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Resumen 
 
En la actualidad muchos desarrollos están guiados por los clientes, y por 

ello, la mayoría de las empresas se dirigen a las necesidades de sus clientes 
potenciales mediante la creación de una línea de productos -un portfolio de 
productos estrechamente relacionados con las variaciones en las características y 
funciones- en lugar de sólo un único producto. Las herramientas y técnicas para 
el desarrollo habituales de software tienden a centrarse productos individuales y 
este tipo de desarrollo de múltiples productos entrelazados es compleja.  

 
El objetivo principal de este proyecto es desarrollar una estrategia de 

optimización para poder abordar el problema planteado previamente y que nos 
permita reducir el número de casos de prueba a aplicar en un tiempo razonable 
pero que a la vez se mantenga la calidad de los productos software resultantes. 
Para esto usaremos diferentes técnicas multi-objetivos y mono-objetivos y 
haremos comparación de los resultados obtenidos. 
 
Palabras claves 
 
Optimización, multiobjetivo, algoritmos genéticos, búsqueda aleatoria, frente de 
Pareto, líneas de producción software, casos de prueba. 
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Abstract 
 

Currently many developments are guided by customers, and therefore, 
most companies focus on the needs of their potential customers by creating a 
software product line -a portfolio of products closely related to variations in features 
and functions- rather than just a single product. The tools and techniques for the 
common development of software tend to focus individual products and 
development, of such multiple and interrelated products, is complex. 

 
The main objective of this project is develop an optimization strategy to dealt 

with the previous problem and it allows us to reduce the number of test cases to 
apply in a reasonable time, but maintaining the quality of the resulting software 
products. Finally, we compare results using several different algorithms (mono-
objective and multi-objectives approaches). 
 
Keywords 
 
Optimization, multi-objective, GA (genetic algorithm), random search, Pareto front, 
software product lines, test cases. 
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1. Introduction 
  

Nowadays many developments are guided by the client, provoking that 
most companies point their effort to fulfill the potential client needs through creation 
of software product lines -a product portfolio closely related to the variations in 
characteristics and functions- instead of a single product. 

 
From the need to cover these type of development has emerged a new 

model called Software Product Lines. This research line is receiving a growing 
interest in the academic field as well as in the industrial field. The main feature that 
makes different this new model from the formers is the way to reuse software 
components. Instead of staking software components in a library waiting for being 
used in the future (as in actual models), in software product lines this software parts 
will be created when their reutilization is predicted in one or more products for a 
given product lines. Application of this model has allowed, in some cases, an 
increase by 10 in productivity and reduce development costs in 60%. 

 
As in any development, a very important aspect is the phase of validation 

and verification of final products. The standard way to verify industry product lines 
is to generate a test data suite that checks the reliability of product line and if new 
products are added or the existing ones are improved, existing test cases are 
modified and new ones are added. This approach leads to a large number of the 
test cases, arriving to a situation where is not possible to test all test cases in all 
products. For this reason, it is essential to search a way to reduce or prioritize the 
application of these test cases and in this exactly point is focused this project. 

 
Then, the main objective of this project is to reduce the number of test cases 

needed to validate a software product line, but without affecting the quality of final 
products. Since this problem is NP-hard, classical optimization techniques will have 
some difficulties to solve large instances of this problem, therefore in this project, 
we propose the utilization of some metaheuristic techniques.  

 
An additional difficulty of this problem is that several objectives (minimize 

the number of test cases, maximize the probability of finding an error, and maximize 
coverage of the code) should be fulfilled simultaneously. In the literature some 
mono-objective techniques are been proposed [6]. In that work the authors sum 
the objectives using different weights. This is possible way to solve the problem, 
but since this problem has different contraposed objectives, a better approach is 
the utilization of some multi-objective technique. Therefore we will apply two 
different well-known algorithms for this kind of multi-objective optimization: NSGA-
II and SPEA2. To study the performance of these algorithms, we will compare them 
against the mono-objective proposed by [6] and also, a random search technique. 
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1.1 Methodology 
 

This project will requires several phases to be performed. Firstly, some 
technical knowledge about optimization and different method is needed. Also, we 
need to analyze the different ways to model the problem at hands. Once, we have 
the appropriate knowledge, we apply the approaches to solve the problem, and an 
accuracy comparison will be performed. In concrete, the working plan for the 
development of this work involves the next phases: 

 
 Study optimization techniques, focusing on multi-objective 

approaches. 
 Study of different software platforms for multi-objective algorithms 

that help us develop our approach. 
 Study of the problem and how to apply the former techniques to 

solve it. (We will see how to create a random file with test cases suite depending 
on the number of features, each file will be formed for a number of test cases 
depending on number of features and some factors we will see during the 
explanation of the problem solved). 

 Testing the proposed approach. For this we will use Eclipse [8] and 
will reuse jMetal library, a Java framework where we can use already built-in 
mono- and multi-objective algorithms to get our results. 

 Analysis and make a comparison of the obtained results. 
 Extraction of conclusions. 

1.2 Organization of This Document 
  

This memory is made up of 6 chapters (including this introduction one). In 
the next paragraphs the contents of each chapter will be briefly described. 

 
In Chapter 2, we present the principle concepts used in a project like this 

(optimization using multi-objective techniques), what is and what is used for, 
combinatorial optimization, multi-objective techniques, algorithms used, mono-
objective techniques, metaheuristics, concept of Evolutionary Algorithms and the 
jMetal Java framework in which we will develop our approaches. 

 
In Chapter 3, we describe the problem we are going to solve/reproduce 

using multi-objective techniques and the approach used to solve it. We show a 
formal description of the problem, how the problem is modelled to be 
computationally solved, the description of the objectives and fitness functions, and 
finally, we discuss some implementation issues about the algorithms developed in 
this project. 

 
In Chapter 4, we present the experimental design (benchmark, statistical 

analysis used, parameterization …). The second part of this chapter shows the 
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different results obtained and comparison between the results and what techniques 
obtain better results. 

  
Chapter 5 gives some final conclusions describing how the main goals of 

this project have been fulfilled. We also show some future works and open 
research lines.  

 
In addition to these five chapter, we also include a bibliographical reference 

with the most important papers and webpages consulted during the development 
of this project, and an appendix with the statistical analysis results. 
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2. Background Information 
  

In this project we want to resolve a combinatorial optimization problem, so 
let's start formally describing this type of problem, its variants as the multi-objective 
and techniques to address this type of problem (we will focus on metaheuristics 
and in particular those relating to evolutionary algorithms). Also at the end of the 
chapter discusses a framework that facilitates the use of these techniques for 
solving optimization problems. 
2.1 Combinatorial Optimization 
  

Many optimization problems of practical as well as theoretical importance 
consist of the search for a “best” configuration of a set of variables to achieve some 
goals. They seem to divide naturally into two categories: those where solutions are 
encoded with real-valued variables and those where solutions are encoded with 
discrete variables. Among the latter ones we find a class of problems called 
Combinatorial Optimization (CO) problems. In CO problems, we are looking for an 
object from a finite -or possibly countably infinite- set. This object is typically an 
integer number, a subset, a permutation, or a graph structure [4].  

 
A Combinatorial Optimization problem P = (S, f) can be defined by: 
 a set of variables = , … , }; 
 variable domains D1,…,Dn; 
 constraints among variables; 
 an objective function f to be minimized (or maximized) where  

: × ⋯ × →  
 
The set of all possible feasible assignments is 
 

= = , , … , , } |  ∈ ,    ℎ  } 
 
S is usually called a search (or solution) space, as each element of the set 

can be seen as a candidate solution. To solve a combinatorial optimization problem 
one has to find a solution ∗ ∈   with minimum objective function value, that is, 

∗ ≤ , ∀  ∈ . ∗ is called a globally optimal solution of (S, f). Examples for 
CO problems are the Travelling Salesman problem (TSP), the Quadratic 
Assignment problem (QAP), Timetabling and Scheduling problems. 
2.1.1 Multi-objective Optimization 
 

So far we have seen that we get the best solution to optimize a function of 
fitness. Methods use this value to compare each pair of solutions and thus know 
what is best and somehow getting better solutions. In the previous definition of CO 
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problem we had an only objective. These problems are called mono-objective 
problems. But in many real-world problem we want to optimize several objectives 
at once and in general, these objectives are conflicting (i.e., if we improve the value 
of an objective, the value of other objective is worsen). 

 
Multi-objective optimization is an area of multiple criteria decision making, 

involving more than one objective, for each objective we can have more than a 
possible solution, from those solutions; those that are worse are referred to as 
“dominated” solutions, those that are best solutions (normally more than one) for 
those objectives, those are referred to as “non-dominated”. The set of non-
dominated solutions are called Pareto front. 
 

   
      Figure 2.1 Illustration of a general multi-objective optimization problem.  
 

Let us put an example related to the TSP (Travelling Salesman Problem). 
Here we propose a route covering 3 cities between 100, visiting each city gives us 
a profit but travel has a cost. You see we have two objectives: to maximize the 
benefits and minimize the cost. We show three possible solutions: 

 
Solution A: <Albacete, Guadalajara, Zaragoza> Profit: 10 Cost: 10 
Solution B: <Córdoba, Mérida, Madrid>  Profit: 15 Cost: 7 
Solution C: <Madrid, Barcelona, París>  Profit: 40 Cost: 30 
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B and C are best than A because both improves both objectives, i.e., B and 
C obtain better profits with less cost than A. In this case, is said A is dominated by 
B and C. 

