
 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/214830913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

 3

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA
INFORMÁTICA

GRADO EN INGENIERIA DEL SOFTWARE

Acercamiento multi-objetivo para la minimización de casos
de prueba en Líneas de Producción de Software.

Multiobjective approaches for the minimization of test suites
in Software Product Lines.

Realizado por
Javier Norberto Alarcón Jaén

Tutorizado por
Gabriel Jesús Luque Polo

Departamento
Lenguajes y Ciencias de la Computación

UNIVERSIDAD DE MÁLAGA
MÁLAGA, Octubre 2015

Fecha defensa:
El Secretario del Tribunal

 4

 5

Resumen

En la actualidad muchos desarrollos están guiados por los clientes, y por

ello, la mayoría de las empresas se dirigen a las necesidades de sus clientes
potenciales mediante la creación de una línea de productos -un portfolio de
productos estrechamente relacionados con las variaciones en las características y
funciones- en lugar de sólo un único producto. Las herramientas y técnicas para
el desarrollo habituales de software tienden a centrarse productos individuales y
este tipo de desarrollo de múltiples productos entrelazados es compleja.

El objetivo principal de este proyecto es desarrollar una estrategia de

optimización para poder abordar el problema planteado previamente y que nos
permita reducir el número de casos de prueba a aplicar en un tiempo razonable
pero que a la vez se mantenga la calidad de los productos software resultantes.
Para esto usaremos diferentes técnicas multi-objetivos y mono-objetivos y
haremos comparación de los resultados obtenidos.

Palabras claves

Optimización, multiobjetivo, algoritmos genéticos, búsqueda aleatoria, frente de
Pareto, líneas de producción software, casos de prueba.

 6

Abstract

Currently many developments are guided by customers, and therefore,
most companies focus on the needs of their potential customers by creating a
software product line -a portfolio of products closely related to variations in features
and functions- rather than just a single product. The tools and techniques for the
common development of software tend to focus individual products and
development, of such multiple and interrelated products, is complex.

The main objective of this project is develop an optimization strategy to dealt

with the previous problem and it allows us to reduce the number of test cases to
apply in a reasonable time, but maintaining the quality of the resulting software
products. Finally, we compare results using several different algorithms (mono-
objective and multi-objectives approaches).

Keywords

Optimization, multi-objective, GA (genetic algorithm), random search, Pareto front,
software product lines, test cases.

 7

 Index

Resumen ... 5
1. Introduction .. 9

1.1 Methodology .. 10
1.2 Organization of This Document ... 10 2. Background Information .. 13
2.1 Combinatorial Optimization ... 13

2.1.1 Multi-objective Optimization .. 13
2.1.1 Mono-objectivization Techniques ... 16

2.2 Metaheuristics .. 17
2.2.1 Evolutionary Algorithms ... 19
2.2.2 MOEAs .. 20

2.3 jMetal Framework .. 22
2.3.1 Design Goals ... 23
2.3.2 Main Features .. 24 3. Problem Description and Our Approaches .. 25

3.1 Test Minimization Problem Introduction ... 25
3.2 Feature Model and Component Family Model ... 25
3.3 Problem Modelling ... 27
3.4 Definition of the Objectives ... 28
3.5 Fitness Function Definition (for Mono-objective Version) .. 29
3.6 Requirements .. 30
3.7 Description of Selected Multi-objective Algorithms .. 30

3.7.1. Non-dominated Sorting and Sharing Genetic Algorithm (NSGAII) .. 30
3.7.2 Strength Pareto Evolutionary Algorithm (SPEA2) .. 31
3.7.3 Random Search (RS) ... 32

3.8 Implementation .. 32
3.8.1 Instance Class .. 32
3.8.2 Problem Class .. 34
3.8.3 NSGAII Class .. 35
3.8.4 Other Classes ... 36 4. Experimental Results ... 39

4.1 Experimental Design .. 39
4.1.1 Benchmark ... 39
4.1.2 Quality Indicators .. 40
4.1.3 Statistical Analysis .. 41
4.1.4 Algorithmic Parameterization .. 41

4.2 Result Analysis ... 42
4.2.1 Multi-objective Analysis ... 42
4.2.2 Comparison with Mono-objective Algorithms .. 43 5. Conclusions .. 45

5. Conclusiones (en Español) ... 46
Bibliography Reference ... 47
Appendix: Statistical Analysis Results .. 49

 8

 9

1. Introduction

Nowadays many developments are guided by the client, provoking that
most companies point their effort to fulfill the potential client needs through creation
of software product lines -a product portfolio closely related to the variations in
characteristics and functions- instead of a single product.

From the need to cover these type of development has emerged a new

model called Software Product Lines. This research line is receiving a growing
interest in the academic field as well as in the industrial field. The main feature that
makes different this new model from the formers is the way to reuse software
components. Instead of staking software components in a library waiting for being
used in the future (as in actual models), in software product lines this software parts
will be created when their reutilization is predicted in one or more products for a
given product lines. Application of this model has allowed, in some cases, an
increase by 10 in productivity and reduce development costs in 60%.

As in any development, a very important aspect is the phase of validation

and verification of final products. The standard way to verify industry product lines
is to generate a test data suite that checks the reliability of product line and if new
products are added or the existing ones are improved, existing test cases are
modified and new ones are added. This approach leads to a large number of the
test cases, arriving to a situation where is not possible to test all test cases in all
products. For this reason, it is essential to search a way to reduce or prioritize the
application of these test cases and in this exactly point is focused this project.

Then, the main objective of this project is to reduce the number of test cases

needed to validate a software product line, but without affecting the quality of final
products. Since this problem is NP-hard, classical optimization techniques will have
some difficulties to solve large instances of this problem, therefore in this project,
we propose the utilization of some metaheuristic techniques.

An additional difficulty of this problem is that several objectives (minimize

the number of test cases, maximize the probability of finding an error, and maximize
coverage of the code) should be fulfilled simultaneously. In the literature some
mono-objective techniques are been proposed [6]. In that work the authors sum
the objectives using different weights. This is possible way to solve the problem,
but since this problem has different contraposed objectives, a better approach is
the utilization of some multi-objective technique. Therefore we will apply two
different well-known algorithms for this kind of multi-objective optimization: NSGA-
II and SPEA2. To study the performance of these algorithms, we will compare them
against the mono-objective proposed by [6] and also, a random search technique.

 10

1.1 Methodology

This project will requires several phases to be performed. Firstly, some
technical knowledge about optimization and different method is needed. Also, we
need to analyze the different ways to model the problem at hands. Once, we have
the appropriate knowledge, we apply the approaches to solve the problem, and an
accuracy comparison will be performed. In concrete, the working plan for the
development of this work involves the next phases:

 Study optimization techniques, focusing on multi-objective

approaches.
 Study of different software platforms for multi-objective algorithms

that help us develop our approach.
 Study of the problem and how to apply the former techniques to

solve it. (We will see how to create a random file with test cases suite depending
on the number of features, each file will be formed for a number of test cases
depending on number of features and some factors we will see during the
explanation of the problem solved).

 Testing the proposed approach. For this we will use Eclipse [8] and
will reuse jMetal library, a Java framework where we can use already built-in
mono- and multi-objective algorithms to get our results.

 Analysis and make a comparison of the obtained results.
 Extraction of conclusions.

1.2 Organization of This Document

This memory is made up of 6 chapters (including this introduction one). In
the next paragraphs the contents of each chapter will be briefly described.

In Chapter 2, we present the principle concepts used in a project like this

(optimization using multi-objective techniques), what is and what is used for,
combinatorial optimization, multi-objective techniques, algorithms used, mono-
objective techniques, metaheuristics, concept of Evolutionary Algorithms and the
jMetal Java framework in which we will develop our approaches.

In Chapter 3, we describe the problem we are going to solve/reproduce

using multi-objective techniques and the approach used to solve it. We show a
formal description of the problem, how the problem is modelled to be
computationally solved, the description of the objectives and fitness functions, and
finally, we discuss some implementation issues about the algorithms developed in
this project.

In Chapter 4, we present the experimental design (benchmark, statistical

analysis used, parameterization …). The second part of this chapter shows the

 11

different results obtained and comparison between the results and what techniques
obtain better results.

Chapter 5 gives some final conclusions describing how the main goals of

this project have been fulfilled. We also show some future works and open
research lines.

In addition to these five chapter, we also include a bibliographical reference

with the most important papers and webpages consulted during the development
of this project, and an appendix with the statistical analysis results.

 12

 13

2. Background Information

In this project we want to resolve a combinatorial optimization problem, so
let's start formally describing this type of problem, its variants as the multi-objective
and techniques to address this type of problem (we will focus on metaheuristics
and in particular those relating to evolutionary algorithms). Also at the end of the
chapter discusses a framework that facilitates the use of these techniques for
solving optimization problems.
2.1 Combinatorial Optimization

Many optimization problems of practical as well as theoretical importance
consist of the search for a “best” configuration of a set of variables to achieve some
goals. They seem to divide naturally into two categories: those where solutions are
encoded with real-valued variables and those where solutions are encoded with
discrete variables. Among the latter ones we find a class of problems called
Combinatorial Optimization (CO) problems. In CO problems, we are looking for an
object from a finite -or possibly countably infinite- set. This object is typically an
integer number, a subset, a permutation, or a graph structure [4].

