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Abstract

This thesis presents a study of the provision of emotions for arti�cial agents with the

ultimate aim of enhancing their autonomy, i.e. making them more 
exible, robust

and self-su�cient. In recent years, the importance of emotions and their assistance

to cognition has been increasingly acknowledged. Emotions are no longer considered

undesirable or simply useless. Their role in various aspects of human and animal cog-

nition like perception, attention, memory, decision-making and social interaction has

been recognised as essential. The importance of emotions is much more evident in so-

cial interaction and therefore much of the emotions research done in arti�cial systems

focuses on the expression and recognition of emotions. However, recent neurophysio-

logical research suggests that emotions also play a crucial part in cognition itself.

This thesis investigates ways in which arti�cial emotions can improve autonomous

behaviour in the domain of a simple, but complete, solitary learning agent. For this

purpose, a non-symbolic emotion model was designed and implemented. It takes the

form of a recurrent arti�cial neural network where emotions in
uence the perception

of the state of the world, on which they ultimately depend. This is done through

a hormone system that acts as a persistence mechanism. This model is somewhat

more sophisticated than those usually found in equivalent non-symbolic systems, yet

the emotions themselves were restricted to a few simpli�ed emotions that do not try

to mimic the complexity of the human counterparts, but are a�orded by the agent's

interaction with the environment.

Several hypotheses were investigated of how the emotion model above could be inte-

grated in a reinforcement learning framework which, by itself, provides the base for the

adaptiveness necessary for autonomy. Experiments were carried out in a realistic robot

simulator that compared the performance of emotional with non-emotional agents in

a survival task that consists of maintaining adequate energy levels in an environment

with obstacles and energy sources. One of the most common roles attributed to emo-

tions is as source of reinforcement and was therefore examined �rst. In experiments

with a controller that selects between primitive actions, the reinforcement provided by

emotions was found inappropriate because of the time scale discrepancies introduced

by the emotion model. The reinforcement provided by emotions proved to be much

more successful when used by a controller that selects between behaviours rather than

actions, achieving equivalent performance to that of a standard reinforcement function.

One of the crucial issues for e�cient and productive learning, highlighted by the latter

experiments, is to determine exactly when the controller should re-evaluate its deci-

sion concerning which behaviour to activate. The emotions proved to be particularly

helpful in this role, enabling better performance with substantially less computational

e�ort than the best suited interruption mechanism using regular time intervals. The

modulation of learning parameters such as learning rate and the exploration vs. ex-

ploitation ratio was also explored. Experiments suggested that emotions might also be

useful for this purpose.

This research led to the conclusion that arti�cial emotions are a useful construct to have

in the domain of behaviour-based autonomous agents, because they provide a unifying

way to tackle di�erent issues of control, analogous to natural systems' emotions.
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Chapter 1

Introduction

1.1 Project Aims

On account of its preoccupation with knowledge as the cause of intelligent behaviour,

Arti�cial Intelligence today faces several problems. It has been said that Arti�cial In-

telligence is having di�culties in packaging common sense into knowledge systems by

the discovery of more sophisticated rules, because such a task is not possible (Varela,

1992), or that there are serious embodiment and grounding demands which have been

ignored (Brooks, 1986a; Harnad, 1989). What many seem to agree upon is that more

research should be made on self-referential systems that perceive the world in a contex-

tual way, strongly in
uenced by their embodied and individual history (Varela et al.,

1991) .

It seems that trying to develop a better understanding of the mechanisms underlying

autonomy might provide some of the necessary tools to overcome these di�culties of

Arti�cial Intelligence.

In the �eld of robotics, the criteria used to de�ne whether a robot is autonomous or not

are not well established. In general, simply requiring that, once the robot is �nished, it

does its task without human intervention is enough. The word's root meaning suggests

an alternative de�nition of autonomy that has stronger requirements: namely, a truly

autonomous robot should also develop the laws that govern its behaviour.

The design of truly autonomous systems is still a very open research subject, partic-

ularly if one requires the meaning of autonomy to include self-motivation, instead of

1
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mere automaticity. However, there is much argument in its favour. Having autonomous

agents seems to be a clear advantage in several diverse �elds, like for example robotics,

animal robotics1 (McFarland, 1994), agents theory (Ferguson, 1992) and interactive

virtual environments (Blumberg, 1995). Although, arguments against having fully au-

tonomous agents are easy to �nd (in general, the robot is supposed to do something

useful and not whatever it wants, which might even be detrimental), it is generally

accepted that it is bene�cial to have autonomy, at least to a certain extent which is

still far from being achieved in today's systems. It is often di�cult or even impossible

for the designer to anticipate all possible scenarios the robot will be confronted with,

and autonomy can help the robot to deal with the unexpected situations.

The way to accomplish true autonomy in a robot is by developing an adaptive con-

troller that improves its performance by unsupervised learning when interacting with

its environment. Such improvement of performance must be and is always grounded in

some kind of value scheme de�ned by the designer. Whether this scheme involves rein-

forcement values, instincts, credit systems, goals or heuristic rules the result is always

the same: to give the robot some guidance in its learning task. For an autonomous

agent, detecting the regularities in the environment by self-organisation is not enough

as a learning capability; it also needs some sort of internal motivation to decide what

to do. It is also necessary for it to have some way to establish its goals without the

aid of an external teacher. For this purpose it needs to be endowed with some innate

mechanisms that allow it to determine what are the crucial features of its interaction

with the environment and whether there are positive or negative connotations asso-

ciated with these features. These basic learning mechanisms have to be hard-wired

by evolution, if the agent is to learn anything useful during its lifetime. A generic

evaluation in terms of survival abilities can only be useful for natural selection through

genetic evolution.

The fact that emotions are considered to be essential to human reasoning suggests

that they might play an important role in achieving the self-motivation necessary to

support strong autonomy.

The present research focuses on how to use emotions in the control of an autonomous

1 Modelling of animal behaviour using robots.
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agent that adapts to its environment using reinforcement learning techniques. The

social connotations usually associated with emotions might suggest that this work also

addresses social robots, but this is not the case. Emotions were used solely in the

autonomous control of a single solitary agent.

A view shared by many researchers in the emergent �eld of emotional agents is that

emotions serve a purpose in cognition and that it is this functional aspect of emotions

that should be taken into account when modelling emotional agents (Frijda and Swa-

german, 1987; Ca~namero, 1998). In particular, researchers should be careful to avoid

getting their attention caught by speci�c human emotions that probably do not even

make sense in terms of the arti�cial agent-environment interaction. This is a view

akin to the Arti�cial Life methodology (Langton, 1992) that does not consist of trying

to imitate biology by constructing realistic models, but of trying to abstract the fun-

damental principles underlying biological phenomena and recreate them in arti�cial

systems.

This was the approach followed by the current work. Several functional roles of emo-

tions were tried out under an animat philosophy (Wilson, 1991), by building a complete

agent where emotions form an integral part of the whole. Furthermore, these functional

roles were tested in comparison with other non-emotional mechanisms. It was consid-

ered important not only to develop a fully functional agent that successfully performs

the task that it is devised for, but also to demonstrate that the introduced mechanisms

are advantageous when compared with more traditional mechanisms. More important

than designing an agent that solves an arbitrary task is to establish the utility of

mechanisms used.

In order to establish if there is an advantage in having emotions as the source of

self-motivation in an autonomous robot, experiments were carried out on a simulated

Khepera robot (Michel, 1996) in an animal-like adaptation task. The experiments focus

on how to use emotions in the control of the robot, and in particular in its adaptation

to the environment. The utility of di�erent roles of emotions was explored in terms of

the adaptiveness of the robot's �nal behaviour.

For this purpose an emotion model was designed and implemented. This is a simple
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model based on a recurrent network, where perception and emotions in
uence each

other. Through this mutual in
uence some persistence of emotional state is achieved,

while maintaining reactiveness to new perceptual states. The model endows the agent

with emotional states that are coherent with its contextual interaction with the envi-

ronment by attributing value to the relevant features of this interaction. The robot's

possible emotional states were named after four basic human emotions | Happiness,

Fear, Sadness and Anger | but are much simpler than the human counterparts.

Apart from the in
uence on perception imposed by the model used, emotions were used

in the reinforcement learning framework to ful�ll the following roles: reinforcement

speci�cation, detection of signi�cant events, modulation of the learning parameters of

learning rate and the ratio of exploration/exploitation.

