls-structures design process has been developed. The

method uses a linear approximation of the open-loop eigenvalues

and eigenvectors and identifies, through a worst-case scenario, the

structural modes that are significant at a nominal design point along

with modes that might become significant as the optimization moves

the structural design variables within a prescribed neighborhood of

the nominal design point. Consequently, this approach can handle the

discontinuities that may hamper the integrated design optimization

process because of the evolving structure, i.e., the frequency and

number of significant structural modes can change at each design

iteration. Although in this paper modal controllability and observ-

ability cost measures were used to evaluate the significance of each

mode for inclusion in the control design model, the approach of linear

approximation and worst-case analysis can be used in conjunction

with other modal cost measures as well. Finally, further research

is required to identify proper threshold levels for controllability and

observability cost measures as well as to choose the size of the

prescribed neighborhood used in the linear approximation.

CONCLUDING REMARKS

A new and efficient method for model order reduction in the

integrated controls-structures design has been developed.

re>The method can handle the discontinuity problems that may

hamper the optimization process.

-->The method can be used in conjunction with other model

reduction techniques.

Further research is required in choosing the threshold levels

for controllability and observability, as well as the size of the

neighborhood for linear approximation.
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THE MIDDECK ACTIVE CONTROL EXPERIMENT (MACE)
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ABSTRACT

The Middeck Active Control Experiment (MACE) is a NASA In-Step and Control Structure
Interaction (CSI) Office funded Shuttle middeck experiment. The objective is to investigate the extent to
which closed-loop behavior of flexible spacecraft in zero gravity (0-g) can be predicted. This prediction
becomes particularly difficult when dynamic behavior during ground testing exhibits extensive suspension
and direct gravity coupling. On-orbit system identification and control reconfiguration is investigated to
improve performance which would otherwise be limited due to errors in prediction. The program is
presently in its preliminary design phase with launch expected in the summer of 1994.

The MACE test article consists of three attitude control torque wheels, a two axis gimballing
payload, inertial sensors and a flexible support structure. With the acquisition of a second payload, this will
represent a multiple payload platform with significant structural flexibility. This paper presents on-going
work in the areas of modelling and control of the MACE test article in the zero and one-gravity

environments. Finite element models, which include suspension and gravity effects, and measurement
models, derived from experimental data, are used as the basis for Linear Quadratic Gaussian controller
designs. Finite element based controllers are analytically used to study the differences in closed-loop
performance as the test article transitions between the 0-g and 1-g environments. Measurement based

controllers are experimentally applied to the MACE test article in the 1-g environment and achieve over an
order of magnitude improvement in payload pointing accuracy when disturbed by a broadband torque
disturbance. The various aspects of the flight portion of the experiment are also discussed.

INTRODUCTION

Objective and Rationale

The objective of the Middeck Active Control Experiment (MACE) is to develop a qualification
procedure for flexible, precision spacecraft. For future vehicles which cannot be dynamically tested on the
ground in a sufficiently realistic zero-gravity simulation, this procedure will increase confidence in the

eventual orbital performance of such spacecraft (refs. 1 and 2). Confidence is developed through analysis
and extensive ground testing. Analytical models, such as finite elements, require extensive refinement in
order to achieve the accuracy required of high authority control (ref. 3). This refinement is enabled by
modal identification (ref. 4). If suspension and gravity effects couple with the flexible behavior during
ground testing, the analytical model must include these effects to ensure that the model is properly refined.
However, the model will no longer accurately represent 0-g behavior.

An alternative to analytical models for control design is the development of measurement models
(refs. 5 and 6). Transfer functions measured through the control hardware are fitted using an assortment of
poles, zeros, gains and time delays. These models can provide high accuracy. However, if suspension and
gravity effects are present in the measurements, the resulting control will be inappropriate for 0-g operation.

Therefore, the MACE program attempts to determine how a spacecraft designer might acquire
confidence in the eventual on-orbit performance of a flexible spacecraft when the analytical 0-g predictions
are inaccurate and the 1-g measurement models are inappropriate. To achieve this, the program follows the
evolution of a 'CSI spacecraft' from analysis and ground testing through on-orbit system identification and
control on board the middeck of the Shuttle. The test article is designed to couple suspension and direct
gravity effects with the flexible behavior during ground testing (refs. 7 and 8).

1Principal Research Scientist, Member AIAA, ASME
2 t'ostcloctoral Associate, Member IEEE
3 Research Assistant
4 Project Engineer

5 Professor, Aeronautics and Astronautics, Member AIAA, ASME

551
PRE'OE-.OING P_G_ .......



Development Model Hardware Description

The Development Model (DM) is the first of three sets of hardware to be developed under the MACE
program. As shown in Figure 1, the DM is composed of a three-axis torque wheel assembly, a two-axis
gimballing payload, and a dummy mass which will be replaced by a second gimbal in the near future. When
these components are connected by a flexible structural bus, the fundamental bending mode is 1.7 Hz.

The DM is instrumented with two angle encoders on the gimbal axes, two three axis rate gyro
platforms, and other assorted sensors. One rate gyro platform is mounted in the payload while the other is
mounted under the torque wheel assembly. The bus is composed of flexible Lexan TM struts interconnected
by aluminum nodes. The torque wheel assembly is comprised of three orthogonally mounted DC servo
motors with an aluminum inertia wheel mounted to each. Two-axis gimbal rotation is excited about the x
and z axes via two DC torque motors.

The hardware components that serve as support equipment for the test article are a pneumatic/electric
low-frequency suspension system (ref. 9), a real-time control computer (ref. 10), a Fourier analyzer, and
v_u-ious signal conditioning and power amplification electronics for the sensors and actuators, respectively.

Suspension Cable

Load Cell

/_..____ Bus Tffax Accelerometer

NMe• /
Dummy G_imba I Strut

Node #1

Torque Wheel Assembly _

..Jo j .o...a.o.

Rate Gyro Platform

+Y
1.5 m

.x
Development Model test article.Figure 1.

Science Approach

In the 1-g and 0-g control design for MACE, analytical finite element and measurement models are
used in concert. This paper presents current progress along both avenues. Analytical models are useful in
that they enable design work to be conducted prior to the acquisition of data or, for that matter, the test article
itself. They "also provide the crucial ability to predict on-orbit performance of flexible spacecraft. On the
other hand, measurement models provide high accuracy and are essential for the design of high performance
control.

Figure 2 illustrates how analytical model and measurement based control will be used in the MACE
program to predict and develop high performance 0-g control. The figure represents open-loop identification
and closed-loop control in two arenas: ground (l-g) and on orbit (0-g). The approach starts with the
formulation of a 1-g finite element model. This model includes direct gravity and suspension effects in
addition to the inertia, dissipation and elastic properties of the structure. The purpose of this model is to
achieve as accurate a representation of 1-g behavior as possible. Finite element model accuracy is achieved
through modal identification to correlate open-loop behavior and 1-g control implementation, and to identify
critical dynamics which have been poorly modeled. By observing the degree to which this model is useful
in the design of 1-g control, a sense for the limitations of 0-g predictions is obtained.
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In parallel with the finite element modelling, measurement models are developed by fitting poles,
zeros, gains and time delays to pertinent transfer functions through the control hardware. These models are
used to derive control and can be refined based upon closed-loop results. Measurement models will
generally provide higher accuracy than finite element models when low noise devices are used. Therefore,
the closed-loop results reveal the practical limitations in performance improvement that can be obtained given
a particular form of control formulation and architecture. By comparing this performance with that achieved
using finite element based control, the designer can understand the cost-benefit of further finite element
model refinement.

Finite Element Based Control
r

1-g finite element model

I Modal identification

1-g control implementation _,'

I Remove gravity effectsto get O-g model

IO-g control implementation I

Measurement Based Control

I Identify control topology I

I 1-g measuriment model _

[ 1-g control implementation

[ Identify performance limits ]

I O-g measurement model I

1
, - _ i [ O-g control implementation J

.................... J _f [-- ...................

I Prediction limitations I

Figure 2. Science approach.

Once the finite element model has been sufficiently refined based upon ground testing, the gravity
and suspension effects can be removed to yield a 0-g model. This model is then used to derive control for
implementation on orbit. The accuracy of the 0-g finite element model can be assessed in open-loop by
comparing predicted dynamics with 0-g system identification measurements acquired on orbit. It can also be
assessed in closed-loop by comparing performance with both finite element predictions and 0-g
measurement based control.

This science approach implies that on-orbit science operations will involve three phases. In the first
phase, system identification will be performed to obtain measurement data for judging finite element model
accuracy and deriving a 0-g measurement model. The second phase will involve the implementation of
control algorithms based on the 0-g finite element model. During the third phase, control algorithms derived
using the 0-g measurement model, developed using the system identification data, will be implemented.

This paper details some preliminary open and closed-loop results that have been obtained through
analysis and ground testing. The next section develops both the 1-g and 0-g finite element models and
analyzes the implications of testing the MACE test article in a 1-g environment when the control has been
derived using a model of 0-g behavior. Such a scenario would be typical of preflight qualification testing for
a flexible spacecraft. The following section discusses the use of 1-g measurement models to derive and
exercise real time Linear Quadratic Gaussian (ref. 11) control on the MACE test article. This is followed by
a brief description of the flight portion of the MACE program.
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FINITE ELEMENTMODELLINGAND CONTROL

Suspension and Direct Gravity Effects

Ground-based test articles for research and qualification of precision spacecraft must be suspended in
an effort to simulate the flee-flee boundary conditions of their operational environment. Under these
conditions it is possible to group the perturbation effects of gravity on the dynamics of the controlled
structure into five classes:

1) Suspension effects: The suspension system establishes the boundary conditions which affect the
test article dynamics. All of the test article rigid-body modes are stiffened and the flexible modes couple to
varying degrees with the suspension system dynamics.

2) Non-linear effects: This category encompasses all changes to the structural behavior due to

gravity loading which must be modelled in a nonlinear fashion; e.g. loading of joints that have a deadband,
gravity induced friction in articulations and devices, etc.

3) Stiffness Effects: The constant initial stress of the suspended structure due to gravity loading has
the net effect of altering the structure's stiffness. This effect is a perturbation to the linear system model but
can only be determined by taking into account the second order or quadratic strain terms in the equilibrium
principle. Captured are the gravity stiffening and destiffening of the structural and suspension modes.

4) Static Pre-deformations: Given discrete suspension attach point locations, gravity loading will
deform the structure and change the reference equilibrium about which the system dynamics are defined.
Even slight deformations can couple otherwise decoupled modes.

5) Direct Sensor and Actuator Effects: The behavior of accelerometers and proof-mass actuators is
directly affected by gravity when they are subject to harmonic orientation changes in a gravity field (ref. 12).
The perturbation is additive and can result in amplifications, attenuations and even phase reversals of the
device input or output.

The specific objective of the Middeck 0-gravity Dynamics Experiment (MODE) (ref. 13) was the
study of the first two gravity influences with a particular focus on the non-linear gravity effects given the
presence of a scaled space station alpha joint, tensioning cables which can slacken and numerous
deployment hinges. MACE, the successor to the MODE experiment, is designed to investigate the first,
third and fourth types of gravity effects on the dynamics of a flexible articulating multi-body test article in
both open and closed-loop configurations.

Gravity Effect Modelling Procedure

The flu'st step in including gravity effects into a finite element model of the MACE test article is the

incorporation of the suspension system. Once this step is accomplished it is then possible to introduce the
mass proportional gravity loading on the entire system and determine not only the static pre-deformations but
also the gravity stiffening effects. This latter computation is the key to properly describing the system
behavior in a gravity field.

Given a known intemal stress state, it is possible to solve for a geometric or differential stress

stiffness matrix which is a linear function of the loading. The static deformations are proportional to the
loading and inversely proportional to the system stiffness matrix. However, the system stiffness matrix is
itself a function of the loading and the system deformations. Therefore, it is necessary to iterate to solve for
the static deformations.

The ADINA (Automatic Dynamic Incremental Nonlinear Analysis) (ref. 14) finite element modelling
package was used to model both the MODE (ref. 15) and MACE test articles and as a research tool in the

study of sample problems for the identification of gravity and suspension effects. Modelling gravity effects
in ADINA is a multi-step procedure. If suspension system bounce frequency tuning is required to achieve
mass proportional stiffnesses in the suspension devices, as was the case with the MACE pneumatic/electric
suspension devices, it is necessary to initially perform a static reaction force analysis with the structure
pinned at the attachment points. The suspension spring stiffnesses are then prescribed given a known
bounce frequency and the loads on each suspension cable. The next step consists of performing a nonlinear
large displacement analysis with incremental loading and stiffness reformations at every step. The initial

condition typically has the suspension springs unstretched with concentrated damping elements to damp the
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system response. The iterations are performed until the structure reaches equilibrium under actual loading
conditions. The end result of this step is a linear model of the statically deformed structure with geometric

stiffening effects included. The third and final step is the eigensolution for infinitesimal displacements about
the statically deformed configuration with the concentrated nodal damping elements removed.

Typical Results

Both 0-g and 1-g models were derived for the simple structure portrayed in Figure 3 with the
primary payload rotated 45 degrees out of the vertical plane. The eigenfrequency shifts from the 0-g model
to the 1-g model are shown in Figure 4. The rigid-My modes are all stiffened as they are replaced by
bounce, tilt and pendular type modes while the flexible modes are variably stiffened and destiffened. Figure
5 shows two views of the modal cross-orthogonality mesh between the 0-g and 1-g eigenvectors. If the

gravity effects were nil, the mesh would appear as a perfect diagonal due to orthogonality of modes. Clearly
the rigid-body modes (low freq.) are perturbed the most resulting in a highly coupled subspace while
flexible mode (high freq.) perturbations are largely limited to couplings between pairs of modes.
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Figure 5. Modal cross-orthogonality mesh for 0-g and 1-g mode shapes.

Application to the MACE Development Model

An alternative means of visualizing the effects of suspension and gravity is to observe the
perturbations to particular transfer functions through the structure. For this purpose, gravity effects were
placed into a 0-g finite element model of the existing MACE DM hardware as shown in Figure 1. Figures 6a
and 6b show the overlay of transfer functions from z-axis gimbal torque to the z-axis inertial angular rate of
both the payload and the torque wheel assembly, respectively. The three transfer functions in each figure are
from the 0-g model, 1-g model and measured data.

Notice at frequencies below 2 Hz that the 1-g model captures the payload pendulum and suspension
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Figure 6. Overlay of transfer functions from gimbai z-axis torque to a) payload z-axis
inertial angular rate and b) bus inertial angular rate at the torque wheel location. Transfer

functions are derived from measurements, the 1-g model and the 0-g model.
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plunge modes while the 0-g model exhibits rigid body behavior. At higher frequencies, the 1-g model
exhibits generally stiffer flexible modes than the 0-g model. This stiffening trend, caused by the gravity and
suspension effects, appears to improve the agreement between the model and 1-g data as expected.
Unmodelled time delays in the measurement devices could account for the deviation in modelled and

measured phase behavior at higher frequencies.

Closed-Loop Control Analysis

With the 1-g and 0-g finite element models developed, one can now analyze the implications of
testing the MACE test article in a 1-g environment when the control has been derived using a model of 0-g
behavior. The model in Figure 3 was used for this analysis. For 0-g modelling, the suspension system is
removed. The inertial angles of the primary payload and the inertial angles of the bus at the torque wheel
location combine to form the performance metric. The gimbal motors in the secondary payload are used to
generate torque disturbances on the structure. Both payloads are free to vary about their nominal positions.

The inputs to the plant are five torque actuators: three torque wheels for attitude control of the bus
and two gimbal torque motors that rotate the primary payload about the relative x and z-axes. The physical
outputs are taken to be 14 measurements: three inertial angles at the torque wheel assembly, two inertial
angles at the primary payload, two relative gimbal angles, and the 7 corresponding angular velocities.

The 10 rigid body modes in the 0-g model are composed of three translations and three rotations of
the bus, two rotations of the primary payload, and two rotations of the secondary payload. In the 1-g
model, the presence of the suspension system results in no rigid body modes. All flexible modes are set to
1% damping. In the 1-g case, the 10 lowest frequency modes that correspond to pendulum-suspension
modes are given 3% damping to account for the suspension system.

The presence of the 10 rigid body modes found in the 0-g structure are reflected in the complex
frequency domain by the presence of 10 poles located at the origin. Thus, the rigid body modes are
essentially pure integrators, which have infinite gain at DC. This presents a problem in the analysis in that
any disturbance with low frequency content will be significantly amplified by the large low frequency gains
of the rigid body modes. A two pronged approach is used to reduce the influence of the rigid body modes
on the system. First, the performance of the closed-loop plant is evaluated using white noise bandlimited
between 0.1 Hz and 60 Hz. This reduces the low frequency content of the disturbance. Second, the rigid
body modes are stabilized using local proportional-differential (PD) feedback loops. The bus inertial angles
and angular rates are fed to the torque wheels for rudimentary attitude control while the relative gimbal
angles and angular rates are fed to the gimbal motors for coarse payload pointing.

The LQG controller design is carried out on the PD controlled 0-g model and then impinged on the 0-
g and 1-g models. Behavioral differences are illustrated by plotting the performance versus increasing LQG
control authority for both the 0-g and 1-g models. The intensity of the torque disturbance used to stimulate
the PD controlled 0-g structure is adjusted to produce a 3c performance (performance metric defined below)
of 1 degree at low levels of LQG control authority. At high levels of control authority, it is desired that the
LQG controlled 0-g system will exhibit a performance improvement of 40 db over the very low authority 0-g
system. For the purposes of the design, the noise inputs are considered to be white. These assumptions
avoid adding considerably more complexity to the design process and controller implementation. Although
the assumption of white noise inputs will be made during the design process, the evaluation of the controller
performance will take place using the closed-loop system with bandlimited noise.

The performance metric is chosen to be the weighted sum of the two payload inertial angles and the
three bus inertial angles. This measure of performance emphasizes the inertial angular position of the
primary payload while still recognizing that the inertial angular position of the bus must be bounded. The
performance metric as a function of control authority for the total closed-loop system is shown in Figure 7a.
Note that a new LQG design is performed for each level of control effort. The 0-g model shows a
performance improvement of 36 db (40 db was the target) as the control authority is increased. For low
control authority, the PD control stabilizes the rigid body modes of the 0-g system. The 1-g system has
superior performance at low control authority due to the added damping and stiffness of the suspension
system. However, as the control authority is increased on the 1-g system, its performance quickly
deteriorates. An eigenvalue analysis indicates that a single closed-loop mode is driven unstable when the
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control authority is increased. A participation factor analysis reveals that a suspension mode is the
significant contributor to this instability.

Further evidence supporting this conclusion is obtained by subdividing both the 0-g and the 1-g
models into flexible and nonflexible submodels. The closed-loop controller design procedure is then
repeated. The submodel without any flexibility gives nearly identical performance to the model that included
both flexible and nonflexible modes (Figure 7a). On the other hand, Figure 7b indicates that the
performance of the flexible submodels for 0-g and 1-g begin to significantly distinguish themselves at a

much higher level of control authority than the nonflexible submodels. This is an important result. In the 1-
g environment, any potential instabilities of the flexible system that might occur at a high level of control
authority are masked out by the deterioration in performance that occurs when the suspension modes are
driven unstable at a relatively low level of control authority.
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MEASUREMENT BASED CONTROL

Control Objectives

In parallel with the finite element analysis, experimental measurement based control was performed.
The objective was to inertially point one axis of the payload while a band-limited white noise disturbance

was introduced through the gimbal torque motor. The control problem was posed to primarily involve
control of flexible response in the x-y plane as shown in Figure 8. Therefore, all measured angles and
actuated torques in the experiments were about the z-axis. Two different feedback architectures were used.

In the first architecture, the inertial angle of the payload was fed through a dynamic feedback
compensator to drive the gimbal motor (Figure 8a). This resulted in a control problem where both the
feedback sensor (y) and performance metric (z) were the inertial angle of the payload and the disturbance
(w) and control signals (u) both entered the structure through the gimbal motor. This is referred to as the
single-input, single-output (SISO) control problem.

In the second architecture, the feedback sensors were the the inertial angle of the torque wheels (y)
and the relative gimbal angle as measured by the optical encoder (y) ('Figure 8b). Along with a model of the
intervening flexibility, the control formulation could employ the inertial bus and relative gimbal angles to
make the inertial angle of the payload observable. Again, the gimbal torque motor acted as both the
disturbance source (w) and control actuator (u). This resulted in a single-input, two-output (SITO)
feedback architecture. A SITO controller was first formulated for the performance metric discussed above (z
in Figure 8b). Then this metric was augmented by the addition of the bus inertial angle (z in Fig. 8c). This
combined metric forced the control to attenuate flexible motion of the bus in addition to isolating the payload.

In total, three sets of experiments were conducted: 1) SISO control to minimize payload pointing
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error; 2) SITO control to minimize payload pointing error, and 3) SITO control to minimize a combination
of payload pointing error and bus attitude. For each experiment, measurements of the pertinent transfer
functions through the hardware were used to formulate a measurement model. The pertinent transfer
functions were from the disturbances and actuators to both the feedback sensors and performance metric.

These functions were fitted using poles, zeros, a gain and a time delay. Once the poles and residues of these
transfer functions were placed in state-space form, Linear Quadratic Gaussian (LQG) control was derived.
While the resulting dynamic compensators were implemented on an AC-100 real time control computer, the
transfer functions from the disturbance to the performance metric were measured. These measurements
were finally used to evaluate performance. The following two sub-sections present the evolution from
modelling to closed-loop results for the SISO and SITO control architectures.

a) SISO with payload penalty

__m__ Ill_l _'

I i

o i---Cxi+ Dy i [

b) SITO with payload penalty

Figure 8.

[, x_a=_,+BY, r_--

c) SITO with payload and bus penalty

Disturbance, performance metric and feedback architectures for the
experiments.

Single-Input, Single-Output Control Architecture

A measurement model of the DM was obtained by measuring the transfer function from the gimbal
torque to the payload inertial angle. This SISO transfer function was fit using poles, zeros, a static gain and
a time delay which were then placed into continuous state-space form. Figure 9a overlays the measured
transfer function (Data) with that calculated using the fitted parameters (Fit). The two resonances between
one and two Hertz represent the pendulum mode of the gimbal and the first bending mode of the bus.
Additional flexible modes occur near 7 and 9 Hz. The model contained 10 structural states and a third order

Pade approximation to the time delay to yield a 13 state control design model.

Figure 9b overlays the open-loop (OL) and several closed-loop transfer functions from the gimbal
disturbance to the inertial angle of the payload. The prediction of the closed-loop transfer function and the
actual measurement were in very close agreement. This was made possible by the accuracy of the nonlinear
fit. At low levels of control authority, the control reduced the static, pendulum and f'u'st bending mode
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responses (CL1). The plant inverting dynamics in the compensator left the higher frequency modes almost
unaffected. As authority was increased, the second bending mode near 7 Hz started to be suppressed.
Eventually, all of the flexible dynamics visible in Figure 9b were suppressed (CL2). The closed-loop
improvement in the RMS inertial payload angle was over one order of magnitude.

The same compensators were implemented several weeks later. A shift in the frequencies of the
modes near 9 Hz caused instability when the compensator corresponding to CL2 was implemented. The
highest level of control authority that was stable at this later date corresponds to CL1. Since the
compensator performs plant inversion of the 9 Hz dynamics, stability is highly sensitive to slight shifts in
these dynamics over time. To reduce this sensitivity, a multimodel technique (ref. 16) was used to derive the
control. Control was designed to yield a given level of performance when applied to either model. The two
chosen models differed by slight shifts in the frequencies of the dynamics near 9 Hz. The closed-loop
response (CL3 in Figure 9b) using this new compensator was stable and exhibited adequate gain and phase
margin despite the fact that the two models were based upon several week old data.
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Data and pole-zero fit to the transfer function from z-axis gimbal

torque to payload inertial angle.

Measured open and closed-loop transfer functions from gimbal
disturbance to payload inertial angle.

Single-Input, Two-Output Control Architecture

Three transfer functions were measured for this model. The first transfer function is shown in

Figure 9a and represents the transfer function from both the disturbance and control actuator (gimbal) to the
performance metric (payload inertial angle). The second transfer function was from gimbal torque command

to relative gimbal angle as measured by an optical encoder (Figure 10a). The third transfer function was
from gimbal torque to the bus inertial angle (Figure 10b). These last two measurements corresponded to the
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transfer functions from the actuator to the feedback sensors.

The next step in the model development used a nonlinear fit routine to fit left half plane complex pairs
of poles and zeros along with gains and time delays to these three transfer functions. Nonminimum phase
zeros were required to achieve the fit to the noncolocated transfer function shown in Fig. 10b (Fit). The

next step involved placing the poles, zeros, gains and time delays into state-space form.

Figure 11 overlays the open and highest authority closed-loop transfer functions from the gimbal
disturbance to the payload inertial angle for SITO control with payload penalty (Fig. 8b). As in the SISO
results, the control first reduced the 1.0 to 2.0 Hz response composed of the payload pendulum and first
bending modes and then started to reduce second bending near 7 Hz. At low levels of control authority, the
modes near 9 Hz were destabilized due to inaccuracies in the plant inversion being attempted by the
compensator. To correct this, a lead compensator was added by placing a tightly damped pair of zeros just
below the two modes near 9 Hz followed by a tightly damped pair of poles just above these modes. The
increase in gain and phase margin allowed the control authority to be increased to the level which was used

to obtain the result shown in Fig. 11.
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As might be expected by observing Figures 10b, the addition of bus angle to the performance metric
will cause the control to concentrate more on reducing flexible motion. The control will not only focus on
reducing the payload pendulum and first bending modes, which dominate response in Fig. 9a, but to also
suppress the flexible modes at 7 and 9 Hz, which dominate the response in Fig. 10b. As expected, the
payload pendulum and first bending modes observed in the gimbal to payload inertial angle transfer function
were suppressed (Figure 12a). Figures 12a and 12b show that the flexible modes near 7 and 9 Hz were also

suppressed. In fact, the response in this frequency regime is reduced by an order of magnitude more than
the level in Figures 9b and 11. Notice that the response is increased at frequencies above 10 Hz as a
sacrifice for the dramatic reduction at low frequencies. In general, all of the closed-loop ground experiments
achieved over an order of magnitude reduction in payload pointing error.
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FLIGHT EXPERIMENT

The on-orbit science operations are designed to compliment the ground test program as shown in
Figure 2. The on-orbit experiment exploits the unique shirt sleeve environment of the Shuttle middeck.
Figure 13 shows the test article in the Shuttle middeck. The basic hardware and operations will mimic that
of the Middeck 0-Gravity Dynamics Experiment (MODE) which flew on Discovery during the STS-48
mission in September, 1991 (ref. 13). In total, the MACE experiment will require three 8-hour days of one
crew member. The assistance of a second crew member will be necessary periodically. The test article, data
storage disks, and other support equipment will be stored in a disassembled fashion in three middeck
lockers. A fourth locker will contain the Experiment Support Module (ESM). This package contains the
experiment control computer, the real time control computer, data acquisition and storage, signal
conditioning and power amplification electronics. A hand held keypad and display will enable the crew
member to control the experiment and a digital interface to a portable computer will give access data analysis
software and STS downlink channels.

The fh-st on-orbit experiment in the summer of 1994 will involve open-loop system identification.
Time response data will be measured from the disturbance source and control actuators to the feedback

sensors and performance metric and stored in the ESM. Depending upon the final form of downlink
available, either time or frequency domain data will be downlinked to the ground. This data will first be
used to possibly restructure the sequence of pre-prograrnmed control protocols. In addition, a measurement
model will be developed for use in formulating 0-g measurement based control. Additional open-loop
identifications will be conducted at the beginning of every science operations day.
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Theon-orbitclosed-looptestswill involvetwo classesof controllers.Thefirst classwill bederived
usingtheanalyticalpredictionsof 0-gbehavior.Thefiniteelementmodel,whichwill haveundergone
refinementthroughgroundtestingandanalysis,will havethegravityeffectsremoved.This0-gmodelwill
thenbeusedto formulatecontrollers.Theon-orbitperformanceof thesecontrollers, at various levels of
control authority, will be compared to finite element predictions. As the 0-g results and 1-g predictions
diverge, a feel for predictive accuracy achieved through analysis and ground testing will be obtained.

The second class will use system identification data, downlinked from the Orbiter, to develop a
measurement model. The resulting controllers will be uplinked several days later for implementation. This
class of controller investigates the performance improvements that are achievable through on-orbit
identification and control reconfiguradon.

2_) i----

0

I

I

I(I 1 10 o 10t 101

Frequency (tlz)

_ oi.........;........ ............i,i.', i.i;L1
/ _iii + :++ +++ + +

+.+oot + +++++ .....i i ++.,::++ o,+]l,:_+++i:+

tO + tO o tO t lO:

Fr+qu_cy (Hz)

a) b)

Figure 12. Measured open and closed-loop transfer functions from disturbance to a)
payload angle and b) bus inertial angle for SITO control with payload and bus penalty.

SUMMARY

The Middeck Active Control Experiment (MACE) is designed to study the ability to predict and tune
on-orbit control performance given analysis, ground testing, and 0-g system identification. The science
approach for MACE exploits both analytical and measurement models to generate predictions of on-orbit
performance.

Analytical models developed using finite element analysis incorporate suspension effects, stiffness
effects and static pre-deformations. The use of these effects improves the agreement between model
predictions and ground test data. Further refinement is achieved through open and closed-loop ground
testing of the hardware. The gravity and suspension effects are removed from the analytical model for the
formulation of controllers for tests on orbit.

Analytical modelling of the MACE test article showed that a low fundamental frequency, multiple

payload device exhibits significant suspension and gravity coupling. Linear Quadratic Gaussian controllers
designed for on-orbit operation, but subjected to these effects on the ground, were shown capable of first

563



destabilizing suspension modes and then flexible modes at higher levels of control authority. This makes
ground testing of candidate on-orbit controllers difficult. Therefore, the accuracy of on-orbit predictions
would be unknown. In order to improve on-orbit performance limited by prediction error, 0-g system
identification data will be used to develop a measurement model for tuning the control on orbit.

Measurement models have been developed and Linear Quadratic Gaussian controlIers have been
implemented in the laboratory. In general, Linear Quadratic Gaussian control proved to be very effective at
achieving significant performance improvements under broadband disturbance. Over an order of magnitude
reduction in pointing error was achieved. However, the plant inversion that LQG employs cannot tolerate
changes in test article dynamics. Both multimodel and classical design techniques were used to make the
control more robust.

Figure 13. Test article deployed on the middeck.
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INTRODUCTION

The obJecUve of the study was to demonstrate the feasibility of the Mirror Motion Compensation
(MMC} technique for the reduction or suppression of Instrument on-orbit Jitter. Future remote sensing
spacecraft consisting of large platforms with multiple payloads will be required to meet tight Jitter
constraints, typically ieu than 0.1 arc seconds. Mirror Motion Compensation provides a method which
may prove useful In meeting these future requirements. The MMC technique features a central
compensation logic which predicts instrument response to known disturbances and modifies the ltne o[
sight of the affected lrmtruments accordingly to compensate for the disturbance.

MIRROR MOTION COMPENSATION

• OBJECTIVES

1. DEMONSTRATE FEASIBILITY OF MMC TECHNIQUE TO REDUCE

ON - ORBIT INSTRUMENT JITTER

2. INVESTIGATE THE USE OF SPACECRAFT FLEXIBLE MODES

3. INVESTIGATE THE SENSITIVITY OF MMC TECHNIQUE TO
MODELING ERRORS
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INTRODUCTION

Instrument Jitter. or the rotational response of an instrument to a disturbance, must be controlled If
maximum Instrument performance is to be expected. Control and suppression of Jitter effects have become
Increasingly important for the following reasons:

I. Increased pointing accuracy requirements on instruments.

2. Multiple disturbance sources. In the form of slewing sensors and Internal instrument disturbances
(cryo-coolers). present on the same platform.

. Trends toward large, flexlble orbiting platforms subject to significant response from both rigid
body motion and flexlble modes of vibration.

The approach used In the study featured the application of the MMC technique to Instruments on-
board the EOS A-I platform. The EOS A-I spacecraft was an appropriate choice since It represents the
class of large flexible space platforms mounting multiple Instruments with stringent pointing
requtrementa subject to multiple vibration disturbance sources.

•WHY USE MMC?

SUPPRESSION OF JITTER HAS BECOME INCREASINGLY
IMPORTANT FOR THE FOLLOWING REASONS:

1. INSTRUMENTS WITH MORE STRINGENT POINTING
REQUIREMENTS.

2. TRENDS TOWARD LARGER PLATFORMS WITH MULTIPLE
DISTURBANCE SOURCES.

3. TRENDS TOWARD SPACECRAFT WITH LARGE FLEXIBLE
APPENDAGES.

• APPROACH

EOS A-1 DYNAMIC MODEL WITH INTEGRAL ACS CONTROLLER
USED AS A GENERIC LARGE SPACE STRUCTURE.
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SPACECRAFT FEEDBACK CONTROL VERSUS OPEN LOOP MMC

The MMC technique features a centralized compensation logic which simulates the response of the
platform to a disturbance {or multiple disturbances} in real time and modifies the lines of sight of the
affected lnstrumentJ. The disturbance torques, platform dynamics, and sensor dynamics must be known.
This knowledge 18 Limed by the compensation logic program to predict the response of a given sensor to a
disturbance. The compensation logic uses the response predictions to issue sensor motion commands
which counteract the disturbance response and suppress instrument Jitter. Note that there is no feedback
from the controlled instrument to the compensation logic program. This is a salient feature of the MMC
system which distinguishes it from more traditional control approaches. The advantage is that if no
feedback is employed then the feedback sensors are unnecessary, thus saving cost. weight, and providing
a simpler control system.

Clearly. the MMC system is best applied in cases where the disturbances are deterministic and the
spacecraft dynamic characteristics are well known and accurately modeled.

I DESIREDAI-rlTUDE

I
I A]-FITUDE ERROR

! ATTITUD_ CONTROLLER

I

I

_t KNOWN DISTURBANCE TORQUE l

KNOWN PLATFORM DYNAMIC MODEL J

KNOWN SENSOR DYNAMICS

I
MMC CONTROLLER

I SENSOR MOTION COMPENSATIONI
I

_S_sCORRECTS SENSOR P_

NOT USE FEEDBACKJ
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AMSU DISTURBANCE

Of significantly higher frequency, the AMSU disturbance Is also a roll axis torque disturbance. The
significant action for this disturbance occurs over approximately 8 seconds, as contrasted with the
MODIS-T. which requir_ almost 400 seconds to complete its cycle. The disturbance profile Is analytically
determined and provided by the instrumenter.

The AMSU instrument module contains three mirrors which rotate continuously in one direction

about a line parallel to the spacecraft roll axis. The AMSU A-I has 2 of the scan mirrors and its scan

profile, shown on the facing page. represents the disturbance due to both mirrors combined. All mirrors
have a scan cycle {360 degree rotation) period of 8 seconds during which time their angular speed varies.
For all mirrors, a scan cycle starts with an Earth scan whereby they are stepped 30 times to cover 99.9

degrees with NADIR ha the middle. This is followed by cold and hot calibrations at constant angular speed
in between which are accelerations and decelerations. These calibration torques move the mirrors the

remaining 260.1 degrees, returning them to their original position. This entire scan pattern is repeated

every 8 seconds.
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EOS SPACECRAFT

The illustration depicts the EOS A-I spacecraft and the reference coordinate axes defining the roll.
pitch, and yaw degreea of freedom. The EOS A-I Is a large platform, 38 feet long. I0 feet in diameter, and
weighing 33,000 Ibs. Originally designed for launch on the Titan booster, the design features a truss
structure with graphlte-epaxy tubes connected via titanium cluster fltUngs at the truss Joints. Precision
mounUng platforms constsUng of plates of lightweight aluminum honeycomb core with graphite-epoxy
skins span the truss and provide surfaces for instrument mounting as shown. Of particular Interest in this
study are the AMSU. MODIS-T. and CERES instruments. The study focuses on the roll and yaw axis Jitter
of the CERES subject to vibration disturbance from both the AMSU and MODIS-T.

PITCH

ROLL

AMSU

CERES

MODIS - T

CERES CO__/N
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DISTURBANCE AND RESPONSE

Criteria were established for both the subject instrument and the disturbance sources in this study.
Disturbance criteria focused on spacecraft components which produce significant vibration which is then
transmitted to other instruments through the spacecraft structure. In addition to being major sources of
Jitter, the disturbance sources should represent a broad spectrum of vibration frequency components.
MODIS-T and AMSU were found in combinatlon to fulfill these requirements. Both are scanning
Instruments which produce significant vibration. The MODIS-T vibration provides the low frequency

components and AMSU is responsible for the higher frequencies.