 
However, we have no criteria to decide which is better between B and C 

because both are good in one objective and bad in other objective. As we said 
before, these solutions are called non-dominated solutions and the set of non-
dominated solutions are called Pareto front. 

 
The algorithms that address this kind of issue should note that property 

(non-dominated solutions) when working and the result will not be a single solution, 
but many non-dominated solutions (Pareto front) and will be an expert on that basis 
current needs to decide between the set of solutions. 

 
The final goal of a multi-objective optimization algorithm is to identify 

solutions in the Pareto optimal set. However, identifying the entire Pareto optimal 
set, for many multi-objective problems, is practically impossible due to its size. In 
addition, for many problems, especially for combinatorial optimization problems, 
proof of solution optimality is computationally infeasible. Therefore, a practical 
approach to multi-objective optimization is to investigate a set of solutions (the 
best-known Pareto set) that represent the Pareto optimal set as well as possible. 
With these concerns in mind, a multi-objective optimization approach should 
achieve the following three conflicting goals: 

 
1. The best-known Pareto front should be as close as possible to the true 

Pareto front. Ideally, the best-known Pareto set should be a subset of the Pareto 
optimal set. 

 
2. Solutions in the best-known Pareto set should be uniformly distributed 

and diverse over of the Pareto front in order to provide the decision-maker a true 
picture of trade-offs. 

 
3. The best-known Pareto front should capture the whole spectrum of the 

Pareto front. This requires investigating solutions at the extreme ends of the 
objective function space.   
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 Figure 2.2 illustration of a 3D pareto front for a multi-objective algorithm with three 
objectives. 

2.1.1 Mono-objectivization Techniques 
  

As we will see in the next section, although in literature has been proposed 
several methods to tackle with the problem of multi-objective optimization, there 
exists a big gap between the number of research on mono-objective techniques 
and multi-objective ones. Then, a common approach is to convert the multi-
objective problem in a mono-objective one (this is usually called mono-
objectivization). Any multi-objective optimization problem may be converted to a 
single objective optimization problem by aggregating the objectives into a scalar 
function :  → .  

 
One scalarization method, known as weighted sum approach, associates 

a real weight wi with each objective fi. Accumulating the weighted objective values 
yields the combined objective value: 

 
=  ∑ ×   
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2.2 Metaheuristics 
  

Due to the practical importance of CO problems, many algorithms to tackle 
them have been developed. These algorithms can be classified as either complete 
or approximate algorithms. Complete algorithms are guaranteed to find for every 
finite size instance of a CO problem an optimal solution in bounded time. Complete 
methods might need exponential computation time in the worst case. This often 
leads to computation times too high for practical purposes. Thus, the use of 
approximate methods to solve CO problems has received more and more attention 
in the last 30 years. In approximate methods we sacrifice the guarantee of finding 
optimal solutions for the sake of getting good solutions in a significantly reduced 
amount of time. 

 
Among the basic approximate methods we usually distinguish between 

constructive methods and local search methods. Constructive algorithms generate 
solutions from scratch by adding, to an initially empty partial solution components, 
until a solution is complete. They are typically the fastest approximate methods, yet 
they often return solutions of inferior quality when compared to local search 
algorithms. Local search algorithms start from some initial solution and iteratively 
try to replace the current solution by a better solution. 

  
In computer science and mathematical optimization, a metaheuristic is a 

higher-level procedure or heuristic designed to find, generate, or select a heuristic 
(partial search algorithm) that may provide a sufficiently good solution to 
an optimization problem, especially with incomplete or imperfect information or 
limited computation capacity. Metaheuristics sample a set of solutions which is too 
large to be completely sampled. Metaheuristics may make few assumptions about 
the optimization problem being solved, and so they may be usable for a variety of 
problems.  

 
The field of metaheuristics for the application to combinatorial optimization 

problems is a rapidly growing field of research. This is due to the importance of 
combinatorial optimization problems for the scientific as well as the industrial world. 
The field of metaheuristics for the application to combinatorial optimization 
problems is a rapidly growing field of research. This is due to the importance of 
combinatorial optimization problems for the scientific as well as the industrial world. 
In the last 20 years, a new kind of approximate algorithm has emerged which 
basically tries to combine basic heuristic methods in higher level frameworks aimed 
at efficiently and effectively exploring a search space. These methods are 
nowadays commonly called metaheuristics. The term metaheuristic, first 
introduced in 1986 by Glover, derives from the composition of two Greek words. 
Heuristic derives from the verb heuriskein which means “to find”, while the suffix 
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meta means “beyond, in an upper level”. Before this term was widely adopted, 
metaheuristics were often called modern heuristics. 

 
A metaheuristic is formally defined as an iterative generation process which 

guides a subordinate heuristic by combining intelligently different concepts for 
exploring and exploiting the search space, learning strategies are used to structure 
information in order to find efficiently near-optimal solutions. Example of this class 
of algorithms includes Ant Colony Optimization, Evolutionary Computation 
including Genetic Algorithms (GA), Iterated Local Search, and Simulated 
Annealing. 

 
Metaheuristics are typically high-level strategies which guide an underlying, 

more problem specific heuristic, to increase their performance. The main goal is to 
avoid the disadvantages of iterative improvement and, in particular, multiple 
descent by allowing the local search to escape from local optima. This is achieved 
by either allowing worsening moves or generating new starting solutions for the 
local search in a more “intelligent” way than just providing random initial solutions. 

  
Summarizing, we outline fundamental properties which characterize 

metaheuristics: 
 
 Metaheuristics are strategies that “guide” the search process. 
 The goal is to efficiently explore the search space in order to find (near) 

optimal solutions. 
 Techniques which constitute metaheuristic algorithms range from simple 

local search procedures to complex learning processes. 
 Metaheuristic algorithms are approximate and usually non-deterministic. 
 They may incorporate mechanisms to avoid getting trapped in confined 

areas of the search space. 
 The basic concepts of metaheuristics permit an abstract level of 

description. 
 Metaheuristics are not problem-specific. 
 Metaheuristics may make use of domain-specific knowledge in the form 

of heuristics that are controlled by the upper level strategy. 
 Today more advanced metaheuristics use search experience (embodied 

in some form of memory) to guide the search. 
 
In short, we could say that metaheuristics are high level strategies for 

exploring search spaces by using different methods. Two very important concepts 
in metaheuristics are intensification and diversification. The term diversification 
generally refers to the exploration of the search space, whereas the term 
intensification refers to the exploitation of the accumulated search experience. 
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In general, two main families can be distinguished in metaheuristics: 
trajectory-based techniques and population-based methods. 

 
Metaheuristics working on single solutions are called trajectory methods 

and encompass local search-based metaheuristics. They all share the property of 
describing a trajectory in the search space during the search process. 

 
Population-based metaheuristics, on the contrary, perform search 

processes which describe the evolution of a set of points in the search space. In 
this project, the use of population-based metaheuristics.  

 
As we stated before, Population-based methods deal in every iteration of 

the algorithm with a set (i.e., a population) of solutions rather than with a single 
solution. As they deal with a population of solutions, population-based algorithms 
provide a natural, intrinsic way for the exploration of the search space. Yet, the final 
performance depends strongly on the way the population is manipulated. The most 
studied population-based method in combinatorial optimization are Evolutionary 
Algorithms (EAs) and Behavioral techniques. EAs are based in the principles of the 
natural evolution, and the population of individuals is modified by recombination 
and mutation operators. On the contrary, Behavioral techniques, such as Ant 
Colony Optimization (ACO) or Particle Swarm Optimization (PSO), are based on 
the emerging behavior of a set of animals. For example, in ACO a colony of artificial 
ants is used to construct solutions guided by the pheromone trails and heuristic 
information. In this project, we focus on the popular Evolutionary Algorithms which 
are described in the next section 
2.2.1 Evolutionary Algorithms 

 
The term evolutionary algorithm (EA) stands for a class of stochastic 

optimization methods that simulate the process of natural evolution. The origins of 
EAs can be traced back to the late 1950s, and since the 1970s several evolutionary 
methodologies have been proposed, mainly genetic algorithms, evolutionary 
programming, and evolution strategies. All of these approaches operate on a set 
of candidate solutions. Using strong simplifications, this set is subsequently 
modified by the two basic principles: selection and variation. While selection 
imitates the competition for reproduction and resources among living beings, the 
other principle, variation, imitates the natural capability of creating ”new” living 
beings by means of recombination and mutation [12]. An evolutionary algorithm is 
characterized by three features: 

 
 1. A set of solution candidates is maintained, 
 2. A mating selection process is performed on this set, and 
 3. Several solutions may be combined in terms of recombination to 

generate new solutions. 
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 Figure 2.3 Components of a general stochastic search algorithm. 
 

By analogy to natural evolution, the solution candidates are called 
individuals and the set of solution candidates is called the population. Each 
individual represents a possible solution, i.e., a decision vector, to the problem at 
hand; however, an individual is not a decision vector but rather encodes it based 
on an appropriate representation. 

 
The mating selection process usually consists of two stages: fitness 

assignment and sampling. In the first stage, the individuals in the current population 
are evaluated in the objective space and then assigned a scalar value, the fitness, 
reflecting their quality. Afterwards, a so-called mating pool is created by random 
sampling from the population according to the fitness values. For instance, a 
commonly used sampling method is binary tournament selection. Here, two 
individuals are randomly chosen from the population, and the one with the better 
fitness value is copied to the mating pool. This procedure is repeated until the 
mating pool is filled. 

