158 research outputs found

    Development of Cognitive Capabilities in Humanoid Robots

    Get PDF
    Merged with duplicate record 10026.1/645 on 03.04.2017 by CS (TIS)Building intelligent systems with human level of competence is the ultimate grand challenge for science and technology in general, and especially for the computational intelligence community. Recent theories in autonomous cognitive systems have focused on the close integration (grounding) of communication with perception, categorisation and action. Cognitive systems are essential for integrated multi-platform systems that are capable of sensing and communicating. This thesis presents a cognitive system for a humanoid robot that integrates abilities such as object detection and recognition, which are merged with natural language understanding and refined motor controls. The work includes three studies; (1) the use of generic manipulation of objects using the NMFT algorithm, by successfully testing the extension of the NMFT to control robot behaviour; (2) a study of the development of a robotic simulator; (3) robotic simulation experiments showing that a humanoid robot is able to acquire complex behavioural, cognitive, and linguistic skills through individual and social learning. The robot is able to learn to handle and manipulate objects autonomously, to cooperate with human users, and to adapt its abilities to changes in internal and environmental conditions. The model and the experimental results reported in this thesis, emphasise the importance of embodied cognition, i.e. the humanoid robot's physical interaction between its body and the environment

    Genetic algorithm for Artificial Neural Network training for the purpose of Automated Part Recognition

    Get PDF
    Object or part recognition is of major interest in industrial environments. Current methods implement expensive camera based solutions. There is a need for a cost effective alternative to be developed. One of the proposed methods is to overcome the hardware, camera, problem by implementing a software solution. Artificial Neural Networks (ANN) are to be used as the underlying intelligent software as they have high tolerance for noise and have the ability to generalize. A colleague has implemented a basic ANN based system comprising of an ANN and three cost effective laser distance sensors. However, the system is only able to identify 3 different parts and needed hard coding changes made by trial and error. This is not practical for industrial use in a production environment where there are a large quantity of different parts to be identified that change relatively regularly. The ability to easily train more parts is required. Difficulties associated with traditional mathematically guided training methods are discussed, which leads to the development of a Genetic Algorithm (GA) based evolutionary training method that overcomes these difficulties and makes accurate part recognition possible. An ANN hybridised with GA training is introduced and a general solution encoding scheme which is used to encode the required ANN connection weights. Experimental tests were performed in order to determine the ideal GA performance and control parameters as studies have indicated that different GA control parameters can lead to large differences in training accuracy. After performing these tests, the training accuracy was analyzed by investigation into GA performance as well as hardware based part recognition performance. This analysis identified the ideal GA control parameters when training an ANN for the purpose of part recognition and showed that the ANN generally trained well and could generalize well on data not presented to it during training

    Moral Psychology and Artificial Agents (Part Two) : The Transhuman Connection

    Get PDF
    Part 1 concluded by introducing the concept of the new ontological category – explaining how our cognitive machinery does not have natural and intuitive understanding of robots and AIs, unlike we have for animals, tools, and plants. Here the authors review findings in the moral psychology of robotics and transhumanism. They show that many peculiarities arise from the interaction of human cognition with robots, AIs, and human enhancement technologies. Robots are treated similarly, but not completely, like humans. Some such peculiarities are explained by mind perception mechanisms. On the other hand, it seems that transhumanistic technologies like brain implants and mind uploading are condemned, and the condemnation is motivated by our innate sexual disgust sensitivity mechanisms.Peer reviewe

    Reinforcement Learning in Autonomous Robots: An Empirical Investigation of the Role of Emotions

    Get PDF
    Institute of Perception, Action and BehaviourThis thesis presents a study of the provision of emotions for artificial agents with the ultimate aim of enhancing their autonomy, i.e. making them more exible, robust and self-sufficient. In recent years, the importance of emotions and their assistance to cognition has been increasingly acknowledged. Emotions are no longer considered undesirable or simply useless. Their role in various aspects of human and animal cog- nition like perception, attention, memory, decision-making and social interaction has been recognised as essential. The importance of emotions is much more evident in social interaction and therefore much of the emotions research done in artificial systems focuses on the expression and recognition of emotions. However, recent neurophysiological research suggests that emotions also play a crucial part in cognition itself. This thesis investigates ways in which artificial emotions can improve autonomous behaviour in the domain of a simple, but complete, solitary learning agent. For this purpose, a non-symbolic emotion model was designed and implemented. It takes the form of a recurrent artificial neural network where emotions influence the perception of the state of the world, on which they ultimately depend. This is done through a hormone system that acts as a persistence mechanism. This model is somewhat more sophisticated than those usually found in equivalent non-symbolic systems, yet the emotions themselves were restricted to a few simplified emotions that do not try to mimic the complexity of the human counterparts, but are afforded by the agent's interaction with the environment. Several hypotheses were investigated of how the emotion model above could be integrated in a reinforcement learning framework which, by itself, provides the base for the adaptiveness necessary for autonomy. Experiments were carried out in a realistic robot simulator that compared the performance of emotional with non-emotional agents in a survival task that consists of maintaining adequate energy levels in an environment with obstacles and energy sources. One of the most common roles attributed to emotions is as source of reinforcement and was therefore examined first. In experiments with a controller that selects between primitive actions, the reinforcement provided by emotions was found inappropriate because of the time scale discrepancies introduced by the emotion model. The reinforcement provided by emotions proved to be much more successful when used by a controller that selects between behaviours rather than actions, achieving equivalent performance to that of a standard reinforcement function. One of the crucial issues for efficient and productive learning, highlighted by the latter experiments, is to determine exactly when the controller should re-evaluate its decision concerning which behaviour to activate. The emotions proved to be particularly helpful in this role, enabling better performance with substantially less computational effort than the best suited interruption mechanism using regular time intervals. The modulation of learning parameters such as learning rate and the exploration vs. exploitation ratio was also explored. Experiments suggested that emotions might also be useful for this purpose. This research led to the conclusion that artificial emotions are a useful construct to have in the domain of behaviour-based autonomous agents, because they provide a unifying way to tackle different issues of control, analogous to natural systems' emotions

