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Abstract: One of the main components of most modern Multi-Objective Evolutionary Algorithms
(MOEAs) is to maintain a proper diversity within a population in order to avoid the premature
convergence problem. Due to this implicit feature that most MOEAs share, their application
for Single-Objective Optimization (SO) might be helpful, and provides a promising field of
research. Some common approaches to this topic are based on adding extra—and generally
artificial—objectives to the problem formulation. However, when applying MOEAs to implicit
Multi-Objective Optimization Problems (MOPs), it is not common to analyze how effective said
approaches are in relation to optimizing each objective separately. In this paper, we present
a comparative study between MOEAs and Single-Objective Evolutionary Algorithms (SOEAs) when
optimizing every objective in a MOP, considering here the bi-objective case. For the study, we focus
on two well-known and widely studied optimization problems: the Knapsack Problem (KNP) and
the Travelling Salesman Problem (TSP). The experimental study considers three MOEAs and two
SOEAs. Each SOEA is applied independently for each optimization objective, such that the optimized
values obtained for each objective can be compared to the multi-objective solutions achieved by the
MOEAs. MOEAs, however, allow optimizing two objectives at once, since the resulting Pareto fronts
can be used to analyze the endpoints, i.e., the point optimizing objective 1 and the point optimizing
objective 2. The experimental results show that, although MOEAs have to deal with several objectives
simultaneously, they can compete with SOEAs, especially when dealing with strongly correlated or
large instances.

Keywords: multi-objective optimization; single-objective optimization; evolutionary algorithm;
knapsack problem; travelling salesman problem

1. Introduction

Evolutionary Algorithms (EAs) [1] were initially developed for unconstrained Single-Objective
Optimization Problems (SOPs). However, extensive research has been conducted to adapt them to
other types of problems. In recent years, many Multi-Objective Evolutionary Algorithms (MOEAs)
have been proposed in the literature [2,3] to adapt EAs to dealing with Multi-Objective Optimization
Problems (MOPs). One of the main components of most modern MOEAs is the ability to maintain
genetic diversity within a population of individuals [4]. Maintaining proper diversity is decisive
for the behavior of EAs, since a loss of diversity could lead to premature convergence, which is
a frequent drawback, especially for single-objective optimization. Most MOEAs implicitly manage
diversity by considering the objective function space [5] and, in some cases, the decision variable
space. Several mechanisms have been proposed in the literature to deal with the above, such as fitness
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sharing [6], clustering [7], and entropy [8], among others [4]. Promoting diversity is a key feature
of an efficient and reliable MOEA. In fact, it is an intrinsic component in many MOEAs. Because of
this, some authors have claimed that the application of MOEAs might be useful when dealing with
single-objective problems. Furthermore, several theoretical and empirical studies have shown that
multi-objective optimizers can even provide better solutions than single-objective optimizers [4,9–11].

MOEAs have been applied to SOPs using various guidelines. Usually, the mechanisms proposed
in the literature for solving SOPs by means of MOEAs consist of transforming the original SOP into
a MOP so that MOEAs can be applied to the transformed problem. This transformation can be done
by either replacing the original objective with a set of new objectives, or by adding new, additional
objectives to the original one [4,12]. Among these approaches, the best known and most widespread
in the literature are: transforming constraints into objectives [13], considering diversity as an explicit
objective function [14] and multiobjectivization schemes, which transform a SOP into a MOP by
modifying its fitness landscape [12]. In any case, these new objectives are included in order to promote
the exploration of different regions, since multi-objective approaches try to simultaneously optimize
several objectives. This might make it possible to escape from sub-optimal regions, thus providing
a suitable balance between exploration and exploitation. The analysis presented in [15] lists the benefits
of using additional objectives, named helper-objectives. The main ones are [12]: avoiding stagnation in
local optima and maintaining diversity within a population.

In this paper, we present a comparative study of MOEAs and SOEAs when both types of
schemes are separately applied to optimize each objective function of a bi-objective optimization
problem. The study is not intended to provide a novel algorithm or to compare a new proposal
with state-of-the-art algorithms. The main goal of this work is to investigate the effectiveness—or
at least the opportunities—of applying multi-objective approaches to single-objective optimization.
This study relies on comparisons of standard MOEAs and some general SOEAs when they seek to
optimize—independently—every objective in a bi-objective problem. In this study, we consider the
Knapsack Problem [16] and the Travelling Salesman Problem [17]. Both problems have been considered
in numerous theoretical and experimental studies in the literature, so many effective solvers are known
to perform successfully for a wide range of benchmarks.

Although there are many contributions that have been made in the field of mathematical
optimization, in this work we are interested in the analysis of a particular set of approximated
algorithms—named evolutionary algorithms—for both, single and multi-objective formulations of the
problems. For this reason, our literature review deepens the field of evolutionary computation and not
in other research areas that could also have great impact and interest nowadays. As an alternative,
some experts have advocated for pushing further the integration of machine learning and combinatorial
optimization [18]. Some operations research communities are introducing machine learning as
a modeling tool for discrete optimization [19] or to extract intuition and knowledge in order to
dynamically adapt the optimization process [20]. Despite the existence of such a huge amount of
alternatives to face these optimization problems, it is important to note that we are interested in
the comparative analysis of single and multi-objective evolutionary algorithms. Thus, the selected
optimization problems can be understood as simple use cases for our experimental study.

For the experiments, we have selected an extensive and diverse set of problem instances that
consider different features, sizes and complexities. However, all the instances have two optimization
objectives, meaning they can be used to apply multi-objective approaches. For the optimization
process, three MOEAs and two SOEAs have been analyzed. Each SOEA is applied twice for each
problem instance (one for each objective), so that the optimized values for each of the two objectives
can be compared to the multi-objective solutions offered by the MOEAs in question. The rest of this
paper is organized as follows: Section 2 describes the formulation of the two problems selected for
this study, as well as the set of instances solved during the experimental process. Then, Section 3
provides an overview of the approaches—MOEAs and SOEAs— applied during this study. A detailed
description of the experimental analysis and some underlying results, as well as their discussion,
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are presented in Section 4 Finally, the conclusions and some lines for future work are presented in
Section 5.

2. Problems: Formulation and Instances

This section presents two well-known problems, the Knapsack Problem (KNP) [16] and the
Travelling Salesman Problem (TSP) [17], which we have selected to conduct out experimental study.
For each problem, a formulation involving two objectives is described, as well as the corresponding
set of instances. Note that all instances presented below are bi-objective instances. This means that all
instances have information that allow the calculation of two different objective functions to be carried
out. Anyway, for the single-objective approaches, we can use only one of the objectives and discard
the other, depending on the objective being analyzed at a particular moment.

2.1. The Bi-Objective Knapsack Problem (BOKNP)

We consider the one-dimensional 0/1 knapsack problem with two objectives, where fractional
items are not allowed and each item is available only once. This multi-objective one-dimensional binary
knapsack problem can be defined as follows. Given a set of items J = {1, ..., n}, each with an associated
weight wj ∈ N∗ and a profit ck

j ∈ N0 for each objective k ∈ K = {1, ..., p}, the problem seeks to select
the subset of J whose total weight does not exceed a fixed capacity W ∈ N∗, while simultaneously
maximizing the accumulated profit according to each objective in K. Mathematically, the problem can
be formulated as follows [21]:

max f1(x) ∑n
j=1 c1

j xj
...

...
max fp(x) ∑n

j=1 cp
j xj

subject to ∑n
j=1 wjxj ≤W, xj ∈ {0, 1}

(1)

Moreover, and without loss of generality, we assume that ck
j ≥ 0 and wj ≤ W : ∀j ∈ {1, ..., n},

∀k ∈ {1, ..., p}. Since, in this work, we are interested in a bi-objective formulation of this problem,
we let p = 2, such that the set K contains two functions ( f1 and f2) to be optimized, K = {1, 2}.

For this bi-objective knapsack problem, we propose using the subset benchmark “MOKP” data
sets available in the MOCOlib project [22]. MOCOlib is a collection of data sets and links for a variety
of multi-objective combinatorial optimization problems. In this collection, we found three different sets
of instances that are suitable for the bi-objective 0/1 unidimensional knapsack problem defined herein.

The data files themselves contain a description of the instances. Table 1 is attached in order
to summarize the main features of the different sets of instances as well as their original references.
Some of the key points for each data set are briefly broken down here:

1. Data set 1A: consists of five data files (instances) for the bi-objective 0/1 unidimensional knapsack
problem. The values for the profits and weights have been uniformly generated. The number
of items in the instances range from 50 to 500. The tightness ratio (Equation (2)) is in the
range [0.11, 0.92].

r = W
∑n

i=1 wi
(2)

2. Data set 1B: consists of 40 data files (instances) corresponding to the 10 bi-objective 0/1
unidimensional knapsack problems. Every instance has a tightness ratio r = 0.5. For each
problem, four variants (class A, B, C and D) are given:

• 1B/A: the weights and profits are uniformly distributed within the range [1, 100].
• 1B/B: these instances are created starting from data set 1B/A by defining the objectives in

reverse order.
• 1B/C: the profits are generated with plateaus of values of length ≤ 0.1× n.
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• 1B/D: these instances are created starting from data set 1B/C by defining the objectives in
reverse order.