 
Then, the variation operators are applied to the mating pool. With EAs; there 

are usually two of them, namely the recombination and the mutation. 
 
Although the underlying mechanisms are simple, these algorithms have 

proven themselves as a general, robust and powerful search mechanism. In 
particular, they possess several characteristics that are desirable for problems 
involving i) multiple conflicting objectives, and ii) intractably large and highly 
complex search spaces. 
2.2.2 MOEAs 
  

Generating the Pareto set can be computationally expensive and is often 
infeasible, because the complexity of the underlying application prevents exact 
methods from being applicable. For this reason, a number of stochastic search 
strategies such as evolutionary algorithms, tabu search, simulated annealing, and 
ant colony optimization have been developed: they usually do not guarantee to 
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identify optimal trade-offs but try to find a good approximation, i.e., a set of solutions 
whose objective vectors are (hopefully) not too far away from the optimal objective 
vectors. 

 
In concrete, Evolutionary algorithms (EA) have proved to be well suited for 

optimization problems with multiple objectives due to their inherent parallelism they 
are able to capture a number of solutions concurrently in a single run. Since 
evolutionary algorithms (EAs) work with a population of solutions, a simple EA can 
be extended to maintain a diverse set of solutions. With an emphasis for moving 
toward the true Pareto-optimal region, an EA can be used to find multiple Pareto-
optimal solutions in one single simulation run. 

 

 Figure 2.4 Evolutionary search of Optimal Pareto Front 
  

The utilization of EAs to solve MOPs (Multi-Objective Problems) is a current 
and very promising research line. An entire domain called MOEAs (Multi-Objective 
Evolutionary Algorihms) is devoted to this research [1]. 

  
In MOEA design: guiding the search towards the Pareto set and keeping a 

diverse set of nondominated solutions. It is considered to be a set of mutually 
nondominated solutions, or Pareto set approximation for short. Most MOEAs try to 
maintain diversity within the current Pareto set approximation by incorporating 
density information into the selection process: an individual’s chance of being 
selected is decreased the greater the density of individuals in its neighborhood. 
This issue is closely related to the estimation of probability density functions in 
statistics, and the methods used in MOEAs can be classified according to the 
categories for techniques in statistical density estimation. 
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The MOEA algorithms have certain goals that should be matched; the first 
goal is mainly related to mating selection, in particular to the problem of assigning 
scalar fitness values in the presence of multiple optimization criteria. The second 
goal concerns selection in general because we want to avoid that the population 
contains mostly identical solutions (with respect to the objective space and the 
decision space). Finally, a third issue which addresses both of the above goals is 
elitism, i.e., the question of how to prevent nondominated solutions from being 
lost.  

 
For the first goal we distinguish aggregation-based, criterion-based and 

Pareto-based fitness assignment strategies. For the second goal most MOEAs try 
to maintain diversity within the current Pareto set approximation by incorporating 
density information into the selection process: an individual’s chance of being 
selected is decreased the greater the density of individuals in its neighborhood. 
For the third goal, elitism addresses the problem of losing good solutions during 
the optimization process due to random effects. One way to deal with this problem 
is to combine the old population and the offspring, i.e., the mating pool after 
variation, and to apply a deterministic selection procedure—instead of replacing 
the old population by the modified mating pool. Alternatively, a secondary 
population, the so-called archive, can be maintained to which promising solutions 
in the population are copied at each generation. Improved algorithm NSGAII (from 
NSGA) is an elitist procedure which will be described later in section 3.7. 
   
2.3 jMetal Framework 
  

Instead of starting development from scratch, we decided to use the already 
built-in library called jMetal. It has many algorithms built, ready to use. It is a 
framework for multi-objective optimization with metaheuristics developed by a 
research team in the Languages and Computer Science Department of the 
University of Málaga. 

 
jMetal stands for Metaheuristic Algorithms in Java, and it is an object-

oriented Java-based framework for multi-objective optimization with metaheuristic 
techniques. jMetal provides a rich set of classes which can be used as the building 
blocks of multi-objective techniques; this way, by taking advantage of code-reusing, 
the algorithms share the same base components, such as implementations of 
genetic operators and density estimators, thus facilitating not only the development 
of new multi-objective techniques but also to carry out different kinds of 
experiments. The inclusion of a number of classical and state-of-the-art algorithms, 
many problems usually included in performance studies, and a set of quality 
indicators allow not only newcomers to study the basic principles of multi-objective 
optimization with metaheuristics but also their application to solve real-world 
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problems. The jMetal project is continuously evolving and new versions are 
released when new features are added. 
 
2.3.1 Design Goals 

 jMetal´s Developers had on mind this tool should be simple and easy to use, 
portable (hence the choice of Java), flexible, and extensible. We detail these goals 
next [9-10]: 

 
Simplicity and easy-to-use. These are the key goals: if they are not fulfilled, 

few people will use the software. The classes provided by jMetal follows the 
principle of that each component should only do one thing, and do it well. Thus, the 
basis classes (SolutionSet, Solution, Variable, etc.) and their operations are 
intuitive and, as a consequence, easy to understand and use. Furthermore, the 
framework includes the implementation of many metaheuristics, which can be used 
as templates for developing new techniques. 

  
Flexibility. This is a generic goal. On the one hand, the software must 

incorporate a simple mechanism to execute the algorithms under different 
parameter settings, including algorithm specific parameters as well as those related 
to the problem to solve. On the other hand, issues such as choosing a real or 
binary-coded representation and, accordingly, the concrete operators to use, 
should require minimum modifications in the programs. 

  
Portability. The framework and the algorithms developed with it should be 

executed in machines with different architectures and/or running distinct operating 
systems. The use of Java as programming language allows to fulfill this goal; 
furthermore, the programs do not need to be re-compiled to run in a different 
environment. 

  
Extensibility. New algorithms, operators, and problems should be easily 

added to the framework. This goal is achieved by using some mechanisms of Java, 
such as inheritance and late binding. For example, all the MOPs inherits from the 
class Problem, so a new problem can be created just by writing the methods 
specified by that class; once the class defining the new problem is compiled, 
nothing more has to be done: the late binding mechanism allows to load the code 
of the MOP only when this is requested by an algorithm. This way, jMetal allows 
separating the algorithm-specific part from the application-specific part. 
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2.3.2 Main Features 
  

It includes the implementation of a large number of classic and modern 
multi-objective optimization algorithms: NSGAII, SPEA2, PAES, PESA-II, 
OMOPSO, MOCell, AbYSS, MOEA/D, Densea, CellDE, GDE3, FastPGA, IBEA, 
SMPSO, SMPSOhv, MOCHC, SMS-EMOA, dMOPSO, adaptive and random 
NSGA-II. 
 

Since real-world problem are used to be very time consuming task, this 
framework also include some parallel (multithreaded) versions of MOEA/D, NSGA-
II and SMPSO (referred as to pMOEAD, pNSGAII, and pSMPSO, respectively). 

 
The framework also allows to calculate the most popular multi-objective 

metrics such as Hypervolume, Generational Distance, Spread and Generalized 
Spread, Error Ratio … 

 
In spite the framework is devoted to multi-objective optimization also some 

mono-objective algorithm are supported such as generational and state steady 
Genetic Algorithms, PSO and other classical methods. 

 
 Finally, it has also implemented a rich set of multi-objective test 

problems: 
 
 Problem families: Zitzler-Deb-Thiele (ZDT), Deb-Thiele-Laumanns-

Zitzler (DTLZ), Walking-Fish-Group (WFG) test problems), CEC2009 
(unconstrained problems), and the Li-Zhang benchmark. – 

 Classical problems: Kursawe, Fonseca, Schaffer 



 25

3. Problem Description and Our Approaches 
 

In the previous chapter, we give a brief introduction about optimization, 
specially focus on multi-objective problems and the current approaches to solve 
this kind of optimization. Now, in this chapter, we present the problem solved in this 
project: Test minimization in Software Product Lines. Firstly, we describe the 
mathematical model of this combinatorial problem, and later, we analyze the 
techniques used to deal with. 
3.1 Test Minimization Problem Introduction 

 Test minimization techniques aim at identifying and eliminating redundant 
test cases from test suites in order to reduce the total number of test cases to 
execute, thereby improving the efficiency of testing. In the context of software 
product line, we can save effort and cost in the selection and minimization of test 
cases for testing a specific product by modeling the product line.  

 
However, minimizing the test suite for a product requires addressing two 

potential issues: 1) the minimized test suite may not cover all test requirements 
compared with the original suite; 2) the minimized test suite may have less fault 
revealing capability than the original suite. 

 
We will use different multi-objectives algorithms in order to get a minimized 

test suite that cover all test requirements and that have same fault revealing 
capability as the original suite. 

 
For testing a product line, in the current practice of industry, a test suite is 

typically developed to test the whole product line and the test suite will be modified 
as new products come into play or the current products need to be improved. 
However, as the number of products increases, the number of test cases for testing 
the product line will also increase. Therefore, it becomes practically impossible to 
execute all the test cases of the product line due to limited available time and 
resources for each new product. It is therefore essential to seek a solution to 
minimize test suites for a specific product efficiently before execution to reduce the 
cost of testing. 
3.2 Feature Model and Component Family Model 
 

The methodology used to support automated test case selection are 
Feature Model (FM) which gives you a complete and compact representation of all 
features of the products of the Software Product Line (SPL) and Component Family 
Model (CFM) [5].  
 