The CERES was chosen as the subject instrument for Jitter compensaUon since it completely
satisfied the criteria, which required an instrument which suffered from significant Jitter and had a 2 axls
glmbal at which the compensation could be applied to suppress the Jitter. The CERES degrees of freedom

corresponding to the 2 axis glmbal are about the spacecraft roll and yaw axes previously depleted.

DISTURBANCE CRITERIA

• CHOOSE COMPONENTS WHICH ARE MAJOR DISTURBERS

• CAPTURE BOTH HIGH AND LOW FREQUENCY INPUTS

RESPONSE CRITERIA

• CHOOSE INSTRUMENT WITH SIGNIFICANT JITTER

• CHOOSE INSTRUMENT WITH 2 AXIS GIMBAL

MODIS- T

LOW FREQUENCY

AMSU

HIGH FREQUENCY

v

li,.-_
v

CERES

DISTURBANCE SOURCES RESPONSES
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EOS A-l FINITE ELEMENT MODEL

A large and detailed structural finite element model of the EOS A-I was available from previous EOS
Jitter studies. The model contains 11900 nodes and 14400 elements, and simulates the spacecraft in the
on orbit configuration with the solar array deployed and orlented as shown. Normal modes analysis yields
655 modes up to a frequency of 150 Hertz.

A dynamic modal model consisting of 172 modal degrees of freedom and 655 mass normalized
modes was obtained from the structural finite element model. The 172 modal degrees of freedom
constitute the points of Interest, such as instrument locations, reaction wheel locations, and spacecraft
center of gravity, relevant to the problem. This dynamic model was designated EOS 5.

The modal model describes the dynamlc relationships between the dlsturbance sources and the
affected instruments, spacecraft structure, and control sensors and actuators via the chosen degrees of
freedom and the associated normal mode shapes. Solar array modes were retained up to 3 Hertz and
spacecraft prlmary structure modes were retained up to 150 Hertz in order to obtain acceptable dynamic
fidelity up to 120 Hertz, the highest significant component of the Stirllng-cycle cyro-cooler.

The 655 mass normalized modes include 6 rigid body modes of the unconstrained spacecraft
structure as well as 11 so called glmbal modes {only 2 were used in this study}. The gimbal modes
represent the displacement of the Instrument scanning element degree of freedom relative to the
spacecraft. Since the scanning elements must be free to rotate relative to the spacecraft in order to
compensate for the spacecraft rotation, these degrees of freedom yield a zero frequency mode for each
free axis of rotation. Certain Instruments. such as CERES. have 2 axis gimbals and thus produce 2 glmbal
modes. Other Instnunenis rotate about a sIngle axis and contribute only one mode to the glmbal mode set.

° FEM COMPOSED OF 11900 NODES AND 14400 ELEMENTS

° NORMAL MODES ANALYSIS YIELDS 655 MODES UP TO 150 HERTZ

LARGE FEM NEEDED TO OBTAIN HIGH FREQUENCY MODES FOR EOS
STIRLING COOLER STUDY
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FUNDAMENTAL SOLAR ARRAY MODE

The remaining 638 modes are flexible structural modes divided between the solar array (I09

modes} and the primary structure (529 modes). Of these modes a subset was found, by a modal

significance survey, to be important for the Jitter predictions. The fundamental solar array mode, shown

in the illustration, occurred at a frequency of .208 Hertz. As can be clearly seen in the mode shape plot,

this mode would naturally contribute significantly to instrument roll axis Jitter. This mode was in fact the

only significant mode for the lower frequency MODIS-T disturbance, and accurate predictions of Jitte r
were possible using only this mode and the 17 rigid body and gimbal modes in the dynamic simulation.

The AMSU disturbance, however, required that 5 flexible modes be retained to ensure dynamic fidelity.

The AMSU mode set included the fundamental solar array mode, as well as several higher flexible modes,

reflecting the higher frequency content of this disturbance.

The complete dynamic model includes the modal model generated from the FEM and the
algorithms to control the attitude of the EOS-AI. The ACS controller features a proportional double

integral derivative controller with a 4th order structural filter and results In a closed loop bandwidth of
0.03 llertz, originally chosen to be about one tenth of the fundamental solar array frequency. The ACS

controller is implemented in a state-space formulation, and accepts outputs from gyroscopic sensors and

generates torque commands to reaction wheels.

FOR MODIS - T DISTURBANCE:

FUNDAMENTAL SOLAR ARRAY MODE AT 0.208 HERTZ DOMINANT

FOR ROLL RESPONSE

FOR AMSU DISTURBANCE:

MODES 22 (0.208 HZ), 42 (1.0 HZ), 150 (31.6 HZ), 153 (33.6 HZ)

AND 155 (36.1 HZ) DOMINANT FOR ROLL RESPONSE
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MODIS-T DISTURBANCE

As previously stated, the MMC technique is best suited to cases where the disturbances are

determinJstic. In this case, the MODIS-T disturbance Is well known and regular. The result of a scanning
mirror slew, the disturbance Inputs roll axJs torque disturbances as shown. The disturbance profile is
analytically determined and provided by the lnstrumenter.

The diffuser mechanism within the MODIS-T instrument rotates back and forth about a line parallel
to the spacecraR roll axis. The instrument takes data for about 40 % of a full orbit and only on the day
side of the orbit. There Is a calibration deployment over the equator lasting 3 minutes.

The disturbance torque, which Is shown on the facing page. moves the MODIS-T diffuser
mechanism 180 degrees in 90 seconds to its deployed position and remains in this position for 3 minutes
over the equator for solar calibration. The disturbance torque is then applied again with the sign reversed
to return the MODIS-T to its original position. This procedure may occur as often as once per orbit, or
only once per solar day.

MODIS - T DIFFUSER MECHANISM TORQUE PROFILE
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UNCOMPENSATED CERES RESPONSE TO MODIS-T INPUT

The dynamic model specified by the mode shapes and associated frequencies was input to the
dynamic software simulator. The simulator ts based on standard GE software packages of FORTRAN
subroutines for the manipulation of large matrices and the soluUon of the equations of motion for a many
degree of freedom system. The solution technique relies on an exact inverse Laplace transform method
and Is performed In the modal space on mass normalized modes, thereby taking advantage of the
decoupling afforded by this technique. The disturbance is converted Into a medal admittance and applied
to the equations, the solution of which yields the modal acceleration, velocity, and position as a function of
time. The modal coordinates are transformed to the appropriate physical coordinates and plotted as
shown on the facing figure.

The time history plot predicts the response of the dynamic model degree of freedom representing
the CERES roll displacement subject to the MODIS-T disturbance. This is the baseline response
representing the Jitter which would occur without any compensation applied, it can be observed that the
response consists of a rlgld body displacement wlth flexlble modes superposed, in fact. detailed analysts
reveals that the fundamental solar array mode Is responsible for almost all of the flexible component of the
response. The spacecraft navigation and guidance controller effect Is evident as the rigid body portion of
the response Is seen to decay and by approximately 600 seconds only the flexible response remains.

UNCOMPENSATED CERES RESPONSE TO MODIS - T DISTURBANCE

CERES MIFLqOR ROLL UNCOMPENSATED FOR MODIS-T INPUT

EO S 5

I

-2- I I ! !

0 200 400 600 800 1000

TIHE (_qECONDg)

MODIS - T DISTURBANCE EXCITES LOW FREQUENCY SOLAR ARRAY MODE
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MODIS-T AND AMSU COMPARED

To further illustrate the contrast between the two disturbances, both profiles were plotted on the

same Ume and magnitude axes. One "spike" of the MODIS-T disturbance Is represented by the dotted
line, which can be _men overlapping 5 "spikes" of the significantly larger AMSU disturbance. The high

frequency nature of the AMSU disturbance is readily apparent.
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COMPENSATED CERES RESPONSE TO MODIS-T DISTURBANCE

RIGID BODY MODES ONLY

The application of mirror motion compensation proceeds differently from the simple
uncompensated run. First a "predictor" dynamic model Is solved for the time history of the degree of
freedom In question (In this case. the CERES response to the MODIS-T disturbance). This predictor
model Is not necessarily the full 655 mode dynamic model of the baseline run. but can be a subset of it.

The predictor model simulates the MMC centralized compensation logic. The solution of the predictor
model pro_des the rotational acceleration of the degrees of freedom in question. These accelerations are
combined with the known sensor dynamics to calculate a torque function of time. The torque function Is
stored and the full 655 modes "truth" model is then run through the simulator. The torques from the
predictor model are applied to the appropriate sensor glmbal degrees of freedom in the truth model, but

in the opposite sense. The gtmbal degrees of freedom are free to rotate under the action of the torques In
this model (unlike the predictor model where they are locked}, thus the ensuing motion of the sensor

compensates for the motion of the spacecraft caused by the disturbance. The modal displacements of the
truth model are calculated and converted to physical displacements and plotted as shown.

In this case. the predictor model consisted of only the spacecraft and glmbal rigid body modes. The

compensating torques derived from the predictor model thus can only. at best. null out the rigid body
portion of the disturbance. This Is In fact what occurs as demonstrated In the plot of the CERES roll
response to MODIS-T disturbance as predicted by the truth model. Note that the rigid body component
is effectively eliminated when compared with the baseline response. The flexible component decays
slowly, due to the light damping of 0.15% critical. The damping Is applied as modal damping, with all
modes having the same damping value.
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COMPENSATED CERES RESPONSE TO MODIS-T DISTURBANCE
RIGID BODY PLUS FLEXIBLE MODE 22{.208HZ)

The sophistication of the predictor model was increased by adding the fundamental solar array
mode. The motion predicted now Includes information about the flexible component of the response and
the compensating torques are dramatically effective at reducIng Jitter when applied in the truth model.
This dramatic decrease in response is due to perfect knowledge of the platform and sensor dynamics.
The reason for the small residual error is due to the effects of glmbal motor rise time and the secondary
torque effects on the platform, which are discussed In more detail in the next chart.
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COMPENSATED CERES RESPONSE TO MODIS-T DIS71JRBANCE
RIGID BODY PLUS AIk, FLEXIBLE MODES

The predictor model now uses all of the modes and Is Identical to the truth model. Only sllght Jltter
reduction Improvement is obtained. We can conclude that the fundamental solar array mode Is the

dominant mode with regard to the CERES - MODIS-T disturbance relation. Jitter Is still present despite
the fact that the predictor and truth models are Identical. The Jitter results from two sources. The
compensation motion of the mirrors affects the spacecraft as another disturbance source of both rigid
body and flexible motion. Thls source Is not accounted for In the predictor model. A second source of
errors occurs due to the finite rise time of the motors that move the mirrors. Since the torques In reality
cannot be applied Instantaneously, a lag filter Is used In the simulation to model these effects. The torque
commands must pass through thls lag filter before they are applied to the glmbal degrees of freedom In

the truth model. The lag filter has a tlme constant, represented by the RSI/gPE value, and attenuates the

torque to simulate actual motor behavior. The time constant Is set at 200 milliseconds baseline,
corresponding to an RSLZ)PE value of 5 as noted on the plot. The predictor model does not account for
the lag filter.
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SUMMARY TABLE OF CERES RESPONSE TO MODIS-T DISTIJRBANCE

Tabular data is provided to more readily ascertain the effectiveness of the MMC scheme. For a
moving sample window I second wide the Jitter was reduced by a factor greater than 5 for a predictor
model with all rigid body and the fundamental solar array modes. Longer duration windows describe the
stability of the system, and an improvement can be seen for stability by a factor of 17.

MODEL

1.0

JITTER IN ARC SECONDS

WINDOW SIZE (SECONDS)

9.0 60.0 1000.0

UNCOMPENSATED 0.4698 1.0047 1.9449 2.4977

RIGID BODY MODES 0.4159 0.6960 0.6984 0.6984

RB + MODE 22 0.0866 0.1438 0.1492 0.1492

RB + ALL MODES 0.0842 0.1421 0.1458 0.1458

MMC TECHNIQUE REDUCES JITTER AND IMPROVES STABILITY
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UNCOMPENSATED CERES RESPONSE TO AMSU DISTURBANCE

Baseline plot of the CERES roll response to the AMSU disturbance as predicted by the truth model

again shows the effect of superimposed flexible and rigid body modes. The response shows the

fundamental solar array mode at 0.208 Hz as well as higher frequency modes. The response is significantly

smaller than that due to the MODIS-T disturbance, but higher in frequency.
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COMPENSATED CERES RESPONSE TO AMSU DISTURBANCE
RIGID BODY MODES ONLY

The Jitter values are essentially me same as the baseline {uncompensated) case.. Careful observation
will dlscern the fundan_ntal solar array mode at approximately 0.2 Hertz {5 second period) with higher
frequency components superimposed. Jitter suppression Is not effective for the rigid body predictor
model.
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COMPENSATED CERES RESPONSE TO AMSU DISTURBANCE
RIGID BODY PLUS FLEXIBLE MODES 22, 42. 150, 153, 155

Based on a modal significance study modes 22 {at 0.208 Hz}, 42 (at 1.009 Hz), 150 {at 31.629 Hz},
153 {at 33.613 Hz}, and 155 (at 36.123 Hz} were seen to be significant for the AMSU - CERES
interaction. These modes were included in the predictor model and resulted in some Jitter reduction.
The response plot on the facing page shows that the response attributable to the fundamental solar array
mode has been suppressed. It is obvious, however, that the MMC technique is not as effective in reducing
Jitter from AMSU as compared with the reduction from the MODIS-T disturbance. The AMSU disturbs
high frequency modes which are more difficult to compensate.

CERES MIRROR ROLL COMPENSATED FOR AMSU INPUT

EOS5 RB+FLEX MODES 22,42,150,153,155, RSLOPE=5 C/Cc-.0015

MODE f (Hz)

22 0.208

42 1.009

150 31.629

153 33.613

155 36.123

I t i l " 1 i I | i [ I i

5 I0 15 20 TIME {SECONDS}

PERFORMANCE IMPROVES WITH SUPPRESSION oF HIGHER MODES
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SUMMARY TABLE OF CERES RESPONSE TO AMSU INPLrr

The summary table demonstrates the less effective performance of MMC for the high frequency
AMSU disturbance. Only marginal Jitter reduction was achieved (a factor of 1.2} for the most sophisticated
predictor model [all modes}. The main reason for the poorer MMC performance can be traced to the high
frequency nature of the AMSU disturbance. Further, the lag filter becomes more of a factor as the
required response frequencies increase.

MODEL JI'I-rER IN ARC SECONDS

WINDOW SIZE (SECONDS)

1.0 9.0 60.0 1000.0

UNCOMPENSATED 0.1928 0.2354 0.2512 0.2512

RIGID BODY MODES 0.1935 0.2311 0.2311 0.2311

RB + MODES 22,42,150,

153,155

RB + ALL MODES

0.1633 0.1766 0.1815 0.1815

0.1600 0.1767 0.1811 0.1811

MMC TECHNIQUE LESS EFFECTIVE FOR HIGH FREQUENCY EXCITATION

LAG FILTER SIMULATING MOTOR LAG LIMITS EFFECTIVENESS

588



LAG FILTER

The lag filter Is present in the truth model to provide a variable and controllable source of error In
the simulation. It simulates the physical behavior of an electric motor which, when given a torque
command, takes some finite time to achieve the full torque value. For any Ume step. the relationship
between the required torque and the available torque Is given by Ta=Tr*{l-e*'(-at)) where Ta Is the
torque available. Tr Is the torque required (for perfect nulllng), a ts the time constant, and t is the Ume

variable. The plot shows the effect of the lag filter on a step pulse. The parameter RSLOPE was varied
from 1 to 5 to 10 to demonstrate the effect of this parameter on the applied torque. The RSLOPE
parameter controls the rise time of the torque pulse, ha the value of RSL£)PE decreases the rise time
increases.

1.0"

T

0

R 0.8-
Q
|!

E

( 0.6-
[
N

L

B

s 0.4.

)

0.2

EFFECT OF LAG FILTER ON SQUARE PULSE. ITOCTI

VARY RSLOPE PARAMETER. USE 10, 5, l

I/:

I I _-1-- I/ I I i --T ..... l----T- -T----l-- "--F--l--I- - F--

l 2 3

(SECONDS)

T = RISE TIME

589



LAG FILTER

EFFECT OF LAG FILTER VARIATION ON JITI'ER

If the lag filter Is effectively eliminated by specifying a very short time constant the Jitter
suppression for the AMSU disturbance will Improve from a factor of 1.2 to almost 2. This is still not as
good as that obtained for the MODIS-T. A full modes predictor model was run with the AMSU disturbance
with the effect of the lag filter eliminated. Jitter values less than 0.1 arc seconds were obtained. Note
that other sources of Jltter are still present, such as compensating torque reactions,
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MODELING UNCERTAINTIES

Although impressive Jitter suppression results are predicted for the MMC technique, the question
of the system's robustness remains to be explored. The results thus far have assumed a prlori perfect
knowledge of the Important system parameters -structure natural frequencies and mode shapes,
disturbance torque profiles, sU-uctural damping, sensor dynamics, and the phase relationship between the
disturbance and the compensation motion. In an attempt to ascertain the effect of uncertainty of these
parameters on MMC system performance a series of parametric studies was conducted.

• COMPENSATION IS EFFECTIVE WITH "PERFECT" KNOWLEDGE

• EVALUATION OF EFFECTIVENESS OF MMC SYSTEM WITH
UNCERTAINTIES:

• STRUCTURAL DYNAMIC PROPERTIES

FREQUENCY

DAMPING

• ACTUATOR RESPONSE UNCERTAINTIES

LAG
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FREQUENCY SENSITMTY

COMPENSATED CERES RESPONSE TO MODIS-T INPUT

There is an inherent limit in the accuracy to which structural normal modes can be predicted. The

uncertainties In natural frequency between the predicted and actual values will affect MMC system
performance. The nature of this MMC simulation allows us to explore the effect resonant frequency
uncertainty will have by using a different natural frequency in the predictor model from that used In the
truth model.

The plot shows the effect on the CERES response to MODIS-T disturbance of varying the predicted
natural frequency of the fundamental solar array mode from Its nominal value (used in the truth model) of

0.208 Hertz. The plot shows that for a +/-10 % variation (0.187 Hertz to 0.229 Hertz) the compensated
Jitter performance Is substantially worse than if no compensation system were present. This is due to the

phasing of the input and the response, which, for slight differences in frequency between the truth and
predictor model, will result ha the well known beating phenomenon as the input and response move in an
out of phase, alternately adding constructively and destructively. In fact. the plot indicates that the MMC
performance is extremely sensitive to variations in frequency between the predictor model and the truth
model. Even a +/- 1% variation is inadequate. This betrays a serious weakness in the system, since
structural modes are predicted, at best. to within 5 %. Thus we conclude that. for cases where the

flexlble response is large, the feasibility of the MMC system depends heavily upon our knowledge of the
structural natural frequencies which must be known exactly if any benefit is to be realized from this
technique.

The effect of frequency uncertainty on stability is also demonstrated in this plot. The curve for

stability displays the same behavior as the Jitter curve, but is always below the uncompensated value; thus

stability is always improved by the action of the MMC system regardless of reasonable frequency error.

FREQUENCY PREDICTION SENSITIVITY
COMPENSATED CERES RESPONSE TO MOOTS-]" INPUT
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• EFFECTIVENESS OF JITTER COMPENSATION SENSITIVE TO
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• STABILITY PERFORMANCE IMPROVEMENT ACHIEVABLE WITH
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FREQUENCY SENSITMTY
COMPENSATED CERES RESPONSE TO AMSU INPUT

The plot further explores the sensitivity of the MMC technique to the structural natural frequency

parameter. A +/- 10 % variation of predicted natural frequency Is again evaluated, this time on those

modes significant to the CERES response to the AMSU input (modes 22 (at 0.208 Hz), 42 [at 1.009 Hz),

150 (at 31.629 Hz), 153 (at 33.613 Hz), and155 (at 36.123 Hz)). The "'arlation was imposed on all five

significant modes simultaneously.

We note immediately that the curve la broader in the region of interest about the nominal

frequencies, thus indicating less sensitivity to frequency uncertainty. The high frequency nature of the

AMSU disturbance Is largely responsible for this behavior. At the higher frequencies the damping present
has more effect and damps out the higher modes proportionally more rapidly since it operates on more

cycles over a shorter period of time. The broadening of the sensitivity curve Is analogous to the

broadening of a response curve with Increasing damping of a single degree of freedom harmonic oscillator
around resonance.

Stability again is generally Improved for all reasonable values of frequency, but is marginal at

differences greater than 5%.
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DAMPING PARAMETRIC STUDY

The damping Is another parameter which affects MMC performance and is difficult to predict. Thus
it was necessary to characterize the behavior of the system with variaUons In damping, first in its effect on
the frequency study previously described.

The damping in both the predlctor model and truth model, applied as modal damping, idenUcal for
all modes, was varied from the baseline value of 0.0015 C/Cc through 0.005, 0.015. and 0.03 C/Cc.

Slmultaneously, the frequency of the fundamental solar array mode was varied In the predictor model
while held constant in the truth model as In the previous analysis. The family of curves which resulted is
shown for the CERES response to the MODIS-T disturbance.

We Immediately recognize the baseline run, represenUng light damping at 0.0015 C/Cc. with its
characterisUc narrow band and poor Jitter compensaUon with any frequency error. As the system
damping increases we note the broadening of the curves as expected, indicating less sensitivity to
frequency error with increasing damping. In addiUon, the overall Jitter level decreases dramaUcally with
increasing damping, unUi, at the heavily damped level of 0.03 C/Cc. the Jitter performance is superior to
the uncompensated baseline response over the enUre +/- 10 % range variaUon. This is also true for the
damping value of 0.015 C/Co.

Thus we see dramaUcally the advantage obtained by increased damping, indlcaUng that It would be
worthwhile to include passive damping In the system to enhance system performance and further
suppress Jitter effects.
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DAMPING SENSITIVITY

Further damping studies explored the effect of predicted damping differing from actual damping.
The effect was evaluated by varying the damping in the predictor model from the value used in the truth
model. This was performed for three different damping baseline values producing the family of curves
shown in the plot below.

Each curve represents a different baseline modal damping value used in the truth model, as

indicated by the curve label of 0.0015. 0,005. 0,015 C/Cc. The curves were generated by varying the

predictor model damping among the values 0.0015, 0.005. 0,015. and 0.03 C/Co and plotting the

maximum Jitter.

Trends revealed by the exercise show the expected Jitter decrease with increasing damping,
consistent with previous work. Note that as we under-predict or over-predict the damping the Jitter

control performance degrades although not as severely as with frequency variation. The predicted Jitter Is
below the uncompensated baseline values for all reasonable damping variations, indicating the less critical
nature of the damping parameter with regard to Jitter performance.

DAMPING PARAMETRIC STUDY

COMPENSATED CERES RESPONSE TO MODIS-T INPUT
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JITTER SENSITIVITY TO LAG FILTER

As described previously, a lag filter was incorporated In the truth model to provide a source of
variable, controllable error. The lag filter simulates the actual response of a motor actuator by attenuating
the torque required to provide perfect compensation of the subject mirror sensor.

In this sensitivity study the lag filter time constant was varied from 2 seconds through 67 milli-
seconds, simulating a decreasing motor response time. The resulting curve depicts the effect of lag filter
variation on roll axis Jitter of the CERES response to the AMSU disturbance. Note that the Jitter
approaches a limiting value as the response Ume of the motor decreases. Indicating other sources of error
as described before. Note that the predictor model Is the AMSU significant mode subset of modes 22. 42,
150, 153, and 155. This Is no doubt a partial cause for the limited Jitter reduction seen In the plot.
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MIRROR INERTIA STUDY

Of interest to the study was the effect of larger mirrors on MMC system performance. The effect of
larger mirrors was explored by examining the CERES response to both MODIS-T and AMSU Inputs for
increasing CERES mirror roll axts mass moment of inertia.

The baseline inertia was varied by factors of 2x, 5x, 10x, 20x, and 50x in a series of runs where

maximum Jitter was calculated for each disturbance source. As the mirror inertia is Increased. the larger
secondary torques required for the MMC correction eventually override the baseline disturbances. For
MODIS-T this is seen to happen when the mirror inertia Is increased by a factor greater than 2. This Is
demonstrated in the plot below.

JITTER SENSITIVITY TO MIRROR INERTIA
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MIRROR INERTIA STUDY
SUMMARY TABLE OF CERES RESPONSE TO AMSU INPUT

The summary table displays the information obtained in the mirror inertia study for Jitter and
stability behavior of the CERES for the AMSU disturbance.

MODEL

BASELINE AMSU

2 X INERTIA

5 X INERTIA

10 X INERTIA

20 X INERTIA

50 X INERTIA

JITTER IN ARC SECONDS

WINDOW SIZE (SECONDS)

1.0 9.0 60.0 1000.0

.1633 .1766 .1815 .1815

.1973 .2202 .2355 .2371

.3627 .4348 .5585 .5698

,6595 .8127 1.115 1.136

1.241 1.585 2.231 2.269

3.061 3.937 5.616 5.735
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MIRROR INERTIA STUDY
SUMMARY TABLE OF CERES RESPONSE TO MODIS-T INPUT

The summary table of complete CERES response to the MODIS-T disturbance
inertia study, Including both Jitter and stability data in tabular format.

for the mirror

MODEL

BASELINE MODIS-T

2 X INERTIA

5 X INERTIA

10 X INERTIA

20 X INERTIA

50 X INERTIA

JII-FER IN ARC SECONDS

WINDOW SIZE (SECONDS)

1.0 9.0 60.0 1000.0

.0866 ,1438 .1492 .1492

.4613 .9755 1.911 2.467

1.809 3.903 7.658 9.865

4.066 8.796 17.25 22.21

8.594 18.59 36.44 46.89

22.17 47.97 94.00 >100
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MULTIPLE DISTURBANCES

UNCOMPENSATED CERES RESPONSE TO AMSU AND MODIS-T DISTURBANCE

Time history plot showing the CERES response to AMSU and MODIS-T disturbances occurring
simultaneously. The combined response Is the superposltlon of the Individual responses, as can be readily

observed in the plots below.
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MU LTIPLE DISTURBANCES

COMPENSATED CERES RESPONSE TO AMSU AND MODIS-T DISTURBANCE

As seen in the plots below, the MMC logic works effectively for the case when both

disturbance sources are applied at the same time. The residual Jitter value for combined torques with

compensation is somewhat lower than the two Individual compensated responses.
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MULTIPLE DISTURBANCES

Graphic display of CERF_ roll axis Jitter response due to mulUple simultaneous sources {AMSU plus
MODIS-'I_ shows that the Jitter is not the sum of the individual Jitter values. This is because the maximum
Jitter value does not occur at the same time for each disturbance response. Note that the Jitter is
calculated by a sampling window which moves along the time axis taking the maximum peak to peak
difference between the response values within the window. The first three bars of the plot below
compare the uncompensated response for AMSU disturbance alone, the combination of AMSU and
MODIS-T. and the: response to MODIS-T alone. The next three bars display the same information for the
compensated CERF._ response (the MMC system active).
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MLS SCAN 3 DIS'I_JRBANCE TORQUE PROFILE

The MMC technique was applied to suppress disturbances from the ML,S instrument, which is
currently on the UARS. and is well known as a pernicious source of Jltter.

The torque profile is displayed below, and consists of a number of forward torque
pulses, each of which rotates a scanning mirror about the spacecraft roll axis 0.05 degrees. Two return
pulses follow the forward pulse train. The return profile was split Into two Identical parts as a result of a
previous UARS disturbance torque analysis which showed hlgh amplitude residual vibrations at the
completion of each MLS scan due to return pulse excitation of the UARS solar array. The second pulse Is
timed to cancel the [JARS solar array excitation, which yielded a 75 % reduction In the solar array free
vibration when compared with the effects of a single return pulse. The MLS torque profile was applied to
the EOS in this study without consideration to the EOS solar array mode.

NLS SCAN 3 TORQUE
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le •
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DOUBLE RETURN PULSE IMPLEMENTED TO REDUCE LARGE JITTER
RESPONSE
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UNCOMPENSATED CERES BASELINE RESPONSE TO MLS

The MLS disturbance excites both high and low frequency responses, as evidenced in the plot below.

The forward pulse train excites the high frequency components, as seen in the plot from
Ume zero to approximately 55 seconds, at which point the double return pulse excites the lower
frequency modes, especially the fundamental solar array mode. Significant Jitter results from the MLS
disturbance.
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COMPENSATED CERES RESPONSE WITH
RIGID BODY MODES ONLY IN PREDICTOR MODEL

Application of MMC with a primitive predictor model consisting only of the rigid body and gimbal
modes proved ineffecUve at Jitter reduction, as seen below. Jitter values actually increased
slightly, due to lag filter and reverse torque error effects. Clearly a more sophisticated predictor model is
required for effective Jitter suppression.
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COMPENSATED CERES RESPONSE

WITH RIGID BODY MODES PLUS FUNDAMENTAL SOLAR ARRAY MODE

IN PREDICTOR MODEL

The degree of sophistication of the MMC predictor model was Increased by Including the

fundamental solar array mode along with the rigid body modes. The response plot below

shows some Jitter reducUon with especially effecUve elimination of the solar array response as expected,
The actual reducUon factor for Jitter is 1,5 for this model.
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COMPENSATED CERES RESPONSE wrrH ALL FLEXIBLE MODES

The use of all flexible modes with the rigid body modes In the predictor model shows marginal
improvement over the previous model with the fundamental solar array mode as the only flexible mode. A
Jltter reducUon factor of 1.6 was achieved. No doubt a modal significance study would reveal a subset of
flexible modes which would produce an equivalent Jitter reduction to that achieved by the use of all the
flexible modes, as _.en previously in the AMSU disturbance case. Again. high frequency disturbances
prove dlfflcu]t for the MMC to suppress effectively given the limitations and assumptions of the study with
regard to lag and reverse torque error.
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COMPENSATED CERES RESPONSE WITH ALL FLEXIBLE MODES

NO LAG

As expected, when the error due to motor lag is removed the MMC performance improves and the
Jitter is further reduced. Note particular improvement in the response caused by the return pulse.
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SUMMARY TABLE OF CERES RESPONSE TO MLS DIS2R]RBANCE

The chart beJow summarizes the Jitter reduction and stability performance for the
CERES response to the MLS disturbance for various predictor models. Comparison with the baseline
predictions shows modest Jitter reduction, with a maximum factor of 1.6 realized. Stability results are also
lackluster, with a maximum reduction factor of 1.87 seen.

MODEL STATUS

UNCOMPENSATED

RIGID BODY MODES

RB + FUNDAMENTAL S/A

RB + ALL FLEX MODES

RB + FLEX MODES NO LAG

JITTER IN ARC SECONDS

WINDOW SIZE (SECONDS)

1.0 9.0 60.0 1000.0

1.367 1.588 1.731 1.731

1.387 1.663 1.663 1.663

0.901 0.951 0.951 0.951

0.835 0.868 0.925 0.925

0.601 0.619 0.619 0.619

HIGH FREQUENCY CONTENT OF MLS DISTURBANCE LIMITS
EFFECTIVENESS OF JITTER SUPPRESSION TO A FACTOR OF 1.6

609



FEEDBACK

In orderto explorethepossibilityof utilizing a feedback control scheme as opposed to the MMC
system thus fax described, a simplified feedback control concept was studied.

Although there Is no doubt that a classic sophisticated feedback control system could be developed
to suppress instrument Jitter, the intent of this study is to explore less costly alternatives which could
prove effective in Jitter control and suppression. Thus a feedback control system using information from
sensors already on the platform for other purposes was proposed.

In this highly idealized approach It is assumed that gyros at the NAVBASE can provide rotational
acceleration data about all three axes. The signals from these gyros is assumed to be free of noise,
furthermore, no sampling rate limits are present.

The chart below displays a diagram of the logic steps which are followed in this NAY
BASE feedback algorithm.

'_ COMPUTE RESPONSE TO INPUT TORQUES [
i

I COMPUTE ACS CONTROL TORQUES FOR NEXT TIME STEP I

I COMPUTE PHYSICAL ANGULAR ACCELERATION AT NAV BASE I

t

COMPUTE MMC TORQUE FROM INERTIA OF SENSOR AND ANGULAR
ACCELERATION OF NAV BASE

1

] ADJUST MMC TORQUE FROM LAG FILTER [
!

APPLY MMC TORQUE TO SENSOR AND NEGATIVE MMC TORQUE TO
SPACECRAFT

_IFEEDBACK CONTROL USES SENSORS AT NAV BASE ONLY
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FEEDBACK

In order to provide a fair comparison between the MMC technique considered in this study and the
NAY BASE feedback system, the compensated Jitter response of the CERES to the MODIS-T input was
calculated with the MMC technique. The MMC technique is employed in an ideal case eliminating error
sources due to frequency and damping, and matching the lag effects between it and the NAV BASE
system. The secondary reacUon torques are present as an error source, however, since the MMC system
does not take these Lnto account when it makes its response predictions.

The chart below shows the Jitter time history of the compensated CERES response to
the MODIS-T disturbance calculated via the MMC technique. This plot forrns the baseline for comparison
with the NAV BASE feedback system, shown on the next viewgraph. The predictor model consists of 17
rigid body and gimbal modes plus the fundamental solar array mode. It must be emphasized that this is an

unrealistically ideal case presented for comparison purposes only.
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FEEDBACK

The chart below shows the effectiveness of the NAV BASE feedback system for mirror motion

compensation. The Jitter for the CERES response to the MODIS-T Input is displayed. Note that the

models for the MMC system and NAY BASE feedback system are of the same degree of sophisticatlon,
both featuring 17 rlgJd body and glmbal modes plus the fundamental solar array mode. In addIUon, roughly
the same error due to I_[ Is present In both models. Further equivalent Idealizations were made for both

models as outlined previously.

Under these ideal conditions the NAV BASE feedback system is effective In Jitter control, showing a
substantlal Jitter reduction over the uncompensated baseline. The MMC system shows very similar
effecUveness.

COMPENSATED CERES RESPONSE TO MODIS-T DISTURBANCE

NAV BASE FEEDBACK SYSTEM WITH SOLAR ARRAY MODE
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FEEDBACK

The chart below provides direct numerical comparison between the uncompensated
Jitter, the Jitter with MMC for a lag constant of 10. and the Jitter for the idealized NAV BASE feedback
system. All jitter values refer to CERES roll response due to MODIS-T disturbance. Stability values are
presented as well. Again, the numbers show that the NAV BASE feedback system provides effective Jitter
control compared to the uncompensated baseline, on the same order as the MMC system for similar
idealized assumptions.

SUMMARY TABLE COMPARING MMC WITH NAV BASE FEEDBACK

MODEL JITTER IN ARC SECONDS

UNCOMPENSATED

MMC LAG = 10

NAV BASE FEEDBACK

WINDOW SIZE (SECONDS)

1.0 9.0 60.0 1000.0

.4698 1.005 1.945 2.498

.0399 .0603 .0658 .0659

.0556 .0939 .0981 .0981

BOTH MMC AND NAV BASE FEEDBACK SHOW SIGNIFICANT
IMPROVEMENT OVER UNCOMPENSATED BASELINE JITTER AND

STABILITY
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SUMMARY

The salient points of the study are outlined on the summary chart below. As predicted In previous
studies, the MMC technique Is extremely effective at nulling Jitter from rigid body motion. Excellent Jitter
compensation is theoreUeally possible for flexible modes as well. The study predicts Jitter reduction
factors of 5.4 for low frequency sources and 1.2 for high frequency sources. Stability reduction is even
more dramatic, with factors as high as 17 predicted. However. it must be emphasized that extreme
frequency sensitivity Is characteristic of the MMC technique, limiting Its use to linear systems which are
empirically modeled to extreme fidelity. State of the art prediction techniques (finite element model
normal modes analysis) for the modal parameters are Insufficient to ensure acceptable performance.

The study also demonstrated the effectiveness of increased damping on Jitter suppression, and Its
associated lessening of MMC frequency sensitivity with increased damping. It was also observed that
errors In predicted damping had less adverse effects than similar errors in predicted frequency.

Multiple disturbances were explored and the MMC technique was seen to be effective here as well.

Finally. the MMC technique was compared to a primitive feedback system, and was seen to have
similar limitations and effectiveness.

•RIGID BODY MOTION EFFECTIVELY NULLED

•FOR FLEXIBLE MODES:

LOW FREQUENCY RESPONSES CAN BE READILY SUPPRESSED

HIGH FREQUENCY RESPONSES MORE DIFFICULT TO CONTROL

HOWEVER:

ACCURATE DYNAMIC MODEL VITAL TO MMC EFFECTIVENESS FOR
FLEXIBLE MODES

MMC HAS POTENTIAL APPLICATION FOR JITTER REDUCTION FOR
NEXT GENERATION REMOTE SENSING SPACECRAFT
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RECOMMENDATION

Due to the extreme frequency sensitivity displayed by the MMC technique, tt Is imperative that the
system modal parameters be characterized with great accuracy. This necessitates the use of on-board
measured data to characterize the dynamic behavior of the spacecraft. It is not possible to predict a priori
the modal parameters to sufficient accuracy for the MMC technique to be effective.