3. Data set 2: consists of 50 data files (instances) that also correspond to the bi-objective 0/1
unidimensional knapsack problem. For each data set the value for W is computed as the nearest
integer value of (P/100)∑n

j=1 wj (where P is a percentage of ∑n
j=1 wj). All these instances have

a tightness ratio r = 0.5. Two types of correlated instances (WEAK and STRONG), as well as
uncorrelated instances (UNCOR) were generated as follows [21]:

• UNCOR: 20 uncorrelated instances of 50 items. The profit vectors c1
j , c2

j and the weight
vector wj are uniformly generated at random in the range [1, 300] for ten items, while for the
remaining ones the range [1, 1000] is considered.

• WEAK: 15 weakly correlated instances ranging in size from 50 to 1000 items, where c1
j is

correlated with c2
j , i.e., c2

j ∈ [111, 1000], and c1
j ∈ [c2

j − 100, c2
j + 100]. The weight values wj

are uniformly generated at random in the range [1, 1000].
• STRONG: 15 strongly correlated instances with the number of items ranging between 50

and 1000. The weights wj are uniformly generated at random and are correlated with c1
j ,

i.e., wj ∈ [1, 1000], and c1
j = wj + 100. The value of c2

j is uniformly generated at random in
the range [1, 1000].

Table 1. Bi-objective KNP instances. The instance number (s), the number of items (n) and tightness
ratio (r) refer to the parameters of the instances.

Set Source Name Parameters

Set 1A Gandibleux and Freville [23] 2KNP50-r n = 50; r ∈ {0.11, 0.50, 0.92}
2KNP100-50 n = 100; r = 0.50
2KNP500-41 n = 500; r = 0.41

Set 1B/A Visée et al. [24] 2KNPn-1A n ∈ {100, 200, 300, 400, 500}; r = 0.5

Set 1B/B,C,D Degoutin and Gandibleux [25] 2KNPn-1B n ∈ {100, 200, 300, 400, 500}; r = 0.5
2KNPn-1C n ∈ {100, 200, 300, 400, 500}; r = 0.5
2KNPn-1D n ∈ {100, 200, 300, 400, 500}; r = 0.5

Set 2 (UNCORR) Captivo et al. [21] F5050Ws s ∈ {01, 02, 03, ..., 10}; n = 50; r = 0.5
K5050Ws s ∈ {01, 02, 03, ..., 10}; n = 50; r = 0.5

Set 2 (WEAK) Captivo et al. [21] W4C50W01 n = 50; r = 0.5
W4100W1 n = 100; r = 0.5
4WnW1 n ∈ {150, 200, ..., 1000}; r = 0.5

Set 2 (STRONG) Captivo et al. [21] S1C50W01 n = 50; r = 0.5
S1nW1 n ∈ {100, 150, 200}; r = 0.5
1SnW1 n ∈ {250, 300, ..., 1000}; r = 0.5

2.2. The Bi-Objective Travelling Salesman Problem (BOTSP)

In this work we consider a generalization of the classical Travelling Salesman Problem (TSP),
which is defined as follows. Given a complete graph—or fully connected network—G = (V, E) with
vertex set V (cities), edge set E (paths between any two cities i, j ∈ {1, ..., n}), and edge values ck

ij with
k ∈ K = {1, ..., p} (objective cost—it could be distance, time, energy, etc.—between city i and city j),
the problem is to find the Hamiltonian path [26] (tour), which is a single and cyclic circuit, along the
edges of G, such that each vertex (city) is visited exactly once and the total tour for each objective
k, defined as the sum of costs ck

ij, is minimized. A more detailed description of this multi-objective
formulation of TSP can be found in [27].

Given a graph G = (V, E), where V = {1, 2, ..., n} and E = {(i, π(i)), i ∈ V}, Πn denotes the set
of all possible permutations of n cities. For a permutation π ∈ Πn, π(i) represents the city that follows
city i on the tour represented by permutation π. A permutation whose graph is a Hamiltonian path is
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called a cyclic permutation. We denote by Πc the set of all cyclic permutations of n cities. Therefore,
a TSP tour can be represented by a permutation π = (π(1), . . . , π(n)) ∈ Πc. Thus, the formulation of
the multi-objective TSP is given by:

min
π∈Πc

n−1

∑
i=1

ck
π(i),π(i+1) + ck

π(n),π(1) k = {1, ..., p} (3)

Since in this work we are interested in multi-objective problems with two optimization objectives,
we have considered the bi-objective TSP formulation. Thus, the general Equation (3) is considered,
in which k = {1, 2}. Figure 1 is provided to better clarify the differences between a single and
a bi-objective formulation of the TSP. Figure 1a illustrates a single-objective formulation of the TSP
where there is only one set of costs (one for each edge), thus defining a single optimization function.
As a result, the single-objective formulation of the TSP consists of a list of n cities and a set of
costs—a single cost for each pair of cities—which are all stored in a cost matrix D with elements cij,
with i, j ∈ {1, ..., n}, and diagonal elements cii = 0. However, Figure 1b shows the differences between
a single and a bi-objective instance of the TSP. As shown in the example, a bi-objective formulation
considers instances with two different costs for each edge: one cost for objective 1 and another for
objective 2. Instead of having a single cost matrix, in a multi-objective formulation, we need to manage
a cost matrix for each objective function considered.

A

B

C D

E
(5)

(6)
(9)(4)

(3)

(5)

(3)

(2
)

(6
)

(2
)

(8)

(a)

A

B

C D

E

(5
. 3)

(9
, 2)

(5 , 4)(3 , 7)

(2 , 9)
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, 4)

(4 , 7)

(3
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)

(6
, 3
)

(2
, 5
)

(8 , 1)

(b)

Figure 1. Illustration of single and bi-objective TSP graphs. (a) A graph with weights (distances) on its
edges as a single-objective optimization problem. (b) A graph with weights (distances and times) on its
edges as a bi-objective optimization problem.

For this bi-objective formulation of the problem, we need a suitable set of problem instances:
different types, sizes and costs between cities. Two types of instances are selected for the experimental
study that is presented in this work. First, in the Euclidean instances, the costs between edges
correspond to the Euclidean distance between two points on a plane, randomly sampled from
a uniform distribution. Meanwhile, in the clustered instances, the points are randomly clustered
on a plane, and the costs between edges correspond to the Euclidean distance. Then, the bi-objective
instances are obtained by combining a pair of single-objective instances. Table 2 shows the
information for the 19 problem instances of symmetric bi-objective TSPs with 100, 300 and 500
cities (these instances are available at http://www-desir.lip6.fr/~lustt/). These instances have
been used in several related works [28–30], so they have been successfully solved in the literature.
In fact, their exact fronts were already published by K. Florios (optimal fronts are available at
https://sites.google.com/site/kflorios/motsp). More details on the selected instances are given below:

• The TSPLIB Euclidean Instances [31] (files with prefix kro, from the authors Krolak/Felts/Nelson)
consist of 13 instances with two objectives which are generated on the basis of the single-objective

http://www-desir.lip6.fr/~lustt/
https://sites.google.com/site/kflorios/motsp


Mathematics 2020, 8, 2018 6 of 23

TSP instances from TSPLIB [32] (Library of Traveling Salesman Problems). The TSPLIB is
a library of sample instances for the TSP (and related problems) from various sources and with
different features.

• The DIMACS Clustered Instances [33] (files with prefix clus) are three instances that have been
created using the random instance generator available from the 8th DIMACS implementation
challenge site (the generator is available at http://dimacs.rutgers.edu/archive/Challenges/TSP/
index.html).

• The DIMACS Euclidean Instances [30] (files with prefix eucl) are a set of three instances which
were also generated using the DIMACS code.

Table 2. Bi-objective TSP instances.

Name Origin Type Source Num. of Variables Combinations

clusABn DIMACS Clustered Lust et al. [33] n ∈ {100, 300, 500} clusAn and clusBn

euclABn DIMACS Euclidean Paquete et al. [30] n ∈ {100, 300, 500} euclAn and euclBn

kroABn TSPLIB Euclidean Paquete et al. [30] n ∈ {100, 150, 200, 300, kroAn and kroBn
400, 500, 750, 1000}

kroACn kroAn and kroCn
kroADn kroAn and kroDn
kroBCn TSPLIB Euclidean Paquete et al. [30] n ∈ {100} kroBn and kroCn
kroBDn kroBn and kroDn
kroCDn kroCn and kroDn

3. Optimization Approaches

This section provides a description of all the algorithmic approaches selected, and thus considered
in the experimental study. We also attempt to justify the selection and design decisions made.

3.1. Multi-Objective Evolutionary Algorithms

Evolutionary Multi-Objective Optimization (EMO) [34] is a collection of research, applications
and algorithms in the field of Multi-Objective Optimization (MO) paradigms using Evolutionary
Algorithms (EAs). In the related literature, several Multi-Objective Evolutionary Algorithms (MOEAs)
have been proposed for solving MOPs, and these can be classified based on different features.
A widely accepted classification for MOEAs is one that considers the following families:

• Pareto-dominance-based algorithms use the Pareto dominance relationship, where the partner
of a non-dominated individual is chosen from among the individuals of the population that it
dominates. Some widely known algorithms from this type are: Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) [35], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [36] and Pareto
Envelope-based Selection Algorithm II (PESA-II) [37].