The results showed that emotions can be used successfully as a source of reinforcement

if, and only if, the controller architecture is selected with care. It was found necessary

to upgrade from an action-based to a behaviour-based architecture in order to have the

emotion-based reinforcement work properly. The intrinsic time scales of a behaviour-

based architecture were found more appropriate for the use of emotions. If the robot

has to select and evaluate a primitive action at each time step the emotions' persistence

in time becomes a severe hindrance for their successful use as reinforcement. The use

of emotions to modulate the learning parameters of the action-based controller proved

much more promising.

The behaviour decomposition of the controller introduced the need for determining

when to trigger control, i.e. when to re-evaluate the previously selected behaviour

and select a new one. It was found empirically that selecting the control triggering

mechanism correctly was a crucial step towards success in the learning task. Based on

the fact that the agent's emotional state always re
ects the occurrence of signi�cant

events, an event-detection mechanism was designed that consisted of triggering control

whenever a signi�cant change in emotional state was found. This emotion-driven event

detection mechanism was experimentally compared with triggering control at regular

intervals and proved to be helpful for the robot's learning.

The in
uence of emotions in perception was also examined, but results failed to show
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any di�erence between the performance of agents with emotion-in
uenced perception

and non-emotional perception. However, these results are probably controller and task

dependent.

In essence, the reported research work shows how emotions can in
uence control in

multiple ways. Although the \emotions" used were much simpli�ed, they were still

named emotions as they tried to capture more functional aspects than those provided

by a traditional reinforcement function. Moreover, calling them emotions enables this

research to be identi�ed with other emotion research so that developments in the

�eld may be brought together and integrated to produce further richness of emotions

functionality and added complexity of arti�cial agent's behaviour.

1.2 Thesis Outline

The rest of this thesis is organised as the following chapters:

Autonomous and Learning Robots (Chapter 2)

Survey of autonomy's de�nitions in the �eld of robotics and establishment of

a working de�nition, followed by an overview of robot control architectures

in general and reinforcement-learning techniques in particular. Review of a

reinforcement-learning architecture similar to the one used in the robot experi-

ments.

Natural and Arti�cial Emotions (Chapter 3)

Literature review on emotions in natural and in arti�cial systems. Presentation

of the emotion model used in the experiments.

Action-Based Control (Chapter 4)

Experiments employing an action-based learning controller. The emotions sys-

tem was integrated with the control system by in
uencing perception, providing

reinforcement value and modulating learning parameters.

Behaviour-Based Control (Chapter 5)

Experiments employing a behaviour-based controller. Emotions were used within
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the behaviour based architecture in three di�erent roles: in
uencing perception,

providing reinforcement value and detecting events for control triggering.

Concluding Discussion (Chapter 6)

General discussion of the achievements attained through the integration of emo-

tions in the two di�erent controllers and of the possible extensions and directions

of future research.

Recapitulation of the issues and problems inherent to autonomous robot research

that were found in course of this work.

Appendices

Presentation of further experimental details and of publications regarding the

work addressed by this thesis.



Chapter 2

Autonomous and Learning

Robots

2.1 Introduction

This chapter will start by examining the meaning of autonomy when applied to robotics.

Autonomy is one of the most used words in robotics, yet there is no real consensus on

what it means. An autonomous system is by de�nition a self-governing system. This

de�nition has been given several interpretations in the �eld of robotics ranging from

automatic (i.e. it works without human intervention) to self-motivated (i.e. it de�nes

the rules that govern its behaviour). Sometimes autonomy is even identi�ed with self-

su�ciency and the robot is said to be autonomous if it is able to recharge itself without

assistance. In fact, most of the research that is said to be done in autonomous sys-

tems is more concerned with other issues, such as navigation, learning, adaptation and

self-su�ciency than autonomy itself. The autonomy de�nition adopted in this thesis

is that of complete self-government, i.e. not only following one's rules but also making

them. However, autonomy will not be de�ned as an all-or-nothing property but as one

of degree: the extent to which the agent is self-governing.

Within the discussion about autonomy in robotics, some considerations are presented

about the requirements and di�culties of robot autonomy. This discussion is struc-

tured in terms of automaticity, self-su�ciency, self-referentiality, self-controlling, self-

motivation, autopoiesis and degrees of autonomy; concluding with the presentation of

some guidelines for autonomous robot design.

7
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Next in this chapter, some other issues relevant to autonomous robot design are pre-

sented, namely: the importance of reactivity and low level control in autonomous

robots; some of the di�culties faced by the necessary decomposition of behaviour in

complex tasks; the appeal of generalisation and the advantages of specialisation; the

limitations of knowledge representation and the need for strong interaction between

perception and behaviour.

This is followed by a short overview of learning and adaptation mechanisms that pays

particular attention to reinforcement learning. The short review of reinforcement-

learning is a basic introduction which describes its advantages and presents some of its

problems and tentative solutions.

Finally, this chapter concludes with presentation of the basic controller architecture

that was selected for the present work. The description will focus on a reinforcement-

learning architecture that employs the basic mechanisms used in the two learning

controllers developed for the experimental work reported by this thesis.

2.2 Autonomy

2.2.1 Automaticity

Autonomous | f. Gr. ���� �o�o�o& making or having one's own laws, independent

(f. ����o- self, own + ��o�o& law) + -ous (The Oxford English dictionary, 1989)

Autonomy is a word formed by `autos' (self) and `nomos' (rule or law). This can mean

either making or having one's own laws. In robotics, autonomy is much more often

associated with having one's laws than with making them. Usually, autonomy is said

to have been achieved when the system can ful�l its goal without human intervention

or intervention from any other system (e.g., Blidberg, 1989; Yavnai, 1989; Kirchho�,

1989; Giralt et al., 1989). If, after being constructed and programmed, the robot is left

alone doing successfully whatever task it is meant to, then the robot is autonomous.

In nature, the de�nition of the behavioural rules of the simplest creatures' behaviour is

done mostly through evolution rather than by the creatures themselves. Nevertheless,

higher creatures do have the power to adapt during their lifetime by de�ning their own
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rules and can for that reason be considered more autonomous.

Besides being responsible for following the rules on its own, which can be considered

a weak form of autonomy, a de�nition of autonomous systems should also require the

system to develop its rules, which is a much stronger demand. However, this de�nition

should be regarded as the extreme of autonomy as examples of weaker autonomy can

be found that do not fully comply with it.

The greatest advantage of self-ruled systems over other systems is that they are able

to step outside the boundaries of what was foreseen by the designers (Steels, 1994b;

Reeke, Jr., 1996). This way, their capacity to deal with the in�nitely rich and dynam-

ically changing real world is increased.

2.2.2 Self-su�ciency

Autonomy is sometimes identi�ed with self-su�ciency. Self-su�ciency can be seen as

a requirement if one is very strict about having a system able to keep going without

external assistance. If the agent can recharge itself without outside assistance then

it can carry out its task over a longer period of time, and therefore it will be more

independent, i.e., \autonomous".

However, as McFarland (1992) points out, autonomy and self-su�ciency are very

di�erent concepts, that can easily be distinguished by a simple example: an over-

domesticated lap dog. Although it would probably not survive without the free meals

given by its owner, it is considered to be autonomous.

In robotics practice, the distinction between self-su�ciency and autonomy can also be

drawn with two simple examples: a robot with energy supplied by batteries that does

not recharge itself and a robot with energy supplied by an umbilical cord. The �rst

robot is usually considered more self-su�cient, but its life-span will be very short on

account of the small amount of energy available from the batteries. In a few hours

the robot will not have had enough learning experiences to be able to acquire complex

autonomous behaviour. Its autonomy will be seriously limited. This will not happen in

the case of the second example. That robot will not have time limitations to constrain

its behavioural complexity, but the robot will not be self-su�cient. Nevertheless, if the
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vehicle is to be tethered to some place this will impose limitations on its movements.

For some types of goal this can also be a serious drawback. Sub-sea and space ex-

ploration are some good examples, because they imply unbounded environments. But

even in bounded environments wires can easily get tangled unless serious restrictions

are made to the environment in order to avoid the problem.

A self-su�cient robot, in the sense that it is able to replenish its energy, maintaining

itself viable for long periods of time without human intervention, is something to seek

for. Nevertheless, the robot will be indirectly dependent upon humans, because it

was designed for a particular man-made niche where energy is provided by humans,

and will not survive outside that niche. It is not easy to achieve self-su�ciency in a

human-made ecosystem. Humans themselves depend too much on each other to be

considered self-su�cient and yet no doubts are ever cast over human autonomy.

In general, too much emphasis is attributed to the importance of self-su�ciency of

autonomous robots. However, self-su�ciency is an excellent way to test autonomy

more in the sense that it provides a source for self-motivation than for independence.