A Combinatorial Optimization problem P = (S, f) can be defined by:
 a set of variables = , … , };
 variable domains D1,…,Dn;
 constraints among variables;
 an objective function f to be minimized (or maximized) where

: × ⋯ × →

The set of all possible feasible assignments is

= = , , … , , } | ∈ , ℎ }

S is usually called a search (or solution) space, as each element of the set

can be seen as a candidate solution. To solve a combinatorial optimization problem
one has to find a solution ∗ ∈ with minimum objective function value, that is,

∗ ≤ , ∀ ∈ . ∗ is called a globally optimal solution of (S, f). Examples for
CO problems are the Travelling Salesman problem (TSP), the Quadratic
Assignment problem (QAP), Timetabling and Scheduling problems.
2.1.1 Multi-objective Optimization

So far we have seen that we get the best solution to optimize a function of
fitness. Methods use this value to compare each pair of solutions and thus know
what is best and somehow getting better solutions. In the previous definition of CO

 14

problem we had an only objective. These problems are called mono-objective
problems. But in many real-world problem we want to optimize several objectives
at once and in general, these objectives are conflicting (i.e., if we improve the value
of an objective, the value of other objective is worsen).

Multi-objective optimization is an area of multiple criteria decision making,

involving more than one objective, for each objective we can have more than a
possible solution, from those solutions; those that are worse are referred to as
“dominated” solutions, those that are best solutions (normally more than one) for
those objectives, those are referred to as “non-dominated”. The set of non-
dominated solutions are called Pareto front.

 Figure 2.1 Illustration of a general multi-objective optimization problem.

Let us put an example related to the TSP (Travelling Salesman Problem).
Here we propose a route covering 3 cities between 100, visiting each city gives us
a profit but travel has a cost. You see we have two objectives: to maximize the
benefits and minimize the cost. We show three possible solutions:

Solution A: <Albacete, Guadalajara, Zaragoza> Profit: 10 Cost: 10
Solution B: <Córdoba, Mérida, Madrid> Profit: 15 Cost: 7
Solution C: <Madrid, Barcelona, París> Profit: 40 Cost: 30

 15

B and C are best than A because both improves both objectives, i.e., B and
C obtain better profits with less cost than A. In this case, is said A is dominated by
B and C.

However, we have no criteria to decide which is better between B and C

because both are good in one objective and bad in other objective. As we said
before, these solutions are called non-dominated solutions and the set of non-
dominated solutions are called Pareto front.

The algorithms that address this kind of issue should note that property

(non-dominated solutions) when working and the result will not be a single solution,
but many non-dominated solutions (Pareto front) and will be an expert on that basis
current needs to decide between the set of solutions.

The final goal of a multi-objective optimization algorithm is to identify

solutions in the Pareto optimal set. However, identifying the entire Pareto optimal
set, for many multi-objective problems, is practically impossible due to its size. In
addition, for many problems, especially for combinatorial optimization problems,
proof of solution optimality is computationally infeasible. Therefore, a practical
approach to multi-objective optimization is to investigate a set of solutions (the
best-known Pareto set) that represent the Pareto optimal set as well as possible.
With these concerns in mind, a multi-objective optimization approach should
achieve the following three conflicting goals:

1. The best-known Pareto front should be as close as possible to the true

Pareto front. Ideally, the best-known Pareto set should be a subset of the Pareto
optimal set.

2. Solutions in the best-known Pareto set should be uniformly distributed

and diverse over of the Pareto front in order to provide the decision-maker a true
picture of trade-offs.

3. The best-known Pareto front should capture the whole spectrum of the

Pareto front. This requires investigating solutions at the extreme ends of the
objective function space.

 16

 Figure 2.2 illustration of a 3D pareto front for a multi-objective algorithm with three
objectives.

2.1.1 Mono-objectivization Techniques

As we will see in the next section, although in literature has been proposed
several methods to tackle with the problem of multi-objective optimization, there
exists a big gap between the number of research on mono-objective techniques
and multi-objective ones. Then, a common approach is to convert the multi-
objective problem in a mono-objective one (this is usually called mono-
objectivization). Any multi-objective optimization problem may be converted to a
single objective optimization problem by aggregating the objectives into a scalar
function : → .

One scalarization method, known as weighted sum approach, associates

a real weight wi with each objective fi. Accumulating the weighted objective values
yields the combined objective value:

= ∑ ×

 17

2.2 Metaheuristics

Due to the practical importance of CO problems, many algorithms to tackle
them have been developed. These algorithms can be classified as either complete
or approximate algorithms. Complete algorithms are guaranteed to find for every
finite size instance of a CO problem an optimal solution in bounded time. Complete
methods might need exponential computation time in the worst case. This often
leads to computation times too high for practical purposes. Thus, the use of
approximate methods to solve CO problems has received more and more attention
in the last 30 years. In approximate methods we sacrifice the guarantee of finding
optimal solutions for the sake of getting good solutions in a significantly reduced
amount of time.

Among the basic approximate methods we usually distinguish between

constructive methods and local search methods. Constructive algorithms generate
solutions from scratch by adding, to an initially empty partial solution components,
until a solution is complete. They are typically the fastest approximate methods, yet
they often return solutions of inferior quality when compared to local search
algorithms. Local search algorithms start from some initial solution and iteratively
try to replace the current solution by a better solution.

In computer science and mathematical optimization, a metaheuristic is a

higher-level procedure or heuristic designed to find, generate, or select a heuristic
(partial search algorithm) that may provide a sufficiently good solution to
an optimization problem, especially with incomplete or imperfect information or
limited computation capacity. Metaheuristics sample a set of solutions which is too
large to be completely sampled. Metaheuristics may make few assumptions about
the optimization problem being solved, and so they may be usable for a variety of
problems.

The field of metaheuristics for the application to combinatorial optimization

problems is a rapidly growing field of research. This is due to the importance of
combinatorial optimization problems for the scientific as well as the industrial world.
The field of metaheuristics for the application to combinatorial optimization
problems is a rapidly growing field of research. This is due to the importance of
combinatorial optimization problems for the scientific as well as the industrial world.
In the last 20 years, a new kind of approximate algorithm has emerged which
basically tries to combine basic heuristic methods in higher level frameworks aimed
at efficiently and effectively exploring a search space. These methods are
nowadays commonly called metaheuristics. The term metaheuristic, first
introduced in 1986 by Glover, derives from the composition of two Greek words.
Heuristic derives from the verb heuriskein which means “to find”, while the suffix

 18

meta means “beyond, in an upper level”. Before this term was widely adopted,
metaheuristics were often called modern heuristics.

A metaheuristic is formally defined as an iterative generation process which

guides a subordinate heuristic by combining intelligently different concepts for
exploring and exploiting the search space, learning strategies are used to structure
information in order to find efficiently near-optimal solutions. Example of this class
of algorithms includes Ant Colony Optimization, Evolutionary Computation
including Genetic Algorithms (GA), Iterated Local Search, and Simulated
Annealing.

Metaheuristics are typically high-level strategies which guide an underlying,

more problem specific heuristic, to increase their performance. The main goal is to
avoid the disadvantages of iterative improvement and, in particular, multiple
descent by allowing the local search to escape from local optima. This is achieved
by either allowing worsening moves or generating new starting solutions for the
local search in a more “intelligent” way than just providing random initial solutions.

Summarizing, we outline fundamental properties which characterize

metaheuristics:

 Metaheuristics are strategies that “guide” the search process.
 The goal is to efficiently explore the search space in order to find (near)

optimal solutions.
 Techniques which constitute metaheuristic algorithms range from simple

local search procedures to complex learning processes.
 Metaheuristic algorithms are approximate and usually non-deterministic.
 They may incorporate mechanisms to avoid getting trapped in confined

areas of the search space.
 The basic concepts of metaheuristics permit an abstract level of

description.
 Metaheuristics are not problem-specific.
 Metaheuristics may make use of domain-specific knowledge in the form

of heuristics that are controlled by the upper level strategy.
 Today more advanced metaheuristics use search experience (embodied

in some form of memory) to guide the search.

In short, we could say that metaheuristics are high level strategies for

exploring search spaces by using different methods. Two very important concepts
in metaheuristics are intensification and diversification. The term diversification
generally refers to the exploration of the search space, whereas the term
intensification refers to the exploitation of the accumulated search experience.

 19

In general, two main families can be distinguished in metaheuristics:
trajectory-based techniques and population-based methods.

Metaheuristics working on single solutions are called trajectory methods

and encompass local search-based metaheuristics. They all share the property of
describing a trajectory in the search space during the search process.

Population-based metaheuristics, on the contrary, perform search

processes which describe the evolution of a set of points in the search space. In
this project, the use of population-based metaheuristics.

As we stated before, Population-based methods deal in every iteration of

the algorithm with a set (i.e., a population) of solutions rather than with a single
solution. As they deal with a population of solutions, population-based algorithms
provide a natural, intrinsic way for the exploration of the search space. Yet, the final
performance depends strongly on the way the population is manipulated. The most
studied population-based method in combinatorial optimization are Evolutionary
Algorithms (EAs) and Behavioral techniques. EAs are based in the principles of the
natural evolution, and the population of individuals is modified by recombination
and mutation operators. On the contrary, Behavioral techniques, such as Ant
Colony Optimization (ACO) or Particle Swarm Optimization (PSO), are based on
the emerging behavior of a set of animals. For example, in ACO a colony of artificial
ants is used to construct solutions guided by the pheromone trails and heuristic
information. In this project, we focus on the popular Evolutionary Algorithms which
are described in the next section
2.2.1 Evolutionary Algorithms

The term evolutionary algorithm (EA) stands for a class of stochastic

optimization methods that simulate the process of natural evolution. The origins of
EAs can be traced back to the late 1950s, and since the 1970s several evolutionary
methodologies have been proposed, mainly genetic algorithms, evolutionary
programming, and evolution strategies. All of these approaches operate on a set
of candidate solutions. Using strong simplifications, this set is subsequently
modified by the two basic principles: selection and variation. While selection
imitates the competition for reproduction and resources among living beings, the
other principle, variation, imitates the natural capability of creating ”new” living
beings by means of recombination and mutation [12]. An evolutionary algorithm is
characterized by three features:

 1. A set of solution candidates is maintained,
 2. A mating selection process is performed on this set, and
 3. Several solutions may be combined in terms of recombination to

generate new solutions.