 26

FM are arranged in a tree-like structure when each successively deeper 
level in the tree corresponds to a more fine-grained configuration option for the SPL 
variant. Then parent-child and cross-tree relationships capture the constraints that 
must be adhered to when selecting a group of features for a variant 

 
FM can be represented as FM = {features, relations, constraints}. It contains 

four different types of relations among features, namely mandatory, alternative, 
optional and or]. A mandatory relation between a father feature and a child feature 
specifies that, if the father feature is included in the current selection, then the child 
feature must also be included. An alternative relation among a father feature and a 
set of children features is used when the selection of only one of the children is 
required, not less, not more. An optional relation is used when the selection is 
optional. An or relation is used when any number of children features can be 
selected, but at least one.  Sum up: 

 
 Mandatory – child feature is required. 
 Optional – child feature is optional. 
 Or – at least one of the sub-features must be selected. 
 Alternative (xor) – one of the sub-features must be selected 

 

 Figure 3.1: Example of a tree representing a Feature Model in Software Product 
Lines. 

 
CFM can be represented as CFM = {components, parts, source elements, 

restrictions}. CFM can be used to represent how products are assembled and 
generated in a Product Line by modelling relations among software architectural 
elements. It has a hierarchical structure including items such as components and 
parts. For the purpose of automatic product generation from a valid selected 
feature model in PL, these items can be organized and used with relevant 
information about the concrete architecture. 

 
CFM can be represented as CFM = {components, parts, source elements, 

restrictions}. Components are named entities and organized into a tree-like 
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structure that can be of any depth. Each component represents one or more 
functional elements of the products in PL such as functions of software or 
documentation. Parts are named and typed entities. Each part belongs to a 
component and contains one or more source elements. A part can be associated 
with given programming language features, classes or objects, but it can also be 
associated with other key elements. A source element is an unnamed but typed 
entity. Source elements are usually used to determine how the source code for the 
specified element is generated. Restrictions play a key role for linking FM and CFM. 
A restriction constrains the relationships between an element in CFM and features 
in FM. They are added into CFM in order to decide whether an element can be part 
of a product in PL. An element in CFM cannot be associated with a product unless 
restrictions defined on the element evaluate to true. 

 
In our modelling, CFMs are not used to represent software architecture, but 

rather to model the hierarchical structure of test cases. This methodology captures 
the commonalties and variability of a product line using a FM and the domain 
knowledge of test experts using a CFM. 
3.3 Problem Modelling 

 
Summing up and taken into account what said before, what we want is 

achieving these three objectives [6]: 
 

 Minimizing the number of test cases (Test Minimization 
Percentage, TMP).  

 Maximizing feature Pairwise Coverage (Feature Pairwise 
Coverage, FPC).  

 Maximizing capacity of fault detection (Fault Detection 
Capability, FDC). 

 
These objectives will be deeply described in the next section. In the 

literature, we can found some technical proposals based on finding an optimal 
solution using genetic algorithms that combine these objectives in a balanced way 
(GAs based on weight vectors). In our case it is proposed to optimize all targets 
simultaneously using multi-objective techniques. But before of analyzing the 
techniques, we are going to give a formal definition of the problem. 

 
A product line P that have a set of products P = {P1, P2, P3,…,Pnp} where 

Pnp is the number of products of P. P can be represented as a model of 
characteristics with a set F = {f1, f2, f3, …,  fnf}  where fnf is the number of 
characteristics or functionalities we wish to test in product line P. To test P, there 
are a set of test TS = {t1, t2, t3,…, tnt} that comprises a great number of test cases 
(nt). The problem can be represented in details as: 
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Search a solution Sk (Sk is made up of  {tsk1, tsk2, tsk3,…, tntsk}) 1) TMPsk (less 
number of test cases); 2) FPCsk (high pair feature coverage) y 3) FDCsk (high fault 
detection capability). 
 

3.4 Definition of the Objectives 
 1. TMP: Measures quantity reduction on the number of test cases and 

is calculated: 
100*1 












pi
sksk nt

ntTMP  
 
 where ntsk  number of test cases for solution Sk where 1<= ntsk <= ntpi. 

ntpi is the number of test cases to test the product Pi, that is one of the products to 
test in production line P. The value range of TMP can vary from 0 to 1 and the 
greater the number is, the greater will be the reduction of needed test cases. 

 
2. FPC: is used to measure how much pairwise coverage can be 

achieved by a chosen solution. We chose this type of coverage based on our 
domain knowledge, discussion with test engineers, and history data about faults 
because a higher percentage of detected faults are mainly due to the interactions 
between features. FPC is designed to compute the capability of covering feature 
pairs by a chosen solution, which is computed as below: 

 
%100_

__ 
pi
sksksk FPNum

FPNumFPNumFPC  
 
Num_FPsk  is the number of feature pairs covered in the test cases for the 

solution sk, which can be measured as follows: 
 

  sk
i tcint FPNumFPNum sk 1 __  

 
 where ntsk is the number of test cases for the solution sk, where 

1<=ntsk<=ntpi. NUM_FPtci is the number of unduplicated feature pairs covered by 
the test case i (tci). The feature pairs covered by tci can be computed as: 
NUM_FPtci = 2

)(FtcisizeC where size(Ftci) is the number of features tested by that test 
case. For instance, if test case tci is used to test three features. Then the feature 
pairs covered by test case i 2

3C = 3*2/2 = 3. Notice, repeated pairs will be removed 
when computing.  

 
 NUM_FPpi is all number of feature pairs for testing the product pi which can 

be measured as: NUM_FPpi = 2
)(FpisizeC = ntpi * (ntpi – 1) /2 is the set of features 
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representing the product Pi, including ntpi features. For instance, if Pi is represented 
by ten features, all feature pairs covered by the product are 2

10C = 10* 9/2 = 45. 
Note that FPC is calculated for a chosen test solution and ranges from 0 to 1 and 
a higher value of FPC shows higher feature pairwise coverage. 

 
3. FDC measures the fault detection capability of a selected test 

solution for a product. In out context, fault detection refers to the success rate of a 
test case in a given time, e.g., a week or a month. In our context, a test case is 
defined as a success if it can detect faults in a given time and as a fail if it does not 
detect any fault. The success rate of a test case can be measured as below: 

 
= +  

 
where NumSuctci: is the number of success executions for the given test 

case i during the given time; y NumFailtci, is the number of fail executions for the 
given test case i during the given time. 
3.5 Fitness Function Definition (for Mono-objective Version) 

 To ease computation of the fitness function, the values for all the three 
objectives have been normalized by the above-proposed formulas, which range 
from 0 to 1. We adopted a fitness function based in the normalization of the three 
objectives, and is defined as follows: 

 
Min Fitness = 1 – (w1 * TMP + w2 * FPC + w3 * FDC) 

 
where w1 +  w2 + w3 = 1. 
  
Using this way, multi-objective optimization problem is converted to a single 

objective problem with a scalar objective function, which is a classical approach 
and is efficient to be solved using GAs. You can give several different values to the 
weights depending on the importance given to each objective, to real test those 
weights can be defined based in systematic methods such as domain analysis, 
questionnaire. In the original paper [6] the authors propose two variants (based in 
domain analysis and discussions with Cisco test engineers): 

 
 w1 = w2 = w3 = 1/3 and  
 w1 = 0.2, w2 = w3 = 0.4. 
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3.6 Requirements 
 
The algorithms proposed to solve this problem should fulfill the following 

requirements: 
 
1. Generated test case set must cover all requirements that the initial 

test case set. 
2. Minimized Generated test case must have same fault detection 

capability than the original 
3. Computing time must be as low as possible since we plan to tackle 

very large instances. 
3.7 Description of Selected Multi-objective Algorithms 
 

In order to solve the previous problem, we have selected three different 
algorithms. Two of them are well-known MOEA algorithms: NSGAII [7] and SPEA2 
[3]. We also use a random multi-objective search to base in our multi-objective 
comparison. 

3.7.1. Non-dominated Sorting and Sharing Genetic Algorithm (NSGAII) 
 

This is an improved version of original NSGA. The original version has been 
criticized mainly for following issues:  

1) Computational complexity (where is the number of objectives and is the 
population size) 

2) Non-elitism approach 
3) The need for specifying a sharing parameter. 

 
NSGAII [2] alleviates all the above three difficulties. Specifically, a fast non-

dominated sorting approach with computational complexity O(MN2). Also, a 
selection operator is presented that creates a mating pool by combining the parent 
and offspring populations and selecting the best (with respect to fitness and 
spread) solutions. Simulation results on difficult test problems show that the 
proposed NSGA-II, in most problems, is able to find much better spread of solutions 
and better convergence near the true Pareto-optimal front compared to Pareto-
archived evolution strategy and strength-Pareto EA (elitist property). The primary 
reason for this is their ability to find multiple Pareto-optimal solutions in one single 
simulation run. 

 
The behavior of NSGAII is as follows. The population is initialized as usual 

in Genetic Algorithms.  Once the population in initialized the population is sorted 
based on non-domination into each front. The first front being completely non-
dominant set in the current population and the second front being dominated by 



 31

the individuals in the first front only and the front goes so on. Each individual in the 
each front are assigned rank (fitness) values or based on front in which they belong 
to. Individuals in first front are given a fitness value of 1 and individuals in second 
are assigned fitness value as 2 and so on. 

 
In addition to fitness value a new parameter called crowding distance is 

calculated for each individual. The crowding distance is a measure of how close an 
individual is to its neighbors. Large average crowding distance will result in better 
diversity in the population. 