USE ONBOARD MEASUREMENTS TO EXTRACT MODAL PARAMETERS

IMPLEMENT MMC USING MEASURED DATA TO SUPPRESS INSTRUMENT
JITTER

USE GROUND DEMONSTRATION MODEL TO EVALUATE
EFFECTIVENESS OF MMC TECHNIQUE

EXPERIMENTAL VALIDATION IS REQUIRED TO DEMONSTRATE
FEASIBILITY OF MMC
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Precision Slew/Settle Technologies for Flexible Spacecraft

R. A. Manningl,V. A. Spector 2

TRW Space and Technology Group

Abstract

Many spacecraft missions in the next decade will require both a high degree of agility and

precision pointing. Agility includes both rotational maneuvering for retargeting and trans-

lational motion for orbit adjustment and threat avoidance. The major challenge associated

with such missions is the need for control over a wide range of amplitudes and frequen-

cies, ranging from tens of degrees at less than 1 Hz to a few #radians at hundreds of Hz.

TRW's internally funded Precision Control of Agile Spacecraft (PCAS) project is concerned

with developing and validating in hardware the tools necessary to successfuly complete the

combined agile maneuvering/precision pointing missions.

Development has been undertaken on a number of fronts for quietly slewing flexible struc-

tures. Various methods for designing slew torque profiles have been investigated. Prime can-

didates for rapid slew/settle scenarios include Inverse Dynamics and Parameterized Function

Space. Joint work with Professor Bayo at the University of California, Santa Barbara and

Professor Flashner at the University of Southern California has led to promising torque

profile design methods. Active and passive vibration suppression techniques also play a key

role for rapid slew/settle mission scenarios. Active members with local control loops and

passive members with high loss factor viscoelastic material have been selected for hardware

verification. Progress in each of these areas produces large gains in the quiet slewing of

flexible spacecraft.

The main thrust of the effort to date has been the development of a modular testbed

for hardware validation of the precision control concepts. The testbed is a slewing eighteen

foot long flexible truss. Active and passive members can be interchanged with the baseline

aluminum members to augment the inherent damping in the system. For precision control

the active members utilize control laws running on a high speed digital structural control

processor. Tip and midpsan motions of the truss are determined using optical sensors while

accelerometers can be used to monitor the motions of other points of interest.

Preliminary results indicate that a mix of technologies produces the greatest benefit. For

example, shaping the torque profile produces large improvements in slew/settle performance,

but without added damping settling times may still be excessive. With the introduction of

moderate amounts of damping, slew/settle performance is vastly improved. On the other

hand, introducing damping without shaping the torque profile may not yield the desired

level of performance.

1 Staff Engineer, AIAA Member, ASME Member

2 PCAS Principal Investigator, IEEE Member
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Introduction

In the past, slew and/or reorientation maneuvers of flexible spacecraft have been performed

over long periods of time so that no significant energy is imparted to the structure's flexi-

ble modes. Reorientation of the spacecraft was accomplished by pumping energy into the

rigid body modes and rolling off the control system before the frequencies at which the

flexible modes occurred. Separation of the control system bandwidth and the flexible mode

frequencies allowed this technique to work.

Many of the future space missions will not have the advantage of a separation in control

system bandwidth and flexible mode frequencies. The separation becomes blurry, and even

overlapping, when the structure begins to get large in size or the control system bandwidth

increases. The former significantly reduces the flexible frequencies of the system while the

latter represents the case of a very rapid slew or reorientation maneuver. For such systems,

attempts to quietly reorient the structure using these older methods for generating slew

torque profiles are doomed to failure. New torque profile design techniques are required which

take into account the overlapping control system bandwidth and flexible modes. In addition,

designing in damping relaxes the requirements on the bandwidth of the slew controller and

increases the robustness of the system to parameter uncertainty.

When new slew torque profile design methodologies and damping techniques are dis-

covered, they have to be demonstrated in hardware. This allows the effects of hardware

limitations on the performance of the slewing system to be documented. Furthermore

the robustness of the slew and damping techniques in a scaleable/traceable testbed can

be demonstrated.
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Relation to Previous Work

Large angle quiet maneuvers have been an active area of research over the past 10-15 years. A

survey of ground-based test facilities for such demonstrations is given by Das [1]. He focuses

on space structures with both large angle reorientation maneuvers and vibration suppres-

sion for rapid slew/settle mission scenarios. The early work focused on accomplishing the

slew/reorientation maneuver in minimum time using gas thrusters. As such, predominantly

bang-bang controllers were used to accomplish the maneuver [2]. Improvements to the slew

methodologies improved the performance that could be obtained using bang-bang actuators

[3], but performance was not at a level that would be required for some proposed space
missions.

Theoretically, a significant amount of work has posed the rapid slew/settle problem as a

two point boundary value problem and solved for the torque profiles using standard optimal

control solution procedures. Breakwell [4] posed such a solution using standard fixed-time

linear quadratic Gaussian regulator control theory with a modal decomposition of the flexible

body. A suggested improvement by Junkins [5] "smooths" Breakwell's torque profiles, thus

somewhat reducing the bandwidth requirement on the reorientation actuators. The methods

based on optimal control theory, though performing very well for the nominal system, are

sensitive to uncertainties in the plant, the environment, or the specific hardware being used.

Robotics reorientation goals are similar to those of slewing/reorienting a flexible space-

craft. A fixed maneuver is to be accomplished with minimal residual vibrations at the

conclusion of the maneuver. As such, some of the inverse dynamics design methods [6,7] for

generating slew torque profiles have shown promise for quickly and quietly reorienting flex-

ible manipulators. Furthermore, preliminary studies have shown that the inverse dynamics

methods are less sensitive to parameter uncertainties than the optimal control methods.

Regarding vibration suppression during and following the reorientation maneuver, inter-

nal sensing and actuating devices are required so that the flexible modes can be damped

without affecting the rigid body modes. In this manner, a separation in topology between

the slew controller and vibration controller can be drawn, though the bandwidths of the

controllers may still overlap. Fanson et al [8] have shown the types of vibration suppression

performance that can be obtained in fixed position static trusses. Their work utilized piezo-

ceramic stack actuators and internal force measurements to achieve 25-35 dB attenuation

of peak vibrations. Improvements in materials processing at TRW [9,10] have led to the

piezoceramic sensors and actuators being embedded within the layup of graphite composite
members.
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Applicable Space Missions/Typical Mission Scenarios

A number of proposed space missions contain operational scenarios which require reorienta-

tion and target acquisition. Of these missions, some have extremely rapid reorientation rate

goals, fast slew/settle times, and/or precision pointing/alignment needs.

Typical of the large agile space missions are scanning surveillance spacecraft such as Space

Based Radar/Space Based Wide Area Surveillance (SBR/SBWAS) missions. These space-

craft must be large to maintain suitable signal strengths and be agile during scan maneuvers.

During a typical raster scan maneuver, minimizing the time spent in the turnaround and

settle phase of the scan will increase the duty cycle of the mission. Due to their large size,

structural modes will lie within the bandwidth of the attitude control system. Harmful con-

trols/structure interactions will be present which jeopardize the settle/pointing performance

of the spacecraft. SBR/SBWAS missions would significantly benefit from the technology

presented in this paper. The combined quiet slew torque profile design methodology and

active/passive damping would increase SBR/SBWAS turnaround and settle performance as

well as increase critical component pointing accuracy.
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Applicable Space Missions/Typical Mission Scenarios (Cont.)

Spacecraft which must be quieted from the effects of internal and external disturbances

would benefit from the active and passive damping presented herein. Such spacecraft are

proposed large optical interferometers, Defense Support Program (DSP) satellites, Defense

Meteorological Satellite Program (DMSP) satellites, and Lightsats. In each of these instances,

onboarddisturbances and thermal/environmental disturbances threaten the operational mis-

sion. Active and/or passive vibration suppression and isolation could eliminate the harm-

ful effects of the disturbances and restore mission integrity.
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Testbed Overview

A nine bay, eighteen foot long slewing truss has been developed at TRW for use as a quiet

slewing testbed. The baseline truss consists of threaded hub joints and aluminum truss

members. All of the hubs and members are threaded so that any members can be replaced

with active and or passive composite members without disassembling the complete structure.

A stiff aluminum backing structure serves to counterbalance the structure over the simulated

control moment gyro (CMG) and to provide a dragless mounting platform for optical sensor

cameras and cables. (All performance sensors and actuators are described on the following

pages.) The total weight of the truss is approximately 90 pounds, with the hubs accounting

for 60 pounds and the truss members accounting for the remaining 30 pounds. The simulated

CMG is mounted on a pedestal which also serves to keep the truss near eye level and to mount

cables and slew limit switches/stops.

BACKING STRUCTURE f

!
FLEXIBLE/ /

APPENDAGE
DRIVE

[ INTERCHANGEABLE

TRUSS MEMBER
• ALUMINUM
• ACTIVE COMPOSITE
• PASSIVE COMPOSITE

_ 18-FOOT
NINE-BAY
TRUSS

1"RUSSHUB

622



Sensor and Actuator Layouts

A combined air bearing/slew torque motor simulates typical CMGs for reorienting the struc-

ture. The air bearing has the capability to support 500 pounds (i.e., truss, backing structure,

and equipment) and can withstand 100 inch pounds of overturning moment. The motor used

to slew the truss/backing structure can supply up to 40 ft-lbs of torque. Maximum angular

accelerations of greater than 4 deg/sec 2 can be produced with the testbed in its current con-

figuration. An optical encoder is integral with the slew torque motor and provides angular

position measurements for the base of the truss.

Optical sensors and accelerometers provide performance data during and after the slew.

TRW's Surface Accuracy Measurement Sensors (SAMS) provide vertical and horizontal dis-

placement measurements at the tip and midspan of the truss. The receivers of the SAMS

sensors are mounted on the backing structure of the truss and rotate with the truss. Thus

these sensors provide information concerning the flexible motion of the truss. A laser inter-

ferometer retroreflector is mounted at the tip of the truss and is used to provide absolute

motion (i.e., rigid plus flexible mode motion) measurements. The interferometer itself has

resolution down to 10 nanometers and is mounted on an optical bench.

Additional measurements on the performance of the truss are obtained using four ac-

celerometers. Three of the accelerometers are mounted at the eighth bay of the truss aml

oriented such that vertical, horizontal, and torsional motions at that station can be obtained.

A fourth accelerometer is mounted at the second bay of the truss and provides horizontal

motion information during and after the slew maneuvers.

ACCELEROMETER

AIR BEARING
a _--__1__ LOCATIONS

'AM'2 _M_ ASAMSSENSOR

LASER INTERFEROMETER
RETROREFLECTOR
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Typical Modal Content

A summary of the first few modes of the slewing testbed is given in the table below. Though

the modes are not necessarily closely spaced, they are not widely separated either. The sepa-

ration is approximately typical of those expected for primary structure modes for some future

space missions. The mode at 1.8 Hz is a quasi-rigid body mode caused by the interaction

of the truss/backing structure inertia and the electronic stiffness in the air bearing/motor

drive electronics. The primary horizontal bending mode (i.e., slew plane bending mode) at

6.3 Hz has a moderate amount of damping due to the electromagnetic damping in the air

bearing/motor assembly. All of the remaining modes have levels of damping expected from
a threaded joint type structure.

Table 1" Slewing Testbed Modal Content

[Mode [ Description ]Frequency (Hz) Damping (()

5

6

7

8

Rigid Body Slew Mode 0.0

Motor Electronics Mode 1.8

Vertical Bending Mode 4.7 0.7

Horizontal Bending Mode 6.3 2.0

Torsional Mode 12.9 0.2

2nd Horizontal Bending 26.3 0.8

2nd Vertical Bending 34.1 2.7

2nd Torsion 41.6 0.4
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Test Facilities

The test facilities containing the slewing testbed were designed and built with precision,

quiet measurements in mind. A seismically isolated pad supports the pedestal/testbed and

the optical bench which contains the interferometer. In this manner, disturbances such as

nearby foot traffic, automobile traffic, and ocean wave motion will not upset tests in progress.

Both the ceilings and the walls of the facility are covered with sound and light absorbing

material to minimize stray vibrations and light reflections. A special quiet air conditioning

system was installed that can be turned off during precision tests and turned back on for

user comfort.

Various secondary tests have been conducted in the test facility. A number of passive

damping applications have been tested using a modal survey system. These applications

include printed circuit boards, reaction wheel assembly isolators, and passive member com-

ponent development tests. Other active member tests and demonstrations have also utilized

the PCAS test facility. These range from optical level pointing and resolution tests to eye-

witness damping demonstrations.
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Passive Member Description and Component Testing

Passivecompositememberswith cocuredviscoelasticmaterial (VEM) weredesigned,fab-
ricated, and tested for use in the slewing testbed. The memberswere constructured in a
manner similar to thosepresentedin [11]and shownin the figure below.

The ideais to weavethe dynamicload from thestiff graphiteconstraininglayerthrough the
VEM to the oppositestiff graphite constraining layer. In this manner, dynamic shearloads
are routed through the high loss VEM. The fiberglasswhich runs continuously along the
length of the tube providesa parallel elastic load path to prevent creepof the VEM under
static loads.

Initial testsyielded a disappointing2-6%damping with the additional drawbackthat the
membersweredifficult and labor intensive to build. A retrofit VEM/graphite constraining
layer bridge wasadded (seemiddle diagram of figure) which yielded damping levelsup to
18%. A typical time history for the cantilever impact test is shown below. Due to time
constraints, the passivememberswere not incorporated into the slewing testbed. System
level slew and damping performanceon the testbed will be reported when they become
available.

Future memberswill utilize the VEM/graphite constraining layers and VEM/graphite
constraining layer bridgesonly on the outsideof the tube in order to simplify the fabrication
procedure. (Seeright sidediagram in the figure below.)
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Active Member Description

Active composite members for vibration suppression during and following the slew were

designed, fabricated, and integrated with the slewing testbed. The active members utilize

separate piezoceramic wafers for the sensors and the actuators, Each side of the square

truss members has one actuator string and two sensors. One of the sensors is colocated

with the actuator string while the other is nearly colocated. By averaging these two sensor

measurements, the transfer functions that the active members "see" can be tailored to be

advantageous for the local control loop design task. The layup of the composite host material

for the active members was arrived at by matching the stiffness of the members that are to

be replaced and by maximizing the actuation capability of the resulting strut.
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Active Member Characterization Testing

A number of component level tests were done on the active members to characterize their

actuation characteristics. A creep test was performed by clamping one end of the strut,

applying a step voltage, and measuring the resulting tip displacement. Three different levels

of applied voltage were used in order to calculate the linearity of the actuation with applied

voltage. The numerically filtered results of these tests are shown in the figure and table

below. (The data was numerically filtered to eliminate the undamped oscillations and give

a quasi-steady state result.) The free end of the active member achieves 98% of the steady

state level in 0.2-0.3 seconds and total creep levels for all cases are less than 2.0%. Even when

applying voltages greater than the recommended maximum field strengths (i.e., greater than

700 V/mm) the strut behaves very well and shows very little creep or nonlinear behavior.

These results compare favorably with those reported in [12] where a piezoelectric stack was
used for the actuator.
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Active Member Characterization Testing (Cont.)

Parameter TRW Active Member with Embedded Actuators JPL PZT Actuator*

Field Strength Change 210 V/mm 528 V/ram 788 V/ram 700 V/ram

Bias Voltage 0 V 0 V 0 V 350 V

Time to 95% of Step <0.1 sec <0.1 sec <0.1 sec 6 sec

Time to 98% of Step 0.2 sec 0.2 sec 0.3 sec >50 sec

Total Creep 1.0% 1.5% 2.0% 8%

*Piezoceramic stack design
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Active Member Characterization Testing (Cont.)

A second component level test was run in order to verify the active members' capability

for performing microdynamic shape and vibration control. In this case, very low level si-

nusoidal voltages were applied to the actuators and the resulting free end tip displacement

monitored with a laser interferometer. The results of this test are shown in the figure be-

low. The sinusoidal pattern is still visible down to the 10 nanometer resolution of the laser

interferometer. With the delivery of an enhanced laser interferometer (e.g., resolution down

to 2.5 nanometers), the limit of the active members' microdynamic control capability will

be explored.
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Structural Control Processor

Control loops around the active members are implemented using a flight-qualifiable high

speed digital processor. A schematic of the processor is shown in the figure below. Two

boards allow the implementation of 12 digital filters with a maximum order of 9 zeros and 10

poles each. In its current configuration, each of these filters can take measurements from all of

the 24 sensor measurements and drive a single active member. (Thus the Structural Control

Processor can drive a total of 12 active members.) For the results of multimode damping on

the slewing truss testbed to date, each digital filter runs at 2.8 kHz. On benchmark tests of

the processor itself, a throughput rate of 10.0 kHz per 10th order digital filter is achievable.

A recent upgrade allows the filter parameters and gains to be adjusted in real time, lending

the Structural Control Processor to adaptive control algorithm development and verification.
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Active Damping Performance

The open and closed loop active damping performance of the slewing testbed is shown in the

following figures. Five active members were placed at strategic locations within the truss.

Four of these members were used for control purposes while a fifth was used to provide a white

noise disturbance source. Accelerometers monitored the open and closed loop performance

of the truss. Second order Positive Position Feedback (PPF) loops were used local to each

member in generating the closed loop results.

Undamped and damped horizontal plane motions (i.e., slew plane motions) are shown

in the figure below. In the undamped case, maximum horizontal motions are obtained in

the primary vertical, horizontal, and torsional modes. With the loops closed, the vertical

mode at 4.7 Hz is attenuated down to the threshold of the accelerometers, the horizontal

mode has been significantly reduced, and the torsional mode has been attenuated by 30 dB.

None of the higher modes have been affected, indicating no harmful control spillover effects.

The higher modes could be damped if they significantly affect the slew performance and if

a higher order control law is used.
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Active Damping Performance (Cont.)

Undamped and damped vertical motions are shown in the following figure. Again the primary

vertical, horizontal, and torsional modes have been attenuated to a significant degree. These

results were generated using approximately 40 volts maximum drive to the active members

and using less than 4 Watts of power consumption in both the active members and the

electronics that drive them. These results demonstrate that significant amounts of system

level damping can be achieved with the active members using very few struts, very little

power, low voltage drive, and low order local compensators.
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Typical Slew Results (Open Loop)

Open loop slew results for the testbed are shown in the figure below. The figure shows the

tip displacement time history during and after the maneuver. In this case, a bang-bang

slew torque profile was used to generate a 16 ° slew. Note that the first horizontal plane

mode at 6.3 Hz is excited during the slew maneuver. At the conclusion of the slew, the 1.8

Hz motor electromagnetic mode dominates the response. This performance is typical of an

initial spacecraft design where rigid body modes, flexible modes, and electronic modes are

present in the system. Without careful and systematic identification of the system (including

the electronics drivers), the performance of the system may be far below the requirements.
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Typical Slew Results (Closed Loop)

The figure below showsthe same16° slew maneuver but with the active members running

closed loop. In this case, three active members were used to damp out the first two flexible

modes (i.e., the vertical bending and horizontal bending). The flexibility of the Structural

Control Processor was utilized to average a number of sensors from the active members so

as to separate the two modes. As a result, a moderately aggressive control system was used

without destabilizing the system. The slew results show that the horizontal bending mode

at 6.3 Hz is moderately damped both during and after the slew. At the conclusion of the

slew, the 1.8 Hz electromagnetic mode, rather than the 6.3 Hz flexible mode dominates the

response. The participation of the 1.8 Hz mode in the settling time could be attenuated using

the Inverse Dynamics torque profile design method. These results point out that the active

members can run closed loop during the extreme loading of the slew maneuver and contribute

to significant slew/settle performance improvements without destabilizing the system.
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Conclusions

Both a systems and a component level approach to making flexible spacecraft more agile and

precise has been presented. The systems level approach dealt with designing the slew torque

profile, placing the active members in strategic locations on the truss, and with designing

the overlapping bandwidth control systems. The approach at the component level dealt with

active and passive members for precision damping and shape control.

The experimental results presented here have shown that significant amounts of system

level damping can be achieved with the active members using very few struts, very little

power, low voltage drive, and low order compensators. The performance improvements

for the slew/settle problem of using the active members during and after the slew were

experimentally demonstrated. All of the technologies discussed in this paper, slew torque

profile design, active/passive damping, and the high speed digital processor, are mission

enabling technologies for many of the next generation of precision agile spacecraft.
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Abstract

A method is presented for the synthesis of robust controllers for linear time invariant structural

systems with parameterized uncertainty. The method involves minimizing quantities related to the

quadratic cost (_-L2-norm) averaged over a set of systems described by real parameters such as natural

frequencies and modal residues. Bounded average cost is shown to imply stability over the set

of systems. Approximations for the exact average are derived and proposed as cost functionals.

The properties of these approximate average cost functionals are established. The exact average

and approximate average cost functionals are used to derive dynamic controllers which can provide

stability robustness. The robustness properties of these controllers are demonstrated in illustrative

numerical examples and tested in a simple SISO experiment on the MIT multi-point alignment
testbed.

1 Introduction

The problems of stability and performance robustness in the presence of uncertain model parameters

is of particular interest in the area of control of flexible structures. Uncertain stiffness, natural

frequencies, damping, and actuator effectiveness all enter the model as variable parameters in the

system matrices. The present work will attempt to address the robustness issues for parameterized

plants by examining the properties of the quadratic (7-L2) performance of the system averaged over

the set of plants given by the parameterization.

In the past, the average cost of a finite set of systems has been used to design for robustness in

the face of parametric uncertainty [1], high frequency uncertainty [2], or variable flight regimes [3].

The goal is to design controllers that stabilize each model in a finite collection of plant models. This

problem is called the simultaneous stabilization problem and has been treated previously in Refs. [4,5].

The cost averaged over a finite set of plants has also been used to derive full state feedback [6] and

dynamic output feedback [7] compensators using parameter optimization to determine fixed-form

compensator gains.

The present paper considers a quadratic performance criterion (formulated as the 7-12 system norm)

averaged over a continuously parameterized set of plants controlled by a single feedback compensator.

The model set is thus based on a continuous rather than discrete parameterization. This type of

parameterization avoids ad hoc selection of plants to be represented in the control design and well

represents the type of uncertain parameter dependence common in flexible structures.

*Assistant Professor, Department of Aeronautics and Astronautics, Rm. 33-313 Tel. (617) 253-2738.

PREC_D_i',;G _AGE PLAN_ NOT FILMED

Typically

639



an uncertain parameter is specified by a range rather than a finite number of possible values. In

addition, by considering this type of uncertainty, a link can be established between bounded average

cost and simultaneous stability over the set of systems. The necessary conditions for minimization of

a quadratic cost averaged over a continuously parameterized set of systems were previously derived

for the static output feedback case in Ref. [8], and are here extended to the case of dynamic output
feedback.

In the first section of this paper, the continuously parameterized model set and properties of the

exact average cost are established. It will be shown that bounded average cost implies stability over

the model set. Since it is difficult to compute the exact average cost, two approximations to it will be

presented in the next section. The first approximation is based on a perturbation expansion about

the nominal solution, while the second is derived from an approximation commonly used in the field

of wave propagation in random media. Their properties and computation will be addressed. The

derivation of these approximations to the average cost is based on operator decomposition methods

which are presented in Ref. [9,10].

The second half of the paper concerns the design of controllers based on exact and approximate

average cost minimization. The approach taken involves fixing the order of the compensator and

optimizing over the feedback gains. This fixed-structure approach is a direct extension of the technique

utilized in [6,7,11]. The controllers derived from the exact and approximate average minimization will

be compared in numerical examples. In addition, an average-cost based controller will be compared

to traditional LQG designs in an experimental application of the methods to control a precision

optical path on the MIT multipoint alignment testbed.

2 The Average Cost

In the following sections, the average cost will be examined as a cost functional for control design.

The first step in this process is to define the set of systems over which the quadratic cost (_-norm)

of the system is averaged. The next step is to examine the average cost for properties which will be

useful in the design of stabilizing compensators.

2.1 The General Set of Systems

The concept of the model set, a set of plants parameterized in terms of real parameters, will now be

introduced. Throughout the rest of this work, the standard system notation in Ref. [12] will be used.

The set Gg of systems is parameterized as follows

ag = {ag(.) v c n} (1)

where f_ C IR* is a compact region over which a distribution function, # (a), is defined. Each system

is described in the state space as

= o
C2(a) D2,(a) D'20(a)

(2)

where A(a) C IR n'', B2(a) e ]R "x'', C2(a) C ]R z'', Bl(a) e ]pn×p, Cl(a) C IRq×n, a C n and the

D matrices are partitioned conformally.

In addition to the assumptions implicit in the set definition, the following assumptions will be

made on the system.

640



(i) For each a e _,(A(a),Sl(a))is stabilizable, (Cl(a),A(a)) is detectable.

(ii) For each a e f_,(A(a),B2(a)) is stabilizable, (Ca(a),A(a))is detectable.

(v) The set of systems, gg, must be simultaneously stabilizable. The conditions for simultaneously

stabilizable sets of systems have been considered in Ref. [4, 5].

Assumptions (i) and (ii) are made to ensure the observability and controllability of unstable modes

from the controller and the disturbability and measurability of the unstable modes in the performance.

Assumption (iii) implies that Clx and D12u are orthogonal so that there is no cross weighting between

the output and control. R is positive definite so that the weighting on z includes a nonsingular

weighting on the control. Assumption (iv) is dual to (iii) and ensures the noncorrelation of the

plant and sensor noise. It is equivalent to the standard conditions assumed for the Kalman filter.

Assumption (v) is made to guarantee existence of the controllers derived in the next section.

Figure 1: The Control Problem for Dynamic Output Feedback

It is useful at this point to consider the set of closed-loop systems. The control problem for each

element of the model set can be illustrated by the standard block diagram shown in Figure 1. Given

the set _g of open loop systems and the compensator of order, n_, with

lactic]co o (3)

with input y and output u, the set of closed-loop transfer functions from w to z, Gz_,, can be defined.

Each element of _,_, can be expressed in state space form for dynamic output feedback as:

where ,4(a) e IR.'_×'_,

=n+n_.

A(a) B2(a)Cc

G,,,,(a) = BcC2(a) A_

_ [-L lollo] (4)

/_(a) E K_a×p, O(a) E ]Pd×a are the closed-loop system matrices of order

2.2 The Average 7-f2-norm as a Cost Functional

Having defined a parameterized set of systems, it is now possible to define a cost which will reflect

the system parameter uncertainty. One possible approach is to look at the quadratic cost (system

641



7-/2-norm)averagedoverset of possiblesystems.In this sectionthis averagecost will be definedand
discussedin the context of computing the averageperformanceof a linear time invariant system.We
will start by consideringthe definition and propertiesof the exact averagecost. The exact average
cost is definedas the closed-loopsystem_2-norm averaged(integrated) over the model set.

0_n 2J(Gc) = IlG,,o(a)ll2 d#(a) = <llG,_(a)ll_) (5)

where fn" d#(a) = (.) is the averaging function.

The first property of interest is the relationship between simultaneous stability and bounded

average _-/2-norm. If the exact averaged cost, Eq. (5), over the set _,_ is bounded

y(vo)= < (6)

then all the parameterized closed-loop systems, G,_(a), are asymptotically stable except for the

possibility of having an isolated plant in the set with poles on the imaginary axis. In general, no

system in _,,, can have eigenvalues with positive real parts.

This result provides the motivation for examining the average cost since controllers designed by

minimizing the average cost will be guaranteed stable over the model set. Since at each value of

a the cost is given by the solution of a Lyapunov equation, the next step in the development is to

relate the averaged "H2-norm to the averaged solution of a parameterized Lyapunov equation. This

gives a possible method of calculating the average cost by calculating the average solution to a linear

Lyapunov equation.

Given a specified compensator, Go, if the parameterized closed-loop systems, G_(a), are stable
for almost all a E F/then

J(G¢)=tr{(Q,(a)oT(a)O(a))} (7)

where for each a C g_, Q(a) is the unique positive definite solution to

o = A( )0 + A + (8)

The exact averaged cost is difficult to calculate because of the difficulty of averaging the solution

to the Lyapunov equation, Eq. (8). In most instances the solution to Eq. (8) can be obtained explicitly

as a function of a, and then averaged either numerically of symbolically. There are also numerous

numerical techniques for approximating the average solution such a Monte-Carlo or direct numerical

integration. The computational issues will be discussed in a latter section.

3 Approximate Average Costs

In this section, explicit equations for the calculation of approximate average costs will be derived.

Two types of approximations will be discussed. The first is derived from a truncation of the pertur-

bation expansion of the solution of the parameterized Lyapunov equation, Eq. (8), about the nominal

solution. The second is a more sophisticated approximation for the solution of parameterized linear

operators which has been widely used in the fields of wave propagation in random media [13], and

turbulence modelling. A brief presentation of the relevant work in parameterized linear operators is

presented in Appendix A of reference 10.
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3.1 The Structured Set of Systems

It will prove useful to define a different set of systems with more restrictive assumptions on the

functional form of the parameter dependence of the system matrices. The first assumption is that

only parameter uncertainties entering into the closed-loop ,4 matrix will be considered. This amounts

to restricting the /_ and C matrices to being parameter independent. This assumption is not overly

restrictive for stability robustness considerations since only uncertainties in the closed-loop A matrix

affect stability. The uncertainties in the/3 and C matrices would however affect average performance.

This uncertainty restriction is made primarily to enable derivation of approximations to the average
cost.

The general uncertain set of systems in (2) can be specialized to a more structured set which

allows less general parameter dependence. The structured set, fl,, of parameter vectors, a, is defined

_={a "aCIR',_,L<_a,<6_ i=l,.-.,r} (9)

where 6/L and 6iv are the lower and upper bounds for the i th uncertain parameter. In addition, the

parameter dependence of the elements of the remaining matrices will be assumed to be linear functions

of the parameters. This is a very restrictive assumption but necessary if computable approximations

for the average are to be derived. If they are in fact not linear functions, then the matrices must be

linearized about the nominal values of the parameters.

Once the parameter dependence has been made linear a more structured set, G,, of systems can
be defined

G, = {a,(a) : a e fl,} (10)

where f_, is the structured set of parameter vectors and each element of G, is described in the state

space as

C,(a) =

lP

Ao + _-_ ai A_
i=1

C1

C2o + _aiC2_
i=1

T

Bx B2o + _-_a_B_,
i=1

(11)

where for i = 0,...,r; Ai E ]R"×", B2_ C IRn×'_, C2_ C IR t×n, and B1 E IR"×PCx C IR q×".

Just as for the general set of systems, a set of closed-loop transfer functions, denoted Gz_, can be

generated using the structured set of systems. This closed-loop set can be expressed is state space

form for dynamic output feedback as

Ao + Y_aiAi B2oCc + y_aiB2,C¢
i-----1 i=1

BcC_o + _aiBcC2i Ac
i=1

Ca Dx2Cc

I ]
0

(]2)

Because of the form assumed for the uncertainty, only the resulting closed-loop A matrix, A(a) C
fixfi.

IR , is parameter dependent and the closed-loop system is strictly proper.
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3.2 Perturbation Expansion Approximation

At this point, we can begin our exposition on the perturbation expansion approximation to the exact

average cost. Given a specified compensator, Go, the perturbation approximation to the exact average

cost is given by:

JP(Gc)=tr{(O°+OP)OTo} (13)

where the nominal cost, 1_0, and the parameter dependent cost, QP, are the unique positive definite

solutions to the following system of Lyapunov equations

0 : ii0 ° + Q° i0 +

( 0.)0 = ftoQ'+Q'_+a, fi, Q °+Q A, i=l,...,r

" ( -,-T)0 = floQ P+O PATo +_a, f4, O`+QA,
i=l

(14)

(15)

(16)

where cri is defined

A detailed derivation of the perturbation expansion approximation is available in Ref. [9]. It is

interesting to note that the system of Lyapunov equations presented in Eqs. (14-16) are coupled hier-

archically. The nominal solution, Q0, can first be solved using Eq. (14) and the solution substituted

into each of the i equations represented by Eq. (15). The solutions for these equations, Qi, can then

be used to solve for 0 R using Eq. (16).

The system of equations presented in Eqs. (14-16) are related to those inherent in the sensitivity

system design methodology presented in Appendix A from Ref. [15]. This can be seen clearly by

putting the equations for the component cost analysis in the notation used here.

~ ~ ~0 ~T0 = AoQ °+Q A o +[_T

,. (o.)0 = JoQ i+QA o +ai O Ai i=l,...,r

r ( -i T -T\O= JoQP+OPftT+Ea, fI, Q'+Q A,)
i=1

(18)

(19)

(2o)

Essentially there is only a single term omitted from (19) which is in (15).

This validates the assertion made in Ref. [15] that the sensitivity system cost is an approximation

to the quadratic cost averaged over the uncertain parameters. The sensitivity system cost is essentially

the average of the first three terms of a Taylor series expansion of the cost in powers of the uncertain

parameters.

3.3 Bourret Approximation

An alternate approximation for the average cost can be derived based on series manipulation tech-

niques presented in Refs. [91 and [14]. If the parameterized closed-loop systems, G.,.(c_), are stable
for almost all a E _ then

J(G_) _-- tr {QBOT o} (21)

644



where 0B is the unique positive definite solution to the following coupled system of Lyapunov

equations

0 = ,4.o(_ B + (_"Ao T +/_/_T + _-_cri ,_,(_i + Q A,
i=1

o = 400' + 0 o+ A,c}"+ i i, 7"

(22)

(23)

where cri is defined from Eq. (17).

The system of Lyapunov equations presented in Eqs. (22-23) is very similar to the system generated

by the perturbation expansion approximation. There is additional coupling occurring in Eq. (23).

Instead of depending only on the nominal solution, 00 these equations depend on the total Bourret

approximate average solution, Os. This coupling complicates the solution procedure but leads to a

more accurate approximation.

The system of Lyapunov equations represented by Eqs. (22-23) can be solved iteratively for the

Bourret approximate average, OB, using the nominal solution, Q0, as the initial guess in Eq. (23).

Equation (23) is then solved for Oi which is used in Eq. (22) to obtain a new value for 0B. Equations

(22) and (23) can also be solved using Kronecker math techniques as described in Ref. [9 ].

These two approximations, the perturbation expansion and the Bourret, will be used to generate

robustifying controllers in the sections to come. Because they are approximations, however, controllers

derived using these approximations will not necessarily guarantee stability over the design set. Thus

a priori guaranteed stability is sacrificed when using the approximations. The approximations are

however much easier to calculate than the exact average cost, especially for systems with large numbers

of uncertainties or high order. For such systems, the exact average cost is essentially uncomputable

and the approximations must be used to derive controllers which increase robustness to parameter

variations. These cost equations will now be used to develop parameter robust control strategies.

4 Dynamic Compensation

In this section three dynamic output feedback problems will be investigated. The first is the mini-

mization of the exact average _2-norm; the second is the minimization of the perturbation expansion

approximization to the exact average; and the third is the minimization of the Bourret approximation

to the exact average. The general technique will be to find the controller parameters which minimize

quantities related to the exact average cost of the closed loop systems. This will be accomplished

by first deriving necessary conditions of optimality and then using these in a numerical minimiza-

tion scheme on the controller parameters. The derivations will begin with the exact average cost

minimization since it is the basis of the approximation based cost minimization problems.

4.1 Exact Average Cost Minimization

In this section the formulation of the necessary conditions for the minimization of the exact average

cost will be presented. The first step is to define the minimization problem for the exact average cost.

Problem 4.1 (Exact Average Cost Minimization Problem) Given a set Gg or Cjs of systems,

determine the dynamic compensator or order, no,

[Gc = C_ 0
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which minimizes the the closed-loop _2-norrn averaged over the model set.

J(Gc) = (llO,w(a)ll_ } (25)

In Section 2.2 the exact average cost was shown to be equivalent to

jE(Gc) = tr

where Q (a) is given by the solution of

0 : _(_)0 (_) + 0 (_)ff(_)+ b(_)_T(_) (27)

for each a C _.

The first step in deriving necessary conditions is to append Eq. (27) to the cost using a parameter

dependent, symmetric matrix of Lagrange multipliers, /_(a) C I_ a×_. The matrix of Lagrange

multipliers must be parameter dependent because the appended equations are parameter dependent.
The appended cost becomes

+ tr{([,4(a)O(a)+O(a)AT(a)+JB(a)[_T(a)][9(a)}} (28)

where ,4(a), /}(a), and O(a) are defined in Eq. (2). The necessary conditions for minimization of the

exact average cost can now be stated by taking the derivatives with respect to G¢, P (a), and 0 (a).
An explanation of matrix derivatives can be found in Ref. [9] [16].

