
”You cannot learn to fly by
flying. First you must learn
to walk, to run, to climb, to
dance.”

— Nietzsche

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2008

Hugo Rafael
de Brito Picado

Desenvolvimento de Comportamentos para um
Robô Humanóide Simulado
Development of Behaviors for a Simulated
Humanoid Robot

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2008

Hugo Rafael
de Brito Picado

Desenvolvimento de Comportamentos para um
Robô Humanóide Simulado
Development of Behaviors for a Simulated
Humanoid Robot

Thesis presented to University of Aveiro in order to achieve the necessary
prerequisites to obtain the Master degree in Engineering of Computers and
Telematics, under the scientific supervision of Nuno Lau (PhD, Assistant
Professor at University of Aveiro and researcher at IEETA) and Lúıs Paulo
Reis (PhD, Assistant Professor at the University of Porto and researcher
and member of the directive board of LIACC)

o júri / the jury

presidente Doutor António Rui de Oliveira e Silva Borges
Professor Associado da Universidade de Aveiro

vogais Doutor Paulo José Cerqueira Gomes da Costa
Professor Auxiliar da Universidade do Porto

Doutor José Nuno Panelas Nunes Lau
Professor Auxiliar da Universidade de Aveiro

Doutor Lúıs Paulo Gonçalves dos Reis
Professor Auxiliar da Universidade do Porto

agradecimentos Esta é uma parte dif́ıcil de escrever porque eu não me quero esquecer
de ninguém. Agradeço em particular ao meu orientador, Nuno Lau, pela
ajuda, amizade, disponibilidade, conhecimento e motivação em momentos
cŕıticos. Agradeço também ao meu co-orientador, Lúıs Paulo Reis, pelo
conhecimento transmitido e motivação durante este projecto. Um agradec-
imento especial pela atenção daqueles que contribúıram para o desenvolvi-
mento desta dissertação, em particular para os professores Filipe Silva e Ana
Tomé, e também para os meus grandes amigos João Certo e Marcos Gestal.
Um agradecimento especial à minha faḿılia, especialmente aos meus pais,
Miguel Picado e Augusta Correia, que sofreram durante estes cinco anos
para me darem amor e a oportunidade de atingir esta fase da minha vida.
Agradeço também ao Jumbo de Aveiro, pela amizade dos meus colegas de
trabalho e chefes durante os últimos cinco anos e também por patrocinarem
a minha participação no RoboCup 2008 (Suzhou, China). Gostaria também
de agradecer aos professores Artur Pereira e António Rui Borges por me
motivarem durante os últimos anos. Finalmente, mas não menos impor-
tante, um agradecimento especial ao meu melhor amigo, David Campos, e
também ao Luis Ribeiro e ao Pedro Alves, pela amizade e motivação mesmo
quando eu dizia piadas secas (demasiadas horas acordado). Para quem não
está mencionado neste texto: não se preocupem, vocês estão mencionados
no meu coração, e isso é o mais importante.

acknowledgements This is a difficult part to write because I do not want to forget anyone. I
particularly thank my supervisor, Nuno Lau, for the help, friendship, avail-
ability, knowledge and motivation in critical moments. I also thank to my
co-supervisor, Lúıs Paulo Reis, for the transmitted knowledge and motiva-
tion during this project. A special thank for the attention of those who
contributed to the development of this thesis, in particular to the profes-
sors Filipe Silva and Ana Tomé, and also to my great friends João Certo
and Mascos Gestal. A special thank to my family, specially to my parents,
Miguel Picado and Augusta Correia, who suffer during these five years to
give me love and the opportunity of reaching this phase of my life. I also
thank to Jumbo of Aveiro for the friendship of my partners and supervi-
sors during the last five years and also for patrocinating my participation
in RoboCup 2008 (Suzhou, China). I would also like to thank to the pro-
fessors Artur Pereira and António Rui Borges for motivating me during the
last years. Finally, but not less important, a special thank to my best friend,
David Campos, and also to Luis Ribeiro and Pedro Alves, for the friendship
and motivation even when I said dry jokes (too many hours awake). For
those who are not mentioned in this text: don’t worry, you are mentioned
in my heart, and that’s the more important.

palavras-chave Locomoção b́ıpede, RoboCup, FC Portugal, Humanóide, Optimização

resumo Controlar um robô b́ıpede com vários graus de liberdade é um desafio que
recebe a atenção de vários investigadores nas áreas da biologia, f́ısica,
electrotecnia, ciências de computadores e mecânica. Para que um hu-
manóide possa agir em ambientes complexos, são necessários comporta-
mentos rápidos, estáveis e adaptáveis. Esta dissertação está centrada no
desenvolvimento de comportamentos robustos para um robô humanóide
simulado, no contexto das competições de futebol robótico simulado 3D
do RoboCup, para a equipa FCPortugal3D. Desenvolver tais comportamen-
tos exige o desenvolvimento de métodos de planeamento de trajectórias de
juntas e controlo de baixo ńıvel. Controladores PID foram implementados
para o controlo de baixo ńıvel. Para o planeamento de trajectórias, quatro
métodos foram estudados. O primeiro método apresentado foi implemen-
tado antes desta dissertação e consiste numa sequência de funções degrau
que definem o ângulo desejado para cada junta durante o movimento. Um
novo método baseado na interpolação de um seno foi desenvolvido e con-
siste em gerar uma trajectória sinusoidal durante um determinado tempo,
o que resulta em transições suaves entre o ângulo efectivo e o ângulo de-
sejado para cada junta. Um outro método que foi desenvolvido, baseado
em séries parciais de Fourier, gera um padrão ćıclico para cada junta, po-
dendo ter múltiplas frequências. Com base no trabalho desenvolvido por
Sven Behnke, um CPG para locomoção omnidireccional foi estudado em
detalhe e implementado. Uma linguagem de definição de comportamentos
é também parte deste estudo e tem como objectivo simplificar a definição
de comportamentos utilizando os vários métodos propostos. Integrando o
controlo de baixo ńıvel e os métodos de planeamento de trajectórias, vários
comportamentos foram criados para permitir a uma versão simulada do hu-
manóide NAO andar em diferentes direcções, rodar, chutar a bola, apanhar
a bola (guarda-redes) e levantar do chão. Adicionalmente, a optimização
e geração automática de comportamentos foi também estudada, utilizado
algoritmos de optimização como o Hill Climbing e Algoritmos Genéticos.
No final, os resultados são comparados com as equipas de simulação 3D
que reflectem o estado da arte. Os resultados obtidos são bons e foram ca-
pazes de ultrapassar uma das três melhores equipas simuladas do RoboCup
em diversos aspectos como a velocidade a andar, a velocidade de rotação,
a distância da bola depois de chutada, o tempo para apanhar a bola e o
tempo para levantar do chão.

keywords Biped locomotion, RoboCup, FC Portugal, Humanoid, Optimization

abstract Controlling a biped robot with several degrees of freedom is a challenging
task that takes the attention of several researchers in the fields of biology,
physics, electronics, computer science and mechanics. For a humanoid robot
to perform in complex environments, fast, stable and adaptable behaviors
are required. This thesis is concerned with the development of robust be-
haviors for a simulated humanoid robot, in the scope of the RoboCup 3D
Simulated Soccer Competitions, for FCPortugal3D team. Developing such
robust behaviors requires the development of methods for joint trajectory
planning and low-level control. PID control were implemented to achieve
low-level joint control. For trajectory planning, four methods were studied.
The first presented method was implemented before this thesis and consists
of a sequence of step functions that define the target angle of each joint
during the movement. A new method based on the interpolation of a sine
function was developed and consists of generating a sinusoidal shape during
some amount of time, leading to smooth transitions between the current
angle and the target angle of each joint. Another method developed, based
on partial Fourier Series, generates a multi-frequency cyclic pattern for each
joint. This method is very flexible and allows to completely control the an-
gular positions and velocities of the joints. Based on the work of developed
by Sven Behnke, a CPG for omnidirectional locomotion was studied in de-
tail and implemented. A behavior definition language is also part of this
study and aims at simplifying the definition of behaviors using the several
proposed methods. By integrating the low-level control and the trajectory
planning methods, several behaviors were created to allow a simulated ver-
sion of the humanoid NAO to walk in different directions, turn, kick the ball,
catch the ball (goal keeper) and get up from the ground. Furthermore, the
automatic generation of gaits, through the use of optimization algorithms
such as hill climbing and genetic algorithms, was also studied and tested.
In the end, the results are compared with the state of the art teams of the
RoboCup 3D simulation league. The achieved results are good and were
able to overcome one of the state of the art simulated teams of RoboCup
in several aspects such as walking velocity, turning velocity, distance of the
ball when kicked, time to catch the ball and the time to get up from the
ground.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 RoboCup . 2
1.4 Thesis outline . 4

2 Biped locomotion 5
2.1 Biped locomotion as a scientific challenge . 5
2.2 Approaches to biped locomotion . 6

2.2.1 Trajectory based methods . 6
2.2.2 Heuristic based methods . 8
2.2.3 Passive dynamic walking . 9
2.2.4 Central pattern generators . 9

2.3 Sensory feedback . 10
2.3.1 Gyroscope . 10
2.3.2 Force/torque sensors . 11

2.4 Kinematics . 11
2.4.1 Forward kinematics . 11
2.4.2 Inverse kinematics . 12

2.5 Humanoid robots . 12
2.5.1 Honda ASIMO . 12
2.5.2 Sony QRIO . 13
2.5.3 Fujitsu HOAP-2 . 13
2.5.4 Aldebaran NAO . 14
2.5.5 NimbRo robots . 15

2.6 RoboCup simulated humanoid soccer teams 15
2.6.1 Little Green BATS . 16
2.6.2 SEU-RedSun . 16
2.6.3 Wright Eagle 3D . 17

2.7 Summary . 18

3 Optimization and Machine Learning 19
3.1 Optimization . 19

3.1.1 Hill climbing . 20
3.1.2 Simulated annealing . 20
3.1.3 Tabu search . 21

i

3.1.4 Genetic algorithms . 22
3.2 Machine learning . 24
3.3 Summary . 25

4 Simulation Environment 27
4.1 Advantages of the simulation . 27
4.2 Simspark . 28

4.2.1 Server . 28
4.2.2 Monitor . 29

4.3 The simulated agent . 30
4.3.1 HOPE-1 . 30
4.3.2 Simulated NAO . 32

4.4 Alternatives . 34
4.5 Summary . 34

5 Low-level control 35
5.1 Open-loop control . 35

5.1.1 Advantages . 36
5.1.2 Drawbacks . 36

5.2 Closed-loop control . 36
5.2.1 Advantages . 37
5.2.2 Drawbacks . 38
5.2.3 PID control . 38

5.3 Summary . 40

6 Trajectory Planning 41
6.1 Step-based method . 42

6.1.1 Joint trajectory generation . 42
6.1.2 Implementation . 43
6.1.3 Results . 44
6.1.4 Advantages . 45
6.1.5 Drawbacks . 45

6.2 Sine interpolation . 45
6.2.1 Joint trajectory generation . 46
6.2.2 Implementation . 47
6.2.3 Results . 48
6.2.4 Advantages . 48
6.2.5 Drawbacks . 48

6.3 Partial Fourier series . 49
6.3.1 Joint trajectory generation . 49
6.3.2 Implementation . 50
6.3.3 Results . 50
6.3.4 Advantages . 51
6.3.5 Drawbacks . 51

6.4 Omnidirectional walking CPG . 51
6.4.1 Joint trajectory generation . 51
6.4.2 Implementation . 56

ii

6.4.3 Results . 56
6.4.4 Advantages . 57
6.4.5 Drawbacks . 57

6.5 Summary . 57

7 Developed behaviors 59
7.1 Four-phase forward walking . 60

7.1.1 Reducing the parameter space . 61
7.1.2 Manual definition of parameters . 61
7.1.3 Optimization . 65

7.2 Omnidirectional walking . 72
7.2.1 Forward walking mode . 73
7.2.2 Side walking mode . 76
7.2.3 Turning mode . 77

7.3 Forward walking based on PFS . 80
7.3.1 Reducing the parameter space . 80
7.3.2 Defining the oscillators . 81
7.3.3 Automatic generation of parameters 81

7.4 Side walking . 87
7.4.1 Defining the oscillators . 87
7.4.2 Manual definition of parameters . 88

7.5 Turn around the spot . 92
7.5.1 Defining the oscillators . 93
7.5.2 Manual definition of parameters . 93

7.6 Kick the ball . 96
7.7 Catch the ball . 100
7.8 Get up from the ground . 102
7.9 Analysis of results . 108
7.10 Summary . 111

8 Conclusion and future work 113
8.1 Conclusion . 113
8.2 Future Work . 114

A Simspark installation guide 115

B The AgentBody class 117

C Motion description language 123
C.1 Step-based method scripting language . 123
C.2 Sine interpolation MDL . 125
C.3 Partial Fourier series MDL . 129

D Optimization process 131

Bibliography 135

iii

iv

List of Figures

2.1 Typical cases for the support polygon for forward walking 6
2.2 Interpretion of ZMP by Arakawa e Fukuda 7
2.3 Passive dynamic walking model . 9
2.4 Fujitsu HOAP-2 CPG for walking . 10
2.5 Honda ASIMO. 12
2.6 Sony QRIO. 13
2.7 Fujitsu HOAP-2. 14
2.8 Aldebaran NAO. 14
2.9 NimbRo: The humanoid robot Paul . 15
2.10 SEU-RedSun walking engine architecture . 17
2.11 Wright Eagle 2008: Walk states transfer . 18

3.1 Reinforcement Learning Model. 24

4.1 Simspark server architecture. 29
4.2 Simspark monitor screenshot. 29
4.3 RoboCup simulated HOPE-1 humanoid. 30
4.4 HOPE-1 joint configuration. 31
4.5 RoboCup simulated NAO humanoid. 32
4.6 Simulated NAO joint configuration . 33

5.1 Open-loop control . 35
5.2 Closed-loop control. 36
5.3 PID closed-loop control . 38
5.4 Example: Joint control using PID controllers 39

6.1 GaitGenerator class . 41
6.2 Behavior life-cycle. 42
6.3 Step response . 43
6.4 Class diagram for step based behaviors. 43
6.5 Evolution of a Step-based trajectory . 45
6.6 Possible shapes with the Sine Interpolation method. 46
6.7 Class diagram for slot based behaviors. 47
6.8 Evolution of a Sine Interpolation trajectory 48
6.9 Examples of trajectories obtained with the PFS method. 49
6.10 Class diagram for fourier based behaviors. 50
6.11 Evolution of a PFS trajectory . 50
6.12 Swing trajectory . 53

v

6.13 Representation of the leg extension factor . 54
6.14 Class diagram for omnidirectional walk generator. 56

7.1 Developed behaviors: Humanoid structure and global referential 59
7.2 Four-phase walking cycle. 60
7.3 Four-phase walking structure . 60
7.4 Four-phase walking: Reduced parameter space. 61
7.5 Four-phase walking: Joint trajectories . 62
7.6 Four-phase walking: Evolution of CoM over time. 63
7.7 Four-phase walking: Evolution of CoM in the XY plane. 63
7.8 Four-phase walking: Average velocity over time. 64
7.9 Four-phase walking: Torso average oscillation over time. 64
7.10 Four-phase walking: Screenshot. 65
7.11 Distance to the ball as a possible fitness measure. 65
7.12 Four-phase walking with HC: Evolution of the fitness 67
7.13 Four-phase walking with HC: Evolution of CoM in the XY plane. 67
7.14 Four-phase walking with HC: Average velocity over time. 68
7.15 Four-phase walking with HC: Torso average oscillation over time. 68
7.16 Four-phase walking with GA: Evolution of the fitness. 69
7.17 Four-phase walking with GA: Evolution of CoM in the XY plane. 70
7.18 Four-phase walking with GA: Average velocity over time. 71
7.19 Four-phase walking with GA: Torso average oscillation over time 71
7.20 ODW Forward Walking: Joint trajectories . 73
7.21 ODW Forward Walking: Evolution of CoM in the XY plane 74
7.22 ODW Forward Walking: Average velocity over time 74
7.23 ODW Forward Walking: Torso average oscillation over time 74
7.24 Corrected ODW Forward Walking: Hip trajectory 75
7.25 Corrected ODW Forward Walking: Evolution of CoM in the XY plane 75
7.26 ODW Side Walking: Joint trajectories . 76
7.27 ODW Side Walking: Evolution of CoM in the XY plane 76
7.28 ODW Side Walking: Average velocity over time 77
7.29 ODW Side Walking: Torso average oscillation over time 77
7.30 ODW Turning: Joint trajectories . 78
7.31 ODW Turning: Evolution of CoM in the XY plane 78
7.32 ODW Turning: Orientation of the body over time 79
7.33 ODW Turning: Torso average oscillation over time 79
7.34 Forward Walking based on PFS . 80
7.35 Forward Walking based on PFS: Evolution of the fitness. 83
7.36 Forward Walking based on PFS: Joint trajectories 84
7.37 Forward Walking based on PFS: CoM trajectory over time 85
7.38 Forward Walking based on PFS: The CoM and the feet in the XY plane . . . 85
7.39 Forward Walking based on PFS: Average velocity over time 85
7.40 Forward Walking based on PFS: Torso average oscillation over time 86
7.41 Forward Walking based on PFS: Screenshot 86
7.42 Side walking . 87
7.43 Side walking: Joint trajectories . 89
7.44 Side walking: Evolution of the CoM over time 90

vi

7.45 Side walking: The CoM and the feet in the XY plane 90
7.46 Side walking: Average velocity over time . 90
7.47 Side walking: Torso average oscillation over time 91
7.48 Side walking: Screenshot . 91
7.49 Turn around the spot . 92
7.50 Similarities between the side walk and the turn motion 92
7.51 Turn around the spot: Joint trajectories . 94
7.52 Turn around the spot: CoM and orientation 94
7.53 Turn around the spot: The CoM and the feet in the XY plane 95
7.54 Turn around the spot: NAO performing a complete turn 95
7.55 Kick the ball . 96
7.56 Kick the ball: Joint trajectories . 97
7.57 Kick the ball: The CoM and the feet in the XY plane 97
7.58 Kick the ball: Position of the ball over time 98
7.59 Kick the ball: Torso average oscillation over time 98
7.60 Kick the ball: Screenshot . 98
7.61 Super Kick: Position of the ball over time . 99
7.62 Super Kick: Torso average oscillation over time 99
7.63 Catch the ball . 100
7.64 Catch the ball: Joint trajectories . 100
7.65 Catch the ball: Evolution of CoM over time 101
7.66 Catch the ball: Screenshot . 101
7.67 Normal to the field with respect to the coordinate system of the head 102
7.68 Get up after falling forward: Joint trajectories 103
7.69 Get up after falling forward: Evolution of the CoM over time 104
7.70 Get up after falling forward: Torso average oscillation over time 104
7.71 Get up after falling forward: Screenshot . 105
7.72 Get up after falling backwards: Joint trajectories 106
7.73 Get up after falling backwards: Evolution of the CoM over time. 107
7.74 Get up after falling backwards: Torso average oscillation over time. 107
7.75 Get up after falling backwards: Screenshot . 108

B.1 The BodyObject class . 117

D.1 Optimization process . 132
D.2 The Evaluator class . 133

vii

viii

List of Tables

2.1 Walking gait phases of Wright Eagle 2008 team 17

4.1 HOPE-1 joint configuration . 31
4.2 Simulated NAO joint configuration . 33

6.1 Description of the the MoveJointsSeq and MoveJoints classes. 44
6.2 Description of the classes SlotBasedBehavior, Slot and Move 47
6.3 Description of the classes FourierBasedBehavior, Fourier and Sine. 50
6.4 Description of the class OmniDirectionalWalk. 56

7.1 Four-phase walking: Values for the manually defined parameters. 61
7.2 Four-phase walking: Definition domain of the parameters 66
7.3 Four-phase walking: HC settings. 66
7.4 Four-phase walking with HC: Values for the parameters. 67
7.5 Four-phase walking: GA settings. 69
7.6 Four-phase walking with GA: Values for the parameters 70
7.7 Omnidirectional Walking CPG control variables 72
7.8 Omnidirectional Walking CPG: Values for the control variables 72
7.9 Forward Walking based on PFS: Range for the parameters 82
7.10 Forward Walking based on PFS: Genetic Algorithm settings 82
7.11 Forward Walking based on PFS: Values for the parameters 83
7.12 Side walking: Values for the manually defined parameters 88
7.13 Turn around the spot: Values for the manually defined parameters 93
7.14 Average linear velocity for the different forward walking behaviors 108
7.15 Average linear velocity for the different side walking behaviors 109
7.16 Average angular velocity for the different turning behaviors 109
7.17 Distances achieved by the ball when kicked 109
7.18 Times for catching and getting up . 110
7.19 Comparing the results with the other teams 110

ix

x

List of Acronyms

API Application Programming Interface

CoM Center of Mass
CoP Center of Pressure
CPG Central Pattern Generator

D-H Denavit-Hartenberg
DOF Degree of Freedom

FRP Force Resistance Perceptor
FSM Finite State Machine

GA Genetic Algorithm
GADS Genetic Algorithm and Direct Search Matlab toolbox
GAlib C++ Genetic Algorithm library
GCoM Ground projection of the Center of Mass

HC Hill Climbing

MDL Motion Description Language
MSRS Microsoft Robotics Studio

ODE Open Dynamics Engine
ODW Omnidirectional Walking

PD Proportional-Derivative
PDW Passive Dynamic Walking
PFS Partial Fourier Series
PI Proportional-Integral
PID Proportional-Integral-Derivative
P Proportional

SA Simulated Annealing
SPADES System for Parallel Agent Discrete Event Simulation

TS Tabu Search

xi

VMC Virtual Model Control

XML eXtended Markup Language

ZMP Zero Moment Point

xii

Chapter 1

Introduction

This thesis focuses on the development of behaviors for a simulated humanoid robot.
Although the work of this thesis has been applied on the RoboCup Humanoid Simulation
league, it is not at all restricted to this environment and may be applied to other simulation
environments as well as to real robots. However, the transfer from simulation to reality is
not always satisfactory [1]. So, efforts are needed to produce accurate simulated models and
reliable behaviors.

1.1 Motivation

FC Portugal1 exists since 2000 and dedicates its research to the development of coor-
dination methodologies applied to the RoboCup Simulation League [2, 3]. In this context,
the team won the world championship in 2000 (Melbourne), the European championship in
2000 (Amsterdam) and 2001 (Paderborn) in the 2D simulation league, where the agents are
circles that play in a two-dimensional plane. In the 3D simulation league, where the agents
are spheres playing in a three-dimensional field, FC Portugal won the world championship in
2006 (Bremen) and the European championships in 2006 (Eindhoven) and 2007 (Hannover).
The simulation league, recently (2007) initiated a new 3D soccer simulation league based on
humanoid robots and the team is also concerned in researching the necessary techniques in
order to make humanoid robots play soccer [2].

Although cooperation and coordination methodologies have been the great challenge of
RoboCup simulation leagues for years, the introduction of a simulated humanoid platform
opens the doors to a new kind of research, which is particularly concerned with the study of
bipedal locomotion techniques. This area includes topics in the area of physics and biology
that are mainly focused on maintaining a biped stable, performing some gait and avoiding
falling down. This study must drive to the development of stable biped behaviors such as
walk, turn, get up and kick. The result of this kind of research may be extended to other
domains, such as the use on real humanoid robots, which may be able to perform social
tasks such as helping a blind to cross a street or elderly people to perform tasks that became
impossible to do alone. The robotic simulated environments are very popular since they
allow the developers to make arbitrary or complex tests in the simulator without using the
real robot thus avoiding expensive material to get damaged [1].

1http://www.ieeta.pt/robocup

1

CHAPTER 1. INTRODUCTION

1.2 Objectives

The aim of this thesis is to tackle the problem of biped humanoid robot locomotion and
control. Humanoids have numerous degrees of freedom2 requiring complex control in order to
achieve stable biped locomotion. The main goal is to develop behaviors for the FC Portugal
simulated humanoid team. The specific goals of this thesis include:

• Study of different bipedal locomotion techniques;

• Development of low-level joint control and trajectory planning methods;

• Development of a motion definition language;

• Application of optimization algorithms for generating efficient behaviors;

• Development of different behaviors using the implemented methods.

These behaviors should be developed and tested in the scope of the RoboCup 3D simula-
tion league.

1.3 RoboCup

RoboCup [4] is an international joint project whose objective is to promote research and
education in Artificial Intelligence, Robotics and related fields, by providing a standard prob-
lem where a wide range of technologies can be integrated and examined. Presently, RoboCup
includes several leagues:

• RoboCup Soccer;

– Simulation League (2D, Coach, 3D and Mixed Reality);

– Small Size League (SSL);

– Middle Size League (MDL);

– Standard Platform League (SPL);

– Humanoid League.

• RoboCup Rescue;

– Simulation;

– Real robots;

• RoboCup Junior;

– Dance;

– Soccer;

– Rescue;

– Demonstration.

• RoboCup @Home.
2Degree of Freedom (DOF): Each independent direction in which the joint can perform a movement.

2

Hugo Rafael de Brito Picado

RoboCup provides an integrated research task which covers the main areas of robotics
and artificial intelligence. These include design principles of autonomous agents, multi-agent
systems collaboration, strategy acquisition, real-time reasoning, reactive behavior, real-time
sensor fusion, machine learning, computer vision, motor control and intelligent robot control.
Every year the RoboCup Federation organizes events open to the general public, where dif-
ferent solutions to that problem are compared. The long-term goal of the RoboCup is stated
as follows:

”By 2050, a team of fully autonomous humanoid robot soccer players shall win
a soccer game, complying with the official FIFA3 rules, against the winner of the
most recent World Cup of human soccer.”

Although it is a great challenge, soccer is not the only application domain of the RoboCup
initiative. The Rescue League [5] consists of an environment representing a city after a big
disaster. There are several kinds of agents (Fire Brigades, Police, Ambulances and three
respective center agents) acting and cooperating in a dynamic and inaccessible environment
in order to rescue victims of the catastrophe so that the loss of human life can be reduced.
RoboCup Junior [6] is a project-oriented educational initiative that sponsors local, regional
and international robotic events for young students. Finally, the challenge in the @Home
league [7] is to build robotic systems capable of navigate through human populated home
environments. One of the main complexities present is the human-robot interaction.

RoboCup simulation league

The main drawback of using real robots for experiments is that the robots can easily get
damaged. The price to construct and repair real robots can be a limitation for improvements
in this field. The idea of a simulation league is to develop a virtual agent capable of thinking
and acting so that the acquired knowledge can be transferred to the real robots. To make
this possible, it is necessary to construct accurate and reliable models of the real robots.

RoboCup simulation league started with a 2D simulator. In the 2D simulation league two
teams of eleven autonomous agents play against each other using the RoboCup soccer server
simulator [8]. Each simulated robot player may have its own play strategy and characteristic.
In the 2D simulation league the agents are circles which play in a two-dimensional field. Over
the years the research on this league has gained an incredible development level [3, 9, 10].

RoboCup also introduced the Online Coach Competition [11]. This sub-league is for
automated coaches which are able to work with a variety of teams through the use of the
standard coaching language, CLang, which is mainly based on COACH UNILANG [12]. Over
the years this research became an issue of pattern recognition, where the goal of the coach is
to detect and recognize playing patterns during a game.

In 2004, a new kind of simulation appeared in this league, named 3D simulation league.
The circles in the 2D simulation became spheres and the simulation monitor shows a game
in 3D. The 2D teams soon adapted their work to this league. The RoboCup simulation
league adopted the Simspark simulator which pretends to be a generic simulator capable of
simulating anything we want and to be as more realistic as possible [13].

Mixed Reality League was originally defined as Physical Visualization League and ap-
peared in 2007 [14]. This league consists of real miniature robots playing a virtual game in a
virtual field.

3Fédération Internationale de Football Association

3

CHAPTER 1. INTRODUCTION

Recently, in 2007, the 3D spheres became simulated models of humanoid robots. One
of the main challenges of this league is to improve the biped locomotion behaviors of these
agents (e.g. walk, turn, kick the ball, etc). This thesis is precisely about the development of
these behaviors for a simulated humanoid robot in the context of the FCPortugal team.

1.4 Thesis outline

The remainder of this document is organized in more 7 chapters.

Chapter 2 shows the biped locomotion as a scientific challenge and presents common
concepts and approaches such as Trajectory-based methods, Heuristic-based methods, Passive
dynamic walking and Central Pattern Generators. It also presents some of the most popular
humanoid robots as well as the most competitive RoboCup simulated humanoid teams in the
last two years.

Chapter 3 gives an overview of some optimization algorithms such as Hill Climbing, Tabu
Search, Simulated Annealing and Genetic Algorithms. It is also presented a machine learning
technique, called Reinforcement Learning, which is very popular in the world of robotics.

Chapter 4 presents the simulation environment used during the experiments for this thesis
as well as the simulated humanoid models used. Some alternatives to the used simulation
environment are also presented.

Chapter 5 briefly describes the existing low-level control techniques, with a special em-
phasis on the Proportional-Integral-Derivative (PID) controllers, developed in the scope of
this thesis for low-level joint control.

Chapter 6 presents the developed trajectory planning methods for this thesis and, for each
one, some advantages, drawbacks and important results achieved are also presented.

Chapter 7 describes the developed behaviors for the simulated humanoid NAO using the
methods presented in Chapter 6. These behaviors include several types of walk, turn, kick
the ball, catch the ball and get up from the ground.

Finally, in Chapter 8, a conclusion about the developed work is presented as well as some
interesting proposals and challenges for future work.

4

Chapter 2

Biped locomotion

For a long time, wheeled robots were used for research and development in the field of
Artificial Intelligence and Robotics and many solutions were proposed [15]. However, wheeled
robot locomotion is not adapted to many human environments [16]. This increased the interest
in other types of locomotion like biped locomotion and especially in humanoid robotics. This
field has been studied over the last years and many different approaches have been presented,
although the ability for robots to walk in unknown terrains is still in a young stage. In order
to give an overview of the state of the art in biped locomotion, this chapter presents the
fundamentals by introducing common terms, concepts and solutions. The most successful
control strategies and some humanoid projects developed are also presented.

2.1 Biped locomotion as a scientific challenge

During millions of years, living beings developed some kind of locomotion to ensure their
survival inside their environment. It is assumed that some animals share some common
locomotion properties even when they do not move in the same way [17, 18]. For a vertebrate
to achieve biped locomotion, the neural system generates rhythmic signals that are sent to
the body to produce the desired movement. In this context, locomotion can be described
in terms of pattern generators to produce the movements and sensory feedback to achieve
stability and motion compensation.

