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Abstract 
In a layman’s term, computation is defined as the execution of a given instruction through a 
programmable algorithm. History has it that starting from the simplest calculator to the 
sophisticated von Neumann machine, the above definition has been followed without a flaw. 
Logical operations for which a human takes a minute long to solve, is a matter of fraction of 
seconds for these gadgets. But contrastingly, when it comes to critical and analytical thinking that 
requires learning through observation like the human brain, these powerful machines falter and lag 
behind. Thus, inspired from the brain’s neural circuit, software models of neural networks (NN) 
integrated with high-speed supercomputers were developed as an alternative tool to implement 
machine intelligent tasks of function optimization, pattern, and voice recognition. But as device 
downscaling and transistor performance approaches the constant regime of Moore’s law due to 
high CMOS fabrication cost and large tunneling energy loss, training these algorithms over 
multiple hidden layers is turning out to be a grave concern for future applications. As a result, the 
interplay between faster performance and low computational power requirement for complex tasks 
deems highly disproportional. Therefore, alternative in terms of both NN models and conventional 
Neumann architecture needs to be addressed in today’s age for next-generation machine 
intelligence systems. Fortunately, through extensive research and studies, unconventional 
computing using a reservoir based neural network platform, called in-materio reservoir computing 
(RC) has come to the rescue. In-maerio RC uses physical, biological, chemical, cellular automata 
and other inanimate dynamical systems as a source of non-linear high dimensional spatio-temporal 
information processing unit to construct a specific target task. RC not only has a three-layer 
simplified neural architectural layer, but also imposes a cheap, fast, and simplified optimization of 
only the readout weights with machine intelligent regression algorithm to construct the supervised 
objective target via a weighted linear combination of the readouts.  

Thus, utilizing this idea, herein in this work we report such an in-materio RC with a dynamical 
random network of single walled carbon nanotube/porphyrin-polyoxometalate (SWNT/Por-POM) 
device. We begin with Chapter 1, which deals with the introduction covering the literature of ANN 
evolution and the shortcomings of von Neumann architecture and training models of these ANN, 
which leads us to adopt the in-materio RC architecture. We design the problem statement focused 
on extending the theoretical RC model of previously suggested SWNT/POM network to an 
experimental one and present the objective of fabricating a random network based on 
nanomaterials as they closely resemble the network structure of the brain. Finally, we conclude by 
stating the scope of this research work aiming towards validating the non-linear high dimensional 
reservoir property SWNT/Por-POM holds for it to explicitly demonstrate the RC benchmark tasks 
of optimization and classification.  

 

Chapter 2 describes the methodology including the chemical repository required for the facile 
synthesis of the material. The synthesis part is divided broadly into SWNT purification and then 
its dispersion with Por-POM to form the desired complex. It is then followed up with the 
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microelectrode array fabrication and the consequent wet-transfer thin film deposition to give the 
ultimate reservoir architecture of input-output control read pads with SWNT/Por-POM reservoir. 
Finally we give a briefing of AFM, UV-Vis spectroscopy, FE-SEM characterization techniques of 
SWNT/Por-POM complex along with the electrical set-up interfaced with software algorithm to 
demonstrate the RC approach of in-materio machine intelligence.  

In Chapter 3, we study the current dynamics as a function of voltage and time and validate the 
non-linear information processing ability intrinsic to the device. The study reveals that the negative 
differential resistance (NDR) arising from redox nature of Por-POM results in oscillating random 
noise outputs giving rise to 1/f brain-like spatio-temporal information. We compute the memory 
capacity (MC) and prove that the device exhibits echo state property of fading memory, but 
remembers very little of the past information. The low MC and high non-linearity allowed us to 
choose mostly non-linear tasks of waveform generation, Boolean logic optimization and one-hot 
vector binary object classification as the RC benchmark.  

The Chapter 4 relates to the waveform generation task. Utilizing the high dimensional voltage 
readouts of varying amplitude, phase and higher harmonic frequencies, relative to input sine wave, 
a regression optimization was performed towards constructing cosine, triangular, square and 
sawtooth waves resulting in a high accuracy of around 95%.  

The task complexity of function optimization was further enhanced in Chapter 5 where two inputs 
were used to construct Boolean logic functions of OR, AND, XOR, NOR, NAND and XNOR. 
Similar to the waveform, accuracy over 95% could be achieved due to the presence of NDR non-
linearity.  

Furthermore, the device was also tested for classification problem in Chapter 6. Here we showed 
an off-line binary classification of four object toys; hedgehog, dog, block and bus, using the 
grasped tactile information of these objects as inputs obtained from the Toyota Human Support 
Robot. A one-ridge regression analysis to fit the hot vector supervised target was used to optimize 
the output weights for predicting the correct outcome. All the objects were successfully classified 
owing to the 1/f information processing factor.  

Lastly, we conclude the section in Chapter 7 with the future scope of extending the idea to fabricate 
a 3-D model of the same material as it opens up opportunity for higher memory capacity fruitful 
for future benchmark tasks of time-series prediction. Overall, our research marks a step stone in 
utilizing SWNT/Por-POM as the in-materio RC for the very first time thereby making it a desirable 
candidate for next-generation machine intelligence.  
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Chapter 1 

Introduction and Literature review 
 

1.1 General Introduction 
 
The chapter gives a brief overview of the background, motivation and based knowledge gathered 

from literature as guidance on assessing and evaluating the work results. The main focus relies on 

the framework of reservoir computing and the present materials that are being researched for 

emulating it physically in order to have a paradigm shift from the conventional von Neumann 

architecture to the in-materio unconventional way. We begin by talking about different artificial 

neural networks that are being commonly used in the realm of machine intelligence and then talk 

about the importance of RC in the context of its simple architectural design with an easy and fast 

learning approach. We survey about the materials being under use and move on to talk about the 

importance of using random nano-networks especially based on single-walled carbon nanotube 

and polyoxometalate complexes for this in materio-RC purpose.  

1.2 The human brain and the von Neumann architecture 
 

The well-known natural intelligent computer that exists today is the human brain.1 The brain is a 

complex dynamical entity2 and is the central organ of the nervous system which tackles all 

information processing being signaled from every part of the human body. The basic functional 

units that carry out these tasks are the neurons and the synapses as shown in Fig. 1.1a. Generally 

the neuron gathers electrical signals and integrates them over time to produce useful information 

in the form spikes. The spikes are then transferred to the post neuron via chemical transmitters 

called synapses which acts as the memory cell unit. Depending upon the strength of the incoming 
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spike these synapsis can modulate their weights to become strong or weak and produce either 

meaningful excitatory or inhibitory pulses to be transferred to the next neuron. The entire principle 

works as a ‘leaky and fire integrator’3 where incoming signals are integrated and fired only when 

the neuron reaches a threshold to keep the information process going. Although looks simple in 

picture, but in reality such information exchange happens throughout the brain network in a 

parallel and hierarchical way among billions of neurons and trillions of synapses as shown in Fig. 

1.1b. Such network connection produces neuronal activities of different strengths which are 

learned and memorized simultaneously over the synapses. Analogous to the brain, the von 

Neumann architecture Fig. 1.1c too enables calculations in a similar way, except that here the basic 

building blocks are the billions of transistors coupled together via complex circuitry. The 

development of transistor became the step stone for creating electronic microprocessors to produce 

integrated circuits that transferred information in binary codes of ‘0’ and ‘1’. With the advent of 

Moores’s law4,5, miniaturization of electronic components have made von Neumann architectures 

to conduct operation at the rate of 10 billion/s much higher than the human brain with a rate of 

1000/s as suggested in the book “The computer and the Brain” by John von Neumann. However, 

such speedy performance comes at the cost of 100 Watts of power consumption, where only 10 

Watts is used up by the palm sized brain to perform intelligent tasks of thinking, learning, pattern 

and speech recognition. When it comes to the tug of war between speed and efficiency, the latter 

always has a winning situation because modern day technology demands energy consumption 

maintaining the same performance speed.  
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Fig. 1.1 The brain and the von Neumann architecture. (a) The processing unit, neuron and the 
memorization unit, synapse of the human brain acting for learning and information transfer.6 (b) Multiple 
neurons and synapses are stacked in a hierarchical fashion to allow parallel computation. (c) von Neumann 
architecture with separate memory and processing creating a bottleneck in transfer rate. Image source: 
(b) towardsdatascinence portal, (c) Wikipedia. 



12 
 

One easy solution that most people come up with is to continue with device downscaling, but 

Moore’s law7 is not an everlasting phenomena. Factors such as energy dissipation and high 

fabricating cost for CMOS circuitry limits this option to be a wise choice. But, even if somehow 

this becomes a viable option in near future, then the problem of von Neumann bottleneck, Fig. 

1.1c, remains a big issue. Due to the presence of separate memory and processing unit, a huge 

amount of power and time is consumed in data transferring between the two interfaces, hence 

causing a latency.  So, the most probable solution to come up with is to adopt the brain structure 

of massive parallelism which results in a small-world topology of faster and efficient information 

processing6 along with unified processing and learning to compute brain like intelligent tasks on 

conventional computers. Thus began the dawn of making intelligent machines whereby the already 

present computers were instructed to follow constructive algorithms based on the neuron-synapse 

model of the brain leading to the discovery of a boosting scientific field called the ‘artificial neural 

network’ (ANN).  

1.3 Evolution of artificial neural networks  
 
The first conceptual circuit based on an input output neuron system was proposed in 1943 by 

Warren S. McCulloch and Walter Pitts shown in Fig. 1.2a. The McCulloch-Pitts model (MP)8 

describes the complex processing of the brain using a threshold electronic gate where a neuron 

takes an input connected with synapses of specific weights, and outputs a valuable ‘1’ only when 

it reached a threshold otherwise it remained in the ‘0’ state. One of major drawback of this model 

was that the weights were fixed manually and was adjusted only for a given task thereby lacking 

any self-learning from the output decision. To tackle this, Frank Rosenblatt came up with the idea 

of first perceptron model9 in 1958, depicted in Fig. 1.2b.  
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Fig. 1.2 Artificial neural network architectures. (a) The McCulloch-Pitts model of a simple one unit neuron-
synapse network. (b) The Frank Rosenblatt model with the concept of single layer perceptron. (c) Frank 
Rosenblatt with IBM 704. (d) The Widrow-Hoff model of trainable weights, a successor of MP model. 
Image source: towradsdatascience portal 
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The perceptron model is inspired from the Hebbian learning rule,10 where synapses of variable 

strengths between layers of neurons are implemented to carry out binary output responses or ‘yes’ 

or ‘no’ tasks. He developed his concept using an IBM 704, 5 ton computer, the size of the room, 

Fig. 1.2c, and showed that by using a feedback between the output and its preceding neuron layer 

the weights can be self-learned like the human brain and hence can formulate the task without the 

requirement of manual labor. The idea was highly welcomed and based on this technique Bernard 

Widrow and Ted Hoff in 1960 redefined the MP model and constructed an equivalent electronic 

network with memistors by adding an extra output layer after the threshold activation function to 

incorporate the learning of the weights hence calling it an Adaptive Linear Element (ADALINE),11 

Fig. 1.2d. Both perceptron and ADELINE were designed for binary classification purposes, but 

the former majorly use the output class as a reference for optimizing the synaptic weights while 

the latter used the predicted values from the inputs to do the same via an adaptive algorithm. The 

concepts though solved the purpose of self-adjustable weights and imparted self-learning but in 

1969 Minsky and Papert12  found that the computational capability of these models were limited 

to only linearly separable tasks like OR and AND functions and failed for higher non-linear 

complexities like XOR, as they are solely linear classifiers with linear activation functions. Thus, 

began the dark ages in the field of ANN when no prime evolution happened until the mid-1980s 

when a revolution in the training algorithm of perceptron layers was adopted through the 

contributions from Webros, Rumelhart, Hinton and Williams. They solved the problem by fixing 

three major fallacies in the existing model; (i) included multiple perceptron layers for higher 

weights and information processing, (ii) implement non-linear activations in all the neuronal layers 

and (iii) adopted the back propagation (BP) algorithm13,14 for optimizing weights in the each layer 

for better learning and classifying. The model was termed as the multi-layer perceptron (MLP),15,16 
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Fig. 1.3a, and became a subclass of today’s deep feed-forward neural network architecture (FFNN). 

The concept of combining multiple linear preceptors through synapses, like the brain, and coupling 

it with BP learning was proven to be a valid method for approximating any non-linear function 

that is continuous.17,18 BP is a supervised learning model where each output class is trained with a 

specific target task. To achieve the best result, the error between the target and the weighted linear 

output needs to be minimized. For this, the outputs, obtained from feed forwarding the input 

information is tested and if there’s a mismatch, then via BP, each node of the hidden layer is trained 

using a gradient descent method, Fig. 1.3b, where the aim is to find the optimized weights of each 

neuron so that the weighted combination with the respective activation functions descent down a 

convergence point via repeated iterations producing the minimum error. The algorithm works on 

a boundary condition that each activation function has to be differentiable, so non-linear functions 

like tanh or sigmoid becomes the common choice for such architectures. MLP major use has been 

in the context of pattern recognition19 where features of each pixel in the image serve as the inputs 

to the hidden layers which are then non-linearly processed by the neurons of each hidden layer to 

get the desired correct pattern over repeated trainings via BP method. Though useful, but the model 

complexity grows as the pixel size of image; meaning larger arrays require excessive amount of 

hidden neurons and layers in order to process big data viably and efficiently. To address this, a 

new architecture called convolutional neural network (CNN)20,21 was introduced in 1994 by Yann 

LeCun as depicted in Fig. 1.3c.  
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Fig. 1.3 Multi-layer perceptron (MLP) and the convolution neural network. (a) MLP model developed by 
Rumelhart, Hinton and Williams by using the backpropagation (BP) learning technique. (b) Gradient 
descent method implemented in BP to compute error and converge to the minimum for optimization. (c) 
The first CNN model named LeNet-5 developed by Yann LeCun. Image source: towardsdatascience portal 
for all. 
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It consists of a convolution layer, which is aimed at extracting patches of features distributed in 

image to be used as inputs opposed to taking each pixel one by one as in MLP. This is done by 

fixing a kernel matrix of definite array with respective weight values those strides along a section 

of the input pixel array, connected to the neurons in the convolution layer, to produce the desired 

feature map array.  The feature maps are passed as information to neurons of the pooling layer, 

where a smaller dimensional matrix is used to pick up the maximum values from the feature map 

matrix is thereby reducing the input dimension further to be processed in the sparsely connected 

MLP layer. Finally the weighted linear optimized feature is collected at the output layer to generate 

the given image. For maximum accuracy the same BP algorithm is adopted, but only to one layer 

of MLP thereby reducing both the cost and time of training compared to the MLP architecture. In 

the field of deep learning,22 CNN is considered the best architecture to replicate the human 

visionary concept with maximum efficiency as proven by the AlexNet AI system23,24 that won the 

2012 ImageNet contest hands down with 85% accuracy. Owing to their popularity and advantages 

in imparting machine intelligence these above mentioned architectures are still not deemed to be 

considered a close replica of the human brain. The brain consists of one layer of recurrent hidden 

units and is considered a dynamical system, where the information is not just restricted to the 

spatial dimension, like the perceptron models, but extends to temporal dimension as well. Neuronal 

activities studied via electroencephalography (EEG)25 have shown that neuronal electrical signals 

produced from a time-varying input signal travels in every direction due to such interconnections 

resulting in random signals of time varying spatial information as shown in Fig. 1.4a.  
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Fig. 1.4 Brain is a recurrent neural structure. (a) The EEG of brain shows multiple neuron activities at 
differing time scales.25 (b) The recurrent neural network (RNN) proposed by Rumelhart. (c) The unfolding 
of RNN to understand the backpropagation through time algorithm. Image source: towardsdatascience 
portal. 

 

 

 



19 
 

Such dynamical processing is absent in the present FFNN, as the information is only transferred 

in one direction containing only spatial information. Thus, call for a new architectural design was 

very much needed which was later on addressed by David Rumelhart in 1986 by introducing the 

concept of recurrent neural network (RNN)26 shown in Fig. 1.4b. In RNN the input x is mapped to 

the output O via the hidden state h, but here the multiple hidden layers are created by recursively 

using the hidden state of the prior input as its new input (v) along with the current input U which 

can be understood from the unfolded version shown in Fig. 1.4c. The main advantages of the RNN 

is (i) it learns from its past information by using the same parameters of U, v and W, irrespective 

of the size of the network, (ii) because of this it can process sequential input of any length without 

the need of increasing the hidden layers as in MLP or CNN and (iii) since the coefficients are 

correlated to the past information, so temporal learning is automatically incorporated along with 

the spatial information. In RNN too, the training is done at all the layers by a modified BP 

algorithm which includes temporal parameter, formulated as back propagation through time 

(BPTT) popularized by Webros in 1990.27  Since RNN is a spatio-temporal dynamical system, 

normal BP cannot be used as it only optimizes the errors (U and W) for the output (O) and previous 

neuron layer (x) without causing any change to the recurrent parameter (v) of the hidden state. So 

BPTT takes into consideration of this part and it does so by unrolling the network as seen in Fig. 