 20

 Figure 2.3 Components of a general stochastic search algorithm.

By analogy to natural evolution, the solution candidates are called
individuals and the set of solution candidates is called the population. Each
individual represents a possible solution, i.e., a decision vector, to the problem at
hand; however, an individual is not a decision vector but rather encodes it based
on an appropriate representation.

The mating selection process usually consists of two stages: fitness

assignment and sampling. In the first stage, the individuals in the current population
are evaluated in the objective space and then assigned a scalar value, the fitness,
reflecting their quality. Afterwards, a so-called mating pool is created by random
sampling from the population according to the fitness values. For instance, a
commonly used sampling method is binary tournament selection. Here, two
individuals are randomly chosen from the population, and the one with the better
fitness value is copied to the mating pool. This procedure is repeated until the
mating pool is filled.

Then, the variation operators are applied to the mating pool. With EAs; there

are usually two of them, namely the recombination and the mutation.

Although the underlying mechanisms are simple, these algorithms have

proven themselves as a general, robust and powerful search mechanism. In
particular, they possess several characteristics that are desirable for problems
involving i) multiple conflicting objectives, and ii) intractably large and highly
complex search spaces.
2.2.2 MOEAs

Generating the Pareto set can be computationally expensive and is often
infeasible, because the complexity of the underlying application prevents exact
methods from being applicable. For this reason, a number of stochastic search
strategies such as evolutionary algorithms, tabu search, simulated annealing, and
ant colony optimization have been developed: they usually do not guarantee to

 21

identify optimal trade-offs but try to find a good approximation, i.e., a set of solutions
whose objective vectors are (hopefully) not too far away from the optimal objective
vectors.

In concrete, Evolutionary algorithms (EA) have proved to be well suited for

optimization problems with multiple objectives due to their inherent parallelism they
are able to capture a number of solutions concurrently in a single run. Since
evolutionary algorithms (EAs) work with a population of solutions, a simple EA can
be extended to maintain a diverse set of solutions. With an emphasis for moving
toward the true Pareto-optimal region, an EA can be used to find multiple Pareto-
optimal solutions in one single simulation run.

 Figure 2.4 Evolutionary search of Optimal Pareto Front

The utilization of EAs to solve MOPs (Multi-Objective Problems) is a current
and very promising research line. An entire domain called MOEAs (Multi-Objective
Evolutionary Algorihms) is devoted to this research [1].

In MOEA design: guiding the search towards the Pareto set and keeping a

diverse set of nondominated solutions. It is considered to be a set of mutually
nondominated solutions, or Pareto set approximation for short. Most MOEAs try to
maintain diversity within the current Pareto set approximation by incorporating
density information into the selection process: an individual’s chance of being
selected is decreased the greater the density of individuals in its neighborhood.
This issue is closely related to the estimation of probability density functions in
statistics, and the methods used in MOEAs can be classified according to the
categories for techniques in statistical density estimation.

 22

The MOEA algorithms have certain goals that should be matched; the first
goal is mainly related to mating selection, in particular to the problem of assigning
scalar fitness values in the presence of multiple optimization criteria. The second
goal concerns selection in general because we want to avoid that the population
contains mostly identical solutions (with respect to the objective space and the
decision space). Finally, a third issue which addresses both of the above goals is
elitism, i.e., the question of how to prevent nondominated solutions from being
lost.

For the first goal we distinguish aggregation-based, criterion-based and

Pareto-based fitness assignment strategies. For the second goal most MOEAs try
to maintain diversity within the current Pareto set approximation by incorporating
density information into the selection process: an individual’s chance of being
selected is decreased the greater the density of individuals in its neighborhood.
For the third goal, elitism addresses the problem of losing good solutions during
the optimization process due to random effects. One way to deal with this problem
is to combine the old population and the offspring, i.e., the mating pool after
variation, and to apply a deterministic selection procedure—instead of replacing
the old population by the modified mating pool. Alternatively, a secondary
population, the so-called archive, can be maintained to which promising solutions
in the population are copied at each generation. Improved algorithm NSGAII (from
NSGA) is an elitist procedure which will be described later in section 3.7.

2.3 jMetal Framework

Instead of starting development from scratch, we decided to use the already
built-in library called jMetal. It has many algorithms built, ready to use. It is a
framework for multi-objective optimization with metaheuristics developed by a
research team in the Languages and Computer Science Department of the
University of Málaga.

jMetal stands for Metaheuristic Algorithms in Java, and it is an object-

oriented Java-based framework for multi-objective optimization with metaheuristic
techniques. jMetal provides a rich set of classes which can be used as the building
blocks of multi-objective techniques; this way, by taking advantage of code-reusing,
the algorithms share the same base components, such as implementations of
genetic operators and density estimators, thus facilitating not only the development
of new multi-objective techniques but also to carry out different kinds of
experiments. The inclusion of a number of classical and state-of-the-art algorithms,
many problems usually included in performance studies, and a set of quality
indicators allow not only newcomers to study the basic principles of multi-objective
optimization with metaheuristics but also their application to solve real-world

 23

problems. The jMetal project is continuously evolving and new versions are
released when new features are added.

2.3.1 Design Goals

 jMetal´s Developers had on mind this tool should be simple and easy to use,
portable (hence the choice of Java), flexible, and extensible. We detail these goals
next [9-10]:

Simplicity and easy-to-use. These are the key goals: if they are not fulfilled,

few people will use the software. The classes provided by jMetal follows the
principle of that each component should only do one thing, and do it well. Thus, the
basis classes (SolutionSet, Solution, Variable, etc.) and their operations are
intuitive and, as a consequence, easy to understand and use. Furthermore, the
framework includes the implementation of many metaheuristics, which can be used
as templates for developing new techniques.

Flexibility. This is a generic goal. On the one hand, the software must

incorporate a simple mechanism to execute the algorithms under different
parameter settings, including algorithm specific parameters as well as those related
to the problem to solve. On the other hand, issues such as choosing a real or
binary-coded representation and, accordingly, the concrete operators to use,
should require minimum modifications in the programs.

Portability. The framework and the algorithms developed with it should be

executed in machines with different architectures and/or running distinct operating
systems. The use of Java as programming language allows to fulfill this goal;
furthermore, the programs do not need to be re-compiled to run in a different
environment.

Extensibility. New algorithms, operators, and problems should be easily

added to the framework. This goal is achieved by using some mechanisms of Java,
such as inheritance and late binding. For example, all the MOPs inherits from the
class Problem, so a new problem can be created just by writing the methods
specified by that class; once the class defining the new problem is compiled,
nothing more has to be done: the late binding mechanism allows to load the code
of the MOP only when this is requested by an algorithm. This way, jMetal allows
separating the algorithm-specific part from the application-specific part.

 24

2.3.2 Main Features

It includes the implementation of a large number of classic and modern
multi-objective optimization algorithms: NSGAII, SPEA2, PAES, PESA-II,
OMOPSO, MOCell, AbYSS, MOEA/D, Densea, CellDE, GDE3, FastPGA, IBEA,
SMPSO, SMPSOhv, MOCHC, SMS-EMOA, dMOPSO, adaptive and random
NSGA-II.

Since real-world problem are used to be very time consuming task, this
framework also include some parallel (multithreaded) versions of MOEA/D, NSGA-
II and SMPSO (referred as to pMOEAD, pNSGAII, and pSMPSO, respectively).

The framework also allows to calculate the most popular multi-objective

metrics such as Hypervolume, Generational Distance, Spread and Generalized
Spread, Error Ratio …

In spite the framework is devoted to multi-objective optimization also some

mono-objective algorithm are supported such as generational and state steady
Genetic Algorithms, PSO and other classical methods.

 Finally, it has also implemented a rich set of multi-objective test

problems:

 Problem families: Zitzler-Deb-Thiele (ZDT), Deb-Thiele-Laumanns-

Zitzler (DTLZ), Walking-Fish-Group (WFG) test problems), CEC2009
(unconstrained problems), and the Li-Zhang benchmark. –

 Classical problems: Kursawe, Fonseca, Schaffer

 25

3. Problem Description and Our Approaches

In the previous chapter, we give a brief introduction about optimization,
specially focus on multi-objective problems and the current approaches to solve
this kind of optimization. Now, in this chapter, we present the problem solved in this
project: Test minimization in Software Product Lines. Firstly, we describe the
mathematical model of this combinatorial problem, and later, we analyze the
techniques used to deal with.
3.1 Test Minimization Problem Introduction

 Test minimization techniques aim at identifying and eliminating redundant
test cases from test suites in order to reduce the total number of test cases to
execute, thereby improving the efficiency of testing. In the context of software
product line, we can save effort and cost in the selection and minimization of test
cases for testing a specific product by modeling the product line.

However, minimizing the test suite for a product requires addressing two

potential issues: 1) the minimized test suite may not cover all test requirements
compared with the original suite; 2) the minimized test suite may have less fault
revealing capability than the original suite.