2.2.3 Self-referentiality

Bourgine and Varela (1992) suggest two alternative ways of viewing a system regarding

autonomy:

� Heteronomous

It is addressed as an input and output device whose output is the result of some

internal processing of the input.

� Autonomous

The centre of attention is placed on emergent behaviours and internal self-

organising processes which de�ne what counts as relevant interactions.

In the case of an autonomous system, it is the nature of the internal dynamics of

the system that determines how the arriving interactions are interpreted, rather than

reacting to inputs in terms of externally supplied (by the designers) semantics.
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Autonomous systems are not de�ned by their inputs and outputs. They can be per-

turbed by independent events and undergo internal changes which compensate for these

perturbations. Whichever series of internal changes takes place, however, they are al-

ways subordinated to the maintenance of the system's organisation, i.e. the relations

that must exist among its components for it to be of a speci�c class. Autonomous

systems actively maintain an identity which is independent of their interactions with

an observer, by keeping their organisation as an invariant. The heteronomous systems'

identity depends on the observer, who speci�es it by their inputs and outputs.

It can be argued that a system is more or less autonomous to the extent to which it

can be said to be a self-su�cient cause. However, it should be noticed that much of the

di�erence between an autonomous and a heteronomous system lies in the point of view.

For example, humans can be regarded as heteronomous vehicles of the \purposes" of

their \sel�sh" genes (Dawkins, 1976).

2.2.4 Self-controlling

Most present-day robots are automata, because their behaviour is entirely controlled by

an outside agent. When in a particular state, they obey a particular behavioural rule

that is externally imposed. The rules are in
uenced both by environmental conditions

and by the robot's own behaviour, but do not depend upon the robot's history.

According to McFarland an autonomous system is self-controlling. It has the knowledge

and motivation to control its own behaviour. An important implication of autonomy is

that the autonomous agent cannot be completely controlled by an outside agent. This

happens because the system is not completely observable (McFarland, 1992).

Autonomous agents are self-interested and will choose their actions according to their

own motivations. Like dogs and cats, they are self-controlling and controllable only to

a limited extent by outside agents.

Nevertheless, a self-controlling robot can be made useful. The robot can actually want

to do the task it is needed for, or in the worst case it can be tamed to \like" it. If, on

the other hand, the robot only does exactly what it has been told then it will su�er

from lack of opportunistic and improvisation capabilities. Being able to do more than



12

what it is told explicitly or implicitly by the programmer can be a great advantage to

the autonomous robot by giving it the ability to deal with what was not anticipated

by the programmer.

2.2.5 Self-motivation

It is often stated that an autonomous agent should exhibit goal-directed behaviour

(Covrigaru and Lindsay, 1991). In particular, that it should have multiple goals from

which to select at any given time (Covrigaru and Lindsay, 1991; McFarland and Spier,

1997).

To emphasize the existence of a hierarchy of goals, the goals themselves are often

attributed a secondary role as the means to satisfy some internal motivations. An

example of this is the formal framework for the autonomy de�nition proposed by Luck

and d'Inverno (1995). In this framework, an autonomous agent is de�ned as an object

with goals and motivations and some potential means of evaluating behaviour in terms

of the environment and these motivations. Its motivations are desires or preferences

that can lead to the generation and adoption of goals, while its goals are simply states of

a�airs to be achieved in the environment. Brustoloni (1991) asserts a similar partition,

but in terms of goals and drives. Again, goals are only attributed an instrumental

function, while the agent's actions are ultimately directed by its drives.

As Covrigaru and Lindsay (1991) point out, the ultimate goals of an autonomous agent,

or its motivations, should be of a homeostatic nature. The agent should not have a

bounded task of accomplishing some reachable goals, but its task should consist of

maintaining a few homeostatic goals.

A still greater degree of autonomy than the sole self-generation of the subgoals that

govern the agent's behaviour is motivational autonomy (Cariani, 1992a), i.e. the self-

generation of the performance evaluation mechanisms that guide the selection of the

agent's subgoals.
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2.2.6 Autopoiesis

Animals are the most distinctively autonomous entities that we know. They are goal-

oriented, adaptive, opportunistic, plastic and robust (Beer, 1990). Some e�ort should

be made in trying to understand what makes them autonomous without falling into the

temptation of trying to imitate everything, even those properties which are obviously

inadequate to model with the available technology.

When looking into animal autonomy, one cannot avoid looking into autopoiesis. Auto-

poiesis (Maturana, 1969; Maturana and Varela, 1973; Varela, 1979) is a concept that

was created to overcome the di�culties in trying to de�ne a living being. A living being

is usually de�ned by a list of properties including chemical composition, capacity to

move or reproduce. However, this kind of approach to de�ning living beings has many

faults and seems always to be context dependent. Autopoiesis is what distinguishes the

living from the non-living: the fact that living entities are continually self-producing

and the producer cannot be separated from the product, i.e. the living entity is the

continuous producer of itself.

Autonomy is usually included among the properties of the list that attempts to de�ne

living beings; but, just like the other properties, it can been seen as a consequence of

autopoiesis. Animals produce themselves, and by doing so, they produce the rules by

which they act. Their behaviour is the result of the internal correlations between the

sensing and the action that they self-produced. Autopoiesis is a su�cient property for

attaining a system's autonomy.

2.2.7 Degrees of autonomy

Some researchers (e.g., Luck and d'Inverno, 1995) take autonomy as an all-or-nothing

property: either a system is autonomous or it is not. Yet, if we try to appeal to

our common knowledge, we �nd it very di�cult to say whether some of the things

that surround us are autonomous or not. Usually, we have the tendency to say that

something is more or less autonomous. Even biologists do not agree among themselves

on which living beings are autonomous. Some endow every living thing with autonomy

(Maturana and Varela, 1987) while others are much more selective (McFarland, 1992).
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Boden (1993) defends the view that there are di�erent degrees of autonomy and, fur-

thermore, that there are several dimensions to autonomy:

� The extent to which responses to the environment are direct or indirect (i.e.

mediated by inner mechanisms dependent on the creature's history).

� The extent to which the controlling mechanisms are self-generated rather than

externally imposed.

� The extent to which inner directing mechanisms can be re
ected upon and/or

selectively modi�ed.

According to Boden the degree of autonomy of the system increases with the extent to

which the controlling mechanisms are self-generated rather than externally imposed.

Boden's view is supported by much of what has been discussed in the previous sections:

Autonomy is a multi-faceted concept with many gradations.

Yavnai (1989) proposes an alternative de�nition of degrees of autonomy which entails a

more practical point of view that re
ects the current development of robotic technology.

Some of the factors for measuring autonomy proposed by that author are:

� the degree of abstraction of the commands received by the system, i.e. the system

is more autonomous if it can deal with higher level commands instead of only

primitive actions;

� the duration for which the system can function without external intervention,

which is usually very short in the case of mobile robots whether due to short

battery life or frequent system breakdowns1;

� the amount of complexity and uncertainty that has to be dealt with by the

system.

1 These breakdowns often derive from software design problems, but are also associated with the need

for hardware maintainance or repair.
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2.2.8 Autonomous robots' design

The previous discussion presented several de�nitions of autonomy, showing how multi-

faceted this concept can be. For this reason, the design of a robot that exhibits a high

degree of autonomy has to consider the ful�lment of various abstract conditions which

can make the design process di�cult. Looking at animals for concrete instances of

autonomy can provide some assistance to this process.

A few basic behavioural capabilities extracted from animal behaviour (Hallam and

Hayes, 1992) that can be taken into consideration in the design of an autonomous

robot are:

Perception | The robot should be sensor-rich, both in terms of types of sensors and

quantity of information provided by each sensor type. An important challenge to

the autonomous robot is being able to deal with a rich perception in a timely

fashion, namely by expeditious mechanisms of focusing attention.

Movement | The robot should be able to competently move around its environment

and perform more elaborated actions such as moving objects. The movement

repertoire of the agent should provide 
exibility of choice.

Homeostatic Goals | The robot should have a few internal variables to keep within

bounds, an example of such a variable being energy level. This can serve as the

basis for its internal motivation. Furthermore, it is important that the robot can

function unattended for long periods of time. For this reason some care should

be taken to avoid the robot life being shortened by lack of energy or the need for

assistance in recharging.

Reactions and Learning | The robot should be able to exhibit quick reactions to

some of the stimuli of its environment and still be plastic to learn the relevance

of the stimuli. The agent should have adaptive capabilities, but those should not

curtail its performance.