1.4c into each time-step layer, calculates and accumulates the error for each time-step, averages 

out all the errors, rolls up the network and then updates the weight by a gradient descent method.  
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1.4 The existing problem 
 
The evolution of ANN has been a milestone in the age of machine intelligence so much that they 

are even being implemented with conventional von Neumann hardware28 to carry out tasks like 

function approximation, pattern recognition, speech recognition and time series forecasting. But 

in order to match up at par with brain, learning algorithms are constantly being updated for it to 

handle big data in faster and convenient way. In this regard supercomputers like Fugaku,29 are 

coming into action with high end GPU’s, CPU’s and memory units, built up of numerous 

transistors and large wiring circuitry, to ease the algorithm process of these neural networks with 

faster data transfer. But in order to compute 16000 TFLOPS/s it consumes a tremendous power of 

around 30 MW. This inefficiency not just arises from big data handling, but also from the existing 

training platform of BP or BPTT. Firstly, it has to train multiple hidden layers, so a lot of power 

is consumed in iterating every layer to learn at the best accuracy. Secondly, the gradient descent 

which used for the optimization of weights, suffers from a big problem of vanishing gradient, 

meaning that for systems with low memory, the past information is forgotten quickly making it 

difficult to converge and give correct result. So alternatively high memory systems have to be 

incorporated which increases the data storage space and hence directly the transfer process due to 

the bottleneck. Hence, the concern for maximized performance at a faster and energy efficient way 

boils down to tackling the problem in two ways; (i) is to come up with non von Neumann hardware 

platforms and (ii) adopt an architecture where the design and learning is cheap, simplified, robust 

and requires minimum training. The former is addressed as the unconventional computing30,31 

correlating to the natural computation emergent in everyday life examples and the latter can be 

overcome by the reservoir computing framework. Unconventional computing is way of using non-

silicon devices that does not follow instructions by operating in logical ‘0’ or ‘1’. It is more inclined 
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towards exploiting the intrinsic analog dynamics, natural to any biological, physical and chemical 

body, as output instructions when instigated by an external stimuli and then evolving them by 

controlled algorithms to solve a given problem statement. The term was first coined by Claude and 

Casti and is gaining popularity as an interdisciplinary research that holds immense potential to be 

a replacement for current von Neumann conventional structures. A few notable systems among 

the many which are currently being investigated includes DNA computing, quantum computing, 

optical computing, cellular automata, evolution in-materio and swarm intelligence.32–40 A 

definitive set of algorithms, set-up for every system, is used to compute a given task. So in this 

context, we review the training technique of RC framework and discuss its unification with vivid 

dynamical physical systems, via literature reports, and see how well they stand out in the realm of 

unconventional computing as an efficient hardware implemented ANN approach for solving 

machine intelligent tasks.  

1.5 Reservoir computing: A general overview 
 
Reservoir computing41–47 is a class of recurrent neural networks where the learning framework is 

based on two architectures: an echo state network48–52 and a liquid-state machine.53–57 Fig. 1.5 

characterized by a recurrently connected non-linear dynamical system acting as time-based 

memory cells. The overall framework consists of three layers: a time-varying input layer U(t), a 

reservoir layer X(t), and an output layer O(t). The input perturbation produces reservoir states Xi(t) 

that evolve over time given by Eq. 1.1 where Xi(t) at each instant of time, is mostly a non-linear 

mapping of the current weighted input state U(t) and its recent past weighted state Xi(t-1). The 

overall reservoir output z(t), in contrast, is represented by the linear combinations of different 

reservoir states Xi(t) weighted with the output weights ‘W’ as given in Eq. 1.2. 
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                                          𝑋௜(𝑡) = 𝑓(𝑊௜௡𝑈(𝑡) + 𝑊௥௘௦𝑋௜(𝑡 − 1))                                            (1.1) 

                                                      𝑧(𝑡) = ∑ 𝑊௜𝑋௜(𝑡)௜                                                                (1.2) 

 

 

 

 

 

 

 

Fig. 1.5 The schematic or reservoir computing architecture which includes an input layer U(t), reservoir 
layer X(t), and readout layer O(t). The reservoir contains non-linear units (green circles) with recurrent 
connections (black dotted line). 

 

Unlike MLP, CNN and RNN that requires training of multiple hidden layers, in RC, only the output 

layer undergoes supervised training58–62 using a target signal y(t) with input weight Win and the 

reservoir weight Wres being kept fixed. Successful training is achieved through minimization of 

the learning error via simultaneous upgradation of weight W over a simple regression model, thus 

paving for an efficient computation paradigm at the hardware level. For a system to qualify as the 

reservoir63,64 it has to be (i) non-linear, as real world information are erratic and doesn’t have a 

linear dependence on time, so non-linear dynamical systems are important; (ii) high dimensional, 



23 
 

this refers to the ability to produce multiple spatio-temporal sequences arising from different points 

of the system when perturbed by same input; (iii) echo state property/fading memory, which 

suggests that all reservoir states should respond the same way when stimulated by same input 

sequence irrespective of the initial state of the reservoir, and this is possible only when the reservoir 

remembers information about the recent past and forgets anything about the distant temporal 

sequence; (iv) input separability, reservoir outputs should not be the same for two different input 

sequences otherwise it will not be able to classify them. As the architecture and the training is 

simple, RC thus can be realized in an unconventional way by using physical dynamical systems 

instead of relying on the present day logical components. Since the physical phenomena arising 

from these materials can be used as high dimensional information data, hence they can be thought 

of as satisfactory components for administering in-materio RC.   

1.6 A survey of physical reservoir devices 

Research in this area has been under constant progress, but owing to the abundance of materials 

present in nature the scope to explore is immense. Using this concept and the principles of liquid 

state machine, Fernando and Sojakka proposed a water bucket system for pattern recognition65 and 

called it a ‘liquid brain’, Fig. 1.6a. Here they used wave ripples, generated by electrical motors, as 

the non-linear information processing, arising from wave interference, to achieve the tasks of 

speech recognition and XOR approximation. Kristof et al. in 2014 came up with the concept of 

RC on a silicon photonic chip,66 Fig. 1.6b as optical based system promises a power efficient, 

lossless speedy data processing, important for handling big data in the context of machine 

intelligence. They designed a 16 node mesh reservoir in a 4x4 array on with passive silicon 

photonic chips consisting of waveguides, splitters and combiners. The nodes itself acted as linear 

units of superimposed amplitude signals of the input optics, but were post-processed to impose 
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non-linearity by reading out as power levels which were then trained off-line with regression to 

achieve the Boolean task of XOR with an error rate of as low as 5 %.  Although first reports on 

photonics dates back to 2008 by Vondoorne et al., but subsequent progress since then have been 

on the go for various tasks of time series prediction and spoken digit recognition.67–72 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig. 1.6 Physical reservoir systems. (a) The water buxket system called the ‘Liquid brain’.65 (b) Design of 
our 16-node passive reservoir in 4_4 configuration, overlain with the topology. All connections are 
bidirectional but by using one input (black arrow), the light flows according to the blue arrows. The 11 
nodes marked with a red dot were measured.66 
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Other ultrafast non-linear dynamical system of interest consists of spintronic devices which uses 

both spin and charge to exchange information.73–81 For example, Wencong et al. in 2019 displayed 

spintronic RC based on magnetic skyrmion (MS) and spin torque oscillators (STO) separately for 

different tasks, Fig. 1.7a. The MS made of Pt/Co ferromagnetic showed a non-linear motion under 

the influence of pulse current due to the non-linear dipole field and current induced spin-torque. 

The position at each time instant was recorded as the reservoir outputs from a series of pulse inputs 

originating in a hand written digit image. The outputs were trained off line and were then trained 

to classify each digit with an accuracy rate of greater than 80%. Similar to this, STO made of 

ferromagnetic layers were used as another RC device wherein their non-linear magnetic precision, 

a function of the input current amplitude, was exploited as reservoir outputs to construct NARMA 

10 time series off-line with an accuracy of 85%, Fig. 1.7b. Significant research of RC implemented 

with memristive device is also well studied for temporal signal prediction, speech recognition, 

language learning and environmental sensing applications.73–75,82–85 An example of one such 

memristive RC work was carried out by Chao et al.85 where they proposed WOx based system that 

utilizes the dynamics of non-linear filament formation, due to oxygen vacancies, and used those 

as reservoir outputs to optimize the weights for handwritten digit recognition with a very high 

classification accuracy.  
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Fig. 1.7 RC with spintronic. (a) Structure schematic of a magnetic skyrmion (MS) consisting of the 
dumbbell shape ferromagnetic Pt(10)/Co(0.5) bilayer (top). Process flow diagram of handwritten digit 
recognition using an MS-based RC system (bottom). (b) Schematic of a vortex-type STO and block 
diagram (top). Results of handwritten digit recognition using a RC system with one single 
STO (bottom). 77 
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RC derived directly from body motion was recently evaluated by Nakajima et al. by using a soft 

robot arm86–92 under water environment, shown in Fig. 1.8. The body dynamics recorded from 

different embedded sensors were taken as reservoir outputs when stimulated by an external input 

and was trained off-line to compute the time series task of NARMA 10.  

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 1.8 RC with soft body. Platform setup for a soft silicone arm and schematics showing the 
information processing scheme using the arm (top). Diagram summarizing the significant differences 
between NMSEsystem and NMSELESN (bottom). 
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RC based platform using atomic switch networks (ASN)93–95 of Ag/Ag2S nanowire, Ag/Ag2Se 

nanowire, and Ag/Ag2S nanoparticles. Fig. 1.9a have also been demonstrated. Each of these 

systems were embedded on micro electrode arrays that allowed recording multiple voltage 

readouts of high dimensional dynamics to be trained for tasks like Boolean logic, voice 

classification, Fig. 1.9b, waveform generation, Fig. 1.9c,  and frequency separation.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.9 RC with atomic switch networks (ASN). (a) Shows Ag/AgI (left) nanowires, Ag/Ag2Se (top right) 
nanowires and Ag/Ag2S (bottom right) nanoparticle ASN systems.93–95 (b) Voice classification task 
schematic.93 (c) Waveform generation task schematic.95 
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1.7 RC with nano networks: A brain equivalent system 

All the above systems show promising platforms for unconventional RC, but considering from the 

biological point of view, resemblance to brain like network structure is best replicated by the 

ASN’s reported. The shear advantage of ASN is the presence of inherent feedback loops, which 

are otherwise circuited for rest of the large RC systems making it cost ineffective. Moreover, the 

nanostructures have an upper hand when it comes to large scale integration on variable substrates 

making them architecturally more viable and compact when it comes to VLSI design. Although, 

ASN holds a remarkable position, but their non-linear dynamics is parameterized by a pre-

condition of set threshold filament formation which might lead to some uncertainty within or 

among different devices. In terms of RC this is not a grave issue as the training only happens at 

output layer without worrying about the reservoir internal state, but nano-networks are not just 

limited to ASN. So, materials apart from ASN too should come in picture and in this regard the 

most prominent choice is the use of single walled carbon nanotube (SWNT). Unconventional 

computing with SWNT via evolutionary algorithm is very well reported in literature for solving 

many problems96–101 but little is known about them being used for RC implementation. SWNT are 

rolled up graphene sheets that has a length of the order of m and diameter of nm thus making 

them one dimensional nanomaterials with  conjugated benzene rings. The rolling up along the (n, 

m) indexes results in different chirality SWNT possessing either semiconducting or metallic 

properties as shown in Fig. 1.10a and hence can show excellent electrical, mechanical and thermal 

properties.102 Recent reports have shown that the conductive states of SWNT can be modulated by 

covalent/non-covalent functionalization with different molecules resulting in non-linear dynamics 

emerging from charge transfer (CT) mechanisms.103–107 One such CT arises from molecules having 

redox properties like polyoxometalates (POM).108,109 POM are polyatomic anions that contains 
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transition metal oxyanions linked together via shared oxygen atoms to form a 3D framework cage 

with collective electrical, magnetic and optical properties.33,110–113 Depending upon their co-

ordination number (cn) they can be classified into Keggin and Dawson type (cn = 4, tetrahedral) or 

Anderson type (cn = 6, octahedral) as shown in Fig. 1.10b. They have a rich chemistry due to 

presence of numerous transition metals that possess multiple redox states and hence can undergo 

step wise charge discharge reactions facilitating the CT process.  

 

 

 

 

 

 

 

 

 

 

Fig. 1.10 The single walled carbon nanotube (SWNT) and polyoxometalate (POM). (a) Graphene sheets 
rolled up along the (n,m) indices to give different configuration SWNT like zigzag, armchair and chiral.114 
(b) The 3D framework of POM with the respective molecules (top). The different POM classes based on 
their co-ordination number (bottom)115 
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SWNT/POM have been majorly used in the field of catalysis or supercapacitors due to this 

property,116,117 but recently this conventional idea was changed, when Tanaka et al. showed that a 

system of SWNT/POM, Fig. 1.11a, can be used to develop a neuromorphic system that behaved 

exactly like the spiking neurons.118 They used phosphomolybdic acid to be non-covalently 

adsorbed on the SWNT surface and produced a thin film network sandwiched between parallel 

electrodes. Upon passing electrical stimuli of varying voltages, noise like fluctuations in lower 

voltage regime changed to higher spike like signals gradually, Fig. 1.11b. Such spiking behavior 

was attributed to be an equivalent analogue of negative differential resistance (NDR) peak found 

in the current-voltage curve. The correlation was validated theoretically by a cellular automata 

model, Fig. 1.11d, where it was confirmed that both the behavior shared the same source of 

threshold charge-discharge phenomena arising due to the redox property of POM. When instigated 

by an input bias, charge accumulation starts to happen at the POM molecules which gives rise to 

such fluctuations initially, but with increasing bias this charge storage can then reach a threshold 

for one of the POM molecules thereby undergoing sudden discharge through SWNT channels 

giving such spike or NDR signals. The research work stands out in the way that, SWNT devices 

before have been shown to behave as synaptic devices119,120 but never has it been exploited for 

neuronal properties with just molecular adsorption.  
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Fig. 1.11 The spiking neuromorphic behavior of SWNT/POM complex. (a) Network of SWNT/POM between 
parallel plate electrodes. (b) Random fluctuation at low bias changing to spike at 150 V. (c) Step-wise 
threshold charge-discharge mechanism for spiking/NDR behavior modelled with cellular automata 
architecture.118 
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Now spiking events are mostly considered as single point gating effect originating from 

generation-recombination processes. The SWNT/POM in between the parallel plate capacitor 

replicates such point gates, but when randomly arranged can result in higher degree of 

interconnected networks leading to a cumulative signal transfer, hence averaging out the spiking 

nature to give mostly random fluctuations like brain (see Fig.1.4a). Based on this concept, in the 

same paper118 a theoretical model of RC architecture with SWNT/POM was introduced. They 

showed clearly that by exploiting the voltage output readouts from various points in the network 

and applying an off-line FORCE training, Fig. 1.12a-b, a higher order time series target signal of 

NARMA-10 can be constructed with excellent accuracy, Fig. 1.12c-d. The report is the first 

instance on SWNT/POM unconventional RC where no precondition is required for random 

filament formation or generating non-linearity but rather utilizes the intrinsic random noise 

generated from the redox behavior as non-linear high dimensional dynamics to incorporate such 

an in-materio RC.  
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Fig. 1.12 Demonstration of RC with SWNT/POM complex. (a) Basic schematic of RC architecture. (b) 
Theoretical model constructed from SWNT/POM random network where each node (blue sphere POM) 
acts a source of information connected via recurrent connection (black line SWNT). A supervised learning 
algorithm is implemented to teach the reservoir outputs z(t) a given target s(t). (c) The successful NARMA-
10 task replicated after training. (d) Device performance measured in terms of normalized root mean 
square deviation (NRMSD) for different number of node readouts.118 
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1.8 Problem statement 
 
The present work is aimed at expanding the theoretical idea of SWNT/POM reservoir to a real 

substrate platform and investigate the reservoir properties along with testing the device for in-

materio RC for various benchmark tasks. To do this, we first fixate our material to an organic 

functionalized porphyrin polyoxometalate (Por-POM), the chemical formula of which is 

SV2W10O40[H4TPP]. The Por-POM have shown potential application in the field of spike based 

neuromorphic behavior,121 but their use as a material oriented RC has never been discussed before. 

The presence of an extra porphyrin  benzene ring makes them highly non-linear with NDR like 

current fluctuation due to their charge transfer from the porphyrin to POM.122,123 Moreover a facile 

non-covalent adsorption on the SWNT is possible just by sonication for a shorter time due to the 

possibility of - interaction. The second focus is given on choosing a well fabricated substrate 

that will not only allow for an easy thin film transfer of the SWNT/Por-POM complex but should 

also interface with a hardware and PC platform by avoiding excessive circuitry. After deciding on 

the synthesis, fabrication and hardware built up we dedicate our concern towards developing 

strategies and experiments through survey of literature reports to help confer the reservoir 

properties our device holds as this is important to formulate the RC tasks it will be able to perform. 

Lastly, we proceed to select definitive RC tasks and using the correct off-line training algorithm 

we train the device for specific targets and then evaluate the device’s performance on other test 

datasets to prove its capability for in-materio RC. 

 

 

 



36 
 

1.9 Objective study 
 
The main aims of this research is as follows: 

1. Synthesize the SWNT/Por-POM complex following a simple procedure. 

2. Build and fabricate a multi-electrode array.  

3. Test the device dynamics and its reservoir properties initially. 

4. Move on to conduct benchmark tasks related to the reservoir properties found. 

5. To find a validation behind each of the task the device performed. 

6. To show that it has a resemblance to brain like information processing. 

7. To study the effect of training time and training outputs. 

1.10 Research scope 
 
The scope of this research is focused mainly on establishing RC with a dynamical system of 

SWNT/Por-POM. So, the main areas covered will be dedicated to 

1. Establishing the MEA architecture via photolithography, which is cheap and non-

complicated. The MEA is chosen as it gives us an easy way to read multiple voltage 

readouts from different regions of the material similar just like reading nerve cell activities 

using an EEG machine. 

2. Interface the MEA to hardware which will control all the input-output signals given or 

readout from the device, which can finally be utilized for an off-line supervised training. 

3. Confirm the reservoir property by analyzing a simple function approximation, containing 

non-linear and memory parameters, which will reflect on the device’s extent for a particular 

kind of RC task. 
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4. Choose three tasks of waveform generation-single input-output learning, Boolean 

optimization – two input-one output problem and one-hot vector object classification, two 

input-two output binary classifier. 