Suppose Go, the dynamic compensator of order, n¢, defined in Eq. (24) solves the exact average

cost minimization problem (4.1); then there exist matrices, Q (a) and b (a) > 0 C IR'_Xa such that

__.

0=

+

0=

+

(b22(a)B_D2_(a)DT_(a)}

(&(,_),&,(,_)c_(,_)+ b.(_,)O,,(,_)c_(,_))

(D[,(a)D,,(a)C_Q,,(a)}

(B;(_,)5,(_)O,,(_,)+ B._(,_)P,,(,_)O,,(,_))

where Q (a) satisfies the parameterized Lyapunov equation

0 = _(_)0 (_) + 0 (_) ff(_) + _(_)_(_)

and P (a) satisfies the Adjoint Lyapunov equation

o = ff(_)P(_)+ P(_)A(_)+ 0_(_)0(_)

and O (a) and t3 (a) are partitioned
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(31)

(32)
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with0., & c a nxn,and & c an°x °.
The result is a consequence of the differentiation of the cost, Eq. (28), with respect to Ac, Be, C_,

/5 (a), and O (a). Note that the necessary conditions that result from differentiation of the cost

with respect to O (a) and /5 (a), (32) and (aa) respectively, are parameter dependent because O (a)

and /5 (a) are parameter dependent. The traditional LQG results are recovered in the case of no

uncertainty and n_ = n.
The difficulty inherent in Eqs. (29)-(31) for the optimal gains is that that they involve the average

of the product of the solution of two parameter dependent Lyapunov equations, (_(a) and /5 (a).

These matrices are only given as implicit functions of a in Equations (32) and (aa). Only in the

simplest of cases can the average of the product be solved for exactly. The solution can be obtained

numerically by Monte-Carlo techniques, averaged numerically, or the explicit a dependence can be

found by symbolic manipulations and the expressions averaged numerically or symbolically. All of

these techniques are computationally intensive. In the next sections, the Perturbation Expansion

approximation and Bourret approximation to the average cost will be minimized in an attempt to

approximate the optimal solution by minimizing approximate but calculable expressions for the

cost.

4.2 Approximate Average Cost Minimization

In this section the formulation of the necessary conditions for the minimization of the perturbation

expansion approximate cost and the Bourret approximate cost will be discussed. The procedure is

essentially the same as for the exact average cost only for the approximate costs the averages can

be performed explicitly. The first step is to define the minimization problem. For the perturbation

expansion approximation, the problem is to determine the dynamic compensator of order, n_, defined

in Eq. (24), which minimizes

(35)

where the nominal cost, O0, and the parameter dependent cost, Or, are the unique positive definite

solutions to the system of Lyapunov equations described in Eqs. (14)-(16).

As for the Exact Average, the first step in deriving the necessary conditions for the Minimization

Problem is to append Eqs. (14)-(16) to the cost using parameter 'independent, symmetric matrices

of Lagrange multipliers,/50 , /sP, and/5i, i = 1... r E IR 2'*×=n.

-+- tr

+ tr

J(O¢) = tr {((_ ° + _)P) 0:r0} (36)

-l-tr { [.Ao0° 4-Q°,Ao T -k/)_)T] /50} (37)

r ~i ~T

where A, /), and 0 are defined in Eq. (12). Taking the derivatives with respect to Go,/50, /sp, /5i

and _)0 (_P, _i gives the necessary conditions for minimization of the perturbation expansion ap-

proximation to the exact average cost. They can be found in Refs. [9] or [14]. The key difference
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between these necessary conditions and those of the exact average cost minimization is that these

equations are parameter independent (no longer parameterized) and thus easier to solve.

Similar to the perturbation expansion minimization, the problem for the Bourret approximate

average cost compensator design is to determine the dynamic compensator of order, no, defined in

Eq. (24), which minimizes

(40)

where (_s is the unique positive definite solution to the system of coupled Lyapunov equations

described in Eqs. (22)-(23).

As before, the first step in deriving the necessary condition is to append Eqs. (22) and (23)
to the cost using parameter independent, symmetric matrices of Lagrange multipliers, /Ss and

/,i, i = 1...r E IR 'x×_'. The equations have a form similar to (36). Taking the derivatives with

respect to Gc, tbs, /5i and QS, Q, gives the necessary conditions for minimization of the Bourret

approximation to the exact average. They can be found in Refs. [9] or [14]. These necesary conditions

are used for gradient information in a numerical minimization scheme described in the next section.

5 Controller Computation

In this section the techniques used to compute controllers based on the three cost functionals will

be presented. The general technique used for computing the minimum cost controllers is parameter

optimization. Since the controllers are fixed-form, the optimal controller can be found by minimizing

the cost with respect to each of the parameters in the controller matrices. It should be noted that the

parameter minimization is non-convex and the resulting minima can only be considered local minima

although in practice they appear to be global. The gradient of the cost with respect to the controller

parameters is given by the necessary conditions derived in Refs. [9] or [14]. These gradients are used

in a standard Quasi-Newton numerical optimization routine to find the optimal controllers.

Since the minimizations are non-convex, the solution can be a function of the initial guess used in

the optimization. This initial guess must also be a stabilizing compensator. This can be difficult to

find for large values of uncertainty. These problems are overcome by first assuming little or no uncer-

tainty and using the resulting controller as a starting point for calculating controllers at successively

larger values of uncertainty. Standard LQG techniques can be used to find stabilizing compensators

for systems with no uncertainty. The amount of uncertainty used in the design is gradually increased

until the desired amount is reached. This solution technique is known as homotopic continuation.

The general algorithm used to compute the controllers can be written.

(i) Initialize the homotopy with a stabilizing compensator for the system with no uncertainty.

(ii) Increase the amount of the uncertainty used in the design.

(iii) Minimize the cost to derive a new compensator using a Broyden-Fletcher-Goldfarb-Shanno

(BFGS) quasi-Newton scheme.

(iv) Evaluate the resulting compensator to check the homotopy termination conditions.

(v) Iterate on ii.

For dynamic full order compensation, the LQG compensator can be used. If the compensator is

of reduced order, optimal projection or a heuristic compensator reduction procedure can be used to

find stabilizing compensators. A small amount of uncertainty is then introduced into the problem
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and a new controller is found by minimization starting from the initial guess. If the amount of

uncertainty is increased too much in the step the initial guess will not be near the new optimal

solution and may be difficult to locate. Taking too small of a step is computationally wasteful. If the

compensator is optimal for a given amount of uncertainty, then the gradient is exactly zero since the

necessary conditions are satisfied. As the uncertainty is increased, the previous optimal solution no

longer satisfies the necessary conditions for the new problem and thus the magnitude of the gradient

increases. A tolerance can be placed on how large the gradient is allowed to grow before the cost is

reminimized. When the norm of the gradient exceeds the tolerance, the cost is reminimized to find a

new compensator which satisfies the necessary conditions.

The minimization step is relatively straightforward. The appropriate cost is minimized with

respect to the controller parameters using the necessary conditions for gradient information. The

minimization technique used to derive the controllers presented in the next section was the popular

BFGS quasi-Newton method with a modification to constrain the parameter minimization to the set

of stabilizing compensators.

The computation of the cost and gradient is problem dependent. The cost is usually given by either

the average value of a parameterized Lyapunov equation in the exact average case or by the solution

of a set of coupled Lyapunov equations as for the approximation cost functionals. The gradient of the

cost with respect to the compensator parameters is usually a function of the compensator parameters

as well as the solution to a coupled set of Lyapunov equations.

The exact average cost is calculated by numerical integration over the parameter domain using

a 32 point Gaussian quadrature. If more than three uncertain parameters must be retained in the

design, then Monte-Carlo integration is the only feasible method of computing the averages needed

for the cost and gradient calculations. The gradient functions also require averages of the product of

the solutions of the parameterized Lyapunov equation and its adjoint. For speed, these averages can

be computed at the same time as the average cost. The solution of the approximations functions are

discussed in Refs. [9,10]. The perturbation expansion approximate average is computed by utilizing

a standard Lyapunov solver and solving the equations hierarchically. The Bourret approximation is

solved iteratively.

6 Numerical Examples

The three average-related cost functionals will be compared on some simple examples. To streamline

discussion in these sections it is convenient to define a series of acrbnyms for the various designs.

EAM Exact Average Minimization

PEAM Perturbation Expansion Approximation Minimization

BAM Bourret Approximation Minimization

These acronyms will be used extensively in subsequent sections. It should be noted that the PEAM

design is essentially equivalent the the sensitivity system cost minimization presented in [17]. To

simplify discussion of the examples and compare with previous work, an LQG problem statement

will be developed and shown to be equivalent to the system norm cost formalism.

6.1 LQG Problem Statement

To begin the comparison between the LQG problem statement and the system norm formalism, the

system dynamics can be defined by

_(t) = Ax(t)+ Bu(t)+ L{(t) (41)
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y(t) = c (t) + e(t) (42)

where x(t) 6 IR", u(t) 6 IR', y(t) 6 IR'. The two noise input vectors, ((t) 6 IR", the process noise,

and $(t) 6 ]Rp, the sensor noise, are independent, zero mean, Gaussian white noise processes with

constant intensity matrices, -: and O, respectively. The LQG cost functional which is to be minimized

is defined by

which involves a positive semi-definite state weighting, Q 6 IR n×n, and a positive definite control

weighting, R 6 ]1%m×'_.

The system upon which the controller is evaluated is different from the system used in the controller

design. The two systems can be called the evaluation and design systems, respectively. The design

system is typically the evaluation system with weighted inputs and outputs. The evaluation model

can be expressed in the standard system notation by first defining the output vector, z, and the

disturbance vector, w, used in [12]. Let

(44)

The evaluation system can now be written

[I lllG_,l = I 0 0 0
0 0 0 I

C 0 I 0

(45)

To derive the design model, the relative magnitudes of the input disturbances and output variables

are explicitly weighted using the noise intensities, -- and O, and the output weights, Q and R, used

in the quadratic cost, (43). The design plant has the form:

A ILL_-1,20] B
G_, = I Q1/2 0 00] [00] l °R1/2 ] (46)

k

Given this definition of the design plant, the _2-norm of the design system is equivalent to the

quadratic cost; that is

[[aa,,l[_ : JLQa (47)

and thus the problems of finding the compensator, Go, to minimize either the average ?-f2-norm of

the design plant or the average quadratic cost defined in (43) are equivalent.

6.2 The Robust-Control Benchmark Problem

In this section, dynamic output feedback compensators based on the techniques presented in the

preceding sections will be designed for the robust-control benchmark problem presented in Ref. [18].

The problem considered is a two-mass/spring system shown in Figure 2, which is a generic model of

an uncertain dynamic system with a noncolocated sensor and actuator. The uncertainty stems from an
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Figure 2: The Robust-Control Benchmark Problem

uncertain spring connecting the two masses. From Ref. [18] the system matrices can be represented

in state space form using the notation presented in Section 6.1 as

0

0

-k/ml
k/m2

0 i 0 0

0 0 1 0
B=

k/ml 0 0 1/ml
-k/m2 0 0 0

c=[0100]

i __ L

0
0

0

1/m2

(48)

(49)

Within the system described in Eqs. (48)-(49), the uncertain spring, k, is decomposed into a

nominal value and a bounded variable parameter

k = ko + k, ko = 1.25, Ikl & = 075 (50)

Thus the parameter design bound, 6k = 0.75, allows the stiffness to vary in the range from 0.5 to 2.

With this factorization the set of systems can be defined in the notation given for the structured set

of systems, Eq. 11. In particular, only the A matrix is uncertain. It can be factored as

= Ao +  :Ak (51)

0 010 0 0 0 0

0 001 0 0 0 0
A0= -1.25 1.25 0 0 A_ = -1 1 0 0

1.25 -1.25 0 0 1 -1 0 0

With this factorization, the robust control design methodologies presented in the previous sections

can be applied. The LQG problem statement presented in Section 6.1 which is based on the standard

LQG design weights will be adopted. In this method the designer selects the state weighting matrix,

Q, the control weighting matrix, R, and the sensor and plant noise intensity matrices, O and --,

respectively. The evaluation plant is modified as in Eq. (46) to give the design plant. The control is

designed on the design plant and implemented on the evaluation plant. The weighting values used in

the design are

Q(2,2) = 1 R = 0.0005 (52)

Thus only the position of the second mass is penalized. The control weighting was chosen to be

low to examine high performance designs which meet a settling time requirement of 15 seconds as

specified in Ref. [18]. In addition to the state and control penalties, the plant noise and the plant

noise intensity were assumed to be

E -- 1, O ----0.0005 (53)
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The signal noise intensity was chosen low to give a high gain Kalman filter in the LQG design.

Figure 3 compares the closed-loop 7-/2-norm resulting from the various designs using 6k = 0.4 as a

function of the deviation from the nominal spring constant, k. Thus the controllers were designed to

accommodate a stiffness variation, 0.85 < k < 1.65. Instability regions are indicated by an unbounded

closed-loop 7-{2-norm. The LQG results clearly indicate the well-known loss of robustness associated

with high-gain LQG solutions. The LQG cost curve achieves a minimum at the nominal spring

constant, k = 1.25, but tolerates almost no lower values of k. The stability region is increased by the

PEAM and BAM designs at the cost of increasing the nominal system closed-loop 7-[2-norm.

Although both the PEAM and the BAM designs increase robustness they do not achieve stability

throughout the whole design set, -0.4 _< k _< 0.4. Of the approximate methods, the Bourret

approximation more nearly achieves stability throughout the set. The EAM design does achieve

stability throughout the set as was indicated by the analysis. The cost of this stability guarantee is

loss of nominal system performance.
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-1

-- Exact Average '.. - -
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...... Bourret Approx.

..... LQG
I I I I I I I I I

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

K Deviation from Nominal

Figure 3: System Closed-Loop 7-{2-norm (Quadratic Cost) as a Function of the Deviation about the

Nominal Spring Constant, k, for Controllers Designed Using 6k = 0.4.

The actual range over which a given design is stable can be plotted as a function of the parameter

range used in the design. The parameter range over which a particular design maintains stability is

characterized by the achieved bound which is chosen to be the lower limit of the stability range. The

parameter range actually considered in the design is characterized by the design bound, denoted 6k,

which specifies the upper and lower limit of _:. Figure 4 shows the achieved lower _: stability bounds

as a function of the design bound, 6k. This plot is thus a measure of conservatism in the design.

A conservative design would achieve stability over a much larger set of parameters actually used

in its design. With no design uncertainty all five techniques converge to the stability range

achieved by the standard LQG design (1_:1 _< 0.0b). As the uncertainty used in the design process

is increased the achieved robustness is also increased. The EAM design always increases robustness

enough to guarantee stability throughout the design set but the design is very nonconservative. The

approximate cost minimization techniques don't provide this guarantee. The BAM design does come

closer to guaranteeing stability than the PEAM design which does particularly poorly.

In Figure 5, the closed-loop 7-/2-norm of the nominal plant (k = 1.25) is examined as a function
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Figure 4: Achieved Closed-Loop Stability Bounds as a Function of the Design Bound, 6k

of the achieved stability bound. A robust controller design methodology which sacrifices the least

nominal performance for a given level of robustness can be called the most efficient. Figure 5 thus

presents the relative efficiency of the three design techniques. The closed-loop cost ('H2-norm) is

also shown decomposed into the component associated with the output weighting, called the output

cost, and the component associated with the control weighting, called the control cost. The EAM

design achieves a given level of robustness with the least increase in the nominal cost and is therefore

considered the most efficient design. The BAM design also has good efficiency, almost matching that

of the EAM design. The PEAM design is clearly the least efficient of the three. It cannot achieve a

stability bound of more than 0.2.

6.3 The Cannon-Rosenthal Problem

In this section, a four mass/spring/damper problem will be examined which was presented first in [19].

The layout of the system is shown in Fig. 6. The system consists of four masses connected by springs

and viscous dampers. The uncertainty enters into the problem through a variable body-1 mass. The

system can be represented in state space using the notation presented in Section 6.1 as

04×4 I4×4 ]A= A(k) A(c) (54)

A(x)=

-z/mt zlmt 0 0
z/ms -2zlm2 z/ms 0

0 x/m3 -2m/m3 x/m3
0 0 z/m4 --:r,/m4

(55)

653



O

1.4

1.2

0.8

0.6

0.4

0.2
0

r r r .... _ • T

t _ Exact Average

........,mPert.Exp. Approx.

.............* BourretApprox.

ff ...
• *

L_

i ' i i ' ' i i0.1 02 0.3 04 05 0.6 0.7 08 09

Achieved Stability Bound

0.5

G

b.,

L_

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.I

0.05

0

Exact Average

........ ,, Pert. Exp. Approx. /

............. Bourret Approx.

_ie ,..

' ' ' 014 ' '.6 ' ' '0.1 0.2 0.3 0.5 0 0,7 0.8 0.9

Achieved Stability Bound

Figure 5: Output Cost and Control Cost as a Function of the Achieved StabilityBound.

L

0

0
0

0

0
0

0

1/m4

0

0

0
0

B= 0 , C=[0 0 0 1 0

1/m2 01
0J

o o o] (ss)

For this problem the nominal values of the springs, dampers and masses were chosen to be k = 1,

c = .01, m2 = m3 = m4 = 1, and ml = 0.5. Within the system described in Eqs. (54)-(56), the

654



x I

u w

K K

x 2 x 3 xd

Figure 6: The Cannon-Rosenthal Problem

uncertain mass, rnl, enters into the equations through its inverse. The inverse of the mass will

therefore be used as the uncertain parameter called rh. If the nominal value of ml is 0.5, then the

uncertainty can be represented as

1/m_ = 1/'Y_1o Av T_, _T/,lo ---- 0.5, [_rf_[ ( 6m
(57)

Thus ml varies from 1 to 0.25 as rh varies from -1 to 2. Only the A matrix is uncertain. It can be

decomposed as
A(rh) = A0 + _Am

in a manner analogous to the factorization for the uncertain spring in the robust-control benchmark

problem. This problem was considered because of a pole-zero flip caused by the uncertain mass. In

addition to changing the natural frequencies of all of the modes, as the mass is decreased from its

nominal value of 0.5 to 0.25, an undamped zero between the first and second modes moves to between

the second and third modes. This type of uncertainty is especially difficult to deal with since in effect

the phase of the second mode can vary by -t-180 degrees between elements of the model set. This

pole-zero flip makes the robust control design problem difficult. In addition if there is little damping,

then the system effectively becomes uncontrollable or unobservable when the pole and zero cancel.

The robust control design methodologies presented in the previous sections can be applied to this

problem. Just as in the Robust Control Benchmark Problem, the method of weighting the system

that was presented in Section 6.1 which is based on the standard LQG design weights will be used for

the control design. The evaluation plant given in Eqs. (54)-(56) is modified as in Eq. (46) to give the

design plant. The control is designed on the design plant and implemented on the evaluation plant.

Only the position of the fourth mass was penalized. The weighting values used in the design are

Q(4,4)= 1, R=0.05 (58)

In addition to the state and control penalties, the plant noise and the plant noise intensity were

assumed to be

z=z, o=0.05 (59)

This choice of penalties makes the LQG controller very sensitive to ml variation and thus presents a

challenging robustness problem for the average-based methods.
The robustness properties of the control designs are compared to those of the standard LQG design

in following discussions. Figure 7 compares the closed-loop _2-norm resulting from the various designs

using 6,, = 0.1 as a function of the deviation, rh, from the nominal system mass. Thus as rh varies in

the range, -0.1 < rh < 0.1, rnl varies in the range, 2.5 >_ ml _> 1.6. Instability regions are indicated

by unbounded closed-loop _-norm. The designs can thus be considered stable inside the region

described by the upper and lower asymptotes. These asymptotes will be called the upper and lower

achieved stability bounds for the particular problem.
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The LQG resultsclearly indicate the well-knownlossof robustnessassociatedwith high-gain LQG
solutions. The LQG cost curve achieves a minimum at the nominal mass value, rh = 0, but tolerates

almost no variation in rh. The stability region is increased by the PEAM and BAM designs at the cost

of increasing nominal system closed-loop _2-norm. The PEAM design increases robustness, but it

does not achieve stability throughout the whole design set. The Bourret approximation does achieve

stability throughout the set. The EAM design also achieves stability throughout the set as was

indicated by the analysis. The cost of this stability guarantee is loss of nominal system performance,

although for this small amount of uncertainty the performance loss is negligible.
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Figure 7: System Closed-Loop "H2-norm as a Function of rh, the Deviation about 1/ma, for Controllers

Designed Using 6,,, = 0.1.

Figure 8 shows the lower values of rh beyond which the respective designs are unstable as a

function of the bound on the parameter variation used in the design, 6m. Figure 8 is thus a plot of

the actual stability range achieved as a function of the parameter bound used in the design. The

system is thus stable in the range

-6. _<rh _<

where _ is the achieved lower stability bound. For the designs considered, the lower _ bound was

always smaller than the upper indicating that the design procedures had more difficulty extending

the stability range for negative rh (large mass) than for positive rh (smaller mass).

With no design uncertainty all five techniques converge to the stability bounds achieved by the

standard LQG design ([rh] _< 0.06). Just as for the Robust-Control Benchmark Problem, as the

uncertainty used in the design process is increased the achieved robustness is also increased. Again,

the EAM design always increases robustness enough to guarantee stability throughout the design set,

while the approximate cost minimization techniques don't provide this guarantee. Their curves lie

below that of the EAM design. The EAM design curve has unity slope indicating that the EAM

design achieves extremely nonconservative stability over the parameter set used in the design as was

predicted by the analysis. The BAM design does come closer to guaranteeing stability than the

PEAM design which has difficulty extending the stability range. In particular, for the PEAM design,

increasing the design bound above/_,_ = 0.5 yields no increase in the achieved stability bound.

The design costs associated with the nominal system (rh = 0) are plotted as a function of the
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achieved lower stability bound in Figure 9. Figure 9 is an indicator of the design efficiency of the

robust design procedure. The EAM design is most efficient followed by the BAM design. In this

problem the PEAM design exhibited much better relative efficiency than in the previous section. It

cannot however yield controllers with stability bounds larger than 0.2. Increasing the design bound

has no effect on the achieved bound. In essence the EAM design "stalls" out. This is possible because

there are no stability guarantees associated with a given design bound.

The output costs are the chief contributors to the total cost as shown in Fig. 9. The control cost

shown in Fig. 9 is lowered in all of the designs methods so as to increase the achieved stability

robustness. Lowering the control cost is indicative of lower gain controllers. This is the opposite

trend as the one observed in the benchmark problem where the control cost increased with greater

achieved stability range. For the Cannon-Rosenthal Problem there are modes which cannot be phase

stabilized due to the large phase uncertainty caused by the pole-zero flip. The only alternative left

to the robust design procedure is gain stabilization as was employed.

7 Experimental Implementation

In this section, experiments on robust control of an optical pathlength on the MIT multipoint align-

ment testbed will be presented. The testbed was designed as a technology demonstrator for active

control of precision structures with particular emphasis on technology necessary for very large baseline

optical interferometry. In consideration of this purpose the stabilization of an optical pathlength using

an active member within the structure was chosen as a characteristic problem. Detailed descriptions

of the testbed hardware including the active member actuators, laser metrology systems, and real

time control computer are available in Ref. [20] and will not be presented here. The particular prob-

lem considered is an SISO control loop from an active member located behind siderostat A to optical

pathlength from siderostat A to the vertex at F, as shown in Figure 10. The problem is noncolocated

and particulary difficult due to the inaccuracies of the model used for control design.
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and Control Cost as a Function of the Achieved Stability Bound.

All controllers designed in this section are based exclusively on the finite element model of the test-

bed with the exception of DC gain information. The intent is to compare the achievable performance

of an LQG compensator designed using the inaccurate model with that of a cost-averaging based

compensator designed with explicit treatment of the model uncertainty. A comparison of the FEM

and the measured transfer functions is shown in Figure 11. The modal frequencies of the FEM are

an average of 5-10% in error and the damping ratios are as much as 100% in error. More importantly

the modal residues and relative controllability and observability of the modes are in error especially

in the region above 50 Hz. The plot of the magnitude of the error transfer function is shown in Figure

12. The additive error exceeds one at almost every mode. Small gain theory measures of robustness

would require a compensator to roll-off significantly before the first mode. In addition to the modal
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Figure 10' Schematic of the MIT multipoint alignment testbed showing controller optical path (A-F)

and the active member control actuator (A).

errors there is phase drift caused by mismodelled time delay associated with the real time control

computer.

The finite element model has 45 modes in the range from 0.3 (suspension) to 159.7 Hz. It was

necessary to reduce the size of the model for control design. Initially, the model was truncated to

retain only the 20 modes in the 10-100 Ha range. The model was further reduced by truncating a

balanced realization of the system to the desired order. The controllers were then derived using the

reduced system model. Initial experience with LQG controllers penalizing pathlength and control

showed that there was no difference in achievable experimental performance when using either a 22

order compensator designed from the reduced FEM or a fourth order compensator designed from a

further reduced model. The large uncertainties between the model and the plant limited performance

to a gain level below that at which the compensator order effects became important. This fact,

coupled with the severe model size limitations imposed by the computation of the averaged-cost

based controllers, leads to the selection of a fourth order design plant shown in Figure 13. A mode

was retained in the design model at 56 Hz to represent dynamics in the critical region of model

uncertainty, those modes from 50-70 Hz.

Two types of controllers were designed and compared based on the fourth order design plant. The

first was a LQG based design penalizing optical pathlength error as well as active member control

voltage. The plant disturbance entered at the actuator, and the sensor noise entered in the optical

pathlength. The pathlength error penalty and disturbance magnitude were normalized to unity while

the effective compensator gain was changed by varying the control penalty and sensor noise intensity

together. There is thus only a single variable weight used to generate the family of compensators

presented.

In the LQG design the mode at 56 Hz was considered certain. In the average cost based design,
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this mode was assumed to have an uncertain natural frequency varying in the range of -t-30% about the

nominal. It was hoped that this natural frequency uncertainty would discourage the compensator from

plant inversion in the highly uncertain region from 50-70 Hz. The Bourret approximate average cost

design technique was chosen because of its superior performance in the analytical sample problems.

The weightings used in the Bourret cost minimization were identical to those used in the LQG
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problem.
The closed loop results for compensators based on the two design methods (LQG and Bourret)

are presented in Figures 14 - 15. Figure 14 presents the tradeoff between achieved performance and

controller effort expended. The performance is a measure of the rms pathlength error nondimension-

alized by the open loop rms in the frequency range from 10-100 hz. The control effort is the rms

control signal normalized by this same quantity. There is a clear performance improvement with the

use of active control. As more control effort is expended, the rms pathlength error can be decreased

to only 25% of its open loop value before the onset of instability. The achieved performance-control

effort trade eventually diverges at high gain from that predicted when applying the compensators to

the full order FEM. This divergence occurs when either controller has a bandwidth which encroaches

on the highly uncertain modes in the range from 50-70 hz.

Both the LQG and the Bourret controllers go unstable at approximately the same level of gain.

The best achieved experimental closed loops for the two controllers are shown in Figure 15. The

robust controller was not able to add significantly to the achievable performance using the assumed

single-mode uncertainty structure. As shown in Figure 15, it did change the actual mode which first

goes unstable from one at 52 hz to one at 56 hz. Figure 16 shows the predicted performance of the

compensators (LQG and Bourret) on the full order FEM. In contrast with the actual system, the

modes from 50-70 hz in the FEM do not interact unstably with either compensator.

The poor modelling of the modes in the 50-70 hz region may require the use of multiple uncertain

modes in the compensator design rather than the single mode used in the present robust control

design. Since the present implementation of the Bourret controller design method is computationally

intensive, these designs are effectively limited to accommodate only a few (1-3) uncertainties and a few

modes. Practical application to this problem will require improved controller computational methods

(more computer power) and/or better methods for selecting which uncertain modes and parameters

should be retained in the design.
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8 Summary and Conclusions

The problem of computing the exact and approximate average 7/_-norm of a linear time invariant

system has been addressed. This was motivated by showing that bounded average 7-/2-norm implies

stability throughout the model set. Therefore minimization of the average cost will guarantee stability
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Figure 16: FEM based Analytical Open Loop (solid), Bourret Approximate Average Closed Loop

(dashed), and LQG Closed Loop (dotted) Transfer Functions

without having to resort to worst case design techniques. Because the exact average cost is essentially

uncomputable, two approximations were applied to the problem. The first approximation is based off

of a perturbation expansion about the nominal Lyapunov equation solution, while the second is based

on a more sophisticated technique widely used in the field of random wave propagation and turbulence

modelling. Using these approximations, cost functionals were derived which are not parameterized

and therefore suitable for control synthesis.

The average performance problem was formulated for dynamic output feedback. The cost mini-

mized was represented by either the exact average, the perturbation expansion approximation, or the

Bourret approximation to the average. Each cost minimization yields different necessary conditions

and different properties for the resulting controllers. When the exact average cost is minimized they

yield controllers which guarantee stability throughout the model set. Minimizing the approximations

to the average increased robustness over the non-augmented cost minimization, (LQG), but did not

necessarily guarantee stability throughout the model set. The numerical examples indicated that

the Bourret approximation produced controllers whose properties more closely approximated those

of the exact average based controllers. The Bourret approximate average minimization also resulted

in less cost increase for a given stability range and can thus be considered a more efficient design

methodology than the perturbation approximation minimization.

The experimental application of the method to pathlength control on the MIT multipoint align-

ment testbed revealed some weaknesses in the techniques. The controllers were calculated using an

interative parameter optimization which was computationally intensive. The difficulties in controller

calculation presently limit the methods applicability to robust control on large order systems with

many uncertain parameters. The methods could however be profitably applied to the problem of

uncertain model reduction where the computation requirements are not as great. Further work is

underway in the area of uncertain model reduction and selection of appropriate uncertain parameters

for retention in control design.
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Abstract

New frequency response measurement procedures, on-line modal tuning techniques, and off-

line modal identification algorithms are developed and applied to the modal identification of

the Advanced Structures/Controls Integrated Experiment (ASCIE), a generic segmented optics

telescope test-bed representative of future complex space structures.

The frequency response measurement procedure uses all the actuators simultaneously to

excite the structure and all the sensors to measure the structural response so that all the

transfer functions are measured simultaneously. Structural responses to sinusoidal excitations

are measured and analyzed to calculate spectral responses. The spectral responses in turn

are analyzed as the spectral data become available and, which is new, the results are used to

maintain high quality measurements. Data acquisition, processing, and checking procedures are

fully automated.

As the acquisition of the frequency response progresses, an on-line algorithm keeps track of

the actuator force distribution that maximizes the structural response to automatically tune to

a structural mode when approaching a resonant frequency. This tuning is insensitive to delays,

ill-conditioning, and nonproportional damping. Experimental results show that it is useful for

modal surveys even in high modal density regions.

For thorough modeling, a constructive procedure is proposed to identify the dynamics of

a complex system from its frequency response with the minimization of a least-squares cost

function as a desirable objective. This procedure relies on off-line modal separation algorithms

to extract modal information and on least-squares parameter subset optimization to combine

the modal results and globally fit the modal parameters to the measured data. The modal

separation algorithms resolved modal density of 5 modes/Hz in the ASCIE experiment. They

promise to be useful in many challenging applications.

Keywords: modal characterization, system identification, flexible structures, segmented optics

0 BACKGROUND

Active control for large flexible structures has been the object of 15 years of research, yet because

of the lack of experimental demonstrations traceable to actual developments, it has not been ira-
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plemented in a single space mission. Much work has been done on not so large and not so complex

flexible structures. As a result, numerically tractable and numerically robust procedures and algo-

rithms for modeling and high performance control of truly large and complex systems are lacking.

Precision segmented reflectors are major examples of systems where the size and the complexity is-

sues arise. The Keck Ten Meter Telescope, soon to be operational on Mount Mauna Kea in Hawaii,

is one of them. The Keck primary mirror is composed of 36 hexagonal segments. The control

system uses 108 actuators and 162 sensors to maintain the segments optically aligned. The Keck

structure has 150 modes below 50 Hz with a modal density as high as 25 modes/Hz. Regrettably,

the Keck telescope will not benefit from structural control technology.

To address the challenges specific to the active control of precision segmented optics, and to the

active control of complex flexible structures in general, the Lockheed Palo-Alto Research Laboratory

designed and built the Advanced Structures/Controls Integrated Experiment (ASCIE). The ASCIE

test-bed emulates a telescope with a segmented mirror. Its seven-hexagonal-segment primary mirror

is mounted on a lightweight flexible truss structure. The six peripheral segments are actively

controlled by 18 electromagnetic precision actuators. 24 position sensors measure the relative

displacements between the segments. The ASCIE segmented optics and support structure have

50 modes below 50 Hz. The ASCIE control hardware [1] which has been designed to meet the

strict requirements for precision control of segmented optics has demonstrated segment alignment

performance down to 60 nanometers rms. Using a non validated Finite Element Model and worst

case control design techniques, a factor of 3 to 5 improvement in segment alignment bandwidth

was achieved over classical control techniques, and vibration attenuation in 25 out of 28 controlled

modes was experimentally demonstrated.

The objective of the present work is to develop a dynamic model of ASCIE from experimental

input output data. The objective is twofold. One objective is to test how accurately the dynamic

behavior of complex systems like ASCIE can be predicted by Finite Element Analysis (one to

one comparison between the Finite Element and the identified models requires careful system

identification to extract all the natural modes of the system including those with relatively low

response). The other is to develop a control design model. This model will be used to test

how much improvement in segment alignment bandwidth and structural vibration suppression is

achievable using an identified versus an FEM model. This paper reports on our work in modeling
ASCIE.

1 INTRODUCTION

In this paper, a new modal characterization technique is developed. It identifies structural modes

by applying the principles of gain (singular value) analysis during both the on-line data acquisition,

and the off-line parametric identification processes.

The new characterization technique is applied to identify the dynamic model of the ASCIE

segmented optics test bed. It coped successfully with the enormous task of estimating more than

2000 modal parameters. 50 modes were identified. The modes come primarily in two dense clusters:

one cluster in a 5 Hz frequency band contains 18 modes; the other in all 8 Hz frequency band contains

12 modes. The ASCIE high modal density structure is representative of complex space structures.

For large flexible structures, present characterization techniques do not provide a reliable strat-

egy to collect response data that have information about all of the dynamics of the test article, and
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they become numerically untractable when it comes to extracting the dynamic information from

the test data, particularly when the data is rich in modal information in some frequency bands [2].

To properly excite all of the dynamics of a large structure, wide-band random excitations,

or impulse excitations requires levels of energy that would alter the integrity of the structure.

Therefore, unless new excitations strategies are found, the Total Least Square [3] and the Eigenvalue

Realization Algorithm [4] which are, at present, two popular identification techniques based on

these types of test signals, as well as many other techniques, will only find limited engineering

applications.

With system size blowing out the work space and the processing time requirements, and high

modal density introducing numerical ill-conditioning, extracting the dynamic information from the

test data for large structures is a computationally challenging task. The size, a function of the

number of inputs, number of outputs, and number of modes, is a critical factor as the amount of

data to be processed can exceed the work space of most current computers. On actual hardware,

identification techniques have so far only been demonstrated on relatively small size systems [5],

[6]. At present, no technique has addressed the computational complexity associated with high

modal density structures.

When they do not require prohibitive testing time, classical sinusoidal or multitone excitations

can be used to systematically excite all of the dynamics of a test article [7], [8], [9]. For these

test signals, the characterization task is one of fitting a linear time invariant model to a measured

non parametric complex admittance matrix. This is known to be a difficult task, and even the

most recent single-input single-output, or single-input multiple-output fitting techniques exhibit

serious numerical problems for relatively simple systems [10]. For high modal density structures,

these techniques would be inappropriate because they would fail to differentiate natural vibration

modes. The problem of modeling dynamic systems from their measured frequency responses has

motivated some new efforts in rational interpolation theory [11], [12], [13], but whether these efforts

effectively address the practical issues has still to be demonstrated.

Our work was to explore new excitation techniques for data acquisition using sinusoidal test

signals, and new algorithms for extracting modal information from the non-parametric frequency

response test data.

The data acquisition process we tested is classical, but the way we implemented it is not.