Navigation | The robot should have a home base to return to. Although it might

not be essential for an autonomous agent, the ability to return to some referential

points of its environment allows the agent to employ more complex behaviour.
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This list provides a useful compilation of simple guidelines that should be taken into

consideration in the design of an autonomous robot as they provide an adequate basis

for autonomous behaviour. These were therefore used in the current work for the

design of an autonomous agent controller and its task.

Learning is an important ability for an autonomous agent because it endows it with

the necessary plasticity to be independent. However, learning should not compro-

mise autonomy and therefore has speci�c requirements when applied to autonomous

agents. To begin with, the learning mechanism should be su�ciently plastic to deal

with the problems the agent faces without requiring much domain-dependent external

parametrisation. In particular, there should be no external adjustment of learning

parameters while the agent is performing its task. Finally, the agent should be able to

learn on-line by itself, and not by carefully chosen examples given by external assis-

tance. Furthermore, it should do so in a e�cient and robust manner. Unfortunately,

these requirements are quite hard to obtain with the available learning algorithms and

in general some compromises have to be made.

People often propose a constructivist approach to the design of an autonomous sys-

tem. This consists of the design of a self-organising system made of small and simple

constructional blocks and simple self-organising rules moderated by some internal set

of motivations (Luck and d'Inverno, 1995). One of the major drawbacks of this ap-

proach is relying on uniformity for greater plasticity when living organisms themselves

bene�t from having di�erent types of components and connections (Winograd and Flo-

res, 1986) and even specialised brain regions (Dam�asio, 1995). A uniform approach

will probably su�er from lack of domain information to be able to cope with all the

complexity of the outside world at once.

2.3 Issues in Architecture Design

Several approaches have been proposed for mobile robot control which have in
uenced

the selection of the control architecture used in the experiments reported in this dis-

sertation. This section brie
y presents some of the main issues involved.
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2.3.1 Reactiveness vs. deliberation

The classical Arti�cial Intelligence approach2 to robotics relies on human-de�ned mod-

els of the world that the robot employs in its interaction with the world, assuming that

intelligence is based on the representation and manipulation of knowledge. However,

explicit deliberation about the e�ects of low-level actions is too expensive for the pro-

duction of real-time behaviour in robots (Russell and Norvig, 1995). It makes the

reactions of the robot to the external world slow and its performance very suscep-

tible to slight environmental changes. These are serious drawbacks to the robot's

autonomy. In general, the classical approach gives too much emphasis to methods for

representing and manipulating knowledge while it ignores the dynamic properties of

the robot-environment interaction (Verschure et al., 1992).

This approach has also been criticised for creating unnecessary symbolic abstractions

that make sense in the programmer's view point but are ungrounded by the robot-

environment interaction (Brooks, 1991). Instead of having the agent-environment in-

teraction obstructed by an externally imposed formal description of the environment,

systems should take advantage of a direct interaction. For instance, the physics of the

sensory systems can be exploited in the discrimination of relevant stimuli (Hallam and

Malcolm, 1993). This also supports the claim that the dynamic interactions between

agent and environment can only be properly studied by building complete real agents

(Smithers, 1992).

In recent years a new approach to the design of autonomous systems has been devel-

oped (Maes, 1991b). This approach tries to overcome some of the di�culties that the

classical Arti�cial Intelligence approach faces when applied to the �eld of robotics. In

order to have a more robust real-time performance, the new solutions try to avoid the

use of knowledge-based rational choice and problem solving. Instead, they take ad-

vantage of a more direct coupling of perception to action which increases the system's

distributedness, decentralisation and dynamic interaction with the environment.

Synthetic design (Donnett, 1992) or empirical bottom-up synthesis of the agent is also

2 Also designated as Good Old Fashioned Arti�cial Intelligence (Haugeland, 1985), or GOFAI for

short.
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used, replacing the need for an a priori formal mathematical analysis. As Braitenberg

(1984) defended and proved in theory, the basic organisation of living things underlying

all their complexity is not, of necessity, complex in itself. Understanding a device

that behaves in a complicated way is an uphill struggle, whereas actually building

it might be quite easy. There are many examples of complex arti�cial behaviour

achieved by surprisingly simple means, starting with Grey Walter's learning tortoises

made of rudimentary electronic devices (Grey Walter, 1950, 1951). Simple solutions

can also often explain the behaviour of natural systems (Webb, 1994; Jamon, 1991).

On many occasions, it is preferable for animals to resort to simple approximations or

tricks that can be achieved within the limited resources available, than to construct

expensive abstract computations that provide the perfect solutions (Weher, 1987). The

need for three-dimensional representation of Newtonian space (Weher, 1987) or explicit

symbolic control (Liaw, 1995) can often be avoided. In the domain of collective robots

the same principles can be applied and research has shown the emergence of complex

group behaviour through the use of simple rules by individuals (Beckers et al., 1994;

Melhuish et al., 1998; Mataric, 1995).

An e�ective demonstration of how sound practical results can be achieved through this

approach was the subsumption architecture (Brooks, 1986b, 1989). In this architecture,

the mobile robot control system was decomposed into task achieving behaviours that

run in parallel, in opposition to the traditional decomposition of the control system into

functional modules. The behaviours themselves are organised into layers of competence

and have the ability to subsume behaviours in lower layers either by inhibition of

outputs or suppression of inputs.

This methodology provides a clear example of direct robot interaction without the need

of planning by means of an externally imposed model of the world. Nevertheless, there

is no real plasticity in the rigid behavioural architecture developed. The problems that

the robot has to face are once more transferred to the designers. The success of the

agent depends solely on the ability of the programmer to describe the complete task

domain (Verschure et al., 1992).

It can be right to defend (Brooks, 1986a) that the essence of being and reacting pro-

vides a necessary basis for the emergence of true intelligence, but it is not necessarily
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su�cient. Simulating this basis by a rigid automaton probably does not provide the

necessary requirements for problem solving behaviour, language and expert knowledge.

There are serious doubts as to whether this architecture can scale up in complexity

towards full problem-solving (Russell and Norvig, 1995; Verschure et al., 1992).

Brooks' subsumption architecture was based on an evolutionary view of natural systems

where layers of expertise are incrementally constructed upon older layers (Brooks,

1989). The methodology implicitly attributes to evolution the responsibility for all

kinds of adaptation. In later research (Brooks, 1991), Brooks acknowledged the need

for runtime adaptation and incorporated some forms of self-calibration in his system.

In Maes and Brooks (1990), the 
exibility of the system is increased by learning the

preconditions list associated with activation of each behaviour. This solution also

tries to solve yet another problem with the subsumption architecture: the unnecessary

loss of valuable computation time that can be avoided by suppressing not only the

output value but also the computation of that value. Pebody (1995), on the other

hand, proposed an enhancement of the subsumption architecture in terms of its basic

units, the augmented �nite-state machines, that allows on-line incorporation of complex

sensory input into the unit's activation condition by associative learning.

The architecture developed by Maes (1989) provides more potential for the design of

complex systems by having goals. In this architecture, the agent is also composed of a

collection of competence modules: the actions. The fundamental di�erence consists of

the existence of a selection mechanism that is an emergent property of the activation

and inhibition dynamics among these modules. This modules are linked in a network

of predecessor and successor links that are used to spread activation. Although this

architecture has no global forms of control that might entail its robustness, it is goal-

oriented. The �nal emergent behaviour is reactive, 
exible and opportunistic; but also

unpredictable (Maes, 1991a). How to achieve the desired global functionality is not

always straightforward. Some plasticity has been introduced in this architecture by

the introduction of the on-line learning of the links between modules (Maes, 1992).

The PDL language (Steels, 1994c) employs a dynamical systems approach where every

process is always active and all process results are added, avoiding the need for action
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selection. On account of every process being very simple, complex systems seem to be

di�cult to design too. Nevertheless, several e�orts have been made towards adding on-

line learning to the architecture (Steels, 1994d; Boer, 1994) and therefore some sort of

adaptation is provided by the system. Boer (1994) reported problems with instability

when too many processes were available. For this reason, he introduced a two level

hierarchy that groups several processes into a single behaviour. Only one behaviour is

active at a time, depending on certain imposed criteria which Boer suggests be learned

by genetic algorithms.

These architectures, where behaviour is an emergent property of the interaction of

simple components, raise the problem of inverse emergence or behaviour generation

(Prem, 1995). Finding the correct set of components and the right interaction dynamics

between them can be both di�cult and time consuming.