1.11 Outline of the thesis 
 
The thesis consists of seven chapters in total. Chapter 1 starts off with a general introduction that 

summarizes the contents of the section. A highlight is given between the brain and von Neumann 

architecture followed by historical evolution of artificial neural networks and their usage in 

conventional computer. The drawbacks are discussed and the solution for in-materio reservoir 

computing approach is mentioned. Finally the idea motivation and scope of this work is detailed. 

Chapter 2 begins with the repository of materials used in a tabulated form. Briefing regarding 

synthesis procedure, fabrication method, and custom built hardware and characterization methods 

with their respective working principle is given. Chapter 3 uses these characterization techniques 

to confirm the synthesis and show the random network structure present in our device akin to the 

brain connectivity. It goes on to discuss the important property of memory-non linearity trade off 

and confirms that the device is best suited for non-linear task rather than memory through current-

voltage and low memory capacity experiments. It also reflects on the maximized information 

processing via the FFT studies of temporal current dynamics. Chapter 4, 5 and 6 discusses the RC 

benchmark tasks of waveform generation, Boolean logic optimization and one-hot vector object 

classification with briefing on the reasons behind the performances. Chapter 7 gives an overview 

of a possible future scope the SWNT/Por-POM holds for computing other memory tasks and gives 

the concluding remarks. 
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Chapter 2 

Methodology 
 

2.1 Introduction 
 
The chapter contains information of the chemicals, materials, equipment and the experimental 

procedure for this research work. It includes four sections: (i) the dispersion synthesis procedure 

of the nanocomposite, (ii) the electrode array fabrication technique, (iii) random network 

distribution method and, (iv) the characterization methods of AFM, FTIR, U-V Vis spectroscopy, 

I-V and I-t for the dispersion samples and the device.   We start by tabulating the materials and 

chemicals used and then move on to the detailed descriptions of each section. 

2.2 Chemicals and materials 
 
Table 2.1 List of all chemicals and materials used in this experiment 

Chemical Name Chemical Formula Function Supplier Remarks 

HiPCo Single-
walled carbon 

nanotube 
(SWNT) 

 Conductive 
channel 

Nanointegris 95% Purified 
Diameter = 
0.8-1 nm 

 
Porphyrin 

Polyoxometalate 
SV2W10O40[H4TPP] Redox active 

molecule 
Osaka University MW: 3845.84 

gmmol-1 
Orthorhombic 

 
Ethanol C2H5OH Dispersion 

solvent 
Wako Purity: 95% 

MW: 46.07 gmol-

1 
Acetone CH3COCH3 Solvent Wako Purity: 95% 

MW: 58.08  
gmol-1 

LOR-10A  Lift-off resist   

S18186  Photoresist   

MF319  Developing 
agent 

  

Dimethyl 
sulfoxide 

(CH3)2SO Lift-off solution Kanto Chemical Purity: 99% 
MW: 78.14  

gmol-1 
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2.3 Synthesis of single-walled carbon nanotube/porphyrin polyoxometalate (SWNT/Por-
POM) dispersion  
 
2.3.1 Purification of HiPCo SWNT 
 
The HiPco SWNT (purchased from NanoIntegris) with an average diameter of 1.2 nm and an average 

length of 1 μm was purified by annealing at 200 ℃, followed by applying HCl reflux to remove 

amorphous carbon and Fe catalysts.1 The acid treated SWNT was filtered, washed with DI water, and 

dried to obtain the purified version. The schematic is shown in Fig. 2.3.1 

 

 

 

 

 

 

 

 

 

 

Fig.2.3.1 Schematic of the acid treated purification of HiPCo SWNT.  
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2.3.2 Dispersion of HiPCo SWNT with Por-POM 
 
We functionalized the purified SWNT with Por–POM, using ultrasonication.2 First, the purified 

SWNT (2 × 10−2 gL−1) was sonicated in ethanol for 1 h to initialize the unbundling process. We 

then added Por–POM (4 × 10−2 gL−1) in ethanol to the SWNT dispersion and ultrasonicated it for 

another 4 h to enhance the unbundling process. The resultant dispersion was centrifuged at 1,000 

G for 15 mins, and the excess supernatant of Por–POM was discarded. The precipitate was again 

sonicated in ethanol to obtain the final stable dispersion of SWNT/Por–POM. A detailed schematic 

is shown in Fig. 2.3.2 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.3.2 Schematic of the SWNT/Por-POM dispersion. The Por-POM is a Keggin type molecule where the 
porhyrin groups are attached to the oxygen groups of POM via hydrogen bonding of the amide group in 
porphyrin ring as depicted in the 2D ChemDraw schematic.  
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2.4 Fabrication of the micro electrode array 
 
Figure 2.4a shows the aluminum coated MEA patterned on a borosilicate glass substrate with 

photolithography, where the inner circular pads are 500 m and have a pitch of 1.5 mm. The 

substrate was cleaned each with IPA followed by DI water using a bath sonicator at 28 Hz for 3 

min. A lift-off resist LOR-10A was then spin-coated onto the substrate with a spin coater ramped 

at 3,000 rpm for 50 s and was dried at 180 ℃ for 5 min on a hot plate. Following this was the 

deposition of a photoresist S18186, spin-coated at 4,000 rpm for 2 s, which was eventually dried 

on the hot plate at 90 ℃ for 5 min. The pattern was developed by placing a mask atop the substrate 

with exposure to UV light for 25 s using a photolithography machine. The resist was developed 

using a MF 319 developer for 90 s, which was washed with DI water and baked at 120 ℃ for 5 

min to get the desired pattern. Aluminum metal with a thickness of 50 nm was sputtered onto the 

pattern and the LOR was removed by submerging in dimethyl sulfoxide solution at 60 ℃ for 20 

min.  

2.5 SWNT/Por-POM random network thin film deposition 
 
A vacuum-assisted wet transfer process like previous one3,4 was adopted to initiate the deposition 

of SWNT/Por-POM thin film. 500 μl SWNT/Por–POM dispersion was filtered through a 1 μm 

mesh nitrocellulose filter paper (MCE, Millipore) and placed atop the circular pads of the electrode 

array. Few drops of acetone solution were casted on the filter paper, which left the substrate with 

only the SWNT/Por-POM film. The sample deposited on the substrate was then placed on top of 

a glass veil, 80% filled with acetone solution, and was dried using the acetone vapors by heating 

to 80 ℃ for 30 min. The schematic is displayed in Fig. 2.4b with the close optical microscopy 

images of the MEA before and after deposition of SWNT/Por-POM thin film. 
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                    Fig.2.4 Shows optical image of the MEA fabricated using photolithography.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Schematic of the vacuum-assisted wet transfer thin film deposition of the SWNT/Por-POM on 
MEA. The optical microscopy image shows the MEA circular pads before (left) and after (right) the thin 
film deposition.  
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2.6 Atomic force microscopy (AFM) 
 
The atomic force microscopy (AFM) of a drop casted dispersion of SWNT/Por-POM on a Si/SiO2 

substrate was measured using a JEOL JSPM-5200 instrument shown in Fig. 4. AFM is a very high 

resolution type microscopic imaging process which can give information about the surface 

topology in the orders of fractions of a nanometer. The three major configurations used in studying 

the surface structure includes (i) contact mode, (ii) tapping mode and the (iii) non-contact mode of 

AFM study. The mode differs in terms of the probe distance from the sample surface. In this 

research work we characterize the surface of SWNT/Por-POM using the tapping mode method. 

The schematic of the mode is shown in Fig.5. The main principle of any AFM mode requires a 

raster scanning of the surface by the cantilever probe tip along x-y direction. The tip is irradiated 

with a laser and the motion of the tip along the z direction is studied via the change in the laser 

beam by a photodetector arising from the tip-surface interaction force. In tapping mode, the laser 

causes the tip to vibrate at its resonating frequency in a sinusoidal motion. Since the tip does not 

come in contact with the surface so the attractive and repulsive forces of the amplitude change 

laser is detected which gives us the idea of the topology. A feedback loop is connected to readjust 

the tip frequency and amplitude to its original point.5  
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Fig 2.6 AFM system JEOL JSPM-5200 with the tapping mode AFM schematic principle obtained from 
published report. 
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2.7 Field Emission Scanning Electron Microscopy (FE-SEM) 
 
The FE-SEM measurements were done using Hitachi S-3400N model as shown in Fig. 2.7a. FE-

SEM is a high resolution microscopy study that uses high accelerated electrons to determine the 

structure via scanning the sample and has a resolution of 1 nm. It was used to observe the 

SWNT/Por-POM network structure. The basic working principle is shown schematically shown 

in Fig. 2.7a. The electron gun is used to generate high voltage electrons (~ 30 kV) in vacuum which 

are accelerated in a high electric field gradient when passing through the anodes.  The beam is 

collimated into a narrow point on the sample via electromagnetic lenses. On hitting the sample 

secondary electrons are deflected from the surface whose speed and angle are measured by the 

detector which gives the structural information of the material. The detector passes electrical 

signals to the processor to amplify it and finally is readout by the PC as an image file. 

2.8 Spectroscopic studies 
 
The UV-Vis spectroscopic measurement was done using the single monochromator Shimadzu-

2600 equipment shown in Fig. 2.7b. The fundamental principle of UV-Vis spectroscopy is to give 

a quantitative measurement about the amount of incident light being absorbed when transmitted 

through a sample in solution as depicted in the schematic. Molecules of different nature absorbs 

different wavelengths of light upon interaction hence causes excitation of electrons from lower to 

higher states which are reflected as sharp absorption peaks in the spectrum. The absorbance 

intensity A is measured following Eq. (1) which is the logarithmic ratio of the incident light I0 to 

the transmitted light I.  

                                                              𝐴 =  logଵ଴
ூబ

ூ
                                                                    (1) 
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Fig 2.7 Working principle of spectroscopic instruments. (a) Shimadzu-2600 UV-Vis spectrometer, top. 
Bottom shows the schematic of the absorbance principle. (b) Shimadzu IRSpirit A224057 spectrometer, 
top. Bottom shows the schematic of the FTIR principle. 
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2.8 Electrical measurements 
 

2.8.1 The current –voltage (I-V) characteristic of the SWNT/Por-POM device 
 
The I-V characteristic of the fabricated sample was performed under a cyclic DC sweeping bias 

utilizing a probe system (Pascal Co., Ltd) with a semiconductor parameter analyzer (Agilent 

4156B). The photograph of the machine is displayed in Fig. 2.8.1 with each of the equipment 

labelled specifically. The parameter analyzer functions as the software interface that supplies the 

input bias to the electrical probes. The optical microscope is used for magnification purpose to set 

up the probe pins on the device electrode pads. The entire set up is also equipped with a 

temperature controller whose need was not required in our study as all the measurements were 

done in room temperature (28C) and pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.8.1 Photograph of the probe station to carry out I-V characterization. 
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2.8.2 The current –time (I-t) characteristic of the SWNT/Por-POM device 
 
The I-t and majority reservoir computing (RC) tasks were all done using a custom-built electrical 

set-up schematically shown in Fig. 2.8.2. The input signal controlling the dynamics of the 

SWNT/Por–POM is fed through a function generator (Agilant 33120A), and readout signals 

collected from different outer electrode pads are measured using the DAQ (National Instruments, 

NI USB-9162). The electrode connectivities are established with the electrical probes using a two-

probe system. The desktop PC acts as the software interface between the function generator and 

the DAQ via the LabVIEW software to monitor the I/O. To get the current from voltage response 

an additional 1 MΩ resistor along with a variable gain low noise current amplifier (DLPCA-200) 

was added in between the output electric probe and DAQ system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.8.1 Schematic showing the I-t measurement set-up. The custom built probe station was also used 
for conducting different RC tasks. 
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Chapter 3 
 

Reservoir dynamics emerging from an incidental structure of single-walled carbon 
nanotube/porphyrin-polyoxometalate complex 

 

Abstract: The fundamental pre-requisite for any dynamical system to act as a reservoir requires 

the fulfillment of non-linearity, echo state property and higher dimensional spatio-temporal 

information processing. In this chapter we explore these areas of interest in the single-walled 

carbon nanotube/porphyrin-polyoxometalate (SWNT/Por-POM) complex. We firstly synthesize 

the random network complex via a simple sonication and confirm the adsorption of Por-POM on 

SWNT via AFM, UV-Vis and FE-SEM characterizations. Construction of a simple function 

approximation task with non-linear and time-delay components from weighted linear output 

readouts confirmed that the reservoir dynamics arising from the device is more suitable for any 

non-linear computation but lags for higher memory task. The result was validated by studying the 

current-voltage (I-V), current-time (I-V) and memory capacity properties (MC). The I-V and I-t 

both typically revealed a non-linear negative differential (NDR) current fluctuation which were a 

source of 1/f noise manifesting in a maximized information processing for an edge of chaos 

computation. While, the MC did prove the short term memory of echo state property but a 

considerable low value suggested that it is underpowered by the greater non-linear dynamics 

thereby falling off for any delayed past memory construction task.   
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3.1 Introduction 
 

The primary architecture of any neural network1 consists of driving an input signal via a non-linear 

activation function and finally processing the signal as a linear weighted combination (wout) of the 

output states, as depicted in Fig. 3.1a. In the context of reservoir computing2,3 this hidden activation 

layer represents a black box of recurrently connected non-linear units of random weights more 

precisely emulating the network structure of the human brain, shown in Fig. 3.1b.4 The main 

purpose of the reservoir is to map the input to a higher dimensional output space which are solely 

the reproduction of the reservoir states occurring at different points in the network over time. Thus 

the temporal dynamics of the reservoir at given time Xi(t) is dependent on its current weighted 

(Win) input state U(t) and its recent weighted (Wres) past state X(t-1) operated in a non-linear fashion 

given by Eq. (3.1) where f is the non-linear activation function.5  

                                               𝑋௜(𝑡) = 𝑓(𝑊௜௡𝑈(𝑡) + 𝑊௥௘௦𝑋௜(𝑡 − 1))                                                    (3.1) 

Such information processing over short-term memorization is a characteristic of the echo-state 

property (ESP) as formulated firstly by Jaegar et al.6 An experimental way to check the ESP is to 

compute the memory capacity (MC)7 of the device that measures the networks ability to 

reconstruct the past information from the reservoir on the network output by computing 

correlations. The MC is calculated with the Eq. (3.2), where uk(t-1) is the input presented k-steps 

before the current input uk(t) and yk(t) is the linear weighted combined reservoir output (Fig. 3.1) 

used to construct the given delayed input.   

                                   𝑀𝐶 = ∑ 𝑀𝐶௞
௞೘ೌೣ
௞ୀଵ =  𝑀𝐶௞ =

௖௢௩మ൫௨(௧ି௞),௬ೖ(௧)൯

ఙమ൫௨(௧)൯ఙమ൫௬ೖ(௧)൯
                                       (3.2) 
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Fig. 3.1 The neural network functioning, (a) schematic of general architecture where a hidden layer of 
non-linear activation function drives an input to the output for linear weighted processing. (b) A reservoir 
acting as such a hidden layer with the reservoir nodes acting as the non-linear activation functional unit 
connected by recurrent connections.  

 

The MC is higher when the uk(t-1) matches the yk(t) giving a high covariance factor (cov). The 

non-linearity and the echo-state property of short-term memory are important attributes to any 

reservoir system as it allows computation of different RC tasks like higher time-series prediction, 

(memory property) and complex function optimizations (non-linearity).8–14 Another vital feature 

that these reservoirs hold is their ability to process information at the border of stable and unstable 

regime giving rise to edge of chaos15–20 computation like human brain. The presence of such trait 

allows the reservoir to higher computational efficiency thus satisfactorily achieving a desired task 

irrespective of its kind. Physical reservoir systems with such edge of chaos computing9–11,21 have 

been recently reported substantiating the validity of RC to be a close edged bio-inspired 

unconventional platform. Since materials possessing these rudimentary properties are being 

constantly researched for their future use as in-materio RC, we too hereby experimentally study 
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the reservoir dynamics of our single-walled carbon nanotube/porphyrin-polyoxometalate complex 

(SWNT/Por-POM). The idea to incorporate such a material in the list of existing in-materio RC 

framework came from the proposed theoretical model of SWNT/POM where the intrinsic redox 

mediated charge transfer dynamics was utilized as high dimensional outputs to construct the 

NARMA-10 time series.22 The complex imparts a non-linear negative differential resistance 

(NDR) dynamic at room temperature, a source of noise fluctuations,23 and closely resembled the 

neuronal information processing behavior of the human brain.24 Herein we extend the idea to a 

real physical platform and utilized a porphyrin functionalized POM  formulated as 

SV2W10O40[H4TPP].25 The Por-POM is a 3D Keggin type molecule known to form stable thin 

films with characteristic feature of non-linear NDR behavior,25,26 but never have such dynamics 

been investigated for the reservoir properties. We initially prepare a complex network of 

SWNT/Por-POM and study its functionalization characteristics via UV-Vis, FTIR, AFM and Fe-

SEM techniques. We move on to discuss the SWNT/Por-POM dynamics via current-voltage (I-V) 

and time-domain current (I-t) studies under the influence of DC bias input. The results reflect on 

the spatio-temporal dynamics manifesting in a source of 1/fγ noise useful for brain like 

computational performance. To understand the fading memory effect, the MC was calculated by 

giving a random signal in the voltage interval of [0, 1]. The computational performance was 

analyzed via a simple function approximation task which served as a trade-off for non-linearity 

and memory operation. The task reveals our device’s capability to perform higher degree of non-

linear computation rather than memory-based operations. 
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3.2 Methods 

3.2.1 SWNT/Por-POM dispersion 
 

The SWNT/Por-POM dispersion was obtained using a known procedure.27 Initially, 2 × 10−2 gL−1 

HiPCo SWNT, purified according to the previous report28 and 4× 10−2 gL−1 of Por-POM were first 

bath sonicated in ethanol for 1 h (40 k Hz) separately and then for 4 h by mixing them together. 

The dispersion was then centrifuged at 1,000 G for 15 min and the excess of supernatant was 

discarded. The precipitate was collected and was further bath sonicated in ethanol for 1 h to get 

the final dispersion.  