We will use different multi-objectives algorithms in order to get a minimized

test suite that cover all test requirements and that have same fault revealing
capability as the original suite.

For testing a product line, in the current practice of industry, a test suite is

typically developed to test the whole product line and the test suite will be modified
as new products come into play or the current products need to be improved.
However, as the number of products increases, the number of test cases for testing
the product line will also increase. Therefore, it becomes practically impossible to
execute all the test cases of the product line due to limited available time and
resources for each new product. It is therefore essential to seek a solution to
minimize test suites for a specific product efficiently before execution to reduce the
cost of testing.
3.2 Feature Model and Component Family Model

The methodology used to support automated test case selection are
Feature Model (FM) which gives you a complete and compact representation of all
features of the products of the Software Product Line (SPL) and Component Family
Model (CFM) [5].

 26

FM are arranged in a tree-like structure when each successively deeper
level in the tree corresponds to a more fine-grained configuration option for the SPL
variant. Then parent-child and cross-tree relationships capture the constraints that
must be adhered to when selecting a group of features for a variant

FM can be represented as FM = {features, relations, constraints}. It contains

four different types of relations among features, namely mandatory, alternative,
optional and or]. A mandatory relation between a father feature and a child feature
specifies that, if the father feature is included in the current selection, then the child
feature must also be included. An alternative relation among a father feature and a
set of children features is used when the selection of only one of the children is
required, not less, not more. An optional relation is used when the selection is
optional. An or relation is used when any number of children features can be
selected, but at least one. Sum up:

 Mandatory – child feature is required.
 Optional – child feature is optional.
 Or – at least one of the sub-features must be selected.
 Alternative (xor) – one of the sub-features must be selected

 Figure 3.1: Example of a tree representing a Feature Model in Software Product
Lines.

CFM can be represented as CFM = {components, parts, source elements,

restrictions}. CFM can be used to represent how products are assembled and
generated in a Product Line by modelling relations among software architectural
elements. It has a hierarchical structure including items such as components and
parts. For the purpose of automatic product generation from a valid selected
feature model in PL, these items can be organized and used with relevant
information about the concrete architecture.

CFM can be represented as CFM = {components, parts, source elements,

restrictions}. Components are named entities and organized into a tree-like

 27

structure that can be of any depth. Each component represents one or more
functional elements of the products in PL such as functions of software or
documentation. Parts are named and typed entities. Each part belongs to a
component and contains one or more source elements. A part can be associated
with given programming language features, classes or objects, but it can also be
associated with other key elements. A source element is an unnamed but typed
entity. Source elements are usually used to determine how the source code for the
specified element is generated. Restrictions play a key role for linking FM and CFM.
A restriction constrains the relationships between an element in CFM and features
in FM. They are added into CFM in order to decide whether an element can be part
of a product in PL. An element in CFM cannot be associated with a product unless
restrictions defined on the element evaluate to true.

In our modelling, CFMs are not used to represent software architecture, but

rather to model the hierarchical structure of test cases. This methodology captures
the commonalties and variability of a product line using a FM and the domain
knowledge of test experts using a CFM.
3.3 Problem Modelling

Summing up and taken into account what said before, what we want is

achieving these three objectives [6]:

 Minimizing the number of test cases (Test Minimization
Percentage, TMP).

 Maximizing feature Pairwise Coverage (Feature Pairwise
Coverage, FPC).

 Maximizing capacity of fault detection (Fault Detection
Capability, FDC).

These objectives will be deeply described in the next section. In the

literature, we can found some technical proposals based on finding an optimal
solution using genetic algorithms that combine these objectives in a balanced way
(GAs based on weight vectors). In our case it is proposed to optimize all targets
simultaneously using multi-objective techniques. But before of analyzing the
techniques, we are going to give a formal definition of the problem.

A product line P that have a set of products P = {P1, P2, P3,…,Pnp} where

Pnp is the number of products of P. P can be represented as a model of
characteristics with a set F = {f1, f2, f3, …, fnf} where fnf is the number of
characteristics or functionalities we wish to test in product line P. To test P, there
are a set of test TS = {t1, t2, t3,…, tnt} that comprises a great number of test cases
(nt). The problem can be represented in details as:

 28

Search a solution Sk (Sk is made up of {tsk1, tsk2, tsk3,…, tntsk}) 1) TMPsk (less
number of test cases); 2) FPCsk (high pair feature coverage) y 3) FDCsk (high fault
detection capability).

3.4 Definition of the Objectives
 1. TMP: Measures quantity reduction on the number of test cases and

is calculated:
100*1

pi
sksk nt

ntTMP

 where ntsk number of test cases for solution Sk where 1<= ntsk <= ntpi.

ntpi is the number of test cases to test the product Pi, that is one of the products to
test in production line P. The value range of TMP can vary from 0 to 1 and the
greater the number is, the greater will be the reduction of needed test cases.

2. FPC: is used to measure how much pairwise coverage can be

achieved by a chosen solution. We chose this type of coverage based on our
domain knowledge, discussion with test engineers, and history data about faults
because a higher percentage of detected faults are mainly due to the interactions
between features. FPC is designed to compute the capability of covering feature
pairs by a chosen solution, which is computed as below:

%100_

__
pi
sksksk FPNum

FPNumFPNumFPC

Num_FPsk is the number of feature pairs covered in the test cases for the

solution sk, which can be measured as follows:

 sk
i tcint FPNumFPNum sk 1 __

 where ntsk is the number of test cases for the solution sk, where

1<=ntsk<=ntpi. NUM_FPtci is the number of unduplicated feature pairs covered by
the test case i (tci). The feature pairs covered by tci can be computed as:
NUM_FPtci = 2

)(FtcisizeC where size(Ftci) is the number of features tested by that test
case. For instance, if test case tci is used to test three features. Then the feature
pairs covered by test case i 2

3C = 3*2/2 = 3. Notice, repeated pairs will be removed
when computing.

 NUM_FPpi is all number of feature pairs for testing the product pi which can

be measured as: NUM_FPpi = 2
)(FpisizeC = ntpi * (ntpi – 1) /2 is the set of features

 29

representing the product Pi, including ntpi features. For instance, if Pi is represented
by ten features, all feature pairs covered by the product are 2

10C = 10* 9/2 = 45.
Note that FPC is calculated for a chosen test solution and ranges from 0 to 1 and
a higher value of FPC shows higher feature pairwise coverage.

3. FDC measures the fault detection capability of a selected test

solution for a product. In out context, fault detection refers to the success rate of a
test case in a given time, e.g., a week or a month. In our context, a test case is
defined as a success if it can detect faults in a given time and as a fail if it does not
detect any fault. The success rate of a test case can be measured as below:

= +

where NumSuctci: is the number of success executions for the given test

case i during the given time; y NumFailtci, is the number of fail executions for the
given test case i during the given time.
3.5 Fitness Function Definition (for Mono-objective Version)

 To ease computation of the fitness function, the values for all the three
objectives have been normalized by the above-proposed formulas, which range
from 0 to 1. We adopted a fitness function based in the normalization of the three
objectives, and is defined as follows:

Min Fitness = 1 – (w1 * TMP + w2 * FPC + w3 * FDC)

where w1 + w2 + w3 = 1.

Using this way, multi-objective optimization problem is converted to a single

objective problem with a scalar objective function, which is a classical approach
and is efficient to be solved using GAs. You can give several different values to the
weights depending on the importance given to each objective, to real test those
weights can be defined based in systematic methods such as domain analysis,
questionnaire. In the original paper [6] the authors propose two variants (based in
domain analysis and discussions with Cisco test engineers):

 w1 = w2 = w3 = 1/3 and
 w1 = 0.2, w2 = w3 = 0.4.

 30

3.6 Requirements

The algorithms proposed to solve this problem should fulfill the following

requirements:

1. Generated test case set must cover all requirements that the initial

test case set.
2. Minimized Generated test case must have same fault detection

capability than the original
3. Computing time must be as low as possible since we plan to tackle

very large instances.
3.7 Description of Selected Multi-objective Algorithms

In order to solve the previous problem, we have selected three different
algorithms. Two of them are well-known MOEA algorithms: NSGAII [7] and SPEA2
[3]. We also use a random multi-objective search to base in our multi-objective
comparison.

3.7.1. Non-dominated Sorting and Sharing Genetic Algorithm (NSGAII)

This is an improved version of original NSGA. The original version has been
criticized mainly for following issues:

1) Computational complexity (where is the number of objectives and is the
population size)

2) Non-elitism approach
3) The need for specifying a sharing parameter.

NSGAII [2] alleviates all the above three difficulties. Specifically, a fast non-

dominated sorting approach with computational complexity O(MN2). Also, a
selection operator is presented that creates a mating pool by combining the parent
and offspring populations and selecting the best (with respect to fitness and
spread) solutions. Simulation results on difficult test problems show that the
proposed NSGA-II, in most problems, is able to find much better spread of solutions
and better convergence near the true Pareto-optimal front compared to Pareto-
archived evolution strategy and strength-Pareto EA (elitist property). The primary
reason for this is their ability to find multiple Pareto-optimal solutions in one single
simulation run.

The behavior of NSGAII is as follows. The population is initialized as usual

in Genetic Algorithms. Once the population in initialized the population is sorted
based on non-domination into each front. The first front being completely non-
dominant set in the current population and the second front being dominated by

 31

the individuals in the first front only and the front goes so on. Each individual in the
each front are assigned rank (fitness) values or based on front in which they belong
to. Individuals in first front are given a fitness value of 1 and individuals in second
are assigned fitness value as 2 and so on.