The biped locomotion control is a problem that is really difficult to solve since it counts
only with two legs to keep stability. There are different approaches, but even the better
solutions are far from reaching perfection. Nowadays there are some humanoid robots capable
of producing efficient movements (e.g. walk, climb stairs) but the most unexpected small
problem, such as a little slope or an unexpected condition in a rough terrain may cause a
robot to fall down easily. The locomotion strategy and the robot model are closely related
and this connection by itself makes the biped locomotion problem hard to solve. In spite
of not being proved, it is assumed that humans use something like a pattern generator [18],
which is central at the spinal level1.

Biped locomotion can be divided into different stages. This is needed since bipeds show
very different dynamical properties depending on many conditions. The human walking gait,
for example, is generally divided into double support phase and single support phase. The
former happens when both feet are in contact with the ground. The latter happens when one

1Central Pattern Generators (CPG) will be explained later in this chapter (Section 2.2.4)

5

CHAPTER 2. BIPED LOCOMOTION

foot is swinging forward while the other is doing the support job. For fast walking, the swing
phase is usually divided into pre-swing and post-swing phases [19]. During the pre-swing
phase, the foot rolls about the toes and during the post-swing phase the swinging foot lands
on its heel and rolls about it. Once again this will depend on the robot model since not all the
robots have the same degrees of freedom and the same ability to perform some movements.
A running gait is even more complex since there is a phase where both feet are out of the
ground (which is the so called flight phase).

Keeping the equilibrium of the biped robot is a complicated issue since that will require
the control of every degrees of freedom. In order to compensate for disturbances, the gait
should be robust enough to be adaptable to each different situation.

2.2 Approaches to biped locomotion

During the last years, several approaches to biped locomotion have been developed. This
thesis explains the most common methods. These methods may be broadly divided in three
main categories [20, 21]: Trajectory-based, Heuristic-based, Passive-dynamic and Central
Pattern Generators. The following sections explain these categories.

2.2.1 Trajectory based methods

Trajectory-based methods consist of finding a set of kinematics trajectories and using a
stabilization criterion to ensure that the gait is stable. The most popular stabilization criteria
are the Center of Mass (CoM), Center of Pressure (CoP) and Zero Moment Point (ZMP).
These stabilization criteria are described in the following sections. The gait is stable when
one of these criteria remains inside the support polygon. The support polygon is the convex
hull formed by the contact points of the feet with the ground [22]. Figure 2.1 shows the most
typical cases for the support polygon for forward walking, assuming that the feet are always
parallel with the ground.

Figure 2.1: Typical cases for the support polygon for forward walking. (a) Single-support phase
(support polygon is formed by the support foot) (b) Double support phase, where the feet are aligned
(the support polygon is the rect formed by the two feet) (c) Double-support phase, with one foot in
front of another (the support polygon is formed by the convex hull formed by the contact points of
the feet with the ground.

Some common ways to produce trajectories are by the use of trial-and-error methods and
motion capture2 [23].

2A set of wearable motion sensors are read to enable precise tracking of human motions

6

Hugo Rafael de Brito Picado

Center of Mass and its projection on the ground

The CoM of a system of particles is the point at which the mass of the system acts as
if it was concentrated [24]. In other words, CoM is defined as the location of the weighted
average of the system individual mass particles, as defined by the following equation:

pCoM =
∑

i mipi

M
(2.1)

where M =
∑

i mi is the total mass of the system, mi denotes the mass of the ith particle
and pi denotes its centroid. By considering an infinite number of particles in the system, the
particle separation is very small and the system can be considered to have a continuous mass
distribution thus the sum is replaced by an integral, as follows:

pCoM =
1
M

∫
p dm (2.2)

For a humanoid body, the system is the body and the particles are the several body parts.
The orthogonal projection of the CoM on the ground is the so called Ground projection of
the Center of Mass (GCoM) [25].

Center of Pressure

Most humanoid robots are equipped with force-torque-sensors at the feet of the robot [22].
The CoP is the result of an evaluation of those sensors and is defined as the point on the
ground where the resultant of the ground reaction forces acts [25]:

pCoP =
∑

i piFN,i∑
i FN,i

(2.3)

where the resultant force FR =
∑

i FN,i is the vector from the origin to the point of action of
force FN,i = |FN,i|.

Zero Moment Point

The ZMP is perhaps the most popular stability criterion and was originally proposed by
Vukobratovic [26] in 1972. There are some different interpretations of ZMP though they are
all equivalent [27, 28]. ZMP can be defined as the point on the ground about which the sum
of the moments of all the active forces equals zero [26].

Figure 2.2: Arakawa and Fukuda interpretation of ZMP concept [28].

7

CHAPTER 2. BIPED LOCOMOTION

An alternative, but equivalent, interpretation was given by Arakawa and Fukuda [28] (See
Figure 2.2). They define ZMP as the point p, where Tx = 0 and Ty = 0, where Tx and Ty

represent the moments around the x and y axis generated by the reaction force R and reaction
torque M, respectively. When p exists within the domain of the support surface, the contact
between the ground and the support is stable [28].

Static stability vs. dynamic stability

The static stability criterion prevents the robot from falling down by keeping the GCoM
inside the support polygon by adjusting the body posture very slowly thus minimizing the
dynamic effects [29, 30] and allowing the robot to pause at any moment of the gait without
falling down. Using this criterion will generally lead to more power consumption since the
robot has to adjust its posture so that the GCoM is always inside the support polygon.

On the other hand, humans move in a dynamic fashion, a state of constant falling [29],
where the GCoM is not always inside the support polygon. While walking, humans fall for-
ward and catch themselves using the swinging foot while continuing to walk forward, which
makes the GCoM moves forward without expending energy to adjust the GCoM trajectory.
Dynamic stability relies on keeping the ZMP or CoP inside the support polygon and this
is a necessary and sufficient condition to achieve stability. Dynamic balance is particularly
relevant during the single support phase, which means that the robot is standing in only one
foot. This generally leads to more fast and reliable walking gaits.

With the exception of some advanced humanoid projects, which is the case of Honda
ASIMO [31] (See Section 2.5.1) and Sony QRIO [32] (See Section 2.5.2), most legged robots
today walk using static stability [29].

2.2.2 Heuristic based methods

The most important drawback of ZMP is the use of complex dynamic equations to compute
the robot’s dynamics. This complexity can be crucial when designing humanoid robots,
specially when the programmer wants to minimize the power and memory consumption of
the biped. Heuristic based methods are based in heuristics that hide that complexity.

Virtual Model Control

Developed by Jerry Pratt [33], Virtual Model Control (VMC) is a framework that uses
virtual components such as springs, dampers or masses to generate the joint torques that
control the biped’s stability and velocity. The generated joint torques create the same effect
that the virtual components would create if they were in fact connected to the real robot. This
heuristic makes the design of the controller much easier. First it is necessary to place some
virtual components to maintain an upright posture and ensure stability. Using the example
provided by Pratt [33], imagine that the goal of the robot is to knock a door. With traditional
methods, this would be a very difficult task to implement. However, with VMC it is only
needed to place a virtual mass with a specified kinetics energy to the robot’s hand using a
virtual spring and damper. The robot’s hand will then move to strike out and once given the
desired impact, the hand will get back due to mass resonating with the virtual component
attached to the hand. VMC has the advantage of being less sensitive to external perturbations
and unknown environments since these can be compensated by the use of virtual components.

8

Hugo Rafael de Brito Picado

2.2.3 Passive dynamic walking

In the Passive Dynamic Walking (PDW) approach, the biped walks down a slope without
using any actuator [34]. The mechanical charecteristics of the legs (e.g. length, mass, foot
shape) determine the stability of the generated walking motion.

Figure 2.3: Passive dynamic walking model. φ is the supporting surface, θ is the angle of the support
leg, m is the point mass at the respective foot, M is the mass at the hip, γ is slope inclination and g
is the gravity. Both legs have length l. Adapted from: [35].

PDW is based on the inverted pendulum model [34], which assumes that, in the single
support phase, human walking can be modeled as an inverted pendulum. Inverted pendulum
has been applied for years in several situations [36, 37]. The swinging leg (assuming there is
just the hip and the ankles and no knees) is represented by a regular pendulum, while the
support leg is represented by an inverted pendulum. The support leg is then controlled by
the hip joint’s torque. However, in the specific case of PDW the only actuating force is the
gravity. Figure 2.3 represents the PDW model.

Tad McGeer, in 1990, was the first to apply this idea to humanoid robotics by developing
a 2D bipedal robot with knee joints and curved feet [34]. The developed robot was able to
walk down a three degree slope. This work demonstrated that the morphology of the robot
might be more important than the control system itself. This method is known for the low
power consumption and was defined as a benchmark for walking machine efficiency.

2.2.4 Central pattern generators

It is assumed, by the fields of biology, that vertebrate locomotion is controlled by a spinal
central pattern generator [38]. A Central Pattern Generator (CPG) is a set of circuits which
aims to produce rhythmic trajectories without the need for any rhythmic input. In legged
animals, the CPG often contains several centers that control different limbs. There has been
a growing interest in these CPG models in robotics. This trajectory planning method does
not need, necessarily, any sensory feedback information to generate oscillatory output for the
motor neurons [38]. However, it is possible to integrate the sensory feedback information such
as force resistors and gyroscopes to produce motion correction and compensation [39]. By
coupling the neural oscillators signals when they are stimulated by some input, they are able
to synchronize their frequencies. The smooth properties of coupled oscillators makes it easier
to integrate feedback information in the defined mathematical model when generating the
trajectories [20, 40, 41]. Figure 2.4 represents a CPG model applied to the Fujitsu HOAP-2
humanoid robot [42] (See section 2.5.3).

9

CHAPTER 2. BIPED LOCOMOTION

Left Leg Right Leg

RLEG_JOINT[2]

RLEG_JOINT[3]

RLEG_JOINT[4]

RLEG_JOINT[5]

RLEG_JOINT[6]

LLEG_JOINT[2]

LLEG_JOINT[3]

LLEG_JOINT[4]

LLEG_JOINT[5]

LLEG_JOINT[6]

Figure 2.4: Structure of the walking CPG applied to Fujitsu HOAP-2 humanoid. The LLEG JOINT
and RLEG JOINT arrays describe the set of left and right joints, respectively. Adapted from: [41].

Each Degree of Freedom (DOF) has a CPG. Antisymmetric coupling is used between the
two legs through the main oscillator of the first DOF of each leg (which is represented in the
figure by the horizontal arrow between the both legs). The trajectories generated for each
DOF is the weighted sum of the corresponding three oscillators.

In the field of artificial intelligence and robotics, it is possible to build structures that are
similar to the neural oscillators found in animals by the definition of a mathematical model.
Sven Behnke [43] proved that it is possible to apply CPGs to generate a omnidirectional
walking gait, where the input is simply the walking direction, walking speed and rotational
speed.

2.3 Sensory feedback

Sensory feedback information are provided by sensors installed on the robot. Tipically, a
humanoid robot has gyroscopes and force/torque sensors under the feet. These sensors are
useful for maintaing the stability of the robot given specific constraints.

2.3.1 Gyroscope

A gyroscope is a device for measuring the oscillation rate in different directions. It provides
information about the angular velocity of the robot’s trunk in the sagittal plane3 and also in
frontal plane4.

3Sagittal plane: Vertical plane running from front to back and dividing the body into left and right sides
4Frontal plane: Vertical plane, perpendicular to the sagittal plane, running from side to side and therefore

dividing the body into front and back

10

Hugo Rafael de Brito Picado

If this angular velocity becomes too large, the robot is likely to lose balance. Most hu-
manoid robots are equipped with a gyroscope. The use of gyroscope as a feedback control
mechanism helps to keep the robot stable by adjusting the necessary angles for motion com-
pensation.

2.3.2 Force/torque sensors

A force/torque sensor is a transducer that measures forces and torques. A six-axis sensor
will provide information about three cartesian coordinates for the force (Fx, Fy and Fz) as
well as for the torque (Tx, Ty and Tz). These sensors react to the applied forces accordingly
to the Newton’s third law: To every action there is an equal and opposite reaction.

It is common to find this kind of sensors below the feet of the humanoid. These sensors
may be helpful to know information such as whether the foot is touching the ground, which is
the force applied on the ground and the point where such force is applied. Moreover, they are
often used to measure the CoP (See Section 2.2.1). It is commonly assumed that foot contact
occurs just after the leg has finished the swinging phase. This may not be the true due to
external perturbations, i.e., the foot contact might occur earlier or later than the predicted
moment. Phase resetting is a phenomena that allows to reset the phase of the trunk at the
moment of foot contact [39] using the information provided by these sensors. This will ensure
that the leg will move as intented accordingly to the gait pattern.

2.4 Kinematics

Kinematics is the branch of mechanics that studies the motion of a body or system of
bodies without taking into account its mass or the forces acting on it. Two main types of
Kinematics are considered in articulated motion control: Forward Kinematics and Inverse
Kinematics. The following sections describe both methods.

2.4.1 Forward kinematics

A humanoid robot is composed of a set of bodies interconnected by joints. Forward
kinematics allows for computing the position of the joints using its current angles and, con-
sequently the position of the body parts. This strategy is very useful to compute several
parameters such as CoM, when the positions of body parts are not known in advance. A very
popular way to derive the forward kinematics equations is by using the Denavit-Hartenberg
(D-H) convention [44] in order to be systematic in the calculation of coordinates. This ap-
proach is based on the use of transformation matrices of homogeneous coordinates. This allows
the computation of the coordinates of any point P using the coordinate matrix of any known
point, K, and the transformation matrix between P and K. Homogeneous coordinate systems
are based on multiplication of transformation matrices. Tipically, in the two-dimensional
space, a point P is represented in homogeneous coordinates by P = [x, y, 1]T . The transfor-
mations considered are the conventional matrices for translation (T), scale (S) and rotation
(R) as stated by the following matrices:

T =

 1 0 ∆x

0 1 ∆y

0 0 1

, R =

 sin(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

, S =

 sx 0 0
0 sy 0
0 0 1

11

CHAPTER 2. BIPED LOCOMOTION

Where ∆x and ∆y are the displacement parameters with respect to the origin of the coordinate
system, θ is the rotation angle and, finally, sx and sy are the rates for scaling.

2.4.2 Inverse kinematics

Inverse kinematics is the opposite of forward kinematics [45] and is used to know the angles
that the joints should have so that a body (called the end-effector) can reach a predefined
position. As an example, if the goal is to put the hand of a robot at a certain position, the end
effector is the hand and the inverse kinematics will compute the necessary joint angles for the
shoulder and the elbow. An inverse kinematics problem may have several solutions or perhaps
no solution. The former happens because, assuming that the end effector is already at the
target position, the remaining joint angles can still have other combinations that maintain
the end effector at the target position. The latter happens when the target position is outside
the scope of the robot and cannot be reached.

When using trajectory-based methods, one major stability criterion for the generation
of joint trajectories is the position of ZMP. For stable dynamic locomotion, the necessary
and sufficient condition is to have the ZMP within the support polygon at all stages of the
locomotion. Several algorithms of trajectory planning are based on ZMP. Most of these
algorithms use the ZMP to achieve the desired joint trajectories by using inverse kinematics
to compute the necessary angles so that the ZMP can follow the desired trajectory and kept
inside the support polygon.

2.5 Humanoid robots

This section present the most important research projects in humanoid robots which are
being developed, with emphasis on biped locomotion control.

2.5.1 Honda ASIMO

ASIMO5 stands for Advanced Step in Innovation and MObility and was presented by
Honda Motors Co. in 2002 [31] (See Figure 2.5). It has 26 DOFs, 120 centimeters of height
and 52 kilograms. It is designed to operate in the real world so it is trained to reach and
pick up things, navigate along different floors and even climb stairs, communicate, recognize
people’s voices and faces and it is also able to act in response to voice commands.

Figure 2.5: Honda ASIMO.

5http://asimo.honda.com/

12

Hugo Rafael de Brito Picado

In the future, Honda intends to make ASIMO help in tasks such as assisting the elderly or
a person confined to a bed or a whellchair. In the context of walking behavior, for example,
ASIMO has a set of precalculated trajectories and relies on ZMP to ensure dynamic stability.
If these trajectories do not match the requirements, new motions are generated online by
interpolating between closely matching patterns.

2.5.2 Sony QRIO

QRIO stands for Quest for cuRIOsity, formerly known as Sony Dream Robot (SDR-4X II),
was presented in the end 2003 [32] (See Figure 2.6). This robot has 28 DOFs, 58 centimeters
of height and 6.5 kilograms. It was designed for entertainment but it was never sold. Major
technology includes stable dynamic walking and running and full leg movement allowing the
robot to kick a ball. This robot is able to recognize voices and faces, avoid obstacles and
communicate. The 2005 QRIO robot shows advances like a ”third eye”, which is an extra
camera which allows the robot to notice and track individuals in a group of people. The
QRIO robot has the ability to identify blocks by size and color, lift them using its lower body
and stack one on the top of the other.

Figure 2.6: Sony QRIO.

QRIO has a highly advanced equilibrium system which allows it to balance on a moving
surf board or skating on roller skates. A special tool has also been created so that humans
can teach motion patterns to the robot.

2.5.3 Fujitsu HOAP-2

HOAP stands for Humanoid for Open Architecture Platform [42]. HOAP-2 is a 25-DOF
humanoid which has 50cm and weights 7kg was developed by Fujitsu and is a humanoid
robot that is small, simple an very versatile. HOAP-2 is able to walk, climb and descend
stairs, stand up when it’s loosing equilibrium and kick a ball. Additionally it is able to do
headstands, Tai chi chuan6, and write its own name.

”HOAP-2 is very easy to program and very easy to understand” were the words of Fujitsu
robotics researcher Riadh Zaier. The technology is based on CPG networks, which simulate
the neural oscillator found in animals. This is combined with a numerical perturbation method
that quantifies the configuration and weights of the connections of the neural network.

6Tai chi chuan is an internal chinese martial art. It is very well known by its relation to health and longevity

13

CHAPTER 2. BIPED LOCOMOTION

Figure 2.7: Fujitsu HOAP-2.

2.5.4 Aldebaran NAO

Project NAO, launched in early 2005, is a humanoid robot developed by Aldebaran
Robotics [46] (See Figure 2.8). The robot has 21 to 25 DOFs (depending on the version), 57
centimeters of height and 4.5 kilograms. The robot was designed for entertainment and has
mechanical, electronic, and cognitive features. Additionally, it is based on a Linux platform
and scripted with URBI, which is an easy-to-learn programming language. It has been pre-
sented early 2007 and it is planned to go to the market in the end of 2008. Its simple and
intuitive programming interface will make the entire family enjoy the robot experience. NAO
Robot has been used in several RoboCup 2008 competitions7: Standard Platform League, 3D
Soccer Simulation League, Microsoft Robotics League and Robotstadium Simulation League.

Figure 2.8: Aldebaran NAO.

URBI8 stands for Universal Real-Time Behavior Interface and is a new scripting language
with a C++ like syntax that pretends to do a revolution in the robotics programming. It
brings new features such as parallelism, event-based programming and distributed object
management with UObject. It also provides interfaces for the most popular languages in
robotics, which is the case of C++, Java, Matlab, Python and Ruby.

7http://www.robocup-cn.org
8http://www.gostai.com/urbitechnology.html

14

Hugo Rafael de Brito Picado

2.5.5 NimbRo robots

Among the several robots used in RoboCup humanoid league, NimbRo9 robots have been
between the most popular (See Figure 2.9). NimbRo is one of the teams which participates
in RoboCup championships. Robots have anthropomorphic body and senses, team research
includes achieving energy-efficient bipedal locomotion by supporting the system dynamics and
intuitive multi-modal communication with humans through analysis and synthesis of body
language, gestures, facial expressions, and language. One of the most used techniques is the
learning by imitation, where a robot learns new behaviors imitating a human teacher.

Figure 2.9: Paul, one of the NimbRo humanoid robots.

Sven Behnke10 is the principal investigator inside NimbRo team. He developed an online
gait generation method based on Central Pattern Generators that allows a humanoid to per-
form omnidirectional walking [43]. The engine was implemented and proved to be extremely
advantageous for locomotion in dynamic environments, which is the case of RoboCup soccer
leagues.

2.6 RoboCup simulated humanoid soccer teams

This section describes the three best simulated humanoid teams both in 2007 and 2008
RoboCup world competitions. The main concern of these teams was to develop stable and
fast gaits for their humanoid agents in order to be able to build a competitive 3D simulation
soccer team. To achieve this goal, it is important to develop the base skills such as walking
without falling, getting up from the ground, turning around a spot, and kicking the ball. This
is essential for the humanoid to play a reasonable soccer game. Given the particular focus of
this thesis in biped locomotion, this section will emphasize the developed gaits and not the
soccer strategy of these teams.

9http://www.nimbro.org/
10http://www.informatik.uni-freiburg.de/ behnke/

15

CHAPTER 2. BIPED LOCOMOTION

2.6.1 Little Green BATS

The main research focus of Little Green Bats11 team is concerned with hierarchical be-
havior models. In these models, the agent’s intelligence is constructed as a tree of behaviors,
where each behavior controls the lower level behaviors. This allow the agent to have a form of
abstraction which will permit the agent to act and response to difficult situations in real-time
[47, 48]. A behavior consists of a sequence of steps. Each step has a subgoal and a set of
sub-behaviors can be used to achieve these goals. This leads to a tree where the highest
abstraction level is at the root and the most primitive behaviors are at the leafs. The latter
does not select more behaviors, since they are primitive, but perform real world actions like
applying a certain angular velocity to a joint.

The joint trajectory planning are defined using one of two methods [48]. In the first
method a very simple scripting language define the trajectories for the joints and the agent
run that script sequentially in runtime, setting joint angles and eventually waiting certain
amount of time before going to the next line. The second approach is a mathematical model,
based on Partial Fourier Series, to generate the trajectories for each joint:

α
′
i(t) =

N∑
j=1

Ajsin(ωjt + θj) + Cj (2.4)

where α
′
i(t) is the angular position of the joint i at time t, N is the number of frequencies

of the Fourier pattern and Aj , wj , θj and Cj are, respectively, the amplitude, the frequency,
the phase and the offset of the jth term. Some behaviors were defined by setting these val-
ues manually. The running behavior, in particular, were defined using a Genetic Algorithm
(See Section 3.1.4) where the genotype includes the parameters Aj , ωj , θj and Cj with N = 1.

The research of this team has been successfully applied, and they achieved the second
place in the RoboCup 2007 world championship (Atlanta, USA) and the third place in the
RoboCup 2008 world championship (Suzhou, China).

2.6.2 SEU-RedSun

SEU-RedSun was a dominant team during 2007 and 2008 RoboCup world competitions.
In 2007 they proved that it is possible to implement a omnidirectional walking engine [49,
50] even using the unstable model of HOPE-1 simulated robot (See section 4.3.1). They
implemented one of the most stable walking gaits of the competition. In 2008, they improved
their work by increasing the speed and the agility of the walking gait and they became really
fast. They were even able to score by kicking backwards or kicking sidewards [50]. This
team focused its research on developing an efficient real-time method to generate humanoid
behaviors to be integrated with an adversarial and dynamic environment, which is the case of
Robocup [49, 50]. In this context, they developed an omnidirectional biped walking controller
architecture (See Figure 2.10). Multiple layers that run on different time scales contain tasks
of different complexity. The walking path planner receives the desired position and direction
and passes the needed movement and rotation to the gait primitive generator, which will
generate the next gait primitive. At the next layer, the limb controller will determine the
desired joint angles, which will be the input for the joint motor controller.

11http://www.littlegreenbats.nl

16

Hugo Rafael de Brito Picado

Walking Path Planner

Gait Primitive Generator

Limb Controller

Joint Motor Controller

desired posit ion and direction

desired movement and rotat ion

gait pr imit ive

desired joint angles

joint velocit ies

current posit ion and direction

current gait pr imit ive

current joint angles

Figure 2.10: SEU-RedSun architecture of layered controller for omnidirectional walking. Adapted
from: [49].

The desired joint angles and the current joint angles will make the joint motor controller
determine the velocity needed for each joint to produce the desired behavior. The goal is to
develop a stable walking pattern that does not need to be stopped before changing direction
for a subsequent turning action. This improves the velocity since it is possible to change the
walking direction without delaying the motion since everything can be done smoothly.

The research of this team was successfully applied, and they achieved the third place in
the RoboCup 2007 world championship (Atlanta, USA) and the first place in the RoboCup
2008 world championship (Suzhou, China).

2.6.3 Wright Eagle 3D

Wright Eagle12 has been a powerful team in many leagues of RoboCup competition. In
their walking procedure, the state of each foot is divided into three phases: Raise, Land and
Support [51]. So, the whole walking gait is divided in four phases as we can see in Table 2.1.

Left foot phase Right foot phase Gait phase
Raise Support RS
Land Support LS

Support Raise SR
Support Land SL

Table 2.1: Walking gait phases of Wright Eagle 2008 team [51].

12http://www.wrighteagle.org/.

17

CHAPTER 2. BIPED LOCOMOTION

When a walk command is sent to the action controller, Walk sets the default state as RS
and then when RS is finished, it will transmit the control to the next state and so on (See
Figure 2.11). The walking gait will automatically adjust the walking speed and slow down
when the defined target is near.

Figure 2.11: Wright Eagle 2008: Walk states transfer. Adapted from [51].

The research of this team was successfully applied, and they achieved the first place in
the RoboCup 2007 world championship (Atlanta, USA) and the second place in the RoboCup
2008 world championship (Suzhou, China). We should refer that almost all the Wright Eagle
matches matches on RoboCup 2008 were played with just one agent due to unpredictable
problems they had during the competition.

2.7 Summary

In this chapter it was presented the state of the art of the humanoid robotics research
field. After reading this chapter, one should be familiar with the actual humanoids and
actual approaches to biped locomotion control and trajectory planning methods. Some real
humanoids and teams of the RoboCup simulated humanoid league and their main features
were presented. Common concepts in humanoid robotics were described in detail such as
robot dynamics and kinematics, joint trajectory generation methods, equilibrium, common
physical constraints used such as Center of Mass and its projection on the ground, Center of
Pressure, Zero Moment Point, and also sensory feedback information and its applications.

18

Chapter 3

Optimization and Machine Learning

3.1 Optimization

Optimization problems aim at determining the minimal point of a functional on a non-
empty subset of a real linear space [52]. A more formal definition is: Let X be a real linear
space, let S be a non-empty subset of X, and let f : S → <. An element, s′ ∈ S, is called the
minimal point of f on S if:

f(s′) ≤ f(s),∀s ∈ S (3.1)

Hence, the goal of optimization problems is to find the best configuration of a set of pa-
rameters of some problem that minimize1 some measure. This measure is obtained through
a function, f , of one or more parameters, which is commonly known as the objective function
or fitness function. A configuration of the set of input parameters are known as an individual
and refers to a possible solution of the problem to be solved. Moreover, one or more con-
straints may also be defined to restrict the values of the input parameters. The optimization
problems explore the search space, S, which consists of a set of candidate solutions, aiming at
finding a feasible solution, s ∈ S, which maximizes (or minimizes) the fitness function.

Optimization problems may be broadly divided into two main categories: individual-based
methods and population-based methods [53]. Individual-based methods deal with only one
current solution. Conversely, in population-based methods counts with a set of individuals
(population) that are handled simultaneously. The following sections explain some optimiza-
tion algorithms. Hill Climbing, Tabu Search and Simulated Annealing are individual-based
methods, whereas a Genetic Algorithm is a population-based method.

1A maximization problem may be obtained by symmetry of the function f .

19

CHAPTER 3. OPTIMIZATION AND MACHINE LEARNING

3.1.1 Hill climbing

The Hill Climbing (HC) algorithm [54, 55] is simple to implement and performs well in
several situations, achieving reasonable results. Given an initial solution and a neighborhood
relation, the hill climbing strategy runs over a graph whose states are threated as candidate
solutions. Algorithm 1 shows the pseudo code of a generic HC.

Algorithm 1 Hill Climbing
CS ← GetInitialSolution()
E1 ← Evaluate(CS)
while TerminationConditionsNotMet() do

SS ← GetNeighborhood(SS)
for i = 1 to Length(SS) do

E2 ← Evaluate(SS[i])
if E2 < E1 then

CS ← SS[i]
E1 ← E2

end if
end for

end while
return CS

The procedure GetInitialSolution initializes the current solution either with a manually
defined solution or a randomly generated one. Iteratively, if the procedure TerminationCon-
ditionsNotMet returns true, the algorithm keeps the iterative process. Otherwise, it stops
the search. GetNeighborhood generates the neighbors by applying random variations to each
parameter of the individual. Each neighbor is evaluated and its score is compared with the
score of the current solution. The algorithm chooses as the next state, the one which as a
better score than the current solution.

This algorithm easily gets lost in a local optima solution, i.e., none of the neighbors has a
better evaluation than the current solution, which may be a poor quality solution. A possible
strategy to solve this problem is to accept worst solutions. Another problem is the effect
of cycling through solutions. This may be solved by introducing memories to remember the
nodes already visited. Simulated Annealing [56] and Tabu Search [57] aim at solving the
problems inherent to Hill Climbing. These algorithms are explained in the following sections.

3.1.2 Simulated annealing

In 1983, Kirkpatrick and coworkers [56] proposed a method of using a solution to find
the lowest energy (most stable) orientation of a system. Their method is based upon the
procedure used to make the strongest possible glass. This procedure hits the glass to a high
temperature so that the glass is a liquid and the atoms can move freely. The temperature of
the glass is then slowly decreased so that, at each temperature, the atoms can move enough to
begin adopting the most stable orientation. If the glass is cooled slowly enough, the atoms are
able to achieve the most stable orientation. This slow cooling process is known as annealing
and was the origin of the name Simulated Annealing (SA).

20

Hugo Rafael de Brito Picado

SA was one of the first algorithms incorporating an explicit mechanism to escape from local
optima. Analogous to the glass annealing problem, the candidate solutions of the optimization
problem have correspondence with the physical states of the matter, where the ground state
corresponds to the global minimum. The fitness function corresponds to the energy of the
solid at a given state. The temperature is initialized to a high value and then decreased
during the search process, which corresponds to the cooling schedule. The SA avoids local
optima by accepting a solution worse than the current one with a probability that decreases
along the optimization progress. Algorithm 2 shows the pseudo code the Simulated Annealing
algorithm.

