
Automated Repair of Feature Interaction Failures in Automated
Driving Systems

Raja Ben Abdessalem
University of Luxembourg

Luxembourg
raja.benabdessalem@uni.lu

Annibale Panichella
Delft University of Technology

Netherlands
University of Luxembourg

Luxembourg
a.panichella@tudelft.nl

Shiva Nejati
University of Ottawa

Canada
University of Luxembourg

Luxembourg
snejati@uottawa.ca

Lionel C. Briand
University of Luxembourg

Luxembourg
University of Ottawa

Canada
lionel.briand@uni.lu

Thomas Stifter
IEE S.A.

Luxembourg
thomas.stifter@iee.lu

ABSTRACT
In the past years, several automated repair strategies have been
proposed to fix bugs in individual software programs without any
human intervention. There has been, however, little work on how
automated repair techniques can resolve failures that arise at the
system-level and are caused by undesired interactions among dif-
ferent system components or functions. Feature interaction failures
are common in complex systems such as autonomous cars that are
typically built as a composition of independent features (i.e., units
of functionality). In this paper, we propose a repair technique to
automatically resolve undesired feature interaction failures in auto-
mated driving systems (ADS) that lead to the violation of system
safety requirements. Our repair strategy achieves its goal by (1) lo-
calizing faults spanning several lines of code, (2) simultaneously
resolving multiple interaction failures caused by independent faults,
(3) scaling repair strategies from the unit-level to the system-level,
and (4) resolving failures based on their order of severity. We have
evaluated our approach using two industrial ADS containing four
features. Our results show that our repair strategy resolves the
undesired interaction failures in these two systems in less than 16h
and outperforms existing automated repair techniques.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation; Search-based software engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3397386

KEYWORDS
Search-based Software Testing, Automated Driving Systems, Auto-
mated Software Repair, Feature Interaction Problem

ACM Reference Format:
Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand,
and Thomas Stifter. 2020. Automated Repair of Feature Interaction Failures
in Automated Driving Systems. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’20), July
18–22, 2020, Los Angeles, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3395363.3397386

1 INTRODUCTION
Software for automated driving systems (ADS) is often composed
of several units of functionality, known as ADS features, that au-
tomate specific driving tasks (e.g., automated emergency braking,
automated traffic sign recognition, and automated cruise control).
Each feature executes continuously over time and receives data
from the perception layer components. The latter often use artificial
intelligence (e.g., deep neural networks [29]) to extract —based on
sensor data— environment information, such as the estimated posi-
tion of the (ego) car, the road structure and lanes, and the position
and speed of pedestrians. Using this information, ADS features
independently determine the car maneuver for the next time step.

Some maneuvers issued by different features may be conflict-
ing. For example, automated cruise control may order the (ego) car
to accelerate to follow the speed of the leading car while, at the
same time, the automated traffic sign recognition feature orders
the (ego) car to stop since the car is approaching an intersection
with a traffic light that is about to turn red. To resolve conflicting
maneuvers, integration rules are applied. Integration rules are con-
ditional statements that determine under what conditions which
feature outputs should be prioritized. They are typically defined
manually by engineers based on their domain knowledge and are
expected to ensure safe and desired car maneuvering. In the above
example, integration rules should prioritize the braking maneuver
of automated traffic sign recognition when the car can stop safely

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/323489128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3395363.3397386
https://doi.org/10.1145/3395363.3397386

ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and Thomas Stifter

before the intersection, and otherwise should prioritize the ma-
neuver of the automated cruise control. Integration rules tend to
become complex as they have to address a large number of differ-
ent environment and traffic situations and predict how potential
conflicts should be resolved in each situation. As a result, the rules
may be faulty or incomplete, and there is a need to assist engineers
to repair integration rules so that, at each time step and for each
situation, they prioritize the maneuver that can ensure ADS safety.

Recently, many approaches have been proposed in the literature
to repair faults in software code automatically [15, 22, 37, 44]. The
inputs to these techniques are a faulty program and a test suite that
contains some passing test cases capturing the desired program
behavior and some failing test cases revealing a fault that needs to be
fixed. Fault-repair techniques iteratively identify faulty statements
in the code (fault localization [20, 45]), automatically modify the
faulty statements (patch generation) and check if the patched code
passes all the input test cases (patch validation). To effectively repair
ADS integration faults, we need a technique, that in addition to
supporting the three above steps, ensures the following objectives:

O1. The repair technique should localize faults spanning
multiple lines of code. Most program repair techniques localize
faults using spectrum-based techniques. These techniques rely on
the assumption that there is a single faulty statement in the pro-
gram [45, 46], and as shown by Pearson et al. [36], they may not
identify all defective lines in multi-statements faults. As we describe
in Section 3, faults in integration rules are often multi-location as
they may span multiple lines of code, for example, when the rules
are applied in a wrong order.

O2. The repair technique should be able to fix multiple
independent faults in the code.Most program repair techniques
assume that all failing test cases in the given (input) test suite fail
due to the same fault in the code. Hence, they generate a single
patch for a single fault at a time [28, 38, 43]. The generated patches
may replace a single program statement [28, 38, 43] or they may be
built based on predefined templates, prescribing hard-coded change
patterns to modify programs in multiple locations [30, 31]. For ADS
integration rules, however, the assumption that there is a single
fault in the code does not hold since test cases may fail due to the
presence of multiple faults located in different parts of the code. As
we describe in Section 3, to fix all the failing test cases in a given
test suite, we may have to fix more than one fault in the code by,
for example, reordering some rules, and in addition, changing some
clauses in preconditions of some other rules.

O3. The repair technique should scale to fixing faults at
system-level where the software under test is executed us-
ing a feedback-loop simulator. Testing ADS software requires
a simulation-based test platform that can execute the ADS soft-
ware for different road structures, weather conditions and traffic
situations. Testing ADS software using simulators presents two
challenges: First, each test case is a scenario that executes over a
time period and runs the ADS software through a feedback-loop
simulation. Hence, a single test case runs the ADS software at ev-
ery simulation time step and generates an array of outputs over
time instead of a single output. As a result, dependencies in ADS
software are both structural (like typical code) and temporal–a
change in the output at time t impacts the input of the system at time
t + 1 through the feedback-loop simulation which may impact the

Figure 1: An overview of a self-driving system, AutoDrive,
consisting of four ADS features.

behaviour of the system in all subsequent time steps after t . Second,
test cases for ADS software are computationally expensive since
each test case has to execute for a time duration and has to execute
a complex simulator and the ADS software at each time step. This
poses limitations on the sizes of test suites used for repair and the
number of intermediary patches that we can generate.

O4. The repair technique should resolve failures in their
order of severity. When testing generic software, test cases are
either passing or failing, and there is no factor distinguishing failing
test cases from one another. For ADS, however, some failures are
more critical than others. For example, a test case violating the
speed limit by 10km/h is more critical than the one violating the
speed limit by 5km/h. Similarly, a test scenario in which a car hits a
pedestrian with a speed lower than 10km/h is less critical than the
ones where collisions occur at a higher speed. Our repair strategy
should, therefore, assess failing test cases in a more nuanced way
and prioritizes repairing the more critical failing test cases over the
less critical ones.

Contributions.We propose an approach to Automated Repair
of IntEgration ruLes (ARIEL) for ADS. Our repair strategy achieves
the four objectives O1 to O4 described above by relying on a many-
objective, single-state search algorithm that uses an archive to keep
track of partially repaired solutions. We have applied ARIEL to
two industry ADS case studies from our partner company [name
redacted]. Our results show that ARIEL is able to repair integra-
tion faults in our two case studies in five and eleven hours on
average. Further, baseline repair strategies based on Genetic Pro-
gramming [26] and Random Search either never succeed to do so
or repair faults with a maximum probability of 60% across different
runs, i.e., in 12 out of 20 runs. Finally, we report on the feedback we
received from engineers regarding the practical usefulness of ARIEL.
The feedback indicates that ARIEL is able to generate patches to
integration faults that are understandable by engineers and could
not have been developed by them without any automation and
solely based on their expertise and domain knowledge.

Structure. Section 2 provides motivation and background. Sec-
tion 3 presents our approach. Section 4 describes our evaluation.
Section 6 discusses the related work. Section 7 concludes the paper.

2 MOTIVATION AND BACKGROUND
We first motivate our work using a self-driving system case study,
AutoDrive, from our industry partner (company A). We then for-
malize the concepts required in our approach.

Automated Repair of Feature Interaction Failures in Automated Driving Systems ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA

Motivating Case Study. Figure 1 shows an overview of Auto-
Drive that consists of four ADS features: Autonomous Cruise Con-
trol (ACC), Traffic Sign Recognition (TSR), Pedestrian Protection
(PP), and Automated Emergency Braking (AEB). ACC automatically
adjusts the car speed and direction to maintain a safe distance from
the leading car. TSR detects traffic signs and applies appropriate
braking, acceleration, or steering commands to follow the traffic
rules. PP detects pedestrians in front of a car with whom there is
a risk of collision and applies a braking command if needed. AEB
prevents accidents with objects other than pedestrians. Since these
features generate braking, acceleration and steering commands
to control the vehicle’s actuators, they may send conflicting com-
mands to the actuators at the same time. For example, ACC orders
the car to accelerate to follow the speed of the leading car, while,
at the same time, a pedestrian starts crossing the road. Hence, PP
starts sending braking commands to avoid hitting the pedestrian.

