20 research outputs found

    ADAPTIVE SELECTION OF AUXILIARY OBJECTIVES IN MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

    Get PDF
    Subject of Research.We propose to modify the EA+RL method, which increases efficiency of evolutionary algorithms by means of auxiliary objectives. The proposed modification is compared to the existing objective selection methods on the example of travelling salesman problem. Method. In the EA+RL method a reinforcement learning algorithm is used to select an objective – the target objective or one of the auxiliary objectives – at each iteration of the single-objective evolutionary algorithm.The proposed modification of the EA+RL method adopts this approach for the usage with a multiobjective evolutionary algorithm. As opposed to theEA+RL method, in this modification one of the auxiliary objectives is selected by reinforcement learning and optimized together with the target objective at each step of the multiobjective evolutionary algorithm. Main Results.The proposed modification of the EA+RL method was compared to the existing objective selection methods on the example of travelling salesman problem. In the EA+RL method and its proposed modification reinforcement learning algorithms for stationary and non-stationary environment were used. The proposed modification of the EA+RL method applied with reinforcement learning for non-stationary environment outperformed the considered objective selection algorithms on the most problem instances. Practical Significance. The proposed approach increases efficiency of evolutionary algorithms, which may be used for solving discrete NP-hard optimization problems. They are, in particular, combinatorial path search problems and scheduling problems

    Multiobjective approaches for the minimization of test suites in Software Product Lines.

    Get PDF
    Currently many developments are guided by customers, and therefore, most companies focus on the needs of their potential customers by creating a software product line -a portfolio of products closely related to variations in features and functions- rather than just a single product. The tools and techniques for the common development of software tend to focus individual products and development, of such multiple and interrelated products, is complex. The main objective of this project is develop an optimization strategy to dealt with the previous problem and it allows us to reduce the number of test cases to apply in a reasonable time, but maintaining the quality of the resulting software products. Finally, we compare results using several different algorithms (monoobjective and multi-objectives approaches)

    Automated Repair of Feature Interaction Failures in Automated Driving Systems

    Get PDF
    In the past years, several automated repair strategies have been proposed to fix bugs in individual software programs without any human intervention. There has been, however, little work on how automated repair techniques can resolve failures that arise at the system-level and are caused by undesired interactions among different system components or functions. Feature interaction failures are common in complex systems such as autonomous cars that are typically built as a composition of independent features (i.e., units of functionality). In this paper, we propose a repair technique to automatically resolve undesired feature interaction failures in automated driving systems (ADS) that lead to the violation of system safety requirements. Our repair strategy achieves its goal by (1) localizing faults spanning several lines of code, (2) simultaneously resolving multiple interaction failures caused by independent faults, (3) scaling repair strategies from the unit-level to the system-level, and (4) resolving failures based on their order of severity. We have evaluated our approach using two industrial ADS containing four features. Our results show that our repair strategy resolves the undesired interaction failures in these two systems in less than 16h and outperforms existing automated repair techniques

    Comparison between Single and Multi-Objective Evolutionary Algorithms to Solve the Knapsack Problem and the Travelling Salesman Problem

    Get PDF
    One of the main components of most modern Multi-Objective Evolutionary Algorithms (MOEAs) is to maintain a proper diversity within a population in order to avoid the premature convergence problem. Due to this implicit feature that most MOEAs share, their application for Single-Objective Optimization (SO) might be helpful, and provides a promising field of research. Some common approaches to this topic are based on adding extra—and generally artificial—objectives to the problem formulation. However, when applying MOEAs to implicit Multi-Objective Optimization Problems (MOPs), it is not common to analyze how effective said approaches are in relation to optimizing each objective separately. In this paper, we present a comparative study between MOEAs and Single-Objective Evolutionary Algorithms (SOEAs) when optimizing every objective in a MOP, considering here the bi-objective case. For the study, we focus on two well-known and widely studied optimization problems: the Knapsack Problem (KNP) and the Travelling Salesman Problem (TSP). The experimental study considers three MOEAs and two SOEAs. Each SOEA is applied independently for each optimization objective, such that the optimized values obtained for each objective can be compared to the multi-objective solutions achieved by the MOEAs. MOEAs, however, allow optimizing two objectives at once, since the resulting Pareto fronts can be used to analyze the endpoints, i.e., the point optimizing objective 1 and the point optimizing objective 2. The experimental results show that, although MOEAs have to deal with several objectives simultaneously, they can compete with SOEAs, especially when dealing with strongly correlated or large instances

    Evolutionary approaches to optimisation in rough machining

    Get PDF
    This thesis concerns the use of Evolutionary Computation to optimise the sequence and selection of tools and machining parameters in rough milling applications. These processes are not automated in current Computer-Aided Manufacturing (CAM) software and this work, undertaken in collaboration with an industrial partner, aims to address this. Related research has mainly approached tool sequence optimisation using only a single tool type, and machining parameter optimisation of a single-tool sequence. In a real world industrial setting, tools with different geometrical profiles are commonly used in combination on rough machining tasks in order to produce components with complex sculptured surfaces. This work introduces a new representation scheme and search operators to support the use of the three most commonly used tool types: end mill, ball nose and toroidal. Using these operators, single-objective metaheuristic algorithms are shown to find near-optimal solutions, while surveying only a small number of tool sequences. For the first time, a multi-objective approach is taken to tool sequence optimisation. The process of ‘multi objectivisation’ is shown to offer two benefits: escaping local optima on deceptive multimodal search spaces and providing a selection of tool sequence alternatives to a machinist. The multi-objective approach is also used to produce a varied set of near-Pareto optimal solutions, offering different trade-offs between total machining time and total tooling costs, simultaneously optimising tool sequences and the cutting speeds of individual tools. A challenge for using computationally expensive CAM software, important for real world machining, is the time cost of evaluations. An asynchronous parallel evolutionary optimisation system is presented that can provide a significant speed up, even in the presence of heterogeneous evaluation times produced by variable length tool sequences. This system uses a distributed network of processors that could be easily and inexpensively implemented on existing commercial hardware, and accessible to even small workshops

    Design of vehicle routing problem domains for a hyper-heuristic framework

    Get PDF
    The branch of algorithms that uses adaptive methods to select or tune heuristics, known as hyper-heuristics, is one that has seen a large amount of interest and development in recent years. With an aim to develop techniques that can deliver results on multiple problem domains and multiple instances, this work is getting ever closer to mirroring the complex situations that arise in the corporate world. However, the capability of a hyper-heuristic is closely tied to the representation of the problem it is trying to solve and the tools that are available to do so. This thesis considers the design of such problem domains for hyper-heuristics. In particular, this work proposes that through the provision of high-quality data and tools to a hyper-heuristic, improved results can be achieved. A definition is given which describes the components of a problem domain for hyper-heuristics. Building on this definition, a domain for the Vehicle Routing Problem with Time Windows is presented. Through this domain, examples are given of how a hyper- heuristic can be provided extra information with which to make intelligent search decisions. One of these pieces of information is a measure of distance between solution which, when used to aid selection of mutation heuristics, is shown to improve results of an Iterative Local Search hyper-heuristic. A further example of the advantages of providing extra information is given in the form of the provision of a set of tools for the Vehicle Routing Problem domain to promote and measure ’fairness’ between routes. By offering these extra features at a domain level, it is shown how a hyper-heuristic can drive toward a fairer solution while maintaining a high level of performance

    Exploring means to facilitate software debugging

    Get PDF
    In this thesis, several aspects of software debugging from automated crash reproduction to bug report analysis and use of contracts have been studied.Algorithms and the Foundations of Software technolog
    corecore