Algorithm 2 Simulated Annealing
CS ← GetInitialSolution()
T ← TMAX

while TerminationConditionsNotMet() do
NS ← GetNeighbor(CS)
if Evaluate(NS) < Evaluate(CS) then

CS ← NS
else

CS ← AcceptanceCriterion(CS, NS, T)
end if
T = CoolingSchedule(T)

end while
return CS

The chance of getting a good solution is a trade off between the computation time and the
cooling schedule. The slower is the cooling, the higher will be the chance of finding the optimal
solution, but higher will be the time needed for optimization. The neighbor is evaluated and
will be subject to acceptance if it gets a score worse than the score of the current solution. The
acceptance criterion accepts the new solution with a probability, pacceptance, which defined as
follows:

pacceptance = e
Evaluate(CS)−Evaluate(NS)

T

This probability follows the Boltzmann distribution [58]. It depends on the temperature,
T , and the difference of energy, Evaluate(CS)−Evaluate(NS). The procedure CoolingSched-
ule decides how the cooling schedule is updated. A common approach follows the following
rule:

Ti+1 = α ∗ Ti, α ∈ (0, 1) (3.2)

where Ti is the current temperature level and Ti+1 is the scheduled temperature level for the
next iteration.

3.1.3 Tabu search

In 1986, Fred Glover proposed the Tabu Search (TS) algorithm [57]. TS improves the
efficiency of the exploration process since it not only uses the local information (the result of
the evaluation function), but also some information related to the exploration process (nodes
already visited). In this way, TS may prefer to choose states with an inferior evaluation score
instead of the already visited ones.

21

CHAPTER 3. OPTIMIZATION AND MACHINE LEARNING

The main characteristic of TS is the systematic use of memory. While most exploration
methods keep in memory essentially the value of the evaluation function of best solution
visited so far, TS also keeps information of the itinerary through the last solutions visited.
In its simplest form, TS declares each node already visited as a tabu. Tabus are stored in a
list, the tabu list, and the search in the neighborhood is restricted to the neighbors that are
not present in the tabu list. Algorithm 3 shows the pseudo code of a simple TS algorithm.

Algorithm 3 Simple Tabu Search
CS ← GetInitialSolution()
E1 ← Evaluate(CS)
TabuList ← Empty
while TerminationConditionNotMet() do

SS ← GetNeighborhood(CS)
for i = 1 to Length(SS) do

if Not Member(SS[i],TabuList) then
Add(TabuList, SS[i])
E2 ← Evaluate(SS[i])
if E2 < E1 then

CS ← SS[i]
E1 ← E2

end if
end if

end for
end while
return CS

TS will evaluate each member and will pick up the best one. During the search process,
TS prefers a solution worse than the current one, instead of an already tested solution. This
way the algorithm tries to escape from cycling through solutions and also avoids the local
optima since it accepts worst solutions.

3.1.4 Genetic algorithms

Proposed by the mathematician John Holland in 1975 [59], A Genetic Algorithm (GA) an
optimization method inspired by the evolution of biological systems and based on global search
heuristics. GA belongs to the class of evolutionary algorithms. In spite of being different,
evolutionary algorithms share common properties since they are all based on the biological
process of evolution. Given an initial population of individuals (also called chromosomes),
the environmental pressure causes the best fitted individuals to survive and reproduce more.
Each individual (chromosome) is a set of parameters (genes) and represents a possible solution
to the optimization problem.

The algorithm starts by creating a new population of individuals. Typically, this popula-
tion is created randomly but any other creation function should be acceptable. The genes of
each individual should be inside a range of acceptable values that is defined for each gene. The
algorithm then starts the evolution which consists of creating a sequence of new populations.
At each step, the algorithm uses the individuals in the current population to create the next
population by applying several operators.

22

Hugo Rafael de Brito Picado

These genetic operators are described as follows [60]:

• Selection: Specifies how the GA chooses parents for the next generation. The most
common option is the roulette option which consists of choosing parents by simulating
a roulette wheel, in which the area of the section corresponding to an individual is
proportional to its fitness value;

• Elitism: Defines the number of individuals in the current generation that are guaran-
teed to survive in the next generation;

• Crossover: A crossover function performs the crossover of two parents to generate a
new child. The most common is the scattered function which creates a random binary
vector and selects the genes where the vector is a 1 from the first parent, and the genes
where the vector is a 0 from the second parent. Moreover, the crossover function receives
a parameter named as crossover fraction, pc, which corresponds to the fraction of the
population that is created by crossover;

• Mutation: The mutation function produces the mutation children. The most common
is the uniform mutation which applies random variations to the children using an uni-
form distribution. Uniform mutation receives a parameter, pm, which corresponds to
the probability that an individual entry has of being mutated.

In the end of the optimization process, the individual in the current population that have
the best fitness value is chosen as the best individual. Algorithm 4 shows the pseudo code of
a generic GA.

Algorithm 4 Generic Genetic Algorithm
Population ← CreateInitialPopulation()
Evaluate(Population)
while TerminationConditionNotMet() do

[Selection] Parents ← Selection(Population)
[Elistism] Elite ← Elitism(Population)
[Crossover] Children ← Crossover(Parents, pc)
[Mutation] Mutants ← Mutation(Children, pm)
Population ← Elite + Mutants
Evaluate(Population)

end while
return Best(Population)

There exist several tools that facilitate the work with GA by providing several configu-
ration options as well as user-friendly interfaces. Between the most popular are the C++
Genetic Algorithm library (GAlib), by Matthew Wall [61], and the Genetic Algorithm and
Direct Search Matlab toolbox (GADS), from MathWorks [62]. GADS was used in the scope
of this thesis for biped gait optimization. A more complete description of the GADS config-
uration options may be found in the GADS tutorial [62].

23

CHAPTER 3. OPTIMIZATION AND MACHINE LEARNING

3.2 Machine learning

Learning can be viewed as the process of modifying the learner’s knowledge by exploring
the learner’s experience [63]. Machine learning is a branch of artificial intelligence that deals
with the design of algorithms that allow a machine to learn by itself thus reducing (perhaps
eliminating) the need for human intervention in the learning process.

Machine learning has several applications such as natural language processing, pattern
recognition, search engines, bioinformatics and robotics [64]. There are many types of learn-
ing algorithms, the most popular are supervised learning algorithms and unsupervised learning
algorithms [65]. In supervised learning the algorithm keeps an example set that maps inputs
to desired outputs. This type of algorithms are often used in classification problems (e.g. face
detection, text recognition, etc). In unsupervised learning there are no labeled examples and
the set of inputs is totally modeled by an agent.

A popular unsupervised learning algorithm is reinforcement learning [65]. In reiforce-
ment learning problems [10, 66, 67], reactive or deliberative agents have knowledge about
the state where they are and have to pick the next action (or perhaps a sequence of actions)
to execute from a set of possible actions, with the objective of maximizing a measure called
reward. In spite of being used in other fields, reinforcement learning has been receiving in-
creased attention as a method of robot learning with a little or no a priori knowledge and a
higher capability for reactive and adaptive behaviors. Figure 3.1 shows a basic model of the
humanoid-environment interaction on which the agent and the environment are modeled by
two synchronized finite state machines interacting in a discrete time process. The humanoid
senses the current state of the environment and selects an action. Based on the state and the
action, the environment transits to a new state and generates a reward that is sent back to
the robot. Trough these action-reward method, the robot is able to learn autonomously.

environment

state

reward

action

next state

Figure 3.1: Reinforcement Learning Model.

The environment should be modeled as a Markov Decision Process2, in discrete time,
which can be described by the tuple (S, A, P, R) that consists of a set of states (S), a set
of actions (A), an expected reward (Ra

s,s′), received due to the transition from state s to
state s’ with the execution of the action a and the state transition probabilities (P) [67]. An
important property of Markov Decision Processes is that the state transition probabilities do
not depend on past actions and states which simplifies the reinforcement learning algorithm
[66].

2Markov assumption stated that each state depends on a finite number of past states.

24

Hugo Rafael de Brito Picado

The agent’s behavior is to pick a policy π : S → A. π(s) corresponding to the action picked
on the state s. The agent will receive an immediate reward r(s, π(s)) and the environment
will change to a state s’ with a probability p

π(s)
s,s′ . If the agent always uses the same policy,

what will be observed is a set of states and rewards. The goal of reinforcement learning is to
find an optimal policy which maximizes the expected sum of rewards throughout time:

maximizeπE[
∞∑

t=0

γrt|s0 = s, π] (3.3)

where rt represents the received reward at instant t and γ ∈ [0, 1) represents the discount
factor which is introduced to guarantee convergence of the algorithm. A small discount factor
gives more importance to near states instead of future states which is a behavior similar to
the human learning behavior.

Q-Learning [68] is a recent form of reinforcement learning that does not need a model of
the environment. The general idea is to introduce value functions Q∗ which depend on the
actual state and the action which should be the potential choice of the agent. This function
models the expected reward for an agent:

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

(pa
s,s′ ∗ Q∗(s′, a′)) (3.4)

Finally, the optimal policy is to select the largest estimated Q-value and is computed as
follows:

π∗ : s 7→ argmaxa∈AQ∗(s, a) (3.5)

3.3 Summary

After reading this chapter, one should be familiar with the most popular optimiza-
tion techniques. These algorithms were broadly divided into individual-based methods and
population-based methods. Hill Climbing, Simulated Annealing and Tabu Search are classi-
fied as individual-based methods. Hill Climbing is the most simple algorithms and consists of
consecutively iterating through a graph of solutions, by choosing as the next state the neigh-
bor with a best fitness value than the current solution. This search over the neighborhood
causes the algorithm to be sensitive to local optima. Simulated Annealing and Tabu Search
try to avoid this problem by proposing different solutions. Simulated Annealing accepts a
solution worse than the current one with a probability that decreases during the search pro-
cess. Tabu Search uses a short-term memory to store the solutions already visited. This way,
it prefers to chose a worst solution instead of an already visited one. A Genetic Algorithm
is a population-based algorithm inspired on the biological evolution process. The algorithm
imitates the natural reproduction of species by consecutively applying several operators to
improve the fitness of the population. These operators are selection, elitism, crossover and
mutation. In the end of the chapter it is present a popular machine learning technique, called
reinforcement learning, which is a type of unsupervised learning. This machine learning tech-
nique choses the next action based on a measure called reward. In the scope of this thesis,
Hill Climbing and Genetic Algorithm were implemented and tested.

25

CHAPTER 3. OPTIMIZATION AND MACHINE LEARNING

26

Chapter 4

Simulation Environment

For all the project development, a simulation environment was used as the main platform
for testing the developed behaviors. This chapter describes the simulation enviornment used
in the experiments of this thesis.

4.1 Advantages of the simulation

The robotic platforms (either the most simple articulated arms or the most complex
humanoid robots) are usually very expensive. The use of simulation environments for research,
development and test in robotics provides many advantages over the use of real robots [21].
The main advantages of the simulation are:

• Less expensive than real robots;

• Easy development and testing of new models of robots;

• Easy testing of new algorithms;

• Less development and testing time;

• The problem can be studied at several different levels of abstraction;

• Possibility to easily add, remove, and test different components;

• Facilitates study of multi-agent coordination methods;

• All tests can be done without damaging the real robot;

• For repetitive tests (e.g. optimization processes), the use of a virtual model is better
because the robot will not need assistance to reinitialize every iteration;

• It is possible to retrieve very detailed information from the simulation. It is possible to
easily monitor physical measures such as CoM, CoP and ZMP;

• With the quality of simulation environments that exist today, is is possible to use the
results obtained by simulation in the real robots with just a few changes;

• Control over the simulation time.

27

CHAPTER 4. SIMULATION ENVIRONMENT

4.2 Simspark

The Simspark Simulator is a generic simulation platform for physical multi-agent simu-
lations and it is currently used in the RoboCup 3D simulation league. This simulator was
developed over a flexible application framework (Zeitgeist) and pretends to be a generic sim-
ulator, capable of simulating anything, since the launch of a projectile for academic purposes
to a big soccer game for scientific research purposes. The framework facilitates exchanging
single modules and extending the simulator [69]. The simulation consists of three important
parts [13]: the server, the monitor and the agents.

4.2.1 Server

The server is responsible to handle connections from the agents, receive and process mes-
sages and send reply messages to the agent. The server architecture is illustrated in Figure
4.1 and is described as follows:

• Open Dynamics Engine (ODE)1: This is the physical simulation engine. It allows to
simulate the system’s dynamics and the physical properties of the simulated objects by
providing advanced joint types and integrated collision detection with friction. ODE
is particularly useful for simulating objects in virtual reality environments. ODE is
cross-platform and provides a user-friendly C/C++ Application Programming Interface
(API).

• Zeitgeist: This is a framework for handling data objects and functional components of a
system in a uniform way [69] which strictly follows the object-oriented paradigm using
C++ programming language.

• Simulation Engine: This represents the core of the simulator, it receives the messages
with actions from the agents, performs the simulation operations and sends a reply
message back to the agent with the environment information.

• System for Parallel Agent Discrete Event Simulation (SPADES) [70]: Provides a middle-
ware layer that may be present between the agent and the simulation engine to handle
the distribution of the simulation across machines and it is robust enough to variations
in the network and machine load. It does not require the agents to be written in any
particular programming language.

The agents may interact directly with the simulation engine or through the System for
Parallel Agent Discrete Event Simulation (SPADES) middleware layer. The simulation engine
acts as a server, handling the messages of the agents and replying back with other messages.
In the case of the humanoid soccer simulation, on each simulation cycle the agent sends a
message to the server containing information about the effectors2 (e.g. joints). The message
from the server to the agent contains temporal information and information specific from the
application domain (which is soccer). This information includes game state (play mode, time
and current result), and information of the perceptors of the robot3 (e.g. joints, gyroscopes,
foot sensors, vision information). The messages are constructed using a LISP-like format.

1http://www.ode.org/.
2Effector is a common term used in robotics to represent an actuator of the robot.
3Perceptor is a common term used in robotics to represent an input sensor of the robot.

28

Hugo Rafael de Brito Picado

Figure 4.1: Simspark server architecture.

4.2.2 Monitor

The monitor provides a simple graphical interface that allows the user to watch a simula-
tion. The simulations may be watched in real-time, but it is also possible to play simulation
log files. In the particular case of humanoid soccer simulation, it provides additional informa-
tion such as the team names and the game time, play mode and result. Several shortcut keys
may be used to change camera views, to drop the ball, and other useful operations. Figure
4.2 represents the soccer monitor.

Figure 4.2: Simspark monitor screenshot.

29

CHAPTER 4. SIMULATION ENVIRONMENT

4.3 The simulated agent

The simulator provides some agent models modeled in a LISP-based scripting language so
it is possible to change the agent’s configuration without recompiling all the code. In the first
experiments related to this thesis, the HOPE-1 humanoid was used. With the introduction
of a model of the Aldebaran NAO robot (See section 2.5.4), the agent model used for tests
was changed not only because the popularity of NAO, but also because the defined model is
more realistic. Despite their physiognomy (e.g. dimensions, number and type of joints) both
humanoids have a gyroscope at the torso, two foot sensors that provide information about
the force applied by the feet on the ground and also allow to know whether a foot is touching
the ground or not. Additionally, they have a perceptor and an effector for each joint. The
perceptors provide feedback information about the angular position of the joint. The effectors
allow for changing the angular position of the joints and affect the environment.

4.3.1 HOPE-1

HOPE-1 stands for Humanoid Open Platform Experiment and it was the first model of
a humanoid robot used for RoboCup 3D Soccer Simulation League [13]. It was loosely based
on Fujitsu HOAP-2 (Section 2.5.3). Loosely because the model is not realistic at all since
the relation height-weight is not real (3.75 meters of height and 5.50 kilograms). This was
an obstacle to the development of behaviors since the equilibrium was unlike to be really
achieved and this is one of the main reasons why the NAO simulated model (explained in the
next section) became so popular among the RoboCup teams.

Figure 4.3: RoboCup simulated HOPE-1 humanoid.

Description

HOPE-1 has 3.75 meters of height and 5.50 kilograms and contains 20 DOFs, 4 on each
arm and 6 on each leg. There is no DOF for neck movements but since HOPE-1 had an
omnidirectional vision camera, this was not a problem. Additionally, there is no joint limits
so unnatural movements are possible. This humanoid is also equipped with one gyroscope
at the torso (that provides pitch, roll and yaw information about the oscillation rates of the
robot) and Force Resistance Perceptors (FRP) which provide information about the force
applied on each foot, whenever the foot is in contact with the ground. The FRP also provides
a point which is the average of all contact points where the force is applied.

30

Hugo Rafael de Brito Picado

Joint configuration

Figure 4.4 represents the configuration of the HOPE-1 joints. It shows the hinge joints4

and the Universal Joints5.

larm1_2

larm3

larm4

rarm1_2

rarm3

rarm4

lleg1

rleg1

lleg2_3

rleg2_3

lleg4

rleg4

lleg5_6

rleg5_6

X

Y

Z

Figure 4.4: HOPE-1 joint configuration.

A more detailed configuration is presented in the Table 4.1. The table presents, for each
joint, its name, its type, its parent body part and the axis it can perform a movement relative
to the referential illustrated in the Figure 4.3.

Joint name Joint type Parent Rotation axis (X,Y,Z)

arm1 2 Universal Shoulder (1,0,0) and (0,1,0)

arm3 Hinge Shoulder (0,0,1)

arm4 Hinge Elbow (1,0,0)

leg1 Hinge Hip (0,0,1)

leg2 3 Universal Thigh (1,0,0) and (0,1,0)

leg4 Hinge Knee (1,0,0)

leg5 6 Universal Foot (1,0,0) and (0,1,0)

Table 4.1: HOPE-1 joint configuration. The l and r prefixes of leg and arm joints represent the left
and right side, respectively, and were omitted for readability.

4A hinge joint is a simple joint with one DOF.
5An universal is a joint composed by two DOFs.

31

CHAPTER 4. SIMULATION ENVIRONMENT

4.3.2 Simulated NAO

RoboCup humanoid soccer league recently created a virtual model of NAO (See Figure 4.5)
with the same physical characteristics and it is more likely to be used in future competitions.
It is really similar to the real NAO, not only in the body measures but also in the body look.

Figure 4.5: RoboCup simulated NAO humanoid.

Description

The simulated model of NAO pretends to be as much as possible near to the real NAO
(See Section 2.5.4). It has 57cm of height, its weight is about 4.5kg and contains 22 DOFs, 4
on each arm, 6 on each leg and two on the neck. Joints are limited so unnatural movements
should not be possible, though this feature was deactivated in the 2008 competition. This
humanoid is also equipped with one gyroscope at the torso (that provides pitch, roll and yaw
information about the oscillation rates of the robot) and FRPs which provides information
about the force applied on each foot, whenever the foot is in contact with the ground. The
FRP also provides a point which is the average of all contact points where the force is applied.

Joint configuration

NAO contains only hinge joints which means that the number of joints is the same as the
number of DOFs. Figure 4.6 represents the configuration of the simulated NAO body.

A more detailed configuration is presented in the Table 4.2. The table presents, for each
joint, its name, its parent body part and the axis it can perform a movement relative to the
referential illustrated in the Figure 4.6.

32

Hugo Rafael de Brito Picado

lleg1

lleg2

lleg3

lleg4

lleg5

lleg6

rleg1

rleg2

rleg3

rleg4

rleg5

rleg6

head1

head2

larm1

larm2

larm3

larm4

rarm1

rarm2

rarm3

rarm4

X

Y

Z

Figure 4.6: Simulated NAO joint configuration. Hinge joints are represented on blue. The used
referential is also represented. Adapted from: [46].

Joint name Joint type Parent Rotation axis (X,Y,Z)

head1 Hinge Neck (0,0,1)

head2 Hinge Neck (1,0,0)

arm1 Hinge Shoulder (1,0,0)

arm2 Hinge Shoulder (0,1,0)

arm3 Hinge Shoulder (0,0,1)

arm4 Hinge Elbow (1,0,0)

leg1 Hinge Hip (− sin(π
4), 0, sin(π

4))

leg2 Hinge Thigh (0,1,0)

leg3 Hinge Thigh (1,0,0)

leg4 Hinge Knee (1,0,0)

leg5 Hinge Foot (1,0,0)

leg6 Hinge Foot (0,1,0)

Table 4.2: Simulated NAO joint configuration. The l and r prefixes of leg and arm joints represent
the left and right side, respectively, and were omitted for readability.

33

CHAPTER 4. SIMULATION ENVIRONMENT

4.4 Alternatives

Many simulators are available that can be used to develop biped locomotion strategies.
However, in this section the most similar to Simspark are briefly presented:

• Microsoft Robotics Studio (MSRS)6: Freeware Windows-based environment to cre-
ate robotics applications for academic or commercial purposes. A huge variety of hard-
ware platforms are supported. It includes a lightweight REST-style, service-oriented
runtime, a set of visual authoring and simulation a complete documentation support.

• Webots7: Open-source environment powered by Cyberbotics. It allows the user to
model, program and simulate mobile robots. The included robot libraries allows the user
to transfer the control programs to several commercially available real mobile robots.

• Player/Stage/Gazebo8: Open-source project that runs under UNIX-like environ-
ments such as Linux. Player is a network server for robot control. It provides a cleaning
and simple interface to the robot’s sensors and actuators over the IP network. Stage
and Gazebo provide 2D and 3D simulation environments, respectively, and are capable
of simulating a population of robots moving in and sensing the environment. Moreover,
Gazebo is capable of simulating the physical properties of the simulated objects.

4.5 Summary

This chapter presented the simulation environment used for experiments related to this
thesis. A set of advantages of the simulation were also discussed. The simulation environment
used is called Simspark and it is currently being used at the RoboCup 3D Simulation League.
After reading this chapter, one should be familiar with the architecture and components of
the simulator and how the communication between the agents and the simulator takes place.
Additionally, two simulated humanoid agents were presented: HOPE-1 and simulated NAO.
Since both these models were used and tested in the scope of this thesis, a brief description
about its structure was presented.

6http://msdn.microsoft.com/en-us/robotics/default.aspx.
7http://www.cyberbotics.com/.
8http://playerstage.sourceforge.net/.

34

Chapter 5

Low-level control

Control theory is a branch of engineering that is concerned with controlling a dynamical
system by influencing its inputs [71]. In robotics, one of the applications of these controllers
is to control servo motors1. In the particular case of humanoid robotics, servo motors can be
found in the joints and that’s why the biped as the ability to move an arm or a leg or even
its head. One of the major challenges in this field is to build low-cost and effective controllers
[72]. The cost is measured in energy consumption and effectiveness is measured by the error
between the desired and the effective behavior of the controlled system. In engineering, a
control system has at least two main modules: the controller itself and the system to be
controlled (the plant) [73].

5.1 Open-loop control

An open-loop control does not provide any feedback to verify if the system really reached
the desired output. Hence, using an open-loop system there is no way to correct the differ-
ence between the desired output and the effective output (called the output error) since no
information is available about this difference. Figure 5.1 shows the generic architecture of an
open-loop controller.

Figure 5.1: Open-loop control. For a discrete temporal value of n, x[n] represents the input (the
setpoint), u[n] the output of the controller and y[n] the output of the controlled system

For a correct use of this type of control, a very good knowledge about the plant is needed.
Open-loop control is more common in systems where the input-output relation can be modeled
by a mathematical equation. If the plant behavior is predictable, the open-loop control is
enough to control the system. Otherwise the system may need to be fed back. If Kc is the
controller proportional gain and Kp is the plant proportional gain, the output of the system
will be given by:

y[n] = Kpu[n] = Kc(Kpx[n]) (5.1)

1Servo motors are widely used in robotics due to its size and effectiveness and because they are not expensive

35

CHAPTER 5. LOW-LEVEL CONTROL

Assuming that the plant corresponds to a linear system (which may not be the case [74]),
any external disturbance will produce an error in the plant and the controller will not be able
to notice this disturbance and correct the error. If the mathematical model of the plant is not
precise, the consequences may be catastrophic, depending on the needs of the system. For
nonlinear systems, this problem becomes even more complex than this, since the nonlinear
systems are difficult to model and the nonlinear equations are difficult to solve [74].

5.1.1 Advantages

The main advantages of open-loop control are:

• Simple to understand;

• Simple to implement;

• Low-cost implementation and maintenance.

5.1.2 Drawbacks

The main drawbacks of open-loop control are:

• An accurate knowledge of the plant is needed;

• The system cannot be fed back;

• Sensitive to external disturbances.

5.2 Closed-loop control

As an alternative to open-loop control, the closed-loop control can be used. Usually, it is
not possible to model a precise mathematical formula of the plant. In this case, it would be
better a controller capable to adapt the system’s input, taking into consideration not only the
desired output, but also the effective output of the system. When the output of the system
is fed back into the system as part of its input, it is called the feedback control or closed-loop
control. Figure 5.2 represents the generic architecture of a closed-loop control system.

Figure 5.2: Closed-loop control.

For a discrete temporal value of n, x[n] represents the input (the setpoint), u[n] the output
of the controller and y[n] the output of the controlled system. Aditionally, f[n] represents the
feedback information provided by the feedback sensor.

36

Hugo Rafael de Brito Picado

Assuming a negative feedback control [71, 74], this information will be subtracted from
the desired output to generate the so called error, which is represented in the figure by e[n].
This error, which is the difference between the desired output and the effective output, will
be the new input of the controller. Let Kc, Kp and Kf be the proportional gains of the
controller, plant and feedback sensor, respectively. The output of the system is based on the
following system of equations [73].

y[n] = Kpu[n]
u[n] = Kc(x[n] − f [n])
f [n] = Kfy[n]

(5.2)

By solving these equation system, the output y[n] is given by:

y[n] = Kpu[n]
= Kp(Kc(x[n] − f [n]))
= Kp(Kc(x[n] − (Kfy[n])))
= KpKcx[n] − KpKcKfy[n] (5.3)

Isolating y[n], we obtain:

y[n] =
KpKc

1 + KpKcKf
x[n] (5.4)

By dividing the numerator and the denominator of the above equation by KpKc we get:

y[n] =
1

1
KpKc

+ Kf

x[n] (5.5)

Assuming the controller gain, Kc, is large enough to discard the first term of the denom-
inator, a simplified view of the equation can be obtained:

y[n] ≈ 1
Kf

x[n] (5.6)

The Equation 5.6 means that, if the controller gain is large enough, the output becomes
less sensitive to external disturbances in the plant. Since real systems are always affected by
some noise, with a particular focus to robotics, this type of control has many advantages over
the open-loop control described in the previous section.

5.2.1 Advantages

The main advantages of closed-loop control are:

• The system is fed back for error correctness;

• Less sensitive to external disturbances;

• There is no need for an accurate knowledge of the plant.

37

CHAPTER 5. LOW-LEVEL CONTROL

5.2.2 Drawbacks

The main drawbacks of closed-loop control are:

• The architecture is more complex than in the open-loop control;

• Need for sensory feedback;

• Its inherent reactive structure is not suited for acting in antecipation.

5.2.3 PID control

PID stands for Proportional-Integrative-Derivative and is a particular implementation of
a closed-loop control, widely used in industrial processes and robotics [71, 74, 75, 76]. It is
also known by the three-term controller since it uses three gains to generate the output. The
controller’s output as a continuous time signal is described by:

u(t) = KP e(t) + KI

∫ t

0
e(τ)dτ + KD

de(t)
dt

(5.7)

The equivalent discrete equation is given by the following system of equations [73]:
u[n] = KP P [n] + KII[n] + KDD[n]
P [n] = e[n]
I[n] = I[n − 1] + Te[n]
D[n] = e[n]−e[n−1]

T

(5.8)

where T is the interval between discrete samples. The generic architecture is the same as
shown in the Figure 5.2. What makes this control special is the internal configuration of the
controller block. Figure 5.3 represents a detailed view of the controller block in the case of
PID control:

Figure 5.3: PID closed-loop control: Detailed view of the controller block.

38

Hugo Rafael de Brito Picado

The controller may appear in different variants: Proportional (P) controller (the most
simple, uses only the proportional term), Proportional-Integral (PI) Proportional-Derivative
(PD) controller and finally PID-controllers (all the terms are used). Taking the example
of a humanoid joint, if we want to move the joint 1 radian, the joint response will not be
immediate, but there will be some rise time. The goal of the joint controller is to increase the
rise as much as possible without producing instabilities. Figure 5.4 represents four situations
of the controlled joint.

0 1 2
0

0.5

1

1.5

(a)

Time (sec)

A
m

pl
itu

de

0 1 2
0

0.5

1

1.5

(b)

Time (sec)

A
m

pl
itu

de

0 1 2
0

0.5

1

1.5

(c)

Time (sec)

A
m

pl
itu

de

0 1 2
0

0.5

1

1.5

(d)

Time (sec)

A
m

pl
itu

de

Figure 5.4: Example: Joint control using PID controllers (a) P-controller (b) PD-controller (c) PI-
controller (d) PID-controller

Figure 5.4 shows some consequences of the different terms. A large proportional gain
may produce overshoot2. The integral term reduces (usually eliminates) the steady-state
error3 but, like the proportional term, reduces the rise time and may produce overshoot,
so it may be needed to decrease the proportional gain in order to add an integral term.
The derivative term reduces the overshoot and has a small effect in the steady-state error.
A correct definition of the three terms will reduce the rise time, reduce the overshoot and
reduce (probably eliminating) the steady-state error. There are some approaches to define
the PID gains though the most popular is Ziegler-Nichols method [77].

2Overshoot refers to an output exceeding its final value
3The steady-state error is defined as the different between the input and the output of a system

39

CHAPTER 5. LOW-LEVEL CONTROL

5.3 Summary

This chapter presented the two main types of control, open-loop and closed-loop, as well
as its main differences. PID control is a particular case of closed-loop control which deserves
a particular attention due to its popularity in robotics. Due to that popularity and results
already demonstrated, a PID control interface was implemented in the scope of this thesis to
control the humanoid joints at a lower level and proved to be extremely useful when generating
the trajectories for the angular velocities of the different joints.

40

Chapter 6

Trajectory Planning

Trajectory can be defined as the set of points followed by a mobile object over the time. In
the case of robotic joints, trajectory planning consists of breaking the joint space into many
start and end points during some amount of time. A gait generator (or behavior generator) is a
system capable of generating gaits (e.g. walk, turn, get up) by computing different joint target
trajectories. This chapter describes the several trajectory planning methods implemented in
terms of joint trajectory equations, implementation, supporting configuration language (when
applicable) and some interesting results. The behaviors developed using the implemented
methods will be presented later in Chapter 7.

A GaitGenerator class was developed to simplify the integration of the different generators
(Figure 6.1).

Gai tGenerator

#name: s t r ing
+ini t () : void
+execute(): void
+finished(): bool

Figure 6.1: GaitGenerator class. It has a protected attribute, which is the name of the gait, and three
main methods that must be implemented by derived classes.

The class GaitGenerator provides three virtual methods that must be implemented by all
derived classes:

• init: Initializes the gait by resetting gait phases and other control variables.

• execute: Schedules the gait for execution by sending the desired trajectory to the joint
control module.

• finished: Checks whether the gait is finished. A gait is finished when it completes an
entire gait cycle.