Steady state responses to sinusoidal excitations were analyzed to determine the system admittance

matrix at a given frequency, and frequency sweep was used to determine the full non parametric

frequency dependent system admittance matrix. System non-linearities were handled via harmonic

analysis. But, with what is new at each frequency, a system inversion was approximately realized

to achieve good signal to noise ratio. In addition, the principal system admittance g_ns and

associated input and output patterns were determined. This approach yields some important and

inherently multivariable properties of the system being tested: namely, the modal frequencies, the

modal dampings, what is new, and the mode shapes because, at a resonant frequency, the maximum

system admittance gain is obtained when the actuator inputs are combined so as to excite a pure

mode. Dwells in both spatial and frequency domains are performed which is critical to the modal

identification of complex symmetric lightly damped structures, since for such structures tuning to

the resonant frequency alone fails to isolate closely spaced modes.

When the acquisition process was completed, a parametric modal model was fitted to the full

non parametric measured system admittance matrix, a_d new algorithms based on low rank matrix
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approximation,or on convexand quadraticoptimizationtechniqueswereusedto carryone step
further the identificationof the modalparametersstartedduringthe dataacquisitionprocess.The
algorithmsareusedrepeatedly.Eachtime they arecalled,they extract oneor severaldominant
natural modesfrom the nonparametricresponseoveraprespecifiedfrequencyrange.To identify
a mode,they usethe modalinformationcontainedin the maximumsystemadmittancegainand
its associatedinput and output patterns,and the consistencyof this modalinformationoverany
specifiedfrequencyrangeto giveaccuratemodalparametersfreeto the extentpossiblefrom the
contributionsof thenearbymodes.

The paperis organizedasfollows.Section2 describesthe ASCIE high modaldensityflexible
structurethat wasusedto demonstratethe newmodelingtechniques.In section3, wediscuss
someof the issuesinvolvedin gatheringa goodsetof input-output data for modelingcomplex
flexiblestructures. In section4, measuredfrequencyresponsedata areusedto exploresomeof
thedifficultiesassociatedwith the modalcharacterizationof theASCIEsegmentedopticstest-bed,
andto definea sensibleoptimizationcriterionfor parametricidentification.In section5,wediscuss
thechoiceof a modelfor flexiblestructuresandmodaltestingundervariousassumptions.Section
6 addressesour work in data acquisitionand on-line modal testing, and its application to the
ASCIE experiment.Section7 addressesour work in off-linemodalanalysis,in modelrefinement
via parameteroptimization,andits applicationto themodalidentificationof ASCIE.

2 ASCIE TEST-BED

The ASCIE emulates an f/1.25 CassegraJn telescope* Its seven-hexagonal-segment primary mirror

is mounted on a lightweight flexible truss structure. The six peripheral segments are actively

controlled in three degrees of freedom by 18 linear electromagnetic precision actuators. 24 Kaman

position sensors (4 per actively controlled segment) are used to measure the relative displacements

between the segments and generate commands for the actuators to keep the segments optically
aligned, the central segment acting as a reference.

Non Colocated sensing: The edge inductance sensors measure the relative positions of the

primary mirror segments. The central segment, instead of the support structure which lacks di-

mensional stability, is used as a reference. The edge sensors have a 60 nanometer rms resolution

below 5 Hz, and a large measurement range (4-1 mm) to accommodate the initially large segment

misalignments. A laser optical system, not described, is used for initial calibration and system

alignment. In future works, this system will also be useful for optical scoring.

Actuation: The actuators have been specially designed at Lockheed [1] to meet the strict reso-

lution, dynamic range, smoothness of operation and bandwidth requirements for precision control
of segmented optics. When driven in force mode, their bandwidth is 140 Hz. Each actuator is

instrumented with an automatic system providing force offioading to reduce power dissipation.

Colocated sensing: Each segment alignment actuator is instrumented with a colocated Kaman

inductance position sensor. Each sensor has a 60 nanometer rms resolution below 5 Hz, and a

measurement range of + 1 mm.

Truss structure: The structure was designed and optimized to emulate a large telescope structure

while being able to support the mirror segments in a 1-g environment. Its modal distribution

contains several dense clusters and is fundamentally different from the well-spaced distribution of
beamlike structures.

*See following page for an actual photograph

of the ASCIE Test Bed.

668



d,..ACK AND WH;TE F'HOTOGfiAPH

• o.

i

• !_ i

ASCIE Test Bed

669



Real-time processing and data acquisiton: The ASCIE computer and graphic set up includes

an Array Processor, a mini computer, two PCs, and an input/output unit. The Array Processor is

an AP-120B, a 12 MFlops machine with 64K of internal memory from Floating Point Systems, fully

programmable from the Harris-800 mini computer. The Array Processor is the main computational

unit and it is responsible for real-time control processing, signal generation, and real-time Direct

Memory Access data transfers to a 256 Kbytes internal memory block residing on the Harris-800

mini computer. The Harris-800 and the PCs are used to monitor the ASCIE experiments via

graphical displays of the Kaman sensor readings, the actuator commands, and the mirror segment

piston and tilt misalignments. The input/output unit is composed of 32 16-bit analog to digital

and 18 16-bit digital to analog converters.

3 CHOICE OF AN EXCITATION TECHNIQUE

System identification can be divided in two phases: a data acquisition phase and an analysis phase.

The acquisition phase is particularly important because the quality of the test data determines the

quality of the identified model. Good data acquisition requires exciting all of the dynamics of the

test article and maintaining good signal to noise ratio via an appropriate choice of the excitation

signals. Commonly used excitation signals include impulses, random, and sinusoidal signals. Few

impulses or wide-band random excitations are needed to characterize the dynamics of a test article

because the response of a system to such excitations is rich in dynamic information. In contrast,

many sinusoidal excitations are needed to completely characterize a test article because sinusoidal

test signals yield dynamic information at the test frequency only.

Impulse and random excitations allow fast testing, but in practice good signal to noise ratios can

be difficult or impossible to achieve with them. Good signal to noise ratio in system identification

means that the system response to the excitation is much larger than the system response to the

natural disturbances in the whole test frequency range and in all the output dimensions. To ensure

good signal to noise ratio, the magnitude of impulse excitations needed to test a complex structure

like ASCIE would be destructive. Random excitations offer some more flexibility because filters

can be used to concentrate or reduce the energy of the excitation in any desired frequency range.

However the magnitude of the response of a multiple-input multiple-output lightly damped system

can be quite different depending on the output dimension considered. Consequently if one attempts

to maintain good signal to noise ratio in all output dimensions using shaped random signals in some

frequency range containing resonant frequencies one may end up resonating the system excessively.

Of course, filters could be found to properly shape the excitation in all the input dimensions. This

could only be achieved through an iterative testing procedure, because the design of the filters then

requires the a priori knowledge of the model of the test article to be found which is impractical.

In contrast, using sinusoidal excitations, it takes much more time to test a system, but it is

relatively easy to maintain a given signal to noise ratio and yet ensure non-destructive testing

because sinusoidal signals act at a single frequency and in a single input dimension at a time. For

this work, we therefore opted for sinusoidal excitations. The complete data acquisition procedure

followed for ASCIE is detailed in the data acquisition section, 6.3. The remaining of this section

explains how we implemented sinusoidal testing at a given frequency and for a given input direction:

• Two digital sine waves of the same frequency and 90 degrees out of phase are generated by
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the Array Processor (AP) and used to construct 18 digital sine waves of the same frequency

and different amplitudes and phases.

u(n) = uc * cos(2,7r • n • of/s f) + us • sin(2 • rc • n, of/s f)

n is the normalized time, u(n) is a vector of size 18, u is the vector sequence of the 18 digital

sine waves, 7r is the number pi = 3.14159..., of is the test frequency, sf is the sampling

frequency, uc and us are two constant vectors of size 18 used to vary the amplitudes and

phases of the 18 sine waves.

The 18 digital sine waves are converted into 18 analog signals using 18 digital to analog

converters (a2ds). The resulting 18 analog signals are used to command simultaneously the

18 ASCIE segment alignment actuators.

The 24 analog edge sensor measurements (or the 18 colocated sensor measurements) are

converted into 24 (resp. 18) digital signals using 24 (resp. 18) analog to digital converters

(d2as) and recorded in real time. The digital signals are then analyzed to extract the coherent

(in phase) and the quadrature (out of phase) responses of the ASCIE system to the sinusoidal

excitation u. During the analysis, the biases and the harmonic components of the vector

response are also extracted.

y(n) = yc* cos(2* r * n, of/s f) + ys • sin(2,7r • n • of/s f)

n is the normalized time, y(n) is a vector of size 24 (resp. 18), y is the vector sequence of

the 24 (resp. 18) fundamental digital sine wave responses, yc is the constant vector of size

24 (resp. 18) of the coherent responses, ys is the constant vector of size 24 (resp. 18) of the
quadrature responses, of is the oscillator frequency of the sine excitation, ,f is the sampling

frequency.

4 CHOICE OF AN OPTIMIZATION CRITERION

System identification from measured frequency responses involves fitting the parameterized transfer

function matrix of a theoretical linear time invariant system to a measured transfer function matrix

at selected frequencies. A criterion is needed to quantify the error between the theoretical and the

measured responses at the test frequencies. Most criteria quantify either the average or the peak

of the absolute or relative error. To guide our choice, we first discuss the nature of the errors to be

expected when dealing with a system like ASCIE.

4.1 Nature of the errors to be expected

We shall classify the identification errors in two categories: stochastic errors, and systematic errors.

Stochastic errors reflect our inability to access the true behavior of the system being tested.

Sensor noise, seismic disturbances, laboratory air turbulence, laboratory temperature changes, and

measurement unrepeatability for example contribute to these errors in the ASCIE experiments.

Long term variations a/so contribute in the ASCIE experiment since the testing lasted severa2

weeks. The magnitude of these errors can be reduced to a negligible part of the response by careful
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experimentation (e.g. vibration isolation, temperature controlled chambers, thermally stabilized

electronics) and by careful data acquisition (e.g. averaging to improve repeatability, filtering to

reduce the effect of sensor noise and stochastic disturbances).

Systematic errors reflect our inability to capture the true behavior of the system being tested

using "reasonable size" linear systems. System nonlinearities are the main source of these errors.

As we shall discuss below, the choice of a criterion in the ASCIE experiment is driven by the

systematic errors which can be large and highly structured.

To test the ASCIE hnearity, the non colocated frequency response of the ._tSCIE primary mirror

and support structure between 15 and 18 Hz was measured for two different amplitudes of the test

signals. In the first measurement, the overall amplitude of the segment alignment force excitation

was set to give a constant 50 pm root mean squares measured edge sensor response throughout

the frequency sweep. In the second measurement, the overall amplitude of the force excitation was

set to give a constant 100 #m root mean squares response. The amplitude of the excitation was

therefore approximately twice that of the first measurement. Figure (1) and Figure (2) show the

principal gains of the two measured transfer function matrices versus frequency.

Vlq_i_Jl:l,_-_¢ ( _IZ )

Figure 1: Measured non colocated frequency response of ASCIE for low amplitude test signals

Table (1) contains the dynamic parameters of the two 4-mode-models (Figure (3), and (4))

fitted to the measured frequency responses. It shows about 1% variation in the modal frequencies

and up to 50% variation in the modal dampings between the two measurements. The ASCIE

response therefore depends highly on the amplitude of the test signals which is typical of nonlinear-

ities. No matter how good the measurements are, the fit errors will remain large because of these
nonlinearities.

To illustrate, now a posteriori, the kind of fit error to be expected in the ASCIE identification

experiment, we have taken the 50 mode colocated ASCIE identified model (Figure (9)), and per-

turbed randomly its modal frequencies by 170 or less, and its modal dampings by 1070 or less. We

then plotted the gains of the absolute error (Figure (5)) and of the relative error (Figure (6)) thus

generated. The errors are relatively large. They are representative of what can be expected by

fitting a linear model to the measured response of a system which exhibits significant nonlinearities.
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Figure 2: Measured non colocated frequency response of ASCIE for high amplitude test signals

MODE NUMBER

LOW AMPLITUDE TEST SIGNAL HIGH AMPLITUDE TEST SIGNAL

DAMPING
%

2.26
1.71
0.78
3.51

FREQUENCY DAMPING (increase %)
(Hz) %

15,16
15.81
16.20
17.38

1,91 (-16 %)
0.94 (-45 %)
1.01 (+29 %)
1.65 (-53 %)

FREQUENCY (increase %)
(HZ)

15.03 (-o.9 %)
15.73 (-0.5 %)
16.04 (-0.9 %)
17.09 (-1.6 %)

Table 1: Measured modal parameters for two different amplitude test signals

For instance, Figure (5) should be compared to Figure (21) which shows the actual absolute error

between the calculated and the measured ASCIE colocated frequency response.

The above observations have far reaching consequences. Most shift invariant identification

techniques are based on the premise that the underlying system to be identified is linear. All

the errors according to these techniques are treated as measurement errors. This premise is false

in the ASCIE experiment and we would like to emphasize further the fundamental differences

between measurement and systematic errors. Experimentally, it is possible to quantify how good

the measurements are. For instance, bounds and variances of the measurement errors can be

estimated, and used a priori in an identification algorithm. Deviations from finearity in contrast

cannot be treated as measurement errors because they cannot be quantified a priori without being

very conservative. For instance, according to Figure (5) an overall bound on the identification error

would be 4 (the peak response of the system is about 8). Non conservative error bounds in this

case are highly structured. Constructing such bounds would require the a priori knowledge of the
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Figure 3: Calculated non colocated modal frequency response of ASCIE for low amplitude segment

alignment input forces

model to be found which of course is impractical.

4.2 Relative versus absolute error

Criteria based on the relative error require that the number of measured responses be equal to

the number of input forces. When this is not the case, the measurements or the input forces

must be constrained, or generalized inverses must be used. For instance, for ASCIE in its non

colocated configuration, a geometric transformation could be used to map the 24 edge sensor

measurements into 6 piston, 6 petal, and 6 twist motions of the outer mirror segments thus making

the number of outputs and the number of inputs e_ual. However, because the folding motion of the

outer mirror segments produces small relative displacements of the mirror segments at the sensor

locations, the non colocated ASCIE system is ill-conditioned (the condition number of the static

transformation is about 40). Relative error criteria would not appropriately quantify the fit errors in

this case because relatively small measurement errors could make the measured frequency response

singular and produce large relative errors. In general, relative error criteria are inappropriate for

identification of ill-conditioned systems from noisy data. Even when the system is not statically

ill-conditioned, ill-conditioning may still appear near the zeros of the system leading again to the

problems mentioned above. We shall therefore only consider criteria based on the absolute error
for this work.

4.3 Average versus peak errors

The ASCIE segmented optics and support structure exhibit significant nonlinearities. As discussed

above, non conservative bounds on the identification errors cannot be developed a priori in this

case, so H_ peak-error-based identification techniques cannot be used. Figure (5) and Figure (6)
show that this is the case whether absolute or relative errors are considered.
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Figure 4: Calculated non co]ocated modal frequency response of ASCIE for high amplitude segment

alignment input forces

Average-based identification techniques such as least-squares, in contrast, do not require any a

priori error information: they correlate the measured data at the test frequencies to minimize an

average of the modeling errors. As opposed to H_ methods, they do not guarantee any bound on

the identification error; however, such a bound can always be found a posteriori. For the reasons

exposed above, but also because its cost function is easy to compute, and relatively easy to optimize

which is critical when dealing with large complex systems like ASCIE, least-squares identification
will be used in this work.

Let H(s) be the parameterized transfer function matrix of a theoretical system (s is the usual

Laplace variable), let H],. • •, Hn be the ASCIE measured frequency responses at the test frequencies

j'o-,1,... ,jWn, respectively, the least-squares criterion J0 is:

Jo(H) = __, Trace [(Hi - H(jaq))*(Hi - H(j,_i))]
i=l

(i)

4.4 Overview of optimization strategy

The optimization of J0 over the set of linear transfer function matrices is a difficult nonlinear

optimization problem. About 50 modes are needed to model the dynamics of the ASCIE segmented

optics and support structure up to 50 Hz. For the colocated identification problem, J0 therefore

depends on approximately 1900 modal parameters. Brute force optimization methods would require

an excessive amount of computer time and would most certainly fail to converge if they were not

started near a minimum. The proposed optimization strategy is a classical two step initialization-

optimization. However, because of the complexity of the present identification problem, a lot of

effort is put into the initialization procedure.
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Figure 5: Absolute error generated by perturbing the modal parameters of the 50 mode colocated
ASCIE identified model

4.4.1 Initialization procedure

The initialization attempts to find good estimates of the system modal characteristics, if possible,

close to the global minimum of J0. New algorithms are developed to this effect. Some of these

algorithms give lower bounds on J0 that can be used to test the proximity of the global minimum

(the lower bounds are tight in the sense that if, for some theoretical model, the theoretical and the

measured responses are identical, then the lower bound is achieved).

4.4.2 Optimization procedure

The optimization attempts, starting from the modal parameters estimated in the first step, to reach

a minimum. An explicit 2nd order parameter subset optimization method is applied to this effect

instead of standard global optimization methods which are computationally too intensive.

5 MODAL DESCRIPTION OF STRUCTURAL SYSTEMS AND

MODAL TESTING

The small motions of a structure are best described by a set of partial differential equations.

However because it is difficult to derive such a set of equations from physical principles, and

because such a set of equations is difficult to use anyway, the dynamics of a structure are often

described by a set of equations that describes the motion of the structure at a finite number of

selected points called nodes. Such a set of equations is given by:

M 2+L_+Kz=f (2)

where M is the mass matrix, K is the stiffness matrix, L is the damping matrix, z is the vector of

the displacements at the selected nodes, and f is the vector of the forces applied at the selected
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Figure 6: Relative error generated by perturbing the modal parameters of the 50 mode colocated
ASCIE identified model

nodes. M and K are positive definite matrices. They can be constructed, using Finite Element

Analysis, from the geometric and material properties of all the structural elements that make the

system. In contrast, for most structures, analytical methods alone fail to construct the matrix L. L

need not be symmetric. Very often, L is assumed to be relatively small, and in most Finite Element

Analyses it is set to 0. The force vector f is typically composed of known (or control) forces u, and
unknown environmental disturbance forces d. Control forces apply to only some of the nodes, so

that the force vector can be rewritten:

f = Eu+d (3)

E is the control distribution matrix.

The displacements, the velocities, or the accelerations at some selected nodes may be measured.

When only the displacements at some of the nodes are measured, the measurement equation is:

y= S z + e (4)

S is the sensor distribution matrix, e is the measurement error vector.

5.1 Modal description and modal testing of structures with proportional damp-

ing

Under the proportional damping assumption, L is a linear combination of M and K. This assumption
is often made for convenience, not on physical ground. The dynamic equations of the structure (2)

can then equivalently be described by a set of dynamically uncoupled 2nd order ordinary scalar

differential equations. Each of these equations describes what is called a natural structural mode.

Such a set of equations is obtained using the modal transformation:

z = q_q (5)
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such that

cTM ¢ = I (6)

cT K ¢ = f/2 (7)

where I is the identity matrix, and where f/is the diagonal matrix of the modal frequencies. The

columns of ¢ are the mode shapes, and q is the vector of the modal coordinates. Under the

proportional damping assumption, the matrices M, L, and K can be simultaneously diagonalized,
so that we can also write:

cTL ¢ = 2 { ft (8)

where _ is the diagonal matrix of the modal dampings (or damping ratios).

The dynamic equations of the structure can then be rewritten:

{ _l+ 2 _ fl (7+ f_2q = B2u + CTd (9)y=Clq+e

where we have defined B2 = CTE and C1 = S ¢. According to these definitions, the rows of B2

are the mode shapes at the actuator locations, and the columns of C1 are the mode shapes at the

sensor locations.

5.1.1 Spectral description of structures with proportional damping

According to (9), the transfer function matrix from actuator commands to sensor measurements is:

H(s) = Cl(s2I + 2 _gt s + f_2)-lB2 (10)

5.1.2 Modal testing of structures with proportional damping

When the proportional damping assumption is satisfied, if one had an actuator at each of the

structural nodes (E = I), one could excite each structural mode separately. For instance, to excite

only the first mode, one would set u = M¢lul where ¢1 is the first column of the modal matrix

¢. When actuators are available at only some nodes, the best that can be done to excite a mode

is to maximize the projection of the actuator force vector on the corresponding mode shape at the

actuator location. Similarly, when the proportional damping assumption is satisfied, if one had a

position sensor at each of the nodes (S=I), one could observe selectively each structural mode of the

system. For instance, to observe only the first mode, one would form the linear combination of the

measurements q = CTM y where again ¢1 is the first column of ¢. In general, this is not possible

if sensors are available at only some nodes on the structure. In actual hardware however one would

really need infinitely many actuators to excite a pure mode, and infinitely many sensors to observe

a pure modal response, because the columns of the modal matrix ¢ only interpolate the physical

mode shapes of the real system at the nodes.

Modal testing involves using the actuators simultaneously to excite the structure and the sensors

simultaneously to measure the structural response to isolate each mode of the structure and measure

its characteristics. In practice, it is difficult to carry out because of the limited number of actuators
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and sensors, and because the proportional damping assumption may be violated. Structural test

engineers circumvent the first limitation by using many shakers and many accelerometers. This

procedure is invasive because the extra hardware modifies the mass and inertia properties of the

article being tested. The second limitation is not critical for very tightly damped structures.

Assuming that the mode shapes at the sensor and at the actuator locations are orthogonal, then

testing pure modal response in actual hardware is easy because if a pure mode is being excited

at a resonant frequency, the various displacements at the sensor locations are all in phase with

respect to each other, and in quadrature with respect to the excitation. These properties form the

theoretical basis for many current modal testing methods.

5.2 Modal description and modal testing of structures with nonproportional

damping

When the proportional damping assumption is violated, it is still possible to find a set of dynam-

ically uncoupled 2nd order ordinary scalar differential equations to describe the system. The non

proportional damping allows a transfer of energy between modes. Consequently, a combination of

force and rate control is needed to excite a pure mode, and similarly a combination of position and

rate measurements is needed to observe a pure mode. From these physical considerations alone, the

modal equations of a linear system with non proportional damping, assuming that such equations

exist at all, must therefore have the following form:

(l+2_f_dl+Q2q= Bli_+B2u+Bdlcl+Bd2d
(11)

y = Caq+ C20+ D u + Ddd+ e

where q is the vector of the modal coordinates, fl is the diagonal matrix of the modal frequencies,

and ( is the diagonal matrix of the damping ratios. The distribution matrices involved in the above

set of equations are not all independent. For instance, if these equations model a system with force

command and position measurements then the following constraints must hold:

D =-C2B1
Dd = - C2 Bda (12)
C1B1 + C2(B2 - 2_f_B,) = 0

C1Bdl + C_(Bd2 - 2(f_Bdl) = 0

It is shown in Appendix C that the dynamic equations of a system with nonproportional dampang,

force commands, and position measurements can indeed equivalently be rewritten in the modal

form postulated above.

5.2.1 Spectral description of structures with non proportional damping

According to (11),(12), the transfer function matrix of a structural system with non proportional

damping, force commands, and position measurements is:

H(s) = (C1 + s C2)(s2I + 2 _12 s + Q2)-1($ B1 + B2) - C2B1 (13)

where CxB1 + C2(B2 - 2(QBa) = O.
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5.2.2 Modal testing of structures with non proportional damping

For a structure with non proportional damping, a combination of force and rate command is

needed to excite a pure mode, and a combination of position and rate measurements is needed

to observe a pure modal response. For a structure with non proportional daznping, when a pure

mode is being excited at a resonant frequency, the various displacements at the sensor locations

are not in phase with respect to each other, and not in quadrature with respect to the excitation.

It is therefore difficult to experimentally isolate the modes of a structure with non proportional

damping to measure their modal characteristics. Standard vector force excitation, and standard

tests for modal response purity fail in this case.

5.3 Reduced order modal description of structural systems

Infinitely many modes are needed to exactly describe the dynamic of a flexible structure. Only the

lowest frequency modes however are needed in practice. One convenient way to model the effect

of the "high" frequency modes at low frequencies is to assume that their response is quasi-steady,

which is equivalent to recover static fidelity. For instance, consider the modal expansion of the

transfer function matrix of a system with proportional damping:

cibl (14)
Hoo(s) = __, s2 + 2_,w,s + w_

i=1

Keeping the first n modes and assuming that the response of the other modes is quasi-steady, an

approximation of H_ at low frequencies (say below wn) is:

'_ cibi o_ cibi (15)
= + + +

i=1 i=n+l

or in matrix form with the obvious definitions:

H(s) = C(s2I + 2 (fl s + fl_)-l B + D (16)

5.4 Spectral descriptions used in this work

Two spectral descriptions will be used in the ASCIE identification. Both of them can account for

non proportional damping.

The first description is closest to the physical system:

H(s) = C(M s 2 + t s + K)-'B + D (17)

C is then the sensor distribution matrix, B is the control distribution matrix, and D accounts for

the contribution of the unmodeled modes at low frequencies. M, L, and K can be viewed as the

mass, damping, and stiffness of the system respectively seen at the actuator and at the sensor

locations.

The second description is a modal description:

H(8) -- (C1 + 8 C2)($2I + 2 _a 8 -[- a2)-1(8 B1 + B2) + D (18)
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with the physical constraint C1B1 + C2(B2 - 2(f_B1) = 0. This last description will be used for

parameter optimization. No attempt however will be made to enforce the physical constraint which

arises because only force commands and position measurements are used in the ASCIE experiment.

This is not a serious shortcoming because any good model approximation to the physical system

will tend to satisfy this constraint.

6 NEW ON-LINE MODAL TUNING, DATA ACQUISITION,

AND EXPERIMENTAL RESULTS

On-line modal testing is useful for limited modal surveys. It was first proposed by Lewis and Wrisley

[14]. Current on-line modal testing techniques were established in the late 70's early 80's [7]. The

excitation technique closest to the one used in this work is called modal dwell. It requires tuning

the polarities and the relative amplitudes at one frequency of several shakers located at discrete

points on the structure to produce a pure modal response. Several methods, such the "amplitude-

weighted sum of quadrature peaks" and the Asher [8] or Ibanez [15] determinant techniques, were

developed to detect the presence of a mode and determine the force distribution to produce tuned

modal responses. They assume that the response and the excitation, at a resonant frequency, are

in quadrature. Delays, ill-conditioning of the type encountered with ASCIE in its non-colocated

configuration, high modal density that alters the purity of the modal responses, all make these

methods unreliable for testing complex systems.

Classical modal testing of large systems is costly. It requires a lot of instrumentation, cabling,

and expensive data acquisition systems. Even though tuning techniques have been automated [16],

they can still require a prohibitive testing time. This time is typically larger than the time required

to measure the full frequency dependent system admittance matrix. The time to test complex

flexible structures is therefore better spent measuring admittance matrices which have "all" the

information about the system response. This relieves one from the requirement of exact tuning.

Modal parameters are then obtained off-line by processing the measured spectral data, not exper-

imentally. In testing ASCIE, the control hardware was used. No special purpose instrumentation

was added, a situation similar to on-orbit testing of a spacecraft.

6.1 New on-line modal tuning technique

In view of the above limitations, new tuning techniques must be developed for modal tuning

to become useful in practice. The approximate modal tuning objective used for ASCIE was to

maximize the root mean squares displacement for a given root mean squares force excitation. This

objective is the generalization of the single-input single-output force-displacement gain concept

to the case of multiple excitation forces and multiple measured responses. At each frequency,

to maximize this force-displacement gain, the relative magnitudes and the relative phases of the

various sinusoidal forces applied to the test article must be adjusted. When the maximum is

achieved, the corresponding normalized (unit) complex force vector is called a major principal

.force vector, the corresponding normalized (unit) complex displacement vector is called a major

principal displacement vector at the test frequency.

Classical modal tuning (or modal dwell) techniques can be difficult to implement. Experimental

factors such as number of excitations, number of responses, measurements non colocated with the
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excitations, delays, non-proportional damping, lack of orthogonality of the mode shapes in high

modal density regions, and ill-conditioning affect it or make it fail. In contrast, it is always very easy

to tune the force vector to the maximum displacement/force gain at a given frequency. One way to

do that is to measure the complex admittance matrix of the system at this frequency and compute

its singular value decomposition [17]. The physical and the analytical data are then related as

follows: the maximum singular value of the admittance matrix is the maximum displacement/force

gain of the system; the corresponding right (input) singular vector of the admittance matrix is

a major principal force vector; the corresponding left (output) singular vector of the admittance

matrix is a major principal displacement vector.

For lightly damped structures, gain tuning and modal dwell are very closely related. Consider

for example the modal expansion of the transfer function matrix of a lightly damped structure with

proportional damping:
n cibi

H(s)
K"

(19)
z'_gis_ + 2_iwis + w_i=1

where the ci's and the bi's are the normalized mode shapes at the sensor and the actuator locations,

respectively, and the ffi'S are SCalars. At the resonant frequency wi, the response of the system will

usually be dominated by the modal response of mode i:

ci bi

H (jwi ) ". 9i 2_iw? (20)

which shows that the maximum gain of the system at the frequency wi is nearly ai = _, that a

major principal force vector is nearly bi that is the mode shape at the actuator locations, and that

a major principal displacement vector is nearly ci that is the mode shape at the sensor locations.

The singular value decomposition of H(jwi) in this case is also approximately:

H(jwi) '_ aicibi (21)

Gain and modal tuning are therefore nearly equivalent. The former however has the significant

advantage of being easy to achieve experimentally.

Based on these ideas, it is easy to devise experiments to measure the modal parameters of

some mode. First perform a frequency sweep to measure the force-displacement system admittance

matrix in some frequency range around the resonant frequency of the target mode. Then find

analytically the maximum gain of the system in this frequency range by singular value analysis of

the measured frequency response. The frequency where the maximum gain reaches its peak is the

resonant frequency wi of the target mode, the right singular vector bT of the admittance matrix at

the frequency wi is the mode shape at the actuator locations, and the left singular vector cl of the

admittance matrix at the resonant frequency wi is the mode shape at the sensor locations. If the

singular vectors ci and bi are not real, then they can be replaced by real vectors whose product

best approximates cib i. Once the mode shapes bT and ci are available, a new frequency sweep can

be performed where the polarities and the relative magnitudes of the various forces are adjusted

according to biT and where a linear combination of all the responses is formed according to ci.

This sweep is analogous to a single-force-excitation single-response-measurement sweep and all the

standard experimental techniques to test modal purity, and measure the resonant frequency and

the modal damping of the target mode apply. For instance, phase displays can be used to test
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modalpurity andfind the resonantfrequency,andfreedecayfrom a forcedresponsecanbeused
to measurethe modaldamping.

6.2 Experimental demonstration of new on-line modal tuning technique

To illustrate the effectiveness of the experimental procedure described in the previous section,

the non-colocated admittance matrix of the ASCIE segmented optics and support structure was

measured between 22 and 33 Hz (Figure 7).
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Figure 7: ASCIE non colocated frequency response in high modal density region

The singular value decomposition of the admittance matrix at 27 Hz was then computed to

determine the mode shapes at the actuator and sensor locations of the dominant mode around this

frequency (note that the resonant frequency does not need to be known exactly). A single-input

single-output sweep using this mode shape information as described in the previous section was

then performed.

(Figure 8) shows the measured modal response. The phase plot shows that the phase drops by

180 degrees as the sweep goes through the resonant frequency as it should for a pure mode response.

The modal frequency and the damping ratio, obtained by curve fitting the modal response, are 26.9

Hz and 3.3% respectively.

Unlike current modal dwell techniques, gain tuning does not use any phase information. It

is purely based on the dominance of the modal response of the target mode near the resonant

frequency. Variations on the gain tuning technique which incorporate phase information are possible

but wiU not be explored here.

Of course, gain tuning will fail to isolate a target mode if its response does not dominate the

overall system response near its resonant frequency. This is the case in high modal density regions

if the modes have resonant frequencies close to one another, if mode shape orthogonality is only

approximately satisfied, and if the target mode has relatively low response. This is not however

a limitation specific to gain tuning; current modal dwell techniques would also fail in this case.

The fact is that it is in general impossible to experimentally isolate all the modes of a structure to
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Figure 8: Frequency response of dominant mode around 27 Hz extracted by on-line modal tuning

measure their modal characteristics. Analytical techniques that can determine the modal properties
of a structure without having to differentiate the modes must be used.

6.3 New data acquisition technique

In the previous section, we have introduced the concepts of principal gains, principal force vectors,

and principal displacement vectors, and illustrated their importance in on-line modal tuning, an

area the modal test engineers know well. The same concepts play a central part in the data
acquisition procedure described next.

Recognizing the difficulty of getting accurate estimates of all the modal parameters of such a

complex system like ASCIE using on-line modal tuning alone, the data acquisition process was

focused on acquiring good data that could subsequently be analyzed off-line.

The data acquisition process is a linear, multiple-force-excitation, sinusoidal sweep between 1

and 50 Hz. The sweep dwells every 0.05 Hz. At each frequency, the data acquisition proceeds as
follows:

(1) • A set of 18 estimated orthonormal complex principal force vectors and estimated prin-

cipal gains are defined. These gains give an estimate of the root mean squares response

to a unit force excitation vector whose components are distributed according to the cor-

responding principal force vectors. The principal force vectors and the principal gains

are set arbitrarily at the first test frequency. Subsequently they are updated from one

test frequency to the next following a procedure described later.

• Two 90 degree out of phase digital reference sine waves at the test frequency are gen-

erated by the AP-120B Array Processor. These sine waves are modulated to produce

18 sinusoida] signals to drive the segment alignment actuators. The relative phases and

amplitudes of these 18 sinusoidal signals are set according to the major principal force

vector to produce maximum displacement per unit force, and the overall magnitude of
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the excitation is set to give a 100 #m root mean squares displacement response. The

excitation is then applied.

The Harris-800 host computer waits for a specified length of time to allow the ASCIE

structure to reach a steady state response, and then requests the response data. The

reading of the 18 coIocated Kaman position sensors (or the 24 non colocated Kaman

position edge sensors) are then digitized and recorded in real-time together with the 18

discrete actuator commands in a 256 Kbyte buffer. Once the buffer is filled, the time

response data are transferred into the local host computer memory and analyzed. The

bias, the fundamental component at the excitation frequency, and a specified number

of harmonies are extracted from the recorded signal time-histories. For each signal, a

parameter indicative of the quality of the data, the TotaJ Wave Distorsion, is computed.

If a signal s is decomposed as:

s(t) = b + f(t) + h(t) + n(t) (22)

where the scalar b is the bias, the function f is the fundamental component, the function

h is the sum of a specified number of harmonics, and the function n is the noise, the

Total Wave Distorsion TWD of the signal is defined as:

TWD = Ilfll (23)
v/llhll + I1 112

The spectral data and the Total Wave Distorsion vector are stored in separate arrays.

The excitation and measurement procedure just described in correspondence with the

major principal force vector is repeated for the next principal force vector and so on

until all the 18 orthonormal principal force vectors are considered.

(2) • The transfer function matrix of the system is constructed from the measured spectral

data, and its singular value decomposition is computed. The right singular vectors, and

the singular values of this decomposition are the principal force vectors, and the principal

gains respectively of the system at the test frequency.

• The test frequency, the spectral data, the 18 principal gains, and the matrix of all 18

Total Wave Distorsion vectors are stored on a disk file.

(3) The frequency is incremented and (1) and (2) are repeated. The principal force vectors and

the principaJ gains computed at the last test frequency become the estimated principal force

vectors and principal gains at the new test frequency.

The iteration lasts until the whole frequency range between 1 and 50 Hz is covered.

The whole measurement procedure has several important features worth emphasizing:

• For small frequency sweep increments, the principal force vectors will change only slightly

from one test frequency to the next. Gain tuning is therefore approximately realized as the

data acquisition progresses. According to the previous sections, this in turn means that

modal dwell to the dominant modes of the system is also approximately realized as the data
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acquisition progresses. The frequency sweep increment could be decreased to achieve modal

frequency dwell when sharp increases in the maximum gain of the system are encountered

which indicates that the sweep is approaching a resonant frequency, but we did not include

this feature in our data acquisition procedure.

The overall amplitude of the excitation is always set, to the extent possible, to give a pre-

scribed overall displacement response. We have observed, by examining the values taken by

the Total Wave Distorsion parameter that the quality of the data acquired this way is better

than the quality of the data acquired by driving one actuator at a time. When the number

of measured responses equals the number of excitations, the above excitation method could

in fact be refined to produce nearly the same amplitude response at all the sensor stations.

This uniform excitation method would give very good quality data but we did not implement
it.

The overall amplitude of the excitation is always set, to the extent possible, to give a pre-

scribed overall displacement response. The overall amplitude of the excitation therefore de-

creases when passing through a resonant frequency. Modal test engineers have observed that

this excitation technique reduces the effects of the nonlinearities. We think that this obser-

vation must be taken with caution. It is true that this excitation procedure can be used to

ensure that the response will not exceed the working range of the instruments at any sensor

station, and to ensure that the structure will not be damaged by being resonated excessively.