• Decomposition-based algorithms transform a MOP into a set of SOPs using scalarizing functions.
The resulting single-objective problems are then solved simultaneously. Some examples of
algorithms that fall under this approach are Multi-Objective Genetic Local Search algorithm
(MOGLS) [38], Cellular Multi-Objective Genetic Algorithm (C-MOGA) [39] and Multi-Objective
Evolutionary Algorithm based on Decomposition (MOEA/D) [40], as well as their many
other variants.

• Indicator-based algorithms use an indicator function to assess the quality of a set of
solutions, combining the degree of convergence and/or the diversity of the objective
function space with a metric. These algorithms attempt to find the best subset of Pareto
non-dominated solutions based on the performance indicator. Their many variants include:
Indicator Based-Selection Evolutionary Algorithm (IBEA) [41], S-Metric Selection Evolutionary
Multi-Objective Optimization Algorithm (SMS-EMOA) [42], Fast Hypervolume Multi-Objective

http://dimacs.rutgers.edu/archive/Challenges/TSP/index.html
http://dimacs.rutgers.edu/archive/Challenges/TSP/index.html
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Evolutionary Algorithm (FV-MOEA) [43] and Many-Objective Metaheuristic Based on R2
Indicator (MOMBI-II) [44].

The No Free Lunch Theorem in optimization [45] states that any algorithm that searches
for an optimal cost or fitness solution is not universally superior to any other algorithm.
Therefore, for experimental studies, at least one algorithm of each type is usually selected as part
of the state of the art. In this work, we apply a Pareto-dominance-based algorithm (NSGA-II),
a decomposition-based approach (MOEA/D) and an indicator-based algorithm (SMS-EMOA),
which guides the search by means of the hypervolume metric. A brief description of said multi-objective
approaches is provided below:

• NSGA-II [35] is a generational genetic algorithm and is one of the most popular multi-objective
optimization algorithms, having been widely and successfully applied in many real-world
applications. It is one of the first multi-objective algorithms to introduce elitism, i.e., the elites of a
population are given the opportunity to be carried to the next generation. It uses a fast
non-dominated sorting procedure based on Pareto front ranking in an effort to promote
convergence, meaning it emphasizes non-dominated solutions. In addition to the reasons
given above, we have selected this algorithm because it uses an explicit diversity preservation
mechanism (crowding distance).

• MOEA/D [40] is probably the most representative decomposition-based multi-objective algorithm.
It processes a multi-objective problem by decomposing it into a set of single-objective
subproblems and then performing a heuristic search in order to optimize—simultaneously
and cooperatively—said subproblems. Generally, a MOEA needs to maintain diversity in its
population to produce a set of representative solutions. MOEAs, such as NSGA-II, use crowding
distances to maintain diversity. In MOEA/D, a MOP is decomposed into a number of scalar
optimization subproblems. Different solutions in the current population are associated with
different subproblems. The diversity among these subproblems will naturally lead to diversity in
the population [40], which could reinforce the rationale for selecting this algorithm in the context
of this study.

• SMS-EMOA [42] is an indicator-based algorithm that implements a special selection operator that
combines the hypervolume metric with the concept of Pareto dominance. Since the hypervolume
is a measure frequently applied for comparing the results of MOEAs, the underlying idea
is to explicitly manage and maximize the dominated hypervolume within the optimization
process. Hypervolume, which is also used for comparison purposes, measures convergence,
as well as diversity. The SMS-EMOA keeps a population of non-dominated and dominated
individuals at a constant size. Keeping only non-dominated individuals might lead to small
or even single-membered populations, and thus to a crucial loss of diversity. To avoid losing
diversity, defining a lower bound for the population size was suggested in [42]. These are the
reasons that make SMS-EMOA a good candidate for this study, especially to test the effectiveness
of the diversity of this algorithm to improve results in MOPs.

3.2. Single-Objective Evolutionary Algorithms

In the context of SOEAs, some of the most frequently used approaches are Evolution Strategies
(ESs) and Genetic Algorithms (GAs). The main differences between these types of EAs lie in the
calculation of the fitness and the application of operators (mutation, recombination and selection).
In contrast to GAs, where the main role of the mutation operator is simply to avoid the problem of
premature convergence, mutation is the primary operator of ESs. Furthermore, in contrast to GAs,
selection in the case of ESs is absolutely deterministic. For the experimental study conducted in this
work, we considered the following approaches:

• Generational Genetic Algorithm (gGA) [46]: two parents are selected from the population
in order to be crossed, yielding two offspring, which are later mutated and evaluated.
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These newly generated individuals are placed in an auxiliary population that will replace the
current population when it is completely full.

• Steady-State Genetic Algorithm (ssGA) [47]: two parents are selected and crossed,
yielding two offspring that are later crossed. Then one of the resulting offspring is mutated.
The mutated individual is evaluated and then inserted into the population, usually replacing the
worst individual in the population (if the new one is better). Hence, the parents and offspring can
co-exist in the population for the next iteration.

• Elitist Evolution Strategy (µ + λ) (eES) [48]: the elitist feature allows for the best solution
to be always kept. The algorithm starts with a population of size µ. Each generation λ of
mutated individuals is created from the current population. After the generation of the mutated
individuals, there are a total of (µ + λ) individuals, including the parents and the new individuals
generated from them. From these (µ + λ) individuals, the best µ ones are kept—as parents—for
the next generation.

• Non-Elitist Evolution Strategy (µ, λ) (neES) [48]. in this case the best µ mutated individuals
from among the new generated λ are selected as parents for the next generation, i.e., none of the
µ parents survive the next generation, meaning λ ≥ µ must hold.

3.3. Comparison of Single and Multi-Objective Approaches

For the comparison we will use the same set of bi-objective instances for the single-objective and
multi-objective algorithms here considered. Our aim will be to analyze the objectives independently,
i.e., first comparing the values of MOEAs and SOEAs for objective 1 in the whole set of instances
considered, and then, in a similar way, by comparing objective 2. The multi-objective approaches
directly address the bi-objective instances selected for the KNP and the TSP. The above means that they
obtain, at every execution, an extreme—best—value for objective 1, and another extreme—best—value
for objective 2. We note that both values—for the two optimization objectives—are obtained at the
same time, i.e., in one single execution of the algorithm. However, the single-objective approaches
cannot deal with several objectives simultaneously, and therefore, they need to be executed twice:
once to optimize objective 1 and another to optimize objective 2.

During the experimental evaluation we will focus on solution quality when comparing the
different approaches, i.e., we will not perform any analysis on the execution time for each approach.
Due to their stochastic nature, the time complexity analysis of EAs is not an easy task [49].
Many experimental results have been reported on all types of EAs but only a few results have
been proved on a theoretical context [50]. Besides, when the complexity analysis is about MOEAs,
the development of a theoretical study is even more complicated [51]. Since MOEAs implicitly deal
with objectives that are in conflict one with each other, they need to manage a set of trade-off solutions
instead of one single (optimal) solution. When tackling MOPs is necessary to distinguish the quality of
solutions consisting of multiple objective values. In many MOEAs, it is common to use the concepts of
Pareto dominance in order to sort a set of solutions: non-dominated sorting. This sorting procedure
aims to divide a solution set into a number of disjoint subsets or ranks, by means of comparing their
values of the same objective. After the sorting process, solutions in the same rank are viewed equally
important, and solutions in a smaller rank are better than those in a larger rank. Since a wide range
of the existing MOEAs have adopted this sorting strategy, they all involve a high computational
cost [52]. Some studies have shown that in an approach such as NSGA-II applied to a bi-objective
DTLZ1 benchmark problem, the non-dominated sorting consumes more than 70% of the run-time
for a population size of 1000 individuals and a maximum number of generations equal to 500 [52].
In our study, the execution times of the multi-objective approaches range from 5 to 10 times greater in
comparison to the time required by the two executions–one for each objective–of the corresponding
single-objective alternatives. These values depend on the problem (KNP or TSP) and on the instance
type or size. When dealing with many-objective optimization problems (three or more objectives) this
aspect of efficiency becomes even more critical. Bearing the above in mind, some authors have actively
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worked on reducing the number of objective functions by eliminating those that are not essential to
describe the Pareto-optimal front [53].

4. Experimental Results

As noted in previous sections, for the experimental study we considered the bi-objective
KNP and TSP formulations. Moreover, we have described the set of instances that could
be used in the context of these formulations. Regarding the type of approaches to apply,
as mentioned previously, we are interested in evaluating the possibilities offered by a multi-objective
optimization mechanism where we analyze, from the resulting Pareto front, the end points in each
objective independently. The optimization approaches compared herein consist of three MOEAs
(NSGA-II, MOEA/D, and SMS-EMOA) and two single-objective algorithms (gGA and eES). Note that,
initially, we checked the behavior of four single-objective approaches, but two of them (ssGA and neES)
were discarded for the exhaustive study presented here. This is because the results output by these
algorithms were not at all competitive when compared to the single-objective algorithms finally
selected for our comparisons (gGA and eES).