Figure 6.2 represents the life-cycle of a behavior. The gait generator provides the angular
positions for all joints to the joint controller. The joint controller then applies some kind
of low-level control (e.g. PID) and generates the corresponding angular velocities. Finally,
the angular velocities are collected by the Actions module that creates the message and then
sends it to the server so that the behavior can be performed by the humanoid.

41

CHAPTER 6. TRAJECTORY PLANNING

Angular velocity

for each joint

Angular position

for each joint
Command

stringGaitGenerator JointControl Actions

Message creationLow-level ControlTrajectory Planning

MessageParser

Message handling

WorldState

Agent’s memory

Feedback

string

Processed

information

Control feedback

S
erverA

ge
nt

Figure 6.2: Behavior life-cycle.

The server performs the action and sends the effective joint angular positions back to the
agent. The message parser handles the feedback message and processes this information to
deliver it to the World State. This information is then kept in the agent’s memory but it is
also sent to the joint controller so a closed-loop low-level control is possible.

6.1 Step-based method

This section presents the method used by the FCPortugal3D team before this thesis.
The step-based method generates trajectories using step functions. A step function is a
discontinuous function consisting of a series of constant functions, each one defined in some
interval of time.

6.1.1 Joint trajectory generation

The method used for the generation of the joint trajectories is very simple. It corresponds
to a step function whose amplitude is the desired target angle for the joint on each interval
of motion. The trajectory equation for each joint is described by the function f(t), defined at
time t, as follows:

f(t) =
n∑

i=0

θi · uAi(t),∀t ∈ < (6.1)

where n is the number of intervals, Ai is the interval i, and θi is the desired target angle for
the joint at the interval i. uAi(t) is called the indicator function of A and is defined as follows:

uAi(t) =

{
1, if t ∈ Ai

0, otherwise
(6.2)

The rise time of the step response will depend on the controller used (See Chapter 5), as shown
in the Figure 6.3. For this method a simple proportional controller was defined. Hence, the
joint angular velocities are computed based on the following equation:

ω(t) = γ(θtarget − θcurrent) (6.3)

42

Hugo Rafael de Brito Picado

The parameter γ is the proportional controller gain, θtarget is the desired angle and θcurrent

is the effective angle of the joint. It is not possible to control the exact time that the controller
will take to reach the desired angle so a tolerance value is associated with each angle. The
angle tolerance means that, if the desired angle is 30 degrees and the tolerance is 2 degrees,
28 degrees will be acceptable. Hence, the step is considered finished when the current angle
has an acceptable value.

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

45

(a)

Time (sec)

A
ng

le
 (

de
g)

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

45

(b)

Time (sec)

A
ng

le
 (

de
g)

Figure 6.3: Step response. In the example the joint will try to go from 0 degrees to 30 degrees. (a)
Small proportional gain results on long rise time (b) Large proportional gain reduces rise time but
may result on overshooting the target.

6.1.2 Implementation

A step-based behavior consists of a sequence of joint moves and each sequence moves a set
of joints in parallel by sending the corresponding target angles to the controller. A behavior
finishes with the end of the last sequence of the behavior, which happens when all joints of
that sequence finish their movements. A joint movement is finished when its current angle
has an acceptable value taking into consideration the tolerance value.

MoveJointsSeq

-name: str ing
-f i lename: str ing
-t imeout: f loat
- ini t t ime: f loat
-step: int

MoveJoints

- j IdVec: vector<int>
-angle1Vec: vector<f loat>
-angle2Vec: vector<f loat>
-tol1Vec: vector<f loat>
-tol2Vec: vector<f loat>
-waitTime: int
-timeToWait: int
-gain: f loat
-paramAngle1Vec: vector<int>
-paramAngle2Vec: vector<int>
-paramTol1Vec: vector<int>
-paramTol2Vec: vector<int>
-paramWaitTime: int
-paramGain: int

1 *

Figure 6.4: Class diagram for step based behaviors.

43

CHAPTER 6. TRAJECTORY PLANNING

A simple scripting language is used to define the behavior1. The configuration file provides
some flexibilities to define the movements by providing extra options. Specifically, it is possible
to divide a sequence into several steps (A movement from θcurrent to θtarget may execute in N
steps instead of a single one). Moreover, the user can define the proportional gain that will
be used by the low-level controller, which will be used for all joints in a sequence. Finally,
the language allows for the definition of parameters instead of real numbers, which allows
for the use of online generated values (e.g. allowing for taking into account sensory feedback
information). Figure 6.4 represents the class diagram of the step-based method. Table 6.1
describe the classes MoveJointsSeq and MoveJoints in more detail.

Class Attribute Description

MoveJointsSeq

filename Name of the configuration file
timeout Forces a sequence to finish when the

behavior enters in a loop state
initTime Initialization time
step Current sequence being executed

MoveJoints

jIdVec Identifiers of the joints
angle1Vec, angle2Vec Angles of the first and second DOFs

of the joints
tol1Vec, tol2Vec Tolerances of the first and second

DOFs of the joints
waitTime Number of cycles to wait
timeToWait Number of cycles remaining until

finish the wait period
gain Proportional controller gain

Table 6.1: Description of the the MoveJointsSeq and MoveJoints classes.

Each attribute described above for the MoveJoints class has a corresponding attribute with
the same name with the prefix param. These additional attributes define, for each joint, the
index of the parameter vector where the value to use is stored, when using parameters instead
of constant real values in the configuration file. The variables paramsUse and paramsSet are
used to know if the parameters are being used and also if they are already defined.

6.1.3 Results

Figure 6.5 represents the trajectory of the knee for a simple bend-stretch movement, i.e.,
the robot bends the knees and then stretches the knees again. It is not possible to directly
define the exact duration of the several sequences of movements. However it is possible
to approximate it by changing the proportional gains. Although a large gain is needed to
produce the stretch movement in a quarter of a second, it will result on an overshoot that
is not possible to eliminate without increasing the rise time since only a proportional gain is
available. The generated trajectory is neither smooth nor precise leading to a non-stable gait.

1See Appendix C for more details

44

Hugo Rafael de Brito Picado

-60

-50

-40

-30

-20

-10

 0

 10

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

Effective angle
Desired angle

Figure 6.5: Evolution of a Step-based trajectory

6.1.4 Advantages

The main advantages of the step-based method are:

• Simple to understand;

• Simple to implement;

• Simple to define target trajectories (target angles and tolerances).

6.1.5 Drawbacks

The main drawbacks of the step-based method are:

• Time from current angle to target angle is unpredictable;

• No control over the angular velocity trajectory;

• The same gain is used for all joints;

• Sensitive to overshoot reactions at the control level;

• The syntax of the configuration file is not user-friendly;

• The model is not flexible.

6.2 Sine interpolation

The goal of sine interpolation is to give the user the opportunity to have a better control
over each joint trajectory by defining an interpolation of some smooth function over a specific
amount of time between the current angle and the target angle. Using this strategy, it is
possible to define not only the target angles, but also the time in which those angles should
be achieved, as well as control the initial and final angular velocities. This method is a very
simple version of the method proposed in [72] and was the first method implemented in the
scope of this thesis.

45

CHAPTER 6. TRAJECTORY PLANNING

6.2.1 Joint trajectory generation

This method is based on the concept of slot, which corresponds to an interval of time from
0 to δ, where several joints are moved in parallel. In each slot, the controller will interpolate
between the current angle and the desired angle by performing a sine-like trajectory in a
specified amount of time. Each joint follows a trajectory generated by the following expression:

f(t) = A ∗ sin
(

φf − φi

δ
t + φi

)
+ α,∀t ∈ [0, δ] (6.4)

where f(t) is the trajectory function, δ is duration of the slot in milliseconds, φi is the initial
phase (which will influence the initial angular velocity), φf is the final phase (which will
influence the final angular velocity), A is the amplitude and α is the offset. In order to
interpolate between the current angle and the desired angle, taking into account the initial
and final angular velocities, A and α must be calculated carefully. This is done using the
following expressions:

A =
θf − θi

sin(φf) − sin(φi)
(6.5)

α = θi − A ∗ sin(φi) (6.6)

where θi and θf are the initial and final angles, respectively, and should be defined between
−π and π. Figure 6.6 shows examples of smooth generated trajectories based on the equations
described. As an example, assuming φi = −π/2 and φf = π/2, the initial and final angular
velocities will be zero.

0 100 200 300 400 500
−20

−15

−10

−5

0

5

10

15

20

Time (ms)

A
ng

le
 (

de
g) φi = −

π

2

φf = 0

φi = −

π

2

φf =
π

2

φi = 0

φf =
π

2

θi =

θf =
δ =

Figure 6.6: Possible shapes with the Sine Interpolation method.

46

Hugo Rafael de Brito Picado

6.2.2 Implementation

The slot-based behavior is a set of slots describing the desired key poses of the biped. It
uses a PID controller for each joint. A slot is a set of move commands that will be executed
in parallel during some interval of time, δ. Each move defines the identifier of the joint and
the corresponding target angle. Optionally, it is possible to define other control parameters
such as initial phase and final phase of the sine trajectory (φi and φf) and the PID control
parameters. Figure 6.7 shows the class diagram of a slot-based behavior.

Gai tGenerator

#name: s t r ing
+ini t () : void
+execute(): void
+finished(): bool

SlotBasedBehavior

-slotIndex: int

Slot

-name: str ing
-delta: f loat

M o v e

- joint: int
-angle: f loat
-phasei: f loat
-phasef: f loat
-kp: f loat
-ki: f loat
-kd: f loat

1 * 1 *

Figure 6.7: Class diagram for slot based behaviors.

The step-based method, explained in the Section 6.1, gives support for universal joints
because it was entirely developed for experiments on HOPE-1 humanoid, which makes use of
universal joints. However, the simulated NAO humanoid has only hinge joints so the universal
joints supporting was omitted for clear readability. However, this generator and the others
presented in the remain of this chapter are flexible enough to easily add this support with
just a few lines of code. Table 6.2 describes the attributes of the classes SlotBasedBehavior,
Slot and Move in more detail.

Class Attribute Description
SlotBasedBehavior slotIndex Current slot being executed

Slot
name Name of the slot. This name can be

used to access the slot to change the
values online.

delta Duration of the slot, δ

Move

joint Identifier of the joint
angle Desired target angle for the joint
phasei, phasef Initial and final phases of the sine

trajectory (φi and φf)
kp, ki, kd

PID proportional, integral and
derivative gains

Table 6.2: Description of the classes SlotBasedBehavior, Slot and Move

For significant values of δ, only a P controller is needed. However, when this time be-
comes very small (near to the simulation cycle duration, which is about 20 milliseconds), the
integral and derivative gains become important to produce fast transitions without overshoot
reactions. A slot without any moves corresponds to wait δ milliseconds, which makes the
controller maintain the same values for the joint angles.

47

CHAPTER 6. TRAJECTORY PLANNING

6.2.3 Results

The example used for the previous generator is useful to check the advantage of using
PID controllers. Remembering the example, the robot bends the knees and then stretches
the knees again. In fact, without increasing the gain it is possible control the rise time using
the slot duration. However, this quick change in the joint produces overshoot (Figure 6.8a).

-60

-50

-40

-30

-20

-10

 0

 10

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

Effective angle
Desired angle

(a)

-60

-50

-40

-30

-20

-10

 0

 10

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4
A

ng
le

 (
de

g)

Time (s)

Effective angle
Desired angle

(b)

Figure 6.8: Evolution of a Sine Interpolation trajectory. (a) Using only a proportional gain (b) Using
the proportional and the derivative gains.

By adjusting the derivative gain2, a new trajectory for the knee was obtained (Figure
6.8b). It is possible no note a smooth and precise trajectory, that only differs from the target
by a simulation cycle, that is imposed by the server for realistic behavior purposes.

6.2.4 Advantages

The main advantages of the sine interpolation method are:

• Simple to understand and implement;

• Time from current angle to target angle is controlled;

• Some control over the angular velocities trajectories;

• The model is flexible;

• PID control allows for controlling the overshoot reactions;

• The motion description language3 is user-friendly and well structured.

6.2.5 Drawbacks

The main drawbacks of the sine interpolation method are:

• It is not possible to define more complex sinusoidal shapes;

• The angular velocities trajectories are not completely controlled.
2Derivative gain has the effect of reducing the overshoot (See Section 5.2.3)
3See Appendix C for more details

48

Hugo Rafael de Brito Picado

6.3 Partial Fourier series

The method of sine interpolation is restricted since it is not possible to define more complex
shapes with so few parameters. Most of humanoid movements show complex cyclic patterns,
which cannot be achieved using a simple sine interpolation. To overcome such restrictions in
the previous method, a new kind of target generation method, based on Partial Fourier Series
(PFS), was developed.

6.3.1 Joint trajectory generation

Some human-like movements are inherently periodic and repeat the same set of steps
several times (e.g. walk, turn, etc). Multi-frequency shapes can be achieved by PFS. The
principle of PFS consists of the decomposition of a periodic function into a sum of simple
oscillators (e.g. sines or cosines) as represented by the following expression:

f(t) = A0 + A1 sin(ωt + φ1) + A2 sin(2ωt + φ2) + . . . + AN sin(Nωt + φN)

= A0 +
N∑

n=1

An sin(nωt + φn),∀t ∈ < (6.7)

where N is the number of frequencies, An is the amplitude of the nth term, ω is the angular
frequency and φn is the phase of the nth term. Figure 6.9 shows examples of trajectories
generated by this method for N=1 and N=2.

0 1 2 3
−100

−80

−60

−40

−20

0

20

Time (s)

A
ng

le
 (

de
g)

N = 2

N = 1

Figure 6.9: Examples of trajectories obtained with the PFS method.

This is a solution many times applied to humanoid robotics [20, 48, 78]. The described
parameters can be adjusted to obtain different shapes. Tipically, evolutionary algorithms
such as Genetic Algorithms (See section 3.1.4) are used to find values to these parameters
[48, 78].

49

CHAPTER 6. TRAJECTORY PLANNING

6.3.2 Implementation

The implementation of this model is similar to the previous one, except that it generates
a different shape for the joint trajectory. It also uses a PID controller for each joint. The gait
generator has an attribute δ, aiming at controlling the duration of a complete gait cycle. The
initialization time is defined on each call of the init method with the current simulation time.

Gai tGenerator

#name: s t r ing
+ini t () : void
+execute(): void
+finished(): bool

FourierBasedBehavior

-initTime: f loat
-delta: f loat

Fourier

- joint: int
-kp: f loat
-ki: f loat
-kd: f loat

Sine

-ampli tude: f loat
-period: f loat
-phase: float
-offset: f loat

1 * 1

*

Figure 6.10: Class diagram for fourier based behaviors.

Figure 6.10 represents the class diagram of the fourier based behavior. Table 6.3 describes
the classes FourierBasedBehavior, Fourier and Sine in more detail.

Class Attribute Description

FourierBasedBehavior
initTime Initialization time
delta Duration of gait cycle

Fourier
joint Identifier of the joint
kp, ki, kd PID controller gains

Sine

amplitude Amplitude
period Period
phase Phase
offset Offset

Table 6.3: Description of the classes FourierBasedBehavior, Fourier and Sine.

6.3.3 Results

Figure 6.11 represents the trajectory of the knee when it is subject to the following tra-
jectory equation: f(t) = −40 + 20 sin(2πt) + 20 sin(4πt).

-80

-60

-40

-20

 0

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

Effective angle
Desired angle

Figure 6.11: Evolution of a PFS trajectory.

50

Hugo Rafael de Brito Picado

6.3.4 Advantages

The main advantages of the PFS method are:

• More complex shapes are possible;

• More control over the angular velocities trajectories;

• The model is flexible;

• The motion description language4 is user-friendly and well structured.

6.3.5 Drawbacks

The main drawbacks of the PFS method are:

• Requires some more complex knowledge about human behaviors;

• It is not easy to define trajectories manually.

6.4 Omnidirectional walking CPG

The ability to change the direction while moving has proved to have advantages in dy-
namic environments. Cornell introduced the omnidirectional drive for locomotion in 2000
for wheeled robots [79]. However, omnidirectional locomotion can be applied in many other
situations [80, 81]. Based on the work of Sven Behnke [43, 39] an Omnidirectional Walking
(ODW) was implemented. Sven Behnke describes this method for the humanoid robot Jupp
(NimbRo humanoid team) [43].

Note: With the exception of some few changes for the adaptation to the NAO robot, all
the trajectory generation equations here described are part of the study of Sven Behnke [43].

The engine consists of a CPG that generates trajectories of the legs. Three important
things are essential when generating omnidirectional walking gait [43]: To shift the center
of mass of the robot to the support foot, to short the non-support leg, and to move the
non-support leg into the walking direction and the support leg against the walking direction.
Using the same generator with different parameters, it is possible to generate forward walk,
backward walk, side walk, curved walk and the turn motion.

6.4.1 Joint trajectory generation

The input parameters are described by the vector a = (ar, ap, ay) which corresponds to
the lateral swing amplitude, forward swing amplitude and rotational amplitude, respectively.
A gait phase, φgait, varies between −π and π. φleg represents the phase of a leg and will
correspond to φgait − π/2 for the left leg and φgait + π/2 for the right leg. The step of one
leg during the whole gait is divided into five stages (Shifting, Shortening, Swinging, Loading
and Balance), each of them with a special purpose. These stages are described in detail in
the following sections.

4See Appendix C for more details

51

CHAPTER 6. TRAJECTORY PLANNING

Shifting

The shifting stage consists of a lateral shift of the CoM over the support foot so the
robot can stand in one leg without falling. This stage is essential to change the walking
direction without falling. The function must produce a trajectory between −ashift and ashift

accordingly to the leg phase, where ashift is the shifting amplitude. The following equation
is used to produce such a trajectory:

θshift = ashift ∗ sin(φleg) (6.8)

To compute ashift, the roll and pitch amplitudes should be taken into account. The
following equation is used: ashift = 0.12 + 0.08 ∗ ‖(ar, ap)‖ + 0.7 ∗ |ar|. To shift the leg, both
leg and foot roll angles are needed. The trajectories for leg and foot are both calculated based
on the θshift computed above [43]:

θlegshift = θshift (6.9)
θfootshift = −0.5 ∗ θshift (6.10)

Shortening

Since the robot shifts to be supported by only one foot, the non-support foot is shortened to
be prepared to follow the walking direction without scrape on the ground [43]. The shortening
phase, φshort, determines the time course of the shortening [43]: φshort = vshort ∗ (φleg +
π/2 + oshort), where vshort is the shortening duration and oshort is the phase shift relative to
the shifting stage. To produce a smooth trajectory between the fully extended leg and the
shortened leg, a shortening factor is computed using the following equation:

γshort =

{
−ashort ∗ 0.5 ∗ (cos(φshort) + 1), if − π ≤ φshort < π

0, otherwise
(6.11)

where ashort = 0.2 + 2 ∗ ‖(ar, ap)‖ is the shortening amplitude. This dependency on swing
amplitudes makes the shortening amplitude increase with the gait speed. To lift the foot off
while pointing into the walking direction the following equation is used.

θfootshort =

{
ap ∗ 0.5 ∗ (cos(φshort) + 1), if − π ≤ φshort < π

0, otherwise
(6.12)

The trajectory equation for −π ≤ φshort < π was originally presented in [43] as −ap ∗
0.125 ∗ (cos(φshort + 1)). This equation was generating incorrect movements for the NAO
humanoid so it has to be adjusted to the one presented in Equation 6.12.

Swinging

The swinging stage should be planned carefully. It is the reason for most of the instability
problems in biped walking gait generators, since the biped must drive its entire body into the
walking direction supported by only one leg. The swing phase, φswing, determines the time
course of the swing [43] and is defined as follows:

φswing = vswing ∗ (φleg + π/2 + oswing) (6.13)

52

Hugo Rafael de Brito Picado

where vswing and oswing are, respectively, the duration of the swing and the phase shift of
the swing relative to the current gait phase, φgait. The swing is followed by a slow reverse
swing during the rest of the walking cycle. The swinging is sinusoidal but the reverse motion
is linear [43]. The original swinging equation, as stated in [43], was defined as:

θswing =

sin(φswing), if − π/2 ≤ φswing < π/2
b ∗ (φswing − π/2) − 1, ifπ/2 ≤ φswing

b ∗ (φswing + π/2) + 1, otherwise

(6.14)

where b = −2/(2∗π ∗vswing −π) represents the reverse motion speed. The swing is performed
using the leg joints and then partially balanced using the foot angles. The swing equations are
stated as follows. This equation has discontinuities at for φswing = −π/2 and φswing = π/2.
This problem is illustrated in Figure 6.12a.

−2 0 2

−2

0

2

(a)

φswing

θswing

−2 0 2

−2

0

2

(b)

φswing

θswing

Figure 6.12: Swing trajectory. (a) Discontinuities of the original equation [43] (b) Corrected trajec-
tory.

The trajectory was corrected using the following equation and is illustrated in Figure
6.12b:

θswing =

sin(φswing), if − π/2 ≤ φswing < π/2
b ∗ (φswing − π/2) + 1, ifπ/2 ≤ φswing

b ∗ (φswing + π/2) − 1, otherwise

(6.15)

Finally, the final swing trajectories, both for the leg and for the foot, are described using
the equations 6.16 to 6.20.

θr
legswing = λ ∗ ar ∗ θswing (6.16)

θp
legswing = ap ∗ θswing (6.17)

θy
legswing = λ ∗ ay ∗ θswing (6.18)

θr
footswing = λ ∗ 0.25 ∗ ar ∗ θswing (6.19)

θp
footswing = 0.25 ∗ ap ∗ θswing (6.20)

where λ represents the leg side (-1 for left leg and 1 for right leg). The foot swing trajectories
were also changed from its original form [43] so that the leg side, λ, is multiplied by the roll
angle, θp

footswing, instead of the pitch angle, θr
footswing, because the both legs perform the same

movement in the pitch direction thus the leg side is just considered for roll and yaw rotations.

53

CHAPTER 6. TRAJECTORY PLANNING

Loading

When a human performs a walking motion, the swing phase extends the non-support leg
and it lands on the ground. After this, the non-support leg must be shortened once again to
help the other leg to perform its movement correctly. Additionally, at this stage, the lateral
shifting trajectory (which corresponds to a sine between −ashift and ashift) is passing through
its inflection point and the robot will now shift to the other side. This second shortening was
called by Sven Behnke as the Loading phase [43]. The phase of this second shortening is
determined by:

φload = vload ∗ GetNormalizedAngleRad(φleg + π/2 − π/vshort + oshort) − π (6.21)

where vload is the duration of the second shortening. The function GetNormalizedAngleRad
normalizes its input argument angle (in radians) to an angle between −π and π. Once again
a shortening factor, γload will be needed:

γload =

{
−aload ∗ 0.5 ∗ (cos(φload) + 1), if − π ≤ φload < π

0, otherwise
(6.22)

where aload = 0.025 + 0.5 ∗ (1 + cos(|ap|)) represents the amplitude of the second shortening.

Balance

To ensure a stable gait, the robot is balanced every step, which leads the body to tilt and
keep the upright posture [43]. For this stage, roll and pitch angles for the foot are determined,
as well as an additional leg roll angle to avoid collisions between the legs during side or turn
movements:

θr
footbalance = 0.5 ∗ λ ∗ ar ∗ cos(φleg + 0.35) (6.23)

θp
footbalance = 0.02 + 0.08 ∗ ap − 0.04 ∗ ap ∗ cos(2φleg + 0.7) (6.24)
θr
legbalance = 0.01 + λ ∗ ar + |ar| + 0.1 ∗ ay (6.25)

Output of the walking engine

The output of the engine, for each leg, will be θleg = (θr
leg, θ

p
leg, θ

y
leg), θfoot = (θr

foot, θ
p
foot)

and the leg extension factor, γ (−1 ≥ γ ≤ 0). The leg extension corresponds to the distance
between the pelvis plate and the foot plate (See Figure 6.13).

Figure 6.13: Representation of the leg extension factor (γ).

54

Hugo Rafael de Brito Picado

It is assumed that γ = 0 when the leg is fully extended and γ = −1 when the leg is
shortened to ηmin = 0.775 of its original length. The final output is computed by integrating
the several patterns using the following equations:

θr
leg = θr

legswing + θlegshift + θr
legbalance (6.26)

θp
leg = θp

legswing (6.27)

θy
leg = θy

legswing (6.28)
θr
foot = θr

footswing + θfootshift + θr
footbalance (6.29)

θp
foot = θp

footswing + θfootshort + θp
footbalance (6.30)

γ = γshort + γload (6.31)

Leg kinematics interface

The leg kinematics interface handles the output produced by the engine and generates the
joint target trajectories. The target relative leg length is based on the leg extension factor,
γ, and is computed as follows:

η = 1 + (1 − ηmin) ∗ γ (6.32)

The target relative leg length allows for the calculation of the knee joint, which is not
directly generated:

θknee = −2 ∗ acos(η) (6.33)

The yaw trajectory of the leg is taken directly from the θy
leg output. The trajectory of

the knee will short the leg, but will also affect the leg and foot angles. Assuming that the
thigh and the shank has the same length, if the leg is not twisted (θy

leg = 0) it is enough to
subtract 0.5 ∗ θknee from the leg and from the ankle to compensate this effect. For a twisted
leg (θy

leg 6= 0), the knee angle must be rotated before subtracting it from the leg and from the
ankle [43]. The final trajectories of the several leg joints are determined as follows:

f(t) =

−2 ∗ acos(ν), for knee joint
θy
leg, for leg yaw joint

(
θr
leg

θp
leg

)
+ rotateθy

leg

(
0

−0.5 ∗ θknee

)
, for leg roll and pitch joints

(
0

−0.5 ∗ θknee

)
+ rotate−1

θy
leg

(
θfoot −

(
θr
leg

θp
leg

))
, for foot roll and pitch joints

where, rotateX(
−→
Y) rotates the vector

−→
Y , by an angle defined by X.

55

CHAPTER 6. TRAJECTORY PLANNING

6.4.2 Implementation

This generator was implemented based on the class GaitGenerator. There is no supporting
language since these trajectories are completely generated online. The implemented gait
generator is internally divided in two modules: The ODW module itself and a Kinematics
interface for the leg that handles the output of the ODW module and produces the target
trajectories for each joint. Figure 6.14 shows the class diagram of the omnidirectional walk
generator. Besides the input, a = (ar, ap, ay), some of the constants defined in the trajectory
generation equations (e.g. shortening duration, shortening phase shift) are also included as
input parameters to make the model more flexible.

Gai tGenerator

#name: s t r ing
+ini t () : void
+execute(): void
+finished(): bool

Omnidi rect ionalWalk

-swingAplitudes: Vector3f
-updateFrequency: float
-gaitPhase: float
-vShort: f loat
-oShort: f loat
-vLoad: float
-vSwing: float
-oSwing: f loat

Figure 6.14: Class diagram for omnidirectional walk generator.

Table 6.4 describes the attributes of the class OmniDirectionalWalk in more detail. The
gait phase, φgait, is incremented by the update frequency, Ψ, on each cycle. The higher the
update frequency, the higher the gait speed but increasing this value may lead to instabilities.

Class Attribute Description

OmniDirectionalWalk

swingAmplitudes Three-float vector containing the
values for ar, ap and ay.

gaitPhase Gait phase, φgait

updateFrequency Determines the increment of the
gait phase on every cycle, Ψ.

vShort Shortening duration, vshort

oShort Shortening phase shift, oshort

vLoad Loading duration, vload

vSwing Swinging duration, vswing

oSwing Swinging phase shift, oswing

Table 6.4: Description of the class OmniDirectionalWalk.

6.4.3 Results

The behavior generated by this CPG will be presented in detail in the Chapter 7.

56

Hugo Rafael de Brito Picado

6.4.4 Advantages

The main advantages of the implemented Omnidirectional Walking CPG are:

• Complex shapes are possible;

• Angular velocities trajectories are completely controlled;

• Allows several gaits with just one generator (forward walk, backward walk, sided walk,
curved walk and turn on the spot);

• The generated gait is very similar to the natural human behavior.

6.4.5 Drawbacks

The main drawbacks of the implemented Omnidirectional Walking CPG are:

• There is no supporting language;

• Requires complex knowledge about human behaviors;

• The shifting stage leads to slower movements.

6.5 Summary

In this chapter four gait generation methods were presented. For each of them it was
described how the joint trajectories are generated, the implementation structure and the
main advantages and drawbacks. The step-based gait generator was developed out of the
scope of this thesis but it is also presented to give an overview of the state of the agent before
this thesis. It is possible to notice that as more complex are the shapes, more control is
possible over the gait but harder is to define the parameters. Low-level control issues were
successfully handled by the PID controllers.

The Slot Interpolation method was the first method developed and proved to be very
effective. It describes an interpolation of a sine function between the current and the desired
angle for each joint. This method allows for the control of the initial and final angular
positions of each joint as well as the duration of the movement. Optionally, it is also possible
to control the initial and final angular velocities for the joints.

The Partial Fourier Series (PFS) extends the previous method by allowing for more control
over the joint position trajectory and also over the angular velocities trajectories. For each
joint, it is possible to define a N-frequency PFS. This results on more complex shapes, harder
to define, but also results on more natural, stable and fast gaits.

An Omnidirectional Walking CPG was implemented based on the work of Sven Behnke
[43]. This method was studied in detail and implemented in the scope of this thesis and
applied with success FC Portugal 3D simulated team that participated in on RoboCup 2008
(Suzhou, China). In spite of not being faster than other gaits in the competition, it has
proved to be one of the most stable gaits.

57

CHAPTER 6. TRAJECTORY PLANNING

58

Chapter 7

Developed behaviors

This chapter presents the developed behaviors and the tests performed with the simu-
lated humanoid NAO, which employ the proposed trajectory planning methods, explained in
the previous chapter. These behaviors were developed in the scope of RoboCup 3D Soccer
competition using the Simspark Simulation Environment (Chapter 4). Some behaviors were
initially developed for HOPE-1 simulated humanoid (Section 4.3.1) and used in RoboCup
German Open 2008. With the introduction of the simulated model of NAO (Section 4.3.2),
new behaviors were developed and tested for the new platform.

LHip

LThigh1

LThigh2

LKnee

LAnkle1

LAnkle2

RHip

RThigh1

RThigh2

RKnee

RAnkle1

RAnkle2

Head1

Head2

LShoulder1
LShoulder2

LUpperArm

LElbow

RShoulder1
RShoulder2

RUpperArm

RElbow
Z

Y

X

Pitch

Roll

Yaw

Figure 7.1: Humanoid structure and global referential. The arrows around the axes represent the
positive direction of the pitch, roll and yaw rotations. Adapted from [46].

Figure 7.1 shows the humanoid structure and the referential axis considered in the re-
mainder of this chapter.