Automated driving systems use integration rules to resolve con-
flicts among multiple maneuvers issued by different ADS features.
The rules determine what feature output should be prioritized at
each time step based on the environment factors and the current
state of the system. Figure 2 shows a small subset of integration
rules for AutoDrive. The rules are simplified for the sake of illus-
tration. Each rule activates a single ADS feature (i.e., prioritizes the
output of a feature over the others) when its precondition, i.e., the
conjunctive clauses on the left-hand side of each rule, holds. All
the rules are checked at every time step t , and the variables in the
rules are indexed by time to indicate their values at a specific time
step t . The rules in Figure 2 include the following environment
variables: pedestrianDetected determines if a pedestrian with whom
the car may risk a collision is detected; ttc or time to collision is
a well-known metric in self-driving systems measuring the time
required for a vehicle to hit an object if both continue with the
same speed [40]; dist(p, c) denotes the distance between the car
c and the pedestrian p; dist(c, sign) denotes the distance between
the car c and a traffic sign sign; speed is the speed of the ego car,
i.e., the car with the self-driving software; speedLeadingCar is the
speed of the car in front of the ego car; objectDetected determines
if an object which cannot be classified as a pedestrian is detected
in front of the car, and stopSignDetected that determines if a stop
sign is detected. For example, rule1 states that feature PP is priori-
tized at time t if a pedestrian in front of the car is detected, the car
and pedestrian are close (dist(p, c)(t) < distth) and a collision is
likely (ttc(t) < ttcth). Note that distth , distcs and ttcth are thresh-
old values. Dually, rule2 states that if there is a risk of collision
with another object different from a pedestrian (ttc(t) < ttcth ∧
objectDetected(t)∧¬pedestrianDetected(t)∧objectDetected(t)), then
AEB should be applied. Note that the braking command issued by
AEB is less intense than that issued by PP.

Integration rules are likely to be erroneous, leading to system
safety requirements violations. In particular, we identify two gen-
eral ways where the integration rules may be wrong: (1) The pre-
conditions of the rules may be wrong. Specifically, there might be
missing clauses in the preconditions, or the thresholds used in some
clauses may not be accurate or there might be errors in mathemati-
cal or relational operators used in the preconditions (i.e., using <
instead of > or + instead of −). For example, if the threshold distth in
rule1 is too small, wemay activate PP only when the car is too close

At every time step t apply:

rule1: (ttc(t) < ttcth) ^ (dist(p, c)(t) < distth) ^ pedestrianDetected(t) =) PP.active(t)

rule2: (ttc(t) < ttcth) ^ !pedestrianDetected(t) ^ objectDetected(t) =) AEB.active(t)

rule3: speed(t) < speedLeadingCar(t) =) ACC.active(t)

rule4: (speed(t) > speed-limit) ^ (dist(c, sign)(t) < distcs) =) TSR.active(t)

rule5: stopSignDectected(t) =) TSR.active(t)

1

Figure 2: Ordered integration rules to resolve conflicts be-
tween different ADS features.

No

if ttc(t) < ttcth

if pedestrianDetected(t) = True

if dist(p, c)(t) < distth

PP.active(t)

if objectDetected(t) = True

AEB.active(t)

if speed(t) < speedLeadingCar(t)

ACC.active(t)

Yes

Yes No

Yes Yes

Yes

No

No

if . . .<latexit sha1_base64="oC69pvu9LqUhh5+WEt4deO3RV0E=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVJIq2GPBi8cK9gOaUDabTbt0swm7E7XE/hQvHhTx6i/x5r9x2+agrQ8GHu/NMDMvSAXX4Djf1tr6xubWdmmnvLu3f3BoV446OskUZW2aiET1AqKZ4JK1gYNgvVQxEgeCdYPx9czv3jOleSLvYJIyPyZDySNOCRhpYFc8YI+Q8whPsSfCBPTArjo1Zw68StyCVFGB1sD+8sKEZjGTQAXRuu86Kfg5UcCpYNOyl2mWEjomQ9Y3VJKYaT+fnz7FZ0YJcZQoUxLwXP09kZNY60kcmM6YwEgvezPxP6+fQdTwcy7TDJiki0VRJjAkeJYDDrliFMTEEEIVN7diOiKKUDBplU0I7vLLq6RTr7kXtfrtZbXZKOIooRN0is6Ri65QE92gFmojih7QM3pFb9aT9WK9Wx+L1jWrmDlGf2B9/gBF65P5</latexit>

. . .
<latexit sha1_base64="m3F6l3w8WormZjn0QzII99J3tZI=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWMF+wFtKJvNpl26yYbdiVBCf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJx2jMo0422mpNK9gBouRcLbKFDyXqo5jQPJu8Hkbu53n7g2QiWPOE25H9NRIiLBKFqpSwYyVGiGlapbcxcg68QrSBUKtIaVr0GoWBbzBJmkxvQ9N0U/pxoFk3xWHmSGp5RN6Ij3LU1ozI2fL86dkUurhCRS2laCZKH+nshpbMw0DmxnTHFsVr25+J/XzzBq+LlI0gx5wpaLokwSVGT+OwmF5gzl1BLKtLC3EjammjK0CZVtCN7qy+ukU69517X6w0212SjiKME5XMAVeHALTbiHFrSBwQSe4RXenNR5cd6dj2XrhlPMnMEfOJ8/EKiPXA==</latexit>

. . .
<latexit sha1_base64="m3F6l3w8WormZjn0QzII99J3tZI=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWMF+wFtKJvNpl26yYbdiVBCf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJx2jMo0422mpNK9gBouRcLbKFDyXqo5jQPJu8Hkbu53n7g2QiWPOE25H9NRIiLBKFqpSwYyVGiGlapbcxcg68QrSBUKtIaVr0GoWBbzBJmkxvQ9N0U/pxoFk3xWHmSGp5RN6Ij3LU1ozI2fL86dkUurhCRS2laCZKH+nshpbMw0DmxnTHFsVr25+J/XzzBq+LlI0gx5wpaLokwSVGT+OwmF5gzl1BLKtLC3EjammjK0CZVtCN7qy+ukU69517X6w0212SjiKME5XMAVeHALTbiHFrSBwQSe4RXenNR5cd6dj2XrhlPMnMEfOJ8/EKiPXA==</latexit>

. . .
<latexit sha1_base64="m3F6l3w8WormZjn0QzII99J3tZI=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWMF+wFtKJvNpl26yYbdiVBCf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJx2jMo0422mpNK9gBouRcLbKFDyXqo5jQPJu8Hkbu53n7g2QiWPOE25H9NRIiLBKFqpSwYyVGiGlapbcxcg68QrSBUKtIaVr0GoWBbzBJmkxvQ9N0U/pxoFk3xWHmSGp5RN6Ij3LU1ozI2fL86dkUurhCRS2laCZKH+nshpbMw0DmxnTHFsVr25+J/XzzBq+LlI0gx5wpaLokwSVGT+OwmF5gzl1BLKtLC3EjammjK0CZVtCN7qy+ukU69517X6w0212SjiKME5XMAVeHALTbiHFrSBwQSe4RXenNR5cd6dj2XrhlPMnMEfOJ8/EKiPXA==</latexit>

. . .
<latexit sha1_base64="m3F6l3w8WormZjn0QzII99J3tZI=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWMF+wFtKJvNpl26yYbdiVBCf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJx2jMo0422mpNK9gBouRcLbKFDyXqo5jQPJu8Hkbu53n7g2QiWPOE25H9NRIiLBKFqpSwYyVGiGlapbcxcg68QrSBUKtIaVr0GoWBbzBJmkxvQ9N0U/pxoFk3xWHmSGp5RN6Ij3LU1ozI2fL86dkUurhCRS2laCZKH+nshpbMw0DmxnTHFsVr25+J/XzzBq+LlI0gx5wpaLokwSVGT+OwmF5gzl1BLKtLC3EjammjK0CZVtCN7qy+ukU69517X6w0212SjiKME5XMAVeHALTbiHFrSBwQSe4RXenNR5cd6dj2XrhlPMnMEfOJ8/EKiPXA==</latexit>

. . .
<latexit sha1_base64="m3F6l3w8WormZjn0QzII99J3tZI=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWMF+wFtKJvNpl26yYbdiVBCf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJx2jMo0422mpNK9gBouRcLbKFDyXqo5jQPJu8Hkbu53n7g2QiWPOE25H9NRIiLBKFqpSwYyVGiGlapbcxcg68QrSBUKtIaVr0GoWBbzBJmkxvQ9N0U/pxoFk3xWHmSGp5RN6Ij3LU1ozI2fL86dkUurhCRS2laCZKH+nshpbMw0DmxnTHFsVr25+J/XzzBq+LlI0gx5wpaLokwSVGT+OwmF5gzl1BLKtLC3EjammjK0CZVtCN7qy+ukU69517X6w0212SjiKME5XMAVeHALTbiHFrSBwQSe4RXenNR5cd6dj2XrhlPMnMEfOJ8/EKiPXA==</latexit>

Figure 3: A fragment of the decision tree diagram related to
the integration rules in Figure 2.

to the pedestrian with little time left to avoid an accident. (2) The
integration rules may be applied in a wrong order. Applying the
rules in different orders leads to different system behaviors, some
of which may violate safety requirements. For example, rule3 and
rule4 can be checked in two different orders. However, applying
rule3 first may lead to a scenario where the car keeps increasing
its speed since ACC orders to follow a fast driving leading car, and
it violates the speed-limit as rule4, being at a lower priority than
rule3, is never checked and cannot activate TSR. To avoid this
situation, rule4 should be prioritized over rule3.