In addition to fitness value a new parameter called crowding distance is

calculated for each individual. The crowding distance is a measure of how close an
individual is to its neighbors. Large average crowding distance will result in better
diversity in the population.

Parents are selected from the population by using binary tournament

selection based on the rank and crowding distance. An individual is selected in the
rank is lesser than the other or if crowding distance is greater than the other. The
selected population generates offsprings from crossover and mutation operators.

The population with the current population and current offsprings is sorted

again based on non-domination and only the best N individuals are selected, where
N is the population size. The selection is based on rank and the on crowding
distance on the last front.
3.7.2 Strength Pareto Evolutionary Algorithm (SPEA2)

SPEA2 [3] uses a mixture of established techniques and new techniques in
order to find multiple Pareto optimal solutions in parallel.

 Stores the Pareto-optimal solutions found so far externally.
 Uses the concept of Pareto dominance in order to assign scalar fitness

values to individuals.
 Performs clustering to reduce the number of nondominated solutions

stored without destroying the characteristics of the Pareto-optimal front.

On the other hand, SPEA is unique in four respects:

 It combines the above three techniques in a single algorithm.
 The fitness of an individual is determined from the solutions stored in the

external Pareto set only; whether members of the population dominate each other
is irrelevant.

 All solutions in the external Pareto set participate in selection.
 A new niching method is provided in order to preserve diversity in the

population: this method is Pareto-based and does not require any distance
parameter.

In the design of SPEA2, the goal was to eliminate the potential weaknesses

of its predecessor and to incorporate most recent results in order to create a

 32

powerful and up-to-date MOEA. The main differences of SPEA2 in comparison to
SPEA are:

 An improved fitness assignment scheme, which takes for each individual

into account how many individuals it dominates and it is dominated by.
 A nearest neighbor density estimation technique, which allows a more

precise guidance of the search process.
 A new archive truncation methods that guarantees the preservation of

boundary solutions.
3.7.3 Random Search (RS)

Basically we use this algorithm as base to compare our EA algorithm to
check if they are really smart or they behave as somewhat random. The basic
behavior of this method is as follows:

for(int i = 0; i < MAX_SOLUTIONS; i++){

s = randomSolution();
insertInParetoFront(s);

}

It generates as many solutions as we want (in our case so many solutions
as evaluations do the rest of algorithms), and then it tries to put it in the Pareto front
if it is a non-dominated solution.
3.8 Implementation

For solving the problem, we use the jMetal framework which already has
implemented the algorithms but it requires to adapt it to the problem at hands. In
this section we describe the main classes developed to tackle with the minimization
test cases in software product lines.
3.8.1 Instance Class

 We define a new java class to create and read a file with the instance of

the problem. For the creation: the format of this file is as follows:

 The first line contains a single number representing the number of
characteristics.

 The rest of lines of file are the different test cases. Each line begins with
the number of features covered in each test case followed by the number of
characteristic and its success rate.

We will generate five different files for the characteristics shown in table in
Section 4.1.1. To create the file we will give number of characteristics and the

 33

name of the file, each file name will be “instanciaXX.txt” where XX is {18, 29, 46,
59, 77}. The code to build these files is partially shown in the next paragraph:

public static void CrearFichero(int NumCaracteristicas, String s){
 … for (int r = 0; r < COB.length; r++){ COB[r] = (random.nextInt(10-5)+5); //featurs covered by 5-10 TCs sumaTestCaseFeature = sumaTestCaseFeature + COB[r]; FeaturesInserted[r] = 0; } while(sumaTestCaseFeature > 0){ // While uncovered features exist for (int k = 0; k < FeaturesInserted.length; k++) FeaturesInserted[k] = 0; // Generate number of test for each test case (a file line) NumFeatTC = (random.nextInt((5>NumFeatures)?NumFeatures:5)) + 1; pw.print(NumFeatTC +" "); for(int cont = 1; cont <= NumFeatTC;cont++){ // Generate a number between 1 and number of total Test Case randomTCTot = (random.nextInt(sumaTestCaseFeature))+1; // Search which feature is still not covered in this test case int feat = buscarFeature(COB, randomTCTot, FeaturesInserted); //Feature covered FeaturesInserted[feat]++; COB[feat]--; // Less 1 he number of times a feature is covered if(COB[feat] == 0) NumFeatures--; sumaTestCaseFeature--; // One less to the total of TC // Write in file number of feature and success rate pw.print(feat+1+" "+(random.nextInt(successRate)+50) + " "); } pw.println(); } }

Example of generated file:
18 2 12 93 6 58 3 10 71 2 62 11 57 3 13 51 15 55 16 63 2 18 76 13 52 5 3 85 8 92 17 92 6 80 4 64 5 16 67 7 71 15 64 17 78 8 71 5 13 87 14 74 17 88 5 53 2 81 2 6 81 7 76 2 8 81 2 89 5 10 87 15 65 11 83 14 61 12 66 1 4 52 5 18 92 1 84 13 92 5 72 16 88 4 13 77 14 59 8 72 1 61 3 9 87 15 80 11 77 …

 34

The first line indicates that this software product lines has a FM with 18
different features. The first test case (second line) covers two features: the feature
12 (with a success ratio of 93%) and the feature 6 with 58% of detecting a failure.
The interpretation of the rest of the lines is similar.

The method to read generated file will be used in SimpleProblem class,

basically we return the content of the file in Vector<Vector<NodoInstance>>
structure having as input parameter a String with the name of the file, we use the
scanner wrapper to get the content of the file and we insert each pair of integer
found in this structure, as we have the number of features covered for each test
case at the beginning of the line. The resulting code is:

public Vector<Vector<NodoInstance>> readFile(String filename) { … while(sc.hasNextInt()) //While is data in the file { Vector<NodoInstance> tc = new Vector<NodoInstance>(); // New TC int nFCovered = sc.nextInt(); // # features covered by this TC for(int i= 0; i < nFCovered; i++){ NodoInstance n = new NodoInstance(); // Create NodoInstance n.feature = sc.nextInt(); // Insert number of feature n.percentage = sc.nextInt(); // Insert success rate tc.add(n); // Add to the intermediate node } data.add(tc); // Add to the returning structure } sc.close(); return data; }
3.8.2 Problem Class

 This is maybe the most important class since this include the representation
of the solution and how the objectives are calculated.

This class uses the Instance one to obtain the data of the current instance

and using this information perform the appropriate calculations. This class include
several methods (to define the number of objectives, length of the solution and
its representation, how an initial solution is generated …) but the most important
one is the evaluation of a solution.

The calculations are not simple and they should be performed as efficient

as possible since this method is called very frequently. In the next code, we
summarize the implementation of that method (all the details and the auxiliary
methods are included in the source code files attached to this document):

 35

public void evaluate(BinarySolution solution){ double TestCaseNum, ValidTestCases = 0; double TMP; //Test Minimization Percentage double FPC; //Feature Pairwise Coverage double FDC; //Fault Detection Capability double FDC_Numerador = 0; double PairF = 0; //Pair features covered by test suite Vector<NodoInstance> pairF = new Vector<NodoInstance>(); double arr[] = new double[ncarac];
 for (int cont = 0; cont < arr.length; cont++) arr[cont] = 0; BitSet bitset = solution.getVariableValue(0) ; for (int i = 0; i < nbits; i++) { if(bitset.get(i)){ ValidTestCases++; //Calculate feature pairs covered by test case i NumPairF(Datos, i, pairF); arr = calcularFDC(Datos, i, arr); } } PairF = pairF.size(); TestCaseNum = Datos.size(); //TMP i equals to --> (1 - (ValidTestCases / NumberOfTestCases if (TestCaseNum != 0) TMP = (1 - (ValidTestCases / TestCaseNum)); else TMP = 0; //NumTC * (NumTc-1) dividido por 2 int TotalF = (ncarac * (ncarac -1)) / 2;
 //Feature Pairwise Coverage (FPC) if (TotalF != 0) FPC = PairF/TotalF; else FPC = 0; for (int h = 0; h < arr.length; h++) FDC_Numerador += arr[h]; FDC = FDC_Numerador / ncarac; //Set the three objectives solution.setObjective(0, 1-TMP); solution.setObjective(1, 1-FPC); solution.setObjective(2, 1-FDC); }
3.8.3 NSGAII Class

 This is the main class, it is used to launch algorithm NSGAII, standard

template from jMetal is used with some modifications we have to amend. Basically
we have to run NSGA 150 times (30 iterations for each of the 5 files created in the
Instance class). See Pseudocode below:

 36

public static void main(String[] args) throws Exception { int arr[] = {18,29,46,59,77}; for (int k = 1; k <= 30; k++){ for (int x:arr){ String nameFile = " instancia"; // Instance name nameFile = nameFile + x + ".txt"; //compose instance file name // Call SProblem with the instante filename SProblem problem = new SProblem(nameFile); // Other parameters and operators for the algorithm CrossoverOperator crossover = new SinglePointCrossover(0.9); MutationOperator mutation = new BitFlipMutation(1.0/problem.getBitsPerVariable(0)); SelectionOperator selection = new BinaryTournamentSelection(); // Configure the algorithm Algorithm al = new NSGAII(problem, // Problem 20, // Max Iterations 100, // Population size crossover, // Crossover Operator mutation, // Mutation Operator selection, // Selection Operator new SequentialSolutionListEvaluator() // Solution Evaluator); // Execute the algorithm al.run(); // Obtain the results of the execution List<BinarySolution> l = (List<BinarySolution>)al.getResult(); FileWriter file = null; PrintWriter pw = null; // Compose name of the output result filename String Filename = "NSGAII_SP/resultadoNSGAII_"+x+"_"+k+".txt"; file = new FileWriter(Filename); pw = new PrintWriter(file); for(int i = 0; i < l.size(); i++){ DefaultBinarySolution s = (DefaultBinarySolution) l.get(i); pw.println(s.getVariableValueString(0) + "\t" + s.getObjective(0) + "\t" + s.getObjective(1) +"\t" + s.getObjective(2)); // Write results in output file } pw.close(); } } }

3.8.4 Other Classes

 37

In the previous subsection, we have describe the main methods of the
principal classes developed in this project but other auxiliary classes has been
implemented to the make easy the analysis of the results.