59

CHAPTER 7. DEVELOPED BEHAVIORS

7.1 Four-phase forward walking

The four phase forward walking behavior can be seen as a Finite State Machine (FSM)
with four states, each one representing a pose of the biped. All states form a complete walking
cycle: raise left leg (RL), land left leg (LL), raise right leg (RR) and land right leg (LR) (See
Figure 7.2).

LL

LR

RR
RL

Figure 7.2: Four-phase walking cycle.

The four-phase walking behavior was implemented using the Sine Interpolation method
and consists of four slots, each one representing one state. Repeating these states several
times will result on a periodic motion, where the CoM is kept at a constant height and at
a constant lateral direction. Using this strategy the CoM is not always inside the support
polygon, as illustrated in Figure 7.3. Hence, the steps should be small and fast enough to
avoid falling.

land left leg land right leg raise left legraise right leg

frontal

plane

sagittal

plane

support

polygon

CoM

CoM

CoM

Figure 7.3: Four-phase walking structure.

60

Hugo Rafael de Brito Picado

7.1.1 Reducing the parameter space

The first approach was to produce the trajectories manually for the 3 joints of each leg
that perform a pitch rotation (LThigh2, RThigh2, LKnee, RKnee, LAnkle1 and RAnkle1).
Since there are four slots to define, this results on 24 parameters. Additionally, the duration
of the slots (δ1 to δ4) should also be defined, increasing the size of the parameter space to a
total of 28 parameters.

The forward walking can be considered a symmetric motion, i.e., the right leg produces
the same movement of the left leg but shifted by half period. This reduces the parameter
space by half (12 parameters for the joints and the duration of only two slots). Taking a more
closer look, it is possible to define the gait using only 7 parameters (A to G) for the joints,
as illustrated in the Figure 7.4.

A

B
C

D

EF

A

B
C

D

EF

A

B

C

D

G

G

A

B

C

D

G

G

land left leg land right leg raise left legraise right leg

Figure 7.4: Four-phase walking: Reduced parameter space.

Defining 7 parameters for the joints and the duration of two slots (totalling 9 parameters)
is easier than define the 28 original parameters. This reduction of the parameter space is
favorable not only for the manual definition of parameters but also shortens the time that the
optimization process will take to complete, as will be seen later.

7.1.2 Manual definition of parameters

The parameters were initially defined by a manual trial-and-error process. The values
obtained manually for the parameters are present in the following table:

Parameter Value Parameter Value
A 47.0 F 55.0
B 43.0 G 50.0
C -83.0 δ1 20.0
D -87.0 δ2 20.0
E 47.0

Table 7.1: Four-phase walking: Values for the manually defined parameters.

61

CHAPTER 7. DEVELOPED BEHAVIORS

The duration of the slots was set to the minimum1 in order to produce a faster gait.
However, a slot of 20 milliseconds is equivalent to a step function since the controller has no
possibility to follow a sine in one cycle since it can only read a single value. Using this values
for the slot duration results on a faster gait, but the controller is not always capable to follow
the trajectories correctly, even when adjusting the PID controller gains. Since the steps are
very small and the feet are too near from the ground, any small noise added by the simulator
can make the robot scrape the feet, resulting on an unpredictable behavior. Figure 7.5 shows
the generated joint trajectories. In this figure it is possible to note the symmetry between
the left and the right legs.

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.5 1 1.5 2 2.5 3

A
ng

le
 (

de
g)

Time (s)

LThigh2
RThigh2

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 0.5 1 1.5 2 2.5 3

A
ng

le
 (

de
g)

Time (s)

LKnee
RKnee

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.5 1 1.5 2 2.5 3

A
ng

le
 (

de
g)

Time (s)

LAnkle1
RAnkle1

Figure 7.5: Four-phase walking: Joint trajectories. Only the joints that change are shown.

The trajectories are not very smooth due to the duration of the slots but most of the
times the robot performs well. However, a more predictable behavior is desirable. Keep
the non-support foot higher while swinging the leg would reduce the impact of the slightly
variations of the joints from the desired trajectories. A better walking quality is reached by
the employed optimization as will be explained later in this section.

1The duration of one simulation cycle is 20 milliseconds.

62

Hugo Rafael de Brito Picado

The CoM monitoring helps to evaluate the quality of the gait. Figure 7.6 shows the
evolution of the CoM. The robot keeps a constant height during the movement but there is a
problem with this behavior. Theoretically, the CoM would follow a linear trajectory between
the feet and the biped would perform an exact forward walking, as illustrated earlier in Figure
7.3. Looking at the CoM trajectory it is possible to see that the biped does not follow exactly
a forward trajectory, i.e., it tends to deviate from the target (Note the evolution of the dashed
line, which shows the Y component). Since the gait is completely symmetric, a possible reason
for this unnatural behavior is the noise associated with the simulation environment.

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

C
oM

 (
m

)

Time (s)

x
y
z

Figure 7.6: Four-phase walking: Evolution of CoM over time.

Figure 7.7 focus the problem by showing the evolution of the CoM and the placement of
the feet in the XY plane. The CoM keeps between the both feet but the feet does not perform
the correct trajectory. Another characteristic that can be seen is the small size of the steps.
The robot gives 13 steps to travel 40 centimeters which means that the steps are very short.

Figure 7.7: Four-phase walking: Evolution of CoM in the XY plane.

63

CHAPTER 7. DEVELOPED BEHAVIORS

Another important measure to evaluate the quality of the walking gait is the evolution of
the average velocity over time (Figure 7.8). With this simple walking gait, the robot is able
to reach more than 15 centimeters per second.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

A
ve

ra
ge

 v
el

oc
ity

 (
m

/s
)

Time (s)

Figure 7.8: Four-phase walking: Average velocity over time.

The torso average oscillation is a measure taken from the gyroscope readings2 and repre-
sents how much the torso oscillates over time in degrees per second. It is desirable to minimize
this measure. Figure 7.9 shows the evolution of the torso average oscillation over time.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

T
or

so
 a

ve
ra

ge
 s

ci
lla

tio
n

(d
eg

/s
)

Time (s)

Figure 7.9: Four-phase walking: Torso average oscillation over time.

It is possible to note some disturbance during the load of the gait but soon the humanoid
tends to stabilize the torso over time. The initial disturbance happens because the robot is
completely stopped and then starts an abrupt movement.

Figure 7.10 shows NAO demonstrating the walking motion. It should be noticed the
particular characteristic of having the knees bent to keep a constant height in the torso.
Once again, it is possible to see the steps of small height and swing amplitude.

2See Appendix B for more details

64

Hugo Rafael de Brito Picado

Figure 7.10: Four-phase walking: Screenshot.

From t=0.0s to t=1.36s the robot prepares the gait by bending the knees and placing the
left foot slightly in front of the right foot. At t=1.56s it raises the right leg (the height of the
step is very small and it is difficult to note in the screenshot) and then lands the right leg at
t=1.76s. The same movement is then repeated for the left leg.

7.1.3 Optimization

Two different optimization algorithms were tested for the optimization of the four-phase
forward walking: Hill Climbing (Hill Climbing (HC)) and Genetic Algorithm (GA)3. Both
algorithms optimize the same parameters and use the same fitness function for evaluation so
that a comparison could be possible. The parameters are the same that were defined manually.
The optimization algorithm tests each individual and assigns a score (fitness value) to that
individual. The individual with the minimum score at the end of the optimization process
will be chosen as the best individual. In the case of the forward walking, a simple but effective
fitness function to minimize can be the distance to the ball, assuming that the robot is placed
far enough from it.

[robot position] [ball position] - 0.2

Robot Ball
[distance to the ball]

Figure 7.11: Distance to the ball as a possible fitness measure.

Additionally, the torso average oscillation is also used in order to obtain more stable gaits.
The test of each individual is time-bounded but it also stops when the robot is 20 centimeters
away from the ball to avoid touching it, as illustrated in the Figure 7.11, so the minimum
ideal value for the fitness will would be 0.2. Two individuals capable of reaching that point
at the same time will be distinguished by the value of the torso average oscillation.

3See Sections 3.1.1 and 3.1.4)

65

CHAPTER 7. DEVELOPED BEHAVIORS

The final version of the fitness function is stated as follows:

fitness = dBall + θ (7.1)

where dBall is the distance to the ball (in meters) and θ is the average oscillation of the
torso (in radians per second). For each parameter there is an associated range of values
representing the definition domain. Accordingly to the previous knowledge of the expected
values, the range for each parameter was set by hand to reduce the solution space (Table 7.2).

Parameter Range Parameter Range

A [37,57] F [45,65]

B [33,53] G [40,60]

C [-93,-73] δ1 [20,100]

D [-97,-77] δ2 [20,100]

E [37,57]

Table 7.2: Four-phase walking: Definition domain of the parameters

Hill climbing results

HC is a very simple optimization algorithm that allows for a rough adjustment of the
parameters, achieving a better quality in a reasonable time. The initial individual is con-
sidered the best so far and it consists of the manually defined parameters. The algorithm
tests the current best individual and then uses a neighborwood function to find the neighbors.
Each individual is a possible solution composed by the parameters from A to G, δ1 and δ2.
The neighbors are the result of random variations applied to the current individual (Each
parameter is changed with an uniform distribution between -0.10 and 0.10). After testing
the current best individual and its neighbors, the one with the minimum fitness is choosen as
the best individual. Table 7.3 shows the configuration of the hill climbing algorithm used to
optimize the four-phase walking gait.

Size of an individual 9
Initial individual Manually defined

Neighbors selected 20 (Random Uniform)
Tests per individual 10

Termination Manual

Table 7.3: Four-phase walking: HC settings.

The simulation is non-deterministic so if the gait is not planned carefully, the same indi-
vidual may produce very different results under the same conditions. This problem can be
avoided by testing the same individual several times and assign it the worst score obtained,
favoring the behaviors that are less sensitive to the non-determistic nature of the simulation.
The obtained fitness evolution after about two days of optimization is represented in Figure
7.12.

66

Hugo Rafael de Brito Picado

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000

F
itn

es
s

Iteration

Figure 7.12: Four-phase walking with HC: Evolution of the fitness

The fitness value decreases during the first 600 iterations but after that it starts taking
a stable value. In fact, the value at the 1000 iteration is 1.21. This value is yet far from the
desired fitness value, which is 0.2. Table 7.4 shows the exact values of the best individual.

Parameter Value Parameter Value
A 47.62 F 54.69
B 42.67 G 50.05
C -82.61 δ1 20.00
D -87.41 δ2 20.00
E 47.26

Table 7.4: Four-phase walking with HC: Values for the parameters.

The values of δ1 and δ2 shows that the algorithm reached a local optima where it considers
the value 20 the best value for that parameters and did not improved beyond that. Figure
7.13 shows the evolution of the CoM in the XY plane as well as the placement of the feet
during the walking with the parameters optimized by the HC.

Figure 7.13: Four-phase walking with HC: Evolution of CoM in the XY plane.

67

CHAPTER 7. DEVELOPED BEHAVIORS

Some improvements are seen in the direction followed by the robot. After travelling one
meter the robot keeps its original orientation and lateral direction. The steps are larger than
the ones obtained with the manually defined parameters but yet small, i.e., the robot gives
25 steps and travels about 1 meter.

The average velocity shows visible improvements, i.e., the robot exceeded the 20 centime-
ters per second, which is better than using the manually defined parameters (Figure 7.14).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

A
ve

ra
ge

 v
el

oc
ity

 (
m

/s
)

Time (s)

Figure 7.14: Four-phase walking with HC: Average velocity over time.

The torso average oscillation increased a little bit during the load, but tends to stabilize
around a small value (Figure 7.15).

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10

T
or

so
 a

ve
ra

ge
 s

ci
lla

tio
n

(d
eg

/s
)

Time (s)

Figure 7.15: Four-phase walking with HC: Torso average oscillation over time.

In spite of being far from the desired fitness value, HC proved that can achieve good results
in a reasonable time (about two days). This time is reduced by testing each individual only
once but this will increase the sensibility of the gait to the non-determinism of the simulator.

68

Hugo Rafael de Brito Picado

Genetic algorithm results

GA imitates the biologic evolution of species by applying mutation and crossover opera-
tions in the individuals. This biological inspired method proved to achieve very good results
in several situations. Table 7.5 shows the configuration of the GA used to optimize the
four-phase walking gait.

Size of an individual 9
Population type Real numbers
Population size 100

Initial population Random Uniform
Selection Roulette
Mutation Uniform (pm = 0.5)
Crossover Scattered (pc = 0.8)

Elite Count 10
Migration interval 5
Migration fraction 0.1

Termination Manual

Table 7.5: Four-phase walking: GA settings.

The non-deterministic problem is now avoided by increasing the elitism parameter (Elite
count). By setting this parameter, the 10 best individuals are kept on each successive gener-
ation and tested again Figure 7.16 shows the evolution of the fitness during the optimization
process. The generation took almost 6 days to complete.

0 50 100 150 200
0

2

4

6

Generation

F
itn

es
s

va
lu

e

Best: 0.25559 Mean: 3.1561

1 2 3 4 5 6 7 8 9
−100

−50

0

50

100

Number of variables (9)

C
ur

re
nt

 b
es

t i
nd

iv
id

ua
l Current Best Individual

Best

Mean

Figure 7.16: Four-phase walking with GA: Evolution of the fitness.

69

CHAPTER 7. DEVELOPED BEHAVIORS

The fitness decreases fast but takes a long time to stabilize in some value. On the other
hand, the mean fitness also decreases fast after reaching its minimum it oscillates over that
value and does not tend to the minimum fitness value. This means that the algorithm is not
converging. Ideally, the mean fitness would be near to minimum fitness and all the individuals
of the final population would be good individuals. Decreasing the population size may solve
this problem. However, small population sizes may lead to a prematurely convergence of the
population on a inaccurante genetic form [82]. The minimum fitness is 0.25559, which is a
good result and the best individual is also presented in the figure. Table 7.6 shows the exact
values of the best individual.

Parameter Value Parameter Value
A 52.8328 F 60.1334
B 36.574 G 49.4642
C -73.9008 δ1 55.7978
D -81.4432 δ2 57.9796
E 41.9147

Table 7.6: Four-phase walking with GA: Values for the parameters

It is possible to note that GA was capable of achieving different values for δ1 and δ2, which
means that it avoided the local minima reached by HC, where the value for that parameters
is 20. Figure 7.17 shows the evolution of the CoM in the XY plane as well as the placement
of the feet during the walking with the parameters generated by the GA.

Figure 7.17: Four-phase walking with GA: Evolution of CoM in the XY plane.

It should be noticed that the biped follows a more correct forward trajectory, despite of
small oscillations present. Moreover, the steps given by the biped are longer, i.e., the robot
gives 5 steps and travels about 1 meter.

The average velocity also shows improvements. Now the robot is capable of reaching more
than 40 centimeters per second which is the double of the speed reached using the manually
defined parameters. Figure 7.18 shows the average velocity over time, when using the new
parameters.

70

Hugo Rafael de Brito Picado

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

A
ve

ra
ge

 v
el

oc
ity

 (
m

/s
)

Time (s)

Figure 7.18: Four-phase walking with GA: Average velocity over time.

On the other hand, the torso average oscillation increased a little bit, as shown in Figure
7.19. Once again the torso average oscillation is more during the load of the gait but this
time it stabilizes over time. This is not a bad result but it is more than the one achieved
with the manually defined parameters. This behavior is expected since the speed increased
too much causing an increase of the torso oscillation.

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
or

so
 a

ve
ra

ge
 s

ci
lla

tio
n

(d
eg

/s
)

Time (s)

Figure 7.19: Four-phase walking with GA: Torso average oscillation over time

As expected, GA provided a way to improve the quality of the gait in a great scale but this
can be improved even more by increasing the size of the initial population so the algorithm
can converge faster. The fitness function chosen proved to be very effective.

71

CHAPTER 7. DEVELOPED BEHAVIORS

7.2 Omnidirectional walking

Based on the work of Sven Behnke[43], an Omnidirectional Walking CPG was imple-
mented. The definition of the CPG was already presented in the Section 6.4, on the subject
of trajectory planning methods. This section presents the results obtained with the CPG. In
the description of the CPG (Section 6.4) some variables were not assigned. Table 7.7 describe
these variables.

Variable Description
ar Lateral swing amplitude (roll rotation)
ap Forward swing amplitude (pitch rotation)
ay Forward swing amplitude (yaw rotation)
Ψ Update frequency

vshort Duration of the shortening stage
oshort Phase shift of the shortening stage
oload Duration of the loading stage
vswing Duration of the swinging stage
oswing Phase shift of the swinging stage

Table 7.7: Omnidirectional Walking CPG control variables

The first 3 variables (ar, ap, ay) are the key variables used to control the direction of the
walking gait. The variable Ψ states the update frequency, i.e., on each cycle the gait phase,
φgait, is increased by Ψ. The values for these variables will depend on what is pretended
from the gait. By setting these values, it is possible to make the robot walk in different
directions (e.g. forward walk, side walk, backward walk, curved walk) and turn on the spot.
The remaining variables are internal to the CPG and were defined by Sven Benhke [43] as
follows:

Variable Value
vshort 3.0
oshort -0.05
vload 3.0
vswing 2.0
oswing -0.15

Table 7.8: Omnidirectional Walking CPG: Values for the control variables defined by Sven Behnke
[43]

This gait was developed to ensure static stability, which means that it keeps the CoM inside
the support polygon. As explained in the Section 2.2.1, the static stability criterion prevents
the robot from falling down by keeping the CoM inside the support polygon by adjusting the body
posture very slowly thus minimizing the dynamic effects. Thus, it should be predictable that
the generated gait will be slower than the previous ones. However, this gait has the advantage
of being capable of performing different behaviors using the same CPG. The following sections
will show the results when using the values presented in the Table 7.8.

72

Hugo Rafael de Brito Picado

7.2.1 Forward walking mode

The values of ar, ap, ay and Ψ should be planned carefully so that the robot can perform
the desired behavior as determistic as possible. For forward walking, only the pitch swing
amplitude, ap, should have a value different from zero. Assuming ar = 0 and ay = 0, there
are three main possibilities:

• ap = 0: The robot stands still

• ap > 0: The robot walks forward

• ap < 0: The robot walks backwards

The value of the update frequency, Ψ, will vary the walk velocity but also its stability.
The slower the value of Ψ, the slower will be the velocity and the robot remains more stable.
As the value of Ψ increases, the velocity also increases thus generating instabilities, because
the trajectories will not be followed properly. A suitable set of values for forward walking are
(ap, Ψ) = (0.25, 0.1). Figure 7.20 shows the generated joint trajectories.

-10

-5

 0

 5

 10

 15

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LThigh1
RThigh1

-10

 0

 10

 20

 30

 40

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LThigh2
RThigh2

-60

-50

-40

-30

-20

-10

 0

 10

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LKnee
RKnee

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LAnkle1
RAnkle1

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LAnkle2
RAnkle2

Figure 7.20: ODW Forward Walking: Joint trajectories. Only the joints that change are shown.

The generated trajectories are very smooth. It is possible to note double-frequency shapes.
For example, the two peaks that appear for the knee joints (LKnee and RKnee) clearly show
the shortening and the loading phases, respectively. The symmetry between the both legs is
also clear. Moreover, all the joints show a smooth transition from its initial position to the
desired trajectory.

73

CHAPTER 7. DEVELOPED BEHAVIORS

The Figure 7.21 shows the evolution of the CoM in the XY plane. The CoM is shifted to
the supported foot and keeps inside the support polygon everytime.

Figure 7.21: ODW Forward Walking: Evolution of CoM in the XY plane

This results on slower movements which can be depicted from the Figure 7.22, which
shows the evolution of the average velocity of the robot over time. The robot reaches about
10 centimeters per second, which is a low velocity when compared to the other developed
walking gaits.

 0

 0.05

 0.1

 0.15

 0.2

 0 5 10 15 20 25 30

A
ve

ra
ge

 v
el

oc
ity

 (
m

/s
)

Time (s)

Figure 7.22: ODW Forward Walking: Average velocity over time

The generated behavior is, in fact, slower, but the torso average oscillation tends to
stabilize on a slower value than the other walking gaits, as can be seen in Figure 7.23.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10

T
or

so
 a

ve
ra

ge
 s

ci
lla

tio
n

(d
eg

/s
)

Time (s)

Figure 7.23: ODW Forward Walking: Torso average oscillation over time

74

Hugo Rafael de Brito Picado

These results are useful to show a powerful advantage of this walking gait when relative
to the previous ones: The online control of direction. It is possible to correct the direction of
the robot online, by adjusting the value of the input parameter ay, which corresponds to the
yaw swing amplitude. By setting the value of ay to be, on each cycle, the direction to a point
that is placed some meters away in the forward direction relative to the vision referential, the
robot is able to adjust the angles of the hip joints to correct its direction. The hips follow a
non-periodic trajectory, since it will be adjusted only when needed, as shown in Figure 7.24.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 2 4 6 8 10

A
ng

le
 (

de
g)

Time (s)

LHip
RHip

Figure 7.24: Corrected ODW Forward Walking: Hip trajectory

The evolution of CoM in the XY plane (Figure 7.25 also shows that the robot corrects
itself to walk in the forward direction.

Figure 7.25: Corrected ODW Forward Walking: Evolution of CoM in the XY plane

This shows the great advantage of an omnidirectional walking gait. Moreover, this gait can
be configured for side walking and turning on the spot, as will be explained in the following
sections.

75

CHAPTER 7. DEVELOPED BEHAVIORS

7.2.2 Side walking mode

For side walking, only the roll swing amplitude, ar, should have a value different from
zero. Assuming ap = 0 and ay = 0, there are three main possibilities:

• ar = 0: The robot stands still

• ar > 0: The robot walks to the right

• ar < 0: The robot walks to the left

A suitable set of values for left side walking are (ar, Ψ) = (−0.07, 0.15). Figure 7.26 shows
the generated joint trajectories using these values.

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LThigh1
RThigh1

-10

 0

 10

 20

 30

 40

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LThigh2
RThigh2

-60

-50

-40

-30

-20

-10

 0

 10

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LKnee
RKnee

-5

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LAnkle1
RAnkle1

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LAnkle2
RAnkle2

Figure 7.26: ODW Side Walking: Joint trajectories. Only the joints that change are shown.

The Figure 7.27 shows the evolution of the CoM in the XY plane. The figure shows that
there is not deviation from the target direction.

Figure 7.27: ODW Side Walking: Evolution of CoM in the XY plane

The side walking motion achieved with this parameters is not very fast. The average
velocity only reaches a little bit more than 3 centimeters per second (Figure 7.28).

76

Hugo Rafael de Brito Picado

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 5 10 15 20 25 30
A

ve
ra

ge
 v

el
oc

ity
 (

m
/s

)

Time (s)

Figure 7.28: ODW Side Walking: Average velocity over time

Once again, the torso average oscillation stabilizes in a very low value, as can be seen in
Figure 7.29.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10

T
or

so
 a

ve
ra

ge
 s

ci
lla

tio
n

(d
eg

/s
)

Time (s)

Figure 7.29: ODW Side Walking: Torso average oscillation over time

7.2.3 Turning mode

Besides being capable of walking into different directions, the Omnidirectional Walking
CPG is also capable for generating trajectories to make the robot turn on the spot. This can
be done by adjusting the value of ay, which is the yaw swing amplitude. Assuming that ap

and ay are zero, there are three main possibilities:

• ay = 0: The robot stands still

• ay > 0: The robot turns to its left

• ay < 0: The robot turns to its right

A suitable set of values for turning right are (ay, Ψ) = (−0.25, 0.15). Figure 7.30 shows the
generated joint trajectories using these values. Once again smooth trajectories were achieved.
The hip joint plays an important role since it is the main responsible for the turning behavior.

77

CHAPTER 7. DEVELOPED BEHAVIORS

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LHip
RHip

-10

-5

 0

 5

 10

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LThigh1
RThigh1

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LThigh2
RThigh2

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LKnee
RKnee

-5

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LAnkle1
RAnkle1

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ng

le
 (

de
g)

Time (s)

LAnkle2
RAnkle2

Figure 7.30: ODW Turning: Joint trajectories. Only the joints that change are shown.

The Figure 7.31 shows the evolution of the CoM in the XY plane. As can be seen, the
robot performs a regular circle, finishing in the same place it started.

Figure 7.31: ODW Turning: Evolution of CoM in the XY plane

78

Hugo Rafael de Brito Picado

The turning motion is not very fast. A complete turn takes about 30 seconds to complete,
as can be seen in the Figure 7.32, which results on an angular velocity of about 12 degrees
per second.

-150

-100

-50

 0

 50

 100

 150

 0 5 10 15 20 25 30

O
rie

nt
at

io
n

(d
eg

)

Time (s)

Figure 7.32: ODW Turning: Orientation of the body over time

Moreover, the torso average oscillation has in a low value, even during the load, as can be
seen in Figure 7.33.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

T
or

so
 a

ve
ra

ge
 s

ci
lla

tio
n

(d
eg

/s
)

Time (s)

Figure 7.33: ODW Turning: Torso average oscillation over time

This was the main locomotion strategy of FC Portugal during the RoboCup 2008 (Suzhou,
China). It was clearly one of the most stable walking gaits in the competition and not so
sensitive to the machine load and network disturbances. However, the achieved velocities
were not able to compete with the best teams, as will be seen in Section 7.9.

79

CHAPTER 7. DEVELOPED BEHAVIORS

7.3 Forward walking based on PFS

After the competition in Suzhou, several improvements were made aiming at reaching the
quality of the best teams. One of the improvements was a walking gait based on PFS, which
is presented in this section. Due to the advantages of this trajectory planning method, it was
predicted that the achieved results would be better.

Figure 7.34: Forward Walking based on PFS. The figure represents the oscillators placed on the joints
considered for the motion.

The main idea behind the definition of this gait is to place an oscillator on each joint
we pretend to move, as illustrated in Figure 7.34. The oscillators are placed on the follow-
ing joints: LShoulder1, RShoulder1, LThigh1, RThigh1, LThigh2, RThigh2, LKnee, RKnee,
LAnkle1, RAnkle1, LAnkle2 and RAnkle2. The shoulders are used to help on stabilizing the
robot while walking. The joints that perform roll rotations (LThigh1, RThigh1, LAnkle2 and
RAnkle2) are used to shift the CoM over the support foot before raising the non-support foot,
aiming at producing a more stable gait. For the definition of this gait, 12 single-frequency
oscillators are used.

7.3.1 Reducing the parameter space

Since each single-frequency oscillator will have 4 parameters to define, 12 ∗ 4 = 48 param-
eters are needed to completely define the gait. As explained before, it is possible to assume a
sagittal symmetry, which states same movements between corresponding left and right sided
joints with a half-period phase shift. Hence, it is possible to reduce the number of parameters
by half of the original size, resulting on 6 ∗ 4 = 24 parameters. Additionally, the period of all
oscillators should be the same to keep all the joints synchronized by a single frequency clock.
This consideration reduce the number of parameters to 6 ∗ 3 + 1 = 19 parameters.

80

Hugo Rafael de Brito Picado

7.3.2 Defining the oscillators

After reducing the number of parameters, the next step is to define the gait. These include
defining the equations of the several oscillators. Let fX(t) be the trajectory equation for the
joint X. The gait trajectories can be generally defined as follows:

fLShoulder1(t) = A1 sin
(

2π

T
t + φ1

)
+ α1 (7.2)

fRShoulder1(t) = A1 sin
(

2π

T
t + φ1 + π

)
+ α1 (7.3)

fLThigh1(t) = A2 sin
(

2π

T
t + φ2

)
+ α2 (7.4)

fRThigh1(t) = A2 sin
(

2π

T
t + φ2

)
+ α2 (7.5)

fLThigh2(t) = A3 sin
(

2π

T
t + φ3

)
+ α3 (7.6)

fRThigh2(t) = A3 sin
(

2π

T
t + φ3 + π

)
+ α3 (7.7)

fLKnee(t) = A4 sin
(

2π

T
t + φ4

)
+ α4 (7.8)

fRKnee(t) = A4 sin
(

2π

T
t + φ4 + π

)
+ α4 (7.9)

fLAnkle1(t) = A5 sin
(

2π

T
t + φ5

)
+ α5 (7.10)

fRAnkle1(t) = A5 sin
(

2π

T
t + φ5 + π

)
+ α5 (7.11)

fLAnkle2(t) = A6 sin
(

2π

T
t + φ6

)
+ α6 (7.12)

fRAnkle2(t) = A6 sin
(

2π

T
t + φ6

)
+ α6 (7.13)

where Ai=1..6 are amplitudes, T is the period, φi=1..6 are phases and αi=1..6 are offsets. The
parameters for this gait were not defined manually because a great number of parameters were
available. Since the genetic algorithm was implemented, it was more practical to configure
and extend its capabilities to generate parameters for any arbitrary gait. The next section
describes the process for automatic generation of these 19 parameters.

7.3.3 Automatic generation of parameters

The parameters described in the previous section were defined by a GA. The option for
using GA is because it proved to be very good in achieving results. A range of possible values
for each parameter is used to generate the initial population of individuals. These ranges are
described in the Table 7.9. The ranges presented in the table were carefully planned with
base on the experience obtained from the definition of the other gaits, aiming at reducing
the time for the genetic algorithm. Some values are not wanted for some parameters so these
values can be excluded before starting the generation process.

81

CHAPTER 7. DEVELOPED BEHAVIORS

Parameter Range Parameter Range Parameter Range

A1 [45,60] φ1 [−π,π] α1 [-100,-80]

A2 [0,7] φ2 [−π,π] α2 [-7,7]

A3 [40,60] φ3 [−π,π] α3 [20,40]

A4 [30,40] φ4 [−π,π] α4 [-40,30]

A5 [45,60] φ5 [−π,π] α5 [20,40]

A6 [0,7] φ6 [−π,π] α6 [-7,7]

T [0.02,1.0]

Table 7.9: Forward Walking based on PFS: Range for the parameters

The configuration of the GA had to be redefined to handle this new gait. Table 7.10 shows
the configuration of the GA used to generate the Forward Walking based on PFS.

Size of an individual 19
Population type Real numbers
Population size 100

Initial population Random Uniform
Selection Roulette
Mutation Uniform (pm = 0.5)
Crossover Scattered (pc = 0.8)

Elite Count 10
Migration interval 5
Migration fraction 0.1

Termination 300 generations reached

Table 7.10: Forward Walking based on PFS: Genetic Algorithm settings

The fitness function is the same used for the four-phase walking gait. Remembering the
fitness function, it is defined by the following expression:

fitness = dBall + θ (7.14)

where dBall is the distance to the ball (in meters) and θ is the average oscillation of the torso
(in radians per second).

Since each test is time-bounded but also terminated when the robot is 20 centimeters
away from the ball, the ideal value for the fitness will be dBall = 0.2 and θ = 0, thus resulting
on a fitness value of 0.2. The generation process took five entire days to complete. Figure
7.35 shows the evolution of the fitness during the optimization process.