Context Formalization. We define an ADS as a tuple (f1, . . . ,
fn ,Π), where f1, . . . , fn are features and Π is a decision tree dia-
gram capturing the system integration rules. For example, Figure 3
shows a fragment of a decision tree diagram related to the rules
in Figure 2. Each internal node of Π corresponds to a clause of
a rule precondition and the tree leaves are labelled by features.
Specifically, each path π of Π corresponds to one integration rule
precondition =⇒ f such that the leaf of π is labelled by f and the
conjunction of clauses appearing on the non-leaf nodes of π are
equal to precondition. We denote by f (πi) the label of the leaf of πi ,
i.e., the feature activated when πi is executed. A set Π of integration
rules are implemented using a set S of program statements. Each
statement s ∈ S corresponds to a node of some path π ∈ Π. We use
the notation s ∈ π when statement s corresponds to some node on π .
The conditional statements correspond to non-leaf nodes of Π and
have this general format: ⟨if op1 operator threshold⟩ where
op1 is a variable, operator is a relational operator and threshold
is boolean or numeric constant (see Figure 3)

ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and Thomas Stifter

Table 1: Safety requirements for AutoDrive.

Features Requirements
PP The PP system shall avoid collision with pedestrians by initiating emergency

braking in case of impending collision with pedestrians.
TSR The TSR system shall stop the vehicle at the stop sign by initiating a full

braking when a stop sign is detected
AEB The AEB system shall avoid collision with vehicles by initiating emergency

braking in case of impending collision with vehicles.
ACC The ACC system shall respect the safety distance by keeping the vehicle

within a safe distance behind the preceding vehicle.
TSR The TSR system shall respect the speed limit by keeping the vehicle’s speed

at or below the road’s speed limit.

Let SR = {r1, . . . , rk } be a set of safety requirements. Due to
the modular structure of ADS, each requirement is related to one
feature, which is responsible for the satisfaction of that requirement.
For example, Table 1 shows the set of requirements for AutoDrive
and the feature responsible for satisfying each requirement.

We denote by TS = {tc1, . . . , tcl } a set of test cases for an ADS.
Given that ADS testing is performed via simulators, each test tci
specifies initial conditions and parameters for the simulator to
mimic a specific self-driving scenario. To run a test case, the sim-
ulator that is initialized using a test case is executed for a time
duration T set by the user. The simulator computes the state of the
system at regular and fine-grained steps. Let δ be the simulation
time step size. The simulator computes the test results as vectors of
size q whereT = q · δ . Each element i s.t. 0 ≤ i ≤ q of these vectors
indicates the test output at the ith time step.

At each time step u ∈ {0, . . . ,q}, each test case tc executes the
integration rules Π that select a single feature to be applied at that
step. We write tc(u) to refer to the output of tc at step u. We define
an oracle function O to assess test outputs with respect to the
system safety requirements SR. Specifically, O(tci(u), r j) assess the
output of tci at time stepu with respect to requirement r j . We define
O as a quantitative function that takes a value between [−1, 1] such
that a negative or zero value indicates that the test case fails and
a positive value implies that the test case passes. The quantitative
oracle value allows us to distinguish between different degrees of
satisfaction and failure (objective O4). When O is positive, a closer
value to 0 indicates that we are close to violating, although not yet
violating, some safety requirement, while a value close to 1 shows
that the system is far from violating its requirements. Dually, when
O is negative, an oracle value close to 0 shows a less severe failure
than a value close to -1. We define the oracle function O for every
requirement r j ∈ SR separately such that O ensure the above
properties. For example, for the safety requirement related to PP
(denoted rPP)), we define O(tci(u), rPP) for every test case tci and
every time step u as a normalized value of (dist(p, c)(u ·δ) − distfail)
where dist(p, c) is the same variables used in rule1 in Figure 2, and
distfail is a threshold value indicating the smallest distance allowed
between a car and a pedestrian below which rPP is violated.

In our work, we select the test suite TS such that it can cover all
the paths in Π. That is, for each path πi ∈ Π there is some test case
tcj ∈ TS and some time step u such that tcj (u) executes πi , i.e., test
case tcj executes the path πi at stepu. Given a test case tcj ∈ TS, we
say tcj fails, if it violates some safety requirement at some time step
u, i.e., if there is a requirement r j and some time step u such that
O(tci(u), r j) ≤ 0. We refer to the time step u at which tcj fails as the
time of failure for tcj . Otherwise, we say tcj passes. We denote by

TSf and TSp the set of failing and passing test cases, respectively.
In ADS, a test case may fail due to a fault either in a feature or
in integration rules. In order to ensure that a failure revealed by
a test case tc is due to a fault in integration rules, we can remove
integration rules and test features individually using tc. If the same
failure is not observed, we can conclude that integration rules are
faulty. In addition, we can combine our oracle function O with
heuristics provided by the feature interaction analysis research [9]
to distinguish failures caused by integration rules from those caused
by errors inside features.

3 APPROACH
In this section, we present our approach, Automated Repair of
IntEgration ruLes (ARIEL), to locate and repair faults in the inte-
gration rules of ADS. The inputs to ARIEL are (1) a faulty ADS
(f1, . . . , fn ,Π) and (2) a test suite TS verifying the safety require-
ments SR = {r1, . . . , rk }. The output is a repaired ADS, i.e., (f1, . . . ,
fn ,Π

∗), where Π∗ are the repaired integration rules. Below, we
present different steps of ARIEL in detail.

3.1 Fault Localization
Feature interaction failures may be caused by multiple independent
faults in integration rules, and some of these faults may span over
multiple statements of the code of integration rules. As shown by a
prior study [36], state-of-the-art fault localization methods often
fail to pinpoint all faulty lines (i.e., those to mutate in program
repair). Further, recall from Section 1 that to test ADS, we have
to execute the system within a continuous loop over time. Hence,
each ADS test case covers multiple paths of Π over the simulation
time duration, i.e., one path π ∈ Π is covered at each time step u.
Hence, failing and non-failing tests cover large, overlapping subsets
of paths in Π albeit with different data values. In this case, applying
existing fault localization formulae (e.g., Tarantula and Ochiai)
results in havingmost statements inΠwith the same suspiciousness
score, leaving the repair process with little information as to exactly
where in Π mutation/patches should be applied.

Based on these observations, we modify the Tarantula formula
by (1) focusing on the path π ∈ Π covered at the time of failure,
and (2) considering the “severity” of failures. There are alternative
fault localization formulae that we could use. In this paper, we
focus on Tarantula since a previous study [36] showed that the
differences among alternative methods (e.g., Tarantula and Ochiai)
are negligible when applied to real faults. Below, we describe how
we modified Tarantula to rank the faulty paths in Π.

3.1.1 Localizing the faulty path. Given a failure revealed by a test
case tci ∈ TS, the goal is to determine the path executed by tci
that is more likely to have caused the failure. At each time step
u, one path πi is executed, and only one feature (i.e., f (πi)) is
selected. A failure that arises at time step u ′ is likely to be due to
faults in the integration rules of the path πi that is executed at u ′.
As discussed in Section 2, we distinguish two types of faults: (1)
wrong conditions, that are faults in the rules’ preconditions, e.g., the
braking command is activated when the distance between the car
and the pedestrian is too small, and (2) wrong ordering of rules, that
are faults due to incorrect ordering of the rules activating features.
For the purpose of fault localization, we only consider the path

Automated Repair of Feature Interaction Failures in Automated Driving Systems ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA

πi ∈ Π executed at the time of the failure (u ′) as the execution trace
for fault localization, and ignore all other paths covered by a failing
test case before and after the failure. In contrast, in traditional fault
localization, all statements (rules in our case) covered by the test
cases should be considered.

3.1.2 The severity of the failure. In Tarantula (as well as in state-
of-the-art fault localization techniques), all failing tests have the
same weight (i.e., one) in the formula for computing statement
suspiciousness. However, in case of multiple faults, this strategy
does not help prioritize the repair of the (likely) faulty statements.
Focusing on faulty statements related to the most severe failures
can lead to patches with the largest potential gains in fitness. As
explained in Section 2, we can measure how severely a safety re-
quirement of the ADS is violated. The severity corresponds to the
output O(tci (u), r j) of the test case tci at the time stamp u. For
example, let us consider the safety requirement: “the minimum dis-
tance between the ego car and the pedestrian must be larger than a
certain threshold distf ail ”. A failure happens when the distance be-
tween the car and the pedestrian falls below the threshold distf ail .
This corresponds to having a test output O(tci (u), rPP) within the
interval [−1; 0] for the test case tci and requirement rPP . The lower
the output value, the larger the severity of the violations for rPP .

3.1.3 Our fault localization formula. Based on the observations
above, we define the suspiciousness of each statement s by con-
sidering both failure severity and faulty paths executed by failing
test cases when the tests fail. Note that for each failing test case tc ,
there is a unique time step u at which tc fails (i.e., when we have
O(tc(u), r) ≤ 0 for some requirement r). The execution of tc stops
as soon as it fails. In fact, the time of failure for a failing test case
tc is the last time step of the execution of tc . Given a failing test
tc ∈ TSf , we write cov(tc, s) ∈ {0, 1} to denote whether, or not,
tc covers a statement s at its last step (when it fails). Further, we
denote by wtc the weight (severity) of the failure of tc . We then
compute the suspiciousness of each statement s as follows:

Susp(s) =

∑
tc∈TSf

[wtc ·cov(tc,s)]∑
tc∈TSf

wtc

passed (s)
total_passed +

f ailed (s)
total_f ailed

(1)

where passed(s) is the number of passed test cases that have ex-
ecuted s at some time step; f ailed(s) is the number of failed test
cases that have executed s at some time step; and total_passed and
total_f ailed denote the total numbers of failing and passing test
cases, respectively. Note that Equation 1 is equivalent to the stan-
dard Tarantula formula if we let the weight (severity) for failing
test cases be equal to one (i.e., ifwtc = 1 for every tc ∈ TSf):

Susp(s) =

f ailed (s)
total_f ailed

passed (s)
total_passed +

f ailed (s)
total_f ailed

(2)

For each test case tc that fails at time step u and violates some re-
quirement r , we definewtc = |O(tc(u), r)|. That is,wtc is the degree
of violation caused by tc at the time step u when it fails. Hence, we
assign larger weights (larger suspiciousness) to statements covered
by test cases that lead to more severe failures (addressing O4 in

Section 1). Note that each test case violates at most one requirement
since the simulation stop as soon as a requirement is violated.