4.1. Parameter Setting

Since our focus is to conduct an experimental comparison between different MOEAs and different
SOEAs, it was necessary to carry out an exhaustive process to adjust and analyze the ideal parameters
for each algorithm. This section provides all the details on the algorithm configurations and the
experimental set-up. It is important to note that all the algorithms were implemented in Java using
the jMetal [54] framework (the source code used in the current work, as well as the results and
graphics extracted from them, can be found through https://github.com/Tomas-Morph/knp-tsp-
journal-mathematic). We also used the irace package [55] to set the automatic parameters in all of the
algorithms implemented. For each problem—KNP and TSP—we defined a common solution encoding
for all the algorithms implemented. We also decided to apply some standard and basic operators for
all the algorithms implemented (and in the same way for all of them). To set the automatic parameters,
a personalized adjustment was made for each approach. The set of configuration parameters that were
automatically tuned—for each algorithm—are as follows:

• Common operator parameters: mutation and crossover probabilities.
• Algorithm parameters: population sizes and other algorithm-specific parameters.
• Other parameters: selection, crossover, and mutation operators. These parameters were

set for each optimization problem, using the same operators for all the single and
multi-objective approaches.

As previously indicated, the parameters listed were automatically tuned using the irace package.
We first ran irace with the set of input parameters described in Table 3. For this initial tuning
process, we selected a subset of representative instances (different type and sizes) for each problem.
The best configuration obtained by this automatic process for each pair problem-algorithm after
training for a few hours is shown in Table 4. Considering these parameter settings and in order
to achieve statistically significant results, a total of 100 independent runs were executed for each
pair (algorithm, problem instance) . In order to statistically support the conclusions, the following
statistical testing procedure, which was used in a previous work by the authors [56], was applied to
compare the results obtained by the different algorithmic schemes. First, a Shapiro–Wilk test was
performed to check whether the values of the results followed a normal (Gaussian) distribution.
If so, the Levene test checked for the homogeneity of the variances. If the samples had equal variance,
an ANOVA test was done; if not, a Welch test was performed. For non-Gaussian distributions,
the non-parametric Kruskal–Wallis test was used. For all the tests, a significance level of α = 0.05
was considered.

https://github.com/Tomas-Morph/knp-tsp-journal-mathematic
https://github.com/Tomas-Morph/knp-tsp-journal-mathematic


Mathematics 2020, 8, 2018 10 of 23

Finally, it is important to note that this study is not intended to offer a comparison of the
best-performing algorithms existing in the related literature; the main goal is to analyze the suitability
of MOEAs for optimizing single-objective problems.

Table 3. Input parameter set for irace auto-configuration.

Input parameter Possible values NSGA MOEA/D SMS-EMOA gGA eES

Crossover probability [0.0, 1.0] X X X X
Mutation probability [0.0, 1.0] X X X X X
Population size {10, 20, 50, 100, 200, 300} X X X X (µ)
Offspring population size {1, 2, 5, 10, 20, 50, 100, 200, 300} X X (λ)
Selection tournament size [2, 10] X X X
Hypervolume offset {10, 20, 50, 100, 200, 500} X
Neighborhood size {10, 20, 50, 100} X
Neighbor select probability [0.0, 1.0] X

Table 4. Parameter settings for each problem-algorithm pair.

Parameter KNP TSP
Encoding Binary strings Permutation of integers
Initial solutions random random
Mutation operator Bit-flip Permutation swap
Crossover operator Single point PMX
Selection Tournament Tournament

NSGA MOEA/D SMS-EMOA gGA eES NSGA MOEA/D SMS-EMOA gGA eES
Crossover probability 0.9784 0.9578 0.9512 0.8795 _ 0.9843 0.9421 0.9754 0.7895 _
Mutation probability 0.0485 0.0578 0.0358 0.0081 0.2239 0.0163 0.0105 0.0093 0.1116 0.3806
Population size 20 200 20 20 1 20 300 20 20 1
Offspring population size 20 _ _ 20 4 20 _ _ 100 2
Tournament size 5 _ 2 2 _ 6 _ 2 4 _
Hypervolume offset _ _ 200 _ _ _ _ 200 _ _
Neighborhood size _ 20 _ _ _ _ 50 _ _ _
Neighbor probability _ 0.8895 _ _ _ _ 0.9354 _ _ _

4.2. Performance

The first set of experiments focused on studying how the algorithms evolved over the course of the
executions. Figures 2 and 3 show the evolution—over the number of evaluations—of the mean fitness
values for both objectives, for the KNP and TSP, respectively. For this set of experiments, the stopping
criterion was set to a large number of function evaluations in order to analyze the convergence of
the different approaches studied. This will allow us to set the stopping criteria for all the approaches
and instances in subsequent experiments. Finally, we note that this preliminary experiment was not
applied to the complete set of instances. Instead, a representative set of instances of different types and
sizes was chosen for this preliminary overview.

For the KNP (see Figure 2), we solved a total of nine instances: three instances of size 50 and
type UNCOR, three instances of different sizes (300, 600, 900) and type WEAK; and finally three
of type STRONG with sizes of 300, 600, and 900. Each set of three instances of the same type
(UNCOR, WEAK, or STRONG) is shown in the same row. For each instance, two graphs are shown;
at the top, the one for objective 1, and the one for objective 2 below it. Note that, in most cases,
the algorithms converge quickly for the initial evaluations. The convergence is only slower for the
last instances, i.e., those that are strongly correlated. In general, we can see that all the algorithms
yield a sharp increase in solution quality in the early generations of the search. We note that, from
approximately 50 · 103 evaluations, the difference in performance remains constant during almost the
entire run; as a result, we used this point as the stopping criterion for the next experiment.

Based on the behavior among the different instances, we can state the following. For the
uncorrelated instances (first two rows; six graphs in total), we note that the SOEAs dominate for
both objectives at all times, although the MOEAs are very close, with a relatively constant difference.
However, for the weakly correlated instances, there is no apparent difference among the approaches,
although the gGA appears to be slightly superior. Finally, for the strongly correlated instances,
we see a clear dominance of the MOEAs for objective 1, with a notable difference between eES and the
remaining approaches.
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Figure 2. KNP evolution of the mean fitness for objectives 1 and 2.
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Figure 3. TSP evolution of the mean fitness for objectives 1 and 2.

For the TSP (see Figure 3), we notice that the size of the instances is directly related to the behavior
of the algorithms: regardless of the type of instance and the objectives, we can differentiate three
types of behaviors. For the small instances (with 100 cities), the SOEAs predominate at the beginning
of the runs, but we see how NSGA-II always achieves better objective values from the middle of
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the runs until the end. There is also a noticeable difference in SMS-EMOA, which stagnates from
the beginning and fails to converge in all the small instances. However, in the case of medium-size
instances (with 300 cities), the SMS-EMOA converges rapidly, together with NSGA-II, exhibiting better
performance and surpassing the other algorithms, but only up to 2 · 106 evaluations approximately,
where again SMS-EMOA stagnates and is overtaken by SOEAs, which eventually outperforms the
other algorithms. For large instances (with 500 cities), once more, SMS-EMOA converges very quickly,
in this case accompanied by the other two MOEAs, NSGA-II and MOEA/D, until almost the end of
the runs, by which point the SOEAs manage to catch up to the other algorithms. Finally, as concerns
the convergence and stagnation of the approaches, we have set the stopping criterion of subsequent
experiments to 10 · 106 evaluations, in the case of the TSP.

Since, as we noted, the performance of the MOEAs in the TSP improves with the instance
size—especially for SMS-EMOA—we decided to run the two largest instances in the TSP data set.
These instances have 750 and 1,000 cities. Figure 4 shows that, for both objectives, MOEAs were able
to provide better mean objective values than SOEAs during the entire run. In particular, SMS-EMOA
yields the best results, despite being the algorithm that obtained the worst results in the small instances.
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Figure 4. TSP (large instances) evolution of the mean fitness for objectives 1 and 2.

4.3. Optimization Behavior

Based on the previous results, for this experiment, we selected 50 · 103 and 10 · 106 function
evaluations as the stopping criteria for the KNP and the TSP, respectively. As shown before, since the
solutions stop improving by that point for any of the approaches, we can reduce the computational
effort without losing generality in the analysis to be performed. Moreover, in this second experiment,
we ran the complete set of instances and did the comparison at the end of the executions, once the
corresponding stopping criterion was reached. Note that all the algorithms were executed 100 times.
In order to compare the results obtained by the multi-objective approaches with those achieved by
the single-objective optimizers, we calculated the extreme solutions in the Pareto optimal set, which
correspond to the best solution attained for each objective function.