82

Hugo Rafael de Brito Picado

0 50 100 150 200 250 300
0

2

4

6

Generation

F
itn

es
s

va
lu

e

Best: 0.20311 Mean: 2.8653

0 5 10 15 20
−100

−50

0

50

100

Number of variables (19)

C
ur

re
nt

 b
es

t i
nd

iv
id

ua
l

Current Best Individual

Best fitness
Mean fitness

Figure 7.35: Forward Walking based on PFS: Evolution of the fitness.

The fitness decreases fast and stabilizes in a hundred of generations. However, it is possible
to note that the mean fitness is decreasing but not very fast. This means that the algorithm
is converging very slowly. Ideally, the mean fitness would be near to minimum fitness and all
the individuals of the final population would be good individuals. Decreasing the population
size may solve this problem. However, small population sizes may lead to a prematurely
convergence of the population on a inaccurante genetic form [82]. The minimum fitness is
0.20311, which is a very good result and the best individual is also presented in the figure.
Table 7.11 shows the exact values of the best individual.

Param. Value Param. Value Param. Value
A1 57.1841664300830 φ1 2.9594374142694 α1 -88.4624498858096
A2 5.6445494158487 φ2 -2.2855532147247 α2 3.6390431719035
A3 57.1211279163714 φ3 0.0886662311291 α3 35.9535879997734
A4 39.6205376170462 φ4 -1.8292118427537 α4 -39.9481259274544
A5 46.6315429218987 φ5 1.7640169998412 α5 28.5095204716035
A6 3.7946795761163 φ6 -1.2066624249361 α6 -2.9360040558212
T 0.3711045452651

Table 7.11: Forward Walking based on PFS: Values for the parameters

83

CHAPTER 7. DEVELOPED BEHAVIORS

Figure 7.36 show the trajectories of the joints over time. Smooth trajectories were
achieved. A PD controller was used for each joint. The robot performs well and it be-
comes less sensitive to disturbances due to the larger and higher steps.

-120

-110

-100

-90

-80

-70

-60

 0 0.5 1 1.5 2 2.5 3 3.5 4

an
gl

e
(d

eg
)

time (s)

LShoulder1
RShoulder1

-4

-2

 0

 2

 4

 6

 8

 10

 0 0.5 1 1.5 2 2.5 3 3.5 4
an

gl
e

(d
eg

)
time (s)

LThigh1
RThigh1

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

an
gl

e
(d

eg
)

time (s)

LThigh2
RThigh2

-70

-60

-50

-40

-30

-20

-10

 0

 0 0.5 1 1.5 2 2.5 3 3.5 4

an
gl

e
(d

eg
)

time (s)

LKnee
RKnee

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.5 1 1.5 2 2.5 3 3.5 4

an
gl

e
(d

eg
)

time (s)

LAnkle1
RAnkle1

-5

-4

-3

-2

-1

 0

 1

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4

an
gl

e
(d

eg
)

time (s)

LAnkle2
RAnkle2

Figure 7.36: Forward Walking based on PFS: Joint trajectories. Only the joints that change are shown.

Figure 7.37 shows the evolution of the CoM over time. It should be noticed here that the
robot keeps a constant height (Z component) and does not deviate from the forward direction
(Y component).

84

Hugo Rafael de Brito Picado

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.5 1 1.5 2 2.5 3 3.5 4
C

oM
 (

m
)

Time (s)

x
y
z

Figure 7.37: Forward Walking based on PFS: CoM trajectory over time

Figure 7.38 shows the evolution of the CoM in the XY plane. It also shows the placement
of the feet. The graphic shows that the CoM follows a linear trajectory in the forward
direction, which is the main characteristic of the walk. Another characteristic shown by the
same graphic is the size of the steps, which is big when compared with the four-phase walking
gait. The robot gives 5 steps and travels more than 1 meter.

Figure 7.38: Forward Walking based on PFS: The CoM and the feet in the XY plane

The average velocity (Figure 7.39) shows very good results. More than 50 centimeters per
second were achieved. This is a good velocity taking into account the torso average oscillation,
that is represented in the Figure 7.40.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

A
ve

ra
ge

 v
el

oc
ity

 (
m

/s
)

Time (s)

Figure 7.39: Forward Walking based on PFS: Average velocity over time

85

CHAPTER 7. DEVELOPED BEHAVIORS

The torso average oscillation is, in general, less than the same measure obtained for the
four-phase walking gait optimized with GA.

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
or

so
 a

ve
ra

ge
 s

ci
lla

tio
n

(d
eg

/s
)

Time (s)

Figure 7.40: Forward Walking based on PFS: Torso average oscillation over time

Figure 7.41 shows NAO walking forward using the proposed solution. At t = 1.64 the
biped already covered a great distance. It is possible to note the large steps and also the
height of the steps. Due to these two properties, this walking gait is less sensitive to the
non-deterministic problems that came from the simulation.

Figure 7.41: Forward Walking based on PFS: Screenshot

The PFS method proved to be very effective to generate periodic gaits, which is the case
of the walking gait.

86

Hugo Rafael de Brito Picado

7.4 Side walking

The ability to walk sideward is very useful to perform adjustments of the position when
the robot is near to the target position or even when walking sideward takes less time to place
the robot on the right place, at the right position and with the desired target orientation.
In the scope of a robotic soccer competition, this might be very useful to approach the ball
quickly to be ready to kick it without having to walk around it. The side walking motion
moves the CoM sideward without changing the absolute position in the forward direction.
Figure 7.42 shows the stages of the side walking.

frontal

plane

sagittal

plane

support

polygon

land left leg raise right leg land right leg raise left leg

CoM

CoM

CoM

Figure 7.42: Side walking

Due to its periodic nature, this method was also developed using the Partial Fourier Series
method. The placement of the oscillators is similar as described in the Figure 7.34, with the
exception that the arms oscillators are not defined.

7.4.1 Defining the oscillators

Thinking of how to define the oscillators took some days. This is because too many pa-
rameters are involved. Due to the experience acquired when defining parameters manually, it
was possible to define a set of oscillators. An important thing to notice first is that the offset
parameters define the gait when the oscillators keep a constant value (no oscillation). A sine
will oscillate with some amplitude around the value stated by the offset. For fast and stable
movements, it was already seen that it is better to keep the knees bent while moving. The
offsets will define this bent position.

87

CHAPTER 7. DEVELOPED BEHAVIORS

Some drafts of sine graphics were made in order to reach a final decision of how to define
the trajectories. The final trajectories are described from Equation 7.15 to Equation 7.24.
Basically, it is desirable to follow the phases represented in Figure 7.42, i.e, when the legs are
opened the knees are stretched to its maximum (considering the offset) and when the legs
are closed the non-support leg is shortened. It is possible to create this effect by differing
the sagittal plane and the frontal plane by a quarter of the period, π/2. The trajectories for
the thigh and the ankle in the sagittal plane are considered to be symmetric thus symmetric
amplitudes are used. On the other hand, in the frontal plane, the thigh and the ankle are
assumed to follow the same trajectory thus the same amplitudes are used.

fLThigh1(t) = A1 sin
(

2π

T
t +

π

2

)
(7.15)

fRThigh1(t) = −A1 sin
(

2π

T
t + π +

π

2

)
(7.16)

fLThigh2(t) = A2 sin
(

2π

T
t

)
+ α1 (7.17)

fRThigh2(t) = −A2 sin
(

2π

T
t + π

)
+ α1 (7.18)

fLKnee(t) = A3 sin
(

2π

T
t

)
+ α2 (7.19)

fRKnee(t) = −A3 sin
(

2π

T
t + π

)
+ α2 (7.20)

fLAnkle1(t) = A2 sin
(

2π

T
t

)
+ α3 (7.21)

fRAnkle1(t) = −A2 sin
(

2π

T
t + π

)
+ α3 (7.22)

fLAnkle2(t) = −A1 sin
(

2π

T
t +

π

2

)
(7.23)

fRAnkle2(t) = A1 sin
(

2π

T
t + π +

π

2

)
(7.24)

7.4.2 Manual definition of parameters

The PFS parameters were tuned manually during some days and good results were
achieved. The values found for the parameters described in the previous section are rep-
resented in Table 7.12.

Parameter Value Parameter Value
T 0.4 α1 30.0
A1 6.0 α2 -50.0
A2 4.8 α3 20.0
A3 -9.6

Table 7.12: Side walking: Values for the manually defined parameters

88

Hugo Rafael de Brito Picado

For the right-side walking, it is enough to change the parameter A1 to -6. The trajectories
generated during the turn motion are described in Figure 7.51. It should be noticed a smooth
sinusoidal pattern on each joint. The robot automatically adapts itself to the inherent pose,
i.e., in spite of the need to keep the knees bent, the robot does not need to use another gait to
prepare the side walking when it starts from a completely upright position because the PFS
method provides a smooth transition from its original pose.

-4

-2

 0

 2

 4

 6

 8

 10

 0 0.5 1 1.5 2 2.5 3 3.5 4

an
gl

e
(d

eg
)

time (s)

LThigh1
RThigh1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5 3 3.5 4

an
gl

e
(d

eg
)

time (s)

LThigh2
RThigh2

-70

-60

-50

-40

-30

-20

-10

 0

 0 0.5 1 1.5 2 2.5 3 3.5 4

an
gl

e
(d

eg
)

time (s)

LKnee
RKnee

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4

an
gl

e
(d

eg
)

time (s)

LAnkle1
RAnkle1

-4

-2

 0

 2

 4

 6

 8

 10

 0 0.5 1 1.5 2 2.5 3 3.5 4

an
gl

e
(d

eg
)

time (s)

LAnkle2
RAnkle2

Figure 7.43: Side walking: Joint trajectories. Only the joints that change are shown.

89

CHAPTER 7. DEVELOPED BEHAVIORS

Figure 7.44 shows the evolution of the CoM over time. The Z component of the CoM
trajectory shows that the height of the body is kept at a constant height and that there
almost no deviation in the forward direction, which is desirable.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
oM

 (
m

)

Time (s)

x
y
z

Figure 7.44: Side walking: Evolution of the CoM over time

To take a more closer look of the CoM, Figure 7.53 shows the evolution of the CoM in
the XY plane during a complete turn. It also represents the placement of the feet.

Figure 7.45: Side walking: The CoM and the feet in the XY plane

The trajectory of the CoM describes a line in the Y component. This predictable behavior
is essential to ensure good results during a competition. By analyzing the Figure 7.46 it is
possible to note that the robot can reach more than 10 centimeters per second. The torso
average oscillation (Figure 7.47) keeps very small over time.

 0

 0.05

 0.1

 0.15

 0.2

 0 5 10 15 20 25 30

A
ve

ra
ge

 v
el

oc
ity

 (
m

/s
)

Time (s)

Figure 7.46: Side walking: Average velocity over time

90

Hugo Rafael de Brito Picado

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
or

so
 a

ve
ra

ge
 s

ci
lla

tio
n

(d
eg

/s
)

Time (s)

Figure 7.47: Side walking: Torso average oscillation over time

Figure 7.48 shows NAO demonstrating the side walking motion. The natural position of
the side walk consists of bent knees and the legs slightly opened. Using the PFS method,
there is no need to previously prepare the gait since the robot will adapt to it smoothly,
starting from the position where all joints are set to zero.

Figure 7.48: Side walking: Screenshot

It can be seen from t = 0.0 to t = 0.94, where the robot performs the first lateral step and
finishes with in a double support phase with the knees bent and the legs slightly open. After
this time, the robot alternately raises and lands a leg producing a lateral walking motion.

91

CHAPTER 7. DEVELOPED BEHAVIORS

7.5 Turn around the spot

Turning the body consists of changing the orientation of the body around a spot (typically
the spot is its current position). The robot can turn to the left or to the right. The side to
turn is chosen by means of the target direction, i.e., if the target direction is between -180 and
0 degrees, the turn left movement is the best choice. Otherwise, the turn to right is better.
To keep the equilibrium, the biped should turn θ degrees periodically until reach the desired
direction (Figure 7.49).

noitceridlaitini

noitceridtegrat

topsnrut
rotation angle

turn side

Figure 7.49: Turn motion is performed by rotating the legs by small angle, θ periodically

After each step, the biped should be with the two feet aligned on the ground and rotated
θ degrees from its previous position. With respect to the target direction, a small tolerance
should be given since several turns of θ degrees may not make the robot face exactly the
target direction. The smaller the value of θ, the smaller is the tolerance needed, but slower
will be the gait. The turn motion is very similar to the side walk, as illustrated in Figure
7.50, i.e., instead of a roll rotation of the leg, resulting on a lateral translation, d, of the foot.
The turn motion performs an additional yaw rotation of θ degrees.

d

(a) (b) (c)

Figure 7.50: Similarities between the side walk and the turn motion: (a) Normal position of the feet
(b) Displacement due to a side walk step (c) Rotation of a turn step

92

Hugo Rafael de Brito Picado

7.5.1 Defining the oscillators

The same base constructed for the side walk was used and two new oscillators for the hip
were defined. Since there is no swing movement of the legs in the lateral direction during a
turn motion, the amplitudes of the joints LThigh1 and RThigh1 are defined with the same
values used for the joints LThigh2 and RThigh2. This reduces the original parameter space
to 5 parameters. The addition of the amplitude and the offset for the hips results on a total
of 7 parameters. The trajectory planning equations are stated as follows:

fLThigh1(t) = A2 sin
(

2π

T
t +

π

2

)
(7.25)

fRThigh1(t) = −A2 sin
(

2π

T
t + π +

π

2

)
(7.26)

fLThigh2(t) = A2 sin
(

2π

T
t

)
+ α1 (7.27)

fRThigh2(t) = −A2 sin
(

2π

T
t + π

)
+ α1 (7.28)

fLKnee(t) = A3 sin
(

2π

T
t

)
+ α2 (7.29)

fRKnee(t) = −A3 sin
(

2π

T
t + π

)
+ α2 (7.30)

fLAnkle1(t) = A2 sin
(

2π

T
t

)
+ α3 (7.31)

fRAnkle1(t) = −A2 sin
(

2π

T
t + π

)
+ α3 (7.32)

fLAnkle2(t) = −A2 sin
(

2π

T
t +

π

2

)
(7.33)

fRAnkle2(t) = A2 sin
(

2π

T
t + π +

π

2

)
(7.34)

fLHip(t) = A4 sin
(

2π

T
t +

π

2

)
+ α4 (7.35)

fRHip(t) = A4 sin
(

2π

T
t +

π

2

)
+ α4 (7.36)

7.5.2 Manual definition of parameters

Most of the parameters of the side walking oscillators were reused and the remaining
parameters were defined manually. Table 7.13 shows the values found for the parameters.

Parameter Value Parameter Value
T 0.4 α1 30.0
A2 4.8 α2 -50.0
A3 -9.6 α3 20.0
A4 -9.6 α4 -10.0

Table 7.13: Turn around the spot: Values for the manually defined parameters

93

CHAPTER 7. DEVELOPED BEHAVIORS

The trajectories generated during the turn motion are described in Figure 7.51. It should
be noticed a smooth sinusoidal pattern on each joint. The robot automatically adapts itself
to the inherent pose, i.e., in spite of need to keep the knees bent, the robot does not need
to use another gait to prepare the turn when it starts from a completely upright position
because the PFS method provides a smooth transition from its original pose.

-15

-10

-5

 0

 5

 10

 0 1 2 3 4 5

an
gl

e
(d

eg
)

time (s)

LHip
RHip

-10

-5

 0

 5

 10

 15

 20

 0 1 2 3 4 5

an
gl

e
(d

eg
)

time (s)

LThigh1
RThigh1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5

an
gl

e
(d

eg
)

time (s)

LThigh2
RThigh2

-70

-60

-50

-40

-30

-20

-10

 0

 0 1 2 3 4 5

an
gl

e
(d

eg
)

time (s)

LKnee
RKnee

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5

an
gl

e
(d

eg
)

time (s)

LAnkle1
RAnkle1

-10

-5

 0

 5

 10

 15

 20

 0 1 2 3 4 5

an
gl

e
(d

eg
)

time (s)

LAnkle2
RAnkle2

Figure 7.51: Turn around the spot: Joint trajectories. Only the joints that change are shown.

Figure 7.52 shows the evolution of the CoM (on the left) and the body orientation (on
the right) over time.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

C
oM

 (
m

)

Time (s)

x
y
z

-150

-100

-50

 0

 50

 100

 150

 0 1 2 3 4 5 6 7 8 9

O
rie

nt
at

io
n

(d
eg

)

Time (s)

Figure 7.52: Omnidirectional Walking: Evolution of CoM (left) and body orientation (right) over time

The Z component of the CoM trajectory shows that the height of the body is kept at
a constant height. Both CoM (X and Y components) and body orientation (from -180 to
180 degrees) show that the biped can perform a complete turn in about 9.8 seconds, which
corresponds to an angular velocity of 36.7347. Figure 7.53 shows the evolution of the CoM
in the XY plane during a complete turn. It also represents the placement of the feet.

94

Hugo Rafael de Brito Picado

Figure 7.53: Turn around the spot: The CoM and the feet in the XY plane

The trajectory of the CoM describes a regular circle around a spot that is placed just
in front of the robot. After a complete turn the biped is back to its initial position. This
predictable behavior is essential to ensure good results during a competition. Figure 7.54
shows NAO demonstrating the turn motion.

Figure 7.54: Turn around the spot: NAO performing a complete turn

The motion could be described using PFS with almost the same parameters as the side
walk. This led to the definition of a multi-purpose set of parameters that might be used in
the future to define other similar gaits.

95

CHAPTER 7. DEVELOPED BEHAVIORS

7.6 Kick the ball

To kick a ball is an essential skill for a robot that plays soccer. It is not very easy to control
the trajectory of the ball after the kick (aiming at producing an omnidirectional kick) since
there is no rough control over the position where the ball will be touched, unless when using
inverse kinematics (See Section 2.4.2). Inverse Kinematics allows to control the position of
the kicking foot (end effector) by guiding it to wherever point in the ball it should be kicked.
This would allow for flexible control over the direction and the speed of the ball. The Inverse
Kinematics module is out of the scope of this thesis so it was not possible to apply it in time.

raise left leg kick (phase 1) kick (phase 2)push left leg back

frontal

plane

sagittal

plane

support

polygon

CoM

CoM

CoM

Figure 7.55: Kick the ball. The figure shows a biped kicking in the forward direction with the right
leg

The Slot Interpolation method was used to define the kick motion. The parameters were
tuned manually in a trial-and-error process. Figure 7.55 shows the structure of the kick
motion. Several tests proved that better results can be achieved by dividing the kicking
phase into two phases. The first phase consists in place the leg aligned with the other leg
(in the sagittal plane) quickly. The second phase consists of straight the leg forward to kick
the ball. Two phases are necessary because moving the leg from back to front quickly may
produce overshoot in some joint trajectories. Since the kicking foot is very near to the ground
when it is aligned with the other leg (See the first phase of the kick in the Figure 7.55),
this overshoot can be enough for the foot to scrape on the ground, completely ruining the
movement. Due to the shifting phase, the CoM is always inside the support polygon (which
is formed by the non-kicking foot), with the assumption that the movement is not too abrupt
to generate instabilities.

Figure 7.56 show the evolution of the joint trajectories over time. The produced trajec-
tories are, in general, very smooth. The main problems arise when the robot quickly moves
the leg in the forward direction. This could not be avoided since the quick motion is needed
so the ball can reach a more far position.

96

Hugo Rafael de Brito Picado

For the joints that move in the sagittal plane (LThigh2, RThigh2, LKnee, RKnee, LAnkle1
and RAnkle1) the trajectories are not so smooth due to the fast transition during the kick
phases.

-15

-10

-5

 0

 5

 10

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LThigh1
RThigh1

-20

 0

 20

 40

 60

 80

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LThigh2
RThigh2

-100

-80

-60

-40

-20

 0

 20

 40

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LKnee
RKnee

-20

 0

 20

 40

 60

 80

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LAnkle1
RAnkle1

-5

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LAnkle2
RAnkle2

Figure 7.56: Kick the ball: Joint trajectories. Only the joints that change are shown.

The trajectory of the CoM in the XY plane (Figure 7.57) shows that the CoM is always
kept inside the support foot.

Figure 7.57: Kick the ball: The CoM and the feet in the XY plane

The graphic shows the CoM trajectory and the placement of the feet during the phases
represented earlier in Figure 7.55. There is a sligtly change of the CoM in the lateral direction
but since it is kept inside the support foot this does not affect the quality of the kick.

97

CHAPTER 7. DEVELOPED BEHAVIORS

An important measure to evaluate the quality of the kick motion is the trajectory of the
ball after the kick has effect. Figure 7.58 shows the position of the ball over time.

-1

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

P
os

iti
on

 (
m

)

Time (s)

x
y
z

Figure 7.58: Kick the ball: Position of the ball over time

The ball keeps a constant height and follows a completely linear trajectory in the forward
direction. This shows that the kick result in a very precise trajectory of the ball. The ball
travels about 3 meters away of its original position. Additionally, the torso oscillates a little
bit more during the kick phases but in general it keeps a low average oscillation value, as
represented in Figure 7.59.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6

T
or

so
 a

ve
ra

ge
 s

ci
lla

tio
n

(d
eg

/s
)

Time (s)

Figure 7.59: Kick the ball: Torso average oscillation over time

Figure 7.60 shows NAO demonstrating the kick motion. It is possible to note the several
phases of the kick motion. The robot starts the motion at t=1.12 seconds and backs to the
initial position at t=4.32 seconds, completely stable.

Figure 7.60: Kick the ball: Screenshot

98

Hugo Rafael de Brito Picado

Moreover, at t=4.32 seconds, the ball movement is almost over. The figure also shows
that the trajectory of the ball is completely in the forward direction and this always happens.
If we are able to ensure this deterministic behavior of the ball after the kick, the success is
more guaranteed.

Taking into consideration the strength characteristics of the simulated NAO model and
the stability of the motion, this kick produces very good results. It is possible to produce
a stronger kick by balance the robot forward while pushing the leg back and balance it
backwards again while kicking. The ball now travels more than 5 meters but not completely
forward. Figures 7.61 and 7.62 shows the results for the position of the ball and torso average
oscillation during the called Super Kick motion.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6

P
os

iti
on

 (
m

)

Time (s)

x
y
z

Figure 7.61: Super Kick: Position of the ball over time

 0

 5

 10

 15

 20

 0 1 2 3 4 5

T
or

so
 a

ve
ra

ge
 s

ci
lla

tio
n

(d
eg

/s
)

Time (s)

Figure 7.62: Super Kick: Torso average oscillation over time

There are two main drawbacks of this gait. The trajectory of the ball is not predictable
and the robot falls on the ground. In the Figure 7.61 it is possible to note a considerable
deviation of the ball from the target trajectory (forward direction). Figure 7.62 shows the
torso average oscillation reaching almost 20 degrees per second (At t=4 seconds, the biped
is already fallen, resulting on a low torso oscillation). For simulated competitions, this may
be useful when we are sure that the robot will score using the Super Kick. However, for real
robots, this is not acceptable since this will definitely damage the robot.

99

CHAPTER 7. DEVELOPED BEHAVIORS

7.7 Catch the ball

For a robot to catch a ball, acting as a goal keeper, a possible solution is to fall on
purpose to the side where it predicts the ball will be. The robot should be fast enough to be
effective on catching the ball. The gait was developed using the Sine Interpolation method
and consists of one single slot shifting the robot to the side quickly by adjusting the joints
LThigh1, RThigh1, LAnkle2 and RAnkle2. In order to cover a larger part of the goal, the
robot also raises the arms (Figure 7.63).

t seconds

Figure 7.63: Catch the ball. The shifting movement results on a fall with a duration of t seconds
(represented by the arrow).

The duration of the fall, t, should be as small as possible so the catch can be effective.
Figure 7.64 shows the trajectories of the joints during the simulation of the catch motion.

-100

-50

 0

 50

 100

 150

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LShoulder1
RShoulder1

-30

-25

-20

-15

-10

-5

 0

 5

 10

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LThigh1
RThigh1

-10

 0

 10

 20

 30

 40

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LAnkle2
RAnkle2

Figure 7.64: Catch the ball: Joint trajectories. Only the joints that change are shown.

100

Hugo Rafael de Brito Picado

Due to the fast transition of the leg joints, the controller was not able to avoid the over-
shoot, even after setting the PID parameters. The arms were able to follow the correct
trajectory using a simple PD controller.

Figure 7.65 shows the evolution of the CoM over time. The CoM trajectory is useful to
show the displacement in the lateral direction and that there is no deviation in the forward
direction.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6

C
oM

 (
m

)

Time (s)

x
y
z

Figure 7.65: Catch the ball: Evolution of CoM over time

By analyzing the Y and Z components of the CoM, we see that the robot finishes the gait
in less than a second. Figure 7.66 shows NAO falling on purpose to the left to demonstrate
the Catch motion.

Figure 7.66: Catch the ball: Screenshot

It should be noticed here that the robot starts at t = 0.92s and finishes at t = 1.52s.
Hence, the duration of the catch motion is less than a second (0.6s). In the final position the
robot is able to cover a half of the goal width, which is good if the prediction about the ball
position is accurate.

101

CHAPTER 7. DEVELOPED BEHAVIORS

7.8 Get up from the ground

A humanoid will always be subject to complex situations that will make it fall sometimes.
This situations are related not only with the quality of the locomotion but also with the
interaction with obstacles present in the environment. The robot may also fall on purpose
(e.g. to catch the ball). This led the researchers to develop new gaits that would make the
robot get up autonomously after the fall. Two situations are common to describe a fall:

• The humanoid falls on its face

• The humanoid falls on its back

Before starting with the trajectory planning, the robot needs to have the necessary high-
level knowledge to recognize the both situations above. The method used consists of deter-
mining the normal to the field with respect to the vision coordinate system (head referential).
Let N̂ = (Nx, Ny, Nz) be the normal vector in vision coordinates (Figure 7.67).

N

Z

X

Z

X

X

ZN N

(a) (b) (c)

Figure 7.67: Representation of the normal to the field with respect to the coordinate system of the
head (Figure shows a side view of the head). (a) Nx = 0: Upright position (b) Nx > 0: Inclined
backward (c) Nx < 0: Inclined forward

Figure 7.67 shows three possible situations. Using the normal to the field and the height
of the robot it is possible to know if the robot actually fell, as represented by the following
decision rule: {

Height < 0.15 and Nx < 0 ⇒ robot fell on its face
Height < 0.15 and Nx > 0 ⇒ robot fell on its back

(7.37)

Get up after falling forward

To get up after falling forward, the robot follows a set of key poses to get back in the
upright position. The Sine Interpolation is used in this case and each key pose of the robot
is described by one slot. Figure 7.68 shows the joint trajectories over time. The robot moves
several joints to get up from the ground. It is possible no note smooth trajectories both for
the arms and for the legs. All the joints are controlled by a PD controller to help on avoiding
the overshoot reactions. The figure shows the robot falling on purpose (before t = 2 seconds)
and starting getting up (after t = 2 seconds).

102

Hugo Rafael de Brito Picado

-100

-80

-60

-40

-20

 0

 20

 40

 60

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LShoulder1
RShoulder1

-100

-50

 0

 50

 100

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LShoulder2
RShoulder2

-50

-40

-30

-20

-10

 0

 10

 20

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LHip
RHip

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LThigh2
RThigh2

-140

-120

-100

-80

-60

-40

-20

 0

 20

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LKnee
RKnee

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LAnkle1
RAnkle1

-40

-20

 0

 20

 40

 60

 0 1 2 3 4 5 6

A
ng

le
 (

de
g)

Time (s)

LAnkle2
RAnkle2

Figure 7.68: Get up after falling forward: Joint trajectories. Only the joints that change are shown.

103

CHAPTER 7. DEVELOPED BEHAVIORS

Once again, monitoring the CoM is useful to show the quality of the gait. Figure 7.69
shows the evolution of the CoM over time.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5 6

C
oM

 (
m

)

Time (s)

x
y
z

Figure 7.69: Get up after falling forward: Evolution of the CoM over time

In about 3.2 seconds, the robot is back to the upright position, with a small displacement
in the forward direction (See the X component of CoM). The Y component of the CoM shows
that there is no deviation to the side while getting up. This means that the robot falls and
gets back in the upright position, keeping its previous orientation, which is typically the de-
sired case.

Another useful measure is the torso oscillation. Figure 7.70 shows a peak that is reached
while the robot falls on purpose to try to get up next. It can show how the torso oscillates
during the execution of the gait.

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6

T
or

so
 a

ve
ra

ge
 s

ci
lla

tio
n

(d
eg

/s
)

Time (s)

Figure 7.70: Get up after falling forward: Torso average oscillation over time

The robot gets up keeping a small torso oscillation and then it becomes zero when the
gait is finished. During the execution of the gait, a small oscillation is present.

104

Hugo Rafael de Brito Picado

A total of 8 poses were needed to get the robot upright. Figure 7.71 shows NAO getting
up after falling on face. The eight poses are represented.

Figure 7.71: Get up after falling forward: Screenshot

The robot takes about 3.2 seconds to get up (from t =2.0s to t=5.2s) which is a very good
result. This gait proved to be very successful, i.e., after a fall on its face, the robot always
gets up with success. This gait proved to be very effective during the competition in Suzhou
(RoboCup 2008).

Getting up after falling backwards

Sometimes the robot will also falls on its back. In order for a biped to get up after falling
backwards, two different approaches are commonly used:

• Turn the body on the ground and then use the gait described in the previous section

• Use a new gait to get up directly after falling backwards

Both approaches have advantages and disadvantages. The first approach is easier since
the hard work is already done, i.e., a gait to turn the robot is easier to develop than a gait
to get up directly. However, if the latter is correctly developed, the robot can get up faster
than using the first approach. For this thesis the first approach was used at the beginning,
but soon a gait to get up directly was also developed and it is currently being used. The
Sine Interpolation was once again used and each key pose of the robot is described by one slot.

Figure 7.72 shows the joint trajectories over time. Once again, the trajectories are the
same for the left and the right joints (arms and legs). The robot moves several joints to get
up. Both arms and legs use a PD controller aiming at avoiding the overshoot reactions. It is
possible to note smooth trajectories, meaning that the trajectory planning and the low-level
control are completely synchronized. The figure shows the robot falling on purpose (before t
= 1 second) and starting getting up again (after t = 1 second).