3.2.2 Fabrication of MEA substrate 
 
Aluminum coated MEA pattern was obtained via a standard photolithography process on a 

borosilicate glass substrate. A lift-off resist LOR-10A was first spin coated at 3,000 rpm for 50 s 

followed by the deposition of the photoresist S18186 spin-coated at 4,000 rpm for 2 s. The 

substrate was pre-baked at 90 ℃ for 5 min and the pattern was developed with a 25 s exposure to 

the UV light. Finally, the resist was developed using MF 319 developer for 90 s and 50 nm thick 

aluminum metal was sputtered that produced the desire MEA substrate with inner circular pad 

diameter of 500 m and a pitch of 1.5 mm.  

3.2.3 Thin film deposition of SWNT/Por-POM computational material 
 
Thin film of SWNT/Por-POM random network was deposited onto the MEA pattern as per the 

previous report.22,29 A vacuum-assisted wet transfer process was applied where 500 L of 

SWNT/Por-POM was filtered through a 1 m nitrocellulose paper and was placed on top of the 

MEA substrate with the SWNT/Por-POM facing down followed by its dissolution in acetone. The 
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entire substrate with the thin film was dried using acetone vapors at 80 ℃ by placing it on a glass 

veil of acetone solution.  

3.2.4 Characterization 
 
The UV-Vis spectroscopic measurement for Por-POM and SWNT/Por-POM were all done in the 

ethanol solvent using the single monochromator Shimadzu-2600 equipment. In each of the cases 

the concentration of SWNT and Por-POM was kept same as the synthesis part. The atomic force 

microscopy (AFM) of a drop casted dispersion of SWNT/Por-POM on a Si/SiO2 substrate was 

measured using a JEOL JSPM-5200 instrument in the tapping mode. The FE-SEM was performed 

with Hitachi S-3400 N.   

3.2.5 Electrical Measurements 
 
The I-V characteristics was measured using a probe system (Pascal Co., Ltd) with a semiconductor 

parameter analyzer (Agilent 4156B) using a 1 V DC bias cyclically swept at 25 mVs-1. The I-t, 

was done at a constant DC bias voltage of 1 V for 300 s. The set-up shown in Fig.2.8.2 of Chapter 

2 was used with 1 MΩ resistor along with a variable gain low noise current amplifier (DLPCA-

200) added between the output electric probe and DAQ system. The MC and function 

approximation all were done using Python coded programs. The input signal used for these studies 

were given using the set-up task in Fig.2.8.2 of Chapter 2 where the function generator was 

replaced by a multifunctional I/O DAQ system (NI PXIe-4141) and the readouts were collected 

using a high speed USB carrier (NI USB-9162) sampled at 1 kHz. Since the readouts were voltage 

form, the noise current amplifier along with resistor was not connected.  
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The logarithmic plots of PSD were fitted using the power law in Eq. (3.3) where A represents the 

proportionality constant and γ represents the scaling factor. Both the FFT and the fitting was done 

using Origin Pro 9 software. 

                                                                   𝑃𝑆𝐷 =  
஺

௙ം                                                                                   (3.3) 

3.3 Results and discussion 
 
Figure 3.2a shows the AFM of the drop casted film of SWNT/Por-POM dispersion prepared by 

sonication method. Dense network of interconnected strands of SWNT with contrasting surface 

regions are visible. A scan with a closer area in Fig. 3.2b revealed bright spots of circular particles 

of 5.4-6.7 nm variable height thickness being adsorbed on the sites of bundled SWNT f 3.2 nm. 

Usually Por-POM has an average unit cell dimensions of 2.2 nm,25 but to confirm its presence we 

studied the UV- Vis spectroscopy of the dispersion in ethanol solvent. Fig. 3.2c shows the 

absorption spectra of both Por-POM (black dot line) and SWNT/Por-POM (red solid line) 

normalize to the intensity. In both the cases strong porphyrin Soret band peak at 416 nm, tungsten-

oxygen charge transfer peak at 266 nm and Q band peaks at 513, 547, 590 and 645 nm are clearly 

visible.26 Apart from that in the complex structure, multiple peaks in the range above 700 nm to 

1250 nm can be observed in the inset which are signatures of E11 and E22 semiconducting peaks of 

HipCo SWNT showing multiple chirality’s of high diameter tubes.30 Although the lower 

wavelength M11 peaks of small diameters are missing due to the purification process,31 still the 

spectrogram confirms that the dispersion indeed is a mixture of SWNT/Por-POM complex. The 

variable size distribution of Por-POM seen from the AFM (Fig. 3.2b) is understandable as they 

have the tendency to stack up due to - interactions25 hence generating a non-homogeneous 

surface functionalization driven by sonication.  Additional heterogeneity in the network structure 
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from the vacuum assisted wet transfer thin deposition can also be seen from the random 

distribution of SWNT in the FE-SEM image in Fig. 3.2d. In the context of RC such conglomeration 

of intertwined networks with varying Por-POM cluster density is apt as it replicates the brain-like 

network structure where neural non-homogeneity has been proven to be efficient for information 

processing and critical learning.32,33 To check the RC device performance we used a sine wave 

function approximation task given by Eq. (3.4) where (,) are the non-linear and time-delayed 

task parameters that control the extent of non-linearity and memory required to construct the signal 

y(t) from the given voltage input u(t) of random noise distributed in the interval [-1,1] V. The target 

y(t) was constructed from the weighted linear combinations of eleven readouts as per Eq. (3.5) 

where each output weight wout was optimized using a ridge regression analysis in Eq. (3.6), with a 

regularization parameter  of 0.1. The fitting performance was evaluated using the normalized 

mean square error (NMSE) and accuracy given in Eq. (3.7) and (3.8). 

                                                           𝑦(𝑡) =  sin(𝜗𝑢 (𝑡 − 𝜏))                                                     (3.4) 

                                                      𝑤௢௨௧ =  (𝑋௜
்𝑋௜ +  𝜆𝐼)𝑋௜

்𝑦(𝑡)                                                  (3.5)                                                               

                                                           𝑍(𝑡) =  ∑ 𝑤௢௨௧𝑋௜(𝑡)ଵଵ
௜ୀଵ                                                           (3.6) 

                                                          𝑁𝑀𝑆𝐸 =  
∑ ௬(௧)ି௓(௧)మ

∑ ௒(௧)మ                                                                    (3.7) 

                                                      𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ((1 − 𝑁𝑀𝑆𝐸) × 100)%                                                        (3.8) 

Figure 3.3a shows the trained (blue line) and the test output (red line) for  = 0.1 and  = 0 with a 

test fitting accuracy of 99%, showing that when there is no past information to be remembered, a 

low non-linear task can be easily computed over a RC framework training. 
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Fig. 3.2 SWNT/Por-POM characterization. (a) AFM image of dispersed SWNT/Por-POM on Si/SiO2 

substrate. (b) Magnified version of AFM showing Por-POM particles of variable height thickness with a 

region of bare SWNT. (c) UV-Vis spectroscopy of Por-POM (black dotted line) and SWNT/Por-POM (red 

solid line) with characteristic peaks at 413 and 266 nm. The inset shows the region above 600-1250 nm 

for the SWNT absorption peaks. (d) FE-SEM of a random network of SWNT/Por-POM obtained after 

vacuum assisted wet transfer deposition. 
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Fig. 3.3 The sine wave function approximation task obtained using Eq. (3.4). (a) The task for  =0.1 and  
= 0 indicating low non-linearity and no memory, with the test fitting of 99%. (b) The task for  =0.1 and  
=10 indicating low non-linearity and high time-delayed memory, with the test fitting accuracy of 2.1%. (c) 
Heat map showing variation of  vs . The higher the , lower is fitting accuracy as indicated by the color 
bar. 
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But as soon as we increased the delay  = 10, keeping the  fixed at 0.1, we see a large degradation 

in both training and testing performance with very low accuracy of 2.1% in Fig. 3.3b. To get a 

clear picture of how the memory/non-linearity evolves in the regime RC, we performed the same 

task by varying  and  and constructed a heat map showing the variation of    (x-axis) as a 

function of  (y-axis). The heat map shows the test fitting accuracy as a color gradient in the plot 

where the blue represents the best performance while the red shows the worst as indicated by the 

color bar. A general trend of decreasing accuracy with increasing  is observed for all   indicating 

that irrespective of the increasing degree of non-linearity, tasks with the least past memory 

construction always excels the higher ones. It has been proven before that a trade-off between 

memory and non-linearity exists and that for a reservoir to operate at the optimal regime of memory 

and non-linearity, inclusion of linear units in the reservoir is important.34 In order to get a better 

understanding we separately studied the MC and current-voltage dynamics. MC was performed 

according to Eq. (3.2) with an input of random signal in the interval of [0, 1] following the same 

methodology of function optimization, and a graph of MC vs delayed time-step was plotted in Fig. 

3.4a. The gradual decrease over increasing time steps do support the validity of echo state property 

of fading memory6 but the low value of MC about 4.2 strengthens the above result of time delayed 

function approximation. The heat map in Fig. 3.3c too shows that a transition point around  = 4 

or 5 exists after which the performance degrades rapidly for any number of non-linearity as it 

shows a clear non-linear current increase in both upward (black line) and downward (red line) scan 

in Fig. 3.4b. The above two experiments thus proves that a lack of linear component in the 

heterogeneous random recurrent network of SWNT/Por-POM makes way for an in-materio RC 

framework that is mostly suitable for non-linear tasks like approximations rather than time delayed 

past memory predictions.  
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Fig. 3.4 Validation of the low memory high non-linearity and maximum information processing. (a) The 
graph of memory capacity calculated by summing over all k-step delayed MCk. (b) The I-V graph showing 
characteristic NDR peaks both in positive and negative bias region (inset) with non-linear current dynamics. 
(c) The temporal current dynamics study under constant DC bias of 1 V. NDR like fluctuations are present 
in all time lengths of 1 s (top), 5 s (middle) and 10 s (bottom). (d) The logarithmic power spectral density 
(PSD, black) obtained from FFT of current in (c) and its corresponding fitting (red line) calculated via Eq. 
(3.3). A 0<<2 suggests the network dynamics has 1/f noise useful for intelligent computation. 
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Another important feature that surfaces up in the I-V is a decrease in current at higher biases of 

0.9 V and -0.83 V (inset), characteristic of negative differential resistance (NDR) behavior 

dominant also in the time-dependent current dynamics (I-t) at different time-lengths of 1 s (top), 5 

s (middle) and 10 s (bottom) depicted in Fig. 3.4c. The spatial information of NDR fluctuations in 

current are signatures of Por-POM molecules owing to their charge transfer redox mediated 

capacitive nature.25 A qualitative understanding of such information processing was analyzed with 

the power spectral density (PSD, Methods) of each 1 s (top), 5 s (middle) and 10 s (bottom) time-

lengths as represented in Fig. 3.4d. The logarithmic PSD when fitted (see Methods) showed a 1/f 

γ power law scaling with the scaling factor γ of 0.9 (1 s), 1.3 (5 s) and 1.2 (10 s) suggesting that 

these fluctuations are characteristics of the flicker noise. The result is consistent with other 

SWNT/polyoxometalate complex35 and reflects on the importance of redox mediated charge-

discharge property intrinsic to these random network devices that form the genesis for such random 

signals of spatio-temporal information. In real world, the human brain serves as an example of 

such 1/fγ power law and information correlation phenomena.36 Varied spatio-temporal correlated 

activities, throughout the random network of recurrently connected neighboring neurons, are 

created from a time-varying external input over its entire time-length. Such maximization of 

information processing renders a 1/f γ power law in the PSD, thereby providing the highest 

computing performance at the ‘edge of chaos’.37,38 Like human brain, thin films of 

SWNT/polyoxometalate complexes too possess such interconnected networks with easy solution 

processability. Due to their multiple redox states and varying degree of SWNT/polyoxometalate 

capacitive junctions, when perturbed by an input, cascade of charge-discharge processes of 

different intensities occurs at these randomly recurrent networks conceived by the CAM 

model.22,35 The series of cascades hence creates a maximization of spatio-temporal information 
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exchange thereby producing high-dimensional reservoir states of different frequencies reflected in 

the PSD following the 1/fγ power law. It is also to be noted from Figure 1d, that these fluctuations 

in the current satisfies the condition of 0< γ <2 for all time-lengths supporting the scale-free nature 

of the events39 a signature of 1/fγ power law, which suggests that the information generated from 

the input is solely an intrinsic property of the material and hence is retained over all lengths of the 

processing time.  

3.4 Conclusion 
 
The chapter deals with the formalism of reservoir dynamics emergent in our SWNT/Por-POM 

complex.  We successfully synthesized a functionalized dispersion of SWNT/Por-POM as evident 

from the UV-Vis graph which showed all the characteristics of Por-POM and SWNT in the 

absorption spectra. The AFM and FE-SEM revealed that the sonication and vacuum assisted wet 

transfer process drives a heterogeneous random network of SWNT/Por-POM thin films on the 

MEA substrate just like the human network brain connectivity. The reservoir task of sine wave 

approximation with parameter of non-linearity  and time delay memory  was performed which 

clearly showed a trade-off where only the device excelled in non-linear tasks but failed to 

reconstruct distant past information. The result was validated with a low MC and high non-linear 

dynamics (I-V) that is inherent of SWNT/Por-POM. The NDR like spatio-temporal information 

intrinsic to the system proves to be valuable source of 1/f noise fluctuations characteristic of ‘edge 

of chaos computation’ like the human brain. Based on these above results we proceeded to build 

up different RC tasks to evaluate our devices in-materio RC framework performance. We start off 

with the benchmark of waveform generation task in Chapter 2 and show that the sine wave 

approximation in the regime of =0 is useful for constructing complex waveforms with high 

accuracy. In Chapter 3 we increase the RC benchmark complexity by giving two binary inputs and 
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focus on the NDR property as a machine intelligent index for construction of all the logic functions. 

Lastly, we finally perform the benchmark task of object classification from tactile sensory data 

and emphasize on the point of 1/f maximized information processing for better classification.  
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Chapter 4 

Fourier transform waveforms via in-materio reservoir computing from single-
walled carbon nanotube/porphyrin-polyoxometalate complex 

 

Abstract: This chapter shows the potential of our single-walled carbon nanotube/porphyrin-

polyoxometalate (SWNT/Por-POM) complex for constructing different waveforms using in- 

materio reservoir computing (RC) learning architecture. The non-linear dynamical nature 

decodes an incident sin wave into high dimensional patterns of varied spatio-temporal outputs 

evident from the Lissajous plots. Changes in output amplitude, phase along with higher harmonic 

generation in the frequency space are observed network-wide. Such readouts linearly combined 

with optimized weights resulted in fruitful construction of multiple waveforms with highest 

accuracy of 99%. The task clearly depicts the materials ability to harness non-linearity for 

successful operation of sine wave Fourier series.  
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4.1 Introduction 
 
A reservoir is considered a dynamical unit with pre-requisites of non-linearity and higher 

dimensionality.1,2 In Chapter 3 we have mentioned the SWNT/Por-POM’s bottleneck of lower 

memory and higher non-linearity which clearly suggests that in-materio RC tasks of non-linear 

temporal sequences can be used as a benchmark to test the devices capability of replicating such 

unconventional architecture. One such task is related to the waveform generation, meaning 

constructing of different wave patterns from a sine wave of specific amplitude and frequency. 

Versatile physical systems based on atomic switch networks (ASN), SWNT/polymer composites 

and memristive delayed systems3–6 have shown such task operation using similar in-materio RC 

platform. As the in-materio RC is a growing field, so in this aspect exploring such benchmark tasks 

with other available materials is also crucial in the field material science. Waveform generation is 

a mathematical formulation of Fourier series task. Infinite series of periodic sine trigonometric 

functions are linearly combined with coefficients to produce other form of complex periodic 

functions like triangular (Eq. 4.1), cosine (Eq. S4.2), sawtooth (Eq. 4.3) and square (Eq. 4.4). 

                                     𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =  𝑓(𝑥)  =  
଼

గమ  ∑
(ିଵ)

(೙షభ)
మ

௡మ 𝑠𝑖𝑛  ቀ
௡గ௫

௅
ቁ ஶ

௜ୀଵ,ଷ,ହ…                             (4.1)                                  

                                                                       𝐶𝑜𝑠 =  𝑓(𝑥) =  𝑠𝑖𝑛 ቀ
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The complexity of the waveform increases as a function of the harmonics (n) which determines 

the sine wave non-linearity () as suggested previously in Chapter 3 Eq. (3.4). For example, the 

cosine lacks a n term before sine and is only a phase shifted version of the sine wave hence requires 

mostly fundamental frequency to construct. Triangular, though requires multiple odd harmonics, 

but an n2 term in the denominator before sine makes it less non-linearly complex compared to 

square (odd n) and sawtooth (odd and even n). To understand this task complexity we hereby use 

our SWNT/Por-POM as an in-materio RC device for performance evaluation. We show in the 

subsequent sections of the RC operational principle and then move on to discuss the possible 

reason behind successfully implementing this task with our device.  

4.2 Methods 
 
4.2.1 SWNT/Por-POM dispersion 
 
The SWNT/Por-POM dispersion was obtained using a known procedure.7 Initially, 2 × 10−2 gL−1 

HiPCo SWNT, purified according to the previous report8 and 4× 10−2 gL−1 of Por-POM9 were first 

bath sonicated in ethanol for 1 h (40 k Hz) separately and then for 4 h by mixing them together. 

The dispersion was then centrifuged at 1,000 G for 15 min and the excess of supernatant was 

discarded. The precipitate was collected and was further bath sonicated in ethanol for 1 h to get 

the final dispersion.  