This procedure is in a sense necessary for safe testing and yet maintaining good quality data.

A nonlinear structure, however, exhibits different response depending on the amplitude of

the excitation, varying the amplitude of the excitation continuously through the sweep might

therefore not be the best strategy.

7 OFF-LINE MODAL CHARACTERIZATION, NEW ALGO-

RITHMS AND APPLICATION TO ASCIE

This section describes new analytical techniques to extract the modal characteristics of a test

article for its measured frequency response. These techniques are very closely related to the on-

line gain-tuning-based-modal-dwell technique developed in the previous section, because they also

extract modes on the basis of the dominance of their response in some frequency range around

their resonant frequencies. Analytical modal separation is however easier to perform and more

powerful than experimental modal dwell: the frequency response of the system is available for

analysis over a whole frequency range and not just at the single test frequency; several modes can

be extracted simultaneously, when the resonant frequencies are close to one another and the mode

shapes are not orthogonal to each other; finally non dominant modes can be extracted from the

residual frequency response after the contribution of the dominant modes to the system response

has been removed. Like on-line modal dwell, the modal characteristics determined by analytical

modal separation are not optimal because their value is based on the response of the system in

some frequency range around the resonant frequencies and not on the system overall frequency

response. They are nevertheless very useful to start global optimization procedures. The following

section details the new algorithms and illustrates their application to the modal identification of
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the colocated frequency response of the ASCIE segmented optics and support structure (Figure 9).

Figure 9: Measured colocated frequency response of ASCIE

7.1 Algorithms for extracting the combined response of several dominant nat-

ural modes in a given frequency range

Consider the colocated frequency response of the ASCIE segmented optics and support structure

between 13 and 18 Hz (Figure (10)). We want to extract the modal response of the 4 dominant

natural modes of ASCIE in this frequency range.

Extracting a single mode response involves determining the proper distribution of excitation

forces and the proper linear combination of the measured responses (that is the mode shapes at

the actuator and the sensor locations respectively) as in on-line modal dwell. Similarly, extracting

a multiple mode response involves determining several distributions of excitation forces and several

linear combinations of the measured responses. The distributions of excitation forces in this later

case could be the mode shapes at the actuator locations, but they need not be. Independent

linear combinations of the mode shapes are also perfectly appropriate. This fact is captured in

the mathematical concept of range, that is the space spanned by multiple vectors. Accordingly, we

shall call modal spaces the spaces spanned by the mode shapes of multiple modes at the actuator

or the sensor locations. Thus modal spaces can equivalently be described by any maximum set of

independent linear combinations of the mode shapes.

Let the theoretical frequency response of the ASCIE modal subsystem between 13 and 18 Hz
be:

H(s) = C (i s 2 + L s + K)-]B + D (24)

where:

* the columns of C are independent linear combinations of the mode shapes at the sensor
locations.
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Figure 10: Measured ASCIE colocated frequency response between 13 and 18 Hz

* the rows of B are independent linear combinations of the mode shapes at the actuator loca-
tions.

• D accounts for the effects of the modes outside of the frequency range being analyzed.

• M, L, and K can be viewed as mass, damping, and stiffness matrices, respectively.

Without loss of generality, we shall assume that B and C are orthogonal matrices, that is CTC = I
and B B T = I.

Let HI,... ,Hn be the ASCIE measured frequency responses, and let A],...,A n be the differ-

ences between the measured and the theoretical responses at the frequencies jw],... ,jw,_ respec-

tively. The least-squares curve fitting problem would be to find the real matrices C, B, D, M, L,
and K such that:

n

J(C,B,D,M,L,K)= y_Trace(A;Ai) (25)
i=1

is minimized.

Instead of solving this problem exactly, which at present nobody knows how to do, we propose

solving this problem approximately in three steps. In the first step, we estimate the modal space

at the sensor locations by solving exactly a relaxed optimization problem. In the second step, dual

of the first step, we estimate the modal space at the actuator locations. In the third step, we
determine the modal dynamics.

7.1.1 Estimating the modal spaces at the sensor locations

Let X],... ,X, be the state of the theoretical system at the frequencies Jwl,... ,jw,, then:

[H],...,H,_] = C[X],...,Xn] + D[I,...,II + [A],...,A,_] (26)
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If [X1,.. • ,X,_] is allowed to be a general complex matrix X, then the minimization with respect to

C,X, and Dof
n

J(c, D,X)= Trace(Z ; X ) (27)
/=1

is equivalent to finding the best biased approximation to the matrix [Re [Hi,..., H,_], Im [Hi,..., Hn]]

by a matrix of lower rank. This problem is solved exactly in AppendicesAand B and its solution

defines uniquely therange of C, that is the estimated modal space at the sensor locations. Of course,

since C is based on the dominant part of the frequency response in the frequency range being

analyzed, C will be a close approximation to the true modal space of the target modal subsystem

at the sensor locations only if the modal frequency response of this subsystem dominates tile over-

all system frequency response.

The optimization problems with criteria

optimal values of J and ,], respectively, then

J and j are very closely related. If J" and J" are the

J" 5 J" (2s)

,] is a lower bound for J. Thus if, in the course of minimizing J, values of J close to ,]* are obtained,

we can be confident that a global minimum of J is being achieved. Furthermore, if, for some

theoretical model, the theoretical and the measured frequency responses are identical, then the

value of C obtained by minimizing J corresponds to a global minimum of J. Direct optimization of

J, in general, would not find a global minimum because J may have multiple minima.

7.1.2 Estimating the modal space at the actuator locations

The modal space at the actuator locations is determined in the dual manner.

7.1.;] Application: non parametric modal frequency response of ASCIE 4-mode-
model between 13 and 18 Hz

The algorithm described above were applied to find the modal spaces at the sensor and at the

actuator locations of a 4-mode model of ASCIE from the measured ASCIE frequency response

between 13 and 18 Hz. Using these modal spaces, the "measured" frequency response of the modal

subsystem can now be extracted from the measured overall system frequency response. This is done

by considering only force distributions that belong to the modal space at the actuator locations,

and only linear combinations of the measured responses that belong to the modal space at the
sensor locations.

Analytically, if Hml, .. •, Hm,_ denotes the estimated modal response at the frequencies j"_l, • •• ,j_,_,
then:

I'lmi = CT(Hi - D) B T i = 1 :n (29)

The estimated non parametric frequency response of the 4-mode-subsystem between 13 and 18

Hz is shown in Figure (11). The frequency response of the residual system left after the modal

subsystem is removed from the overall system frequency response is shown in Figure (12). This

frequency response clearly illustrates that the modal response is well extracted.
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To complete the modal identification, we now have to extract the dynamics of the 4-mode-

subsystem with 4 inputs, 4 outputs, and with frequency response Hm, a problem much easier to

solve than the original one with 18 inputs and 18 outputs.

3
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Figure 11: Non parametric frequency response of ASCIE 4-mode-model between 13 and 18 Hz
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Figure 12: Residual ASCIE frequency response between 13 and 18 Hz after the estimated modal

response is removed

7.1.4 Estimating the modal dynamics

Let the theoretical dynamic response of the modal subsystem be:

/t(s) = (M s 2 + L s + K) -1 (30)

690



Let A1,... , An be the difference between the theoretical and the measured modal responses at the

frequencies j_x,-..,jw, respectively. The least-squares curve fitting problem is to find the real

matrices M, L, and K such that:

n

J(M,L,K)= __Trace(A_A,) (31)
i=l

is minimized.

As a first step, we propose solving exactly a related linear least-squares problem. We have:

{ Hml = (M (jwl) 2 + L (j_x) + K) -1 + A1
..................................................................(32)

Hmn = (M + L + A')-' + A.

What is often done [1], is to rewrite this set of equations as:

H,nl(M (jwa) 2 + L (j.,,) + h') = I+ Ax(M (jw,) 2 + L (jwl) + K)
........................................................................................................... (33)

Hm.(M (jw,_) 2 + L (j_.) + K) = I + A.(M (j_n) 2 + L (jw.) + K)

which is now a linear set of equations in M, L, and K, and solve the linear least-squares problem
with criterion

n

J(M, L, K) = _ Trace(A;A/) (34)
i=1

where /_i = Ai(M jwi 2 + L jwi + K), which is a frequency weighted version of the origina!

least-squares problem. It is our experience that the estimates of M, L, and K obtained that way

are usually very poor and cannot be used to start the optimization of the original least-squares

problem with criterion J. What we propose instead, is to restore appropriate frequency weighting

by rewriting the above set of equations as:

Hm,(M (j_,)2 + L (j_.,,) + K)Hml = H,., + A,(M (jw,) 2 + L (jw_) + K)H_,
............................................................................................................................. (35)

Hm,,(M (jw,)2 + L (jwn) + I()Hm, = Hm, + A,(M (j,j,)2 + L (jw,,) + I()Hm,

and to solve the new linear least-squares problem with criterion

n

J(M, L,K) = y_Trace(A;A,) (36)
i----1

where A/= A/(M (jwi)2+L (jw_)+K)Hm{. If M, L, and K can be found such that Al,... ,A,, are

small, then (M (jw/) 2 + L (Jwi) + K)Hmi "_ I for i = 1 : n, so that the new optimization problem

is nearly equivalent to the original one. It is however much easier to solve because it is linear.

The optimization of J gives estimates for the dynamic parameters M, L, and K which can be

used to start the optimization of J.
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7.1.5 Application: Calculated modal frequency response of ASCIE 4-mode-model
between 13 and 18 Hz

The above dynamic estimation procedure was applied to the ASCIE 4-mode-subsystem frequency

response between 13 and 18 Hz to determine M, L, and K. The corresponding theoretical frequency

response is shown in Figure (13) and the fit error is shown in Figure (14).
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Figure 13: Calculated ASCIE initial 4-mode-model frequency response between 13 and 18 Hz
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Figure 14: ASCIE initial modal response fit error between 13 and 18 Hz

J was then optimized using an explicit 2nd order Newton-Raphson iterative algorithm and using

the above values of M, L, and K as starting parameters. The frequency response of the theoretical

modal subsystem and of the corresponding residual subsystem is shown in Figure (15) and Figure

(16), respectively.
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Figure 15: Calculated ASCIE optimal 4-mode-model frequency response between 13 and 18 ltz

7.1.6 Practical comments

This section describes and illustrates the application of new algorithms to extract the modal

characteristics of a system from its measured frequency response. In the above example, 4 dominant

modes were simultaneously extracted from the colocated frequency response of ASCIE between 13

and 18 Hz. By focusing the analysis on smaller frequency ranges, the same algorithms can be used

to extract one mode at a time. At present, the extraction procedure is interactive: the user decides

in what frequency range he wants to focus the analysis, and how many modes he wants to extract

simultaneously.

We have found it useful to extract a single mode at a time, particularly in high modal density

regions. In doing so we gained the assurance that a mode was indeed extra, ted each time. When

to terminate the iterative extraction procedure is a matter of judgement. We alwavs did so when,

in any part of the spectrum, the phase of the dominant non parametric modal frequency response

varied widely. For instance, Figure (17) shows the residual response of ASCIE between 20 and 29

Hz after 27 modes are extracted. Figure (18) shows the non parametric modal frequency response

of the dominant part of the residual frequency response between 25.25 and 25.70 Hz (extracting this

non parametric response is always the first step in extracting a mode in our procedure). Although

the gain plot seems to indicate the presence of a mode around 25.5 Hz, the phase varies widely.

The non parametric frequency response is therefore not the response of a pure mode.

As a last comment, the contribution of the modes already extracted, outside of the frequency

range being analyzed, can be removed from the frequency response before starting the analysis.

This usually improves the quality of the modal data.

7.2 Modal characterization of ASCIE between 1 and 50 Hz

This section explains how the modal characteristics of the ASCIE segmented optics and support

structure between 1 and 50 Hz were obtained from its measured colocated frequency response (Figure

(9)).
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Figure 16: ASCIE optimal modal response fit error between 13 and 18 Hz

The main idea consists in isolating the modes according to their resonant frequencies and ac-

cording to their mode shapes (spatial separation) to break the global characterization problem into

simpler ones. Frequency separation is easy to perform by visual inspection of the system frequency

response: the dominant modes with similar frequencies are grouped together. For instance, the

ASCIE colocated frequency response was partitioned over 6 frequency ranges: 1 Hz to 13 Hz, 13
Hz to 18 Hz, 20 Hz to 29 Hz, 28 Hz to 33 Hz, 33 Hz to 39 Hz, and 39 Hz to 50 Hz. On each

frequency range, when frequency alone failed to isolate modes, spectral and spatial separation was

used concurrently: the analytical modal separation algorithms described and illustrated in section

7.1 were used to iteratively extract the modes from the measured frequency response one mode at
a time.

8 OFF-LINE DYNAMIC CHARACTERIZATION, ALGORITHMS
AND APPLICATION TO ASCIE

In the previous section, simple yet effective algorithms were developed to compute "good" estimates

of the modal characteristics of ASCIE from its frequency response. Frequency separation, spatial

separation, and modal dominance were used to extract natural modes one at a time. In general,

however, it is not possible to exactly differentiate modes. Some of the deficiencies of analytical

modal separation are:

• In the process of extracting the natural modes of ASCIE in the high modal density region,

we noticed that some modes have close resonant frequencies and similar mode shapes at

the actuator or the sensor locations. The algorithms do not guarantee that accurate modal
characteristics are determined in this situation.

• If the extraction process of the previous section is iterated too many times in an attempt to

extract modes with relatively low modal response, one may end up extracting more modes
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Figure 17: Residual frequency response between 20 and 29 Hz after complete modal extraction

than actually exist in the frequency range being analyzed. For instance, assume that some

error is made in calculating the mode shape at the actuator location of a dominant mode

whose response is
cb

P(s) = g82 + 2_ws + w 2 (37)

Let b,/_, and Ab = b - b be the actual value, the calculated value, and the error associated

with the mode shape at the actuator location. Then assuming that all the other modal

parameters have been estimated exactly, the residual frequency response once the estimated

modal response has been removed will contain a term of the form AP(s) = - c Ab which9' s2+2_,_s+_
looks like the frequency response of a pure mode with low modal response.

Analytical modal separation is based on modal dominance, frequency separation, and spatial

separation. Consequently, the accuracy of the modal parameters determined applying this

method degrades as the contribution of the modes outside of the frequency range being

analyzed and of the modes not yet extracted within the frequency range being analyzed,

increases.

Because of the above deficiencies, it is possible to improve on the values of the modal parameters

of ASCIE determined in the previous section by performing a global analysis of the complete

frequency response. In the next sections, we address the problem of extracting the linear dynamics

of a system from its measured frequency response by least-squares curve fitting.

8.1 Limitations of current curve fitting techniques

Many algorithms were developed for Single-Input Single-Output (SISO) complex curve fitting prob-

lems, and particular attention was paid to eliminating numerical ill-conditioning using various

parameterizations [18-20]. Most of them solve the original nonlinear least-squares problem by iter-

atively solving a frequency reweighted linear least-squares problem. The initialization is similar
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Figure 18: Non parametric frequency response of ASCIE 1-mode-model estimated from the residual

frequency response of ASCIE between 25.25 and 25.70 tIz

to the initialization procedure used to estimate the dynamics of a modal system in section 7.1.4.

However, because of the particular problem being solved, it was then very easy to restore proper

frequency weighting. This is not the case in general SISO problems and this issue may be more

important than numerical ill-conditioning. Some of the SISO techniques have been generalized to

Single-Input Multiple-Output (SIMO) problems[21], but not to the Multiple-Input Multiple-Output

(MIMO) curve fitting problems. At present, MIMO problems are reduced to a series of SIMO
problems.

Analytical modal identification techniques and modal test engineers face the same problems.

Experimentally, modal testing fails when it becomes impossible to isolate modes on the basis of their

frequency separation, spatial separation, and modal dominance. Similarly, the curve fitting problem

becomes numerically ill-conditioned under the same conditions. This problem is exacerbated in

SISO problems because spatial separation is lost in this case. Although analytical techniques

can numerically deal successfully with much more complex systems than the test engineer can

experimentally, they cannot deal with the complexity of the ASCIE response in the high modal

density regions. To illustrate this point, the frequency response of ASCIE from a single segment

alignment actuator to a single edge sensor was plotted in Figure (19). The amplitude response is

extremely complex and SISO curve fitting techniques would not be able to differentiate true modes

from "noise modes" in this case. The phase plot shows similar complexity. This differentiation

problem would still arise, although to a lesser extent, if SIMO responses and SIMO curve fitting
techniques were considered.

Even assuming that the 18 SIMO ASCIE identification problems in the high modal density

region between 20 and 29 Hz could be solved, one would still be faced with the problem of putting

together 18 dynamic models, each of order approximately 40. Eliminating the redundant modes

using balanced model order reduction [22] would then require solving Lyapunov equations of order

approximately 700 !
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Figure 19: Modal differentiation failure when using classical frequency sweep

8.2 Multiple-Input Multiple-Output curve fitting for ASCIE

In section 7, new algorithms were developed and applied to find what the number of modes and what

the modal characteristics of ASCIE are on 6 different frequency ranges. 6 modal subsystems were

thus identified. These models can now be used to initialize a global optimization procedure. The

objective of this section is to combine these 6 modal subsystems and to correct for the deficiencies

of analytical modM separation techniques. This is done in two steps. In the first step, further

analysis is performed on each frequency range to reduce the difference between the measured

and the theoretical modal responses and if possible reduce the order of the corresponding modal

subsystem. In the second step, the various models are combined and a global optimization of the

least-squares cost function is attempted. In the following section, we describe the optimization

strategy used first to optimize the 6 modal subsystems on their respective frequency range, and

next to optimize the combined subsystems.

8.2.1 Subset parameter optimization

Let the theoretical transfer function matrix of a general damped oscillatory system be:

(3S)

Let Hx,..., H, be the measured frequency responses, and let A],..., A,_ be the differences between

the measured and the theoretical responses at the frequencies jwl,... ,jwn respectively. The least-

squares identification problem is to find the real matrices C = [C], C2], B = [Bx, B2], D, and the

diagonal matrices _ > 0 and fl > 0 such that:

n

J(C, B, D,_, _) = _ Trace(ATAi ) (39)
i=1

is minimized.
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The global minimization of J for large systems is impractical. The length of the parameter

vector constructed from the coefficients of B, C, D, _, and l_ that would have to be optimized to

fit a linear model to the frequency response of ASCIE between 20 and 29 Hz would be over 1800.

Brute force explicit 2nd order optimization algorithms would therefore take an excessive amount

of computer time to run, and would require more work space than is currently available with most

computers.

As an alternative, we propose to successively and iteratively optimize C, B, D, and [_fl,_/2].

The same method was proposed in [23] to solve the model reduction problem which is similar to the

present least-squares identification. This method, called parameter subset optimization, operates

like the QR algorithm when it is used to find the minimum of a positive definite quadratic form (the

QR algorithm finds the optimum by solving a finite number of line searches). Although parameter

subset optimization does not enjoy the nice properties of the QR algorithm, we have always found

it very efficient in practice.

The choice of the parameter subsets C, B, D, and [_fl,fl2] takes advantage of the structure of

the least-squares identification problem. Since the cost function J is quadratic and convex in C,

B, and D respectively, the corresponding optimization problems can be solved explicitly. The most

difficult part is to optimize J with respect to [(_, f12]. Fortunately, this problem involves relatively

few parameters so that an explicit 2nd order Newton-Raphson algorithm can be used.

8.2.2 ASCIE modal subsystem optimization

6 ASCIE modal subsystems were extracted from the measured ASCIE frequency response over 6

different frequency ranges using analytical modal separation. As a first step to improve the accuracy

of the modal parameters of each modal subsystem, an attempt is made to get values for the modal

parameters free from the influence of the modes that do not belong to the subsystem. Thus, for each

of the 6 frequency ranges defined above, the measured ASCIE frequency response was corrected

by eliminating the estimated contribution of the modes outside of this frequency range, and the

corresponding modal subsystem was optimized to match the residual modal frequency response

(assume true modal response) thus calculated. Parameter subset optimization was applied to carry

out the optimization.

As a second step, each modal subsystem was screened for possible modal redundancy and

reoptimized. Balanced model order reduction was used to eliminate the redundant modes. The

model order reduction was stopped when the elimination of any mode would have increased the

value of the least-squares cost function by at least 1% . The number of modes of the modal

subsystem between 20 and 29 Hz was thus reduced from 27 to 21. The number of modes of the

modal subsystem between 33 and 39 Ilz was reduced from 13 to 11. The orders of the 4 other

subsystems were not reduced. With current SIMO least-squares curve fitting techniques, we would

have had to reduce the number of modes of the modal subsystem between 20 and 29 Hz from

approximately 18x21=378 to 21, and the number of modes of the modal subsystem between 33 and

39 ttz from approximately 18x13=234 to ll. Our method is more effective because it leads to a

much lower modal redundancy.
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8.2.3 Combining the modal subsystems

The ASCIE modal subsystems were combined and the resulting model was optimized to match the

complete measured ASCIE frequency response using parameter subset optimization. This last step

yielded less than a 1% decrease in the least-squares cost function. As for ASCIE, this step may well

be unnecessary in many applications.

The frequency response of the identified model after optimization is given in Figure (20), and

the corresponding residual response in Figure (21). A list of the identified dynamic parameters is

given in Table (2). The first three modes are stand modes.
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Figure 20: Calculated colocated frequency response of ASCIE
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Figure 21: Residual ASCIE colocated frequency response after the optimized modal response is

removed
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MODE NUMBER

1
2

3

4

5

6
7

8
9

10

11

12

13

14

15

16

17

18

19

20

21
22

23
24

25

DAMPING

%

0.90

0.31

0.72

1.28

1.17

1.01

2.30

1.79

1.05

4.21

3.94

4.90

3.31
5.27

2.75

3.80
2.93

7.33

FREQUENCY

(HZ)

4.9172

6.2855

10.1845

15.0804

15.6929

15.9060

16.8985

20.4568

21.5582

22.4873

23.7036

24.0046

24.2425

24.3552

24.3952

24.9325

24.9918

25.2170

MODE NUMBER

26

27
28

29

30

31

32

33

34

35
36

37
38

39

40

41

42

43

DAMPING

%

2.65

2.30

3.63

2.49

2.03

1.54

0.73

1.20

0.43

1.01

2.07

0.27

0.70

0.48

2.52

0.60

1.06

0.62
3.18 25.4578

4.06 25.7026

2.64 25.8462

3.42 25.9054

2.97 25.9286

3.89 26.1478

2.78 26.3024

44

45

46

47

48

49
50

2.16

0.83

1.26

0.16

1.13

1.58

2.75

FREQUENCY

(HZ)

27.0039

27.1858
27.2201

29.5919

30.6646

31.5755

34.5256

35.5957
35.6220

35.7824

36.5263

36.6676

36.7465

37.0040

37.2631

37.502,t

37.8245

38.7592

41.1248

41.5539

42.4540
45.6241

45.7434
46.3683

47.6578

Table 2: Modal frequencies and damping ratios of ASCIE 50 mode model

9 CONCLUSION

This paper reports on advances in four areas of system identification of complex flexible structures

from frequency responses:

• data acquisition: a method that maintains, to the extent possible, a specified signal to noise

ratio is developed to measure frequency responses using sinusoidal test signals.

• on-line modal tuning: an experimental procedure is developed to isolate modes to measure

their char_teristics on the basis of their spectral separation, spatial separation, and the

dominance of their response.

• off-line analytical modal separation: new algorithms are developed to determine the modal

characteristics of a system from its measured frequency response on the basis of spectral

separation, spatial separation, and modal response dominance.
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, curve fitting: a parameter subset optimization method is proposed that takes advantage of the

structure of the non linear least-squares identification problem and reduces it to successively

and iteratively solving two linear least-squares optimization problems and one non linear

least-squares problem of relatively small size. The method can deal with much more complex

systems than standard optimization techniques.

The new methods are applied to the modal characterization of the ASCIE segmented optics test-

bed. They coped successfully with the problem of estimating over 2000 modal parameters, and

resolving modal clusters with a modal density of 5 modes/Hz.

The new methods are combined into a constructive system identification procedure that breaks

the global modeling problem into smaller ones easier to solve. As a result, they can be used to

model systems even more complex than ASCIE which is critical for future applications. They also

are suitable for on-orbit modal testing of spacecrafts because they do not require any special pur-

pose instrumentation.

Aknowledgement: The authors would like to thank Ernie Perez, Paul Reshatoff, and Don Zacharie

for their outstanding technical support.

A Approximation of a matrix by one of lower rank

Given a matrix H of rank n, the problem is to find a matrix /7/ of rank nr < n such that the

Euclidian norm of the error H -/t is minimized. The following theorem holds:

Theorem A.1 Let Zn=l O'iUiV.Tt be a singular value decomposition of H where al > a2 >_ ... >_

an > O, then of all the matrices of rank nr, [t = _i_1 aiui vT is a best approximation of H in the
Euclidian norm sense.

In matrix form, denoting C = [Ul,... ,unr ] and X T -_ [OlVl,... ,O'nrVnr], then /t = C X is a best

approximation of H of rank nr in the Euclidian norm sense.

B Biased approximation of a matrix by one of lower rank

Given a matrix H of rank n and a full row rank matrix U, the problem is to find a matrix [f of rank

nr < n and a matrix D such that the Euclidian norm of the error H - (/} + D U) is minimized.

The following theorem holds:

Theorem B.1 Let U ± be an orthogonal complement of U (U±U ±T "- I and U U "I'T -- 0).

Let _P=l aiui vT be a singular value decomposition of H U ±T where al > a2 >_ ... >_ a,_ > O, then,

of all the matrices of rank nr, H = (_i_1 aiuivT) U± is a best biased approximation of H in the

Euclidian norm sense. The bias matrix coefficient D is then D = H uT(u uT) -1.

Proof: Any matrix /t of rank nr can be written as the product of two full rank matrices C and X
of rank nr:

/t = C X (40)
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Theproblemis to find C, X, andD to minimize:

= Trace [(H - (C X + D u))T(H - (C X + O U))] (41)J

The optimization problem is convex in C, X, and D respectively, but not with respect to C and X

simultaneously.
Since

we have:

x = x (1 - uT(u u:r) -1 U) + X uT(u U:r)-'U

-- X uxTu ± -l-X uT(u uT)-Iu

C X + D U = C X u±Tu ± + (D + X UT(U uT) -1) U (42)

We can therefore assume without loss of generality that X U T = 0 ¢¢, X = XaU ± for some

X1. The first order condition of optimality with respect to D then gives:

D = H uT(u uT) -1 (43)

which is independent of both C and X !

The cost function J then becomes:

J = Trace [(H U ±T- C x1)T(H U zT- C Xa)] (44)

The problem is now to approximate H U ±T by a matrix of rank nr. Its solution is a simple

application of the theorem of Appendix A.

i3

Remark B.1 It can be shown that, generically, C is unique up to an invertible right transforma-
tion.

C Relationship between the modal and the physical dynamic

equations of an oscillatory system

In this section, we show that the dynamic equations of a system with nonproportional damping,

force commands, and position measurements can indeed equivalently be rewritten in the modal

form postulated in section 5.2.

Rewrite the dynamic equations of the system (2) in first order form:

[,][0 [o]= _M_XK _M_1L _ + M_IE u + 1 d (45)

anddefinethestatespacetransformationV= [ Vl V12]V21 V2 :
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such that:

[0-M-1K -M-1L V21 V2 = V21 V2 _f_2

The dynamic equations of the system can then equivalently be rewritten:

{_1__ 0[i x,÷B,_=[el e2] xl +e
X2

u+

where we have defined:

][ ]_M_ 1Ba_ V_l V_

From the last set of differential equations, we find:

That is a set of equations identical to the postulated modal equations (11) if we define:

q_Xl

B2 Bd 2 B2 -I- 2 _B 1 Bd2 -1- 2 _Bdl

Furthermore these equations yield the constraints (12) as follows:

D = -C2B1

Da = -C_Bdl

M_ 1 = 0

(47)

(48)

(49)

(50)

(51)

(52)

Unicity The dynamic of a system with non proportional damping can equivalently be described

by many different sets of modal equations. One convenient way to paxameterize all the possible

sets of modal equations that describe a given system is to introduce three complex matrices

{ B=B_+jBi
Bet = Bdr + j Bdi (53)

C = Cr + j Ci
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and to rewrite the modal equations as follows:

q + 2 _ l_ q + ft2q = Biit + (_12Bi + x/7"Z'_l_B_)u + Bdid + (_l_Bui + x/-fZ-_flBd_)dy = (C_ x/T"_ft + Ci_)q + Ciq - CiBiu - CiBdid + e (54)

For a system with force commands and position measurements the constraints then become:

{ C_Bi+CiB_=OC, Bai + CiBdr = 0 (55)

The rows of B are then the complex mode shapes at the actuator locations, the rows of Bd the

complex mode shapes at the node locations, and the columns of C the complex mode shapes at the
sensor locations.

It can be shown that any two sets of modal equations with complex mode shapes (B, Bd, C),

and (B, Bd, C) respectively describe the same physical system if and only if there exists a complex
diagonal and non singular matrix a such that:

B=aB
Be = c_ Bd
C = O c_-'

(56)

Complex mode shapes are thus defined up to a complex scalar multiplication. This limits signifi-
cantly their usefulness in practice.
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ACTIVE SUSPENSION DESIGN FOR A LARGE SPACE STRUCTURE
GROUND TEST FACILITY

18941

Thomas Lange, Clcmens Schlegel
German Acrospacc Rcsearch Estatilishment

8031 Wessling, Germany

INTRODUCTION

The expected future high perfi_rmance requirements fl)r Large Space Structures (LSS)

enforce technology innovations such as active vibration damping techniques e.g. by means

of structure integrated sensors and actuators. The implementation of new technologies like

that requires an interactive and inlet:rated structural and control design with an increased

effort in hardware validation by ground testing.

During the technology development phase generic system tests will be most important

covering verification and validation aspects up to the preparation and definition of relevant

space experiments. For many applications using advanced designs it is deemed necessary to

improve existing testing technology by further reducing disturbances and gravity coupling

effects while maintaining high performance reliability. A key issue in this context is the

improvement of suspension techniques.

The ideal ground test facility satisfying these requirements completely will never be

found. The highest degree of reliability will ahvays be obtained by passive suspension meth-

ods taking into account severe performance limilations such as non-zero rigid body modes,

restriction of degrees of freedom of motion and frequency response limitations. Passive com-

pensation mechanisms, e.g. zero-spring-rate mechanisms, either require large moving masses

or they are limited with respect to low-frequency perfi_rmance by friction, stiction or other
non-linear effects.

With active suspensions these limitations can be removed to a large extent thereby

increasing the range of applicalions. Despite an additional complexity which is associated

with a potential risk in reliability their deveh,pment is considered promising due to the
amazing improvement of real-time conlrol technology which is still continuing.

THE ACTIVE S[JSPENSION TEST SETUP

The basic idea of an active suspension device is the combination of a bias spring designed

to support the weight load at the hinge, augmented by an actuator which in a defined range

compensates for the spring stiffness via po,dtive displacement feedback (Figure !). The arli-

ficial negative stiffness adds up with lhe passive one to an overall stiffness close to zero,

PREC_,.EDfNG P.,'-l(:iE BLAI'!7;. NO]" FILMED
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without the penalty of excessive weight or undesired additional eigendynamics. The potential
advantages in performance are as follows:

* the overall stiffness is easily adjustable by choosing an appropriate gain factor,

• the relative error of the resulting differential dynamic forces can be kept small by using
appropriate precision control hardware and software,

• an increased dynamic range becomes feasible owing to the reduced overall moving sus-
pension mass.

As a reference test item a beam shaped truss structure has been selected which can be

regarded as a typical subslructure for LSS or at least as a basic element of" potential space

experiments. The principal test setup, as depicted in Figure 2, comprises three functional

levels which logically are strictly separated:

• the active suspension mechanism with local control of associated suspension rods,

. the active vibration control which "sees" an ideal truss beam under approximately zero-g
conditions,

* reference sensors anti stimulation actuators for test evaluation.

In contrast to passive methods the active suspension permits optimal decoupling of

bending from torsional degrees of freedom and the full compensation of pendulous rigid b_dy

modes. As shown in Figure 3 this becomes possible by equidistant clustered suspension units

with the horizontal ones exhibiting negative overall stiffness to counteract gravity induced

pendulous forces. Using kinematic decoupling algorithms, this technique can also be applied

for non-symmetrical cross-sections. A practical advantage is the shortness of" the suspension

cable which is limited primarily by mechanical design tolerances, e.g. with respect to the

radial load of the linear guidance bearing.

//////////

sus_s_n_ lililiiii!iiiiiii|iiiilili!!iiii!!i_gat_

spring _ ::::_:??::::::::::::: spring"

_ __.:.:::::_..-...._'_.

/
displacement
sensor

suspension
cable

l:igure 1. Active suspension principle.
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l:igurc 2. Principle configuration oFtest setup.
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Figure 3. Optimal decoupling From gravity fi3rces by an active suspension.
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With such a compensaled test setup new applications become feasible, since the suspen-

sion rods no longer have to be attached to long distance fixtures usually mounted at the lab

ceiling. With a moving base it will be possible Io investigate structure dynamics and control

under large angle motions, e.g. slewing maneuvers. Although flJll gravity compensation by

this suspension technique is approximative, depending on the number of hinge points, this

new testing approach will help to enhance the design validation relevance for many applica-
tions.

DESIGN REQLIIREMENTS FOR AN ACTIVE SUSPENSION UNIT

There are three basic functions which the suspension unit has to support with a defined
accuracy:

• the passive weight compensation being free from hysteresis and acting with limited rel-
ative stiffness about equilibrium,

• the static compensation of the spring characteristic with low residual stiffness and noise,

• the dynamic compensation of moving mass inertial forces depending on the required
operational bandwidth.

The interaction of forces and the compensation loops arc shown in the functional dia-

gram of Figure 4. The active functions have different associated frequency bands. While
static compensation requires low-pass filtering to prevent measurement noise from deteri.-

I ?
HP-FILTER ! I LP-FILTER

dlsplaoeme1_t ,

_e'rt$or

moving

"-[_ k_d c_.ll

I (differential fon_ sen_or)
I

11 suspension load

Figure 4. Active suspension force compensation loop

710



orating performance, the dynamic compensation is operating via high-pass filter to exclude

the bias weight load measurement from feedback.

The system requirements to be satisfied by the basic functions are defined as to comprise

a large number of applications which are likely to come in the foreseeable future. A large

class of generic LSS control validation models including unscaled but moderately sized space

experiments [1 ] are assumed to be covered by the following requirements:

Table I. Requirements fl_r an Active Suspension Unit

bandwidth

load per hinge

max. displacement

<30 Hz

100 N

_+3 cm

(structural damping assumed with no
additional active vibration damping

required fi_r higher frequencies)

(may be higher on expense of bandwidth)

(including open-loop tests)

The size of the suspension unit is largely defined by the required weight load and dis-

placement range. This affects the passive spring device and the related force interaction with
the actuator. But respective specifications depend on the selected design approach and hence

not directly on the test item itself.

The dynamic environment however has a direct impact on the design. Respective actua-

tor reaction force compensation requirements depend largely on the test operation mode:

• Closed-loop tests:

Amplitudes are small with active vibration clamping and hence not considered critical

with respect to the dynamic feedback of inertial suspension forces.

• Open-loop tests:

Depending on the stimulation mode, i.e. on the distribution of input energy over the
structural modes large vibration amplitudes may occur. Therefore this operation mode

is regarded most critical.

The worst case is obtained with all participating modes oscillating in-phase, e.g. imme-

diately after an impulsive stimulation. More relevant for open-loop damping measurements

however are sinusoidal and pass-band noise tests which permit extended measurement
duration. These tests exhibit less overshoot and hence require less maximum dynamic com-

pensation forces.

Assuming that the modal frequency distribution of a truss beam will be not too much
different from that of an Euler-Bernoulli beam the assessment of the required dynamic

compensation forces can be done analytically. The worst case in terms of response amplitude
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is obtained for the suspension unit at the lip end of the beam with collocated stimulation.

At this location then all mode shapes add tip with a non-zero contribution as indicated in
Figure 5.

The dynamic compensation force is derived from the require(l stimulation amplitude
permitting a reasonably accurate evahiation of the structural motion. For wide-band excita-

tion the unequal energy distribution with respect to the structural modes requires the full

utilization of the admitted displacement range in order to include the low vibration frequen-
cies. For single frequency excitation on the other hand the required peak acceleration or dis-

placement depends on the evalualion instruments used. In both cases, the structural damping
is not relevant since the stimulation input will always have to be adapted to the required
measurement output.