105

CHAPTER 7. DEVELOPED BEHAVIORS

-120

-100

-80

-60

-40

-20

 0

 0 2 4 6 8 10

A
ng

le
 (

de
g)

Time (s)

LShoulder1
RShoulder1

-30

-20

-10

 0

 10

 20

 30

 40

 0 2 4 6 8 10

A
ng

le
 (

de
g)

Time (s)

LShoulder2
RShoulder2

-100

-80

-60

-40

-20

 0

 20

 0 2 4 6 8 10

A
ng

le
 (

de
g)

Time (s)

LHip
RHip

-20

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

A
ng

le
 (

de
g)

Time (s)

LThigh2
RThigh2

-120

-100

-80

-60

-40

-20

 0

 20

 40

 0 2 4 6 8 10

A
ng

le
 (

de
g)

Time (s)

LKnee
RKnee

-50

-40

-30

-20

-10

 0

 10

 20

 0 2 4 6 8 10

A
ng

le
 (

de
g)

Time (s)

LAnkle1
RAnkle1

-10

-5

 0

 5

 10

 0 2 4 6 8 10

A
ng

le
 (

de
g)

Time (s)

LAnkle2
RAnkle2

Figure 7.72: Get up after falling backwards: Joint trajectories. Only the joints that change are shown.

106

Hugo Rafael de Brito Picado

CoM trajectory is very useful to monitor the quality of the developed gait. Figure 7.73
shows the evolution of the CoM over time. The figure shows clearly that the movement shows
at approximately 8.4 seconds. Since the robot starts the movement at t = 1 seconds. The
movement takes about 7.4 seconds to complete. The CoM trajectory shows no deviation in
the lateral direction (Y component).

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

C
oM

 (
m

)

Time (s)

x
y
z

Figure 7.73: Get up after falling backwards: Evolution of the CoM over time.

Figure 7.74 shows the torso average oscillation during the execution of the gait. It is clear
that this gait leads to more oscillations on the torso than the gait presented in the previous
section. This happens because getting up NAO after it falls backwards is a complex task that
involves unusual movements, due to its anthropomorphic characteristics.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

T
or

so
 a

ve
ra

ge
 s

ci
lla

tio
n

(d
eg

/s
)

Time (s)

Figure 7.74: Get up after falling backwards: Torso average oscillation over time.

A total of ten key poses are followed by the robot so that it can get back in the upright
position. Figure 7.75 shows NAO getting up from the ground after falling backwards. It is
possible to see some unusual movevents, as illustrated in the figure at t = 4.4 seconds.

107

CHAPTER 7. DEVELOPED BEHAVIORS

Figure 7.75: Get up after falling backwards: Screenshot

NAO takes about 7.4 seconds to complete its task of getting up from the ground. This
gait proved to be very effective during the competition in Suzhou (RoboCup 2008).

7.9 Analysis of results

Some of the results presented in the previous sections have no meaning if not compared
with the state of the art teams. This is the case of the following measures:

• Average linear velocity for forward walking

• Average linear velocity for side walking

• Average angular velocity for turning

• Distance achieved by the ball when kicked

• Time to fall to catch the ball or to get up from the ground

Section 2.6 presented the three best teams of RoboCup 3D simulation league in 2007 and
2008. This section aims to compare the FCPortugal3D with those teams. Table 7.14 shows
the average linear velocity for each forward walking behavior.

Behavior Definition Average linear velocity (m/s)

4-phase forward walking

Manual 0.1600

HC 0.2281

GA 0.4468

Forward walking based on PFS GA 0.5055

ODW-CPG: forward walking mode Manual 0.1008

Table 7.14: Average linear velocity for the different forward walking behaviors

108

Hugo Rafael de Brito Picado

The presented results correspond to the average linear velocity after reaching a stable
value. It is possible to see that the forward walking based on PFS achieved the best result
so it will be used for the comparison with the forward walking of the other teams. The side
walking has also two behaviors. One is based on PFS and the other is one of the modes of
the Omnidirectional Walking CPG. Table 7.15 shows the stable values for the average linear
velocity for the different side walking behaviors.

Behavior Definition Average linear velocity (deg/s)

Side walking based on PFS Manual 0.1140

ODW-CPG: side walking mode Manual 0.0345

Table 7.15: Average linear velocity for the different side walking behaviors

Once again, the PFS method proved to achieve the best result. Similarly to the side
walking, the turning motion has two different behaviors. One is defined using the PFS
method and the other one is part of the Omnidirectional Walking CPG. Table 7.16 shows the
stable value of the average angular velocity for the turning behaviors.

Behavior Definition Average angular velocity (deg/s)

Turning based on PFS Manual 36.7347

ODW-CPG: turning mode Manual 12.0000

Table 7.16: Average angular velocity for the different turning behaviors

The turning based on PFS has the best result so it will used to compare the turning
motion with the other teams. Another measure that has no meaning if not compared with
the state of the art teams, is the distance covered by the ball when the robot executes the
kick behavior. In the scope of this thesis, two different kick behaviors were developed. The
first is very stable and the robot keeps upright after kicking. The second is not so stable, the
robot falls for sure, but the ball covers a greater distance. Table 7.17 shows the distance of
the ball when it stops moving after the execution of the kick.

Behavior Definition Ball distance (m)

Stable kick Manual 2.9204

Super kick Manual 5.4687

Table 7.17: Distances achieved by the ball when kicked

109

CHAPTER 7. DEVELOPED BEHAVIORS

Finally, it will be compared the time to fall of the catch motion and also the time to get
up from the ground. Table 7.18 shows the catch falling time and the time to get up from the
ground (after falling forward and after falling backward).

Behavior Definition Time (s)

Catch falling Manual 0.6000

Get up after falling forward Manual 3.2000

Get up after falling backward Manual 7.4000

Table 7.18: Times for catching and getting up

Comparing the results

Once the synthesis of results is complete, the best results of each behavior are chosen for
the comparison with the other teams. Table 7.19 now presents the comparison of the best
results with the state of the art teams.

Behavior Measure Unit
Team

FCPortugal SEU WrightEagle Bats

Forward
walking

Average linear
velocity

m/s 0.5055 1.2000 0.6700 0.4300

Side
walking

Average linear
velocity

m/s 0.1140 0.6000 0.5900 0.0600

Turn
Average angular

velocity
deg/s 36.7347 25.0000 100.0000 32.1000

Kick Ball distance m 2.9204 3.0000 N/A 2.1000

Super
kick

Ball distance m 5.4687 6.0000 N/A N/A

Catch Time to fall s 0.6000 1.0000 N/A 1.4000

Get up Time to get up s 3.2000 2.0000 2.4000 5.2000

Table 7.19: Comparing the results with the other teams

The results from the SEU-RedSun team were provided by the team itself (thanks to
them). Some of the WrightEagle results were obtained from the *.perform files provided with
the binary. The results for getting up were obtained from the log files of the RoboCup 3D
2008 competition4. As stated by the team, the Kick motion were unstable so it was not
used in competition and the Catch motion was not defined in time, thus these values are not
available. The information of Little Green Bats were retrieved from the log files.

4http://www.robocup-cn.org

110

Hugo Rafael de Brito Picado

As it is possible to see in Table 7.19, the achieved results are reasonable:

• Forward walking: Better than Bats but worst than the other teams.

• Side walking: Better than Bats but worst than the other teams.

• Turning: Better than SEU and Bats but far from reaching the result of WrightEagle.

• Distance covered by the ball when kicked: Near to SEU and better than Bats. For
WrightEagle this information is not available.

• Catch falling time: Better than SEU and Bats. For WrightEagle there this information
is not available.

• Time to get up: Near to all the other teams when getting up after falling forward.

A very important thing to consider is that all the behaviors developed in the scope of this
thesis do not violate the joint restrictions. This was not imposed by the simulator during the
competition so some teams did not care about these restrictions. Violating the restrictions
may result on better results but, for sure, the same behaviors cannot be applied to a real
robot. In this way, FCPortugal decided to generate values inside the corresponding ranges.

7.10 Summary

This chapter presented the several behaviors developed in the scope of this thesis. These
behaviors were developed using different methods, which were explained in the Chapter 6.
Some behaviors are more sensitive to the non-deterministic behavior of the simulation, which
may cause them to fail their goal.

After reading this chapter, it is possible to conclude that Sine Interpolation method is
adequate for non-periodic behaviors (e.g. kicking, getting up, and catching the ball). This
method is very simple to use and provides a very simple configuration language. Addition-
ally, the possibility to configure the PID controller gains was very useful to correct some
trajectories.

The Partial Fourier Series (PFS) method was an important method for the generation
of periodic gaits, such as walking and turning. It was possible to define a common base for
turning and side walking, which differ by two oscillators and two amplitudes. This multi-
purpose base may be extended in the future two produce more movements.

The Omnidirectional Walking CPG is less sensitive to disturbances but it takes longer to
perform the movements because it is based on static stability, which is achieved by moving
the CoM into the support foot to keep thus generating slower movements.

Optimization was used to optimize the Four-phase walking and the forward walking based
on PFS. Hill Climbing proved that it is capable to improve a solution in a short period of
time. On the other hand, Genetic Algorithms proved to be an essential element for automatic
generation of gaits and, despite taking a long time to complete, they can achieve very good
results.

111

CHAPTER 7. DEVELOPED BEHAVIORS

112

Chapter 8

Conclusion and future work

8.1 Conclusion

The main focus of this thesis was on the development trajectory planning methods for
biped locomotion and its application to a simulated humanoid platform. The step-based
behavior was the method used by the FCPortugal3D team before this thesis and consists of
sequentially generating a step function whose amplitude is the desired target angle for the
corresponding joint. This method has several drawbacks since there is no flexible control over
the step response. To overcome such drawbacks, a simple trajectory planning method based
on the interpolation of a sine function was developed. This method aims at interpolating
a sine function from the current angle to the desired angle during a configurable amount of
time. Besides the duration of the trajectory, it is possible to control the initial and final
angular velocities which make this model more flexible. Moreover, the generated trajectories
are very smooth. The third method presented generates trajectories based on Partial Fourier
Series (PFS). A PFS is a continuous function, consisting of a sum of sines and cosines allowing
for approximating a huge number of continuous functions. This method provides full control
over the trajectories and it is the most appropriate to generate periodic behaviors such as
walking and turning. Finally, a method developed by Sven Benhke [43] was studied and
implemented in the scope of this thesis. The method consists of a Central Pattern Generator
(CPG) capable of generating an omnidirectional walking behavior online. In spite of being
slower due to the adjustment of the Center of Mass (CoM) to keep over the support foot,
it is capable of changing the walking direction online, which is extremely useful in dynamic
environments, which is the case of RoboCup soccer. Besides the trajectory planning methods,
low-level control is also a challenge in biped locomotion control. PID controllers were very
useful to generate smooth trajectories. These controllers were most of the times capable to
completely eliminate the overshoot reactions of the joints, as well as the steady-state error.

A motion description language based on XML was developed to give support to the trajec-
tory planning methods based on Sine Interpolation and Partial Fourier Series. This language
offers many advantages which include the possibility of generating movements using a sim-
ple configuration language, changing the behaviors without recompiling all the agent’s code
and using user-friendly names instead of complex identifiers. Additionally, an arithmetic ex-
pression parser was developed to use arithmetic expressions instead of real numbers. These
expressions may include variable that may refer to the name of the sensors aiming at inte-
grating the feedback sensory information easily.

113

CHAPTER 8. CONCLUSION AND FUTURE WORK

By integrating the MDL, the trajectory planning methods and the low-level controllers,
it was possible to define several behaviors for a simulated model of the humanoid NAO. The
four-phase forward walking were planned using the Sine Interpolation and consists of four
stages (raise right leg, land right leg, raise left leg and land left leg). The CoM is not kept
inside the support polygon so it is based on small and low steps to avoid falling. These low
steps make this behavior very sensitive to the non-determinism of the simulation environment,
since any small disturbance may modify the behavior results. The four-phase walking was
optimized using Hill Climbing and Genetic Algorithms (GA). GA proved to be better on
achieving good results though it is slower. A different forward walking style based on PFS
was completely generated using GA. This walking style is faster and it is also stable and has
the great advantage of being less sensitive to disturbances. The Omnidirectional Walking
CPG proved to be capable of generating forward walking, side walking and turning motions
using the same CPG. This CPG generates slower movements due to the positioning of the
CoM but has the advantage of being capable of changing its trajectory very quickly and easily.
Using the PFS method, two behaviors for side walking and turning were developed. These
behaviors use the same base of parameters with the difference that the turning behavior uses
the hip joints to rotate the legs. This proved the similarities between the structures of both
behaviors. Finally, using the Sine Interpolation method, a set of useful behaviors were also
developed, which consist of kicking the ball, catching the ball and getting up from the ground
after falling forward and after falling backwards.

8.2 Future Work

Despite of the work in this thesis covers a great part of the biped locomotion control,
several improvements are possible and needed. This thesis is mainly based on the trajectory
of CoM to monitor the quality of the gait. However, the calculation and monitoring of the
ZMP trajectory is essential for achieving dynamic stability. Additionally, the use of Inverse
Kinematics to compute the trajectories of end effectors instead of controlling the joints directly
is very useful to have more flexibility among the generation of behaviors. Moreover, motion
capturing, which consists of monitoring the human behaviors, provides a great way to define
the humanoid behaviors, due to the anthropomorphic characteristics between the both.

A Motion Description Language was developed in the scope of this thesis. Although this
language allows for the definition of the movements at a joint level, it would be better to
provide support for high-level behaviors. The development of a generic language capable
of integrating reflexive, reactive and deliberative behaviors would provide an easy way to
organize the different skills so that the robot would be capable of deciding what to do, when
to do and how to do its actions.

As future work, it would be better to invest in the use of biological inspired optimization
algorithms such as Genetic Algorithms and machine learning methods such as Reinforcement
Learning. These methods provide great advantages for the automatic generation of behaviors
which reduce, and possibly eliminate, the human intervention during the optimization or
learning process.

114

Appendix A

Simspark installation guide

This section pretends to give a brief explanation of how to install the simulator (currently
on version 0.6) from the source code. The package names and commands are related to Ubuntu
Hardy Linux but similar packages and commands might be found on other distributions.

Required packages

Some development libraries are required to perform a successful installation. The package
names for Ubuntu are listed below:

• build-essential, libdevil-dev, libmng-dev, libtiff4-dev, libjpeg-dev, libpng12-dev, libsdl-
dev, libfreetype6-dev, freeglut3, libslang2-dev and libboost-thread-dev.

These packages can be installed through the use of Synaptics front-end or using the fol-
lowing command on the terminal:

$ sudo apt-get install <package-name>

Installing Ruby

$ wget ftp://ftp.ruby-lang.org/pub/ruby/1.8/ruby-1.8.7-p72.tar.gz
$ tar xvfz ruby-1.8.7-p72.tar.gz
$ cd ruby-1.8.7-p72
$./configure --enable-shared
$ make
$ sudo make install

Installing ODE

$ wget http://downloads.sourceforge.net/opende/ode-0.10.1.tar.gz
$ tar xvfz ode-0.10.1.tar.gz
$ cd ode-0.10.1
$./configure --enable-double-precision
$ make
$ sudo make install

115

APPENDIX A. SIMSPARK INSTALLATION GUIDE

Installing the Simulator

$ wget http://downloads.sourceforge.net/sserver/rcssserver3d-0.6.tar.gz
$ tar xvfz rcssserver3d-0.6.tar.gz
$ cd rcssserver3d-0.6
$./configure
$ make
$ sudo make install

Running the simulator and the test agent

$ simspark &
$ agentspark &

116

Appendix B

The AgentBody class

The body of a humanoid is composed by a set of body parts, joints and perceptors. It
would be useful the possibility to group all these entities and refer to them as, generically,
body objects, by grouping its main characteristics in a single main class and creating inheri-
tance relations to define the specific characteristics for each one. The BodyObject class was
developed with that purpose, as illustrated on Figure B.1. The BodyObject class describes
a generic object of the body. This object will have an identification number, a user-friendly
name (e.g. LeftFoot) to help on debugging, and also a position since an object will be spa-
cially located somewhere.

BodyObject

#id : in t
#name: s t r ing
#posit ion: Vector3f

Joint

#perceptor: str ing
#effector: str ing
#angle: f loat
#min: f loat
#max: f loa t

UniversalJoint

-angle2: f loat
-min2: f loat
-max2: f loat

BodyPart

-mass: f loat

Perceptor

GyroRate

-rate: Vector3f

ForceResistance

-contact: Vector3f
-force: Vector3f
-touchSense: bool
-strikeTime: float

Figure B.1: The BodyObject class

A body part refers to any visible part of the body. Body parts include the head, the neck,
upper arms, elbows, lower arms, hands, hips, thighs, knees, shanks, ankles and the feet.

117

APPENDIX B. THE AGENTBODY CLASS

The joints are used to describe the articulations of the body. An hinge joint is a single-
DOF joint and is described by the class Joint. It stores the name of the perceptor and the
name of the effector (See section 4.2.1), the current angle and the minimum and maximum
limits. An universal joint extends an hinge joint by including the information about the
second DOF. Examples of joints are the articulations of the neck, shoulders, elbows, hips,
thighs, knees and ankles.

The class Perceptor has no attributes and is used to group the several perceptors installed
on the humanoid. The GyroRate class represents the gyroscope and stores the angular rate
read from the gyroscope on each cycle. The ForceResistance class refers to the foot force
sensors. Each foot has its own istance of this class to keep track of the current force applied
on the ground and the corresponding contact point. Two additional variables are used to
know whether the foot is effectively in touch with the ground and also the last strike time of
the corresponding foot.

A class named Types provides standard identifiers for joints and body parts that can be
used anywhere in the whole code of the agent. This is possible using the following public
enumerators:

enum BodyParts {
i lHead ,
i lNeck ,
i lTorso ,
i lLShoulder ,
i lRShoulder ,
ilLUpperArm ,
ilRUpperArm ,
ilLElbow ,
ilRElbow ,
ilLLowerArm ,
ilRLowerArm ,
i lLHip1 ,
ilRHip1 ,
i lLHip2 ,
ilRHip2 ,
i lLThigh ,
ilRThigh ,
ilLShank ,
ilRShank ,
i lLAnkle ,
i lRAnkle ,
i lLFoot ,
i lRFoot ,

NBODYPARTS,
} ;

enum Jo in t s
{

i jHead1 ,
ijHead2 ,
i jLHip ,
ijRHip ,
i jLThigh1 ,
ijRThigh1 ,
i jLThigh2 ,
ijRThigh2 ,
ijLKnee ,
ijRKnee ,
i jLAnkle1 ,
ijRAnkle1 ,
i jLAnkle2 ,
ijRAnkle2 ,
i jLShoulder1 ,
i jRShoulder1 ,
i jLShoulder2 ,
i jRShoulder2 ,
ijLUpperArm ,
ijRUpperArm ,
ijLElbow ,
ijRElbow ,

NJOINTS,
} ;

118

Hugo Rafael de Brito Picado

The AgentBody class

The AgentBody class is responsible to handle all the information related with the body of
the NAO agent and provides public methods so that this information is accessible externally.
This class keeps a list of joints, body parts and perceptors. The private members of the class
are defined as follows:

std : : map<int , BodyPart∗> par t s ; // l i s t o f body par t s
std : : map<int , Jo int∗> j o i n t s ; // l i s t o f j o i n t s

GyroRate∗ gyro ; // gyroscope
ForceRes i s tance ∗ l f r p ; // l e f t f o o t sensor
ForceRes i s tance ∗ r f r p ; // r i g h t f o o t sensor

Additionally, the class provides a set of public methods that provide access to the infor-
mation of the body. The following list describes those methods:

• void updatePosture();

This method should be called on each cycle to update the state information with base
on the values received from the server (e.g. position of joints and body parts). The
Forward Kinematics module is used to help on computing the position of joints and
body parts, as described by the following code:

for (int i = 0 ; i < Types : : NJOINTS; i++)
j o i n t s [i]−> s e tPo s i t i o n (fk in−>Jo in tRe lF i e ld (i)) ;

for (int i = 0 ; i < Types : :NBODYPARTS; i++)
par t s [i]−> s e tPo s i t i o n (fk in−>BodyPartRelField (i)) ;

where fkin is the Forward Kinematics module and JointRelField and BodyPartRelField
are public methods that provide information about the position of a joint or a body
part, respectively.

• BodyPart∗ getBodyPart(int id);

Gets a pointer to a body part with base on the corresponding identification number.
This function also appears overloaded to perform the same operation using the name
instead of the identification number.

• Joint∗ getJoint(int id);

Gets a pointer to a joint with base on the corresponding identification number. This
function also appears overloaded to perform the same operation using the name instead
of the identification number.

• Perceptor∗ getPerceptor(int id);

Gets a pointer to a perceptor with base on the corresponding identification number.
This function also appears overloaded to perform the same operation using the name
instead of the identification number.

119

APPENDIX B. THE AGENTBODY CLASS

• Vector3f getCoM();

Gets a three-float vector with the three components of the Center of Mass (X, Y and
Z). The body of the method is defined as follows:

Vector3 f sum (0 , 0 , 0) ;

for (unsigned i = 0 ; i < par t s . s i z e () ; i++)
sum += part s [i]−>ge tPo s i t i on () ∗ par t s [i]−>getMass () ;

return (sum / tota lMass) ;

• Vector getAVel();

Gets a two-float vector containing the two components of the average velocity (forward
speed and lateral speed). The average velocity is a relation between the displacement
of the humanoid and the elapsed time since the beginning of the gait and is calculated
using the following equation:

∆v =
∆x

∆t
(B.1)

where ∆x is the displacement related to the initial position of the body and ∆t is the
elapsed time since the beginning of the gait simulation.

• float getTOsc();

Gets the value of the torso average oscillation. The torso average oscillation, θ is a
measure calculated with base on the values received from the gyroscope installed on the
torso. It is calculated using the following equation [83]:

θ =

√√√√√√
N∑

i=1

(xi − x)2 +
N∑

i=1

(yi − y)2 +
N∑

i=1

(zi − z)2

N
(B.2)

where N represents the number of simulation cycles, xi, yi and zi are the values received
from the gyroscope in the ith cycle and x, y and z are the mean of gyroscope readings
over the time and are calculated as follows:

x =

N∑
i=1

xi

N
, y =

N∑
i=1

yi

N
, z =

N∑
i=1

zi

N
(B.3)

120

Hugo Rafael de Brito Picado

• Polygon getSupportPolygon();

Computes and returns the support polygon with base on the contact of the feet with
the ground. The sensors are used to know whether the foot is in touch with the ground
and the contact position. The size of the foot (provided by the documentation of the
simulator) are then used to compute the polygon.

Polygon AgentBody : : getSupportPolygon () {
Vector lp [4] , rp [4] ;

/∗
∗ Feet model :
∗ l p1 l p2 rp1 rp2
∗ −−−− −−−−
∗ | | | |
∗ | | | |
∗ | | | |
∗ l p0 l p3 rp0 rp3
∗/

fk in−>getLeftFootExtremes (lp) ;
fk in−>getRightFootExtremes (rp) ;

/∗ s i t u a t i o n s f o r suppor t po lygon :
∗
∗ − both f e e t on the ground . . .
∗ . . . a l i gn ed : po lygon (lp0 lp1 lp2 rp1 rp2 rp3 rp0 lp3)
∗ . . . l e f t in f r on t : po lygon (lp0 lp1 lp2 rp2 rp3 rp0)
∗ . . . r i g h t in f r on t : po lygon (lp0 lp1 rp1 rp2 rp3 lp3)
∗ − only the l e f t f o o t on the ground
∗ polygon (lp0 lp1 lp2 lp3)
∗ − only the r i g h t f o o t on the ground
∗ polygon (rp0 rp1 rp2 rp3)
∗/

Vector3 f l f = l f r p−>getForceVector () ;
Vector3 f r f = r f rp−>getForceVector () ;
Vector3 f l c = l f r p−>getContactPoint () ;
Vector3 f rc = r f rp−>getContactPoint () ;

Polygon sp ;
i f (l f r p−>senseTouch () && rf rp−>senseTouch ())
{ // both f e e t on the ground

i f (f abs (l f o o t . getX () − r f o o t . getX ()) < 0 . 01)
{ // a l i gned

sp . addVertex (lp [0]) ; sp . addVertex (lp [1]) ;
sp . addVertex (lp [2]) ; sp . addVertex (rp [1]) ;

121

APPENDIX B. THE AGENTBODY CLASS

sp . addVertex (rp [2]) ; sp . addVertex (rp [3]) ;
sp . addVertex (rp [0]) ; sp . addVertex (lp [3]) ;

}
else
i f (l f o o t . getX () > r f o o t . getX ())
{ // l e f t in f r on t

sp . addVertex (lp [0]) ; sp . addVertex (lp [1]) ;
sp . addVertex (lp [2]) ; sp . addVertex (rp [2]) ;
sp . addVertex (rp [3]) ; sp . addVertex (rp [0]) ;

}
else
{ // r i g h t in f r on t

sp . addVertex (lp [0]) ; sp . addVertex (lp [1]) ;
sp . addVertex (rp [1]) ; sp . addVertex (rp [2]) ;
sp . addVertex (rp [3]) ; sp . addVertex (lp [3]) ;

}
}
else i f (l f r p−>senseTouch ())
{ // only the l e f t f o o t on the ground

sp . addVertex (lp [0]) ; sp . addVertex (lp [1]) ;
sp . addVertex (lp [2]) ; sp . addVertex (lp [3]) ;

}
else i f (r f rp−>senseTouch ())
{ // only the r i g h t f o o t on the ground

sp . addVertex (rp [0]) ; sp . addVertex (rp [1]) ;
sp . addVertex (rp [2]) ; sp . addVertex (rp [3]) ;

}
else { // f l y i n g − no suppor t po lygon }

return sp ;
}

122

Appendix C

Motion description language

C.1 Step-based method scripting language

Each step-based behavior has to be defined using a configuration file. The configuration
file is based on a simple scripting language and gives support to the implementation described
in the previous section, so that it is possible to define a set of joint move sequences, each of
them containing joint moves. The language is very compact and is based on a simple script
with a particular structure, which respects the following BNF1 grammar:

<behavior> ::= <sequence> | <sequence> EOL <behavior>

<sequence> ::= <wait> | <move-set> | <move-set> " " <seq-options>

<move-set> ::= <move-cmd> | <move-cmd> <move-set>

<move-cmd> ::= "j" <integer> " " <joint-move>

<joint-move> ::= <hinge-move> | <univ-move>

<hinge-move> ::= <arg> " " <arg>

<univ-move> ::= <arg> " " <arg> " " <arg> " " <arg>

<seq-options> ::= "g" <arg> | "N" <arg> | "g" <arg> " N" <arg>

<wait> ::= "w" <arg>

<arg> ::= <float> | " p" <integer>

1Backus-Naur Form

123

APPENDIX C. MOTION DESCRIPTION LANGUAGE

Lines which do not start with a ”j” or a ”w” are treated as comments. The rules presented
above describe the grammar of the step-based generator configuration file. These rules are
briefly described below:

• <behavior>: Sequence or a set of sequences defined on each line

• <sequence>: It can be just a wait command or a set of move commands or a set of
move commands with extra options

• <move-set>: It can be a base move command eventually followed by another move set

• <move-cmd>: Corresponds to the character ”j” followed by a joint id and move pa-
rameters, that will depend on the joint type

• <joint-move>: Decides between a hinge joint and an universal joint

• <hinge-move>: Two arguments that refer to the target angle and corresponding toler-
ance

• <univ-move>: Two first arguments refer for the target angle and corresponding toler-
ance of the first DOF and two aditional arguments for the target angle and corresponding
tolerance of the second DOF

• <seq-options>: Options of a sequence: It can be the character ”g” followed by an
argument that represents the controller gain (common for all joints of the sequence),
the character ”N” followed by an argument that represents the number of steps on which
the sequence will be devided (if applicable)

• <wait>: The ”w” character followed by an argument that represents a time delay in
simulation cycles

• <arg>: It can be a floating point value or the character ”p” followed by an integer that
represents the index inside the parameter vector

124

Hugo Rafael de Brito Picado

C.2 Sine interpolation MDL

A Motion Description Language (MDL) based on the eXtended Markup Language (XML)
standard was developed to give support to the Sine Interpolation method (Section 6.2). The
option for XML is because it is a very popular standard meta-language and its inherent
hierarchical format is perfect for structured behaviors. This will also facilitate the future
work on the construction of graphical front-end for the definition of the behaviors.