4.2.2 Fabrication of MEA substrate 
 
Aluminum coated MEA pattern was obtained via a standard photolithography process on a 

borosilicate glass substrate. A lift-off resist LOR-10A was first spin coated at 3,000 rpm for 50 s 

followed by the deposition of the photoresist S18186 spin-coated at 4,000 rpm for 2 s. The 

substrate was pre-baked at 90 ℃ for 5 min and the pattern was developed with a 25 s exposure to 

the UV light. Finally, the resist was developed using MF 319 developer for 90 s and 50 nm thick 
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aluminum metal was sputtered that produced the desire MEA substrate with inner circular pad 

diameter of 500 m and a pitch of 1.5 mm.  

4.2.3 Thin film deposition of SWNT/Por-POM computational material 
 
Thin film of SWNT/Por-POM random network was deposited onto the MEA pattern as per the 

previous report.10,11 A vacuum-assisted wet transfer process was applied where 500 L of 

SWNT/Por-POM was filtered through a 1 m nitrocellulose paper and was placed on top of the 

MEA substrate with the SWNT/Por-POM facing down followed by its dissolution in acetone. The 

entire substrate with the thin film was dried using acetone vapors at 80 ℃ by placing it on a glass 

veil of acetone solution.  

4.2.4 Measurements 
 
The RC task of waveform generation was done using the custom built setup shown in Chapter 2, 

section 2.8.2 without the current pre-amplifier, as we only took voltage readouts. Sine wave input 

was generated using the function generator (Agilant 33120A) and was fed to the device via one 

electrical probe. The outputs were collected via another probe and was readout by the PC using a 

high speed USB carrier (NI USB-9162) sampled at 1 kHz. All measurements were done at room 

temperature (28 ℃) and pressure. The detailed methods with corresponding schematic are 

discussed in Chapter 2. 

The weight optimization of waveform RC task was all performed off-line with the Origin Pro 9.0 

software via the multiple linear regression model. A training dataset of was collected to compute 

the weights and the device performance was evaluated on a different epoch section of the training 

data.  
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The Lissajous plots of input-output voltage relation was plotted by collecting the output sine waves 

from the device using the same hardware platform.  

4.3 Results and discussion 
 
Figure 4.1 displays the diagrammatic concept of carrying out the waveform generation task. For 

simplicity we have shown few pads in the MEA, but in reality an MEA with 12 pads are used for 

the experiment. An 11 Hz bipolar ±1 V sine wave is firstly given as the input signal to one electrode 

pad (pink) which passes through the SWNT/Por-POM random network marked as black lines and 

green circles in the schematic. The signal creates a network wide impact, and as the Por-POM 

distribution is heterogeneous (Chapter 3 AFM image Fig. 3.2 confirms it), outputs of multiple 

patterns constituting the reservoir states X can be obtained from each of the electrode pads. The 

input signal was fed for 60 s and thus all the outputs collected had the same time length as the 

input. The set-up was so arranged that outputs were collected one at a time, as in only after the 

first 60 s data was collected, the probe was shifted to other electrode pad to continue the data 

collection procedure. A total of 2 s epoch was used for the data analysis with 1 s each for training 

and testing. An offline multiple linear regression12 training approach was adopted, where the 

weights Wout of each of the reservoir states were optimized to fit the supervised target waves Y, 

using Eq. (4.5). The trained weights Wout were used to construct the test reservoir signal O(t) by a 

weighted linear combination of the reservoir states corresponding to m output electrodes Eq. (4.6). 

The m varied from 3 (minimum) to 7 to 11 (maximum) and the testing performance was evaluated 

by computing the normalized mean square error (NMSE) and the accuracy in Eq. (4.7) and Eq. 

(4.8) between the output O(t) and the target Y(t) over 1 s epoch. 
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                                                                         𝑊௢௨௧ =  (𝑋்𝑋)ିଵ𝑋்𝑌                                                               (4.5)                                                                                                    

                                                                     𝑂(𝑡)  =  ∑ 𝑊௢௨௧
௜ 𝑋௜(𝑡)௠

௜ୀଵ                                                                (4.6)                                                                                                           

                                                                     𝑁𝑀𝑆𝐸 =  
∑ ௒(௧)ିை(௧)మ

∑ ௒(௧)మ                                                                      (4.7)                                                                                                         

                                                      𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ((1 − 𝑁𝑀𝑆𝐸) × 100)%                                                       (4.8) 

 

 

 

 

 

 

 

                                      

 

Fig. 4.1 The RC operation for wave form generation task shown as an example for square wave 
supervised signal. The color coded pads imply sine wave outputs f different spatio temporal dimensions. 
In reality we use an MEA design with 12 total electrode pads, the diagram here just shows an illustration 
of the task technique. 
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Four different target waveforms of cosine, triangular, square, and sawtooth were performed for 

this operation as depicted in Fig. 4.2 by training eleven outputs. The triangular wave (Fig. 4.2a) 

showed the highest test accuracy of 99.4 % (red line) after training (green line) followed by cosine 

(99%, Fig. 4.2b), square (87%, Fig. 4.2c) and sawtooth (71%, Fig. 4.2d) in the decreasing order.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Training and testing of waveform generation RC task by linear combination of sine wave outputs 
from SWNT/Por-POM reservoir when perturbed by a sine wave input of ±1 V and 11 Hz. a) triangular, b) 
cosine, c) square, and d) sawtooth waveform generation RC task. Eleven output weights of 1 s epoch are 
first trained via supervised learning (green line), and the performance is evaluated via test waveform (red 
line) for the next 1 s epoch. The respective test fitting accuracy between the target (black line) and test 
data (red line) are given at the bottom. 
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To understand the reason behind the high accuracy machine learning performance we investigated 

the nature of the sine wave outputs relative to the input signal. This is important as it gives a clear 

picture of the non-linear high dimensional aspect of the reservoir required to perform such tasks 

with ease. Firstly we check the spatial dimensional change in terms of the amplitude for the outputs. 

Figure 4.3a shows the plot of the incident sine wave of amplitude 1 V that shows a smooth 

periodic motion. Upon passing through the SWNT/Por-POM computational material, change in 

output sine wave shapes can be observed in the consequent plots of Fig. 4.3b-e. The electrode pad 

colors (Fig. 4.3a) here indicate the outputs having the same nature of amplitude dimensional 

change. The simplest response comes from pad of O1 is Fig. 4.3b which retains the shape of the 

input with mostly 85% decrease the relative amplitude, calculated by Eq. (4.9), where Ain and Aout 

are the input and output sine wave amplitudes. 

                                                 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =  
∆஺

஺
=  

஺೔೙ି஺೚ೠ೟

஺೔೙
                                               (4.9)                                                                                    

Fig. 4.3c shows slight distortion at the peaks of sine wave for output pads of O2, O3, O5 and O8 

with amplitude attenuation of similar 85%. Along with these, larger distortion in sin wave shape 

and fluctuating peaks with phase delays can be observed in Fig. 4.3d-e for rest of the electrode 

pads with higher amplitude attenuation by about 98%. These result suggest that the random 

network structure produces multiple paths of different circuitry that results in varied degree of the 

incoming signal interaction with the material causing it to generate multi-dimensional spatial 

feature mappings.   
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Fig. 4.3. Input and output sine waves from SWNT/por-POM network (a) The input sine wave ±1 V and 11 
Hz that was used to produce network wide reservoir output states when passed through the SWNT/Por-
POM MEA device (black circle). The color of the electrode pads indicate outputs of same nature. (b) In-
phase output sine wave from electrode pad O1. (c) In-phase non-linear shaped sine wave from electrode 
pads O2, O3, O5 and O8. (d) Phase change NDR like fluctuation sine wave outputs from electrode pads O6, 
O7, O10 and O11. (e) Phase changed non-linear sine wave output from electrode pads O4 and O9.  The 
relative amplitude values as calculated from Eq. (4.9) are shown at the bottom of each graph.  
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In order to understand the internal dynamics happening at each nodal plots we studied the Lissajous 

plots (LP) in more detail13,14. LP is a graphical representation of input vs. output voltage (Vin vs 

Vout) that analysis the networks linear and non-linear relationship between the two sine waves via 

a change in the amplitude, phase shift or frequency given by the Eq. (4.10) and Eq. (4.11), where 

A, are the input amplitude and frequency and a,’ and  are the output amplitudes, frequencies, 

and phase delays, respectively. 

                                                                        𝑥(𝑡) = 𝐴 sin(𝜔𝑡)                                                            (4.10) 

                                                                 𝑥ᇱ(𝑡) = 𝑎 sin(𝜔ᇱ𝑡 +  𝛿)                                                  (4.11) 

A multitude of LP (Vin vs Vout), color-coordinated with the output electrode pads in Fig. 4.3a, can 

be seen in Fig. 4.4a-d. Figure 4.4a,b shows the semi-linear and non-linear (in the input voltage 

window of -0.16 V to 0.15 V), nature of the output sine wave with attenuated amplitude and in-

phase with the input similar to Fig. 4.3b,c. These profiles indicate that the input signal propagates 

through complex resistive network pathways with less non-linear redox activities thereby 

generating proportional changes in output amplitude signal. Higher dimensional profiles of 

distorted ellipse in Fig. 4.4c and non-linear ellipse in Fig. 4.4d coincidental with Fig. 4.3d-e are 

also visible. In these cases, the amplitude decrease is relatively high and are accompanied with 

multiple NDR like fluctuations with large hysteresis indicative of phase delay. Such phenomena 

can be attributed to the presence of more capacitive pathways along with resistive ones that allows 

a greater extent of charge-discharge cascading phenomena leading to such modulation of the 

output sine wave in terms of both amplitude and phase.  
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Fig. 4.4. SWNT/Por-POM complex network-wide dynamics via Lissajous representations. (a) Semi-linear 
Lissajous plot (LP) with no phase delay shows a proportional change in Vout amplitude relative to the Vin 
representative of resistive pathways. (b) The non-linear LP represents the charge-discharge phenomena 
occurring but with signals in phase with the input. (c) The elliptical and the (d) non-linear ellipse with NDR 
like fluctuations show phase delays corresponding to the complex capacitive network pathways. The color 
of the plots is coordinated with the electrode pads in Fig. 4.3a, indicating the outputs showing the same 
behavior.  
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The network wide spatial information decoding can be attributed to the non-homogenous size 

distribution of Por-POM over the SWNT confirmed from AFM in Chapter 3. The heterogeneity 

along with random network structure, creates varying degrees of cascading non-linear redox 

activity at different points in the network,11 thereby generating pathways of different electrical 

properties of resistive or capacitive nature. Thin films of Por-POM have been shown to have such 

circuitry when studied under the electrical impedance spectroscopy (EIS) previously9 confirming 

that even when adsorbed onto SWNT the behavior is retained as a result of which a mixture of 

LP’s is generated from a single unit of SWNT/Por-POM with high dimensional information of the 

input in terms of amplitude and phase. The effect can also be seen in the temporal dimensions of 

the sine wave which are studied as frequency mappings via fast Fourier transformation of the 

output signals. Fig. 4.5b-e shows that for the outputs (Fig. 4.5b-e), as color coordinated, there are 

multiple even and odd harmonics present relative to the input (Fig. 4.5a) where only the presence 

of 11 Hz is seen. Second or higher order non-linearity are very much common in materials like 

Por-POM and SWNT when perturbed by an incident radiation because of the charge transfer and 

 electronic conjugation effect.15–21 We believe that the functionalization brings around a 

synergistic effect within the network thus making the system more dynamical and complex in 

nature allowing for its excellent performance towards waveform generations as the Fourier 

transform of sine waves seen from Eq. (4.1)-(4.4) also demands such properties.  
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Fig. 4.5. Higher harmonic generation (HHG) of input and output sine waves. (a) HHG obtained by FFT 
analysis of input sin wave which shows only the fundamental 11 Hz frequency. (b) HHG of the output sin 
wave from O1. (c) HHG of the output sin wave from O2, O3, O5 and O8. (d) HHG of the output sin wave from 
O6, O7, O10 and O11. (e) HHG of the output sin wave from O4 and O9. All the FFT’s were performed using 
Origin Pro 9.0 software and are plotted as log-log scale. The colors of FFT are coordinated with the sine 
waves in Fig. 4.3. Compared to the input, each output produced HHG of both odd and even harmonics 
indicating decoding of input via the materials innate recurrent connection arising from SWNT/Por-POM’s 
non-linear dynamics.  
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To validate the importance of the non-linear rich reservoir states towards waveform generation, 

the SWNT/Por-POM reservoir performance was also evaluated with a lower number of training 

outputs as shown in Fig. 4.6-4.7. Electrode pads of O1 to O7 and O1 to O3 (Fig. 4.3a) were 

sequentially chosen to perform the task shown in Fig. 4.6 (seven outputs) and Fig. 4.7 (three 

outputs). A clear drop in the test accuracy of three outputs for cosine, square and sawtooth can be 

seen in Fig. 4.7e with the triangular being least affected as these can be replicated easily with 

fundamental and lower addition of odd harmonics due to their high resemblance to sine wave shape. 

On the contrary, complex waveforms like square and sawtooth with steep edges failed for the linear 

combination of three outputs but retained their shape for the seven outputs. This is because, as 

suggested from the Fourier series equations, greater the presence of linear outputs of higher 

harmonics and spatial decoded information in terms of phase and amplitude better will be the 

performance. Similarly, the cosine which requires only the fundamental sine harmonics showed a 

steep drop at three output combination as they lacked the phase delayed dynamics (Fig. 4.4a,b) 

which is important to convert the sine wave outputs into the cosine forms. The above result thus 

puts emphasis on the fact that for a reservoir to learn different time-series waveform targets 

efficiently, presence of non-homogeneous network distribution22,23 with high charge transfer 

dynamics is vital as these give rise to multiple spatio-temporal dimensional patterns of amplitude, 

phase and frequency when instigated by an external sine wave input. The in-materio dynamics 

contained in each of the readouts rather represents the contrasting computational regime of 

reservoir states emerging from the random network of SWNT/Por-POM, hence enabling it to carry 

out the unconventional RC task of supervised learning.  
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Fig. 4.6. Waveform generation from training 7 outputs of the output sin wave. The train data (green dotted 
line) and the test data (red dotted line), each with an epoch of 1 s are plotted against the target wave 
(black line) for (a) triangular, (b) cosine, (c) square, and (d) sawtooth. Training weights over 1 s epoch are 
used for fitting the test data over another 1 s epoch. The corresponding test accuracies calculated from 
normalized mean square error (NMSE, Methods) is represented at the bottom of each graph.  
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Fig. 4.7. Waveform generation from training 3 outputs of the output sin wave. The train data (green dotted 
line) and the test data (red dotted line), each with an epoch of 1 s are plotted against the target wave 
(black line) for (a) triangular, (b) cosine, (c) square, and (d) sawtooth. (e) Plot of test accuracy against the 
number of tested linearly combined output electrode pads. Training weights over 1 s epoch are used for 
fitting the test data over another 1 s epoch. The corresponding test accuracies calculated from normalized 
mean square error (NMSE, Methods) is represented at the bottom of each graph.  
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4.4 Conclusion 
 
In summary, we concluded that the first in-materio RC benchmark task of single input non-linear 

complex function prediction from a dynamical unit of SWNT/Por-POM was successfully 

achieved. The fundamental reason being the combined effect of non-linear charge dynamics 

arising from the SWNT/Por-POM. The complex network showed varied Lissajous plots (LP) 

manifesting in a network of different electronic components within a single unit. The 

interconnected resistive-capacitive pathways created from easy solution processible sonicated 

driven heterogeneous functionalization lead to differentiating nodal points of high dimensional 

spatio-temporal patterns in amplitude, phase and frequency space. The LP attractors followed the 

same pattern over time indicating the presence of recurrent connections leading to varied 

computational regimes. All these properties allowed us to exploit the voltage readouts and 

linearly combine them to construct triangular, cosine, square and sawtooth waveforms with a 

simple linear regression output layer weight training. The device retained its performance over 

lower number of seven outputs and gradually showed a decayed performance for three outputs 

indicating the fault tolerant nature. It suggests that even in the failure of multiple output nodes 

the device still performs and computes the optimization validating the RC platform to be a 

robust, simple, efficient and fault-tolerant computational architecture. 
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Chapter 5 

Room temperature demonstration of in-materio reservoir computing for 
optimizing Boolean function with single-walled carbon nanotube/porphyrin-

polyoxometalate composite 
 

Abstract: The chapter deals with the in-materio RC operation of single walled carbon 

nanotube/porphyrin-polyoxometalate network (SWNT/Por-POM) towards six Boolean logic 

supervised targets. By training only once and computing the weighted linear combination of high 

dimensional voltage readouts, a device accuracy greater than 90% is achieved which is robust 

against any time length and multiple test datasets owing to the echo-state property and faultless 

information processing. Moreover, a non-zero machine intelligence index confirms that the current 

dynamics contain negative differential resistance which makes the SWNT/Por-POM act as a 

mathematical additive and subtractive unit aiding it in constructing such complex Boolean 

functions.  
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5.1 Introduction 
 
Evolution of neural network (NN) architecture1),2) has made brain-inspired computing a possibility 

in today’s age on conventional von Neumann architectures with constructed algorithms. Although 

a step stone in the field of machine intelligence but processing stacks of data requires heavy CMOS 

circuitry and multiple electronic components to come at par with brain’s computational efficiency. 

Both of these factor are challenging as downscaling devices are reaching its limit rapidly3)–5) along 

with data transfer latency due to von Neumann bottleneck.6) To overcome this, alternative research 

work termed as unconventional computing are being adopted where the NN models are replicated 

on a hardware platform.7)–9) The goal of such adaptation is to exploit the internal non-linear 

information dynamics, store the processed data within the same hardware unit and lastly utilize 

this data for training a given task via a simplified and time-efficient learning platform. One such 

NN platform that closely resemble the aforementioned unconventional architecture is reservoir 

computing.10)–12) It is a class of recurrent neural network13) with a single layer of recurrently 

connected non-linear neuronal units called the reservoir. Time-varying input information is 

mapped to high dimensional linear output readouts via the reservoir states of fixed arbitrary 

weights. These states are then supervised to learn a given task by optimizing the output weights 

only and thus any target task can be constructed by just performing a weighted linear combination 

of all the outputs following the echo state network priciple.12) In the context of unconventional 

computing, non-temporal task of logic function optimization has been a benchmark over the 

years.14)–17) In-materio computation of Boolean operations with single-walled carbon nanotube 

(SWNT)/polymer composite, dopant atomic network (DAN) and atomic switch networks (ASN) 

has been implemented successfully using either evolutionary algorithm (EA) or off-line RC 

supervised learning.18)–20)  Since in all these cases the intrinsic non-linear dynamics in terms of 
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current or voltage readouts are exploited to achieve the desired Boolean task, so the platform of 

experimentally exploring other materials of similar dynamics remains open and unlimited. 