3.2 Program Repair
Traditional evolutionary tools, such as GenProg, use population-
based algorithms (e.g., Genetic programming), which evolves a pool
of candidate patches iteratively. Each candidate patch is evaluated
against the entire test suite to check whether changes lead to more
or fewer failing tests. Hence, the overall cost of one single itera-
tion/generation is N ×

∑
tc ∈TS cost(tc) , where cost(tc) is the cost

of the test tc and N is the population size.
Population-based algorithms assume that the cost of evaluating

individual patches is not large, and hence, test results can be col-
lected within a few seconds and used to give feedback (i.e., compute
the fitness function) to the search. However, as discussed in O3
in Section 1, this assumption does not hold in our context, and
it takes in the order of some minutes to run a single simulation-
based test case. Hence, evaluating a pool of patches in each itera-
tion/generation becomes too expensive (in the order of hours).

Based on the observations above, we opted for the (1+1) Evolu-
tionary Algorithm (EA) with an archive. (1+1) EA selects only one
parent patch and generates only one offspring patch in each gen-
eration. Generating and assessing only one patch at a time allows
to reduce the cost of each iteration, thus addressing O3 in Sec-
tion 1. Our program repair approach, ARIEL, includes (i) (1+1) EA,
(ii) our fault localization formula (Equation 1), and (iii) the archiving
strategy. Algorithm 1 provides the pseudo-code of ARIEL.

ARIEL receives as input the test suite TS and the faulty self-
driving system (f1, . . . , fn ,Π), where Π denotes the faulty inte-
gration rules. The output are a set of repaired integration rules
(denoted by Π∗) that pass all test cases in TS . The algorithm starts
by initializing the archive with the faulty rules Π (line 2) and com-
puting the objective scores, which we describe in Section 3.2.3
(line 3). Then, the archive is evolved iteratively within the loop in
lines 4-8. In each iteration, ARIEL selects one patch Πp ∈ archive
randomly (line 5) and creates one offspring (Πo) in line 6 (routine
GENERATE-PATCH) by (1) applying fault localization (Equation 1)
and (2) mutating the rules in Πp . The routine GENERATE-PATCH
is presented in subsection 3.2.1.

Then, the offspring Πo is evaluated (line 7) by running the test
suite TS , extracting the remaining failures, and computing their
corresponding objective scores (Ω). Note that the severities of the
failures are our search objectives and are further discussed in Sec-
tion 3.2.3. The offspring Πo is added to the archive (line 8 of Algo-
rithm 1) if it decreases the severity of the failures compared to the
patches currently stored in the archive. The archive and its updating
routine are described in details in subsection 3.2.4. The search stops
when the termination criteria are met (see Section 3.2.5).

3.2.1 Generating a Patch. ARIEL generates patches using the rou-
tine in Algorithm 2. First, it applies our fault localization formula
(routine FAULT-LOCALIZATION in line 2) to determine the suspi-
ciousness of the statements in Π and based on the test results.

To select a statement s ∈ Π among the most suspicious ones,
we use the Roulette Wheel Selection (RWS) [16], which assigns
each statement a probability of being selected for mutation. The
probabilities are based on the suspiciousness of each statement

ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and Thomas Stifter

Algorithm 1: ARIEL
Input:
(f1, . . . , fn, Π): Faulty self-driving system
TS: Test suite
Result: Π∗ : repaired integration rules satisfying all tc ∈ TS

1 begin
2 Archive←− Π
3 Ω ←− RUN-EVALUATE(Π, TS)
4 while not(|Archive |==1 & Archive satisfies all tc ∈ TS) do
5 Πp ←− SELECT-A-PARENT(Archive) // Random selection

6 Πo ←− GENERATE-PATCH(Πp, TS, Ω)
7 Ω ←− RUN-EVALUATE(Πo, TS)
8 Archive←− UPDATE-ARCHIVE(Archive , Πo, Ω)

9 return Archive

Algorithm 2: GENERATE-PATCH
Input:
Π: A faulty rule-set
TS: Test suite
Ω: Severity of failures (Objectives Scores)
Result: Πo : A mutated Π

1 begin
2 {π , s } ←− FAULT-LOCALIZATION(Π, TS, Ω) // Section 3.1

3 counter ←− 0
4 p = RANDOM-NUMBER(0,1) // p ∈ [0, 1]
5 Πo ←− Π
6 while p ≤ 0.5counter do
7 Πo ←− APPLY-MUTATION(Πo , π , s)
8 counter ←− counter + 1
9 p= RANDOM-NUMBER(0,1) // p ∈ [0, 1]

10 return Πo

(Equation 1). More specifically, the probability of a statement s ∈ Π
is prob(s) = Susp(s)∑

si ∈Π Susp(si)
. The higher the suspiciousness of a state-

ment s , the higher its probability of being selected for mutation.
The routine FAULT-LOCALIZATION returns (1) the statement s to
be mutated, which is randomly selected based on RWS, and (2) a
path π ∈ Π such that s ∈ π (i.e., s is on path π) and π is executed
by some failing test case at its last time step (i.e., π is executed at
the time of failure of some test case). If several paths satisfy the
latter condition, FAULT-LOCALIZATION returns one randomly.

Once a (likely) faulty statement s is selected, Algorithm 2 applies
multiple mutations within the loop in lines 6-9. First, one mutation
is applied with probability p = 0.50 = 1 using the routine APPLY-
MUTATION (line 7). Then, a second mutation is applied with prob-
ability p = 0.51, a third mutation with probability p = 0.52 = 0.25,
and so on. Therefore, in each iteration of the loop in lines 6-9, a mu-
tation is applied with probability p = 0.5counter , where counter + 1
is the number of executed iterations. In the first iteration, p = 1,
and hence, it is guaranteed that at least one mutation is performed.
Such a formula has been previously used in the context of test case
generation [14]. Section 3.2.2 describes the mutation operators used
to generate candidate patches. These operators receive as input π
and s produced by the fault localization step.

3.2.2 Mutation Operators. We define two search operators modify
and shift based on the types of errors that can occur in integration
rules of an ADS. Modify modifies the conditions in the non-leaf

Figure 4: Illustrating the shift operator: (a) selecting bs and
path π , and (b) applying the shift operator.

nodes while shift switches the order of the rules. The operators are
defined below:

Modify. Let s be the decision statement (or non-leaf node) selected
for mutation (based on its suspiciousness). As discussed in Section 2,
s has the following form: ⟨if op1 operator threshold⟩. The
operator modify performs three types of changes: (1) changing a
threshold value, (2) altering the direction of a relational operator
(e.g., ≤ to ≥), or (3) changing arithmetic operations (e.g., + to −).
Note that the left operand op1 may be an arithmetic expression
involving some arithmetic operators and variables.

Shift. Given the path π ∈ Π executed at the time of the failure,
the shift operator changes the order of rules in π . Let s ∈ π be the
decision statement (or non-leaf node) selected using the fault local-
ization formula. The mutation swaps s with a randomly selected
node that either dominates s (i.e., it precedes s in π) or is dominated
by s (i.e., it succeeds s in π). Dominators and post-dominators of a
node s are highlighted in grey in Figure 4(a). Among all dominators
and post-dominators, one node bs is selected randomly. We identify
two cases: (Case1) bs is a dominator of s . In this case, the shift opera-
tor swaps bs with s such that the former becomes a post-dominator
of the latter. Further, the operator shifts up the sub-path from s
to the leaf node in π (see Figure 4(b-1) for an illustration). This is
because features activated based on the condition in node s may not
be consistent with the condition in node bs or vice versa. Therefore,
the nodes s and bs should be swapped together with the sub-paths
connecting them to their leaves (i.e., to their corresponding fea-
tures). (Case2) bs is a post-dominator of s . The shift operator swaps
bs with s . As before, the sub-path from s to the leaf node of π is
also shifted down with s (see Figure 4(b-2) for an illustration).

3.2.3 Search Objectives. In our approach, the search objectives
are based on the failures exposed by the test suite TS . Each failing
test tc ∈ TS exposes one (or more) failure(s) whose intensity is
O(tc(u), r j) ∈ [−1; 0], where r j is the violated safety requirements.
Recall that smaller O(tc(u), r j) values indicate more severe viola-
tions of r j . Since ADS can have multiple failures/violations, the
program repair problem can be formulated as a many-objective
optimization problem, whose search objectives are:

maxΩ1(Π) = min

tc ∈TS
{O(tc(u), r1)}

. . .

maxΩk (Π) = min
tc ∈TS

{O(tc(u), rk)}
(3)

where min
tc ∈TS

{O(tc(u), ri)} correspond to the most severe failure
among all tc ∈ TS for requirement ri . The concept of optimality
in many-objective optimization is based on the concept of domi-
nance [32]. More precisely, a patch Π1 dominates another patch Π2

Automated Repair of Feature Interaction Failures in Automated Driving Systems ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA

if and only if Ωi (Π1) ≥ Ωi (Π2) for all Ωi and there exists one objec-
tive Ωj such that Ωj (Π1) > Ωj (Π2). In other words, Π1 dominates
Π2, if Π1 is not worse than Π2 in all objectives, and it is strictly
better than Π2 in at least one objective [32].