 
Parents are selected from the population by using binary tournament 

selection based on the rank and crowding distance. An individual is selected in the 
rank is lesser than the other or if crowding distance is greater than the other. The 
selected population generates offsprings from crossover and mutation operators. 

 
The population with the current population and current offsprings is sorted 

again based on non-domination and only the best N individuals are selected, where 
N is the population size. The selection is based on rank and the on crowding 
distance on the last front. 
3.7.2 Strength Pareto Evolutionary Algorithm (SPEA2) 
 

SPEA2 [3] uses a mixture of established techniques and new techniques in 
order to find multiple Pareto optimal solutions in parallel. 

 
 Stores the Pareto-optimal solutions found so far externally. 
 Uses the concept of Pareto dominance in order to assign scalar fitness 

values to individuals. 
 Performs clustering to reduce the number of nondominated solutions 

stored without destroying the characteristics of the Pareto-optimal front. 
 
On the other hand, SPEA is unique in four respects:  
 
 It combines the above three techniques in a single algorithm. 
 The fitness of an individual is determined from the solutions stored in the 

external Pareto set only; whether members of the population dominate each other 
is irrelevant. 

 All solutions in the external Pareto set participate in selection. 
 A new niching method is provided in order to preserve diversity in the 

population: this method is Pareto-based and does not require any distance 
parameter. 

 
In the design of SPEA2, the goal was to eliminate the potential weaknesses 

of its predecessor and to incorporate most recent results in order to create a 
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powerful and up-to-date MOEA. The main differences of SPEA2 in comparison to 
SPEA are: 

 
 An improved fitness assignment scheme, which takes for each individual 

into account how many individuals it dominates and it is dominated by. 
 A nearest neighbor density estimation technique, which allows a more 

precise guidance of the search process. 
 A new archive truncation methods that guarantees the preservation of 

boundary solutions. 
3.7.3 Random Search (RS) 
 

Basically we use this algorithm as base to compare our EA algorithm to 
check if they are really smart or they behave as somewhat random. The basic 
behavior of this method is as follows:  

 
for(int i = 0; i < MAX_SOLUTIONS; i++){ 

s = randomSolution();  
insertInParetoFront(s);  

}  
 

It generates as many solutions as we want (in our case so many solutions 
as evaluations do the rest of algorithms), and then it tries to put it in the Pareto front 
if it is a non-dominated solution. 
3.8  Implementation 
 

For solving the problem, we use the jMetal framework which already has 
implemented the algorithms but it requires to adapt it to the problem at hands. In 
this section we describe the main classes developed to tackle with the minimization 
test cases in software product lines.  
3.8.1 Instance Class 

  
 We define a new java class to create and read a file with the instance of 

the problem. For the creation: the format of this file is as follows: 
 

  The first line contains a single number representing the number of 
characteristics.  

  The rest of lines of file are the different test cases. Each line begins with 
the number of features covered in each test case followed by the number of 
characteristic and its success rate. 
 

We will generate five different files for the characteristics shown in table in 
Section 4.1.1. To create the file we will give number of characteristics and the 
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name of the file, each file name will be “instanciaXX.txt” where XX is {18, 29, 46, 
59, 77}. The code to build these files is partially shown in the next paragraph: 

 
public static void CrearFichero(int NumCaracteristicas, String s){ 
   …        for (int r = 0; r < COB.length; r++){            COB[r] = (random.nextInt(10-5)+5); //featurs covered by 5-10 TCs       sumaTestCaseFeature = sumaTestCaseFeature + COB[r];                      FeaturesInserted[r] = 0;           }        while(sumaTestCaseFeature > 0){   // While uncovered features exist              for (int k = 0; k < FeaturesInserted.length; k++)           FeaturesInserted[k] = 0;                   // Generate number of test for each test case (a file line)       NumFeatTC = (random.nextInt((5>NumFeatures)?NumFeatures:5)) + 1;       pw.print(NumFeatTC +" ");        for(int cont = 1; cont <= NumFeatTC;cont++){          // Generate a number between 1 and number of total Test Case         randomTCTot = (random.nextInt(sumaTestCaseFeature))+1;          // Search which feature is still not covered in this test case         int feat = buscarFeature(COB, randomTCTot, FeaturesInserted);         //Feature covered         FeaturesInserted[feat]++;         COB[feat]--; // Less 1 he number of times a feature is covered         if(COB[feat] == 0) NumFeatures--;         sumaTestCaseFeature--; // One less to the total of TC                    // Write in file number of feature and success rate            pw.print(feat+1+" "+(random.nextInt(successRate)+50) + " ");         }          pw.println();     } }  
 
Example of generated file:  
18 2 12 93 6 58  3 10 71 2 62 11 57  3 13 51 15 55 16 63  2 18 76 13 52  5 3 85 8 92 17 92 6 80 4 64  5 16 67 7 71 15 64 17 78 8 71  5 13 87 14 74 17 88 5 53 2 81  2 6 81 7 76  2 8 81 2 89  5 10 87 15 65 11 83 14 61 12 66  1 4 52  5 18 92 1 84 13 92 5 72 16 88  4 13 77 14 59 8 72 1 61  3 9 87 15 80 11 77  … 
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The first line indicates that this software product lines has a FM with 18 
different features. The first test case (second line) covers two features: the feature 
12 (with a success ratio of 93%) and the feature 6 with 58% of detecting a failure. 
The interpretation of the rest of the lines is similar. 

 
The method to read generated file will be used in SimpleProblem class, 

basically we return the content of the file in Vector<Vector<NodoInstance>> 
structure having as input parameter a String with the name of the file, we use the 
scanner wrapper to get the content of the file and we insert each pair of integer 
found in this structure, as we have the number of features covered for each test 
case at the beginning of the line. The resulting code is: 

 
public Vector<Vector<NodoInstance>> readFile(String filename) {    …    while(sc.hasNextInt()) //While is data in the file    {       Vector<NodoInstance> tc = new Vector<NodoInstance>(); // New TC       int nFCovered = sc.nextInt(); // # features covered by this TC       for(int i= 0; i < nFCovered; i++){          NodoInstance n = new NodoInstance(); // Create NodoInstance          n.feature = sc.nextInt();       // Insert number of feature          n.percentage = sc.nextInt();  // Insert success rate          tc.add(n); // Add to the intermediate node       }       data.add(tc); // Add to the returning structure    }    sc.close();    return data; } 
3.8.2 Problem Class 

  This is maybe the most important class since this include the representation 
of the solution and how the objectives are calculated.  

 
This class uses the Instance one to obtain the data of the current instance 

and using this information perform the appropriate calculations. This class include 
several methods (to define the number of objectives, length of the solution and 
its representation, how an initial solution is generated …) but the most important 
one is the evaluation of a solution.  

 
The calculations are not simple and they should be performed as efficient 

as possible since this method is called very frequently. In the next code, we 
summarize the implementation of that method (all the details and the auxiliary 
methods are included in the source code files attached to this document): 
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public void evaluate(BinarySolution solution){    double TestCaseNum, ValidTestCases = 0;    double TMP; //Test Minimization Percentage    double FPC; //Feature Pairwise Coverage    double FDC; //Fault Detection Capability    double FDC_Numerador = 0;     double PairF = 0;  //Pair features covered by test suite    Vector<NodoInstance> pairF = new Vector<NodoInstance>();    double arr[] = new double[ncarac]; 
    for (int cont = 0; cont < arr.length; cont++) arr[cont] = 0;               BitSet bitset = solution.getVariableValue(0) ;       for (int i = 0; i < nbits; i++) {       if(bitset.get(i)){          ValidTestCases++;          //Calculate feature pairs covered by test case i                         NumPairF(Datos, i, pairF);          arr = calcularFDC(Datos, i, arr);       }    }     PairF = pairF.size();         TestCaseNum = Datos.size();          //TMP i equals to --> (1 - (ValidTestCases / NumberOfTestCases          if (TestCaseNum != 0)       TMP = (1 - (ValidTestCases / TestCaseNum));     else       TMP = 0;          //NumTC * (NumTc-1) dividido por 2    int TotalF = (ncarac * (ncarac -1)) / 2; 
   //Feature Pairwise Coverage (FPC)    if (TotalF != 0)       FPC = PairF/TotalF;    else       FPC = 0;              for (int h = 0; h < arr.length; h++)        FDC_Numerador += arr[h];              FDC = FDC_Numerador / ncarac;                    //Set the three objectives     solution.setObjective(0, 1-TMP);     solution.setObjective(1, 1-FPC);     solution.setObjective(2, 1-FDC); } 
3.8.3 NSGAII Class 

  
 This is the main class, it is used to launch algorithm NSGAII, standard 

template from jMetal is used with some modifications we have to amend. Basically 
we have to run NSGA 150 times (30 iterations for each of the 5 files created in the 
Instance class). See Pseudocode below: 
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public static void main(String[] args) throws Exception {     int arr[] = {18,29,46,59,77};        for (int k = 1; k <= 30; k++){       for (int x:arr){           String nameFile = " instancia"; // Instance name          nameFile = nameFile + x + ".txt"; //compose instance file name               // Call SProblem with the instante filename          SProblem problem = new SProblem(nameFile);            // Other parameters and operators for the algorithm                  CrossoverOperator crossover = new SinglePointCrossover(0.9);     MutationOperator mutation = new               BitFlipMutation(1.0/problem.getBitsPerVariable(0));      SelectionOperator selection = new BinaryTournamentSelection();              // Configure the algorithm     Algorithm al = new NSGAII(problem, // Problem    20, // Max Iterations    100, // Population size    crossover, //  Crossover Operator    mutation, // Mutation Operator     selection, //  Selection Operator     new SequentialSolutionListEvaluator() // Solution Evaluator     );             // Execute the algorithm          al.run();           // Obtain the results of the execution     List<BinarySolution> l = (List<BinarySolution>)al.getResult();              FileWriter file = null;     PrintWriter pw = null;           // Compose name of the output result filename     String Filename = "NSGAII_SP/resultadoNSGAII_"+x+"_"+k+".txt";     file = new FileWriter(Filename);     pw = new PrintWriter(file);      for(int i = 0; i < l.size(); i++){        DefaultBinarySolution s = (DefaultBinarySolution) l.get(i);         pw.println(s.getVariableValueString(0) + "\t" +             s.getObjective(0) + "\t" + s.getObjective(1) +"\t" +             s.getObjective(2)); // Write results in output file          }     pw.close();       }       }   }   
 
 

3.8.4 Other Classes 
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In the previous subsection, we have describe the main methods of the 
principal classes developed in this project but other auxiliary classes has been 
implemented to the make easy the analysis of the results.  