In time, the shortcomings of pure reactiveness have become evident and people have

started to develop hybrid architectures. Hybrid architectures try to combine the

immediate responsiveness to the current situation of the reactive architectures with

the goal-oriented planning of the deliberative architectures. In general, this type of

architecture is structured in several layers with separate layers for the reactive and the

deliberative subsystems. This arrangement provides an elegant separation between the

high-level goals of the robot and the local problems faced by the robot while pursuing

these goals.

One straightforward example of how a hybrid architecture can be made useful is given

by Malcolm and Smithers (1989). The system presented has two layers: one of them

makes a sketchy plan and the other one intelligently executes it, simultaneously �lling

in the details of the plan. This architecture relates to the work of Agre and Chapman

(1991) in that it transfers decision power from the planner to the executor. These

authors argue that the central role of the plan, that deals with all the details of the

task, should be reduced to a mnemonic device that the agent can resort to when

deciding what to do next.

The GLAIR architecture (Hexmoor et al., 1993; Lammens et al., 1993) is a hybrid

architecture with a three layer organisation. This architecture aims at consciousness,
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in the sense of being aware of one's environment. It has two di�erent layers to address

unconscious (automatic) behaviour and one to address conscious (reasoned) behaviour.

One of the unconscious layers, named the perceptuo-motor level, consists of an automa-

ton that is initialised with a very small primitive number of actions and sensations.

The conscious layer notices and records the emergence of action sequences that make

improvements and adds them to the perceptuo-motor level. The aim of the other

unconscious layer is only to provide an extra level of abstraction by hiding away the

low-level sensory input and actuators output.

Another example of a three-layer hybrid architecture is the Touring Machine (Ferguson,

1992) that aims to solve the problem of achieving real-time competent behaviour using

limited resources. The lower layer provides reactive behaviour to deal with immediate

problems. It uses simple symbolic rules for this purpose. The higher layers provide

means to focus the agent's attention by changing those rules.

Another hybrid architecture that changes the dynamics of the reactive behaviour ac-

cording to higher level intentions was proposed by Michaud et al. (1996). This archi-

tecture is di�erent in that it is not organised in layers but in interactive modules that

perform di�erent roles. The behaviour-based module is in charge of producing actions

e�ciently. The motives module supervises the agent's performance by taking into con-

sideration the information provided by the three di�erent recommendation modules:

the external situation, the internal needs and what the agent has learned about its

world.

The information available to an agent is widely distributed both in time and space,

requiring the agent to search for relevant information and recall past information. Op-

portunities and threads must be constantly monitored, although the global behaviour

should have coherence in order to be able to successfully complete a task described by

some, at least sketchy, planning done previously. For a system to achieve such aims

under bounded computational resources, Wright (1994) proposed an emotional agent

that has the ability to select between multiple goals, prioritise goals and decide on

the level of commitment towards current intentions. The reason why emotions were

suggested by Wright is that an important subset of emotional phenomena is closely

connected with the interruption of a resource-limited control mechanism.
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2.3.2 Behaviour decomposition

The need for behaviour decomposition has been illustrated before, by several exam-

ples. As the autonomous robot task becomes more complex it is usually necessary to

introduce some form of hierarchy of behaviour which can simply consist in the decom-

position of the task into a set of simpler skills, or behaviours. The re-combination of

these behaviours is not straightforward and there are various methods used. To start

with, the behaviours can be combined in parallel or in sequence. The behaviours can

run simultaneously and produce in
uences on each other and di�erent outputs. Or

the behaviours can take control of the �nal overall agent behaviour one by one. An

example for each of these approaches are respectively the architectures by Brooks and

Malcolm described previously.

The selection of whether the behaviours should run in parallel or in sequence depends

mostly on the behaviour speci�cation. If the behaviour is self-su�cient and requires

total control over the robot's actuators in order to ful�ll its purposes correctly then

behaviour composition should be sequential. Architectures that rely on the emergence

of complex overall behaviour from simpler component behaviours may require parallel

behaviour composition.

As discussed previously, the design of these architectures composed of very simple

components is not easy. The sequential composition of behaviours is not easy either

and it is particularly di�cult to learn3. Simple selection rules based on sensory input

are usually not enough. Some examples of the problems found with this approach and

the solutions proposed in the domain of non-learning architectures are presented next.

The problem most often reported is the need for the behaviour selection to have more

persistence in time than that given by a reactive coordination of behaviours.

The need to arti�cially add persistence to the currently active behaviour to avoid

dithering between behaviours is reported by Blumberg (1994). However, the mech-

anism used there also ensures that opportunistic behaviour can take place and that

long-running behaviours are terminated by fatigue.

To solve the same problems, Correia and Steiger-Gar�c~ao (1995) and Correia (1995)

3 See Section 2.4 on learning for examples.
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suggest an architecture where the behaviours themselves determine their level of acti-

vation which acts as a priority value for their selection. This activation level depends

not only on the sensory input, but temporal rules of activation. These levels of activa-

tion are then taken into consideration by a structure of arbitration composed of simple

blockers. The blockers endow currently selected behaviours with a small selection

advantage that restrains behaviours with similar activations from being selected.

2.3.3 Generalisation vs. specialisation

The all-purpose robot has always been a human dream aimed at solving all our prob-

lems. In the design of autonomous robots such a dream is sometimes considered as

a condition, in the form of strong 
exibility demands. Nevertheless, everything that

we have very successfully made so far is highly specialised (e.g., Boeing 747, vending-

machines, washing-machines, vacuum-cleaners...). Evolution itself developed living

beings highly specialised to their particular niche.

In the �eld of robotics, specialisation also seems to be a good answer to how to minimise

our problems (Steels, 1994a). The robot Polly (Horswill, 1993) is a good example of

a solution that, because of its specialisation, performs well and in a very cost-e�ective

way as long as conditions are appropriate.

Instead of trying to create the perfect robot that can understand and overcome all the

di�culties posed by the world, one should take the world as it is and turn the problems

into advantages. Even the troublesome noise of real world sensors and actuators can

be helpful, as was shown by genetic algorithms experiments (Cli� et al., 1992).

One can argue to some extent that an autonomous system should be very adaptable

and able to face the unexpected. Nevertheless, autonomy should not be totally iden-

ti�ed with this kind of adaptation because solutions to speci�c environments can be

found that can be called autonomous. For example, there are species high in the hier-

archy that seem to be very adaptable and yet are only able to learn very constrained

generalisations about their environment. Their learning abilities are adapted specif-

ically to the ecological constraints typical of their normal way of life. This kind of

learning limitation is demonstrated in an experiment done with rats by Garcia and
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Koelling (reported in McFarland, 1993, page 362), which showed that rats are able to

associate the taste of food with sickness but not with electric shock and are able to as-

sociate visual and auditory stimuli with shock but not with sickness. Several examples

are also given by Gallistel et al. (1991) of how animals treat certain stimulus-reward,

stimulus-response and/or stimulus-stimulus pairings as privileged. These provide per-

suasive arguments in favour of domain-speci�c determinants in animal learning, and

for the authors' claim that, through evolution, the learning mechanisms of each species

have been shaped by their speci�c problems.

2.3.4 Enactive approaches

The theory of autopoiesis is very extensive and it is not the goal of this dissertation

to try to describe it in detail. Nevertheless, it is worth mentioning the stream of the

cognitive sciences of today that Varela et al. (1991) consider to be the most realistic

in terms of the theory of autopoiesis: enactment, which is analogous to the Arti�cial

Intelligence stream commonly referred to as \behaviour-based". Varela et al. (1991)

divide current research in Arti�cial Intelligence, Linguistics, Philosophy, Cognitive

Psychology and Neuroscience into three main streams:

Cognitivism | Also named as the symbolic or computational approach is the stream

that dominates present research. The central tool and guiding metaphor of cogni-

tivism is the digital computer. Cognition is seen as the manipulation of symbols

that are a mental representation of the environment.

Emergence | In this approach symbol processing is localised and only the physical

form of the symbols is used. A representation is not a function of particular

symbols, but consists in the correspondence between an emergent global state

and properties of the world. It is also called connectionism, because the systems

are made up of many simple components, which are connected by appropriate

rules that give rise to a global behaviour corresponding to the desired task.

Enactive | This approach questions the centrality of the notion that cognition is

fundamentally representation. More exactly, it questions the two following as-

sumptions:
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� the world has particular properties;

� individuals internally represent these properties;

Cognition is not considered the representation of a pre-given world by a pre-given

mind but is rather the enactment of a world and a mind on the basis of a history

of the variety of actions that a being in the world performs.

The �rst approach described | Cognitivism | was the �rst to be seriously undertaken

by a large research community, but its limitations became obvious with time. In this

approach the information processing is sequential and localised. Therefore, it faces

di�cult problems of bottlenecks and robustness (Varela et al., 1991).