XML Schema

A XML schema describes the structure of a XML document and is also known as XML
Schema Definition (XSD). The best way to show how the Sine Interpolation MDL is structured
is through the use of its XSD, which is defined as follows:

<?xml version=” 1 .0 ”?>
<xs:schema xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”>

<xs : e l ement name=”behavior ”>
<xs:complexType>

<xs : s equence>
<xs : e l ement name=” s l o t ” minOccurs=”1”>
<xs:complexType>

<xs : s equence>
<xs : e l ement name=”move” minOccurs=”0”>
<xs:complexType>

<x s : a t t r i b u t e name=” id ” type=” x s : i n t e g e r ” />
<x s : a t t r i b u t e name=” angle ” type=” Ari thExpress ion ” />
<x s : a t t r i b u t e name=” phase i ” type=” Ari thExpress ion ” />
<x s : a t t r i b u t e name=” phase f ” type=” Ari thExpress ion ” />
<x s : a t t r i b u t e name=”kp” type=” Ari thExpress ion ” />
<x s : a t t r i b u t e name=” k i ” type=” Ari thExpress ion ” />
<x s : a t t r i b u t e name=”kd” type=” Ari thExpress ion ” />

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>

<x s : a t t r i b u t e name=”name” type=” x s : s t r i n g ” />
<x s : a t t r i b u t e name=” de l t a ” type=” x s : f l o a t ” />

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
<x s : a t t r i b u t e name=”name” type=” x s : s t r i n g ” />
<x s : a t t r i b u t e name=” type” type=” x s : s t r i n g ” />

</xs:complexType>
</ xs : e l ement>

</xs:schema>

125

APPENDIX C. MOTION DESCRIPTION LANGUAGE

XML Entities

The XML allows for the definition of entities. In the particular case of the MDL, this makes
possible the use of user-friendly names instead of numbers to refer to the joint identifiers. The
entities, in this case, define a mapping Name-Id for each DOF of the agent, which will depend
on the body structure of the agent. For the NAO simulated humanoid, the following entities
were used:

< !DOCTYPE j o i n t s [
<!ENTITY Head1 ”0” >
< !ENTITY Head2 ”1” >
< !ENTITY LHip ”2” >
< !ENTITY RHip ”3” >
< !ENTITY LThigh1 ”4” >
< !ENTITY RThigh1 ”5” >
< !ENTITY LThigh2 ”6” >
< !ENTITY RThigh2 ”7” >
< !ENTITY LKnee ”8” >
< !ENTITY RKnee ”9” >
< !ENTITY LAnkle1 ”10”>
< !ENTITY RAnkle1 ”11”>
< !ENTITY LAnkle2 ”12”>
< !ENTITY RAnkle2 ”13”>
< !ENTITY LShoulder1 ”14”>
< !ENTITY RShoulder1 ”15”>
< !ENTITY LShoulder2 ”16”>
< !ENTITY RShoulder2 ”17”>
< !ENTITY LUpperArm ”18”>
< !ENTITY RUpperArm ”19”>
< !ENTITY LElbow ”20”>
< !ENTITY RElbow ”21”>
]>

The ArithExpression type

The ArithExpression type was developed in the scope of this thesis to allow for the use
of any arithmetic expression instead of simple real numbers on fields such as angle, kp, ki,
kd, phasei and phasef. It was developed using C++, Flex and Bison. The Flex performs
the lexical analysis and delivers the tokens as input to Bison. Bison will then check the
syntax of the sequence of tokens received and create an expression tree that is handled by the
ArithExpression class. The expression tree provides the following nodes (derived from the
ArithExpression main class):

• Abs(ArithExpression∗ expr); //absolute value

• UnaryMinus(ArithExpression ∗expr); //symmetric value

• Sum(ArithExpression∗ left, ArithExpression∗ right); // sum

126

Hugo Rafael de Brito Picado

• Sub(ArithExpression∗ left, ArithExpression∗ right); // subtraction

• Mul(ArithExpression∗ left, ArithExpression∗ right); // multiplication

• Div(ArithExpression∗ left, ArithExpression∗ right); // division

• Pow(ArithExpression∗ base, ArithExpression∗ exp); //power

• Float(float val); // real number

• Variable(const std:: string& name); //variable

The Float and Variable nodes are threated as the possible leafs of the tree since they have
no ArithExpression argument. The ArithExpression class is written in C++ and defined as
follows:

typedef std : : map<std : : s t r i ng , f loat> VarList ;
class ArithExpress ion
{

public :
virtual ˜ Ar i thExpress ion () ;

virtual ArithExpress ion ∗ c lone () = 0 ;
virtual f loat eva l (VarList vars = VarList ()) = 0 ;
virtual std : : s t r i n g toS t r i ng () = 0 ;

stat ic ArithExpress ion ∗ parse (const std : : s t r i n g& expr s t r) ;
} ;

All the described nodes must implement the virtual methods clone, eval and toString. The
method clone is used to clone an expression to another. It is used to redefine the equality
operator and the copy constructor on each node. The method toString prints the tree in a
LISP-like format. Thus, the expression string |(1 - 2ˆ4)*5| will be printed as follows:

abs (mul (sub 1 (pow (Float (2) Float (4)) 5)))

The method eval is a recursive method (except on the leafs) whose function is to eval-
uate the expression. Its argument is a mapping Variable-Value containing the definition of
variables. If a variable appears in the expression but does not appear in this list, it will be
threated as zero. The following examples are the eval methods of the Sum and the Variable
classes:

f loat Sum : : eva l (VarList vars) {
return l e f t −>eva l (vars) + r ight−>eva l (vars) ;

}

f loat Var iab le : : eva l (VarList vars) {
i f (vars . f i nd (m name) != vars . end ()) { // v a r i a b l e i s de f ined

return vars [m name] ;
}
else return 0 . 0 ;

}

127

APPENDIX C. MOTION DESCRIPTION LANGUAGE

The method parse is static and provides an object-independent way to parse an expression
stored as a string. It delivers all the work to Flex and Bison and then simply returns the final
expression tree:

Ar i thExpress ion ∗ ArithExpress ion : : parse (const s t r i n g& expr s t r)
{

YY BUFFER STATE mybuffer =
Exp r e s s i on s c an s t r i n g (exp r s t r . c s t r ()) ;

Ar i thExpress ion ∗ expr ;

i f (Expres s ionparse (&expr))
{

c e r r << ”Error par s ing the expr e s s i on ” << exp r s t r << endl ;
e x i t (1) ;

}

Exp r e s s i o n d e l e t e bu f f e r (mybuffer) ;
return expr−>c lone () ;

}

Example of usage

To perform a bend/stretch sequence the robot must use the joints that perform pitch
rotations on each leg. The absolute value of the gyroscope pitch rate (a variable named
gyro.x) may be useful to stabilize the robot at the ankles. This can be done using the
following configuration:

<behavior name=”Example1” type=” s l o t ”>

<s l o t name=”bend” de l t a=”200”>
<move id=”<high1 ; ” ang le=”30” kd=” 0 .2 ” />
<move id=”&RThigh1 ; ” ang le=”30” kd=” 0 .2 ” />
<move id=”&LKnee ; ” ang le=”−60” />
<move id=”&RKnee ; ” ang le=”−60” />
<move id=”&LAnkle1 ; ” ang le=”30 + | gyro . x | ” />
<move id=”&RAnkle1 ; ” ang le=”30 + | gyro . x | ” />

</ s l o t>

<s l o t name=” s t r e t c h ” de l t a=”200”>
<move id=”<high1 ; ” ang le=”0” />
<move id=”&RThigh1 ; ” ang le=”0” />
<move id=”&LKnee ; ” ang le=”0” />
<move id=”&RKnee ; ” ang le=”0” />
<move id=”&LAnkle1 ; ” ang le=”0” />
<move id=”&RAnkle1 ; ” ang le=”0” />

</ s l o t>

</ behavior>

128

Hugo Rafael de Brito Picado

C.3 Partial Fourier series MDL

After the creation of the PFS method (See Section 6.3), the MDL was extended to give
support to this trajectory planning method. The XML schema will be used once again to
describe the structure of the language:

<?xml version=” 1 .0 ”?>
<xs:schema xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”>

<xs : e l ement name=”behavior ”>
<xs:complexType>

<xs : s equence>
<xs : e l ement name=” f o u r i e r ” minOccurs=”1”>
<xs:complexType>

<xs : s equence>
<xs : e l ement name=” de l t a ” type=” x s : f l o a t ” maxOccurs=”1” />
<xs : e l ement name=” s i n e ” minOccurs=”1”>
<xs:complexType>

<x s : a t t r i b u t e name=”amplitude ” type=” Ari thExpress ion ” />
<x s : a t t r i b u t e name=” per iod ” type=” Ari thExpress ion ” />
<x s : a t t r i b u t e name=”phase” type=” Ari thExpress ion ” />
<x s : a t t r i b u t e name=” o f f s e t ” type=” Ari thExpress ion ” />

</xs:complexType>
</ xs : e l ement>

</ xs : s equence>

<x s : a t t r i b u t e name=” id ” type=” x s : i n t e g e r ” />
</xs:complexType>
</ xs : e l ement>

</ xs : s equence>
<x s : a t t r i b u t e name=”name” type=” x s : s t r i n g ” />
<x s : a t t r i b u t e name=” type” type=” x s : s t r i n g ” />

</xs:complexType>
</ xs : e l ement>

129

APPENDIX C. MOTION DESCRIPTION LANGUAGE

Example of usage

Lets suppose that the goal is to define the following oscillators:

• fLThigh2(t) = 6.0 ∗ sin(2π
0.4 t) + 30.0

• fRThigh2(t) = −6.0 ∗ sin(2π
0.4 t + π) + 30.0

• fLKnee(t) = −9.6 ∗ sin(2π
0.4 t) − 50.0 − sin(4π

0.4)

• fRKnee(t) = −9.6 ∗ sin(2π
0.4 t + π) − 50.0 − sin(4π

0.4)

It is possible to define this oscillators using the PFS method with the following configu-
ration file:

<behavior name=”Example2” type=” f o u r i e r ”>

< f o u r i e r j o i n t=”<high2 ; ” kd=” 0 .2 ”>
<s i n e amplitude=”6” per iod=” 0 .4 ”

phase=”0” o f f s e t=”30” />
</ f o u r i e r>

< f o u r i e r j o i n t=”<high2 ; ” kd=” 0 .2 ”>
<s i n e amplitude=”−6” per iod=” 0 .4 ”

phase=” pi ” o f f s e t=”30” />
</ f o u r i e r>

< f o u r i e r j o i n t=”&LKnee ; ”>
<s i n e amplitude=”−9.6” per iod=” 0 .4 ”

phase=”0” o f f s e t=”−50” />
<s i n e amplitude=”−1” per iod=” 0 .2 ” />

</ f o u r i e r>

< f o u r i e r j o i n t=”&RKnee ; ”>
<s i n e amplitude=”−9.6” per iod=” 0 .4 ”

phase=” pi ” o f f s e t=”−50” />
<s i n e amplitude=”−1” per iod=” 0 .2 ” />

</ f o u r i e r>

</ behavior>

130

Appendix D

Optimization process

Independently of the optimization algorithm chosen, there is a generic flow during the op-
timization process. The basic optimization process will consist of generating the parameters
offline, running the agent to test those parameters and evaluating the generated gait using
some evaluation criteria.

The agent code is constructed so that it can be initialized in several modes, as listed
below:

• fcpagent -unum <number>: Game mode: A strategy module [84] will attempt to
give some role to the agent based on its uniform number.

• fcpagent -move <file> [-prep <file2>]: File test mode: The agent runs the gait
defined by the motion description file, <file>. Optionally, it is also possible to run an
additional file that contains the preparation gait.

• fcpagent -f <gait>: Optimization mode: The f argument stands for fitness and it is
followed by the name of the gait to optimize (e.g. walk, turn).

For the optimization process, the optimization mode is used. It consists of reading the
parameters from a file, create the gait based on those parameters, test the gait and write
the fitness value to some other file. The files are used as a way to perform communication
between the agent and the optimization algorithm.

Figure D.1 shows the generic flow of the optimization process, both for the agent (left side)
and for the optimization algorithm (right side). The agent blocks on the file parameters.dat
waiting for the parameters to be generated and the optimization algorithm blocks on the file
results.dat waiting for the fitness to be calculated. After reading the file, both the agent and
the optimization algorithm will delete it so that the other can block again and the process
can continue.

131

APPENDIX D. OPTIMIZATION PROCESS

Initialize

Try to open the fi le
parameters.dat

File exists ?

Read the parameters from
the f i le and delete the f i le

Create the gait from the
parameters

Run the gait and update
the f i tness

Halt condit ion
verified ?

Write the fitness value in
the results.dat f i le

Yes

No

Yes

No

Initialize

Generate the parameters

File exists ?

Read the fitness from the
fi le and delete the f i le

Select the best individual

Yes

No

Write the parameters in
the f i le parameters.dat

Try to open the fi le
results.dat

Agent Opt imizat ion a lgor i thm

Figure D.1: Optimization process

132

Hugo Rafael de Brito Picado

Some of the operations performed both by the agent and the optimization algorithm will
depend on the gait being optimized: The generation of the gait from the parameters, the halt
condition that will stop the test of the same parameters and how the parameters should be
generated by the optimization algorithm are example of such operations. A class generically
called by Evaluator was to contain gait-independent information. The gait-specific evaluators
must derive from this class and implement its virtual methods (See Figure D.2).

Evaluator

#f i tness: f loat

FourPhaseWalk

Param

-value: f loat
-min: f loat
-max: f loat

1 1..*

PFSWalk . . .

Figure D.2: The Evaluator class

The class Evaluator stores the current parameters and the corresponding definition do-
mains in a list and also the fitness value assigned to those parameters. The gait-independent
methods are listed below:

• static Evaluator∗ getEvaluatorByName(const std::string& name);
Static method that allows to get a pointer to a specific evaluator based on its name.
The main class is used for abstraction. This is used by the optimization process to
retrieve the particular characteristics of the gait being optimized.

• static void writeParams(ParamList params);
Used by the optimization algorithm to write the parameters into the file parameters.dat.

• static ParamList readParams();
Used by the agent to read the parameters from the file parameters.dat.

• static void writeFitness(double fitness);
Used by the agent to write the parameters into the file results.dat.

• static double readFitness();
Used by the optimization algorithm to read the parameters from the file results.dat.

• void setParams(ParamList params);
Set a list of parameters in the object’s state.

• ParamList getParams();
Gets the parameters stored in the object’s state.

• double getFitness();
Gets the fitness value from the object’s state.

133

APPENDIX D. OPTIMIZATION PROCESS

ParamList is a list of objects of the class Param, represented in Figure D.2. The remaining
methods are virtual and must be implemented by the derived classes that implement the gait-
specific evaluator.

• virtual void init ();
Used by the agent to initialize the fitness value.

• virtual void update();
Used by the agent to update the fitness value with base on same fitness function.

• virtual Vector3f getStartPosition ();
Gets a three-float vector containing the position where the agent should start the test.

• virtual GaitGenerator∗ generateGait();
Used by the agent to generate the gait from the parameters. This strongly depends on
the gait being optimized.

• virtual GaitGenerator∗ generatePrepGait();
Used by the agent to generate an eventual preparation gait. It returns NULL if no
preparation is needed.

• virtual checkLocalConstraints();
Checks whether the local constraints are verified (e.g. are the feet parallel with the
ground?)

• virtual checkHaltCondition();
Checks if the test should be stoped (e.g. timeout reached or desired distance traveled).

134

Bibliography

[1] Henrik Hautop Lund and Orazio Miglino. From simulated to real robots. In International
Conference on Evolutionary Computation, pages 362–365, 1996.

[2] Nuno Lau, Luis Paulo Reis, Hugo Picado, and Nuno Almeida. FCPortugal: Simulated
humanoid robot team description proposal for RoboCup 2008. In Proceedings CD of
RoboCup 2008, 2008.

[3] Nuno Lau, Lúıs Paulo Reis, Hugo Picado, and Nuno Almeida. Paper contributions,
results and work for the simulation community of FCPortugal. In Proceedings CD of
RoboCup 2008, 2008.

[4] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa, and Hitoshi
Matsubara. RoboCup: A challenge problem for ai and robotics. In Hiroaki Kitano, editor,
RoboCup, volume 1395 of Lecture Notes in Computer Science, pages 1–19. Springer, 1997.

[5] Hiroaki Kitano, Satoshi Tadokoro, Itsuki Noda, Hitoshi Matsubara, Tomoichi Takahashi,
Atsuhi Shinjou, and Susumu Shimada. RoboCup Rescue: search and rescue in large-scale
disasters as a domain for autonomous agents research. In Systems, Man, and Cybernetics,
1999. IEEE SMC ’99 Conference Proceedings. 1999 IEEE International Conference on,
pages 739–743, 1999.

[6] Henrik Hautop Lund and Luigi Pagliarini. Robot soccer with LEGO mindstorms. In
Minoru Asada and Hiroaki Kitano, editors, RoboCup, volume 1604 of Lecture Notes in
Computer Science, pages 141–151. Springer, 1998.

[7] Tijn van der Zant and Thomas Wisspeintner. RoboCup X: A proposal for a new league
where robocup goes real world. In Bredenfeld et al. [85], pages 166–172.

[8] Itsuki Noda, Hitoshi Matsubara, Kazuo Hiraki, and Ian Frank. Soccer server: A tool for
research on multiagent systems. Applied Artificial Intelligence, 12(2-3):233–250, 1998.

[9] Frans Groen Remco De Boer, Jelle Kok. Uva trilearn 2001 team description. In Birk
et al. [86], pages 551–554, 2001.

[10] Martin Riedmiller, Thomas Gabel, Johannes Knabe, and Hauke Strasdat. H.: Brain-
stormers 2d team description 2005. In Bredenfeld et al. [85].

[11] Noda et al. RoboCup Soccer Server Users Manual, RoboCup Federation, June 2001.

[12] Lúıs Paulo Reis and Nuno Lau. Coach unilang - a standard language for coaching a
(robo)soccer team. In Birk et al. [86], pages 183–192, 2001.

135

BIBLIOGRAPHY

[13] RoboCup Community. RoboCup Soccer Server 3D Users Manual, 2008.

[14] Rodrigo da Silva Guerra, Joschka Boedecker, Norbert Mayer, Shinzo Yanagimachi, Yasuji
Hirosawa, Kazuhiko Yoshikawa, Masaaki Namekawa, and Minoru Asada. Introducing
physical visualization sub-league. In Ubbo Visser, Fernando Ribeiro, Takeshi Ohashi, and
Frank Dellaert, editors, RoboCup, volume 5001 of Lecture Notes in Computer Science,
pages 496–503. Springer, 2007.

[15] Robin Murphy. Introduction to AI Robotics. MIT Press, 2000.

[16] Maria Prado, Antonio Simón, Ana Pérez, and Franscisco Ezquerro. Effects of terrain
irregularities on wheeled mobile robot. Robotica, 21:143–152, 2003.

[17] Sten Grillner. Control of motion in bipeds, tetrapods and fish. American Physiology
Society, Bethesda, 1981.

[18] Blair Calancie, Belinda Needham-Shropshire, Patrick Jacobs, Kate Willer, Gregory Zych,
and Barth Green. Involuntary stepping after chronic spinal-cord injury — evidence for
a central rhythm generator for locomotion in man. Brain, 117(5):1143–1159, 1994.

[19] Margareta Nordin and Victor Frankel. Basic Biomechanics of the Musculoskeletal Sys-
tem, chapter Biomechanics of the lumbar spine, pages 183–207. Lea & Febiger, 1989.

[20] Daniel Hein. Evolution of Biped Walking Using Physical Simulation. PhD thesis, Hum-
boldt, University of Berlin, 2007.

[21] Julien Nicolas. Artificial evolution of controllers based on non-linear oscillators for
bipedal locomotion, Diploma Thesis, EPFL / Computer Science, 2004.

[22] Dirk Wollherr. Design and control aspects of humanoid walking robots. Master’s thesis,
Technische Universität München, 2005.

[23] Shinichiro Nakaoka, Atsushi Nakazawa, Kazuhito Yokoi, Hirohisa Hirukawa, and Kat-
sushi Ikeuchi. Generating whole body motions for a biped humanoid robot from captured
human dances. In Proceedings of 2003 IEEE International Conference on Robotics and
Automation, ICRA’ 03. IEEE International Conference, volume 3, pages 3905–3910,
2003.

[24] Raymond Serway. Physics for Scientists and Engineers with Modern Physics. Brooks
Cole Publishing Company, 6th edition, 2003.

[25] Ambarish Goswami. Postural stability of biped robots and the foot-rotation indicator
(fri) point. The International Journal of Robotics Research, 18(6):523–533, 1999.

[26] Miomir Vukobratovic and Yury Stepanenko. On the stability of anthropomorphic sys-
tems. Mathematical Biosciences, 15 i1:1–37, 1972.

[27] Miomir Vukobratovic, Branislav Borovac, Dusan Surla, and Dragan Stokic. Biped loco-
motion: dynamics, stability, control and applications (scientific fundamentals). Springer,
1990.

136

Hugo Rafael de Brito Picado

[28] Takemasa Arakawa and Toshio Fukuda. Natural motion generation of biped locomo-
tion robot using hierarchical trajectory generation method consisting of GA, EP layers.
In Proceedings of 1997 IEEE International Conference on Robotics and Automation,
ICRA’97, volume 1, pages 211–216, 1997.

[29] Karl Muecke, Patrick Cox, and Dennis Hong. DARwIn Part 1: Concept and General
Overview, pages 40–43. SERVO Magazine, 12 2006.

[30] Stefano Carpin and Enrico Pagello. The challenge of motion planning for humanoid
robots playing soccer. Humnaoids soccer workshop, held at IEEE Humanoid 2006, 2006.

[31] Yoshiaki Sakagami, Ryujin Watanabe, Chiaki Aoyama, Shinichi Matsunaga, Nobuo Hi-
gaki, and Kikuo Fujimura. The intelligent asimo: system overview and integration. In
Intelligent Robots and System, 2002. IEEE/RSJ International Conference on, volume 3,
pages 2478–2483, 2002.

[32] Masahiro Fujita, Kohtaro Sabe, Yoshihiro Kuroki, Tatsuzo Ishida, and Toshi Doi. SDR-
4X II: A small humanoid as an entertainer in home environment. In Paolo Dario and
Raja Chatila, editors, ISRR, volume 15 of Springer Tracts in Advanced Robotics, pages
355–364. Springer, 2003.

[33] Jerry Pratt, Chee-Meng Chew, Ann Torres, Peter Dilworth, and Gill Pratt. Virtual
model control: An intuitive approach for bipedal locomotion. The International Journal
of Robotics Research, 20:129–143, 2001.

[34] Tad McGeer. Passive dynamic walking. The International Journal of Robotics Research,
9(2):62–82, 1990.

[35] Max Kurz and Nicholas Stergiou. Do horizontal propulsive forces influence the nonlinear
structure of locomotion? Journal of NeuroEngineering and Rehabilitation, 4:30+, 2007.

[36] José Lima, José Gonçalves, Paulo Costa, and António Moreira. Inverted pendulum
virtual control laboratory. In Proceedings of the 7th Portuguese Conference on Automatic
Control, pages 11–13, 2006.

[37] Kawaguchi Tsutomu, Hase Kazunori, Obinata Goro, and Nakayama Atsushi. An inverted
pendulum model for evaluating stability in standing posture control. In Dynamics &
Design Conference Proceedings CD, 2006.

[38] Eric Kandel, James Schwartz, and Thomas Jessell. Principles of Neural Science.
McGraw-Hill Medical, 4th edition, 2000.

[39] Felix Faber and Sven Behnke. Stochastic optimization of bipedal walking using gyro
feedback and phase resetting. In Proceedings of 7th IEEE-RAS International Conference
on Humanoid Robots (Humanoids), Pittsburg, USA, 2007.

[40] Carla Pinto. Central pattern generator for legged locomotion: a mathematical approach.
In Proceedings of the Workshop on Robotics and Mathematics, RoboMat07, Coimbra,
2007.

137

BIBLIOGRAPHY

[41] Ludovic Righetti and Auke Jan Ijspeert. Programmable central pattern generators: an
application to biped locomotion control. In Proceedings of International Conference on
Robotics and Automation, ICRA’06, pages 1585–1590, 2006.

[42] Yuichi Murase, Yusuke Yasukawa, Katsushi Sakai, and Miwa Ueki. Design of a compact
humanoid robot as a platform. In Proceedings of the 19th Conference of Robotics Society
of Japan, pages 789–790, 2001.

[43] Sven Behnke. Online trajectory generation for omnidirectional biped walking. In Pro-
ceedings of 2006 IEEE International Conference on Robotics and Automation (ICRA’
06), pages 1597–1603, 2006.

[44] Jacques Denavit and Richard Hartenberg. A kinematic notation for lower-pair mecha-
nisms based on matrices. ASME Journal of Applied Mechanics, 23:215–221, 1955.

[45] Reza Jazar. Theory of Applied Robotics: Kinematics, Dynamics, and Control (Hard-
cover). Springer, 1st edition, 2007.

[46] David Gouaillier, Vincent Hugel, Pierre Blazevic, Chris Kilner, Jerome Monceaux, Pascal
Lafourcade, Brice Marnier, Julien Serre, and Bruno Maisonnier. The NAO humanoid: a
combination of performance and affordability. CoRR, abs/0807.3223, 2008.

[47] Sander van Dijk, Martin Klomp, Herman Kloosterman, Bram Neijt, Matthijs Platje,
Mart van de Sanden, and Erwin Scholtens. Little Green Bats humanoid 3D simulation
team research proposal. In Proceedings CD of RoboCup 2007, 2007.

[48] Sander van Dijk, Martin Klomp, Herman Kloosterman, Bram Neijt, Matthijs Platje,
Mart van de Sanden, and Erwin Scholtens. Little Green Bats humanoid 3D simulation
team description paper. In Proceedings CD of RoboCup 2008, 2008.

[49] Xu Yuan and Tan Yingzi. SEU-3D 2007 soccer simulation team description. In Proceed-
ings CD of RoboCup 2007, 2007.

[50] Xu Yuan, Shen Hui, Qian Cheng, Chen Si, and Tan Yingzi. SEU-RedSun 2008 soccer
simulation team description. In Proceedings CD of RoboCup 2008, 2008.

[51] Xue Feng, Tai Yunfang, Xie Jiongkun, Zhou Weimin, Ji Dinghuang, and Xiaoping Chen
Zhang Zhiqiang. Wright Eagle 2008 3D team description paper. Proceedings CD of
RoboCup 2008, 2008.

[52] Johannes Jahn. Introduction to the Theory of Nonlinear Optimization. Springer, 3rd

edition, July 2007.

[53] Thomas Weise. Global Optimization Algorithms Theory and Application. Thomas
Weise, july 16, 2007 edition, July 2007. Online available at http://www.it-
weise.de/projects/book.pdf.

[54] Shahid Bokhari. On the mapping problem. IEEE Trans. Computers, 30(3):207–214,
1981.

[55] David Johnson, Christos Papadimitriou, and Mihalis Yannakakis. How easy is local
search? (extended abstract). In FOCS, pages 39–42. IEEE, 1985.

138

Hugo Rafael de Brito Picado

[56] Scott Kirkpatrick, Daniel Gelatt Jr., and Mario Vecchi. Optimization by simmulated
annealing. Science, 220(4598):671–680, 1983.

[57] Fred Glover. Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research, 13(5):533–549, 1986.

[58] Peter Laarhoven and Emile Aarts, editors. Simulated annealing: theory and applications.
Kluwer Academic Publishers, Norwell, MA, USA, 1987.

[59] John Holland. Adaptation in Natural and Artificial Systems. The University of Michigan
Press, 1975.

[60] Melanie Mitchell. An Introduction to Genetic Algorithms. The MIT Press, 1998, 1998.

[61] Matthew Wall. GAlib: A C++ Library of Genetic Algorithm Components, Documenta-
tion Revision B, Version 2.4, August 1996.

[62] The MathWorks. Genetic Algorithm and Direct Search Toolbox, User’s Guide, Version
2, September 2005.

[63] Ryszard Michalski, Jaime Carbonell, and Tom Mitchell, editors. Machine Learning: An
Artificial Intelligence Approach, volume I. Morgan Kaufmann, Los Altos, California,
1983.

[64] Stephen Jose Hanson, Werner Remmele, and Ronald Rivest, editors. Machine Learning:
From Theory to Applications - Cooperative Research at Siemens and MIT, volume 661
of Lecture Notes in Computer Science. Springer, 1993.

[65] Amit Konar. Artificial intelligence and soft computing: behavioral and cognitive modeling
of the human brain. CRC Press, Inc., Boca Raton, FL, USA, 2000.

[66] Heiko Müller, Martin Lauer, Roland Hafner, Sascha Lange, Artur Merke, and Martin
Riedmiller. Making a robot learn to play soccer using reward and punishment. In Joachim
Hertzberg, Michael Beetz, and Roman Englert, editors, KI, volume 4667 of Lecture Notes
in Computer Science, pages 220–234. Springer, 2007.

[67] Verena Heidrich-Meisner, Martin Lauer, Christian Igel, and Martin Riedmiller. Rein-
forcement learning in a nutshell. In Proceedings of the 15th European Symposion on
Artificial Neural Networks, pages 277–288, 2007.

[68] Christopher Watkins. Learning from Delayed Rewards. PhD thesis, University of Cam-
bridge, England, 1989.

[69] Oliver Obst and Markus Rollmann. Spark - a generic simulator for physical multi-agent
simulations. In Gabriela Lindemann, Jörg Denzinger, Ingo J. Timm, and Rainer Unland,
editors, MATES, volume 3187 of Lecture Notes in Computer Science, pages 243–257.
Springer, 2004.

[70] Patrick Riley. SPADES: A system for parallel-agent, discrete-event simulation. AI Mag-
azine, 24(2):41–42, 2003.

[71] Hitay Ozbay. Introduction to Feedback Control Theory. CRC Press (July 28, 1999), 1st

edition, 1999.

139

BIBLIOGRAPHY

[72] José Lima, José Gonçalves, Paulo Costa, and António Moreira. Humanoid robot simu-
lation with a joint trajectory optimized controller. Emerging Technologies and Factory
Automation, 2008. ETFA 2008. IEEE International Conference on, pages 986–993, Sept.
2008.

[73] João Silva. Sensor fusion and behaviours for the CAMBADA robotic soccer team. Mas-
ter’s thesis, Universidade de Aveiro, 2008.

[74] Alberto Isidori. Nonlinear Control Systems (Communications and Control Engineering).
Springer (August 11, 1995), 3rd edition, 1995.

[75] Kiam Heong Ang, Gregory Chong, and Yun Li. PID control system analysis, design and
technology. IEEE Transactions on Control Systems Technology, 13:559–576, 2005.

[76] Vı́tor Santos and Filipe Silva. Design and low-level control of a humanoid robot using
a distributed architecture approach. Journal of Vibration and Control, 12:1431–1456,
2006.

[77] John Ziegler and Nathaniel Nichols. Optimum settings for automatic controllers. Trans-
actions of ASME, 64:759–768, 1942.

[78] Amin Zamiri, Amir Farzad, Ehsan Saboori, Mojtaba Rouhani, Mahmoud Naghibzadeh,
and Amin Milani Fard. An evolutionary gait generator with online parameter adjustment
for humanoid robots. Computer Systems and Applications, 2008, AICCSA 2008, 2008.

[79] Raffaello D’Andrea. The Cornell RoboCup robot soccer team: 1999-2003. In Handbook
of Networked and Embedded Control Systems, pages 793–804. Birkhäuser Boston, 2005.

[80] Josep Porta and Enric Celaya. Body and leg coordination for omnidirectional walking
in rough terrain. In Proceedings of the 3rd International Conference on Climbing and
Walking Robots, 2000.

[81] Bernhard Hengst, Darren Ibbotson, Son Bao Pham, and Claude Sammut. Omnidirec-
tional locomotion for quadruped robots. In Birk et al. [86], pages 368–373, 2001.

[82] J. Hooper, A. R. Barclay, and J. C. Miles. Increasing the reliability and convergence
of a genetic algorithm in a varying scale multi objective engineering problem. Artificial
Intelligence in Civil Engineering, IEEE Colloquium on, pages 2/1–2/5, Jan 1992.

[83] Milton Heinen and Fernando Osório. Applying genetic algorithms to control gait of phys-
ically based simulated robots. In Proceedings of 2006 IEEE Congress on Evolutionary
Computation, pages 500–505, 2006.

[84] Lúıs Paulo Reis, Nuno Lau, and Eugénio Costa Oliveira. Situation based strategic po-
sitioning for coordinating a team of homogeneous agents. In Balancing Reactivity and
Social Deliberation in Multi-Agent Systems, LNAI 2103, pages 175–197, 2001.

[85] Ansgar Bredenfeld, Adam Jacoff, Itsuki Noda, and Yasutake Takahashi, editors. RoboCup
2005: Robot Soccer World Cup IX, volume 4020 of Lecture Notes in Computer Science.
Springer, 2006.

[86] Andreas Birk, Silvia Coradeschi, and Satoshi Tadokoro, editors. RoboCup 2001: Robot
Soccer World Cup V, volume 2377 of Lecture Notes in Computer Science. Springer, 2002.

140