 
Also, SPEA2 and RS classes have been created to run these multi-objective 

algorithms but the code is very similar to the NSGAII and therefore, their code has 
not included in this document. 

 
Finally, we have also run two different GA for the mono-objective case. For 

these experiment we have to create several classes but they are similar to some 
of the classes previously described (Instance, Problem, or Algorithm ones). 
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4. Experimental Results 
 
This chapter is divided into two parts: the first one present the experimental 

design (benchmark, statistical analysis used, parameterization …) while the 
second part shows the different results obtained. The discussion of the results has 
been organized also in two analysis: we first compare the different multi-objective 
among them and then we compare the results of our multi-objective approaches 
against the existing algorithm (mono-objective GA). 
4.1 Experimental Design 

  
 In this section, the experimental methodology is described. This includes 

the benchmark used, what metric are used to compare the algorithm, how are the 
results analyzed and the parameters of the methods. 
4.1.1 Benchmark 

  
 For our tests we have used five products from different SPLOT product 

lines (http://www.splot-research.org/) [6]. This is a standard repository for this 
problem. The characteristics of the instances are shown in Table 4.1. 

 
Name Description #Features 

Car Software System Simple model of a car’s software 
product line 

18 
ATM Software A feature model for ATM software 29 

DELL 
Laptop/Notebook 

Computers 
A feature model describes the 

features of DELL Laptop/Notebook 
Products 

46 

SmartHome 
 

Adaptation of the original feature 
models for the SmartHome system 

used by AMPLE project as case 
study 

 

59 

J2EE web architecture 
 

A feature model for web 
architectures 

77 
Table 4.1 – Different study cases and its number of features. 
 

All the instances has some characteristics: 
 Each feature can be tested by 5-10 test cases,  
 each test case can be used to test 1-5 features and  
 the success rate for each test case ranges from 50% to 95%.  
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We generate a file for each instance attending to these requirements using 
the appropriate method of Instance class (Section 3.8.1).  
4.1.2 Quality Indicators 
 

Comparing metaheuristics algorithm is a complex task since these 
techniques are not deterministic and several independent runs should be 
performed to each pair algorithm-instance. In multi-objective optimization is even 
more complex since the result is not a single solution but a set of solutions. Then, 
we have to clearly define how the algorithms are compared. In this section, we 
define the metric used to this comparison. 

 
Multi-objective metrics: 

 
Each execution of an algorithm generates a final Pareto Front (PF) which is 

the set of non-dominated solution found during the search. The metrics usually 
compare this PF with the optimal Pareto Front (PF*) measuring how similar are 
these two sets of solutions [11].  

 
The first problem is we don’t know the optimal Pareto front for our problem. 

We make an approximation to this front, merging the PF found by all the methods 
(NSGAII, SPEA2, and RS) and obtaining a combining Pareto Front.  

 
Then, several kind of metrics can be defined: 
 
 Convergence metrics measure the degree of proximity based on the 

distance between the solutions in PF* to those in PF. The most used metric for 
convergence is Generational Distance (GD) which represents the distance 
between PF and PF*. The smaller is this value, the better is. 

 Diversity metrics indicate the distribution and spread of solutions in the 
optimal solution set PF*, we use Generalized Spread (GS) as a metric of this type. 

 Convergence–Diversity metrics measure the quality of the optimal solution 
set PF* in terms of convergence and diversity on a single scale. HyperVolume 
(HV) gives the volume (in the objective space) that is dominated by the optimal 
solution set PF*. In particular, the closer are the solutions of PF* to the true PFknown, 
the larger is the value of HV. 

 Capacity metrics quantify the number or ratio of non-dominated solutions 
in PF* that conforms to the predefined requirements. In general, a large number of 
non-dominated solutions in PF* is preferred. Error Ratio (ER) is the number of 
solutions in PF which are dominated by solutions of PF* [13]. In this case, we are 
interested in a low value of this metric, which indicates that solutions found are in 
the optimal Pareto Front. 
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Mono-objective metrics: 
 

In this case is easier to select a metric to measure the quality of the 
results. Since each algorithm only generates a single final solution, we’ll use the 
quality of this solution.  
4.1.3 Statistical Analysis 

 
Since we are working with non-deterministic algorithms, each execution can 

potentially produce different results, and therefor the results of a single execution 
are not enough to extract any conclusion. Thus we performed 30 independent runs 
for a meaningful statistical analysis.  

 
Then for each metric described in the previous section (HV, GD …), we 

have 30 values. In order to make easy the comparison, we need to summarize 
these 30 values in a single one (or maybe two or three values). We have different 
alternatives: mean (with standard deviation), median, … To select the most 
appropriate one, first we check if the underlying distribution of this values follows a 
Normal distribution or not. We do this using the Shapiro-Wilk test (the confidence 
level used is 95%, p-value under 0.05). If the data follows the Gaussian distribution, 
the mean is a good estimator, in otherwise, we will use the median.  

 
In the Appendix, the results of this normality test are shown. There are some 

cases where the data doesn’t fulfill this test indicating that the data is not following 
the Normal distribution. Therefore, the values shown in the tables of this chapter 
will be the median values. 

 
Also, in order to check if the differences between the algorithms are 

statistically significant or just a matter of chance, we applied the non-parametric 
test (the data is not Normal) Kruskal-Wallis. Again, the confidence level used is 
95%. These results are also shown in the Appendix. 
4.1.4 Algorithmic Parameterization 

 
In our experiments, we compared three multi-objective approaches 

(NSGAII, SPEA2, and RS) and weight-based mono-objective GAs (GA1 with w = 
(1/3, 1/3, 1/3), and GA2 with w = (0.2, 0.4, 0.4)). For all of GA-based method (all 
with the exception of RS), we used a standard one-point crossover with a rate of 
0.9 and mutation of a variable is done with the standard probability 1/n, where n is 
the number of variables. Meanwhile, the size of population and maximum number 
of fitness evaluation are set as 100 and 2000, respectively. Finally, RS was used 
as the comparison baseline to assess the difficulty of the addressed minimization 
problems. 
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4.2 Result Analysis 
  
First, we analyze the different multi-objective technique attending to the 

different metric described in Subsection 4.1.2 and then we compare these 
proposed multi-objective approaches with the mono-objective GA proposed by [6]. 

 
In the tables, the boldfaced values represent the best results for the 

instance. The final column indicate in how many instance the algorithm 
(represented by rows) are the best one in this metric. 
4.2.1 Multi-objective Analysis 
 
HV (Hypervolume, larger values are better) 

 
In the next table, the results for the Hypervolume metric are shown. Several 

conclusion can be obtained from these values. First, the RS is the worst algorithm. 
This is an expected value since it doesn’t use any information of the problem. The 
second one is the best algorithm is clearly NSGAII. It outperforms (statistically 
validated, see Appendix) the results of SPEA2 for all the instances with the 
exception of the instance with 59 features.  
 

   18 29 46 59 77  Total 
NSGAII 0.716538 0.625227 0.552107 0.526504 0.533766 4 
SPEA2 0.706489 0.606991 0.542786 0.570152 0.509774 1 

RS 0.552440 0.435279 0.357473 0.417611 0.368432 0 
 
 
GD (Generational Distance, lower values are better) 

 
For our next analysis, we use the GD metric. The conclusions are similar to 

HV one but in this case is even more clear. Again, the RS is the worst algorithm 
with a large difference (more than one order of magnitude). Also, the NSGAII is 
the best algorithms, but in this metric it outperforms SPEA2 in all the instances, 
although the difference for the smallest ones (18, 29, and 46 features) is not 
statistically significant. 
 

  18 29 46 59 77 Total 
NSGAII 0.006178 0.005524 0.007547 0.005308 0.004430 5 
SPEA2 0.006432 0.006018 0.007631 0.005855 0.006018 3 

RS 0.026524 0.024704 0.031700 0.022624 0.020620 0 
 
GS (Generalized Spread, larger values are better)  
 

Now, we analyze the spread of the solution in the space solution. On the 
contrary to the rest of the instances, RS is the algorithm with the best spread.  This 
is a reasonable result since this algorithm makes a uniform exploration of the 
search space. Then, the solutions found by RS has a very good spread but these 
solutions are very far from the optimal Pareto Front (as it is shown in previous 
metrics), and then these solutions are not useful to solve this problem. With respect 
to the other algorithms (NSGAII and SPEA2) both have a similar spread (there is 
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no statistical different as it is shown in the Appendix). Therefore, the results 
obtained by this metric doesn’t help to decide a final winner algorithm. 
 