Also, SPEA2 and RS classes have been created to run these multi-objective

algorithms but the code is very similar to the NSGAII and therefore, their code has
not included in this document.

Finally, we have also run two different GA for the mono-objective case. For

these experiment we have to create several classes but they are similar to some
of the classes previously described (Instance, Problem, or Algorithm ones).

 38

 39

4. Experimental Results

This chapter is divided into two parts: the first one present the experimental

design (benchmark, statistical analysis used, parameterization …) while the
second part shows the different results obtained. The discussion of the results has
been organized also in two analysis: we first compare the different multi-objective
among them and then we compare the results of our multi-objective approaches
against the existing algorithm (mono-objective GA).
4.1 Experimental Design

 In this section, the experimental methodology is described. This includes

the benchmark used, what metric are used to compare the algorithm, how are the
results analyzed and the parameters of the methods.
4.1.1 Benchmark

 For our tests we have used five products from different SPLOT product

lines (http://www.splot-research.org/) [6]. This is a standard repository for this
problem. The characteristics of the instances are shown in Table 4.1.

Name Description #Features

Car Software System Simple model of a car’s software
product line

18
ATM Software A feature model for ATM software 29

DELL
Laptop/Notebook

Computers
A feature model describes the

features of DELL Laptop/Notebook
Products

46

SmartHome

Adaptation of the original feature
models for the SmartHome system

used by AMPLE project as case
study

59

J2EE web architecture

A feature model for web
architectures

77
Table 4.1 – Different study cases and its number of features.

All the instances has some characteristics:
 Each feature can be tested by 5-10 test cases,
 each test case can be used to test 1-5 features and
 the success rate for each test case ranges from 50% to 95%.

 40

We generate a file for each instance attending to these requirements using
the appropriate method of Instance class (Section 3.8.1).
4.1.2 Quality Indicators

Comparing metaheuristics algorithm is a complex task since these
techniques are not deterministic and several independent runs should be
performed to each pair algorithm-instance. In multi-objective optimization is even
more complex since the result is not a single solution but a set of solutions. Then,
we have to clearly define how the algorithms are compared. In this section, we
define the metric used to this comparison.

Multi-objective metrics:

Each execution of an algorithm generates a final Pareto Front (PF) which is

the set of non-dominated solution found during the search. The metrics usually
compare this PF with the optimal Pareto Front (PF*) measuring how similar are
these two sets of solutions [11].

The first problem is we don’t know the optimal Pareto front for our problem.

We make an approximation to this front, merging the PF found by all the methods
(NSGAII, SPEA2, and RS) and obtaining a combining Pareto Front.

Then, several kind of metrics can be defined:

 Convergence metrics measure the degree of proximity based on the

distance between the solutions in PF* to those in PF. The most used metric for
convergence is Generational Distance (GD) which represents the distance
between PF and PF*. The smaller is this value, the better is.

 Diversity metrics indicate the distribution and spread of solutions in the
optimal solution set PF*, we use Generalized Spread (GS) as a metric of this type.

 Convergence–Diversity metrics measure the quality of the optimal solution
set PF* in terms of convergence and diversity on a single scale. HyperVolume
(HV) gives the volume (in the objective space) that is dominated by the optimal
solution set PF*. In particular, the closer are the solutions of PF* to the true PFknown,
the larger is the value of HV.

 Capacity metrics quantify the number or ratio of non-dominated solutions
in PF* that conforms to the predefined requirements. In general, a large number of
non-dominated solutions in PF* is preferred. Error Ratio (ER) is the number of
solutions in PF which are dominated by solutions of PF* [13]. In this case, we are
interested in a low value of this metric, which indicates that solutions found are in
the optimal Pareto Front.

 41

Mono-objective metrics:

In this case is easier to select a metric to measure the quality of the
results. Since each algorithm only generates a single final solution, we’ll use the
quality of this solution.
4.1.3 Statistical Analysis

Since we are working with non-deterministic algorithms, each execution can

potentially produce different results, and therefor the results of a single execution
are not enough to extract any conclusion. Thus we performed 30 independent runs
for a meaningful statistical analysis.

Then for each metric described in the previous section (HV, GD …), we

have 30 values. In order to make easy the comparison, we need to summarize
these 30 values in a single one (or maybe two or three values). We have different
alternatives: mean (with standard deviation), median, … To select the most
appropriate one, first we check if the underlying distribution of this values follows a
Normal distribution or not. We do this using the Shapiro-Wilk test (the confidence
level used is 95%, p-value under 0.05). If the data follows the Gaussian distribution,
the mean is a good estimator, in otherwise, we will use the median.

In the Appendix, the results of this normality test are shown. There are some

cases where the data doesn’t fulfill this test indicating that the data is not following
the Normal distribution. Therefore, the values shown in the tables of this chapter
will be the median values.

Also, in order to check if the differences between the algorithms are

statistically significant or just a matter of chance, we applied the non-parametric
test (the data is not Normal) Kruskal-Wallis. Again, the confidence level used is
95%. These results are also shown in the Appendix.
4.1.4 Algorithmic Parameterization

In our experiments, we compared three multi-objective approaches

(NSGAII, SPEA2, and RS) and weight-based mono-objective GAs (GA1 with w =
(1/3, 1/3, 1/3), and GA2 with w = (0.2, 0.4, 0.4)). For all of GA-based method (all
with the exception of RS), we used a standard one-point crossover with a rate of
0.9 and mutation of a variable is done with the standard probability 1/n, where n is
the number of variables. Meanwhile, the size of population and maximum number
of fitness evaluation are set as 100 and 2000, respectively. Finally, RS was used
as the comparison baseline to assess the difficulty of the addressed minimization
problems.

 42

4.2 Result Analysis

First, we analyze the different multi-objective technique attending to the

different metric described in Subsection 4.1.2 and then we compare these
proposed multi-objective approaches with the mono-objective GA proposed by [6].

In the tables, the boldfaced values represent the best results for the

instance. The final column indicate in how many instance the algorithm
(represented by rows) are the best one in this metric.
4.2.1 Multi-objective Analysis

HV (Hypervolume, larger values are better)

In the next table, the results for the Hypervolume metric are shown. Several

conclusion can be obtained from these values. First, the RS is the worst algorithm.
This is an expected value since it doesn’t use any information of the problem. The
second one is the best algorithm is clearly NSGAII. It outperforms (statistically
validated, see Appendix) the results of SPEA2 for all the instances with the
exception of the instance with 59 features.

 18 29 46 59 77 Total
NSGAII 0.716538 0.625227 0.552107 0.526504 0.533766 4
SPEA2 0.706489 0.606991 0.542786 0.570152 0.509774 1

RS 0.552440 0.435279 0.357473 0.417611 0.368432 0

GD (Generational Distance, lower values are better)

For our next analysis, we use the GD metric. The conclusions are similar to

HV one but in this case is even more clear. Again, the RS is the worst algorithm
with a large difference (more than one order of magnitude). Also, the NSGAII is
the best algorithms, but in this metric it outperforms SPEA2 in all the instances,
although the difference for the smallest ones (18, 29, and 46 features) is not
statistically significant.

 18 29 46 59 77 Total
NSGAII 0.006178 0.005524 0.007547 0.005308 0.004430 5
SPEA2 0.006432 0.006018 0.007631 0.005855 0.006018 3

RS 0.026524 0.024704 0.031700 0.022624 0.020620 0

GS (Generalized Spread, larger values are better)

Now, we analyze the spread of the solution in the space solution. On the
contrary to the rest of the instances, RS is the algorithm with the best spread. This
is a reasonable result since this algorithm makes a uniform exploration of the
search space. Then, the solutions found by RS has a very good spread but these
solutions are very far from the optimal Pareto Front (as it is shown in previous
metrics), and then these solutions are not useful to solve this problem. With respect
to the other algorithms (NSGAII and SPEA2) both have a similar spread (there is

 43

no statistical different as it is shown in the Appendix). Therefore, the results
obtained by this metric doesn’t help to decide a final winner algorithm.

 18 29 46 59 77 Total
NSGAII 0.682131 0.625395 0.600410 0.637804 0.625500 1
SPEA2 0.715664 0.608043 0.578912 0.624854 0.590289 0

RS 0.719662 0.665168 0.649476 0.685551 0.621762 5

ER (Error ratio, lower values are better)

Finally, we examine how many solutions of the PF generated by the
methods are dominated by the optimal one PF*. The results obtained are
consistent with the previous one. RS is the worst one while the NSGAII obtains the
best results for all the instances although in some cases SPEA gets similar results.