The results shown in Tables 5 and 6 correspond to the KNP problem, considering objective 1 and
objective 2, respectively. Similarly, the results in Tables 7 and 8 correspond to the TSP. To facilitate
the analysis, the mean and median solution values for each problem-instance-algorithm have been
normalized as relative measures. Such relative solution values are expressed as a percentage with
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respect to the best corresponding solution. For each problem instance we fixed the best solution as
the best value found for a particular objective across the complete set of related executions. For each
instance and objective, we have performed a total of 500 executions (5 algorithms × 100 executions
each). From this total of 500 values, we fixed the best one as our reference to calculate the percentage
of solution quality obtained by each proposal (as shown in the tables). Furthermore, for each instance,
the cells containing the best median results have a gray background. Finally, the last column shows,
for each instance considered, whether statistically significant differences arose when comparing
the best-performing multi-objective approach against the best single-objective method by using the
statistical comparison procedure described at the beginning of this section. The best-performing
schemes are those that exhibit the best mean and median of the objective function for each test case.
If any statistically significant differences exist, i.e., the p-value obtained from the statistical comparison
procedure is lower than the significance level, an ‘S’ if shown if the corresponding single-objective
algorithm provides a better mean and median of the corresponding objective function. If the best mean
and median are provided by the corresponding multi-objective approach, an ‘M’ is shown. Finally, for
those test cases where the two algorithms exhibit no statistically significant differences, a ‘-’ is shown.

Table 5. Results for KNP instances (objective 1).

Problem
Multi-Objective Single-Objective Test

NSGAII MOEA/D SMSEMOA GA ES

Mean Median Mean Median Mean Median Mean Median Mean Median
Set 1/A 2KP100-50 76.1% 76.1% 81.1% 81.6% 77.3% 77.8% 96.1% 96.3% 93.5% 93.6% S

2KP50-11 85.3% 87.5% 89.0% 91.3% 88.9% 88.4% 99.1% 100.0% 96.3% 100.0% S
2KP50-50 83.4% 84.9% 92.0% 93.3% 84.0% 85.1% 97.8% 98.3% 95.4% 97.0% S
2KP50-92 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.7% 100.0% 98.0% 100.0% M

2KP500-41 63.1% 63.4% 63.3% 63.6% 62.4% 62.4% 94.3% 94.4% 88.9% 88.9% S
Set 1/B 2KP100-1A 70.2% 70.9% 78.4% 78.0% 73.4% 73.5% 96.1% 96.5% 90.7% 90.6% S

2KP100-1B 70.1% 70.2% 80.1% 79.8% 72.5% 72.7% 96.7% 96.6% 90.4% 90.8% S
2KP100-1C 82.1% 82.6% 85.4% 85.4% 82.6% 83.3% 96.5% 96.6% 93.1% 93.3% S
2KP100-1D 83.1% 84.4% 88.0% 87.8% 83.8% 84.8% 96.5% 97.0% 93.4% 93.8% S
2KP200-1A 69.6% 70.2% 76.4% 76.6% 71.3% 71.7% 95.7% 95.9% 89.2% 89.6% S
2KP200-1B 70.7% 70.7% 76.7% 76.6% 71.6% 71.8% 96.1% 96.4% 90.2% 90.4% S
2KP200-1C 65.7% 65.9% 77.2% 77.3% 66.6% 67.3% 96.5% 96.4% 91.0% 91.2% S
2KP200-1D 65.2% 65.7% 73.4% 73.7% 67.8% 68.6% 96.4% 96.1% 90.6% 90.8% S
2KP300-1A 68.4% 68.4% 73.1% 73.6% 68.7% 69.1% 95.4% 95.4% 89.7% 90.1% S
2KP300-1B 69.8% 70.3% 73.7% 73.4% 68.8% 68.9% 95.9% 96.0% 90.5% 90.8% S
2KP300-1C 71.1% 71.7% 81.7% 82.2% 71.5% 71.4% 95.2% 95.5% 90.9% 91.2% S
2KP300-1D 80.5% 80.3% 82.2% 82.4% 77.3% 77.4% 95.1% 95.3% 89.9% 90.1% S
2KP400-1A 68.0% 68.2% 69.4% 69.1% 67.3% 67.7% 95.8% 96.1% 87.8% 87.9% S
2KP400-1B 66.2% 65.9% 68.2% 68.0% 66.1% 66.5% 95.5% 95.3% 87.5% 87.4% S
2KP400-1C 65.6% 65.2% 69.6% 69.2% 65.4% 65.1% 97.4% 97.6% 85.3% 85.8% S
2KP400-1D 55.6% 55.7% 59.2% 59.8% 56.3% 56.4% 96.9% 96.9% 87.1% 87.0% S
2KP500-1A 63.9% 64.4% 67.2% 66.8% 63.3% 63.5% 93.4% 93.7% 85.4% 85.4% S
2KP500-1B 64.0% 63.8% 66.8% 66.6% 62.7% 62.4% 94.1% 94.2% 86.6% 87.0% S
2KP500-1C 75.8% 75.9% 81.4% 81.7% 74.4% 74.7% 95.2% 95.1% 88.3% 88.5% S
2KP500-1D 72.3% 72.7% 71.3% 71.4% 69.3% 69.7% 95.0% 94.9% 88.8% 88.3% S

Set 2/UNCOR F5050W01 82.9% 84.0% 90.7% 91.9% 80.7% 83.3% 96.9% 97.7% 94.0% 93.7% S
F5050W02 90.4% 90.9% 94.8% 94.8% 86.3% 87.0% 99.0% 99.3% 97.2% 98.2% S
F5050W03 89.4% 90.0% 95.6% 96.4% 84.2% 82.2% 99.5% 100.0% 97.9% 100.0% S
F5050W04 94.1% 95.3% 96.1% 95.3% 89.4% 92.4% 98.8% 99.5% 97.2% 98.8% S
F5050W05 86.2% 84.6% 91.1% 93.4% 85.1% 84.6% 98.6% 100.0% 95.2% 94.2% S
F5050W06 87.9% 88.1% 93.1% 92.6% 84.7% 85.7% 97.1% 97.0% 93.8% 93.8% S
F5050W07 88.6% 89.9% 93.8% 94.9% 86.7% 87.8% 99.1% 99.7% 97.9% 97.9% S
F5050W08 90.0% 91.8% 94.0% 94.2% 83.7% 83.9% 98.6% 99.3% 94.9% 97.4% S
F5050W09 97.2% 98.9% 98.8% 99.2% 95.5% 96.5% 99.0% 99.5% 98.8% 99.5% S
F5050W10 93.3% 94.6% 97.2% 98.6% 90.2% 89.9% 98.8% 100.0% 97.4% 100.0% S
K5050W01 87.0% 88.2% 92.0% 93.9% 80.3% 82.1% 95.5% 94.4% 92.6% 93.9% S
K5050W02 88.0% 88.1% 91.6% 93.1% 83.5% 84.1% 98.6% 99.2% 95.0% 95.5% S
K5050W03 96.3% 97.9% 97.7% 98.5% 94.4% 94.4% 99.1% 99.0% 96.7% 97.9% S
K5050W04 92.4% 93.0% 95.9% 97.4% 86.5% 86.5% 99.5% 99.7% 97.0% 99.1% S
K5050W05 79.8% 79.9% 89.2% 88.1% 76.7% 76.8% 98.7% 100.0% 93.5% 91.5% S
K5050W06 87.4% 87.0% 93.5% 93.7% 83.5% 84.3% 97.5% 97.0% 96.2% 96.0% S
K5050W07 84.6% 85.3% 92.5% 94.1% 79.0% 80.3% 98.8% 98.9% 97.6% 98.4% S
K5050W08 93.0% 91.3% 93.9% 94.3% 89.7% 90.9% 96.6% 97.2% 95.3% 97.2% S
K5050W09 91.3% 91.6% 94.4% 94.2% 85.8% 87.8% 98.6% 99.4% 96.1% 96.1% S
K5050W10 87.8% 87.6% 95.2% 95.6% 81.5% 82.5% 97.9% 97.8% 97.4% 97.4% S
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Table 5. Cont.