 18 29 46 59 77  Total 
NSGAII 0.682131 0.625395 0.600410 0.637804 0.625500 1 
SPEA2 0.715664 0.608043 0.578912 0.624854 0.590289 0 

RS 0.719662 0.665168 0.649476 0.685551 0.621762 5 
 
 
ER (Error ratio, lower values are better)  
 

Finally, we examine how many solutions of the PF generated by the 
methods are dominated by the optimal one PF*. The results obtained are 
consistent with the previous one. RS is the worst one while the NSGAII obtains the 
best results for all the instances although in some cases SPEA gets similar results. 
 

 18 29 46 59 77 Total 
NSGAII 0.986111 0.951807 0.984848 0.985915 0.954022 5 
SPEA2 0.99 1.0 1.0 0.99 1.0 2 

RS 1.0 1.0 1.0 1.0 1.0 0 
 
Summary 
 

After analyzing each metric separately, we can conclude that in general the 
best algorithm is the NSGAII. It wins in all the metrics (with the exception of GS but 
as we explained previous, these results are misleading). SPEA2 is slightly worse 
algorithm than NSGAII in the tested benchmark, although it also obtains 
competitive results for some instances (especially for the one with 59 features). 
Finally, as it was expected RS is the worst algorithm. 
4.2.2 Comparison with Mono-objective Algorithms 

 In the previous analysis, we compare the multi-objective algorithms among 
them. Now the question is: Are the solutions generated by multi-objective 
algorithms competitive with respect existing approaches? To do this, calculate the 
mono-objective fitness for all the solutions in the Pareto front generated by the 
multi-objective approaches (using the equation w1*TMP + w2*FPC + w3*FDC) and 
we select the best one (minimum value) and the median value. In the next tables, 
we compare these values with respect to the existing GA [6]. We use two different 
distribution of the weights. 
 
Minimum: (w1 = w2 = w3 = 1/3) 
 

 18 29 46 59 77 Total 
NSGAII 0.253490 0.338008 0.387280 0.406782 0.431802 5 
SPEA2 0.253611 0.341392 0.390294 0.411452 0.433031 1 

RS 0.287390 0.374641 0.397829 0.435101 0.447277 0 
GA 0.301285 0.380826 0.422939 0.437444 0.451576 0 

 
Median: (w1 = w2 = w3 = 1/3) 
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 18 29 46 59 77 Total 

NSGAII 0.262474 0.347677 0.394326 0.419016 0.439136 4 
SPEA2 0.265229 0.351165 0.398191 0.420143 0.438282 1 

RS 0.301989 0.381836 0.421796 0.440381 0.453401 0 
GA 0.324255 0.390693 0.430982 0.448090 0.460940 0 

 
Minimum: (w1 = 0.2, w2 = w3 = 0.4) 

 
 18 29 46 59 77 Total 

NSGAII 0.238633 0.332155 0.382788 0.415613 0.437590 5 
SPEA2 0.240105 0.332834 0.388409 0.417873 0.446439 0 

RS 0.252185 0.346892 0.410267 0.432429 0.451984 0 
GA 0.269789 0.362326 0.412507 0.441355 0.455602 0 

 
 Median: (w1 = 0.2, w2 = w3 = 0.4) 
 

 18 29 46 59 77 Total 
NSGAII 0.244104 0.338115 0.396227 0.423244 0.441161 5 
SPEA2 0.245837 0.340067 0.397829 0.424124 0.443273 1 

RS 0.274978 0.363003 0.415215 0.439643 0.455570 0 
GA 0.290827 0.374867 0.422331 0.445870 0.461117 0 

   
 The conclusion is clear: NSGAII obtains the best results in all the cases 

(only on quite easy –small- instances, SPEA2 gets similar results). But, it is also 
very noticeable that both multi-objective algorithms (NSGAII and SPEA2) 
outperform the results found by mono-objective GA. This is a quite surprising result 
because GA focus all its effort in following the aggregative function while the multi-
objective algorithms make a more explorative search. Our hypothesis is the 
aggregative function leads to a suboptimal solution and the algorithm cannot 
escape from it while the diversification behavior promoted by multi-objective 
algorithm allows to avoid these local optima and get better results. 
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5. Conclusions 
 
This work is intended to help minimize the set of test cases generated by 

testing new products that are created in a production line of software. This problem 
is an interesting and important current research line in international level obtaining 
a large number of recent publications in this domain. 

 
In this project we have proposed the utilization of muti-objective techniques 

to solve this problem (existing approaches use mono-objective ones): The results 
showed that this kind of multi-objective approaches can produce very good results 
that even outperform the results obtained by mono-objective techniques or the 
traditional multi-objective Random Search. 

 
It has been developed a Java code to generate five files of instances, each 

for the number of expected features to be tested in that product. The contents of 
the file must be loaded into memory, so that the diverse calculation of the 
objectives is achieved. It has been shown by various statistical factors that multi-
objective techniques, for most cases, gives best results than previously existing 
algorithms.  

 
The time spent in reading and analyzing documentation for this work, 

implementing the correct generation of the diverse characteristics files, as well as 
the objective calculations has been the most complicated part of this project. The 
use of stochastic techniques in file generation has raised the complexity of the 
programming. The tests has also been a challenge (we had to run algorithms a 
considerable number of times to have a wide result range because final results can 
change depending on execution) because we had to develop code based in 
accepted factors and final results (objectives, metrics…) can change depending in 
the content of the characteristic files generated. We achieved time of execution of 
the generated file be acceptable, generation of 150 files (750 in total as we use 5 
different algorithms, NSGAII, RS, SPEA2, Mono-objective GA with weights = 1/3 
and other mono-objective GA with weights = (0.2, 0.4 and 0.4)) per NSGAII and 
SPEA execution takes around 9 minutes.  

 
As future work, the number of algorithms can be increased and also the 

number of instances to validate the results. Also, we can use parallel programming 
to check if performance is improved and thus we can apply these approaches to 
very large instances. 
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5. Conclusiones (en Español) 
  

Este trabajo está pensado para intentar minimizar el conjunto de casos de 
pruebas que se generan al probar nuevos productos que se crean en una línea de 
producción de software. Este problema es una línea de investigación importante 
a nivel internacional como demuestra la cantidad de publicaciones existentes. 

 
 En este proyecto se ha propuesto la utilización de técnicas multi-objetivo 

para resolver el problema (hasta ahora sólo se habían propuesto mono-objectivo). 
En los resultados hemos mostrado que estos acercamientos obtienen buenos 
resultados incluso mejores resultados que usando las técnicas mono-objetivos o 
la tradicional multi-objetivo Random Search.  

 
Se ha desarrollado un código Java para generar 5 ficheros de instancias, 

cada uno con el número de características que se esperan probar de cada 
producto, el contenido del fichero se debe cargar en memoria para con sus datos 
hacer los cálculos para calcular los objetivos que buscábamos. Se ha demostrado 
mediante diversos factores estadísticos que las técnicas multi-objetivos dan, para 
la mayoría de los casos, mejores resultados que los acercamientos previamente 
existentes.   

 
Todo el trabajo de lectura, análisis y compresión de la documentación a la 

que he tenido acceso para este trabajo, la codificación para la correcta generación 
de los distintos ficheros de características, así como los distintos cálculos de los 
objetivos ha sido la parte más complicada del proyecto. El hecho de seguir 
técnicas estocásticas en la generación del fichero ha hecho que la programación 
sea compleja, así como las pruebas (se ha necesitado ejecutar bastantes veces 
los algoritmos para tener un amplio rango de resultados ya que los resultados 
finales puede cambiar de una ejecución a otra) pues se ha tenido que desarrollar 
código basado en factores asumidos y los resultados finales (objetivos, 
métricas…) pueden cambiar dependiendo de los ficheros de características 
generados. Se ha conseguido que el tiempo de ejecución del código generado 
sea bastante aceptable ya que la generación de 150 ficheros (750 en total ya que 
hemos usado 5 algoritmos diferentes, NSGAII, RS, SPEA2, Mono-objetivo con 
pesos = 1/3 y mono-objetivo con pesos = 0,2, 0,4 y 0,4)) por cada ejecución de 
los algoritmos NSGAII y SPEA2 ha sido de 9 minutos. 

 
Como futuro trabajo se pueden aplicar más algoritmos y ampliar el número 

de instancias para validar los resultados. También se puede hacer uso de la 
programación paralela para mejorar el rendimiento y abordar instancias aún 
mayores. 
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Appendix: Statistical Analysis Results 
 

In this appendix we show the p-values obtained during our statistical 
analysis. When this value is lower than 0.05 means that the null hypothesis is 
rejected. The null hypotheses used in these analysis are: 

 Data follows a Normal distribution (for Normality test) 
 The algorithms have the same behavior (for pairwise test). 

 
We show in boldface the values in which the null hypothesis is rejected (i.e., 

the data doesn’t follow the Normal distribution or the algorithms are not similar). 
 