The undefined input stimulation quantity is eliminated from the beam model equations

by utilizing the expected output value as outlined above. The analysis for the three types of

stimulation, which is omitted here, yields to the f(fllowing results for the respective spccific
corn pensation forces:

II1

• impulsive: .i)m.,_ < 45 ._- _ 4.6g (t = At)

• white noise: .i;,n,_ < I£ (3r;)

• sinusoidal: j)_._ < I_q

These requirements are not very challenging for common actuators and motors available

today. The low-noise performance however requires a more or less non-conventional design

at the expense of available output power. This becomes evident from the detailed design
analysis.

i actLml:or

l:igure 5. Beam model for dynamic analysis.
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DESIGN CONCEPT

The minimization of disturbance and noise associaled with the active suspension design

requires precision technology. On the other hand high precision hardware may be extremely

expensive, which then becomes a practical realization problem, particularly if many of these

suspension units are required for an LSS control te_t setup. With the increasing capability

of modern real-time control processors, however, which are available at even decreasing cost,

this problem can be solved. A non-linear characteristic, e.g., can more easily be calibrated

by respective functions in the processor than by complex mechanical adjustment procedures.

The design is determined by the method used for weight support and by the interaction

with the compensation actuator. The basic solution for the passive weight support is a tor-

sional spring. It is superior to a coil spring in terms of preloading capability and less sensitive

with respect to the dynamic interference with the suspension forces. A design problem is

however the force diversion, as the variation of the effective lever arm with the angle of

rotation has an influence on the resulting suspension force vector.

stator
c_ils

axially
magnetized

permanent
magnet

iiiiiiii_iii!iiiiii

passive_sprir_j _uspension force

back iron

suspension load

!

m, ........., .........., ....., ....,...,,
.:-:-:.:.:.:.:,:.:.:.:.:,:,;,:.:-:.:.:.:

! ii iiiiii{iiiiiiiiii iii!ii ii ii;iili """'72o7

back iron

!!!!!!!!!!!!!!!!!i
moving magnet concept moving coil concept

Figure 6. Electrodynamic actuator design options.

713



To minimize both friction effects and overall moving mass a linear motor design has been

selected delivering the compensation forces. The optimal design in terms of noise and

repeatability is the electrodynamic actuator which in contrast to ordinary De-motors is

characterized by

• absence of hysteresis effects which is a prerequisite to achieve high lincarity perform-

aflcc,

• virtually noise frcc pcrformancc sincc commutation or cogging cffccts arc cxcludcd,

• direct force control without using high-authority control loops.

In principle two types of electrodynamic actuators are possible as illustrated in Figure 6:

I. A permanent magnet is moving in the center of controlled stator coils.

.

Mechanically, this design is simple since the moving part is a concentrated mass in the

center, collocated to the external load force vector. With control applied to the stator,

there are no electrical leads to the moving part. Moreover, a modular adaptation to an

arbitrary working range is easily possible by adding further stator coils. However, there

is a hmg distance to the magnetic return path which decreases the force to input power

efficiency.

An actuator coil is moving in the air gap of a radial magnetic field which is completely
guided in an iron feedback.

This design is mechanically more complex since the air gap enclosing the moving actua-

tor coil must be narrow to minimize the magnetic stray field. The efficiency however is
by principle exceeding that of the moving magnet concept.

Problems which are common to either approach are design limitations duc to the non-li-

nearity of the magnetic field characteristic. Moreover, to avoid stick-slip effects, the moving

part has to be integrated into special linear cCmtactless bearings. Hence a special development

is necessary, taking into account the specific drawback features in a trade-off analysis.

Moving Magnet Actuator Concept

Due to the wide air gap associated with this approach, output force is largely dependent

on displacement. As shown by the typical characteristic in Figure 7, force rapidly decreases
with increasing displacement from a maximum. That is defined by the tip end of the perma-

nent magnet being located approximately in the center of the excited coil. With increasing

ratio of coil length vs. displacement the decay becomes smoother, but at the expense of a

reduced effectiveness of force vs. electrical input power.

The solution to this problem is already indicated by Figure 6, where the moving magnet

option is illustrated by an assembly of axially stacked coils which are simultaneously con-

trolled depending on the relative magnet position. The efficiency of this device is dependent

both on the geometrical dimensions of magnet and coil and on the control method.
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Force controlled motioa over a long distance may be very useful also for other applica-
tions such as handling objects under zero-g conditions. Potential benefits are in addition to
the inherent modularity the accuracy and reproducibility of the exerted force.

Optimal Electromechanical Design

The optimal design of a moving magnet actuator is not straightforward due to the com-

plex electromagnetical field distribution over a large air gap. Hence the axial force, which

according to Amp6re's law results from the cross-product of local field vector and the current

through the stator coil windings, requires the solution of a volume integral of the form

Fz = G,r _vBr dV (4.1)

with

G_, = current density with respect to the coil cross-section

B, = radial component of the emerging magnetic flux density

1.8

.8

+
it

!"

i -+
.2

.e
,I) ._

NormaLized dispLocemenL xzL

3_'3 4.8

Figure 7. Coil/magnet force vs. displacement characteristic.
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V = volume enclosed by the coil winding

To obtain a more general solution specific design parameters shall be eliminated from

evaluation of Eq. (4.1). Assuming rare earth magnets, a remanent flux density of 1.2 T can

be expected which is about the maximum to be achieved for modern NdFeB-magnets. Spe-

cific coil wiring data are replaced by more general parameters yielding an expression for the

current density which is only dependent on coil geometrical dimensions and input power:

1 /a P (4.2)

G = Tqp

with

¢r = Gd d 2 = normalized wiring constant

Gd

p

Amp6re turns per unit cross sectional area for

wire diameter, d

specific ohmic wire resistance
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Figure 8. Optimal design diagram.
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ro, r, = outer, inner coil radius

1 = coil length

P = ohmic power loss

Then, after dividing the output force by the square root of input power, a function is

obtained where only the geometrical coil/magnet parameters remain to be optimized. The

result, which is computed by iteratively solving the magnetic field equations and the force

integral, is shown in Figure 8. The fi_rce calculation is based upon the reference position and

the ratio of magnet to coil length of two by one as shown in Figure 6, with the two coils at

the tip ends of the magnet being simultaneously excited.

The required compensation force, f, depends on the dynamic fi)rce to moving mass ratio,

q_,, and on the spring restraint force, F,:, yielding:

f(m) = Fc + qm(m+ M) (4.4)

with M denoting the moving mass without the actuator magnet mass, m; i.e. the equivalent

spring mass, attachments, rods etc.

Figure q. Input power vs. moving mass performance
(graph I: M = IOOg, graph 2: M = 200g).
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The most decisivedesigndata to evaluate trade-off solutions are input power and magnet
mass.A respectivefunction is obtained by elimination of force using Eq. (4.4). The result is
shown in Figure 9 for two different masses,M, and with a maximum spring restraint force
Fcofl N.

Inspection of these performance diagrams shows at least with respect to the electrome-

chanical voice coil design, that solutions with moderate technical effort in terms of input

power and size of the moving magnet can be found to be realized with reasonable costs.

Optimal Gain Control

The actuator force is generated by simultaneously controlling all coils by dedicated

wide-band current amplifiers.Their input signals are computed from the force command sig-

nal via individual displacement dependent gain factors.

The gain control law is applied to an arbitrary number of coils. A set of four coils,

migrating with the magnet position, is actually involved, being controlled by a non-zero gain

factor. In the reference position, as shown in Figure 10, coils No. (i + 1) and (i +3), having

maximum force efficiency, are controlled with maximum gain, while all other coils are idle.

I

I
g i+4

gain

I

I I I I

I I ", "_J

I

J l gi+2 ' I

' ' iI I I
' gi+1

I I I I

I I , !
..... i . . i ...... | ..... j[

.... _. ":: ii::::"::::::::

( i

ID

( m-

_::::iiiiii-iii::i::iii_:::.'::::ili__iiil ::ii__i::iiiii_i.:-:-i_iii_4.il d i_p-lacement
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::'::::_:"::-,
_i_!_ii_i_!_i.iii_!_]_i!_!_!i!]i%ii_.iii_]i_!`i#i:_i!iii[:::%_!_ii_._.:`....
_i:!:!:!:._i_!ii]ii]_!!!!_i:i_!!!:!_!_i&.._:.:..._!]!:ii!_iiii_!]_!!_i_._..`..]_]!_!i!....:_i_!!_::..

Figure 10. Gain control concept•
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Starting out from this initial condition with the magnet moving to the right, the adjacent

coils No. (i + 2) and No. (i + 4) are increasingly included into the magnetic driving field gen-

eration, while the rating of No. (i + 1) and (i + 3) is decreasing. This follows from the indi-

vidual gain functions, g_, k, which are sections of the overall gain function, shifted by the

relative magnet position. After one coil length displacement, control continues periodically

with the new set of coils controlled with maximum gain. The continuous change of gain fac-

tors is illustrated by corresponding arrows above the gain function graph.

The primary goal of gain control is an output force which is strictly proportional to the

input command and independent from magnet displacement, x. This requires the four

partial gain functions to satisfy for all locations, x

i+4

j=i+l

= F o = coast. (4.5)

with Fj representing the respective partial fi, rce characteristic.

In addition to this basic functional requirement a smooth variation of gain with dis-

placement is desirable to avoid any AC transients from entering control. This applies in

particular for the end of the gain function when a coil is dismissed from control. At this

location therefore a zero derivative is provided to achieve a "soft commutation" performance.

I:

¢D

1.0

.0

.6

.4-

.2

.0
.e .k, .:4 .i_ .8 1,0 t.2 1.4 1.6 1.9 2,0

Normotlzed dlspLQcement _,'L

Figure 11. Typical gain characteristic.
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All of these conditions are set as constraints for a quadratic optimization. The minimi-
zation function has the form

f 2/ 2

g = j_ + ks(x)2]  (4.6)

with the second derivative of the gain function being included to minimize the average

curvature. The weight factors k_ and k2 have to be selected by a trade-off to achieve accept-

able smoothness on account or the average input power. A typical result is shown in

Figurc II. For this design, maxima are found outside the reference position at x/l --- I.

Accordingly, the average increasc of input power as compared to that rcquired for the rcfer-

cnce position, is about 20 percent.

Moving Coil Actuator Concept

For most standard applications this concept would be preferred due to the higher effi-

ciency as mentioned above. However, to enable a wide frequency band application, the coil

AC resistance has to be low enough to awfid excessive input control voltages. This can only

be realized by coil sectors opposed to multipolc magnets with thc individual coils not enclos-

ing the center back iron [2].

top view sectional drawing of moving coil

inner back iron

', |

with alternating

magnet _=ctor_

upper magnet

I
I parts of winding

dern_=ring

axial force

coil r_:tors

////-

// /"/-

moving coil

d_e_nt

range

l
lower magnet

Figure 12. Multipole moving coil actuator.
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A design problem arises with the desired range of displacement. As shown schematically

in Figure 12, there is only a relativcly short part of the winding delivering an axial force

component. Moreover, two multipole stator magnet arrangements each extended over the full

displacement range plus coil width must be provided ending up in a rather lengthy and

complex mechanical design.

For DC applications a less complex design can be utilized employing one set of radial

magnets anti a simple cylindrical moving coil as shown in Figure 13. Feasibility studies have

shown that this approach can be successfully used for the bias load suspension replacing the

supporting spring anti thereby removing spring restraint forces and mechanical interface

design problems. For the specific design envisaged the radial magnets are replaced by a set

of stacked rectangular magnets for cost reasons. They are attached to the circumference of

the back iron. The moving part has ribs attached to a center shaft which is supported by an

air bearing. By linking all external forces to the center shaft bending torques can be mini-
mized.

As a result of electrodynamic model investigations a tolal moving mass of about 400 g

and a required input power of 26 W is necessary to balance a I00 N external load. The

main design problem here is the back iron flux saturation. Despite local saturation effects due

to the non-uniform flux distribution, a satisfactory design is obtained with a moving coil

diameter of about 14 cm and an air gap and magnet depth both measuring 1 cm.

OUTER BA_

RADIAL PERMAN_

MAGNET _ #_ __./F=__

RIBS-f_ ICBACK

EXTERNAL LOAD IRON

SUPPORT

Figure 13. Moving coil actuator with unipolar stator magnet.
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The obvious advantage of this approach is the virtual absence of displacement dependent

forces with a computed error of a few tenths of a percent. This is achieved at the expense of

a large moving mass. Extrapolating the results obtained so fat" it should be possible to achieve

also larger forces. The additional weight penalty in terms of required actuator moving mass

is estimated not to exceed about five percent of the supported load. The design limit, which

is far beyond the design parameters under consideration here, is given by the increasing DC

power with the associated heat transfer problem and by a potential demagnetization of the

stator magnets.

DESIGN OF A LABORATORY MODEL

The development of the active suspension tesl facility is done stepwise starting out with

prototype functional laboratory models. The first model which has been realized is a low-cost

,,r

Figure 14. First functional test ,_etup.

BLACK AND ,^t_,,',-,-v'+,+t/r. PHOTOG[4APH
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test stand composed of very basic mechanical elements to verify the moving magnet design

concept.

Mechanical Test Setup

The functional test setup employs a 6 coil actuator, a torsional spring with a preload to be

set manually by a lever and a linear ball bearing sled to guide the moving permanent magnet.

The load attached to the sled is an adjustable spring-mass system. As shown in Figure 14,

a fairly large force diversion lever arm is provided which is equipped with a ball bearing

length compensation mechanism.

The displacement sensor is a simple off-the shelf optical incremental device. With the coil

housing mounted to a piezoelectric force transducer, the force exerted on the coil can be

measured while the bearing friction forces remain excluded.

C,ontrol Proccssor and Electrical Interface

The control hardware is based upon a high-speed digital signal processar (DSP) with associ-

ated fast I/O interface hardware. For system development it is used with a PC/AT host. In

the final version it can be operated stand-alone under control of an on-chip EPROM. The

main features of a typical control board currently being used is as follows:

• 16 bit fixed point DSP, 160 ns cycle time, 4 k words of memory,

• 6 pulse-width modulated outputs, high resolution & accuracy,

• two 16 bit incremental sensor 1/F's with noise filters,

• various high speed ADC's and DAC's,

• 16 bit selectable 1/0 ports.

Special current control amplifiers have been provided to be controlled by the pulse-widtl_

modulators via an analog switch interface. Direct digital current switching has been avoided

in favor of a continuous high-impedance control to suppress damping currents from the

moving magnet induction voltages.

The control S/W design is supported by a development system permitting direct input of
the matrices associated with the standard linear dynamic equalions usually being applied for

control design. Moreover, the implementation of non-linear functions is supported, realized

by table look-up. In addition, on-line tracing of dynamic variables is possible. By this means,

S/W development costs can be reduced to a large extent.

Test Results

The first problem to be solved has been the implementation of the gain characteristic. To this
end, the force vs. displacement characteristic of each single coil has been determined.
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Although no special manufacturing or wiring technique has been used the measurements

showed satisfying agreement with the electromagnetic model calculations. The results were

obtained by evaluation of the AC force on the stator housing due to a sinusoidal coil stimu-
lation.

After implementation of the gain characteristic the compensated system was stimulated

by a constant current input command while the moving magnet was freely oscillating with
the spring-mass eigenfrequency. Although the compensation seemed to work properly, no

final results are available yet since the current amplifiers started drifting. An appropriate
electronics re-design is necessary to remove this malfunction.

The next step before determination of the frequency response characteristic will be the

implementation of an air bearing in conjunction with the moving-coil bias load compen-
sation. With the dynamic feedback included this will be the final functional test to validate

or modify the concept if necessary before entering the first series production.

CONCLUSIONS

Active suspension tests are valuable for CSI design and validation problems, particularly
if optimal dynamic zero-g simulation on ground is required. The technology becomes practi-

cally feasible with the advent of modern signal processors which are able to realize complex
control tasks in real-time within the frequency range of controlled structures.

Test equipment design problems can be effectively reduced by this technology which

decreases also the overall system cost. However, high accuracy results can only be achieved

by a precision actuator for dynamic force compensation. The testing requirement of large

structural deflection amplitudes for open-loop reference tests leads to the development of a
special electrodynamic fi_rce actuator. A feasible solution in terms of reasonable mechanical

effort is the moving magnet actuator although it is not very effective with respect to the
required input power. A linear gain control method, including soft commutation, has been

developed and successfully tested using an experimental suspension test setup. A potential

spin-off application is the utilization of the force transducer as a manipulator for handling
objects under zero-g conditions.

The moving coil actuator in a special configuration has been selected as a candidate to

replace the bias weight suspension spring. Feasibility studies have shown that this is possible

under the given operational conditions with a moving mass weight corresponding to about 5
percent of the suspended load. Considering the almost zero stiffness force and a further

reduction of mechanical calibration effort, this approach has been selected as a promising
alternative.

During the subsequent development steps the suspension unit will be optimized on a sub-

system level before starting with the initial series production of a few suspension clusters for
system level verification.

Due to the approximative gravity compensation in a wide frequency range with the active
suspension approach, LSS control verification and system level validation should become
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increasingly relevant. However, by no means well approved standard test methods will be

ruled out, since the achievement of an optimum result will always require a well determined

combination of complementary tests.
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ABSTRACT

The modeling, system identification and controller design aspects of the ASTREX pre-
cision space structure are presented in this work. Modeling of ASTREX is performed using
NASTRAN, TREETOPS and I-DEAS. The models generated range from simple linear time-
invariant models to nonlinear models used for large angle simulations. Identification in both
the time and frequency domains are presented. The experimental set up and the results
from the identification experiments are included. Finally, controller design for ASTREX
is presented. Simulation results using this optimal controller demonstrate the controller
performance. Finally the future directions and plans for the facility are addressed.

1 Introduction:

The modeling, system identification and control of the Advanced Space Structures Technol-
ogy Research Experiments (ASTREX) are the focus of this paper. ASTREX is an evolving
test bed situated at the Phillips Laboratory, Edwards AFB, CA. The unique features of the
experimental facility include the three-axis large angle slewing maneuver capability and the
active tripod members with embedded piezoelectric sensors and actuators. The slewing and
vibration control will be achieved with a set of Reaction Control System (RCS) thrusters,
a reaction wheel, active members, control moment gyros (CMGs), and linear precision ac-
tuators (LPACT). A dedicated control and data acquisition computer is used to command
and control this operation. The structure will be fully operational in the near future for
implementing the control strategies to maneuver it to achieve retargeting and vibration sup-
pression.

The paper is organized in the three major sections, namely modeling, identification and
control. A general description of the testbed is given in the following section.

Description:

The ASTREX structure consists of two major parts; a vertical pedestal (1) 5 meters high
supporting the test article (2) through an airbearing system (ABS). The test article is balanced
in the floating configuration over the airbearing system by a 180 psi compressed airflow. The
central part of the test article, called the hub, is directly connected to the hemispherical ball
of ABS. The truss surrounding the hub is constructed by a set of 3" outer diameter graphite
epoxy tubes with end fittings and the specially designed 'star nodes'. This primary structure

PREC._DING _°_ti_ g.L.?a;,'K NOT FILMED
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is connected to the front piece, called secondary, via a tripod made up of composite tubes
and consisting of embedded sensors and actuators. The triangular secondary structure sup-
ports the reaction wheel and the simulated secondary mirror. A tertiary structure situated
behind the primary balances the secondary and houses electronics/ power supply for the
data acquisition and control. In addition, a couple of cylindrical masses placed on the sides
simulate the trackers. Six sets of triangular plates attached on the front face of the test

article simulate a primary mirror. The test article is shown in Figure 1. From its neutral
floating configuration, it can undergo 4- 20deg roll (local), -t- 20deg pitch, and 'unlimited'
(+ 180deg revolutions) rotation about the vertical axis, limited only by the length of cables
and air hoses from the ground.

The RCS thrusters are mounted on the corners of the hexagonal primary structure. Two 8
Ib thrusters are placed on the top and bottom nodes for roll control. A set of four 200 lb
and 8 lb RCS thrusters are placed near the remaining four corners. Their plate mounts are
connected to the primary via truss members. These four thruster units can be rotated on
the plate mounts to direct the thrust line by ±30 deg with respect to the line joining centers
of primary and secondary (test article z axis). With the secondary facing 30 deg down, its
designed attitude, the thruster line can range between 0 to 60 deg down with respect to the
ground. The 500 psi air supply to thrusters is provided by two 30 gallon tanks encased in
the hub. The tanks are joined to the thrusters by a set of hoses, ball valves and air filters.

The structure is instrumented with several linear accelerometers which are connected to a

set of Butterworth filters. The filtered signals can be acquired remotely by a CDAC unit

with a VAX 3100 as afront end computer. It is equipped with Matrixx/autocode/real-time-
monitor/system build features to command actuator signals and acquire data from sensors
as well as actuators. The computer requires discretized (as against continuous) forms of
the control law algorithm for implementation. The CDAC is a parallel processor based
system having 32 input and 32 output channel connections for transfer of analog data.

At present, the electronics for the active struts are being installed. Several angular rate
sensors will be placed at different locations for line-of-sight error measurements. A set of
CMGs and LPACTs will also be positioned on the test article to add slewing and vibration
control power to the existing actuators.

2 Modeling:

Over time, the ASTREX structure has grown to be a complicated structure with hundreds
of individual parts and bolted joints. An attempt is made to document the distances,
dimensions and masses of each component to result in a finite element model (FEM)
formatted as a NASTRAN data deck. The input file is grouped into the following components
for ease of modification and understanding.

* Pedestal (Figure 2)

• Hub

• Hub-pedestal interface mount

• Primary truss with mirrors and trackers
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• Secondarystructure

• Tertiary structure and connections

• Tripod (a new componentFEM is being developed.)

• Tripod to primary connection/feet plates,etc.

• Thruster mounts and thrusters

• Instruments (mainly concentratedmasses)

The complete ASTREX structure is shown in Figure 3. All the above parts are discretized
into elements of the types bars, triangular plates, quadrilateral plates, rigid connections and
concentrated masses. The grids and their locations are defined in two cartesian coordinate
systems: one for the pedestal (x vertically upward, y to the right and z horizontal) and

another for the test article (z locally upward, y to the right and z facing secondary). This
arrangement leads to a simplified configuration since the test article is allowed to pivot at the

top node of the pedestal. The pivot point grid 139 on the primary (primary axes 0., 0., 0.127m) is
coincidental with the pedestal origin at grid 501. The pedestal grids are numbered 501 to 599,
and the corresponding elements are numbered 401-450 (CBAR) 801-856 (CQUADA4). These
numbers have been fixed and it helps in isolating the pedestal model from the test article
model for center of gravity/mass balancing checks and implementation on the multibody
dynamics software such as TREETOPS. In all there are 537 grids and over 1000 elements
including concentrated masses. Masses of individual components are matched with those
in the model. All the grids and elements are arranged such as to resemble the structure
physically. The inertia properties of the test article are as follows:

Mass = 5091.9 kg,

Center of gravity node: Grid 139

The inertia matrix in x, y, and z local coordinates relative to C.G. location in kg m 2 is
22239.302% 14.63632488 211.0207350
14.63632488 15680.06974 8.164874%5
211.0207350 8.164874955 22270.35766

The NASTRAN input file is set up to perform either normal modes analysis (solution 3)
or static analysis (solution 1). During the normal modes analysis, the original structural
dynamical system is converted into normalized modal formulation: the dynamical equation
M_ + C:_ + Kx = F with M the mass matrix, C the viscous damping matrix, K the stiffness
matrix, x the physical degrees of freedom, and F the force vector, becomes ff + 2('_or_ + w2r/=

_rF for mass normalization such that qSrMq5 is an identity matrix. In this equation, 77is the
modal amplitude vector, w the diagonal matrix of structural frequencies, • the eigenvector
matrix, ( the diagonal matrix of viscous damping factors, and an overdot signifies time
differentiation.

The output for solution 3 can be obtained in three formats. The standard output
includes eigenvalues, mode shapes, modal element stresses, and restraint forces induced by user
supplied or automatically generated point constraints. A constraint check is performed
by observing the values of rotational degrees of freedom in eigenvector matrices, providing
restraints wherever large values occur and then confirming that the reaction forces produced
by these restraints are negligibly small. The standard output is processed by an off-line

computer program which uses the eigenvectors, eigenvalues, actuator-sensor information,
damping, etc. to generate the control system matrices as a linear time invariant system. In
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addition, specifically for ASTREX, the output matrix C for line of sight (LOS) is formulated
by combining the optical sensitivity data (provided by Boeing) with various displacements
at selected node locations on the primary, secondary and tertiary mirrors. This procedure
is used to estimate the mirror motion for each of these three mirrors. The procedure of

.constructing the output matrix C has been detailed in [1]. The resulting state space model
IS:

ic = Ax + Bu + Dw

y=Cz

z = Mx+Hu

where A, B, D, C, M, and H are constant matrices and vectors x, u, y, z, and w symbolize
states, input, output, measurements, and noise, respectively.

The second output form (output2 module) is generated using the ALTER sequence in NAS-
TRAN for loading into the I-DEAS, Integrated Design and Analysis Software. In the I-DEAS'
graphics environment, the model can be viewed and analyzed. This is achieved by selecting
appropriate modules and steps in the I-DEAS' menu interactively. The pre-processing anal-
ysis and post-processing can all be performed using I-DEAS. For analysis purposes, only the
finite element geometry is needed. For viewing the mode shapes in the deformed geometry
form or in animation, the mode shapes from NASTRAN output2 are essential. The solution
can as well be constructed entirely in the I-DEAS - FEM - Model Solution mode. (For
system identification or test correlation, the I-DEAS - TEST module is utilized). In the FE
module, the component weights can be evaluated by grouping several different components
and evaluating their masses (element-solid properties) according to the assigned groups. As
an output, strain energy distribution can also be obtained in the model solution.

The third form of the output (output5 module) is generated using the ALTER sequence
for TREETOPS operations. Considering the test article and the pedestal as two individual
bodies, separate flex files are generated. In TREETOPS, the problem is set-up as two
flexible bodies with two hinges. These id's are the NASTRAN internal id's equivalent to
the grid numbers defined by the user. The software allows one to select a different number
of modes for bodies by specifying modes retained in the analysis. Upon execution, both
the TREEFLX and TREETOPS synthesize multi-bodies as a single structure with pre-
assigned degrees of freedom on hinge connections. The single structure with various kinds
of sensors, actuators, functions generators, and controllers can be analyzed dynamically for
the controlled response, especially during the large angle slew maneuver. (Both linearized
and nonlinear formulations are implemented in TREETOPS). An LOS sensor subroutine as
well as a controller represented in terms of dynamical matrices can be augmented externally.
Other relevant features of TREETOPS include generation of eigenvalues of the combined
structure (EIGEN), frequency response function plots, modal cost analysis, and time history
of excitations and controlled responses. ASTREX models are generated using the above
software.

Modeling is very crucial in quantifying the physical structure. Physical resemblance of the
model to the actual structure is just the first step (pretest) in the modeling procedures.
Acquiring data during the modal testing and identifying modal parameters of the structure
formsthe next step. Validation and tuning the structural parameters for model matching
are extremely important. With the modeling aspects complete, the system identification of
ASTREX is now presented.
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3 System Identification:

Model identification in the time domain seeks to solve the inverse problem of deriving a
mathematical model that matches, in some sense, the output of a physical system. Identifi-
cation experiments allow the precise characterization of the physical structure. Some of the
parameters obtained from the identification procedures include modal parameters such as
frequency, damping ratios and time-domain models such as state space characterizations. For
the time domain identification, the q Markov covariance equivalent realization (q COVER)
is used which is briefly presented here for the sake of completeness.

3.1 q - COVER Theory:

The objective of the q-Markov COVER identification is to develop state space matrices of a
discrete dynamic system given by

3:(k + 1) = A_(k) + Bu(k),5:(O) = a_0 (1)

_(k) = C3:(k) + i)u(k) for k _> 0 (2)

with input u, output _, the states 3: and the time sequence parameter k; the state covariance
matrix

._ = lim E_c(k)3:'(k) = f_f(A + .BB" (3)
k---*o_

is assumed to be positive definite. The infinite pulse response sequence Hi (also called

Markov parameters) and corresponding autocorrelation sequence Ri (also called covariance
parameters) with i _ cx) relate to the output data as follows:

oo

y(k) = Hou(k) + Hlu(k - 1) + H2u(k- 2) + .... = _] Hiu(k - i)
i=0

and

Ri = lim Ey(k + i)y'(k)
k---,_

The system in eq. 1, along with the positive definite assumption on the state covariance, is
said to be a q-Markov COVER of the system generating the above infinite data sequences,

if the first q and q-1 terms of {Hi}_ and {Ri}_ are equal to those of the finite data

sequences {Hi}0 q and {/_i}0 q-'. Both sequences Hi and 1_ can be expressed in terms of

matrices (A,/), C,/)). The quadruple (A,/_, 5,/9) is extracted in an inverse manner from

the experimental data obtained by exciting the structure by a finite series of pulses. The

realization problem, finding all minimal stable q-Markov COVERs given {/7/i}g and {/_'}_-_,

is based on the factorization and projection of two data matrices Dq and I)q(functions of a

finite number of Markov and Autocorrelation parameters) obtained from the pulse response
data:

(4)

The interested reader is directed to references [2,3] for more details and proofs. The data
acquisition procedure in the ASTREX lab for conducting the identification experiments is
now presented.
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3.2 Data acquisition:

The data required for the system identification has been obtained from accelerometers and
selected RCS thrusters (8-1b) through a control and data acquisition computer. A block
diagram, given in Figure 4, describes the acquisition process. The locations for accelerom-
eters are carefully selected based on expectations of capturing all the relevant structural
modes. These accelerometers and thruster pin-outs are connected to a coaxial junction box
situated on the tertiary structure. Signals from the accelerometers, powered by a constant
current amplifier, are filtered and amplified prior to acquisition with the help of a set of

8 th order Butterworth filters having a 200 Hz bandwidth and the capability to amplify signals

34 times maximum. The data acquisition is monitored through a parallel processor CDAC
having a VAX3100 as the front end computer. CDAC is also linked to the ABS computer to
transfer information from gimbals, LVDTs, and encoders connected to ABS. The sampled
data is saved in the ASCII format specifically to transport to other software such as MA-

TRIXX, I-DEAS TEST, etc. to perform system identification. The identification of a large
structure such as ASTREX is best performed using the techniques suitable for multi-input
multi-output systems. The application of the q-Markov COVariance Equivalent Realization
(COVER) algorithm to ASTREX is now presented.

3.3 Identification of ASTREX:

Markov and autocorrelation parameters of the system to be identified are determined from
the experimental data. There are two approaches to this problem:

(i) Excite the system by a pulse input to obtain the Markov parameters and by a white
noise input to obtain the autocorrelation factors.

(ii) Obtain both the Markov and autocorrelation parameters from the pulse response.

The second approach is used in this work since one experiment yields both the Markov and
autocorrelation data.

Identification experiments were conducted on the ASTREX test article in August 1991.
The compressed air thruster developed by Boeing was used in the experiments. The
details of the identification experiment and the results are described as follows.

The actuators used in system identification were the 8 lb bidirectional thrusters. The
thrusters are designed to operate using compressed air at 500 psi. At the time of testing,
however, a 150 psi compressor was used to provide the compressed air (a new 500 psi
compressor is now fully operational). Additionally, there was a pressure drop to 70 psi
across the air filters. Based on this pressure and the thruster operation mode (blow down)
a thrust of about 3 lbs was achieved. The input voltage versus thrust command of the

actuator was linear. The tank pressure changed from 150 psi to a 100 psi during this test.
The identification tests were conducted using 4 millisecond pulses with a 2 second data
sampling time per experiment.
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3.4 Identification at 250 Hz:

Four actuators and thirty-one sensors were used in the identification experiment. The ac-
tuators were located on the primary truss. The sensor locations and their identification
numbers are shown in Table 1. Piezoelectric accelerometers with limits 4-5 g were used as
sensors in this experiment. Channel 1 of the CDAC was used to record the input voltage
from the thrusters, while channels 2-32 were used to record the accelerometer outputs. Since

the pulse was of a low magnitude and short duration (4 ms), the gain on the Butterworth
filters was set to 34. This resulted in a significantly better signal-to-noise ratio (__ 8). The
noise in the outputs were essentially downstream of the Butterworth filter. The q-Markov
covariance equivalent realization technique with pulse inputs was used in the identification
work. The pulse input is applied one-at-a-time at each actuator location. For consistency
in measurement, each experiment was repeated 10 times. At the first actuator location,
the pulse was applied 10 times, at 2 second intervals. This was repeated at the other three
locations and the raw data files were obtained.

The data collection and processing procedure is shown in Figure 5. For the first identifi-
cation run, the data from experiment one was averaged and detrended. Then the q-COVER

algorithm was applied to the six outputs given in Table 2 for 50 th order Markov COVER.
The applied pulse amplitudes to thrusters are: [0.9122, 0.9246, 0.8903, 0.908]. The inten-

sities are the square of these amplitudes. From the singular value plot of the matrix Dq, a

50 th order state space realization is derived. Figures 6 and 7 show the correlation between
the time responses of the identified data from channels 2 and 5 versus the lab time history
data. The FFT for these output channels is shown in Figure 8 (Solid line represents LAB

data dashed line represents IDM response). The eigenvalues in the 10-30 Hz range for the
identified model are given in Table 3. A frequency response function was also generated
between 0-50 Hz using a tripod accelerometer and the first actuator. The results from the
time domain identification are close to the frequency domain results.

3.5 Frequency Response Function:

It is well known that a system's transfer function corresponding to any input/output pair
can be represented graphically in the Laplace plane by plotting the system's complex poles
and zeros. The poles of a second order viscously damped system are intimately related to the
modal natural frequencies and modal damping ratios. Therefore the knowledge of a system's
poles is sufficient for the identification of the modal parameters. In order to determine all the
poles of interest, one has to investigate multiple sets of input/output pairs. The frequency
response function (FRF) is the ratio of the output to the input of a system with respect to
the frequency of excitation.

A single-input single-output (SISO) transfer function measurement between two locations
on ASTREX was performed using the HP3562A dual channel analyzer. The structure was
excited by a shaker at the left-top node on the shaker in the horizontal direction (z global). A
force transducer situated betweentheshaker and the structure provides the analog input source
level. A collocated accelerometer record was used to obtain a frequency response function

(FRF) shown in Figure 9. This is the latest FRF of the structure after the new TRW
active struts were installed. The frequencies 10.25 and 10.625 are classified to be bending
in the yz and xz planes, respectively. Large numbers of such FRFs will be needed to
identify the frequencies, mode shapes, and damping accurately. This FRF of the present
ASTREX configuration provides one with a modal survey of the test article.
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4 Control:

Control design procedure and results with related methods are presented in this section. The

procedure shown in Figure 10 can be represented by the following steps: frequency weighting
on LOS outputs, model reduction using Modal Cost Analysis(MCA), and reduced-order
controller design using Output Variance Control (OVC). Now the OVC and MCA methods
are discussed. Their applications can be found in [5,6].

4.1 OVC Theory:

The objective of the OVC problem is to design a controller that minimizes input energy
subject to inequality constraints on the output variances. From the application standpoint,
only the discrete form of the OVC theory is presented here.

Consider the following time-invariant, stabilizable and detectable continuous system state
space model:

_p = Apzp + Bpu + Dpwp
y = Cpxp

z = M,x,+v, (5)

where xp6R "_, yER"_, zER "_, and u6R "_ are the state, output, measurement and control
vectors, respectively. The disturbance vector wER "_ is a zero mean white noise process with

intensity E {wp(t)w_,(r)} = Wp6(t - r) while the measurement noise v, has an intensity

Vp6(t - r). The objective is to design an full order controller

It "-- G:_c

J:c = Acx_ + Fz (6)

which minimizes the control energy

J = Eoo(uTRu) = tr RGXcG T , (7)

where Xc = Ec_x_x T is the controller variance, subject to equations 5 and 6 and satisfies
the output variance inequality constraints

E_ y?(t) < a? i = l,2,...,nu (8)

" _"uennmg a new state vector x as x = r,/txv _ xdT,
k

as

x , equations 5 and 6 can be written

where

]c = Ax + Dw

y=Cx

(9)
(lo)

A = [ Ap-FMp AJ'-F?vIp+BpG-A_]FMpAc+FMp

0 F ' C=[C, Cp], u=[0 Glx, w= v, (11)
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The state covariance matrix of the system (9) becomes

P X,2 ] (12)X _ Eoo(zz')-- X T X¢

= P+Xc, where P is the errorand the state covariance of the plant (5) becomes Xp
covariance matrix and

The OVC problem is expressed as an equivalent nonlinear programming problem in which
an augmented objective function is minimized. The inequality variance constraint in the
necessary conditions is handled via Kuhn-Tucker conditions. The solution of the necessary
conditions results in the following algorithm for a discrete system.