3.2.4 Archive. The archive stores the best partial fixes found during
the search. At the beginning of the search (line 2 of Algorithm 1),
the archive is initialized with the faulty rule set Π. Every time a
new patch Πo is created and evaluated, we compare it with all
the patches stored in the archive. The comparison is based on the
notion of dominance described in Section 3.2.3:
• If Πo dominates one solution A in the archive, Πo is added to
the archive and A is removed from the archive.
• If no element in the archive dominates or is dominated by the
new patch Πo , the new patch is added to the archive as well.
• The archive remains unchanged if Πo is dominated by one (or
more) solution(s) stored in the archive.

Therefore, in each iteration, the archive is updated (lines 8 of
Algorithm 1) such that it includes the non-dominated solutions (i.e.,
the best partial patches) found so far.

The number of non-dominated solutions stored in the archive
can become extremely large. To avoid this bloating effect, we add an
upper bound to the maximum size for the archive. In this paper, we
set the size of the archive to 2 × k , where k is the number of safety
requirements. If the size of the archive exceeds the upper-bound,
the solutions in the archive are compared based on the aggregated
fitness value computed as follows:

D(Π) =
∑
tc ∈TS

(∑
r j ∈SR O(tc(u), r j)

)
Then, we update the archive by selecting the 2 × k patches that
have the largest D values.

One possible limitation of the evolutionary algorithms is that
they can get trapped in some local optimum (premature conver-
gence) [18]. A proven strategy to handle this potential limitation is
to restart (re-initialize) the search [18]. We implement the following
restarting policy in ARIEL: First, ARIEL uses a counter to count the
number of subsequent generations with no improvements in the
search objectives (i.e., the archive is never updated). If the counter
reaches a threshold of h generations, the search is restarted by re-
moving all partial patches in the archive and re-initializing it with
the original faulty rule-set Π (see Section 4.3 for the value of h).

3.2.5 Termination Criteria. The search stops when the search bud-
get is consumed or as soon as a test-adequate patch is found, i.e.,
the archive contains one single patch Π∗ that satisfies all test cases
tc ∈ TS . Note that even though our repair algorithm is multi-
objective, it generates only one final solution. This is because our
algorithm, being a single-state search, generates one solution in
each iteration and stops if that solution is Pareto optimal, i.e., it
dominates all partial patches in the archive.

Indeed, our repair strategy decomposes the single objective of
finding a single patch that passes all test cases in TS into multiple
sub-objectives of finding partial patches that pass a subset of test
cases in TS . This search strategy is called multi-objectivization [17,
23] and is known to help promote diversity. As shown in prior
work in numerical optimization, multi-objectivization can lead to
better results than classical single objective approaches when solv-
ing/targeting the same optimization problem [23]. In our context,

multi-objectivization helps to store partial patches that individually
fix different faults by saving them in the archive (elitism). Such
partial patches can be further mutated in an attempts to combine
multiple partial patches, thus, building up the final patch/solution
that fixes all faults. As shown in our evaluation in Section 4, our
multi-objective approach outperforms single-objective search.

3.2.6 Patchminimization. At the end of the search, ARIEL returns a
patch that is test-adequate (i.e., it passes all tests), but it may include
spurious mutations that are not needed for the fix. This problem
can be addressed through a patch minimization algorithm [27],
i.e., a greedy algorithm that iteratively removes one mutation at a
time and verifies whether the patch after the reversed change still
passes the test suite. If so, a smaller (minimized) patch that is still
test-adequate is obtained.

3.2.7 How ARIEL addresses O1-O4? ARIEL includes several in-
gredients to address the challenges of repairing ADS integration
rules described in Section 1. First, ARIEL applied many-objective
search, where each objective corresponds to a different failure (O2).
Through many-objective optimization, ARIEL can repair several
failures simultaneously.O1 andO4 are addressed by our fault local-
ization formula (Equation 1) that assigns the suspiciousness score
based on (1) the paths covered at the time of each failure, and (2) the
severity of failures (i.e., failing tests). In addition, our search objec-
tives address O4 by measuring how a generated patch affects the
severity of the failures. Finally, EA(1+1) generates and evaluates
only one patch (offspring) at a time rather than evolving a pool of
patches (like in GP-based approaches), thus addressing O3.

4 EVALUATION
In this section, we evaluate our approach to repairing integration
rules using industria ADS systems.

4.1 Research questions
RQ1: How effective is ARIEL in repairing integration faults? We
assess the effectiveness of ARIEL by applying it to industrial ADS
systems with faulty integration rules.
RQ2:How does ARIEL compare to baseline program repair approaches?
In this research question, we compare ARIEL with three baselines
that we refer to as Random Search (RS), Random Search with Mul-
tiple Mutations (RS-MM) and Genetic Programming (GP). We com-
pare ARIEL with the baselines by evaluating their effectiveness
(the ability to repair faults) and efficiency (the time it takes to repair
faults). Section 4.3 describes the details of the baselines and our
rationale for selecting them.

We conclude our evaluation by reporting on the feedback we
obtained from automotive engineers regarding the usefulness and
effectiveness of ARIEL in repairing faults in integration rules.

4.2 Case Study Systems
In our experiments, we use two case study systems developed in
collaboration with company A. These two systems contain the four
self-driving features introduced in Section 2, but contain two dif-
ferent sets of integration rules to resolve conflicts among multiple
maneuvers issued by these features. We refer to these systems as
AutoDrive1 and AutoDrive2. Their features and their integration

ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and Thomas Stifter

rules are implemented in the Matlab/Simulink language [1]. We use
PreScan [39], a commercial simulation platform available for aca-
demic research to execute AutoDrive1 and AutoDrive2. The PreScan
simulator is also implemented in Matlab/Simulink and AutoDrive1
and AutoDrive2 can be easily integrated into PreScan.

AutoDrive1 and AutoDrive2 include a TIS (Technology Indepen-
dent Sensor) [33] sensor to detect objects and to identify their
position and speed and a camera. The perception layer receives
the data and images from the sensor and the camera, and consists,
among others, tracking algorithms [13] to predict the future tra-
jectory of mobile objects and a machine learning component that
is based on support vector machine (SVM) to detect and classify
objects. Our case study systems both include a Simulink model with
around 7k blocks and 700k lines of Matlab code capturing the simu-
lator, the four ADS features and the integration rules. Each decision
tree for the integration rules of AutoDrive1 and AutoDrive2 has 204
rules (branches), and the total clauses in the rules’ preconditions
is 278 for each case study system. The set of rules of these two
systems vary in their order and their threshold values. Syntactic
diff shows 30% overlap between the ordered rules of AutoDrive1
and AutoDrive2. The matlab/Simulink models of our case studies
and our implementation of ARIEL are available online [2] and are
also submitted alongside the paper.

AutoDrive1 and AutoDrive2 also include test suites with nine
and seven system-level test cases, respectively. The test suite for
AutoDrive1 contains four failing test cases, while the test suite for
AutoDrive2 has two failing tests. Each failing test case for Auto-
Drive1 and AutoDrive2 violates one of the safety requirements in
Table 1. Each test case for AutoDrive1 and AutoDrive2 executes
its respective ADS systems (including the rules) for 1200 simula-
tion steps. The two system-level test suites have been manually
designed by developers to achieve high structural coverage (i.e.,
100% branch and statement coverage) on the code of the integration
rules. The total test execution time for the test suites of AutoDrive1
and AutoDrive1 are 20 and 30 minutes, respectively. Furthermore,
each test suite contains at least one passing test case that exercises
exactly one of the five safety requirements shown in Table 1.

Note that each test case in the test suites of AutoDrive1 and
AutoDrive2 executes the system for 1200 times. The test suites
achieve full structural coverage over the integration rules while
requiring 20min and 30min to execute. Hence, larger test suites were
neither needed nor practical in our context. Further, AutoDrive1
and AutoDrive2 give rise to several complex feature interaction
failures one of which is discussed in Section 4.4. As the results of
RQ1 and RQ2 confirm, the feature interaction failures in our case
study systems cannot be repaired by existing standard and baseline
automated repair algorithms, demonstrating both the complexity
of our case studies and the need for our approach, ARIEL.

4.3 Baseline Methods and Parameters
In this section, we describe our baseline methods: Random Search
(RS), Random Search with Multiple Mutations (RS-MM) and Genetic
Programming (GP) and the parameters used in our experiments.

Unlike ARIEL1, our baselines use one objective, baselineO, simi-
lar to that used in most existing repair approaches [28, 44] and de-
fined as follows: baselineO =Wp×total_passed+Wf ×total_f ailed ,
whereWp andWf are weights applied to the total number passing
and failing test cases, respectively. The weightWf is typically much
larger than the weightWp since typically there are more passing
test cases than the failing ones in a test suite.

RS is a natural baseline to compare with because prior work [37]
showed that it is particularly effective in the context of program
repair, often outperforming evolutionary algorithms. RS does not
evolve candidate patches but generates random patches bymutating
the original rules Π only once using either the modify or shift
operator. The final solution (patch) among all randomly generated
patches is the one with the best baselineO value.