Statistical results for 18 features: 
 

 Normality    
NSGAII 0.0338    
SPEA 0.4513    

RS 0.06109    
     
 SPEA2 RS GA All 

NSGAII 0.01147 2,87E-11 - 3.12e-14 
SPEA - 2,87E-11 - - 

     Hypervolume    
     
 Normality    

NSGAII 0.0005205    
SPEA 0.2621    

RS 0.2917    
     
 SPEA2 RS GA All 

NSGAII 0.6898 2,87E-11 - 1,26E-13 
SPEA - 2,87E-11 - - 

     Gen. Distance    
 

 Normality    
NSGAII 0.0003767    
SPEA 0.384    

RS 0.846    
     
 SPEA2 RS GA All 

NSGAII 0.1433 0.01196 - 0.04396 
SPEA - 0.3516 - - 

     
Spread     
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 Normality    

NSGAII 4,22E-07    
SPEA 9,05E-07    

RS 9,05E-07    
     
 SPEA2 RS GA All 

NSGAII 0.2598 8,46E-07 - 2.14e-06 
SPEA - 5,03E-06 - - 

     
Error Ratio     

 
 Normality    

NSGAII 0.7824    
SPEA 0.124    

RS 0.1226    
GA 0.991    

     
 SPEA2 RS GA Todos 

NSGAII 0.09479 2,87E-11 2,87E-11 2.2e-16 
SPEA - 2,87E-11 2,87E-11 - 

RS - - 1,23E-09 - 
     

Mono -objective GA 1/3 1/3 1/3   
     
 Normality    

NSGAII 0.3653    
SPEA 0.6523    

RS 0.0005924    
GA1 0.6825    

     
 SPEA2 RS GA All 

NSGAII 0.0565 2,87E-11 2,87E-11 2.2e-16 
SPEA - 3,18E-11 2,87E-11 - 

RS - - 6,42E-10 - 
GA - - - - 

     
Mono -objective GA 0.2 0.4 0.4   
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Statistical results for 29 features: 
 

 Normalidad    
NSGAII 0.4399    
SPEA 0.6668    

RS 0.0009446    
     
 SPEA2 RS GA Todos 

NSGAII 0.00148 2,87E-11 - 1,36E-14 
SPEA - 2,87E-11 - - 

     
Hypervolume    

     
 Normalidad    

NSGAII 0.3665    
SPEA 0.006618    

RS 0.772    
     
 SPEA2 RS GA Todos 

NSGAII 0.1137 2,87E-11 - 7,44E-14 
SPEA - 2,87E-11 - - 

     
Gen. Distance    

 
 Normalidad    

NSGAII 0.8261    
SPEA 0.9541    

RS 0.5972    
     
 SPEA2 RS GA Todos 

NSGAII 0.9176 0.03089 - 0.04391 
SPEA - 0.03089 - - 

     
Spread     
     

 Normalidad    
NSGAII 0.00115    
SPEA 1,05E-07    

RS 9,05E-07    
     
 SPEA2 RS GA Todos 

NSGAII 0.001049 1,85E-09 - 2,78E-05 
SPEA - 5,03E-06 - - 

     
Error Ratio     
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 Normalidad    
NSGAII 0.1094    
SPEA 0.9863    

RS 0.7374    
GA1 0.68    

     
 SPEA2 RS GA Todos 

NSGAII 0.001638 2,87E-11 2,87E-11 2.2e-16 
SPEA - 2,87E-11 2,87E-11 - 

RS - - 1,23E-09 - 
     

Mono -objective GA 1/3 1/3 1/3   
     
 Normalidad    

NSGAII 0.6582    
SPEA 0.487    

RS 3,42E-05    
GA1 0.4147    

     
 SPEA2 RS GA Todos 

NSGAII 0.01147 2,87E-11 2,87E-11 2.2e-16 
SPEA - 3,18E-11 2,87E-11 - 

RS - - 4,39E-10 - 
     

Mono -objective GA 0.2 0.4 0.4   
 
 Statistical results for 46 features: 

 
 Normalidad    

NSGAII 0.6419    
SPEA 0.434    

RS 0.8401    
     
 SPEA2 RS GA Todos 

NSGAII 0.04436 2,87E-11 - 2,87E-11 
SPEA - 2,87E-11 - - 

     
Hypervolume    
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 Normalidad    
NSGAII 0.7649    
SPEA 0.03613    

RS 0.01803    
     
 SPEA2 RS GA Todos 

NSGAII 0.7338 2,87E-11 - 1,26E-13 
SPEA - 2,87E-11 - - 

     
Gen. Distance    

 
 Normalidad    

NSGAII 0.7755    
SPEA 0.2133    

RS 0.7531    
     
 SPEA2 RS GA Todos 

NSGAII 0.2612 0.004745 - 0.000114 
SPEA - 2,35E-05 - - 

     
Spread     
     

 Normalidad    
NSGAII 2,13E-07    
SPEA 1,13E-08    

RS 9,05E-07    
     
 SPEA2 RS GA Todos 

NSGAII 0.01363 1,24E-07 - 3,17E-07 
SPEA - 6,24E-05 - - 

     
Error Ratio     

 
 Normalidad    

NSGAII 0.5616    
SPEA 0.8209    

RS 0.4982    
GA1 0.3102    

     
 SPEA2 RS GA Todos 

NSGAII 0.008498 2,87E-11 2,87E-11 2.2e-16 
SPEA - 2,87E-11 2,87E-11 - 

RS - - 1,40E-10 - 
     

Mono -objective GA 1/3 1/3 1/3   
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 Normalidad    
NSGAII 0.1132    
SPEA 0.009095    

RS 0.07459    
GA1 0.08181    

     
 SPEA2 RS GA Todos 

NSGAII 0.0237 2,87E-11 2,87E-11 2.2e-16 
SPEA - 2,87E-11 2,87E-11 - 

RS - - 2,13E-09 - 
     

Mono -objective GA 0.2 0.4 0.4   
 Statistical results for 59 features: 

 
 Normalidad    

NSGAII 0.1444    
SPEA 0.6229    

RS 0.1426    
     
 SPEA2 RS GA Todos 

NSGAII 0.007129 2,87E-11 - 2,58E-14 
SPEA - 2,87E-11 - - 

     
Hypervolume    

     
 Normalidad    

NSGAII 0.6247    
SPEA 0.007244    

RS 0.07608    
     
 SPEA2 RS GA Todos 

NSGAII 0.003108 2,87E-11 - 1,85E-14 
SPEA - 2,87E-11 - - 

     
Gen. Distance    

 
 Normalidad    

NSGAII 0.0002683    
SPEA 0.7733    

RS 0.5433    
     
 SPEA2 RS GA Todos 

NSGAII 0.5946 0.0009273 - 0.0003067 
SPEA - 0.0003274 - - 

     
Spread     
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 Normalidad    

NSGAII 8.65e-06    
SPEA 1,94E-07    

RS 9,05E-07    
     
 SPEA2 RS GA Todos 

NSGAII 0.05291 1,24E-07 - 2,60E-07 
SPEA - 4,99E-06 - - 

     
Error Ratio     

 
 Normalidad    

NSGAII 0.3916    
SPEA 0.5143    

RS 0.1896    
GA1 0.2394    

     
 SPEA2 RS GA Todos 

NSGAII 0.04282 2,87E-11 2,87E-11 2.2e-16 
SPEA - 2,87E-11 2,87E-11 - 

RS - - 3,50E-08 - 
     

Mono -objective GA 1/3 1/3 1/3   
     
 Normalidad    

NSGAII 0.04406    
SPEA 0.7249    

RS 0.1188    
GA1 0.6869    

     
 SPEA2 RS GA Todos 

NSGAII 0.03847 2,87E-11 2,87E-11 2.2e-16 
SPEA - 2,87E-11 2,87E-11 - 

RS - - 1,27E-10 - 
     

Mono -objective GA 0.2 0.4 0.4   
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Statistical results for 77 features: 
 

 Normalidad    
NSGAII 0.9574    
SPEA 0.07869    

RS 0.1629    
     
 SPEA2 RS GA Todos 

NSGAII 3,48E-05 2,87E-11 - 2,83E-15 
SPEA - 2,87E-11 - - 

     
Hypervolume    

     
 Normalidad    

NSGAII 0.1959    
SPEA 0.3928    

RS 0.1225    
     
 SPEA2 RS GA Todos 

NSGAII 0.0003465 2,87E-11 - 7.45e-15 
SPEA - 2,87E-11 - - 

     
Gen. Distance    

 
 Normalidad    

NSGAII 0.08484    
SPEA 0.857    

RS 0.7921    
     
 SPEA2 RS GA Todos 

NSGAII 0.2939 0.1242 - 0.02917 
SPEA - 0.007786 - - 

     
Spread     

     
 Normalidad    

NSGAII 0.00154    
SPEA 1,62E-07    

RS 9,05E-07    
     
 SPEA2 RS GA Todos 

NSGAII 6.84e-06 5,92E-10 - 6,28E-11 
SPEA - 0.0006336 - - 

     
Error Ratio     
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 Normalidad    
NSGAII 0.1731    
SPEA 0.9688    

RS 0.153    
GA1 0.4087    

     
 SPEA2 RS GA Todos 

NSGAII 3,96E-06 2,87E-11 2,87E-11 2.2e-16 
SPEA - 2,87E-11 2,87E-11 - 

RS - - 1,23E-09 - 
     

Mono -objective GA 1/3 1/3 1/3   
     
 Normalidad    

NSGAII 0.4247    
SPEA 0.2999    

RS 0.694    
GA1 0.3522    

     
 SPEA2 RS GA Todos 

NSGAII 0.004745 2,87E-11 2,87E-11 2.2e-16 
SPEA - 3,18E-11 2,87E-11 - 

RS - - 1,12E-09 - 
     

Mono -objective GA 0.2 0.4 0.4   
 