The second approach | Emergence | tries to work out these problems by having

very simple and non-cognitive components with many connections to the other units.

The global cooperation between units gives place to a global coherence without the

need for a central unity to control the whole operation. The emergent approach also

abandons the form and meaning distinction and associates meaning with the system's

global state. This approach has had a few convincing results and has allowed us to

shorten the distance between the study of biological and arti�cial beings.

In one way or another, both these approaches assume that there is a describable exter-

nal world and that cognition is the representation of this world. However, our everyday

experience reveals that the greatest ability of cognition is not to represent the world,

but to distinguish in the great diversity of properties of the world those that are rele-

vant. What counts as relevant is not pre-given, but is enacted or brought forth from

the background by our common sense, in a contextual way.

Varela (1992) defends the notion that common sense cannot be packaged into knowl-

edge by the discovery of more sophisticated rules. According to Varela, common sense

is rather a readiness-to-hand or know-how based on our lived experience which entails

an embodied history. Furthermore, Varela remarks that cognition cannot be properly

understood without common sense, also referred to by Varela as the subject's bodily

and social history, concluding that the knower and known stand in relation to each

other in mutual speci�cation.

The enactive approach (Varela, 1992) gives perception a fundamental role in terms of
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cognition. The author gives examples of perception of the world (ibid.) that show how,

for example, colour and smell are always perceived in a contextual way that depends

on the individual history of the knower. Thus, colour can only be understood as a

visual experience of an embodied individual and in general cannot be identi�ed with

local surface spectral re
ectance (Thompson et al., 1992). The colour perceived by

the individual is often di�erent from the colour that the physical properties of the

light might lead to predict (Cytowic, 1993). The signi�cance of the external signals

depends on the individual who can share only similar experiences with individuals of

the same species. Perception is an integrated part of the individual's interaction with

the external world.

According to this theory, learning is the transformation through experience of the

behaviour of an individual in a manner that is directly or indirectly subservient to

the maintenance of its autopoiesis. What the observer calls memory is not a process

through which the individual confronts each new experience with a stored represen-

tation before making a decision, but the expression of a modi�ed system capable of

synthesising a new behaviour relevant to its present state of activity.

The process of cognition then does not consist of the apprehension of the description of

an independent universe, but is the result of a certain internal correlation that is being

maintained between a sensory system capable of admitting certain perturbations and a

motor system capable of generating movement. The nervous system plays an important

role in cognition, because it expands the realm of possible states of the individual

and enhances the organism associations with interactions with many di�erent internal

states.

2.3.5 Perception

It is often said that one of the essential abilities of autonomous agents, and animals

in particular, is their ability to make sense of their input streams by recognising what

is relevant. In nature, even the sensors themselves are selected during the genetic

evolution of the species and, on a smaller scale, during the ontogeny of the individual

living beings themselves. This allows for the selection of those sensors that make

the discriminations important for survival. This ability endows animals with semantic



CHAPTER 2: Autonomous and Learning Robots 27

adaptiveness (Cariani, 1992b), i.e. the ability to modify the relationship between their

internal state and the external world in order to enhance survival. In particular, they

can develop new sensory distinctions when in presence of ill-de�ned real world problems

(Cariani, 1992b).

As far as living beings are concerned, this is not very di�cult, because they are au-

topoietic (Maturana and Varela, 1980). The fact that they are producer and product

in one allows them much freedom of choice. In robots such freedom is not possible

with current technology: the most the agent can do is to calibrate the sensors it has

available.

Active exploration of the environment can be considered an essential ability for au-

tonomous systems which must operate in rich unstructured environments. Passively

accepting measurements of the world is often not acceptable, because it only produces

incomplete data from which only inferences full of uncertainties can be reached (Whaite

and Ferrie, 1993). However, a model of uncertainty can be e�ectively used to direct

perception to maximise knowledge acquisition (e.g., Whaite and Ferrie, 1993). The

work reported by Scheier and Pfeifer (1995) is one example of active perception where

the agent manages to solve the perceptual aliasing problem4 by active exploration.

Another example of active perception is the work of Walker et al. (1998) in which ear

movement is used to enhance the extraction of auditory cues for target localisation.

Perception should not be an end in itself; behaviours or the current intentional state

of the agent should be responsible for determining what perceptual information is

necessary at any one time. In the �eld of vision, animate vision (Ballard, 1991) showed

how computation can be enormously reduced, and often be done in real time, if vision

does not try to extract a three-dimensional representation of the world but operates

in the context of behaviour. In particular, perceptual \objects" should be emergent

entities of the agent's interaction with the environment and should not be confused

with the objects that exist in the environment independently of the agent (Stewart,

1995).

4 Derives from the fact that the sensory input of the same object can vary a lot dependent on ambiance

conditions, distance, orientation, etc.
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2.4 Learning and Adaptation

2.4.1 Introduction

There are three basic adaptation mechanisms available in natural systems (see for

example Baldwin, 1896):

Phylogeny | the adaptation from generation to generation that results from natural

selection through evolution;

Ontogeny | the adaptation provided by the system's learning during its life;

Heredity | The adaptation transmitted between individuals; social heredity, in par-

ticular, allows adaptation capabilities to be secured by the use of imitation from

generation to generation.

Although heredity is often left out of development theories it also plays a very impor-

tant role in the preservation of signi�cant adaptive traits. Imitation, in particular, is

very important for the transmission of complex behaviour as it has a clear advantage

over learning by trial and error for the learning of complex sequences of actions. It

can also have useful practical applications in the domain of robotics, by allowing the

robot to learn its task by demonstration instead of being programmed by detailed in-

structions (Demiris et al., 1997; Kuniyoshi et al., 1994). However, in the domain of

autonomous agents, imitation should have a critical element associated with it, i.e. the

agent should be able to assess the intrinsic value of what it imitates in terms of its

internal motivations.

Another important social factor is the help provided by the parents in guiding their

children's learning through fruitful experiences (Rutkowska, 1995). Some researchers

use similar techniques in robot learning (Lin, 1993) by giving their robots examples

of how they can correctly accomplish their task. Other robotic researchers developed

training methods where a human tutor provides frequent rewards or punishments to

the robot in order to make the learning task easier (Nehmzow, 1994; Dorigo and Colom-

betti, 1993), a technique designated as robot shaping (Dorigo and Colombetti, 1993)

by its analogy with shaping experiments in animals.
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Nowadays, it is trendy to use evolutionary techniques in robotics, although their ap-

plication to robots is objectionable to some (Mataric and Cli�, 1996), mostly due

to the time consuming nature of the experiments. This is aggravated in autonomous

robots research where on-line adaptation is a requirement (Winograd and Flores, 1986).

The use of evolutionary techniques requires numerous evaluations of di�erent adaptive

agents each requiring a signi�cant amount of time for a proper evaluation of their

adaptation capabilities. In practice, waiting for the emergence of truly autonomous

agents by evolution may require in�nite patience (Toda, 1994).

Evolutionary techniques are suitable for solving problems where the �tness of any

particular solution can be assessed e�ciently. This does not mean that they are

totally inadequate for autonomous agent research, but implies that they should not be

expected to �nd the solution to autonomous behaviour from scratch.

Evolutionary techniques can be useful for testing alternative learning techniques or

exploring the value of di�erent learning parameters. There are several examples of the

use of genetic algorithms for this purpose in di�erent domains. Floreano and Mondada

(1996) describe experiments where both phylogeny and ontogeny are used simulta-

neously in robots endowed with associative learning. Alm�assy and Verschure (1992)

report the evolution of parameters in the domain of a model of classical conditioning.

Kitano (1995) reports the genetic evolution of a genetic reaction-network and an evalu-

ation network. The latter tries to model the role of hormones in learning and provides

both a reinforcement function for on-line policy acquisition and a focus of attention to

discriminate the more important features of the environment. The detection of rele-

vant features during on-line learning leads to an increase in the learning rate and the

number of mental rehearsals. The experimental results (ibid.) showed that the use of

both reinforcement and focus contributed to the agent's adaptation. However, Kitano

states that the slow learning of these agents would lead them to extinction if they were

to co-evolve with purely reactive agents.

Another alternative to the use of genetic algorithms in autonomous robots research

is their use in the learning algorithm itself. An example are the robotic applications

(Reeke, Jr. and Sporns, 1993) of Edelman's neuronal group selection theory which

states that neurons compete for survival as the embryonic brain is developing and
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that, only after birth, ampli�cation and attenuation of synaptic connections strengths

between neurons takes primacy. Other examples include the use of genetic algorithms

in a schema-based architecture as a basis for unsupervised learning (Ram et al., 1994)

and their application to classi�er systems (Patel and Schnepf, 1992; Dorigo, 1995).