Problem
Multi-Objective Single-Objective Test

NSGAII MOEA/D SMSEMOA GA ES

Mean Median Mean Median Mean Median Mean Median Mean Median
Set 2/WEAK 4W150W1 98.2% 98.3% 98.2% 98.3% 98.1% 98.1% 98.5% 98.5% 97.8% 97.8% S

4W1W1 94.1% 94.1% 96.3% 96.5% 95.2% 95.3% 97.7% 97.7% 93.8% 93.9% S
4W200W1 97.8% 97.9% 97.7% 97.7% 97.7% 97.7% 98.1% 98.2% 96.9% 97.1% -
4W250W1 90.9% 90.6% 91.1% 91.5% 89.6% 89.7% 92.9% 92.9% 88.1% 88.3% S
4W300W1 92.7% 92.7% 93.9% 94.1% 91.7% 92.1% 95.3% 94.9% 89.9% 90.1% S
4W350W1 91.9% 92.0% 93.2% 93.0% 91.4% 91.5% 95.8% 96.1% 90.0% 90.2% S
4W400W1 92.0% 92.1% 93.6% 94.2% 91.9% 91.8% 96.5% 96.8% 89.2% 88.8% S
4W450W1 88.0% 88.1% 90.1% 90.0% 88.2% 88.2% 93.2% 93.5% 85.9% 85.8% S
4W500W1 88.9% 88.9% 91.3% 91.8% 89.4% 89.5% 95.0% 95.3% 87.2% 87.5% S
4W600W1 86.5% 86.9% 89.9% 89.8% 87.5% 87.5% 93.3% 93.2% 84.5% 84.1% S
4W700W1 84.0% 84.0% 87.2% 87.3% 85.7% 85.8% 91.3% 91.5% 81.5% 81.7% S
4W800W1 84.9% 84.7% 89.7% 89.7% 87.4% 87.9% 93.6% 93.8% 83.6% 83.6% S
4W900W1 83.3% 83.5% 89.3% 89.4% 86.9% 86.9% 93.0% 93.4% 83.1% 83.2% S
W4100W1 94.2% 94.5% 94.4% 94.8% 93.5% 93.7% 94.7% 95.0% 92.2% 92.6% -

W4C50W01 98.9% 98.8% 99.1% 98.8% 98.7% 98.8% 99.7% 100.0% 98.9% 98.8% S
Set 2/STRONG 1S1W1 84.9% 85.2% 77.2% 76.3% 78.4% 77.8% 66.7% 66.9% 18.8% 18.5% M

1S250W1 88.1% 88.8% 86.0% 85.5% 79.9% 80.7% 76.4% 77.6% 27.6% 27.1% M
1S300W1 87.3% 88.3% 85.9% 85.7% 79.5% 79.4% 78.3% 78.8% 32.7% 31.4% M
1S350W1 85.0% 85.2% 81.7% 82.4% 78.1% 78.2% 70.8% 70.6% 16.7% 17.9% M
1S400W1 88.6% 88.1% 86.2% 85.7% 79.0% 79.8% 72.2% 73.2% 21.0% 19.6% M
1S450W1 86.3% 85.8% 83.9% 85.5% 78.4% 79.5% 69.9% 68.9% 19.4% 18.7% M
1S500W1 87.8% 87.6% 85.5% 85.4% 79.6% 80.8% 71.8% 71.6% 21.9% 22.2% M
1S600W1 87.3% 87.5% 85.0% 84.3% 80.3% 80.6% 73.0% 73.1% 21.1% 20.6% M
1S700W1 84.9% 85.0% 82.6% 82.7% 77.3% 77.6% 70.2% 70.3% 19.9% 20.2% M
1S800W1 86.5% 86.3% 80.8% 81.5% 79.4% 80.5% 69.0% 69.6% 14.0% 13.1% M
1S900W1 82.9% 83.0% 79.3% 80.8% 75.3% 76.7% 66.4% 66.9% 17.6% 17.4% M
S1100W1 82.5% 86.7% 80.3% 80.4% 76.1% 75.5% 77.9% 75.6% 44.6% 50.5% M
S1150W1 82.5% 82.0% 82.5% 82.0% 75.6% 73.0% 74.0% 73.0% 26.3% 27.5% M
S1200W1 84.5% 85.7% 81.5% 80.7% 76.8% 75.7% 72.1% 70.6% 30.4% 30.1% M

S1C50W01 67.9% 74.4% 62.4% 51.4% 60.3% 51.4% 62.9% 70.5% 29.8% 26.3% M

Table 6. Results for KNP instances (objective 2).

Problem
Multi-Objective Single-Objective Test

NSGAII MOEA/D SMSEMOA GA ES

Mean Median Mean Median Mean Median Mean Median Mean Median
Set 1A 2KP100-50 76.4% 77.2% 86.6% 87.4% 79.5% 80.4% 97.0% 97.1% 95.1% 95.5% S

2KP50-11 81.8% 84.7% 82.2% 86.4% 88.6% 90.4% 98.5% 100.0% 93.7% 100.0% S
2KP50-50 85.9% 86.6% 90.9% 90.9% 87.3% 88.3% 97.3% 97.7% 94.1% 93.9% S
2KP50-92 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.6% 100.0% 98.1% 100.0% M

2KP500-41 63.4% 64.2% 57.1% 57.2% 61.3% 61.9% 97.2% 97.3% 91.6% 91.9% S
Set 1B 2KP100-1A 74.6% 74.9% 84.2% 84.8% 75.3% 75.8% 97.1% 97.4% 92.5% 93.6% S

2KP100-1B 74.3% 75.1% 83.4% 83.4% 77.0% 77.7% 97.3% 97.7% 93.1% 93.5% S
2KP100-1C 82.2% 82.3% 86.9% 86.5% 82.7% 82.1% 97.4% 97.9% 94.1% 94.3% S
2KP100-1D 76.4% 76.5% 81.3% 81.5% 76.8% 77.0% 96.4% 96.4% 92.0% 92.3% S
2KP200-1A 69.9% 70.3% 77.1% 76.5% 70.0% 70.5% 96.4% 96.5% 91.7% 91.6% S
2KP200-1B 69.8% 70.5% 75.9% 76.3% 70.4% 70.6% 96.7% 97.0% 91.0% 91.2% S
2KP200-1C 60.9% 61.1% 65.3% 65.4% 63.3% 63.4% 97.4% 97.4% 89.5% 89.8% S
2KP200-1D 63.6% 63.8% 71.4% 71.0% 64.1% 63.8% 96.8% 96.9% 90.3% 90.4% S
2KP300-1A 67.1% 67.2% 71.2% 71.5% 66.8% 66.7% 95.6% 95.6% 89.0% 88.5% S
2KP300-1B 68.5% 68.8% 73.0% 73.1% 68.3% 68.6% 96.6% 96.5% 90.8% 90.9% S
2KP300-1C 67.1% 67.3% 64.5% 64.4% 66.8% 66.0% 96.4% 96.4% 87.1% 87.0% S
2KP300-1D 82.9% 83.1% 84.7% 84.8% 80.7% 80.5% 96.7% 97.0% 92.2% 92.6% S
2KP400-1A 66.2% 66.7% 73.3% 73.4% 66.1% 66.1% 94.8% 94.8% 88.6% 88.5% S
2KP400-1B 67.6% 67.9% 73.7% 73.8% 66.7% 67.4% 94.6% 94.6% 89.3% 89.8% S
2KP400-1C 69.2% 69.3% 73.6% 73.6% 67.8% 68.1% 96.2% 96.1% 88.9% 88.9% S
2KP400-1D 54.4% 54.2% 58.3% 58.3% 54.4% 54.1% 97.3% 97.3% 86.7% 86.4% S
2KP500-1A 67.0% 66.8% 70.7% 70.6% 66.3% 66.2% 97.2% 97.6% 88.5% 88.6% S
2KP500-1B 65.1% 65.6% 69.2% 68.7% 64.5% 64.0% 95.0% 94.9% 86.9% 87.0% S
2KP500-1C 72.1% 72.1% 70.0% 70.7% 70.1% 70.7% 96.1% 96.0% 86.2% 85.6% S
2KP500-1D 71.7% 71.9% 72.5% 72.4% 70.0% 69.9% 94.0% 94.3% 87.3% 87.2% S

set 2/UNCOR F5050W01 86.9% 87.8% 93.4% 93.5% 82.7% 83.4% 97.2% 98.0% 95.3% 95.9% S
F5050W02 89.1% 89.5% 93.7% 94.0% 85.1% 86.2% 97.7% 98.9% 93.1% 92.8% S
F5050W03 88.6% 89.1% 95.0% 94.7% 86.6% 87.2% 98.1% 100.0% 95.8% 95.1% S
F5050W04 84.7% 85.2% 89.9% 90.5% 82.8% 83.9% 94.6% 94.5% 91.8% 91.9% S
F5050W05 91.8% 91.7% 96.2% 98.7% 84.1% 86.7% 98.7% 99.0% 97.4% 98.7% S
F5050W06 88.0% 88.6% 90.8% 91.2% 86.5% 86.7% 98.4% 100.0% 93.8% 94.4% S
F5050W07 91.4% 91.7% 98.6% 99.9% 89.6% 91.3% 99.7% 100.0% 99.3% 99.9% S
F5050W08 93.4% 94.7% 96.8% 97.4% 91.9% 93.9% 98.6% 98.9% 97.1% 97.7% S
F5050W09 94.9% 95.4% 98.2% 98.6% 93.0% 94.3% 98.4% 99.5% 97.0% 97.1% -
F5050W10 90.0% 90.6% 92.4% 91.0% 88.1% 89.8% 98.0% 99.3% 94.3% 93.1% S
K5050W01 87.0% 86.0% 92.9% 93.4% 84.7% 85.8% 97.3% 97.1% 95.0% 96.1% S
K5050W02 91.0% 89.3% 95.3% 100.0% 87.3% 87.2% 98.1% 100.0% 96.1% 96.0% S
K5050W03 89.9% 91.0% 92.6% 91.1% 86.3% 86.7% 98.1% 99.6% 93.0% 92.9% S
K5050W04 85.7% 87.2% 93.7% 93.8% 83.3% 84.7% 98.7% 98.9% 96.8% 99.3% S
K5050W05 87.0% 87.3% 93.7% 94.7% 84.5% 84.4% 98.8% 99.2% 97.2% 98.1% S
K5050W06 90.5% 91.3% 94.2% 93.5% 88.1% 88.5% 97.1% 99.8% 91.8% 92.1% S
K5050W07 84.2% 85.6% 91.9% 92.3% 81.4% 82.9% 97.7% 98.5% 95.6% 94.6% S
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Table 6. Cont.