RS-MM is an improved variant of RS where multiple mutations
are applied to the faulty rule set rather than one single mutation
as done in RS. In other words, RS-MM generates random patches
using the same operator applied in ARIEL (Algorithm 2). Thus,
with the second baseline, we aim to assess whether the differences
(if any) between random search and ARIEL are due to the mutation
operator or the evolutionary search we proposed in this paper.

We apply GP to assess the impact of using a single-state many-
objective search algorithm rather than classic genetic programming.
Similar to the state-of-the-art automated repair algorithm [28], GP
relies on genetic programming. It starts with a pool (population)
of n randomly generated patches and evaluates them using the
baselineO objective function, which is the single objective to opti-
mize [28]. Instead, ARIEL evolves one single patch and starts with
a singleton archive containing only Π (see line 2 in Algorithm 1).
Further, at each iteration, GP generates n new offspring patches
by applying the mutation operators to the parents patches. Then,
it selects the best n elements among the new and old individuals
to maintain constant the size of the population. Similar to ARIEL,
GP applies mutation operators multiple times to each parent patch.
Thus, GP and ARIEL share the same mutation operator (Algo-
rithm 2). Note that GP does not use the crossover operator because
the alternative integration rules in the population are incomparable
(e.g., rules/trees with different roots and rules orderings).

4.3.1 Parameters. As suggested in the literature [28, 44], for the
fitness function baselineO used in the three baseline methods RS,
RS-MM, and GP, we setWf = 10 andWp = 1. For GP, the recom-
mended population size used in the literature is 40 [28, 44]. However,
computing the fitness for a population of 40 individuals takes on
average around 20 hours for our case studies (i.e., one iteration of
GP takes around 20 hours with a population size of 40). Hence, both
for our experiments and in practice, it will take a long time to run
GP for several iterations with a large population size. Therefore,
we set the (initial) population size to 10. Note that for ARIEL, as
described in Section 3.2.4, the archive size is dynamically updated at
each iteration and does not need to be set as a parameter. Based on
some preliminary experiments, we set the parameter h, discussed
in Section 3.2.4 to randomly restart the search, to eight.

To account for the randomness of ARIEL, GP, RS and RS-MM, we
reran each of them for 20 times on each case study system. For RQ1,

1Recall that ARIEL uses multiple objectives (i.e., one objective per each safety require-
ment) to select the best element from an archive (see Section 3.2.3).

Automated Repair of Feature Interaction Failures in Automated Driving Systems ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA

At every time step t apply:

rule1: (ttc(t) < ttcth) ^ (dist(p, c)(t) < distth) ^ pedestrianDetected(t) =) PP.active(t)

rule2: (ttc(t) < ttcth) ^ !pedestrianDetected(t) ^ objectDetected(t) =) AEB.active(t)

rule3: speed(t) > speed-limit ^ (dist(c, sign(t)) < distcs + ↵) =) TSR.active(t)

rule4: speed(t) < speedLeadingCar(t) =) ACC.active(t)

rule5: stopSignDectected(t) =) TSR.active(t)

1

Figure 5: Resolving a feature interaction failure between
TSR and ACC in the set of rules in Figure 2. To resolve this
failure, rule3 and rule4 in Figure 2 are swapped and the
threshold value in the precondition of rule3 is modified.

we ran ARIEL on both case study systems until ARIEL finds a patch
that passes all the test cases in the given test suite. We then used
the maximum time needed by ARIEL to find patches as a timeout
for the baseline methods in RQ2. We ran all the experiments on a
laptop with a 2.5 GHz CPU and 16GB of memory.

4.4 Results
RQ1. To answer this question, we apply ARIEL 20 times to Auto-
Drive1 and AutoDrive2 until a patch is found that passes all the test
cases given as input. For both case study systems and for all the runs,
ARIEL was able to repair the integration rules in the underlying
ADS and terminate successfully. The box-plots in Figures 6(a) and
(b) show the time needed for ARIEL to repair the integration rules of
AutoDrive1 and AutoDrive2, respectively, over 20 independent runs.
As shown in the figures, ARIEL is able to repair all the integration
faults in less than nine hours for AutoDrive1 and in less than 16
hours for AutoDrive2. The average repair time for AutoDrive1 and
AutoDrive2 is five hours and 11 hours, respectively.

We note that failures in AutoDrive1-2 were caused by indepen-
dent faults in different parts of the code. Recall from Section 3.2
that in order to resolve failures, ARIEL fixes the following fault
types in the integration rules: (I) wrong operator/threshold, (II)
wrong rule ordering and (III) a combination of both (I) and (II). For
AutoDrive1, three faults were of type (I) and one was of type (III).
For AutoDrive2, both faults were of type (II).

Figure 5 shows an example output of ARIEL when applied to the
rules in Figure 2 to resolve the feature interaction failure between
ACC and TSR exhibited by AutoDrive1 and described in Section 2.
In particular, the failure occurs when an ego car that is following
a leading car with a speed higher than 50 reaches a traffic sign
limiting the speed to 50. Since the rules in Figure 2 prioritize ACC
over TSR, the car disregards the speed limit sign and continues with
a speed above 50. The patch generated by ARIEL in Figure 5 swaps
rule3 and rule4 in Figure 2, and in addition, modifies the threshold
value for the pre-condition of the rule activating TSR. This ensures
that TSR is applied before reaching the speed limit sign to be able
to reduce the car speed below 50. Note that the passing test cases
in the test suite of AutoDrive1 will ensure ACC is still activated in
scenarios when it should be activated.

The answer to RQ1 is that, on average, ARIEL is able to find correct
and complete patches in five hours and 11 hours for AutoDrive1
and AutoDrive2, respectively.

RQ2. We ran ARIEL, GP, RS-MM and RS 20 times for 16 hours. We
selected a 16 hour timeout since it was the maximum time required
by ARIEL to find patches for both AutoDrive1 and AutoDrive2. Also,

Figure 6: Time required for ARIEL to repair (a) AutoDrive1
and (b) AutoDrive2.

Figure 7: Comparing the number of failing test cases ob-
tained by ARIEL, RS-MM, RS and GP when applied.

recall that we had four failing test cases for AutoDrive1 and two
failing test cases for AutoDrive2. Figures 7(a) and (b), respectively,
show the number of failing test cases in AutoDrive1 and AutoDrive2
that are left unresolved over time by different runs of ARIEL, GP,
RS-MM and RS. We show the results at every two-hour interval
from 0 to 16h. As shown in Figures 7(a) and (b), all 20 runs of ARIEL
are able to solve all the failing test cases in AutoDrive1 after nine
hours and in AutoDrive2 after 16 hours. Note that this is consistent
with the results shown in Figure 6. Table 2 reports the number of
runs of GP, RS-MM, and RS, out of 20 runs, that resolved failures
in AutoDrive1 and in AutoDrive2. As shown in Figures 7(a) and (b)
and in Table 2, none of the runs of GP and RS were able to resolve
all the failures in AutoDrive1 or in AutoDrive2. RS-MM had a better
performance as some of its runs could fix all the failing test cases
in our case studies.

ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and Thomas Stifter

Table 2: The results of applying GP, RS-MM, and RS to Auto-
Drive1 and AutoDrive2 for 16h.

GP (20 runs) RS-MM (20 runs) RS (20 runs)
AutoDrive1 - 6 runs fixed 1 failure - 8 runs fixed 3 failures - 6 runs fixed 2 failures
(4 failures) - 11 runs fixed 2 failures - 12 runs fixed 4 failures - 14 runs fixed 3 failures

- 3 runs fixed 3 failures
AutoDrive2 - 20 runs fixed 1 failure - 15 runs fixed 1 failure - 20 runs fixed 1 failure
(2 failures) - 5 runs fixed 2 failures

Table 3: Â12 statistics obtained by comparingARIELwithRS-
MM, RS, and GP. ↑ indicates statistically significant results
(p-value<0.05).

Time AutoDrive1 AutoDrive2
vs. RS-MM vs. RS vs. GP vs. RS-MM vs. RS vs. GP

2h ↑ 0.03 (L) ↑ 0.04 (L) ↑ 0.04 (L) 0.26 (L) ↑ 0.04 (L) 0.12 (L)
4h ↑ 0.02 (L) ↑ 0.02 (L) ↑ 0.01 (L) 0.20(L) ↑ 0.04(L) ↑ 0.08(L)
6h ↑0.00 (L) ↑ 0.01 (L) ↑0.00 (L) 0.19 (L) 0.05(L) ↑ 0.08(L)
8h ↑ 0.01 (L) ↑ 0.01 (L) ↑0.00 (L) 0.21 (L) ↑ 0.04 (L) ↑ 0.07 (L)
10h ↑0.00 (L) ↑0.00 (L) ↑0.00 (L) 0.19 (L) 0.03 (L) ↑0.04 (L)
12h ↑ 0.05 (L) ↑0.00 (L) ↑0.00 (L) ↑ 0.13 (L) ↑ 0.02 (L) ↑ 0.03 (L)
14h ↑ 0.05 (L) ↑0.00 (L) ↑0.00 (L) ↑ 0.10 (L) ↑ 0.01 (L) ↑ 0.02 (L)
16h ↑ 0.07 (L) ↑0.00 (L) ↑ 0.00 (L) ↑ 0.08 (L) ↑ 0.00 (L) ↑ 0.00(L)

As the above results show, GP had the worst performance in
repairing the integration rules. This is because GP is a population-
based search algorithm that evolves a pool of candidate patches
iteratively. As a result, none of the GP runs could perform more
than two iterations, hence its poor performance. Comparing RS
and RS-MM shows that applying a sequence of mutations instead
of a single mutation at each time is important in our context and
helps the repair algorithms converge more quickly into a correct
patch. Finally, ARIEL has the best performance compared to the
three baseline methods as all its runs find the desired patch within
the 16h search time budget.