Recently, SWNT coupled with polyoxometalates (POM) has surfaced up as a neuronal spike based 

neuromorphic device due to the multiple redox states of POM.21) They have shown theoretically, 

that by utilizing the random fluctuations of the dynamical system an in-materio RC with FORCE 

learning can be developed to carry out time-series tasks of NARMA 10, thereby reducing the time 

complexity required for brutal EA based search algorithms for similar materials. The property of 

self-randomness and non-linearity with functionalized SWNT is very much inherent unlike ASN 

and DAN which requires pre-activation or low temperature conditions to compute. This makes it 

necessary that such functionalized SWNT composites be further exploited for unconventional RC 

framework physically. Based on the previous report, herein we use SWNT/Porphyrin-POM 

(SWNT/Por-POM hereafter) complex for in-materio RC Boolean function optimization problem. 

Por-POM (SV2W10O40[H4TPP]) has been extensively studied for its non-linear properties arising 

from the charge transfer of porphyrin to POM.22),23) The thin films of these Keggin molecules 

possess resistive-capacitive circuit pathways, hence manifesting in a negative differential 

resistance (NDR) behavior, proven to be useful for non-linear machine intelligent task of Boolean 

logic optimizations.24) Thus in this study, we demonstrate the usefulness of SWNT/Por-POM 

towards Boolean logic construction by harnessing the network wide non-linear dynamics mapped 

into high dimensional space of voltage readouts via the off-line supervised technique. We achieve 

this by fabricating the SWNT/Por-POM computational material network on a photo 

lithographically patterned multi electrode array (MEA, see Methods) system.  
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Figure 5.1 depicts the schematic of the entire set-up with MEA interfaced with PC for controlling 

input-output operations, thus allowing for an easy hardware interface platform for realization of 

room temperature in-materio RC Boolean task.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Schematic of the experimental set-up to carry out the in-materio RC operation with MEA electrode 
(left) interfaced with PC (right) via the I/O multi-channel readout and DAQ system. The computational 
material used here is SWNT/Por-POM. 
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5.2 Methods 
 

5.2.1 SWNT/Por-POM dispersion 
 
The SWNT/Por-POM dispersion was obtained using a known procedure.25) Initially, 2 × 10−2 

gL−1 HiPCo SWNT, purified according to the previous report,26) and 4× 10−2 gL−1 of Por-POM 

were first bath sonicated in ethanol for 1 h (40 k Hz) separately and then for 4 h by mixing them 

together. The dispersion was then centrifuged at 1,000 G for 15 min and the excess of 

supernatant was discarded. The precipitate was collected and was further bath sonicated in 

ethanol for 1 h to get the final dispersion.  

5.2.2 Fabrication of MEA substrate 
 
Aluminum coated MEA pattern was obtained via a standard photolithography process on a 

borosilicate glass substrate. A lift-off resist LOR-10A was first spin coated at 3,000 rpm for 50 s 

followed by the deposition of the photoresist S18186 spin-coated at 4,000 rpm for 2 s. The 

substrate was pre-baked at 90 ℃ for 5 min and the pattern was developed with a 25 s exposure to 

the UV light. Finally, the resist was developed using MF 319 developer for 90 s and 50 nm thick 

aluminum metal was sputtered that produced the desire MEA substrate with inner circular pad 

diameter of 500 m and a pitch of 1.5 mm.  

5.2.3 Thin film deposition of SWNT/Por-POM computational material 
 
Thin film of SWNT/Por-POM random network was deposited onto the MEA pattern as per the 

previous report.21) A vacuum-assisted wet transfer process was applied where 500 L of 

SWNT/Por-POM was filtered through a 1 m nitrocellulose paper and was placed on top of the 

MEA substrate with the SWNT/Por-POM facing down followed by its dissolution in acetone.  
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The entire substrate with the thin film was dried using acetone vapors at 80 ℃ by placing it on a 

glass veil of acetone solution.  

5.2.4 Measurements 
 
The I-V characteristic was measured using a probe system (Pascal Co., Ltd) with a semiconductor 

parameter analyzer (Agilent 4156B) using a DC bias swept at 25 mVs-1. The RC task for Boolean 

logic function was done using the custom-built setup shown in Fig. 5.1. The set-up is somewhat 

described in Chapter 2 section 2.8.2 is similar but since we are using two inputs, so we used a 

different configuration (see Methods). The two binary inputs of random‘0’ and ‘1’ was generated 

using the LabVIEW program and was fed to the device via two electrical probes interfaced with a 

multifunctional I/O DAQ system (NI PXIe-4141) instead of a function generator. The outputs were 

collected via another probe and was readout by the PC using a high-speed USB carrier (NI USB-

9162) sampled at 1 kHz. All measurements were done at room temperature (28 ℃) and pressure. 

The detailed methods with corresponding schematic are discussed in Chapter 2. 

The weight optimization of Boolean logic RC task was all performed off-line with the Origin Pro 

9.0 software via the multiple linear regression model. A training dataset of 1 min was collected to 

compute the weights and the device performance was evaluated using five different datasets 

collected individually for a similar interval of 1 min epoch. 

The machine intelligence index is calculated by firstly converting the Iout-Vin plot into its 

differential form that results in conductance (dIout/dVin). The dIout/dVin was then smoothed using 

Savitzky-Golay method24) in order to reduce the noise and enhance the signal peaks for proper 

calculation. The entire procedure was done using the Origin pro 9.0.  
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5.3 Results and discussion 
 
Figure 5.2a schematically depicts the RC task of Boolean logic function optimization for an XOR 

gate as an example. Two binary functions of randomized ‘0’ and ‘1’are first given as voltage inputs, 

Vin1 and Vin2, to two electrode pads of the MEA consisting of the random network of SWNT(black 

line)/Por-POM (pink circles). The two inputs are sampled at 1 bit/s and are chosen to create 4 

states of inputs in the form of (0,0), (0,1), (1,0) and (1,1), depicting the mathematical inputs of a 

logic table as shown in Fig. 5.2b. In this experiment we have used 0 V to represent the logic ‘0’ 

low state while +2 V as the logic ‘1’ high state. The resultant random fluctuation of non-linear 

high dimensional outputs, arising from the SWNT/Por-POM redox mediated dynamics, are then 

collected as reservoir states Oi depicted in Fig. 5.2c. A total of i equal to seven electrode pads (Fig. 

5.2a) are used in our case which are color coordinated with the outputs in Fig. 5.2c. Each output 

in Fig. 5.2c shows a step-wise increasing of Vout signal and are representative of each state of the 

combined input signals, where the lowest and the highest Vout relates to the (0,0) and (0,1) input 

states with the intermediate Vout values being representative of the (1,0) and (0,1) input states. It is 

evident that these output responses are thus mappings of the input and its recent past states which 

evolves non-linearly with time and thus suggests the SWNT/Por-POM’s ability to process input 

driven spatio-temporal information, a fundamental necessity of a dynamical reservoir system.27) 

In RC, the machine intelligence task is achieved by training only the output weights wi
y with a 

specific supervised target signal Y(t)28) as shown in Fig. 5.2a for the XOR logic gate, where the 

output represents a state ‘1’ only when either of Vin1 or Vin2 is high, otherwise it outputs a ‘0’. A 

multiple linear regression is adapted to train the weights off-line using the Moore-Penrose pseudo 

inverse algorithm in the Origin Pro 9.0 given by Eq. (5.1).The algorithm is a generalization of 

inversion matrix for computing the best fit wi
y to a set of linear reservoir readouts Oi when operated 
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on its transpose form Oi
T. The trained wi

y are used to construct the reservoir signal Z(t) via a 

weighted linear combination  added to a bias term b0 as per Eq. (5.2) and the best fit between Z(t) 

and Y(t) is obtained by minimizing the mean square error (MSE) (Fig. 5.2a) over N  data points 

given in Eq. (5.3). The ultimate device performance with Y(t) is further evaluated from the 

accuracy given in Eq. (5.4), where now the trained wi
y are instead linearly combined with readouts 

of a different test dataset driven by the same input sequence.   

 

                                                         w௜
௬

=  (𝑂௜
்𝑂௜)ିଵ𝑂௜

்𝑌                                                       (5.1)                                                               

                                                   𝑍(𝑡) =  ∑ 𝑤௜
௬

𝑂௜(𝑡)௠
௜ୀଵ +  𝑏଴                                                   (5.2) 

                                                       𝑀𝑆𝐸 =  
∑ ௒(௧)ି௓(௧)మ

ே
                                                             (5.3)        

                   

                                           𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ((1 − 𝑀𝑆𝐸) × 100)%                                             (5.4) 
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Fig. 5.2 Boolean function RC operation task procedure with (a) showing the operational architecture of 
RC. Two voltage inputs Vin1 and Vin2 perturb the SWNT (black line)/Por-POM (red circles) random network 
structure to give voltage readouts Oi from seven color coded electrodes. The output weights Wout are 
trained with a supervised signal, e.g. XOR function (truth logic of two high and low output states (1,1) and 
(0,0) and are optimized via linear regression till the mean square error is minimized. (b) The two binary 
inputs Vin1 and Vin2. Of  four states; (0,0), (1,0), (0,1) and (1,1). (c) The high dimensional outputs obtained 
from each electrodes color coded with the pads shown in (a). These readouts are trained as depicted in 
the schematic. 
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The above method was applied firstly used to train the six well know Boolean logic functions over 

an epoch of 12 s and was analyzed for a given test dataset as shown in Fig. 5.3. All the target logic 

gates (black line) of OR (Fig. 5.3a), AND (Fig. 5.3b), XOR (Fig. 5.3c), NOR (Fig. 5.3d), NAND 

(Fig.5.3e), and XNOR (Fig. 5.3f) were replicated by the linear combination of test readouts (blue 

dots) indicating the successful implementation of in-materio RC based on the echo-state network 

learning architecture.29) Although the test waves followed their respective targets, however 

appearance of noise fluctuations for all the gates at the steep edges transitioning from ‘0’ to ‘1’ 

state, similar to the outputs (Fig. 5.2c), can be observed. A plausible reason can be attributed to 

the sudden change in the device capacitance requiring time to adjust to the given voltage state 

when such linear drop in the voltage occurs, because of which the weight adjustments on those 

parts give out noisy fitting. It is to be noted that the behavior is more prominent for XOR and 

XNOR as these gates are exclusively complex and difficult to optimize relative to their 

counterparts right at the edges as validated by the assembly of nanoparticle network as well.19)  
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Fig. 5.3 Construction of Boolean logic target functions (black) from weighted linear combination of voltage 
readouts after output weight training by supervised learning for (a) OR, (b) AND, (c) XOR, (d) NOR, (e) 
NAND and (f) XNOR with their respective test accuracy fitting values at the bottom of each plot. 
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The formulation of varied Boolean targets portray the RC advantage of multitasking,30) where 

target specific tasks can be achieved from a single unit of SWNT/Por-POM reservoir upon driven 

by the same input sequence. This characteristic feature is highly evident when one assesses the 

training weight distribution plots of different electrode pads for all the gates in Fig. 5.4a. The bar 

plots for each gates (color coded) show a clear distinction amidst each other indicating that each 

task certainly can be learned uniquely and permanently with ruling out the possibility of 

catastrophic interference learning31) owing to the output layer only learning method. In order to 

quantitatively understand the trained weights capability towards the device performance, we 

gauged the accuracy factor in Eq. (5.4) over five test datasets for 12 s epoch.  Figure 5.4b shows 

the column plot of test accuracy for all the gates with the error bars corresponding to the standard 

deviation (SD) among the datasets. An accuracy greater than 95% is achievable for OR, AND, 

NOR and NAND gates with a slightly lower than 95% for the XOR and XNOR gates. The result 

is consistent with Fig. 5.3 where the XOR and XNOR shows a mismatch in following the 

horizontal lines compared to the other gates. The difference is evitable as XOR and XNOR are 

deemed to be linearly inseparable compared to the other gates32) and hence requires high 

dimensional space to par up their performance.  
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Fig. 5.4 SWNT/Por-POM’s reservoir performance analysis. (a) The plot of weight distribution against 
electrode pad number clearly shows distinct values for each electrode for all hence depicting the 
multitasking nature of the RC learning architecture. The learning is solely at the output layer and target 
specific, so no interference is there hence the gates are easily distinguishable. (b) The device performance 
analysis over five datasets. The plot shows the average test accuracy with the error bars (pink) 
representing the standard deviation amongst the datasets. (c) The Vout response from electrode pads O3 
and O7. A zero response shows that no high dimensional spatial data in terms of amplitude is obtained 
which hinders the performance of complex XOR and XNOR. (d) The plot of Vout correlation coefficient (r) 
for the same output electrode pads amongst different datasets. It gives a picture of the echo state 
property possessed by SWNT/Por-POM where a higher r implies that the reservoir state responses are 
same and is a function of the only the input itself.  
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One of the pre requisites of RC is the presence of high dimensional outputs30) and in regard to in-

materio SWNT/Por-POM, the random distribution of Por-POM over an array of recurrent SWNT 

network structure is a reflection of the cellular automata model.21) So like brain, network wide 

voltage readout dynamics of varying amplitudes, arising from Por-POM’s redox nature, can be 

exploited as high dimensional spatial features when collected from different electrode points. As 

depicted in Fig. 5.2c noticeable amplitude changes corresponding to different binary input states 

(Fig. 5.2b) are visible for most electrodes except for O3 and O7 where an almost zero response for 

all input state combination can be visualized in Fig. 5.4c. Such result hinders in the overall 

weighted linear average (Eq. (2)) giving away a near zero additive factor even when the weight 

coefficients are non-zero elements (Fig. 5.4a), thereby reducing the high dimensional aspect and 

hence lags the performance magnitude of XOR /XNOR slightly than OR, AND, NOR and NAND 

gates. In machine intelligence the consistency of device performance is also important for it to be 

robust. The lower SD of around 0.75 for OR, AND, NOR and NAND and of about 3.0 for XOR 

and XNOR over all five test datasets in Fig. 5.4b emphasizes this point. The reproducible 

performance can be accredited to the high correlation between the Vout of each electrode for all 

five datasets measured by the correlation coefficient (r) parameter given in Eq. (5.5).  

                                    𝑟 =  
∑ (௏೚ೠ೟,೔

ೕ
ೕ ି ௏೚ೠ೟,ഢ)തതതതതതതതത ቀ௏೚ೠ೟,೔

ᇲ,ೕ
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ೕ  

                                                  (5.5) 

The r is a measure of the closeness between Vout, i and V'out,i of the same electrode i but different 

dataset. A value closer to one strengthens the input-output reproducibility focusing on the 

reservoirs another important conditional parameter of echo state property.30),33) Reservoir states 

(Vout in this case) are mostly echoes of the input signal over time, as such, for the same input 

sequence irrespective of the given initial condition of the device, it should respond in a similar 
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manner for the learning operation to be valid for any given test dataset. The plot of r vs the output 

electrode number in Fig. 5.4d shows a near to 1 correlation for most electrodes with a small SD 

(error bars) amongst the datasets except for O3 and O7 where the r reduces due their unresponsive 

amplitude values.  The observation clearly supports the fact that the SWNT/Por-POM device also 

features the echo state property over most reservoir states, as a result aids in for such in-tuned test 

performance by training Wout for only one time. An advantage of RC also lies in its ability to recall 

temporal information owing to the presence of recurrent network connection. It allows the 

reservoir to reconstruct a future time-step target sequence based on its past temporal sequence with 

the initial optimized trained weights. Figure 5.5a shows a concept for the non-linear XOR where 

the initial target sequence (top) was shifted by an infinitesimal amount of 0.01 s (middle) to a 

larger value of 1 s (bottom). Voltage readouts of test dataset containing same time-interval as the 

target set were then chosen to analyze the device performance over the initial trained weights. As 

seen from Fig. 5.5b, for multiple time shifts of the target in log scale, the SWNT/Por-POM 

reservoir was able to follow the target with a consistent accuracy relative to the no shift case, 

thereby supporting the fact that the random network of SWNT/Por-POM reservoir indeed 

possesses the recurrent connection as well. Furthermore the variation in accuracy over different 

training time-lengths were also conducted as shown in Fig. 5.5e (OR, AND, and XOR) and Fig. 

5.5f (NOR, NAND, and XNOR) for one test dataset. The overall performance increases till 36 s 

epochs after which it becomes consistent till 60 s. The increase with time-length is justifiable, as 

it includes in a large number of data points N which makes the MSE in Eq. (3) attain a lower value. 

Usually, with increasing sampling space (N in this case), statistical precision tends to increase 

because of the presence of higher information leading to overall parameter estimation. 
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 It also points out that the non-linear high dimensional information processing is retained over the 

entire time-series thereby producing recurrent mappings of the input assisting in such robust RC 

performance for any time length.  