 18 29 46 59 77 Total
NSGAII 0.986111 0.951807 0.984848 0.985915 0.954022 5
SPEA2 0.99 1.0 1.0 0.99 1.0 2

RS 1.0 1.0 1.0 1.0 1.0 0

Summary

After analyzing each metric separately, we can conclude that in general the
best algorithm is the NSGAII. It wins in all the metrics (with the exception of GS but
as we explained previous, these results are misleading). SPEA2 is slightly worse
algorithm than NSGAII in the tested benchmark, although it also obtains
competitive results for some instances (especially for the one with 59 features).
Finally, as it was expected RS is the worst algorithm.
4.2.2 Comparison with Mono-objective Algorithms

 In the previous analysis, we compare the multi-objective algorithms among
them. Now the question is: Are the solutions generated by multi-objective
algorithms competitive with respect existing approaches? To do this, calculate the
mono-objective fitness for all the solutions in the Pareto front generated by the
multi-objective approaches (using the equation w1*TMP + w2*FPC + w3*FDC) and
we select the best one (minimum value) and the median value. In the next tables,
we compare these values with respect to the existing GA [6]. We use two different
distribution of the weights.

Minimum: (w1 = w2 = w3 = 1/3)

 18 29 46 59 77 Total
NSGAII 0.253490 0.338008 0.387280 0.406782 0.431802 5
SPEA2 0.253611 0.341392 0.390294 0.411452 0.433031 1

RS 0.287390 0.374641 0.397829 0.435101 0.447277 0
GA 0.301285 0.380826 0.422939 0.437444 0.451576 0

Median: (w1 = w2 = w3 = 1/3)

 44

 18 29 46 59 77 Total

NSGAII 0.262474 0.347677 0.394326 0.419016 0.439136 4
SPEA2 0.265229 0.351165 0.398191 0.420143 0.438282 1

RS 0.301989 0.381836 0.421796 0.440381 0.453401 0
GA 0.324255 0.390693 0.430982 0.448090 0.460940 0

Minimum: (w1 = 0.2, w2 = w3 = 0.4)

 18 29 46 59 77 Total

NSGAII 0.238633 0.332155 0.382788 0.415613 0.437590 5
SPEA2 0.240105 0.332834 0.388409 0.417873 0.446439 0

RS 0.252185 0.346892 0.410267 0.432429 0.451984 0
GA 0.269789 0.362326 0.412507 0.441355 0.455602 0

 Median: (w1 = 0.2, w2 = w3 = 0.4)

 18 29 46 59 77 Total
NSGAII 0.244104 0.338115 0.396227 0.423244 0.441161 5
SPEA2 0.245837 0.340067 0.397829 0.424124 0.443273 1

RS 0.274978 0.363003 0.415215 0.439643 0.455570 0
GA 0.290827 0.374867 0.422331 0.445870 0.461117 0

 The conclusion is clear: NSGAII obtains the best results in all the cases

(only on quite easy –small- instances, SPEA2 gets similar results). But, it is also
very noticeable that both multi-objective algorithms (NSGAII and SPEA2)
outperform the results found by mono-objective GA. This is a quite surprising result
because GA focus all its effort in following the aggregative function while the multi-
objective algorithms make a more explorative search. Our hypothesis is the
aggregative function leads to a suboptimal solution and the algorithm cannot
escape from it while the diversification behavior promoted by multi-objective
algorithm allows to avoid these local optima and get better results.

 45

5. Conclusions

This work is intended to help minimize the set of test cases generated by

testing new products that are created in a production line of software. This problem
is an interesting and important current research line in international level obtaining
a large number of recent publications in this domain.

In this project we have proposed the utilization of muti-objective techniques

to solve this problem (existing approaches use mono-objective ones): The results
showed that this kind of multi-objective approaches can produce very good results
that even outperform the results obtained by mono-objective techniques or the
traditional multi-objective Random Search.

It has been developed a Java code to generate five files of instances, each

for the number of expected features to be tested in that product. The contents of
the file must be loaded into memory, so that the diverse calculation of the
objectives is achieved. It has been shown by various statistical factors that multi-
objective techniques, for most cases, gives best results than previously existing
algorithms.

The time spent in reading and analyzing documentation for this work,

implementing the correct generation of the diverse characteristics files, as well as
the objective calculations has been the most complicated part of this project. The
use of stochastic techniques in file generation has raised the complexity of the
programming. The tests has also been a challenge (we had to run algorithms a
considerable number of times to have a wide result range because final results can
change depending on execution) because we had to develop code based in
accepted factors and final results (objectives, metrics…) can change depending in
the content of the characteristic files generated. We achieved time of execution of
the generated file be acceptable, generation of 150 files (750 in total as we use 5
different algorithms, NSGAII, RS, SPEA2, Mono-objective GA with weights = 1/3
and other mono-objective GA with weights = (0.2, 0.4 and 0.4)) per NSGAII and
SPEA execution takes around 9 minutes.

As future work, the number of algorithms can be increased and also the

number of instances to validate the results. Also, we can use parallel programming
to check if performance is improved and thus we can apply these approaches to
very large instances.

 46

5. Conclusiones (en Español)

Este trabajo está pensado para intentar minimizar el conjunto de casos de
pruebas que se generan al probar nuevos productos que se crean en una línea de
producción de software. Este problema es una línea de investigación importante
a nivel internacional como demuestra la cantidad de publicaciones existentes.

 En este proyecto se ha propuesto la utilización de técnicas multi-objetivo

para resolver el problema (hasta ahora sólo se habían propuesto mono-objectivo).
En los resultados hemos mostrado que estos acercamientos obtienen buenos
resultados incluso mejores resultados que usando las técnicas mono-objetivos o
la tradicional multi-objetivo Random Search.

Se ha desarrollado un código Java para generar 5 ficheros de instancias,

cada uno con el número de características que se esperan probar de cada
producto, el contenido del fichero se debe cargar en memoria para con sus datos
hacer los cálculos para calcular los objetivos que buscábamos. Se ha demostrado
mediante diversos factores estadísticos que las técnicas multi-objetivos dan, para
la mayoría de los casos, mejores resultados que los acercamientos previamente
existentes.

Todo el trabajo de lectura, análisis y compresión de la documentación a la

que he tenido acceso para este trabajo, la codificación para la correcta generación
de los distintos ficheros de características, así como los distintos cálculos de los
objetivos ha sido la parte más complicada del proyecto. El hecho de seguir
técnicas estocásticas en la generación del fichero ha hecho que la programación
sea compleja, así como las pruebas (se ha necesitado ejecutar bastantes veces
los algoritmos para tener un amplio rango de resultados ya que los resultados
finales puede cambiar de una ejecución a otra) pues se ha tenido que desarrollar
código basado en factores asumidos y los resultados finales (objetivos,
métricas…) pueden cambiar dependiendo de los ficheros de características
generados. Se ha conseguido que el tiempo de ejecución del código generado
sea bastante aceptable ya que la generación de 150 ficheros (750 en total ya que
hemos usado 5 algoritmos diferentes, NSGAII, RS, SPEA2, Mono-objetivo con
pesos = 1/3 y mono-objetivo con pesos = 0,2, 0,4 y 0,4)) por cada ejecución de
los algoritmos NSGAII y SPEA2 ha sido de 9 minutos.

Como futuro trabajo se pueden aplicar más algoritmos y ampliar el número

de instancias para validar los resultados. También se puede hacer uso de la
programación paralela para mejorar el rendimiento y abordar instancias aún
mayores.

 47

Bibliography Reference
 [1] Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization

using genetic algorithms: A tutorial. Reliability Engineering & System Safety,
91(9), 992-1007.

[2] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and
elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation,
IEEE Transactions on, 6(2), 182-197.

[3] An evolutionary algorithm for multiobjective optimization: The strength
pareto approach. Computer Engineering and Networks Laboratory (TIK), Swiss
Federal Institute of Technology Zürich (ETH), 1998.

[4] Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys (CSUR), 35(3),
268-308.

[5] Wang, S., Gotlieb, A., Liaaen, M., & Briand, L. C. (2012, September).
Automatic selection of test execution plans from a video conferencing
system product line. In Proceedings of the VARiability for You Workshop:
Variability Modeling Made Useful for Everyone (pp. 32-37). ACM.

[6] Wang, S., Ali, S., & Gotlieb, A. (2013, July). Minimizing test suites in software
product lines using weight-based genetic algorithms. In Proceedings of the
15th annual conference on Genetic and evolutionary computation (pp. 1493-1500).
ACM.

[7] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2), 182-197. [Accesed September 10, 2015]

[8] The Eclipse Foundation [Online; Accesed, 25-August-2015] Eclipse. Retrieved
from: https://eclipse.org/home/index.php

[9] Juan J. Durillo and Antonio J. Nebro. jmetal: A java framework for multi-
objective optimization. Advances in Engineering Software, 42(10):760-771,
2011. (Accesed August 25, 2015)

[10] Durillo, J. J., Nebro, A. J., & Alba, E. (2010, July). The jmetal framework for
multi-objective optimization: Design and architecture. In Evolutionary
Computation (CEC), 2010 IEEE Congress on (pp. 1-8). IEEE.

 48

[11] Von Lücken, C., Hermosilla, A., & Barán, B. (2004). Algoritmos Evolutivos
para Optimización Multiobjetivo: un estudio comparativo en un ambiente
paralelo asíncrono. In X Congreso Argentino de Ciencias de la Computación.

[12] Zitzler, E., Laumanns, M., & Bleuler, S. (2004). A tutorial on evolutionary
multiobjective optimization. In Metaheuristics for multiobjective
optimisation (pp. 3-37). Springer Berlin Heidelberg.

[13] Jiang, S., Ong, Y. S., Zhang, J., & Feng, L. (2014). Consistencies and
contradictions of performance metrics in multiobjective optimization.
Cybernetics, IEEE Transactions on, 44(12), 2391-2404.