We compare the results in Figure 7 using a statistical test and
effect sizes. Following existing guidelines [7], we use the non-
parametric pairwise Wilcoxon rank sum test [10] and the Vargha-
Delaney’s Â12 effect size [41]. Table 3 reports the results obtained
when comparing the number of failed test cases with ARIEL against
GP, RS-MM and RS, when they were executed over time for Auto-
Drive1 and AutoDrive2. As shown in the table, for AutoDrive1, the
p-values are all below 0.05 and the Â12 statistics show once again
large effect sizes. For AutoDrive2, the p-values related to the results
produced when the search time ranges between 12h and 16h are
all below 0.05 and the Â12 statistics show large effect sizes. Hence,
the number of failing test cases obtained by ARIEL when applied
to AutoDrive1 and AutoDrive2 is significantly lower (with a large
effect size) than those obtained by RS-MM, RS and GP.

The answer to RQ2 is that ARIEL significantly outperforms the
baseline techniques for repairing integration faults when applied
to our two case study systems.

Feedback from domain experts.We conclude our evaluation by
reporting the feedback we received from engineers regarding the
practical usefulness and benefits of our automated repair technique.
In particular, we investigated whether the patched integration rules
generated by our approach were understandable by engineers, and

whether engineers could come up with such patches on their own
using their domain knowledge and reasoning, all this without re-
lying on our technique. The feedback we report here is based on
the comments the lead engineers at company A (our partner com-
pany) made during two separate meetings. The engineers who
participated in these meetings were involved in the development
of AutoDrive1 and AutoDrive2 and were fully knowledgeable about
the details of these two systems and the simulation platform used
to test these systems. During the meetings, we discussed the four
failing test cases of AutoDrive1, and the two failing test cases of
AutoDrive2 that we had received from company A. Recall that as
discussed in Section 4.3, these test cases were failing due to errors
in the integration rules of AutoDrive1 and AutoDrive2. For each
test case, we asked engineers whether they could think of ways to
resolve the failure by suggesting modifications to the integration
rules. Then, we presented to the engineers the patches generated
by ARIEL. Note that we have alternative patches for each failing
test case since we applied ARIEL several times to our case studies.
We randomly selected two patches for each failure to be used in our
discussions. We then asked the engineers whether they understood
the automatically generated patches. We further discussed whether
or not the automatically generated patches are the same as the fixes
suggested by the engineers earlier in the meetings.

When at the beginning of the meetings, we asked engineers to
propose patches based on their domain knowledge and reasoning
and, in almost all cases, they proposed additional integration rules.
Specifically, after reviewing the simulation of each failing test case,
the engineers identified the conditions that had led to that specific
failure. Then, they synthesized a new rule such that upon satisfac-
tion of the conditions leading to the failure, the rule activates a
feature that could avoid that failure. In contrast, ARIEL repairs inte-
gration faults either by modifying operators and thresholds in the
clauses of the rules preconditions or by re-ordering the integration
rules (see Section 3.2.2), and it never adds new rules.

In summary, the feedbackwe received from the engineers showed
that they found the patches generated by ARIEL understandable
and optimal. They agreed that adding new rules must be avoided
if the integration faults can be resolved by modifying the exist-
ing rules since it is difficult to maintain a large number of rules.
Further, as they add new rules they may introduce dead code or
new faults in the system. The engineers further admitted that it
is impossible to manually come up with resolutions that ARIEL
can generate automatically since one cannot analyze the impact
of varying thresholds, logical operators or rule reordering without
automated assistance. Based on the feedback we received from the
engineers, they concurred that the resolutions generated by ARIEL
are valid, understandable, useful and optimal and they cannot be
produced by engineers. We note that ARIEL is not able to handle
integration failures when the failure is due to a missing integration
rule. In such cases, engineers can review the unaddressed failing
test cases and try to manually synthesize rules that can handle such
failures.

5 THREATS TO VALIDITY.
The main threat to external validity is that our results may not
generalize to other contexts. We distinguish two dimensions for

Automated Repair of Feature Interaction Failures in Automated Driving Systems ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA

Table 4: Classification of the related work based on the
following criteria: Can the approach handle multi-location
faults (C1)? Can the approach repair computationally expen-
sive systems (C2)? Does the approach prioritise fixing more
critical faults over the less critical ones (C3)?

Ref C1 C2 C3
[3, 22, 25, 28] − − −

[21] + − −

[5, 11, 12, 19, 35, 37, 38, 43] − + −

[30, 31, 34, 42] + + −

external validity: (1) the applicability of our approach beyond our
case study system, and (2) obtaining the same level of benefits as
observed in our case study. As for the first dimension, we note
that, in this paper, we provided two industrial ADS case studies.
Our approach is dedicated to cases when there is an integration
component deciding, based on rules, what commands are sent to
actuators among alternative commands coming from different fea-
tures, at every time step. In our context, as it is commonly done for
cyber-physical systems, testing is done through simulation of the
environment and hardware. The mutation operators used in our
approach are general for integration rules in automated driving
systems (the target of the paper) and for any cyber-physical systems
where features send commands to common actuators and conflicts
are prevented by a rule-based integration component (common
in self-driving cars, robots, etc.). Our framework can be further
extended with other operators if needed in different contexts. With
respect to the second dimension, while our case study was per-
formed in a representative industrial setting, additional case studies
remain necessary to further validate our approach. In summary,
our framework is generalizable to other domains with expensive
test suites and similar integration architecture. If needed, mutation
operators can be easily extended given the general structure of our
framework.

6 RELATEDWORK
We classified the related work (Table 4) by analyzing whether the
existing automated repair approaches can handle multi-location
faults (C1)? whether they can handle repairing systems that are
expensive to execute (C2)? and whether they are able to distinguish
between faults with different severity levels (C3)? As shown in the
table, none of the existing repair techniques can address these three
criteria, while as discussed earlier in the paper, ARIEL is designed
under the assumption that test cases are expensive to run. Further,
ARIEL can simultaneously repair multiple faults that might bemulti-
location and can prioritise repairing more severe faults over less
severe ones. Below we discuss the related work included in Table 4
in more detail.

Many existing automated repair techniques rely on Genetic Pro-
gramming (e.g., Arcuri et. al. [6, 8], GenProg [28], Marriagent [25],
pyEDB[3], Par [22], and ARC [21]) and are similar to the GP base-
line we used in Section 4 to compare with ARIEL. As shown in
our evaluation, GP could not repair faults in our computationally
expensive case studies (hence, failing C2). Among the techniques
based on Genetic Programming, only ARC [21] is able to handle

multi-location faults (C1) since it uses a set of pre-defined templates
to generate patches. However, it does not address C2 nor C3.

Several techniques use random search (e.g., RSRepair [37] and
SCRepair [19]) to automate program repair. Although RSRepair [37]
indicates that random search performs better than GenProg in terms
of the number of iterations required for repair, a recent study [24]
showed that GenProg performs better than RSRepair when applied
to subjects different from those included in the original dataset of
GenProg. We included two baselines based on random search in
our evaluation (RS and RS-MM in Section 4). As shown there, while
random search is more efficient than GP in repairing computation-
ally expensive systems, it still underperforms ARIEL since it does
not maintain an archive of partially repaired solutions. Further, as
Table 4 shows, repair approaches based on random search do not
address C1 nor C3.

Similar to ARIEL, SPR [30], Prophet [31], AutoFix-E [42], and
Angelix [34] can address both C1 and C2. To handle multi-location
faults, SPR [30], Prophet [31] and AutoFix-E [42] use pre-defined
templates that are general repair solutions and are typically devel-
oped based on historical data or for the most recurring faults. In our
context and at early stages of function modelling for ADS, we often
do not have access to archival data and cannot develop such generic
templates. Further, faults not conforming to some pre-defined tem-
plates may not be repaired if we only rely on template-induced
patches. Angelix [34] uses constraint solving to synthesise multi-
line fixes. Exhaustive and symbolic constraint solvers, however,
face scalability issues and often are inapplicable to black-box sim-
ulation systems such as ADS simulators [4]. In contrast to these
techniques, and as demonstrated by our evaluation, ARIEL succeeds
in addressing C1 to C3 for complex simulation-based systems in
the context of automated driving systems.

7 CONCLUSION
We proposed a repair technique to automatically resolve integration
faults in automated driving systems (ADS). Our approach localizes
faults over several lines of code to fix complex integration faults
and deals with the scalability issues of testing and repairing ADS.
Our repair algorithm relies on a many-objective, single-state search
algorithm that uses an archive to keep track of partial repairs. Our
approach is evaluated using two industrial ADS. The results indicate
that our repair strategy can fix the integration faults in these two
systems and outperforms existing automated repair techniques.
Feedback from domain experts indicates that the patches generated
by our approach are understandable by engineers and could not
have been developed by them without any automation assistance.

ACKNOWLEDGMENTS
This project has received funding from IEE S.A.,Luxembourg, the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement
No 694277), and NSERC of Canada under the Discovery and CRC
programs.

REFERENCES
[1] 2019. Matlab/Simulink. https://nl.mathworks.com/products/simulink.html.
[2] 2020. Appendix. https://bitbucket.org/anonymous83/faultrepair/src/master/.