Problem
Multi-Objective Single-Objective Test

NSGAII MOEA/D SMSEMOA GA ES

Mean Median Mean Median Mean Median Mean Median Mean Median
K5050W08 94.1% 94.3% 96.8% 97.0% 92.3% 93.5% 97.8% 97.8% 95.3% 96.1% S
K5050W09 90.2% 91.7% 95.2% 98.7% 85.1% 86.7% 99.6% 100.0% 97.7% 99.9% S
K5050W10 81.1% 80.8% 87.4% 87.5% 78.2% 79.0% 97.5% 97.5% 95.1% 96.1% S

set 2/WEAK 4W150W1 95.5% 95.6% 95.7% 96.0% 94.9% 95.2% 96.1% 96.6% 93.4% 93.5% -
4W1W1 86.5% 86.4% 93.1% 93.5% 89.6% 90.0% 94.5% 94.7% 85.7% 85.9% S

4W200W1 93.6% 93.9% 93.4% 93.8% 93.3% 93.6% 93.8% 94.2% 89.9% 89.9% -
4W250W1 91.9% 91.9% 92.4% 92.3% 90.6% 90.7% 93.2% 93.3% 89.2% 89.6% S
4W300W1 93.6% 93.5% 94.6% 94.4% 92.1% 92.1% 95.3% 95.4% 91.4% 91.2% -
4W350W1 93.3% 93.7% 94.4% 94.4% 92.7% 92.4% 96.2% 96.5% 90.9% 90.9% S
4W400W1 90.8% 91.4% 92.5% 92.4% 90.7% 90.3% 94.0% 94.3% 88.4% 88.4% S
4W450W1 89.8% 89.9% 92.0% 92.0% 90.0% 90.3% 94.2% 94.2% 87.2% 87.5% S
4W500W1 90.9% 90.5% 93.2% 93.9% 91.1% 90.6% 95.9% 96.1% 88.4% 88.8% S
4W600W1 89.0% 89.2% 92.6% 92.5% 90.1% 90.1% 95.2% 95.2% 87.3% 87.5% S
4W700W1 88.3% 88.6% 92.1% 92.2% 90.5% 90.3% 95.0% 95.4% 86.2% 86.0% S
4W800W1 87.8% 87.8% 92.8% 93.1% 90.2% 90.1% 95.7% 95.8% 86.6% 86.9% S
4W900W1 83.0% 83.2% 89.2% 89.1% 86.5% 86.5% 91.7% 91.7% 82.8% 83.3% S
W4100W1 95.5% 96.1% 95.7% 96.2% 94.9% 95.1% 95.7% 96.0% 93.8% 94.0% -

W4C50W01 98.6% 98.3% 98.7% 98.3% 98.7% 100.0% 99.2% 100.0% 98.5% 100.0% S
set 2/STRONG 1S1W1 48.4% 48.4% 30.6% 29.8% 41.0% 41.4% 96.4% 96.5% 86.6% 86.8% S

1S250W1 68.4% 68.7% 52.0% 52.4% 54.2% 55.2% 95.1% 95.1% 86.9% 87.0% S
1S300W1 65.1% 66.7% 52.8% 52.2% 49.6% 50.5% 94.6% 94.9% 86.3% 86.6% S
1S350W1 62.1% 63.4% 47.2% 47.1% 47.3% 47.5% 95.1% 95.1% 87.0% 87.0% S
1S400W1 66.9% 66.7% 56.6% 57.5% 54.4% 54.4% 94.5% 94.6% 87.2% 87.1% S
1S450W1 61.3% 61.2% 48.8% 49.0% 47.8% 47.9% 95.2% 95.3% 86.6% 86.3% S
1S500W1 54.0% 54.2% 39.6% 38.9% 41.2% 41.3% 94.2% 94.0% 84.7% 84.9% S
1S600W1 54.9% 55.6% 40.1% 40.7% 42.6% 43.1% 95.0% 95.1% 85.4% 85.1% S
1S700W1 58.7% 59.4% 48.2% 47.8% 50.7% 51.6% 95.9% 95.9% 87.4% 87.5% S
1S800W1 53.0% 52.5% 38.1% 36.6% 44.6% 44.7% 95.9% 96.1% 86.4% 86.1% S
1S900W1 50.8% 50.9% 35.5% 34.2% 40.7% 40.8% 95.4% 95.5% 85.4% 85.7% S
S1100W1 76.0% 76.3% 68.3% 68.5% 64.5% 66.5% 94.2% 94.5% 85.9% 86.5% S
S1150W1 78.3% 79.7% 70.7% 72.7% 65.6% 67.0% 95.8% 96.1% 91.2% 92.0% S
S1200W1 67.7% 68.5% 56.9% 59.5% 51.7% 52.1% 92.5% 92.6% 85.9% 86.4% S

S1C50W01 84.8% 87.3% 81.6% 81.8% 79.6% 82.6% 92.5% 92.6% 87.9% 90.9% S

In the case of the KNP, we see that, in most test cases, the SOEAs obtain the best results, especially
gGA, for both objective functions (see Tables 5 and 6). In fact, for those cases, gGA is statistically
superior to the corresponding multi-objective algorithms. However, the results of the best-performing
MOEAs are very close to those obtained by the best-performing SOEAs. Particularly, we should note the
behavior of NSGA-II when optimizing objective 1 of the strongly correlated instances Set2/STRONG
(see Table 5). NSGA-II not only provides the best solutions, but it is also statistically superior to gGA
in all instances belonging to that group. For those instances, NSGA-II is followed by MOEA/D and
SMS-EMOA in the ranking.

With regard to objective 1, Figure 5 shows more information on this ranking, and also that gGA is
close to the SMS-EMOA but never exceeds it, ranking fourth. We see that eES is ranked last, well behind
the remaining algorithms. In general, for objective 1, the SOEAs are statistically superior in 79% of the
instances, the MOEAs in 19%, while in 2% of the instances, the algorithms did not exhibit statistically
significant differences between the two approaches. Table 5 also shows that MOEA/D ranks second,
with 38%, surpassing the eES in these cases. Table 6 shows the KNP results for objective 2, where we
can see that gGA again yielded the best results in 93% of the instances, 1% for MOEAs, while 6%
present no statistically significant differences.

In this case, eES swapped the second position in the ranking with MOEA/D (for the Set2/UNCOR
and Set2/WEAK instances), where MOEA/D ranks second in 27% of the cases. As a result, we can
conclude that, when dealing with strongly correlated instances of the KNP, NSGA-II provides the best
results, and in fact has to be executed only once, rather than the multiple executions required with
a single-objective approach, like gGA, which would have to be executed twice, one run per objective
function being optimized. The above would result in significant savings in terms of the computational
resources required to solve this type of instance.
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Figure 5. Boxplots showing the results for the KNP (strongly correlated instances) achieved by the
different single-objective and multi-objective approaches at the end of 100 repetitions of the runs.
Some instances were omitted because of space restrictions. However, all graphics can be found in the
repository associated with this paper.
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Table 7. Results for TSP instances (objective 1).

Problem
Multi-Objective Single-Objective Test

NSGA-II MOEA/D SMS-EMOA gGA eES

Mean Median Mean Median Mean Median Mean Median Mean Median
clusAB100 71.3% 72.0% 59.7% 60.3% 22.5% 20.8% 65.6% 67.3% 62.2% 61.2% M
clusAB300 64.3% 64.5% 56.4% 55.7% 31.2% 32.0% 64.8% 66.2% 63.0% 63.9% -
clusAB500 62.1% 62.5% 66.2% 68.5% 71.2% 72.9% 31.7% 31.2% 29.5% 30.3% M
euclAB100 83.2% 82.5% 77.2% 77.2% 29.2% 29.3% 82.6% 82.8% 81.8% 82.45% -
euclAB300 72.2% 72.3% 68.8% 68.8% 29.8% 30.8% 79.2% 79.2% 78.3% 78.6% S
euclAB500 72.7% 72.7% 74.0% 73.2% 61.9% 63.3% 42.5% 43.8% 45.7% 45.7% M
kroAB100 83.1% 83.9% 71.2% 71.1% 27.3% 26.5% 79.0% 78.3% 77.7% 79.1% M

kroAB1000 69.3% 69.4% 74.3% 74.7% 93.0% 92.7% 11.8% 11.7% 10.9% 10.9% M
kroAB150 72.7% 73.1% 61.9% 61.6% 20.7% 20.5% 79.1% 80.2% 77.7% 78.2% S
kroAB200 67.3% 68.8% 58.5% 57.7% 21.9% 22.1% 77.9% 77.2% 78.6% 79.4% S
kroAB300 69.9% 70.3% 65.2% 64.9% 30.4% 28.6% 76.8% 77.5% 77.6% 79.0% S
kroAB400 73.7% 73.5% 64.4% 65.0% 39.1% 39.6% 58.2% 57.4% 59.2% 58.4% M
kroAB500 68.8% 68.4% 68.8% 67.8% 62.8% 63.5% 38.0% 37.8% 38.1% 39.2% M
kroAB750 67.2% 67.4% 71.7% 71.7% 84.7% 85.4% 19.9% 19.9% 18.8% 18.3% M
kroAC100 82.6% 83.1% 74.8% 75.4% 31.6% 31.6% 80.1% 79.4% 78.9% 80.2% M
kroAD100 80.9% 81.0% 72.6% 73.1% 27.4% 25.8% 77.0% 76.4% 75.8% 77.1% M
kroBC100 81.1% 81.3% 74.2% 73.9% 31.6% 32.3% 77.9% 77.2% 77.1% 76.1% M
kroBD100 80.8% 81.1% 71.7% 72.9% 26.9% 27.1% 76.5% 75.7% 75.6% 74.6% M
kroCD100 79.4% 79.9% 70.1% 71.8% 28.0% 29.0% 74.5% 73.9% 76.3% 76.9% M

Table 8. Results for TSP instances (objective 2).