[14] Linden, F. J., Schmid, K., & Rommes, E. (2007). Software product lines in
action: the best industrial practice in product line engineering. Springer
Science & Business Media.

[15] Software Engineering Institute. <http://www.sei.cmu.edu/productlines/>.
[Accessed on 11/3/2015]

 49

Appendix: Statistical Analysis Results

In this appendix we show the p-values obtained during our statistical
analysis. When this value is lower than 0.05 means that the null hypothesis is
rejected. The null hypotheses used in these analysis are:

 Data follows a Normal distribution (for Normality test)
 The algorithms have the same behavior (for pairwise test).

We show in boldface the values in which the null hypothesis is rejected (i.e.,

the data doesn’t follow the Normal distribution or the algorithms are not similar).

Statistical results for 18 features:

 Normality
NSGAII 0.0338
SPEA 0.4513

RS 0.06109

 SPEA2 RS GA All

NSGAII 0.01147 2,87E-11 - 3.12e-14
SPEA - 2,87E-11 - -

 Hypervolume

 Normality

NSGAII 0.0005205
SPEA 0.2621

RS 0.2917

 SPEA2 RS GA All

NSGAII 0.6898 2,87E-11 - 1,26E-13
SPEA - 2,87E-11 - -

 Gen. Distance

 Normality
NSGAII 0.0003767
SPEA 0.384

RS 0.846

 SPEA2 RS GA All

NSGAII 0.1433 0.01196 - 0.04396
SPEA - 0.3516 - -

Spread

 50

 Normality

NSGAII 4,22E-07
SPEA 9,05E-07

RS 9,05E-07

 SPEA2 RS GA All

NSGAII 0.2598 8,46E-07 - 2.14e-06
SPEA - 5,03E-06 - -

Error Ratio

 Normality

NSGAII 0.7824
SPEA 0.124

RS 0.1226
GA 0.991

 SPEA2 RS GA Todos

NSGAII 0.09479 2,87E-11 2,87E-11 2.2e-16
SPEA - 2,87E-11 2,87E-11 -

RS - - 1,23E-09 -

Mono -objective GA 1/3 1/3 1/3

 Normality

NSGAII 0.3653
SPEA 0.6523

RS 0.0005924
GA1 0.6825

 SPEA2 RS GA All

NSGAII 0.0565 2,87E-11 2,87E-11 2.2e-16
SPEA - 3,18E-11 2,87E-11 -

RS - - 6,42E-10 -
GA - - - -

Mono -objective GA 0.2 0.4 0.4

 51

Statistical results for 29 features:

 Normalidad
NSGAII 0.4399
SPEA 0.6668

RS 0.0009446

 SPEA2 RS GA Todos

NSGAII 0.00148 2,87E-11 - 1,36E-14
SPEA - 2,87E-11 - -

Hypervolume

 Normalidad

NSGAII 0.3665
SPEA 0.006618

RS 0.772

 SPEA2 RS GA Todos

NSGAII 0.1137 2,87E-11 - 7,44E-14
SPEA - 2,87E-11 - -

Gen. Distance

 Normalidad

NSGAII 0.8261
SPEA 0.9541

RS 0.5972

 SPEA2 RS GA Todos

NSGAII 0.9176 0.03089 - 0.04391
SPEA - 0.03089 - -

Spread

 Normalidad
NSGAII 0.00115
SPEA 1,05E-07

RS 9,05E-07

 SPEA2 RS GA Todos

NSGAII 0.001049 1,85E-09 - 2,78E-05
SPEA - 5,03E-06 - -

Error Ratio

 52

 Normalidad
NSGAII 0.1094
SPEA 0.9863

RS 0.7374
GA1 0.68

 SPEA2 RS GA Todos

NSGAII 0.001638 2,87E-11 2,87E-11 2.2e-16
SPEA - 2,87E-11 2,87E-11 -

RS - - 1,23E-09 -

Mono -objective GA 1/3 1/3 1/3

 Normalidad

NSGAII 0.6582
SPEA 0.487

RS 3,42E-05
GA1 0.4147

 SPEA2 RS GA Todos

NSGAII 0.01147 2,87E-11 2,87E-11 2.2e-16
SPEA - 3,18E-11 2,87E-11 -

RS - - 4,39E-10 -

Mono -objective GA 0.2 0.4 0.4

 Statistical results for 46 features:

 Normalidad

NSGAII 0.6419
SPEA 0.434

RS 0.8401

 SPEA2 RS GA Todos

NSGAII 0.04436 2,87E-11 - 2,87E-11
SPEA - 2,87E-11 - -

Hypervolume

 53

 Normalidad
NSGAII 0.7649
SPEA 0.03613

RS 0.01803

 SPEA2 RS GA Todos

NSGAII 0.7338 2,87E-11 - 1,26E-13
SPEA - 2,87E-11 - -

Gen. Distance

 Normalidad

NSGAII 0.7755
SPEA 0.2133

RS 0.7531

 SPEA2 RS GA Todos

NSGAII 0.2612 0.004745 - 0.000114
SPEA - 2,35E-05 - -

Spread

 Normalidad
NSGAII 2,13E-07
SPEA 1,13E-08

RS 9,05E-07

 SPEA2 RS GA Todos

NSGAII 0.01363 1,24E-07 - 3,17E-07
SPEA - 6,24E-05 - -

Error Ratio

 Normalidad

NSGAII 0.5616
SPEA 0.8209

RS 0.4982
GA1 0.3102

 SPEA2 RS GA Todos

NSGAII 0.008498 2,87E-11 2,87E-11 2.2e-16
SPEA - 2,87E-11 2,87E-11 -

RS - - 1,40E-10 -

Mono -objective GA 1/3 1/3 1/3

 54

 Normalidad
NSGAII 0.1132
SPEA 0.009095

RS 0.07459
GA1 0.08181

 SPEA2 RS GA Todos

NSGAII 0.0237 2,87E-11 2,87E-11 2.2e-16
SPEA - 2,87E-11 2,87E-11 -

RS - - 2,13E-09 -

Mono -objective GA 0.2 0.4 0.4
 Statistical results for 59 features:

 Normalidad

NSGAII 0.1444
SPEA 0.6229

RS 0.1426

 SPEA2 RS GA Todos

NSGAII 0.007129 2,87E-11 - 2,58E-14
SPEA - 2,87E-11 - -

Hypervolume

 Normalidad

NSGAII 0.6247
SPEA 0.007244

RS 0.07608

 SPEA2 RS GA Todos

NSGAII 0.003108 2,87E-11 - 1,85E-14
SPEA - 2,87E-11 - -

Gen. Distance

 Normalidad

NSGAII 0.0002683
SPEA 0.7733

RS 0.5433

 SPEA2 RS GA Todos

NSGAII 0.5946 0.0009273 - 0.0003067
SPEA - 0.0003274 - -

Spread

 55

 Normalidad

NSGAII 8.65e-06
SPEA 1,94E-07

RS 9,05E-07

 SPEA2 RS GA Todos

NSGAII 0.05291 1,24E-07 - 2,60E-07
SPEA - 4,99E-06 - -

Error Ratio

 Normalidad

NSGAII 0.3916
SPEA 0.5143

RS 0.1896
GA1 0.2394

 SPEA2 RS GA Todos

NSGAII 0.04282 2,87E-11 2,87E-11 2.2e-16
SPEA - 2,87E-11 2,87E-11 -

RS - - 3,50E-08 -

Mono -objective GA 1/3 1/3 1/3

 Normalidad

NSGAII 0.04406
SPEA 0.7249

RS 0.1188
GA1 0.6869

 SPEA2 RS GA Todos

NSGAII 0.03847 2,87E-11 2,87E-11 2.2e-16
SPEA - 2,87E-11 2,87E-11 -

RS - - 1,27E-10 -

Mono -objective GA 0.2 0.4 0.4

 56

Statistical results for 77 features:

 Normalidad
NSGAII 0.9574
SPEA 0.07869

RS 0.1629

 SPEA2 RS GA Todos

NSGAII 3,48E-05 2,87E-11 - 2,83E-15
SPEA - 2,87E-11 - -

Hypervolume

 Normalidad

NSGAII 0.1959
SPEA 0.3928

RS 0.1225

 SPEA2 RS GA Todos

NSGAII 0.0003465 2,87E-11 - 7.45e-15
SPEA - 2,87E-11 - -

Gen. Distance

 Normalidad

NSGAII 0.08484
SPEA 0.857

RS 0.7921

 SPEA2 RS GA Todos

NSGAII 0.2939 0.1242 - 0.02917
SPEA - 0.007786 - -

Spread

 Normalidad

NSGAII 0.00154
SPEA 1,62E-07

RS 9,05E-07

 SPEA2 RS GA Todos

NSGAII 6.84e-06 5,92E-10 - 6,28E-11
SPEA - 0.0006336 - -

Error Ratio

 57

 Normalidad
NSGAII 0.1731
SPEA 0.9688

RS 0.153
GA1 0.4087

 SPEA2 RS GA Todos

NSGAII 3,96E-06 2,87E-11 2,87E-11 2.2e-16
SPEA - 2,87E-11 2,87E-11 -

RS - - 1,23E-09 -

Mono -objective GA 1/3 1/3 1/3

 Normalidad

NSGAII 0.4247
SPEA 0.2999

RS 0.694
GA1 0.3522

 SPEA2 RS GA Todos

NSGAII 0.004745 2,87E-11 2,87E-11 2.2e-16
SPEA - 3,18E-11 2,87E-11 -

RS - - 1,12E-09 -

Mono -objective GA 0.2 0.4 0.4