4.2 OVC Algorithm for the Discrete System:

Given data {Ap, Bp, Cp, Dp, Mp, Wp, Vp, Qo, R, ,:ri, el, n }

where Qo > 0 is a diagonal matrix

Step 1: Compute the Filter gains F through Riccati solution P by satisfying

T . MppMT)-,MvPA T + DpWpD T0 = AvPA T- P- ApPM_ (1% +

F = ApPMf(V p + MppMT) -'

Step 2: Compute the maximal accuracy solution

y_ (Max. Accuracy) = [CpPCy]ii

Computation is terminated if a_ < [CppCT]. for any i.

Step 3: Compute the controller gain matrix G through Riccati solution/-<

T - -1 T ~
0 = ATf£Ap-ff-ATf(Bp(R+BpI(Bp) B],I<Ap+Qk

T . -1 T ~
G = -(R+B],I(Bp) BpKAp

Solve the controller covariance equation

0 = (a + BG)Xc(A + BG) T - Xc + F(V + MppMT)F T

Compute the output variance

(y,RMS) 2 = [Cp(P + X_)cT]. = [CpXpCT].

(14)

(15)

(16)

(17)

(18)
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Step 4: Verify the convergence condition

[Y]n.s - a_lQ,, < e, for all i STOP

OR update Qk as Qk+x = [ _ ]"Qk and return to step 3.
4

The necessary condition for the OVC problem is the same as that of the LQ class of problems
with some diagonal output weighting matrix that is iteratively updated. From the above
equation, it turns out that if E_oy](t) < a_, then the corresponding weighting qo approaches

0. Physically this means that this particular output yo(t) is not critical to the design and the
2 is not necessary. It is, of course, not known a priori which constraintsconstraint To _< a s

will be binding, and so all constraints must be stated in the problem. More details on the
OVC method can be found in reference [9]. While there is no convergence proof for the
algorithm, experience shows that the algorithm will converge if the tuning parameter n is
sufficiently small.

4.3 Modal Cost Analysis (MCA):

The evaluation model is reduced to Riccati solvable dimensions by the MCA method. The
reduced order model is called the design model. The controller is designed based on this
model. The contribution of the mode i to the scalar cost function is called "modal cost."

Modes are truncated such that the design model retains a percentage of the cost of the
evaluation model.

Consider the system in modal coordinates

_i = Airli + b_u
rl, x

y = _--_Cir/i
i-----1

with the scalar cost function

= o

V = _ yS'(t)QyS(t)dt

where yS(t) is the response to us(t) = lasS(t). For the modal coordinate r/i, the modal cost
is given by

where

V_ i = [Xm C m Q Cm]

0 = XmA_ + AmXm + BmbtB:

bt = diag "..

2
#nu

and Am = diag [... )q...] with Bm and Cm being corresponding modal input/output coeffi-
cient matrices. From the computational viewpoint, closed form solutions of the Lyapunov
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equation in modal coordinates are used. Furthermore, some of the calculations are carried
out in the real Jordan form coordinates yielding the appropriate design model.

The controller design iterations use the integrated MCA-OVC formulation. The design
model determined by the MCA approach depends on the output weighting matrix Q, which
reflects the importance of each output. The OVC approach iteratively determines the Q
matrix that yields a controller satisfying output inequality constraints. Thus the model
reduction procedure is influenced by the designed controller. The integrated procedure is
implemented as follows. Based on an initial weighting matrix, Qo, the MCA approach is used
to design a reduced-order model which is followed by the OVC loop. The OVC loop yields
a new Q matrix. This matrix Q is now used in the MCA procedure to design a new reduced
order model. Controller design is repeated until the reduced-order model ceases to change.

4.4 Design Results:

An 82_d-order finite element model, with a 4 msec sample period, is used as the ASTREX
model. Eight accelerometers and ten RCS jets are mounted on the test article; four 200-1b
jets are primarily used for slews, four 8-1b jets are used for vibration control, and two 8-1b
jets coupled to each other control roll motion. The RCS jets are assumed to have first-order
lags with their corner frequencies at 30 Hz, while the accelerometers are assumed to have
high bandwidth. Thus the order of the composite system (also the evaluation model) consist-
ing of ASTREX, actuator, and sensor dynamics is 91.

For vibration suppression study, only the six 8-1b jet locations are used as control input
channels, while all the jet locations are considered as disturbance input channels. The
noise intensity matrices W and V for actuator and sensor noises are defined as

W = diag /2.02, 2.02, 2.02, 2.02, 2.02, 1260, 1260, 1260, 12601 N 2

V = diag [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] x 10 .6 g2

where g is the gravity acceleration constant. The output y to be controlled consists of the
z and y components of the LOS outputs in the primary (losP), secondary x(losS), tertiary

(losT) mirrors, and the average of the three (los):

yT._ [ZloaP, ZlosS, XloaT, Xlos, YlosP, YtosS, YlosT, Ytos]

The reduced-order controller is sought in discrete time domain for ease of implementation on

the CDAC. A 24 th order controller is designed based on the MCA-OVC algorithm such that
the LOS output and control variances are minimized. As shown in Figure 10, the LOS
outputs are weighted using a frequency-dependent function accounting for the actuator dyna-
mics and also the control bandwidth. Also, unfavorable frequency components, such as the
pedestal vibration modes, are directly augmented in the controlled output matrix along with
the LOS outputs. Then the iterative use of the MCA and OVC algorithms tune the
performance of the closed-loop system.

The controller is evaluated on the 91"t-order evaluation model. The open-loop variances of

the composite system are given by

[9.0, 16.6, 0.013, 16.9, 3.6, 9.9, 0.010, ll.8]arcsec 2
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The LOS output variances realized by the controller are

[6.7, 9.1, 0.010, 10.3, 2.5, 5.9, 0.010, 7.2] arcsec 2

The control variances are also listed as follows:

[10.7, 20.2, 15.4, 13.4, 26.0] N 2

Figure 11 shows the time response plot of typical outputs. The secondary mirror LOS outputs
achieve moderate reductions in the output variances with low control input variances. The
frequency components at 3 to 5 Hz, appearing in the primary mirror LOS outputs, are
due to pedestal structure vibration, and require larger control effort for suppression. The
controller designed for vibration suppression can now be implemented on ASTREX. Although
implementation is beyond the scope of this paper, the procedure is presented nevertheless
for the sake of completeness.

4.5 Implementation:

The CDAC has the software MATRIXx, Autocode, and System_build which generate signals
for actuators, and acquire data. The operation is performed by building block diagrams to
process data in either continuous or discrete system form. For implementation, however,
only the discretized control gain matrix form can be used, and thus the controller should be
designed in a discretized version. The control 'superblock' basically relates sensor inputs to the
actuator inputs, and depends on the method of controller design. For ASTREX, the encoder
data converted in terms of quaternions or Euler angles, mainly for slewing, together with
measurements of LOS error/accelerometers for vibration suppression can form the sensor
data. At present, the control signals are of thrusters (14 total) and for reaction wheel (1).
Monitoring of the control process is done in the interactive animation software. It is also to
be noted that, due to their interactive nature, both the slewing and vibration must be
controlled simultaneously. In other words, for ASTREX, both motions cannot be isolated
from one another.

5 Plan:

The following items are currently in the planning stage.

• Component FEM for the tripod active struts.

• Evaluation of dynamic characteristics of thrusters (14) and reaction wheel.

• Acquisition, installation, and testing of LOS sensors.

• A detailed modal survey.

• Model updates based on the experimental data.

• Closed-loop vibration and slewing control.
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6 Concluding Remarks

The modeling, identification and controller simulation aspects of the ASTREX testbed are
presented in this paper. A precision space structure such as ASTREX provides the structural
dynamics and control community with a testbed in which to test and implement emerging
technologies. With the establishment of the baseline identification procedures, future updates
to ASTREX can be easily handled. A comprehensive look at the modeling, identification
and some controller synthesis approaches to ASTREX have been presented. With the struc-
tural/hardware development complete, future directions include large closed loop slewing
experiments on ASTREX.
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Table 1: ASTREX Sensor Locations

CDAC ASTREX Sensor

Channel Node# Connector#
1 Thruster

2 197 56

3 218 43

4 195 60

5 206 58

6 196 64

7 204 61

8 196 63

9 197 55

10 205 65

11 195 59

12 218 44

13 204 62

14 204 70

15 247 21

16 197 67

17 196 71

18 206 68

19 205 72

20 15 51

21 223 45

22 250 26

23 195 69

24 205 66

25 33

26

233

244

27 238 16

28 245 22

29 241 11

30 26 54

31 1 52

32 206 57

z y

,/
,/

,/
,/
,/

,/
,/
,/
,/
,/

,/
,/

,/
,/

,/

,/

,/
,/

Comments

Z

,/
Tripod Upper

Secondary Backface

Tripod Left

Tripod Upper

Tripod Right

Tripod Left

Tripod Right

Tripod Upper

Tripod Right

Tripod Left

Secondary

Tripod Left

_/ Tripod Left

_/ Primary

_/ Tripod Upper

_/ Tripod Right

x/ Tripod Upper

_/ Tripod Right

Tertiary

Secondary

Primary

_/ Tripod Left

Tripod Right

_/ Primary

Primary

Primary

Primary

_/ Primary

_/ Tertiary

Tertiary

Tripod Upper
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Table 2: Identification Input Channels

Output # Channel # Location

2

5

7

10

11

12

Tripod

Tripod

Tripod

Tripod

Tripod

Secondary Plane

Table 3: ID Model Eigenvalues

_(Hz)
10.2 0.8578

13.662 0.0226

14.3 0.1072

18.713 0.0243

19.24 0.0253

23.13 0.0334

27.22 0.0066

28.72 0.0104
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Abstract

In this paper, the design, analysis, and test of a low cost,

linear proof mass actuator for vibration control is presented. The

actuator is based on a linear induction coil from a large computer

disk drive. Such disk drives are readily available and provide the

linear actuator, current feedback amplifier, and power supply for

a highly effective, yet inexpensive, experimental laboratory

actuator. The device is implemented as a force command input

system, and the performance is virtually the same as other, more

sophisticated, linear proof mass systems.

Introduction

Vibration suppression for large flexible structures in space

requires some meansof transferring the mechanical vibration energy

into heat. A popularly proposed solution to implement this in

realizable hardware is the linear proof mass actuator (or "Linear

Momentum Exchange Device"). (see Refs. 1-3) The linear actuator

achieves control by accelerating a mass along a linear track. The

force driver is a linear motor, which applies a force to the moving

mass, and hence by Newton's Laws, an equal and opposite force

applied to the structure on which the actuator is mounted. If an

ideal "velocity sensor" is used to apply the driving signal to a

"perfect" force actuator, we have the classical force-velocity

collocated control scheme, which is guaranteed to be energy

dissipative, and results in a stable, damped structure.
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The use of linear proof-mass actuators for control has long been
recognized as a useful technique for implementing this type of
control scheme. In addition to action as a control actuator, an
alternate application of this device is as a force producer, where
it acts essentially as a mechanical shaker. As a shaker, this
device is capable of exciting the structure through a force input
at the physical location of the mounting between the actuator and
the structure.

The construction of linear proof mass actuators is conceptually
quite simple, yet in practice, tends to be difficult to implement.
They are heavy, the desired friction free linear track motion is
difficult to maintain due to the precision alignment required for
the linear motion, stiction in the bearings, and magnetization of
the bearings and other materials. For laboratory experimentation,
the construction of such actuators may be an expensive, time
consuming task. The purpose of this paper is to report on an easy,
low-cost implementation of a proof mass actuator which may be
suitable for laboratory studies.

Proof Mass Actuator Description

The key element being proposed here to construct a proof mass

actuator is to utilize the head actuation mechanism from a hard

disk drive. For this application it is relatively easy to find

obsolete disk drives, which are fairly large, heavy, and very

reliable. The mechanism in these older drives is a sophisticated

implementation of a common voice coil moving in a magnetic field.

The primary advantages of these actuators are: (i) They are fairly

large, hence they are easy to work with in a laboratory

environment, (2) the mechanisms are very precise and reliable. The

suspension system and track of the actuator are very smooth with

low friction, and(3)theprimaryelectroniccomponent in the actuators

is a high precision constant current DC amplifier. The constant

current feature eliminates the back emf effect seen in a constant

voltage drive system, hence there is almost no interaction of the

actuator dynamics with the structure on which it is mounted.

The proof mass actuators constructed in our laboratory were

constructed from old Hewlett Packard HP7925D disk drives. These

are relatively old (circa 1980), fairly large drives which are

obsolete for use as data storage devices. Nevertheless, the

electronics and actuation are still perfectly good, and the head

positioning subsystem of the disk drive makes an excellent proof

mass actuator. This consists of a linear actuator, with

approximately a four inch stroke, plus the power supply and

regulator. For laboratory work this actuator produces several

advantages. First it is reasonably inexpensive! Surplus drives of
this type are commonly available for several hundred dollars. It

is likely that most organizations have drives of this or other similar

types, sitting around as unused, surplus equipment. Secondly, the

linear actuator is fairly large, making it relatively easy to work

on and modify. (Of course, it is also large and heavy making it

less than desirable for a realistic space actuator. For our
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purposes, however, this is not viewed as a major problem.)

The mass moves within a coil of approximately three inches

in diameter. Current passing through the coil produces a magnetic

field, which produces a force on the mass moving within the coil.

The standard mass of the actuator moving within the coil is quite

small, especially in comparison to the fixed mass of the actuator.

Because there is ample room on the actuator, additional mass was

added to make the device more efficient in producing force without

being track limited. The primary limitation on the amount of mass

that can be added is the bearing which guides the actuator on its

track. For our design we rather arbitrarily used a nominal 2.2 kg

additional mass on the actuator to reduce the stroke required

especially at low frequencies.

The current driving the coil comes from a current amplifier

which produces a current proportional to the input voltage. The

specifications for the power supply and amplifier can be found in
the manufacturer's documentation but should be measured in situ to

get the correct value for your individual system. For the HP

drives used the manual specifies the amplifier gain as 1.2 amp/v.

Laboratory measurements obtained a value closer to 1 amp/v, with

some slight variations within the group of amplifiers tested. The

actuator itself was tested by constraining the actuator mass and

using a load cell to measure the force produced by the coil. For

the system tested the nominal value of this gain was found to be

between 1-2 ib/amp. This value can vary widely between systems and

is very sensitive to the track alignment in the system. The

nominal force constant in the system is close to the upper figure.

Disassembly of, or damage to, the permanent magnet during

construction can reduce the magnetic flux and reduce the force

constant toward the lower value. Nevertheless it is easy to see

from this value that the actuator can be very effective in

producing a force on the attaching structure.

Conversion to a Force Actuator

The only physical changes required to the actuator are the

addition of a proof mass to the coil to decrease the stroke

required to produce a given force, and the addition of an LVDT to

give feedback for the position of the moving mass. The physical

layout of the actuator is shown on Figure I. For testing purposes,

an accelerometer was mounted on the proof mass, to give a direct

force readout. This accelerometer could also be used for feedback

signals if required, but in the current implementation the

acceleration feedback was not required. The LVDT used was a

TransTek Model No. 244. The LVDT response is linear over about a

two inch range. The LVDT requires an external power supply and has

internal electronics that produce a significant phase lag in the

measurement. Phase lag was measured to be 52 degrees at i00 Hz and

varied approximately linearly with frequency. The linear velocity

transducer (LVT) had no significant dynamics and was found to have

a gain of 0.05 v/(in/sec). Using these parameters the system block
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diagram was modeled as shown in Figure 2. The overall transfer

function (neglecting the dynamics of the LVDT) are a second order

system

F KaK: 2

v :+K K,X:+KoK/C 

where K(.) indicates an appropriate gain with
a - Amplifier

f- Force/current constant

V- LVT transducer gain

D- LVDT gain

A simple operational amplifier circuit was added to sum the LVT and

LVDT signals, and to allow relative scaling of the signals to the

amplifier. The general schematic of this circuit is shown in

Figure 3. For our purposes the gains were set to give a low

frequency cutoff of about three Hertz. Initial tests showed a lot

of high frequency noise corrupting these feedback signals and

causing very poor performance. Shielding all the leads from the

sensors to the op-amps, and adding a number of small capacitors to

the circuitry as shown on the figure, ultimately eliminated this

problem and made the system respond very nicely.

Test results

Tests of the actuator show that this device performs very well

as a force command proof mass actuator over a large frequency

range. Figures 4 a,b show the measured transfer function from

voltage input to force output (as measured by an accelerometer) for

the actuator mounted in a bench test. The input used here is a one

volt random input. The force output level is approximately 1.6

ib/v. As seen, the force output is extremely flat from about 2 Hz

to over 200 Hz. The phase plot (not shown here) is generally quite

flat but does exhibit noticeable phase shift at frequencies below

about 5 Hz. In initial tests, the proof mass was not exactly

centered on the axis of the moving coil. This produced noticed

ripples in the response curves starting at about 50 Hz due to

exciting structural dynamics of the actuator frame. Centering the

mass produces the smooth response shown in the figure. Linearity

of the device was tested by applying a sinusoidal voltage and

plotting the voltage -force relationship. These results are shown

in Figure 5. If perfectly linear, the curve should be a straight

line. As seen in the figure there is slight non-linearity, and a

small amount of hysteresis, but overall we judge the response to be

extremely good.

Several of these actuators have been constructed and mounted on

a five meter test structure in the Structural Dynamics Research

Laboratory at the University of Cincinnati. The truss structure is

shown in Figure 6. The bench tests previously described were
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repeated on the test structure to verify that the proof mass

actuator continued to operate as expected when subjected to the

dynamics of the truss frame. The truss is mounted vertically and

suspended from the ceiling to simulate a free-free horizontal

suspension. A number of large aluminum plates are used as

attachment points for the actuators described here. The large

masses on the truss produce a set of dynamics with significant

modes at low frequency. A typical frequency response of

acceleration response to force input at one of the actuator

mounting points is shown in Figure 7. Numerous modes exist on the

truss throughout the frequency range tested. The bench test shown

in Figure 4 was repeated with the actuator mounted on the

structure. These results are shown in Figure 8. There is very

little difference between the two sets of curves, indicating that

the actuator dynamics have negligible interaction with the truss

dynamics.

Conclusions

The intent of this paper is to present the details of the

construction of a low cost proof mass actuator, suitable for

research into the dynamics and control of large flexible

structures. The actuators were constructed from surplus disk drive

actuators for a relatively modest cost. Neglecting the cost of the

drive (which we in fact obtained at no cost) the total expenditure

for equipment was less than about three hundred dollars. (Normally

the surplus disk drive itself may cost a comparable amount if

purchased). The analysis and test results show how this relatively

simple concept can be used as a highly effective linear proof mass

actuator suitable for control purposes, or as a mechanical shaker.

We have constructed over five of these systems and their

performance is fairly reliable and repeatable. Current studies are

under way to use these actuators in on-line identification schemes

for structures and for vibration suppression control experiments.
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CSI FLIGHT EXPERIMENT PROJECTS OF THE NAVAL RESEARCH LABORATORY

Shalom Fisher

Naval Research Laboratory

Washington, D. C.

ABSTRACT

The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments.

The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric

Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an

orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991,

represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar,

operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of

the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping

rates of free-damped vibrations were obtained and compared with finite element structural models of the

LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment

(ACTEX) designed to demonstrate active and passive damping with piezo-electfic (PZT) sensors and

actuators. This experiment was developed under the management of the Air Force Phillips Laboratory

with integration of the experiment at NRL. It is to ride as a secondary, or "piggyback," experiment on a

future Navy satellite.
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LACE SATELLITE: DESIGN AND FLIGHT HARDWARE OF DYNAMICS EXPERIMENT

The first of the CSI flight experiments of the Naval Research Laboratory (NRL) is the Low Power

Atmospheric Compensation Experiment (LACE) dynamics experiment. The experiment was a low-cost

"piggyback" opportunity, secondary to the primary LACE mission. Its design was initiated at meetings

held at NRL in May and June of 1988. Costs were kept low, and rapid integration of the experiment into

the satellite design was made possible because the LACE satellite was built and launched by NRL, i.e.,

design and integration of the experiment took place at the same facility. The LACE satellite was launched

on February 14, 1990 into a 540 km altitude circular orbit of 430 inclination. The structural configuration

of the LACE spacecraft is illustrated in Figure 1. Three deployable/retractable booms of maximum length

45.72 m (150 ft) are mounted on a rectangular pamUelepiped bus of mass 1,200 kg. The zenith directed

gravity gradient boom has a magnetic damper at its tip; the forward or retro-boom is deployed along the

velocity vector; the balance boom is mounted and deployed counter to the velocity. The tip end of the

retro-boom carries a reflector plate on which an array of glass comer cubes is mounted. The glass corner

cubes are intended to reflect visible light for the primary LACE mission. Attitude stabilization to within

about 10 libration amplitude is accomplished by the gravity gradient torques and by a constant speed

momentum wheel. Constant rate boom deployment/retraction maneuvers are remotely controlled through

a ground based telemetry link.

The dynamics experiment flight hardware consists of three germanium comer reflectors, as shown

in Figure 1. One of the reflectors is included in the array of comer cubes mounted on the end of the retro-

reflector boom; one is on the bottom of the bus, and the third one is on the end of the balance boom. The

germanium has an index of refraction of 4.0 for light of wavelengths between 1.8 microns and 15

microns• With this very high index of refraction, light striking the reflector surface at angles of 200 or

greater will be reflected. Therefore, a ground-based light source will see a return signal even for the

satellite at a low elevation angle.

LACE Spacecraft

+Z • Gravity gradienl boom

• Balance boom l - 45.72 m (150 ft)- 45 72 m (150 II]
( ,_ / - Deployablelrelraclable

- Deployablelrelmclable _ / - 90.7 kg (200 It)) lip mass

with magnetic damper

• :-: _- * Relro-felleclo_" boom]'t o f'lln_s C

- 15 9 kg (351b) _ - 45.72 m (150 II)
- Get'lnnf.um ,¢_--[1_ - 13eployablelrelraclable

co,.e,cob./ z[llllllll_   /"

• . _ /g - Germanium coiner cube
• SPAI_Or RHay stll)_yslent /

- (_Pflll?lniUll| CO|hCf cube

Oil enrlh poirtliflg lace

FIGURE 1: Design of the LACE satellite showing placement of germanium comer reflectors.
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LASERTARGETINGFOR THELACE DYNAMICSEXPERIMENT

Thelaserilluminationsaremadewith theMIT LincolnLaboratory'sFirepondlaserradarlocatedin

Westford,MA asshownin Figure2. TheFirepondradarusedfor the illuminationsis anarrowband,CO2

laserradaroperatingat 10.6microns.Theapertureof the lasertelescopeis 1.2192m (48 in), giving a

nominaldiffraction limitedfootprintof about5 m atarangeof 550km (minimumtargetrange).A 0.6096

m (24 in) telescope,boresightedwith theCO2telescope,cantrackin visiblelight eitherpassivelyby

reflectedsunlightor activelywith a25watt,514.5nmArgon-ionlaser.Acquisitionandtrackingare

assistedby theMillstoneL-bandradarlocatednearby. The Millstone radar also supplies target frequency

information for range-rate (Doppler) acquisition. Observations are made with the sun 100 to 300 below

the horizon, either before sunrise or after sunset. In this "terminator mode," the site is in darkness but the

satellite is still in sunlight. The CO2 illuminations are limited by NORAD to windows unique to each

pass, and by a safety requirement that the elevation angle must be 300 or more.

With the Firepond apparatus, vibration measurements were made on January 7, 8 and 10, 1991

(denoted hereafter in this report as days 91007, 91008 and 91010). The targeting of LACE was

accomplished with active tracking by means of the Argon-ion laser targeted on the retroreflector array of

glass comer cubes at the tip of the lead boom.

Before and during the targeting, vibrations of the LACE satellite smacture were excited by retraction

of the lead boom from 24.38 m (80 ft) to 4.572 m (15 ft). The reflector on the lead boom tip and the

reflector on the bus were simultaneously illuminated, after the boom length decreased to 9.144 m (30 ft),

to provide differential Doppler measurements of the relative motion between the end of the boom and the

spacecraft body. Simultaneous observations could only be made for a boom length of 9.144 m (30 ft) or

less because of the narrow width of the laser beam. The relative motion includes boom vibration as well

as the rigid-body satellite motion and the boom retraction motion.

Dynamics Experiment
• Estimate salellite vibration modes

from doppler resolved laser radar measurements

......... : - T R_e-rence LACE o,bil

'"_ _ - 525 km altilude _ -...

FIGURE 2: On-orbit targeting of LACE with the Firepond narrowband laser radar. 765



OBJECTIVESOFTHE DYNAMICS EXPERIMENT

With the dynamics experiment, the primary design goal was to perform on-orbit system

identification, i.e. to measure modal frequencies and damping ratios of the satellite structure as stated in

Figure 3. The large size of the LACE structure precluded ground tests of the dynamics of the deployed

structure or tests of boom deployment dynamics prior to launch. The damping ratios, measured by the

experiment, provide a useful assessment of the amount of vibration damping intrinsic to the type of

deployable/retractable truss structures used in LACE. Such structures are used in a number of space

applications, i.e., the Voyager magnetometer booms and in the Galileo spacecraft. The on-orbit system

identification provides a mechanism to validate finite element structural models of the satellite system; to

refine and improve them, and to measure the level of vibration induced by boom deployments/retractions.

Unique opportunity to measure effects of disturbances on
spacecraft flexure; give boom vibration knowledge during
LACE spacecraft operations.

• Goal is to perform on-orbit system identification
vibration frequencies, damping and amplitude ratios.

• Assess flexible structural modelling accuracies:

deployment/retraction vibrations
finite element models (FEM): NASTRAN
dynamics simulation models: DISCOS, treetops
deployment dynamics: DART

• Facilitate control of jitter and rapid slews in future spacecraft.

FIGURE 3.
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KEY POINTS OF THE DYNAMICS EXPERIMENT

Figure 4 states the significant events of the dynamics experiment. The LACE satellite was launched

on February 14, 1990. As previously mentioned, observations of vibrations of the LACE satellite were

made on January 7, 8 and 10, 1991 (denoted in this report as days 91007, 91008 and 91010). In the

observations, the Firepond narrowband laser radar telescope, boresighted with the visible light radar,

observed differential Doppler reflections from the germanium comer reflectors on the lead boom and

body of the spacecraft after the boom length reached 9.144 m (30 ft) or less. The laser Doppler

measurement window of day 91007 observed about 38 seconds of forced dynamics motion of the lead

boom while the boom was being retracted. The window of day 91008 contained about 68 seconds of

retraction data and 25 seconds of free-decay data after retraction was stopped. Day 91010 data contained

about 45 seconds of useful free-decay data after retraction was stopped.

• LACE spacecraft launched February 14, 1990
altitude at launch 540 km, circular, 43oinclination

• LACE satellite built and launched by Naval Research Lab.

• Dynamics experiment is a low-cost "piggyback" experiment.

• Germanium corner cubes (3) serve as targets for Firepond
laser radar of MIT Lincoln Laboratory, Westford, Mass.

• Corner cubes installed on LACE on December 22, 1989.

• Laser Doppler data collected on January 7, 8 and 10, 1991.

• Observed forced vibration and free-damped oscillations.

FIGURE 4:

767



COMPENSATIONFORRIGIDBODYMOTIONAND BOOMRETRACTION

In additionto thevibrationalmotion,theDopplerdataincludestherigid bodymotionof the

spacecraftaswell astheboomretractionspeedof about.076m/sec(.25ft/sec).Sincethespacecraftis

gravity-gradientstabilizedit rotatesonceperorbit in inertiaspaceat auniformrate.However,from the

ground,its aspectanglechangesatavariableratewith time;therateappearsto beamaximumwhenthe
spacecraftis atits maximumelevationangle,asillustratedin Figure5. Theseaspectanglechangesand

aspectangleratechangeshaveseveraleffectsontheobservedDopplershiftedlaserreturn:

1.Therigid bodymotionandboomretractionspeedwill biasthevibrationmotion.It will beshown

thattheboomretractionspeedisseveraltimeslargerthanthevibrationspeed.

2. Thefrequencyseparationbetweentheapparentrigid bodymotionandthelowestvibrational

modeof 0.019Hz is small.Thereforetheobservabilityof thismodeisaffected.

3.Theobserveddampingfactorsof thedetectedmodeswill bebiasedby anamountthatdepends

uponthepositionof thesatellitein thesky.Thecalculateddampingfactorswill besmallerfor

observationswith thesatelliteascendingto its maximumelevationangle,thanfor observationswith the

satellitedescending.

Theeffectsof thisapparentmotionaretreatedby calculatingtheapparentrigid bodymotionduring

theobservationperiodusingthespacecraftorbitalrate,range,theboomlengthsandboomretractionrate.

Thebiasproducedbytherigid bodymotionis subtractedfrom theobservedmotion.Thechangein

observeddampingwith aspectangleiscorrectedbydividingthedampingfactorby thecosineof theangle

betweentheLOS vectorandthepitchplane.

Figure5appearson the following page.
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ROTATION OF EARTH-POINTING SATELLITE
AS OBSERVED BY A GROUND STATION
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FIGURE 5: Rotation of LACE as observed from a ground site.
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OBSERVED STRUCTURAL VIBRATIONS

Figure 6 shows observed data from day 91008. The figure shows forced vibration data to about 67

seconds, followed by about 28 seconds of free-decay vibration data, on which is superimposed a

simulation of the rigid-body motion and boom retraction rate. The simulation comes fairly close to the

median of the observed vibration data: orbital uncertainties and uncertainties in the boom retraction rate

could account for the slight discrepancy between the real and computed central body motion. It can be

seen that the amplitude of the forced vibration is about 20 mm/sec. The boom retraction rate is about 75

mm/sec. Figure 7 shows a power spectral density plot obtained by Hamming weighting the data of the

entire temporal window and computing the power spectrum. The nominal resolution of the resultant

spectrum is 0.01 Hz. The result indicates the presence of multiple vibration frequencies. Values of

observed vibration frequencies are listed as follows: 0.12 Hz, 0.28 Hz, 0.51 Hz, 1.03 Hz, 1.25 Hz, 1.29

Hz, 1.31 Hz, 1.41 Hz, 1.45 Hz, 1.55 Hz, and 2.46 Hz. The accuracy of these measurements has not

been determined due to the limited number of observations.

The time-frequency analysis of the forced oscillation data from day 91008 is presented in Figure 8.

Represented in this way, the data clearly indicate that modes in the 0.28 Hz regime and in the higher 1.25

Hz - 2.46 Hz regime increase in frequency as the boom retracts. The figure also indicates the relative

stability of the 1.03 Hz frequency, a frequency close to the driving frequency of the boom deployment

mechanism.

Vibration observations: day 91008 compared with simulated rigid body rates
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FIGURE 6: Observed vibration of LACE on day 91008.

Figures 7 and 8 appear on the following pages.



POWER SPECTRAL DENSITY, DAY 91008
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FIGURE 7: Power spectral density plot of vibrations observed during boom retraction.
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POWER SPECTRAL DENSITY VS
BOOM LENGTH DURING RETRACTION
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FIGURE 8: Forced oscillation frequencies versus boom length during retraction.
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COMPARISON BETWEEN FEM MODES AND OBSERVED MODES

The eigensystem realization algorithm I (ERA) was used to calculate values of the observed modal

frequencies and damping factors. Table 1 shows a comparison between the ERA derived modes (order =

8) and modes computed with a t-mite element (FEM) structural model. The finite element model used was

a "stick" model in which the booms were modelled as simple beams rather than as trusses. Table 1 also

shows the boom tip modal displacements obtained from the FEM model. The displacements are

normalized so that the maximum displacment is 1.0. The observable modes are those with substantial

modal displacement, Az, perpendicular to the boom axis and coplanar with the line-of-sight vector and a

vector along the boom axis. The lowest ERA derived mode of .019 Hz does agree quite well with the

lowest FEM calculated mode. However, the day 91010 observation period was about 45 seconds, i.e., it

was close to the 53 second period of that mode. Therefore, the agreement in frequency between the

observed and calculated mode may be coincidental. The other observed modal frequencies of 0.124 Hz,

0.335 Hz and 0.547 Hz agree within 10% of the modal frequencies for the more highly observable

modes. Another interesting feature of the comparison is the presence of the FEM mode at 0.646 Hz,

which should have been observed, but was not. The close spacing between the FEM mode of 0.577 Hz

and the mode at 0.646 Hz might have produced a nonlinear modal coupling that resulted in a combination

mode at a frequency different from either, at 0.547 Hz. A more detailed modelling scheme with the

booms modelled as full trusses might produce a closer agreement with the observations.

TABLE 1: Comparison of ERA-identified modal frequences with FEM modes.

Comparison of observed with modes computed
from FE modelling (stick model)

El = 1.55 * 104 N - rrl2 GJ = 5.74 * 102 N - m2

Obs freq FEM freq tip modal displacements
A__._Z A._.._X

•0.124 Hz 0.125 Hz .09 .004

•0.335 Hz 0.316 Hz .10 .006

•0.547 Hz 0.577 Hz .14 .124

•Denotes modes observed.* Not positively ideatifieo
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OBSERVED MODAL DAMPING

An important result of the dynamics experiment is a measurement of the modal damping of the

LACE satellite as shown in Table 2. The damping shown in Table 2 was also obtained with the ERA

algorithm. The damping of the .547 Hz mode seems quite high and is an indication that the mode may

have anomalous characteristics, i.e. it may be a combination of modes and not a simple mode. However,

the computed damping of the other modes at 0.019 Hz, 0.124 Hz and 0.335 Hz is comparable to the

values of 1.4% to 2.7% measured for the Voyager magnetometer boom by the Marshall Space Flight

Center, Huntsville, Ala. 2 and values of 1.2% to 3.5% measured at the Canadian Communications

Research Centre, Ottawa, Canada 3 for an astromast of design similar to the LACE booms.

A flight experiment that can be compared with the LACE dynamics experiment is the Solar Array

Flight Experiment 4. In that experiment a boom similar to the LACE booms was deployed with a solar

blanket and attached tension wires for an 18 hour period on board the space shuttle. The vibration

damping of modes out of the plane of the solar blanket can be compared with our results. These out-of-

plane modes had damping factors of 3% to 6% depending on day/night. This damping was higher than

ours, possibly because of the tension wires 5.

TABLE 2: ERA-identified damping of the observed modes.

frequency % dampinq FEM simulation

0.019 Hz 1.8 1st mode: 0.019 Hz

0.124 Hz 2.3 4th mode: 0.125 Hz

0.335 Hz 2.1 7th mode: 0.316 Hz

0.547 Hz 10.4 9th mode: 0.577 Hz
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CONCLUSIONS FROM LACE DYNAMICS EXPERIMENT

The dynamics experiment performed on the low power atmospheric compensation experiment

satellite has established the feasibility of ground-based laser measurements of vibrations, slews and

deployments in orbiting satellites. The technique can be applied to health monitoring of large structures

such as the space station. The experiment has demonstrated that velocity resolutions of 1.8 mm/sec are

attainable with the current narrowband Firepond apparatus of the MIT Lincoln Laboratory.
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ADVANCED CONTROLS TECHNOLOGY EXPERIMENT (ACTEX)

The ACTEX experiment, illustrated in Figure 9, is a secondary payload, manifested to fly on a

future Navy spacecraft. The experiment is being built at the present time and will be exposed to space on

the outside of the flight deck. Of course the electronics, comprised of a computer and solid state data

recorder, are below deck for shielding and thermal control. The experiment includes three graphite-epoxy

struts with embedded piezo-electric (PZT) sensors and actuators. Two of the struts are wrapped with

mylar thermal insulation blankets, while the other strut is painted. One of the stuts has an extra set of PZT

actuators to excite vibrations of the system.Thermistors are placed on the struts for temperature

measurements. Both the top plate and mounting bracket contain three-axis accelerometers, with a heater

on the top plate. The tripod is about 0.6 m (24 in) in length and weighs about 8.2 kg (18 lbs).

The experiment is intended to demonstrate that the technology of embedded PZT's is mature enough

to be used on space based payloads. It is also intended to demonstrate the application of PZT's for

passive and active vibration control in a large space structure. Different control algorithms, based on

changing gains, filter cutoffs or sensor averages, can be telemetered to the experiment computer. The

dynamic change mechanism (DCM) is attached to one of the struts. It contains a nitinol wire with attached

electrodes. Passing a current through the wire pulls the strut snugly against the top plate, thereby

increasing the strut stiffness. The purpose is to test the capability of modifying the control laws to damp

out vibrations in the presence of on-orbit structural changes. An additional goal of the experiment is to

evaluate the effect of radiation, thermal cycling and atomic oxygen erosion on the experiment performance

over a three year lifetime.

Figure 9 appears on the following page.
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