Furthermore, the interaction between learning and evolution can be exploited in the

engineering of autonomous robots (Floreano and Urzelai, 1998). Apart from evolution

being a powerful mechanism to select the most helpful learning mechanisms, learning

during life can also help evolution to select the most adaptive traits. The individuals

that are closer to the optimal solution are also the ones that will reach that solution

faster through learning. This way, learning helps to discriminate the individuals which

are closer to the solution, even when being near the solution, by itself, does not increase

the measure of �tness of the individual. The fact that these individuals are the ones

preferred also implies that there will be a gradual genetic assimilation of the features

learned during life, even though learning does not have the capacity to directly modify

the genotype. This indirect genetic assimilation of learned traits, de�ned as Baldwin's

e�ect (Baldwin, 1896), which can lead to faster and more e�cient evolution, has been

supported by scienti�c evidence (Floreano and Urzelai, 1998).

Learning is also important to provide adaptation for local and relatively fast environ-

mental changes that cannot be captured by the evolution process (Nol� and Parisi,

1996).

Some learning techniques were mentioned in Section 2.3.1 in the context of speci�c ar-

chitectures but, in fact, there are many architectures speci�cally designed for learning.

Reinforcement-learning is the most common technique for learning in the domain of

robotics and is therefore treated separately in the next section.

There are other learning techniques, like for instance the ones based on classical condi-

tioning as de�ned by Pavlov (1927). An example of this is the robotic application of an

unsupervised learning mechanism reported by Verschure et al. (1992). Their approach

does not use external reinforcement and relies solely on the a priori stimulus-response

associations. Learning here consists of the association of new stimuli, called the condi-

tioned stimulus, with the behavioural responses to other, unconditioned, stimuli which
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occur simultaneously. One disadvantage of this approach is that it requires a high

degree of architectural complexity in terms of the number of connections (Grossberg,

1971), because it imposes direct connections between all the unconditioned and con-

ditioned stimuli and this can become very expensive with a high number of stimuli.

Another problem with this approach is that learning cannot be explained only in

terms of stimulus substitution (Mowrer, 1960), learning also involves substitution of

behaviours which become inappropriate | a feature that is not modelled in classical

conditioning. The two factor position defended by Mowrer overcomes the dichotomy

between stimuli association (sign learning) and behaviour substitution (solution learn-

ing) by attributing a fundamental role to emotions. According to his view, stimuli

are primarily associated with emotions which then drive the behaviour associations.

This view substantiates the reinforcement learning approach if emotions are used as

reinforcement.

2.4.2 Reinforcement learning

The short review that follows is not supposed to be an exhaustive survey (e.g., Sutton

and Barto, 1998; Kaelbling et al., 1996, o�er more complete surveys) and comprises

only a few examples.

Reinforcement-learning is a technique that allows an agent to adapt to its environment

through the development of a policy, which determines which action it should take in

each environmental state in order to maximise reinforcement. Depending on whether

the reinforcement is computed internally or attributed by an external entity this can

be considered unsupervised learning or not.

Reinforcement de�nes the desirability of a state and can be expressed both in terms of

rewards and punishments. These are usually formalised in terms of the positive and

negative values, respectively, of a reinforcement function that attributes a value to each

learning iteration. This value can also be zero meaning that no reward or punishment

was attributed and that evaluation is neutral.

The a priori domain knowledge incorporated by the designer in the learning system

is minimal and is mostly encapsulated in the reinforcement function. This can be a
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limitation as some tasks might be di�cult to describe in terms of rewards and pun-

ishments. The design of a reward function in robotic domains can be a problem when

there are multiple goals and immediate reinforcement is not always available. In this

case, it is often impossible to have a direct translation to a traditional monolithic

reward function (Mataric, 1994).

An alternative reinforcement learning mechanism proposed by Bozinovski (1982) takes

its inspiration from emotions. It starts with a priori associations of pleasant and/or

unpleasant emotional states with speci�c context states. These emotional states will

then be propagated through the rest of the robot state space while the robot explores

its environment by trying out the di�erent actions available. On account of being

equipped with an initial rudimentary policy, presumably provided by genetics, the

agent does not need any extra reinforcement and its learning will rely solely on reward

propagation.

In opposition to other techniques (e.g., Maes and Brooks, 1990; Maes, 1992; Nehmzow,

1994) reinforcement learning assumes the existence of delayed reinforcement. The

reinforcement can be the consequence of a sequence of actions instead of a single

action. This is important if the robot has to perform elaborate behaviour and possibly

receive negative reinforcement in the course of achieving its task, because otherwise

the robot will not have the necessary look-ahead to overcome the deterrents that it

�nds in the way of accomplishing its task. This means that reinforcement-learning

algorithms usually have some form of credit assignment propagation so that value can

be attributed to the states that lead to the goal state which produces reward.

The reinforcement learning algorithms in general are usually restricted to Markov

decision processes, i.e. they assume that each environmental state can be entirely

identi�ed by the input representation de�ned by the designer as they do not explicitly

deal with hidden state. An example of the hidden state is to have to decide upon the

contents of a closed box without any input other than the vision of the closed box

itself. If, for instance, the fact that the previous action had been to put a speci�c

object inside the box was taken as a discriminatory element, then the hidden state

problem would disappear. Hidden state is a problem which is usually present in robotic

applications, because robots in general have very limited sensory capabilities making
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the di�erentiation between distinct states di�cult.

Another issue present in the case of autonomous robot applications is that unlike

traditional reinforcement learning tasks, the task of an autonomous robot is mainly one

of continuously executing a task for as long as necessary in opposition to successfully

completing a task and �nishing. The goal-oriented nature of the problems usually

used to test reinforcement learning techniques is not really applicable to autonomous

agents. The autonomous robot should have multiple homeostatic goals that have to be

prioritised according to circumstances and should not simply �nish when it reaches a

goal state. Another major di�erence in reinforcement learning applied to autonomous

agents is that the distinction between a learning phase and a performing phase has to

be eliminated, because an autonomous robot is supposed to continuously adapt to its

environment.

Q-learning (Watkins, 1989) is the usually preferred reinforcement-learning technique

because it provides good experimental results in terms of learning speed.

Although reinforcement-learning agents can be quite reactive and decide in real time

the next action to take, their learning is quite slow particularly if the task is very

complex. Slowness is usually pointed out as the major problem of reinforcement-

learning techniques and is a particularly serious problem in robot domains where the

life expectancy of the robot is usually short.

For more complex tasks skill decomposition is advisable as it can reduce signi�cantly

the learning time or even making the task feasible. Researchers report that a monolithic

approach can fail to solve the long-term temporal credit assignment (Mahadevan and

Connell, 1992). One of the reasons pointed out is the loss in accuracy of the propagation

of credit assignment with long action sequences (Lin, 1992).

By task decomposition, the robot can learn behaviours that tackle each task individ-

ually and then learn the high-level coordination of the behavioural solutions found

(examples in Lin, 1993). This requires the introduction of domain speci�c knowledge

that might not be very easy to obtain and might limit the robot's �nal performance.

Furthermore, task decomposition is a non-trivial problem, namely designing the sub-

tasks' reinforcement functions may be hard (Mahadevan and Connell, 1992).
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Behavioural decomposition usually consists of learning some prede�ned behaviours in a

�rst phase and then �nding the high-level coordination of these behaviours. Although

the behaviours themselves are often learned successfully (Mahadevan and Connell,

1992; Lin, 1993), behaviour coordination is much more di�cult and is usually hard-

wired to some extent (Mahadevan and Connell, 1992; Lin, 1993; Mataric, 1994).

One problem in particular which is quite di�cult and task dependent is deciding when

to change behaviour. This is not a problem in traditional reinforcement learning where

agents live in grid worlds and state transition is perfectly determined. However, in

robotics, agent states change asynchronously in response to internal and external events

and actions take variable amounts of time to execute (Mataric, 1994). As a solution

to this problem, some researchers extend the duration of the current action according

to some domain speci�c conditions of goal achievement or applicability of the action.

Others will interrupt the action when there is a change in the input state (Rodriguez

and Muller, 1995; Asada, 1996). Rodriguez and Muller (1995) argue that new deci-

sions should only be taken when there is a change in the input state, on the basis

that otherwise the choice is uniquely determined by the current state of knowledge.