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Contribution au traitement d informations visuelles complexes et à l extraction autonome des connaissances (application à la robotique autonome)

    Get PDF
    Le travail effectué lors de cette thèse concerne le développement d'un système cognitif artificiel autonome. La solution proposée repose sur l'hypothèse que la curiosité est une source de motivation d'un système cognitif dans le processus d'acquisition des nouvelles connaissances. En outre, deux types distincts de curiosité ont été identifiés conformément au système cognitif humain. Sur ce principe, une architecture cognitive à deux niveaux a été proposée. Le bas-niveau repose sur le principe de la saillance perceptive, tandis que le haut-niveau réalise l'acquisition des connaissances par l'observation et l'interaction avec l'environnement. Cette thèse apporte les contributions suivantes : A) Un état de l'art sur l'acquisition autonome de connaissance. B) L'étude, la conception et la réalisation d'un système cognitif bas-niveau basé sur le principe de la curiosité perceptive. L'approche proposée repose sur la saillance visuelle réalisée grâce au développement d'un algorithme rapide et robuste permettant la détection et l'apprentissage d'objets saillants. C) La conception d'un système cognitif haut-niveau, basé sur une approche générique, permettant l'acquisition de connaissance à partir de l'observation et de l'interaction avec son environnent (y compris avec les êtres humains). Basé sur la curiosité épistémique, le système cognitif haut-niveau développé permet à une machine (par exemple un robot) de devenir l'acteur de son propre apprentissage. Une conséquence substantielle d'un tel système est la possibilité de conférer des capacités cognitives haut-niveau multimodales à des robots pour accroître leur autonomie dans un environnement réel (environnement humain). D) La mise en œuvre de la stratégie proposée dans le cadre de la robotique autonome. Les études et les validations expérimentales réalisées ont notamment confirmé que notre approche permet d'accroître l'autonomie des robots dans un environnement réelThe work accomplished in this thesis concerns development of an autonomous machine cognition system. The proposed solution reposes on the assumption that it is the curiosity which motivates a cognitive system to acquire new knowledge. Further, two distinct kinds of curiosity are identified in conformity to human cognitive system. On this I build a two level cognitive architecture. I identify its lower level with the perceptual saliency mechanism, while the higher level performs knowledge acquisition from observation and interaction with the environment. This thesis brings the following contribution: A) Investigation of the state of the art in autonomous knowledge acquisition. B) Realization of a lower cognitive level in the ensemble of the mentioned system, which is realizing the perceptual curiosity mechanism through a novel fast, real-world robust algorithm for salient object detection and learning. C) Realization of a higher cognitive level through a general framework for knowledge acquisition from observation and interaction with the environment including humans. Based on the epistemic curiosity, the high-level cognitive system enables a machine (e.g. a robot) to be itself the actor of its learning. An important consequence of this system is the possibility to confer high level multimodal cognitive capabilities to robots to increase their autonomy in real-world environment (human environment). D) Realization of the strategy proposed in the context of autonomous robotics. The studies and experimental validations done had confirmed notably that our approach allows increasing the autonomy of robots in real-world environmentPARIS-EST-Université (770839901) / SudocSudocFranceF

    Artificial Life and Lo-Fi Embodiment: A Conversation with Nell Tenhaaf and Melanie Baljko

    Get PDF

    The Nexus between Artificial Intelligence and Economics

    Get PDF
    This book is organized as follows. Section 2 introduces the notion of the Singularity, a stage in development in which technological progress and economic growth increase at a near-infinite rate. Section 3 describes what artificial intelligence is and how it has been applied. Section 4 considers artificial happiness and the likelihood that artificial intelligence might increase human happiness. Section 5 discusses some prominent related concepts and issues. Section 6 describes the use of artificial agents in economic modeling, and section 7 considers some ways in which economic analysis can offer some hints about what the advent of artificial intelligence might bring. Chapter 8 presents some thoughts about the current state of AI and its future prospects.

    When robots weep : a computational approach to affective learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 245-262).This thesis presents a unified computational framework for the study of emotion that integrates several concepts and mechanisms which have been traditionally deemed to be integral components of intelligent behavior. We introduce the notion of affect programs as the primary theoretical constructs for investigating the function and the mechanisms of emotion, and instantiate these in a variety of embodied agents, including physical and simulated robots. Each of these affect programs establishes a functionally distinct mode of operation for the robots, that is activated when specific environmental contingencies are appraised. These modes involve the coordinated adjustment and entrainment of several different systems-including those governing perception, attention, motivation regulation, action selection, learning, and motor control-as part of the implementation of specialized solutions that take advantage of the regularities found in highly recurrent and prototypical environmental contingencies. We demonstrate this framework through multiple experimental scenarios that explore important features of the affect program abstraction and its function, including the demonstration of affective behavior, evaluative conditioning, incentive salience, and affective learning.by Juan David Velásquez.Ph.D
    • …
    corecore