 

Fig. 5.5 Temporal performance of SWNT/Por-POM. (a) The XOR target shifted by a certain time delay. The 
top shows the target with no delay, the middle one is with a small delay of 0.01 s and the bottom shows 
the maximum delay of 1 s. (b) The plot of test accuracy over logarithmic time delay scale. Each of the 
delayed targets were fitted with the same optimized trained weights obtained from the no delay target 
sequence. (c) Device performance robustness over different training time-lengths for OR, AND, and XOR. 
The graph shows the evaluation of one test dataset. An increase in accuracy is due to the increase in 
sampling points. (d) Similar interpretation as in (e) for NOR, NAND and XNOR gates. 
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A rudimentary property for any reservoir to carry out complex mathematical transformations of 

XOR or XNOR lies in its ability to process information non-linearly. In this context non-

monotonic increase in current possessing the property of negative differential resistance (NDR) 

effect, where the current decreases with increasing bias, has emerged as an important parameter to 

estimate the machine intelligence index (MII) given by Eq. (5.6).24)  

                                                      𝑀𝐼𝐼 = 1 − ൬
௠൫ீ೛൯ି௠(ீ೙) 

௠൫ீ೛൯ି௠(ீ೙)
൰

ଶ

                                              (5.6) 

The MII approaches the value 1 only when the number m of positive (Gp) and negative (Gn) 

conductance’s are equal, as this results in a NDR effect, thereby giving rise to higher degrees of 

non-linear response. To validate this, we studied the current response (Iout) over voltage sweeps 

(Vin) between -2 V to +2 V as seen in Fig. 5.6a. Varied degrees of non-linear responses from 

different electrodes are evident with small peaks of NDR.  The MII was calculated from the 

differential current plot that gave the conductance values, as shown in Fig. 5.6b for the electrode 

pad O6. As our high logic state input bias was +2 V, we considered only the positive sweeping part 

of the I-V graph in Fig. 5.6a. Clear presence of multiple NDR peaks are visible in the range of 1 

V to 2 V. NDR in SWNT/polyoxometalates is a well-known trait arising from the polyoxometalate 

redox states of multiple charge-discharge phenomena at the SWNT junctions.21) To compute the 

MII we calculated m(Gp) constituting the increasing conductance points with voltage in the 

direction of A to B (red dotted arrow) in Fig. 5.6b, and m(Gn) as the points from B to C (purple 

dotted arrow) of decreasing conductance with bias. The points corresponding to all the NDR peaks 

were calculated this way and the corresponding MII values were plotted against different electrode 

pads displayed in Fig. 5.6c. For all the electrodes a non-zero MII was obtained indicating the 

presence of non-linearity at every nodal points. The high positive MII as a consequence of NDR 
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makes the SWNT/Por-POM device act as a mathematical unit capable of performing both additive 

and subtractive operations in a single network structure. Since Boolean logic is an algebraic 

operation and gates like XOR, NOR, NAND and XNOR all require additive and inverted operators 

to be efficiently emulated, we believe that the inherent NDR effect along with high dimensional 

spatial readouts make SWNT/Por-POM a promising candidate for fruitful exhibition of in-materio 

RC based Boolean function optimization.  
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Fig. 5.6 The importance of non-linear negative differential resistance (NDR) towards RC task. (a) Iout vs. Vin 
plots of all electrodes color coded with the schematic in Fig. 5.2(a). Since the magnitudes of Iout differ with 
electrodes so Small NDR peaks are visible in the plot. (b) The dIout/dVin plot of only the positive I-V sweep 
for output electrode O6 which gives the value of device conductance (G). The graph is smoothed with 
Savitzky-Golay method to get the clearer NDR peaks. A positive Gp are the points in the direction A to B 
while the points of negative Gn are from B to C. (c) The measured machine intelligence index (MII) for 
different electrode pads. The MII is calculated using Eq. (6) where the points of Gp and Gn are counted 
from plot from (b) for all the peaks. 
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5.4 Conclusion 
 
In summary, we successfully demonstrated SWNT/Por-POM in-materio RC task of Boolean logic 

optimization at room temperature using off-line supervised learning. The linearly combined 

readouts very well followed the targets of all six logic operations of OR, AND, NOR, NAND, 

XOR and XNOR with an accuracy of greater than 90%. The device showed robust performance 

over all five datasets and entire time-length sequence of the input due to the possession of echo-

state property and lossless information processing driven by the binary inputs. Non-linearity in the 

form of NDR behavior was also observed as suggested from the non-zero MII index. Presence of 

such non-linearity and high dimensional outputs from multiple electrodes is sought to be the reason 

for such high accuracy performance. The unique weights for each task allows for the logic gates 

to be classified, hence can be constructed without any interference. The performance of XOR and 

XNOR lagged behind others gates as these are complex operations, but training over large datasets 

and with more output linear combinations can be considered important factors for their 

performance enhancement. We believe that such first-hand exhibition of in-materio RC 

specifically with SWNT/Por-POM dynamical system can open up possibilities for other temporal 

and non-temporal RC tasks in near future.  
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Chapter 6 

Binary object classification with tactile sensory input information of via single-
walled carbon nanotube/porphyrin-polyoxometalate network as in-materio 

reservoir computing 
 

Abstract: Information encoding by human brain through sensory touch is highly pronounced as 

a characteristic trait of object distinguishability. Tactile sensors in robot serve this purpose of 

fetching object grasping information, but to utilize it for classifying the object based on a certain 

feature, a neural network architecture is mandatory for learning the processed data over repeated 

trainings. Herein, we use single-walled carbon nanotube/porphyrin-polyoxometalate 

(SWNT/Por-POM) in-materio reservoir architecture to classify objects of differing hardness by 

supervised learning of the fetched tactile grasping data implemented on a Toyota Human Support 

Robot (HSR) manipulator.  The classification problem is addressed using binary one-hot vector 

target where the device learns to output a high value target as the correctly labelled object 

relative to the other objects labelled as the low vector target. We show that this kind of 

classification primes up when the grasping information data follows a 1/f power law of 

maximized information processing. 
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6.1 Introduction 
 
Fast processing capabilities of electronic components along with their miniaturization have made 

todays robots smarter, smaller and efficient compared to what they were specifically designed for 

as heavy object lifters. The visible changes have redefined the coming age of robotic technology 

to scale-up their utility in healthcare, military, agriculture, and automobile industries via the 

development of sensors and machine learning technologies.1–6 The evolution in terms of structure, 

functionality, flexibility, and human level interaction has recently encouraged Toyota to 

manufacture a Human Support Robot (HSR) mobile manipulator to be implemented as a human-

like domestic robot aimed at cleaning and fetching/carrying objects, thereby reducing physical 

efforts for all age groups of people, especially the aged and disabled ones.7 To implement such a 

‘pick-place’ operation, the HSR must recognize the objects of interest and classify them just like 

humans do. A usual way for this is to use a visual camera sensor to process object images based 

on their geometry and learn them over time through ANN architectures.8,9 Although such training 

allows instant detection without reference object templates every time, the sensors falter to gather 

valuable information at low light environments, hence leading to faulty operations. So, to avoid 

this, deep learning techniques interfaced with tactile sensors10–12 have been employed to categorize 

object grasping data into different classes based on hardness under any environment through 

overtime training and learning. Recently Tamuko et al. has designed a flexible tactile sensor 

supported on the Toyota HSR arm and used the grasping information to classify objects of different 

hardness and color by employing an echo state network architecture theoretically.13 Since RC 

follows an echo state approach of weight training and learning we hereby illustrate the in-materio 

RC of binary object classification by taking advantage of the non-linear information processing 

emerging from the random network of SWNT/Por-POM. The problem statement consists of two 
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parts, (i) the collection of raw tactile sensory data and converting to the desirable voltage inputs 

and (ii) use a one-hot vector supervised target as object labels for training the voltage readouts 

from SWNT/Por-POM hence formulating the classification task. One-hot encoding is employed 

to convert categorical data into numerical values as this makes it easier for the neural network 

algorithm to distinguish the patterns in the form of numerical matrices. In binary one-hot, the 

classification is gauged between two objects as shown in Fig. 6.1. The target vector can be 

designed row or column wise and contains vector values of only ‘1’ and zero. The supervised 

target for the correctly predicted object will be row/column matrix with ‘1’ and ‘0’ valued where 

the position of ‘1’ will be labelled under the categorical variable to be correctly classified while 

the other being labelled ‘0’ indicating the ‘not correct object prediction’.  

6.2 Methods 
 
6.2.1 SWNT/Por-POM dispersion 
 
The SWNT/Por-POM dispersion was obtained using a known procedure.14 Initially, 2 × 10−2 

gL−1 HiPCo SWNT, purified according to the previous report,15 and 4× 10−2 gL−1 of Por-POM 

were first bath sonicated in ethanol for 1 h (40 k Hz) separately and then for 4 h by mixing them 

together. The dispersion was then centrifuged at 1,000 G for 15 min and the excess of 

supernatant was discarded. The precipitate was collected and was further bath sonicated in 

ethanol for 1 h to get the final dispersion.  

6.2.2 Fabrication of MEA substrate 
 
Aluminum coated MEA pattern was obtained via a standard photolithography process on a 

borosilicate glass substrate. A lift-off resist LOR-10A was first spin coated at 3,000 rpm for 50 s 

followed by the deposition of the photoresist S18186 spin-coated at 4,000 rpm for 2 s. The 

substrate was pre-baked at 90 ℃ for 5 min and the pattern was developed with a 25 s exposure to 
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the UV light. Finally, the resist was developed using MF 319 developer for 90 s and 50 nm thick 

aluminum metal was sputtered that produced the desire MEA substrate with inner circular pad 

diameter of 500 m and a pitch of 1.5 mm.  

5.2.3 Thin film deposition of SWNT/Por-POM computational material 
 
Thin film of SWNT/Por-POM random network was deposited onto the MEA pattern as per the 

previous report.16,17 A vacuum-assisted wet transfer process was applied where 500 L of 

SWNT/Por-POM was filtered through a 1 m nitrocellulose paper and was placed on top of the 

MEA substrate with the SWNT/Por-POM facing down followed by its dissolution in acetone.  

The entire substrate with the thin film was dried using acetone vapors at 80 ℃ by placing it on a 

glass veil of acetone solution.  

5.2.4 Tactile sensory information and conversion to time-series data 
 
Here we give the details about the tactile sensory data along with converting the raw sensory 

dataset obtained into time series data. Grasping data is the robot hand’s angle (θ) when it grasps 

the object with constant torque. We measure the robot hand’s angle (θ) grasping the object every 

0.1N between 0.1N and 1.2N. A total of five grasping datasets were obtained for each of the objects 

and the same pre-processing method was applied. For the pre-processing, the corresponding ‘θ’ 

values obtained from the objects’ grasping datasets were arranged into 5 bits/s information and 

were normalized to lie in the interval of [0, -1] V. An input gain of ‘5’ was multiplied throughout 

the range to give the desired input signal in the interval of [0, -5]. To carry out the RC task of 

object classification the custom built setup as described in Chapter 5 section 5.8.2 was used. The 

input interval stream was generated using the LabVIEW program and was fed to the device via an 

electrical probe interfaced with a multifunctional I/O DAQ system (NI PXIe-4141) instead of a 
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function generator. The outputs were collected via another probe and was readout by the PC using 

a high speed USB carrier (NI USB-9162) sampled at 1 kHz. The weight optimization of Boolean 

logic RC task was all performed using a one-hot encoded program designed in Python off-line via 

a ridge regression model. All measurements were done at room temperature (28 ℃) and pressure. 

The detailed methods with corresponding schematic are discussed in Chapter 2. 

The logarithmic plots of PSD were fitted using the power law in Eq. (6.1) where A represents the 

proportionality constant and γ represents the scaling factor. Both the FFT and the fitting was done 

using Origin Pro 9 software. 

                                                                   𝑃𝑆𝐷 =  
஺

௙ം
                                                                                   (6.1) 

The short term Fourier transform (STFT) was also performed in Origin Pro 9 software operation 

with a Hamming window length of 256 points spaced over the time-interval and an overlapping 

window of 128 points. 
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Fig. 6.1 Illustration showing the one-hot vector operation for binary classification. Categorical data 
labelled as ‘Hard and ‘Soft’ are changed to one-hot vector labels of ‘1’ and ‘0’. The target is a row/column 
binary data consisting of both the values. For the ‘Hard’ object the matrix representation of the target 
positions ‘1’ in the first column and ‘0’ in the second like [1 0] and for the ‘Soft’ it is the opposite like [0 1]. 
Training is done corresponding to those matrix sets. 

 

6.3 Results and Discussion 
 
Figure 6.2a left shows the HSR, with an elaborated schematic of its arm on the right attached to 

the gripper via a force-torque sensor that generates tactile sensory information of grasped objects 

containing the change in the gripper angle (θ) as a function of the applied forces (see Methods). 

Four toys of mixed hard and soft, namely bus, block, dog, and hedgehog (HH hereafter), were used 

in this study as depicted from top to bottom in the red box beside the schematic of Fig. 6.2a. The 

tactile sensing data from each of the grasped objects was collected and pre-processed using 

LabVIEW software to obtain bits of input biases of varying voltages sequenced over time as shown 

in Fig. 6.2b right (see Methods). Five input datasets corresponding to each object were produced 
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by grasping the objects and were arranged sequentially in the LabVIEW which were fed to one 

electrode of the MEA and outputs from 11 electrode pads related to each of the inputs were 

recorded one at a time shown in Fig. 6.2c. The data collection was separately done as in only after 

finishing the input-output operation for one object for all 11 electrodes, the procedure for the next 

object was done and continued till data of all four objects became available. The pre-processing 

produces bits of DC like input biases of different voltages as seen in Fig. 6.2b right that are used 

to perturb the SWNT/Por-POM reservoir to fetch high dimensional spatio-temporal voltage 

information particular to a given object. These outputs acted as the different internal states of the 

SWNT/Por-POM reservoir represented as Xclass. 80% of the datasets were used for training and the 

remaining 20% were used for testing the device’s classification performance as displayed in Fig. 

6.2d. For training, the output weights 𝑊௢௨௧
௖௟௔௦௦ were optimized with the one-hot vector supervised 

target Yone-hot, having data length equal to the time length of the input data, using an offline ridge 

regression18 shown in Eq. (6.2). The targets for each of the objects are shown in Fig. 6.2d where 

the correctly classified object were labelled the vector value ‘1’, while the others were labelled ‘0’.  
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Fig. 6.2 Stepwise object binary classification with SWNT/Por-POM reservoir. (a) The HSR (left) with a 
schematic of the arm (middle) connected to the gripper via force-torque sensor gathers tactile data from 
the change in the gripper angle (θ) and grasping force applied to objects (right) like bus, block, dog, and 
hedgehog (HH) toys presented in a red box. (b) The sensory data obtained from each of the objects in are 
converted to voltage-time using LabVIEW by sampling at 5 bits/s (left) in the range [0, -5] V as depicted 
graphically to the right. (c) Time series inputs are separately inputted into the SWNT (black line)/Por-POM 
(green circles) reservoir with recurrent connections (red arrow). A total of 11 reservoir outputs, each of 
HH, Dog, Block, and Bus, are collected one by one over the entire input time frame, and 80% of them were 
trained, with the remaining 20% being tested for binary classification evaluation. d) One-hot vector 
encoding is used for binary classification. Each square box with the lines inside represents the supervised 
target signal for each of HH, dog, bus and block where the true predicted object is trained to vector value 
1 while the others are trained to vector value 0.  
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The ridge regression model was chosen because this kind of regularization is beneficial for fitting 

models where the independent variables are highly correlated. Since the target length over entire 

time series is either ‘0’ or ‘1’ so the value at each time step is the same and highly correlated. The 

model was encoded in Python with a ridge regularization co-efficient (λ) value of one multiplied 

to an identity matrix I. To test the SWNT/Por-POM reservoirs classification performance an 

inference was made on a test dataset consisting of the reservoir states of 𝑆௖௟௔௦௦
௜ (𝑡) collected from 

its related test input time series sequence. The supervised target was fitted by constructing the 

reservoir output Z(t) using a weighted linear combination of the optimized weights (Eq. (6.2)) by 

Eq. (6.3).  

 

                                𝑊௢௨௧ି௖௟௔௦௦ =  (𝑋௖௟௔௦௦
் 𝑋௖௟௔௦௦ +  𝜆𝐼)𝑋௖௟௔௦௦

் 𝑌௢௡௘ି௛௢௧                                                  (6.2) 

                                            𝑍(𝑡) =  ∑ 𝑊௢௨௧ି௖௟௔௦௦
௜ 𝑆௖௟௔௦௦

௜ (𝑡)ଵଵ
௜ୀଵ                                                                    (6.3) 

 

Figure 6.3 shows the inference data of binary object classification for each of the objects compiled 

into one plot. Each of HH (Fig. 6.3a), Dog (Fig. 6.3b), Block (Fig. 6.3c), and Bus (Fig. 6.3a) were 

rightly predicted in presence of another object giving a likelihood of vector target value ‘1’.  
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Fig. 6.3 RC task of supervised one-hot vector target binary object classification result on test data with 
SWNT/Por-POM reservoir. True predicted classification of (a) HH, (b) Dog, (c) Block, and (d) Bus with their 
respective color codes. The binary classification task for each pair of objects was performed separately 
and the results are concatenated into one plot for each of the objects. Initially a no separation region 
marked by the colored rectangular box is seen which eventually resulted in a successful classification 
where the true predicted object showed a likelihood of vector value ‘1’ with others being ‘0’.  

 

It is to be noted that in each of the cases the classification happens after a certain time-step before 

which it remains unclassified as marked by the colored rectangular box. This can be understood 

by the extent of information processing arising from the output responses presented in Fig. 6.4a. 