Also submitted along with the paper.

https://nl.mathworks.com/products/simulink.html

ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and Thomas Stifter

[3] Thomas Ackling, Bradley Alexander, and Ian Grunert. 2011. Evolving Patches
for Software Repair. In Proceedings of the Annual Conference on Genetic and
Evolutionary Computation (GECCO’11). ACM, New York, NY, USA, 1427–1434.

[4] Rajeev Alur. 2015. Principles of Cyber-Physical Systems. MIT Press.
[5] Andrea Arcuri. 2008. On the Automation of Fixing Software Bugs. In Companion

of the International Conference on Software Engineering (ICSE Companion’08).
ACM, New York, NY, USA, 1003–1006.

[6] Andrea Arcuri. 2011. Evolutionary Repair of Faulty Software. Applied Software
Computing 11, 4 (June 2011), 3494–3514.

[7] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability 24, 3 (2014), 219–250.

[8] Andrea Arcuri and Xin Yao. 2008. A novel co-evolutionary approach to automatic
software bug fixing. In Proceedings of the IEEE Congress on Evolutionary Com-
putation (IEEE World Congress on Computational Intelligence (WCCI’08)). IEEE,
Hong Kong, 162–168.

[9] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and
Thomas Stifter. 2018. Testing Autonomous Cars for Feature Interaction Failures
Using Many-objective Search. In Proceedings of the International Conference on
Automated Software Engineering (ASE’18). ACM, Montpellier, France, 143–154.

[10] J. Anthony Capon. 1991. Elementary Statistics for the Social Sciences: Study Guide.
Wadsworth Publishing Company, Belmont, CA, USA.

[11] Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. 2009. Generating Fixes
from Object Behavior Anomalies. In Proceedings of the International Conference on
Automated Software Engineering (ASE’09). IEEE, San Diego, CA, USA, 550–554.

[12] Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014.
Automatic Repair of Buggy if Conditions and Missing Preconditions with SMT.
In Proceedings of the International Workshop on Constraints in Software Testing,
Verification, and Analysis (CSTVA’14). ACM, New York, NY, USA, 30–39.

[13] Eric Foxlin. 2005. Pedestrian tracking with shoe-mounted inertial sensors. IEEE
Computer graphics and applications 25, 6 (2005), 38–46.

[14] Gordon Fraser and Andrea Arcuri. 2013. Whole test suite generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276–291.

[15] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2017. Automatic software
repair: A survey. IEEE Transactions on Software Engineering 45, 1 (2017), 34–67.

[16] John H. Holland. 1992. Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge, MA, USA.

[17] Martin Jähne, Xiaodong Li, and Jürgen Branke. 2009. Evolutionary algorithms
and multi-objectivization for the travelling salesman problem. In Proceedings
of the Annual Conference on Genetic and Evolutionary Computation (GECCO’09).
ACM, Montréal, Canada, 595–602.

[18] Thomas Jansen. 2002. On the analysis of dynamic restart strategies for evolu-
tionary algorithms. In International Conference on Parallel Problem Solving from
Nature (PPSN’02), Vol. 2. Springer, Granada, Spain, 33–43.

[19] Tao Ji, Liqian Chen, Xiaoguang Mao, and Xin Yi. 2016. Automated Program
Repair by Using Similar Code Containing Fix Ingredients. In Proceedings of the
Annual Computer Software and Applications Conference (COMPSAC’16), Vol. 1.
IEEE, Atlanta, GA, USA, 197–202.

[20] Wei Jin and Alessandro Orso. 2013. F3: fault localization for field failures. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA:13). ACM, Lugano, Switzerland, 213–223.

[21] David Kelk, Kevin Jalbert, and Jeremy S. Bradbury. 2013. Automatically Repairing
Concurrency Bugs with ARC. In Proceedings of the International Conference
on Multicore Software Engineering, Performance, and Tools (MSEPT’13), João M.
Lourenço and Eitan Farchi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
73–84.

[22] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In Proceedings of the
International Conference on Software Engineering (ICSE’13). IEEE, San Francisco,
CA, USA, 802–811.

[23] Joshua D Knowles, Richard A Watson, and David W Corne. 2001. Reducing local
optima in single-objective problems by multi-objectivization. In Proceedings of the
International Conference on Evolutionary Multi-Criterion Optimization (EMO’01).
Springer, Zurich, Switzerland, 269–283.

[24] Xianglong Kong, Lingming Zhang, W Eric Wong, and Bixin Li. 2015. Experience
report: How do techniques, programs, and tests impact automated program
repair?. In Proceedings of the International Symposium on Software Reliability
Engineering (ISSRE’15). IEEE, Washington DC, USA, 194–204.

[25] Ryotaro Kou, Yoshiki Higo, and Shinji Kusumoto. 2016. A Capable Crossover
Technique on Automatic Program Repair. In Proceedings of the International
Workshop on Empirical Software Engineering in Practice (IWESEP’16). IEEE, Osaka,
Japan, 45–50.

[26] John R Koza and John R Koza. 1992. Genetic programming: on the programming of
computers by means of natural selection. Vol. 1. MIT press, Cambridge, MA, USA.

[27] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A Systematic Study of Automated Program Repair: Fixing 55 out of 105 Bugs
for $8 Each. In Proceedings of the International Conference on Software Engineering
(ICSE ’12). IEEE Press, Piscataway, NJ, USA, 3–13.

[28] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering (TSE) 38, 1 (Jan 2012), 54–72.

[29] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436.

[30] Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition Syn-
thesis. In Proceedings of the Joint Meeting on Foundations of Software Engineering
(ESEC/FSE’15). ACM, New York, NY, USA, 166–178. https://doi.org/10.1145/
2786805.2786811

[31] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. In Proceedings of the Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’16). ACM, New York, NY, USA,
298–312. https://doi.org/10.1145/2837614.2837617

[32] Sean Luke. 2013. Essentials of Metaheuristics (second ed.). Lulu, Fairfax, Virginie,
USA.

[33] Ankith Manjunath, Ying Liu, Bernardo Henriques, and Armin Engstle. 2018.
Radar Based Object Detection and Tracking for Autonomous Driving. In Proceed-
ings of the MTT-S International Conference on Microwaves for Intelligent Mobility
(ICMIM’18). IEEE, Munich, Germany, 1–4.

[34] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
International Conference on Software Engineering (ICSE’16). ACM, New York, NY,
USA, 691–701.

[35] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: Program Repair via Semantic Analysis. In Proceedings of the
International Conference on Software Engineering (ICSE ’13). IEEE Press, Piscat-
away, NJ, USA, 772–781.

[36] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and Improving Fault
Localization. In Proceedings of the International Conference on Software Engineering
(ICSE ’17). IEEE Press, Piscataway, NJ, USA, 609–620. https://doi.org/10.1109/
ICSE.2017.62

[37] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
strength of random search on automated program repair. In Proceedings of the
International Conference on Software Engineering (ICSE’14). ACM, New York, USA,
254–265.

[38] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of
Patch Plausibility and Correctness for Generate-and-validate Patch Generation
Systems. In Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA’15). ACM, New York, NY, USA, 24–36.

[39] TASS-International. 2019. PreScan. https://www.tassinternational.com/prescan.
[40] Richard van der Horst and Jeroen Hogema. 1993. Time-to-collision and collision

avoidance systems. In Proceedings of the workshop of the International Cooperation
on Theories and Concepts in Traffic Safety (ICTCT’93). -, Salzburg, Austria, 109–
121.

[41] András Vargha and Harold D. Delaney. 2000. A critique and improvement of
the CL common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[42] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand Meyer,
and Andreas Zeller. 2010. Automated Fixing of Programs with Contracts. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA’10). ACM, New York, NY, USA, 61–72. https://doi.org/10.1145/1831708.
1831716

[43] WestleyWeimer, Zachary P Fry, and Stephanie Forrest. 2013. Leveraging program
equivalence for adaptive program repair: Models and first results. In Proceedings
of the International Conference on Automated Software Engineering (ASE’13). IEEE,
Silicon Valley, CA, USA, 356–366.

[44] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In Proceedings of
the International Conference on Software Engineering (ICSE’09). IEEE, Vancouver,
Canada, 364–374.

[45] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. 2013. A Theo-
retical Analysis of the Risk Evaluation Formulas for Spectrum-based Fault Local-
ization. ACM Transactions on Software Engineering and Methodology (TOSEM) 22,
4, Article 31 (Oct. 2013), 40 pages. https://doi.org/10.1145/2522920.2522924

[46] Shin Yoo, Xiaoyuan Xie, Fei-Ching Kuo, Tsong Yueh Chen, and Mark Harman.
2017. Human Competitiveness of Genetic Programming in Spectrum-Based Fault
Localisation: Theoretical and Empirical Analysis. ACM Transactions on Software
Engineering and Methodology (TOSEM) 26, 1, Article 4 (June 2017), 30 pages.
https://doi.org/10.1145/3078840

https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://www.tassinternational.com/prescan
https://doi.org/10.1145/1831708.1831716
https://doi.org/10.1145/1831708.1831716
https://doi.org/10.1145/2522920.2522924
https://doi.org/10.1145/3078840

	Abstract
	1 Introduction
	2 Motivation and Background
	3 Approach
	3.1 Fault Localization
	3.2 Program Repair

	4 Evaluation
	4.1 Research questions
	4.2 Case Study Systems
	4.3 Baseline Methods and Parameters
	4.4 Results

	5 Threats to validity.
	6 Related work
	7 Conclusion
	Acknowledgments
	References