Problem
Multi-Objective Single-Objective Test

NSGA-II MOEA/D SMS-EMOA gGA eES

Mean Median Mean Median Mean Median Mean Median Mean Median
clusAB100 78.3% 79.0% 69.7% 69.3% 31.6% 33.5% 70.9% 71.1% 70.1% 71.9% M
clusAB300 61.7% 61.5% 54.4% 55.4% 27.0% 24.4% 63.9% 64.9% 61.6% 62.4% -
clusAB500 68.2% 68.8% 69.4% 69.6% 72.8% 73.6% 38.5% 37.7% 38.2% 38.4% M
euclAB100 84.3% 84.0% 76.4% 75.6% 28.3% 29.7% 81.4% 81.5% 80.0% 81.3% M
euclAB300 71.2% 72.3% 63.1% 62.5% 23.0% 23.6% 79.5% 80.2% 76.1% 76.7% S
euclAB500 67.3% 67.1% 67.7% 67.1% 58.1% 58.2% 32.9% 33.2% 33.1% 33.3% M
kroAB100 81.6% 82.3% 72.0% 73.6% 24.5% 23.9% 77.2% 76.5% 76.3% 75.3% M
kroAB1000 67.4% 67.2% 72.6% 72.0% 91.7% 91.4% 11.1% 11.2% 10.0% 10.0% M
kroAB150 74.7% 74.8% 66.5% 66.2% 24.5% 25.0% 78.5% 79.4% 77.4% 78.7% S
kroAB200 72.2% 72.2% 63.9% 64.0% 24.1% 24.6% 81.8% 82.0% 80.9% 81.2% S
kroAB300 71.5% 71.7% 65.3% 65.5% 31.6% 31.9% 75.1% 74.2% 76.0% 77.0% S
kroAB400 70.2% 69.5% 66.9% 67.7% 43.0% 41.5% 62.3% 61.0% 60.7% 60.1% M
kroAB500 65.2% 66.1% 64.1% 64.1% 54.6% 53.0% 30.9% 33.1% 28.8% 29.8% M
kroAB750 65.9% 66.2% 70.6% 70.8% 85.3% 85.1% 16.8% 16.9% 16.6% 16.3% M
kroAC100 76.6% 77.0% 65.5% 66.0% 21.2% 20.0% 71.1% 70.6% 73.0% 73.6% M
kroAD100 81.2% 81.6% 69.3% 70.0% 21.8% 21.7% 76.4% 76.2% 72.3% 73.5% M
kroBC100 83.0% 83.0% 74.4% 75.0% 29.6% 29.0% 77.3% 76.7% 79.0% 79.6% M
kroBD100 79.1% 79.6% 72.3% 74.3% 20.0% 19.7% 77.4% 77.1% 72.9% 74.2% -
kroCD100 82.3% 82.8% 72.6% 73.4% 28.7% 28.9% 75.3% 74.7% 77.1% 77.7% M

Regarding the TSP, the results for objective 1 (Table 7) and objective 2 (Table 8), show hardly
any differences. In both cases, NSGA-II was the best-performing approach, not only considering
almost all small instances, but also some large ones. Furthermore, in those cases where NSGA-II was
superior, the differences were statistically significant compared the corresponding best-performing
single-objective approach. As in the case of the strongly correlated instances of the KNP, for those
particular instances of the TSP, it is better to run a multi-objective approach, such as NSGA-II,
instead of running a single-objective algorithm. As a first approach, decision makers usually tend
to perform a transformation of a multi-objective problem into a single-objective one, in the case they
are interested in a particular objective of a multi-objective problem. The said transformation is carried
out either by performing a scalarization of the different objective functions or by redefining objective
functions as constraints. Bearing the above in mind, although practitioners are only focused on one
of the objective functions of a multi-objective problem, the quality of the solutions attained by the
direct application of a multi-objective optimizer could be higher in comparison to the quality of
the solutions achieved by a single-objective algorithm executed for each of the objective functions
independently. As a result, from the practical point of view, the application of a multi-objective solver
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to a multi-objective problem could be a much better option rather than performing a transformation of
the multi-objective problem into a single-objective one to solve it through a single-objective approach.

Finally, we note that for most instances with a size between 150 and 300, MOEAs are dominated
by SOEAs. In larger instances, the SMS-EMOA tends to be superior to the other approaches. In general,
and considering both objective functions, the MOEAs are statistically superior in 69% of the instances,
SOEAs in 21%, while 10% exhibit no statistically significant differences, with the NSGA-II being the
best-ranked algorithm, followed by gGA, and finally by SMS-EMOA, eES, and MOEA/D. Moreover, if
we consider how MOEAs behave with the TSP problem, we see that for problem instances with sizes
of 100, 300, 500, 750 and 1000 (see Figures 3 and 4, Tables 6 and 7), MOEAs—especially SMS-EMOA—
can perform better than SOEAs as the size of the instances increases. Figure 6 provides more statistical
information. For example, note the significant difference in the behavior of SMS-EMOA between small
and large instances.
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Figure 6. Cont.
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Figure 6. Boxplots showing the results for the TSP achieved by the different single-objective and
multi-objective approaches at the end of 100 repetitions of the runs. Some instances were omitted
because of space restrictions. However, all graphics can be found in the repository associated with
this paper.

5. Conclusions

In this work, we have studied the assessment of multi-objective optimization approaches when
trying to optimize single-objective problems. From our point of view, it is interesting to analyze the
differences between the solutions provided by these multi-objective techniques (when considering each
objective value separately) and those reached by algorithms that are specifically designed to optimize
single and independent objectives. For this reason, in this paper, we presented a comparative study
between Multi-Objective Evolutionary Algorithms and Single-Objective Evolutionary Algorithms.
For the experimental analysis, we focused on two well-known and widely studied optimization
problems: the Knapsack Problem and the Travelling Salesman Problem. We considered bi-objective
formulations of the aforementioned problems. These bi-objective optimization problems were
directly—in a single run—processed using the multi-objective approaches, thus yielding a Pareto front,
from which we only are interested in two values: the point optimizing objective 1 and, separately,
the point optimizing objective 2. Meanwhile, the single-objective approaches must be executed twice:
once to optimize objective 1, defined in the bi-objective formulation of the problem, and again to
optimize objective 2.

The computational study carried out allows us to conclude that although MOEAs have to deal
with several objectives simultaneously, in some cases they have proven to be more effective than
single-objective approaches. In particular, the multi-objective approaches exhibited better behavior
when dealing with larger instances or with instances where the objectives are strongly correlated.
For those specific cases, the direct application of a multi-objective solver to a multi-objective problem is
a better choice in comparison to the transformation of the multi-objective problem into a single-objective
one to be solved by means of a single-objective algorithm. This conclusion can be explained by the
intrinsic capacity of MOEAs to maintain diversity within a population. MOEAs need conflicting
objectives and more time to converge, thus performing a larger exploration of the solution space.
The more negatively correlated the objectives, the more they conflict one with each other. Otherwise,
if we consider a context with non-conflicting objective functions, the Pareto front converges to a single
point. Hence, in these cases, it is better to address the problem by optimizing independently each of
the objective functions through a single-objective algorithm.

Considering the above, in the future, further evaluations should be done with
a more—representative and independent— set of problems and instances. We could thus further
investigate the key factors influencing the improvement of MOEA approaches to single-objective
environments. Since the design of MOEAs allows each objective to have a helper-objective effect on
the other objective, this property can provide more freedom to maintain the diversity of individuals
within a population. Such a feature is not present under the single-objective approaches.
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It is important to note that what is sought is useful diversity. A greater diversity does not
necessarily imply a proper balance between exploration and exploitation, so a high diversity might be
counterproductive. In this work, we did not employ a suitable diversity management strategy because
our intention was to study the intrinsic capacity of MOEAs to maintain diversity and to analyze how
effective these approaches are in single-objective optimization. However, after this initial analysis,
it would be worthwhile to design new experiments were the intrinsic and specific features of MOEAs
could be evaluated separately in some way.
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