As discussed in Chapter 3, that for a reservoir to compute it is very much necessary that it operates 

at the ‘edge of chaos regime’. For any dynamical non-linear physical system such phenomena 

emerges as the 1/f maximization of information processing like the human brain.19–23 SWNT/Por-
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POM too shows a similar behavior in this context as evident from the logarithmic PSD plot of the 

temporal DC current dynamics (Chapter 3, Fig.). Here also, as we can see from Fig. 6.4a that 

Compared to ‘Region A’, the non-linear NDR like high dimensional fluctuations are more 

pronounced in ‘Region B’ which leads to a distinct increase in the scaling factor γ evident from 

the PSD plots of a certain time section in Fig. 6.4b-e. A contrasting change is observed between 

the two regions evident from the bar plot in Fig. 6.4f. Such characteristic behavior of both the 

regions are replicated over the entire time-step as also depicted in the plots of short-term Fourier 

transform (STFT) in Fig. 6.5. STFT basically gives a three-dimensional mapping of the PSD which 

shows the variation of the amplitude of frequency, represented by the color profile, as a function 

of time. Here also the graph is divided into two regions marked by double headed arrows above 

each plot of HH (Fig. 6.5a), dog (Fig. 6.5b), block (Fig. 6.5c) and bus (Fig. 6.5d). The orange 

arrow is the signature of ‘Region A’ in PSD plot where the amplitude gradient over all frequency 

and time range is almost constant and very low. On the other hand, the green arrow depicts the  

‘Region B’ in the PSD plot which not only shows an increase in the frequency amplitude along 

the time scale but also shows a fall in the gradient at higher frequencies suggestive of the 1/f γ 

scale-free behavior. Thus, as the transition from ‘Region A’ to ‘Region B’ takes place, more 

information exchange via the charge-discharge cascading effects happens which in turn enhances 

the object separability following their respective supervised targets. Thus the requirement of 

maximization of information to correctly optimize the weights via supervised learning to is highly 

evident from these observations in order to successfully achieve the binary classification task. It is 

noteworthy here that the performance of the in-materio RC device consisting of SWNT/Por-POM 

for classification, replicates the results of the previously algorithm-based echo state network (ESN) 

approach.13 Thus, the present analysis substantiates the fact that, low-dimensional material 
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platforms with their non-linear information processing capability holds the potential of emulating 

their software analogues for machine intelligence task performance.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4 Object output responses and the power spectral density (PSD) (a) The output response obtained 
from averaging all 11 outputs of the micro-electrode array for HH, Dog, Block, and Bus. A flat response of 
‘Region A’ in the yellow box was transformed to higher fluctuations, marked by green box ‘Region B’. The 
PSD plots of (b) HH, (c) Dog, (d) Block and (e) Bus obtained via FFT of  300-550 time step of ‘Region A’ 
(yellow line) and 2600-2850 time step of ‘Region B’ (green line) from plot (a). Each logarithmic PSD plot is 
fitted with the power law equation to obtain the scaling factor γ displayed at the bottom. (f) Comparison 
of γ of ‘Region A’ (orange bar) and ‘Region B’ (green bar) obtained from PSD for HH, Dog, Block and Bus. 
A clear increase in γ from ‘Region A’ to ‘Region B’ is observed for all objects indicating maximum 
information processing, a symbol of 1/fγ scale-free operation. 
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Fig. 6.5 Short-term Fourier transform (STFT) of object output responses obtained over the time step of 
output response in Fig. 6.4 for (a) HH, (b) Dog, (c) Block, and (d) Bus with the amplitude colour bar at the 
bottom. The orange double headed arrow represents the ‘Region A’ of PSD plot (Fig. 6.4). The blue 
amplitude gradient shows minimal frequency change of low information. The green double headed 
arrow represents that of ‘Region B’ of PSD (Fig. 6.4). The higher amplitude gradient in the frequencies 
over time shows maximization of information. The decreasing change in gradient along the higher 
frequency in the y-axis is the indication of the 1/fγ scaling behavior coincidental with the PSD.   
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6.4 Conclusion 
 
The paper showed the potential of SWNT/Por-POM as an in-materio reservoir for binary object 

classification task. Objects of soft like HH and dog, and hard like bus and block each of them can 

be categorized into their respective target vectors by following a simplied ridge regression training 

interfaced with Python software. The fruitful operation is a direct consequence of the materials 

high dimensional non-linear outputs arising from the charge transfer redox behavior of 

SWNT/Por-POM complex. Voltage readouts of NDR like fluctuations originating from a sub-

threshold charge-discharge phenomena allows exchange of maximum information network wide 

evident from the 1/f behavior of the logarithmic PSD plot. The performance replicates the ‘edge 

of chaos’ phenomena where the available information becomes desirable for such computational 

performance.  All these result thus suggest that brain-like dynamics and information processing 

can be realized in our SWNT/Por-POM device with large scalability just from wet transfer thin 

film deposition. Simplified fabrication method along with easy learning architecture provides for 

the inclusion of another low dimensional material in the family of in-materio RC. A unified 

structure of processing and learning unit like brain can hence emerge as an alternative ‘in-materio 

neural network architecture’ for the present day von Neumann ones leading to a paradigm shift in 

field of straightforward unconventional computing. 
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Chapter 7 

Future scope and Conclusion 
 

7.1 Future scope 
 
In the previous chapters we have seen that the in-materio RC performance of our device works 

better for any degree of non-linear task but has a degrading performance is constructing larger time 

step delays. In order to increase the MC, two key factors are important regarding construction of 

the reservoir, (i) adjusting the ratio of SWNT/Por-POM which can be balancing factor of linear-

nonlinear regime and (ii) to increase the number of output nodes in order to have more temporal 

information of the input signal. The MEA we have used majorly consists of lower number of output 

pads compared to atomic switch network systems. A possible way is to fabricate greater electrode 

pads, but this would require us to shift from cost-effective photolithography to e-beam lithography 

technique, which though has a high resolution but is also time-consuming. The most prominent 

way one can do is to use a time-delayed reservoir system with only one real node consisting of 

SWNT/Por-POM and other virtual nodes created by feed-backing the output signal to input again 

with a time step delay.1,2 Since the distribution of Por-POM is heterogeneous itself, so the point of 

choosing the best electrode pad out of many, to be used as the one output node, adds in an 

uncertainty to the entire system, as there will be a large variation in device to device performance. 

So, in this regard a better and prominent solution would be to change the surface dimensionality. 

Instead of creating a 2D-thin film, we can use a 3D cube coated with SWNT/Por-POM equivalent 

to a 3D brain structure as shown in Fig. 7.1a. The direct advantage is the availability of multiple 

surfaces throughout the volume, where each 2D surface can now act as a layer of interconnected 

dynamical system. Without the use of photolithography we can pin electrodes at different points 
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of t h e s urf a c e a n d c oll e ct t h e d y n a mi cs fr o m b ot h t h e o ut er a n d t h e i n n er s urf a c e t h er e b y gi vi n g 

us m or e hi g h di m e nsi o n al t e m p or al d y n a mi cs a b o ut t h e i n p ut. T his is r efl e ct e d i n t h e m e m or y 

c a p a cit y ( M C) pl ot Fi g. 7. 1 b- c, w h er e t h e 2 D d e vi c e s h o w e d a l o w M C ( a s s u g g est e d i n C h a pt er 

3 ), b ut t h e M C g ot e n h a n c e d f or 3 D t o a b o ut 9. 8. I n or d er t o s e e t his eff e ct o n i n- m at eri o R C t as k 

w e p erf or m e d t w o n o n-li n e ar a ut or e gr essi v e m o vi n g a v er a g e ( N A R M A) ti m e s eri es pr e di cti o n of 

N A R M A- 2; E q. ( 7. 1), a n d N A R M A- 1 0; E q. ( 7. 2), w h er e t h e n u m b er d e n ot es k-st e p ti m e l a g i n 

t h e f u n cti o ns t o b e r e c o nstr u ct e d b y t h e r e s er v oir o ut p uts. T h e t as ks w er e p erf or m e d wit h t h e s a m e 

m e as ur e m e nt s et- u p a n d R C l e ar ni n g pri n ci pl e dis c uss e d i n C h a pt er 3  a n d t h e p erf or m a n c e of b ot h 

t h e d e vi c es w as a n al y z e d b y t h e t e st a c c ur a c y. A cl e ar i n cr e as e i n b ot h N A R M A- 2 a n d N A M R A- 

1 0 c a n b e o bs er v e d fr o m Fi g. 7. 1 d- e f or t h e 3 D s a m pl e, i n di c ati n g t h at t h e v ol u m etri c d e nsit y 

i n cr e as e i n t h e n et w or k t o p ol o g y c a n pl a y a r ol e f or b ett er p erf or m a n c e. Alt h o u g h t h e r es ults ar e 

pr o mi si n g b ut f a ct ors s u c h as S W N T/ P or- P O M w ei g ht r ati o, si z e of t h e t e m pl at e str u ct ur e, n u m b er 

of o ut p ut el e ctr o d es a n d t h e n et w or k d e nsit y distri b uti o n n e e d t o b e st u di e d f urt h er a n d o pti mi z e d 

f or t h e d e vi c es i n or d er t o h a v e a c o m p ar ati v e i nf er e n c e f or b ot h t h e d e vi c es 

                  y( k + 1) = α y( k) + β y( k) y( k- 1) + γ u( k)3  + δ [ α = 0. 4, β = 0. 4, γ = 0. 6 a n d δ = 0. 1]               ( 7. 1)            

                               y( k + 1) = α y( k) + β y( k) (  y( k -i)) + γ u( k- 9) u( k) + δ                                            ( 7. 2) 

                                            [ α = 0. 3, β = 0. 0 4, γ = 1. 5 a n d δ = 0. 1]                                
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Fig. 7.1 An idea of preparing a 3D reservoir with SWNTT/Por-POM. (a) Schematic of the synthesis 
procedure using a porous sponge allowing SWNT/Por-POM to be seeped in and cover the entire surface 
as seen in the inset. (b) Low MC of 2D device. (c) High MC of 3D device. (d) Top shows the NARMA-2 for 
2D device while the bottom for the 3D device. (e) Top shows the NARMA-10 for 2D device while the 
bottom for the 3D device. In both the NARMA task, 3D device performed better. 
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7.2 Conclusion 
 
The problem statement of generating an in-materio RC device with random network of 

SWNT/Por-POM molecule was successfully demonstrated in this research work. A simple 

sonication procedure was adopted for preparing the SWNT functionalized Por-POM as confirmed 

from the various characterization methods. The UV-Vis spectroscopic studies revealed that the 

characteristic peaks of porphyrin Soret band at 413 nm, W-O charge transfer band at 266 nm and 

other high wavelength Q bands along with E11 and E22 semiconducting bands of SWNT were all 

present in the SWNT/Por-POM complex confirming its successful synthesis. The AFM and FE-

SEM showed that the surface morphology contained variable height thickness of Por-POM in the 

intertwined network of SWNT, thereby giving a brain-like heterogeneous distribution of random 

network structure driven by sonication and wet transfer thin film deposition process. The 

rudimentary RC task of a sine wave approximation with non-linear ν and time-delay memory τ 

parameters was performed to reflect on the reservoir dynamics present in the system. The results 

showed a consistent performance of target construction for both low and high ν in the regime of 

smaller τ, but failed drastically for greater values τ. To understand this trade-off the memory 

capacity (MC) and the I-V characteristics was performed. The MC followed a gradual decay over 

increasing time step delays with a value of 4.2 confirming the presence of fading memory a 

behavior related to the echo state property. On the other hand the I-V showed clear non-monotonic 

current increase in the entire range of negative to positive bias with characteristic NDR peaks. 

These observations validate the above mentioned point of the memory-nonlinearity trade-off in 

the sense that because of low MC the device could not reconstruct the past information when 

delayed by higher values τ, but on the contrary its high non-linear dynamics aided in the accurate 

task performance for any order of non-linearity. Such valuable computation can be thought to arise 
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from the intrinsic spatio-temporal dynamics of high dimensional NDR like fluctuations. The I-t 

along with its power spectral density disclosed that these fluctuations are a source of 1/fγ scale-free 

noise which happens to be an important parameter for maximized information processing at the 

‘edge of chaos’ brain like computation. Thus based on the above results, we designed three 

benchmark RC tasks that harnessed the non-linear dynamics of the device rather than the memory 

property and included waveform generation, Boolean logic function optimization and tactile 

sensory based object classification to test the in-materio RC performance of our device. The 

waveform generation was an extension of the sine wave approximation but without the term and 

constituted the Fourier transformation of the sine waves to various other forms of cosine, triangular, 

square and sawtooth waves of increasing non-linear complexity. The MEA architecture was 

adopted to carry out these tasks as it enabled us to exploit the high dimensional voltage readouts 

from multiple electrode pads which acted as the nodes. A simplified multiple linear regression was 

adopted to optimize each output weights and target was constructed via the weighted linear 

combinations of these outputs. The training and testing was done for different epoch sections of 

the output sine waves and the test performance was evaluated via the NMSE/accuracy. Initially, 

we studied the input-output relationship via Lissajous plots (LP) to understand the dynamics 

emerging from the device. Multiple trajectories of LP were obtained from propotional amplitude 

attenuated non-linear curves to phase delayed ones, emphasizing the importance of heterogeneity 

in the network structure. Different nodal points actually acted as different electrical circuits of 

varying resistive-capacitive junctions within the random network leading to such versatile 

computational regimes of overall. Similar observation was concluded in the time-domain space as 

well, where the FFT plots displayed multiple higher harmonic generations of odd and even 

overtones, initially absent in the input signal. The rich dimensionality in both the spatio-temporal 
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space arises because of the charge transfer interactions at the junctions of SWNT and Por-POM 

upon perturbing it with external stimuli. Such dynamics is important as Fourier series demands the 

linear combination of infinite sine waves of varying amplitudes, phases and frequency overtones. 

Because of this, the device was actually able to construct all the waveforms with a greater accuracy 

except for the sawtooth which lagged relatively. The best performance was obtained for triangular 

and cosine with 99% accuracy as these mostly resemble the sine wave shape and requires less non-

linearity and combination of frequency overtones with/without phase delayed outputs. The second 

best performance was obtained square with 86% accuracy followed by sawtooth with 76%. 

Although both these waveforms require the same degree of non-linearity higher that the triangular 

and cosine ones, but sawtooth requires additional even overtones with the odd ones compared to 

square which requires only the latter. The slight performance degradation can thus be attributed to 

the lower intensity of the even harmonics that were generated from our device which might have 

hindered the construction of sawtooth. Another important point that surfaced up was the fault 

tolerant performance. The same tasks were performed for lower number of outputs where the 

accuracy gradually decreased from training eleven to seven to three outputs. The most prominent 

drop was observed for the three output case, with the seven performing equally well as the eleven. 

Two important things can be inferred. (i) That the lack of high dimensional outputs reduces the 

linear combinations thereby affecting the accuracy, so for the device to perform better it is indeed 

important to have more non-linear high-dimensionality which is an important parameter for any 

reservoir device. (ii) The slow decrease of the performance, reflects on the importance of the non-

homogeneous random recurrent network which consists of multiple computational regimes, as a 

result of which even in the absence of few outputs the device still performed without full failure 

manifesting in the fault tolerant property. The successful in-matrio RC performance lead us to test 
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the device for another challenging task of Boolean function optimization where the reservoir 

dynamics was now exploited with two simultaneous inputs of binary ‘0’ and ‘1’.  Reconstruction 

of all six functions of OR, AND, NOR, NAND, XOR and XNOR were successfully obtained with 

an accuracy above 95% by applying the same learning optimization techniques as the waveform 

generation. The device could undergo multitasking as in it was able to learn all the function 

optimizations from the same unit without any interference reflected from the variable weight 

distributions of output electrodes for each of the Boolean function. It puts forth the point that 

without forgetting the SWNT/Por-POM’s readout dynamics can be trained efficiently for separate 

tasks because of the ease of training only the output layer without disturbing the reservoir layer 

which mostly happens for recurrent neural networks because of back propagation technique. The 

device performance was robust against multiple test datasets because output for each of the 

electrodes for the entire test datasets collected from the same input showed a high correlation. This 

is possible only because of the echo state property of fading memory. Because our device showed 

very less MC, so each time when the present input was fed in after some time for generating outputs 

of different datasets, the states of the reservoir states gathered from the previous inputs faded away 

hence producing same the readout states every time. Such robust performance was also obtained 

for different time length scales indicating that the internal dynamics was solely input driven and is 

retained over all time-scale hence maintaining the computational performance. The 

implementation of Boolean logic happens to be a consequence of the NDR like non-linearity which 

acted as machine intelligent index (MII). The presence of equal number both high and low 

conductance points at increasing bias produced a high MII closer to 1  indicating that the device 

holds the property of carrying out both additive and subtractive operations required for Boolean 

algebraic functions of XOR and XNOR.  Owing to two function optimization tasks we lastly tested 
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the device for a classification performance by utilizing the tactile sensory information of different 

objects when grasped by the Toyota HSR. A binary one-hot vector classification was implemented 

using the same learning method as the previous two. The device was able to classify all objects of 

differing hardness into their respective classes by following their one0hot encoded targets. It was 

shown that this task performance got enhanced over time as a function of the maximized 

information. Initially a no separation region was observed because of lack of information 

processing reflected from the low γ value of 1/fγ power law. The classification became prominent 

and separated into ‘1’ and ‘0’ target vectors only when the power law got intense with higher γ 

value. Overall, the SWNT/Por-POM showed its in-materio RC performance by utilizing all its 

intrinsic dynamics. Each of the parameters of non-linearity, NDR effect and 1/ power law all were 

exploited for different task. The presence of inhomogeneous random network structure did play a 

crucial role in generating high dimensional patters and produce fault tolerant operations. The echo 

state property was also useful for the device to show the robustness in computational performance. 

Lastly, we also propose a plan to realize a 3D SNWT/Por-POM network like the human brain 

which can prove beneficial for higher memory tasks also apart from the non-linear ones. In 

summary, the field of physical RC is vast and materials are being constantly explored for variable 

task performance. Experimenting the intrinsic dynamical properties specific to each material can 

thus pave way for deeper understandings in the realm of in-materio RC. Here, we extrapolated the 

idea that apart from the general use of SNWT/polyoxometalates in the field of catalysis and 

supercapacitors, their redox mediated charge transfer property charge if electrically exploited via 

voltage or current readouts can pave way for large scale non-silicon based unconventional in-

materio RC in near future.   
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