However, this may not be a very straightforward solution when the robot is equipped

with multiple continuous sensors that are vulnerable to noise.

Generalisation over the input space can also be a useful technique to accelerate the

learning process (Lin, 1993). One of the major problems responsible for the slowness

of reinforcement learning is the slow iterative process of spreading the rewards and

punishments through the input space, which can be greatly minimised if the algorithm

has added mechanisms to spread the reinforcements to similar input states.

One solution is to use neural networks to learn the utility values of each action (Lin,

1993). This way similar inputs are automatically updated when the network is being

trained for the current input. Apart from accelerating the learning process, it also

minimises the memory space needed to store the policy, which is often stored in the

form of a look-up table with one value for each action and sensor state combination.

This system, which has still other methods to overcome the slowness of the learning

process, is described in detail in the next section as it is very similar to the one used

in the experimental work reported in this thesis.
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Another reinforcement learning algorithm using neural networks is the complementary

reinforcement back-propagation algorithm (Ackley and Littman, 1990). In this case

the output units of the networks encode the value of the action to be chosen in binary

format. The values of the bits that represent the action to be taken are determined

probabilistically from the activation value of each of the output nodes of the network.

There are several examples of robotic application of this algorithm (Meeden et al.,

1993; Kitano, 1995). This approach has an advantage over the one proposed by Lin

(1993) of accommodating a greater number of possible actions with equivalent neural

networks.

A di�erent solution to the generalisation of input problem consists of the use of a

Kohonen network to build a self-organising map of the sensory domain by exploration

(Kr�ose and Eecen, 1994). In this approach, the neighbourhood relations between dif-

ferent states were imposed by the elementary actions.

The G Algorithm is yet another solution to the generalisation of input problem (Chap-

man and Kaelbling, 1991). The Q-table is represented by a tree that rami�es on

the binary inputs. The tree is constructed as the agent explores its environment and

groups the input space according to reinforcement. A split of the input space is made

whenever a bit of the input space is determined to be statistically relevant in terms

of the immediate reinforcement or discounted future reinforcement. The tree must be

constructed before the learning action value phase. Another example of a tree-based

algorithm (McCallum, 1996) addresses both the problems of input generalisation and

hidden state, by adding information about previous states when there is a need to

discriminate between otherwise indistinguishable input states.

One of the disadvantages of Q-learning is that it usually reduces the number of actions

available to the agent to a small set. Having such a small and non-continuous space

of possible actions is not very satisfactory in terms of achieving robotic autonomy.

However, more important than allowing the robot more freedom of movement is to

allow the robot freedom of choice. In reinforcement learning, the action the robot takes

at each point is not prede�ned by the designer, but is selected by the robot according

to what it has learned so far. Furthermore, if the set of actions is varied enough, the

robot can still have a large repertoire of di�erent behaviours by sequentially selecting
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the appropriate actions at each time step.

Some researchers have found that, in complex domains, straightforward reinforcement

learning converges to local minima instead of learning a good policy (Lin, 1991; Chap-

man and Kaelbling, 1990). This problem can be overcome in part by an external

teacher that shows the robot how to obtain reward (e.g., Lin, 1993), by indicating the

relevant actions that can be taken in the environment or forcing it out of local minima.

The problem of local minima is strongly in
uenced by the exploration vs. exploitation

strategy selected. When learning, the agent has to trade-o� between acting to get

more information about the world and acting on the information it already has to get

more reinforcement. If the agent does not actively explore its environment then it can

easily become stuck in local minima.

The simplest solution to the exploration vs. exploitation problem is to use the �-greedy

strategy (de�ned in Sutton and Barto, 1998). This consists in taking the best ranked

action most of the time and making a random action selection with a small probability

�. Usually, � takes the value of 0.1. A more reasonable approach to the problem is to

keep track of how much knowledge the agent has gathered in each context so that it

can select to explore sub-optimal behaviours only in the situations where it has not

tried them before. An example is the interval estimation algorithm (Kaelbling, 1990),

that explores only if it has insu�cient information.

The evaluation of the performance of the reinforcement-learning controllers can also

be a di�cult problem (Wyatt et al., 1998). Researchers are often tempted to use the

reinforcement received by the controller to analyse how the performance of the agent

is improving in time. In fact, an increase of reinforcement value is usually associated

with an improvement of performance of the agent in its task. However, exceptions can

be found even for well-designed reinforcement functions. Usually, the reinforcement

function is internally computed by the agent which means that it is subject to the lim-

itations of its perception. Inaccurate perception can make the reinforcement function

misleading in the evaluation of the robot's true performance level (Wyatt et al., 1998).

Nevertheless, an evaluation provided by an external observer is typically correct and

can be useful to point out possible de�ciencies of the internal evaluation. Moreover,
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because there is often a stochastic element associated with the learning process |

introduced by the exploration algorithm, for example | a one-trial test of the con-

troller can be misleading by showing a one-o� performance instead of the expected

performance of the learning algorithm.

2.5 Selected Architecture

The basic learning controllers used in the experiments reported in this dissertation are

very similar to the learning architecture proposed by Lin (1993). This architecture

is the main topic of the current section. To begin with, a short description of Lin's

architecture is given. This is followed by a short discussion of its advantages and

disadvantages. Finally, the domain-speci�c mechanisms of this architecture, which

will be �lled in later in this dissertation, are highlighted.

2.5.1 Description

A sketch of the architecture presented in Lin (1993) is shown in Figure 2.1. As was

stated before, the main feature that characterises this architecture is that it solves the

input generalisation problem by using neural networks to learn the utility function,

one network per action.
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Figure 2.1: Lin's learning architecture.

This approach employs feed-forward neural networks with one hidden layer that use

the following symmetrical activation function (a scaled hyperbolic tangent):
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S(x) =
1

1 + e�x
� 0:5 (2.1)

For training the neural networks it uses the back-propagation algorithm with a learn-

ing rate of 0:3 and a momentum of 0:9. Although this is not a very good network

training method when compared with other batch-oriented training methods, it allows

the incremental learning required for on-line learning.

The approach is based on the Q-learning algorithm for policy acquisition. The input

of the neural-networks consists of the world state and the single output of each neural-

network models the following function for one of the actions a:

util(sn; a) = Rn+1 + 
 eval(sn+1) (2.2)

This function represents the expected discounted cumulative reinforcement that an

agent will receive after executing action a in response to the world state sn. The

immediate reinforcement received in the next state (sn+1) is Rn+1. The utility of the

state sn+1, or eval(sn+1), is its expected discounted cumulative reinforcement if the

optimal policy is followed by the agent. The value 
 is the discount factor which is set

to 0:9.

snsn-1

...a

k1

k2

ki

Qn(sn-1, a) Tn(sn-1, a)
Qn(sn, k1)

Qn(sn, ki)

Qn(sn, k2)

Rn

Figure 2.2: Learning iteration of the reinforcement-learning algorithm.

In each learning step of the algorithm (see Figure 2.2), the neural-network associated

with the last action a taken is updated for the previous state sn�1. An iteration of the

back-propagation algorithm is made using as target value Tn(sn�1; a). The calculation

of this target value depends on the current estimative Qn(sn; k) for each action k

provided by the outputs of the networks when using as input the current state (sn).

Tn(sn�1; a) = Rn + 
 maxfQn(sn; k) j k 2 actionsg (2.3)
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For action selection, Lin uses probabilistic action selection based on the Boltzmann-

Gibbs distribution. The probability of selecting action a, with temperature T is:

Pn(sn; a) =
e
Qn(sn;a)

T

X

k2actions

e
Qn(sn;k)

T

(2.4)

The temperature value is increased if the robot is within the same small area for a

long period of time and reduced to zero in the testing phases, i.e. during the tests the

action with the highest utility value is always selected.

Lin (1993) proposes three other di�erent neural-network-based solutions that provide

the robot with some memory to deal with hidden state. The solutions use recurrent

networks or time windows as the input of normal networks. He also uses some extra

techniques to enhance and accelerate the learning process:

Experience replay | replay a sequence of experiences in temporally backward order

to speed up the credit assignment problem.

Action Model | have a model of the world that permits the agent to experience

the consequence of its actions without having to try them out in the real world.

Teaching | Guide the robot through signi�cant exploration.

These di�erent network-based solutions and extra techniques were not used in the work

carried out for this thesis.

In the experiments reported by Lin (1993) the robot's task is decomposed into three

simple behaviours: wall-following, going through doors and docking on the charger. For

learning these behaviours, the learning algorithm has sixteen di�erent available actions

to chose from and twenty-four sonar and light sensors de�ned as network inputs. The

behaviours are learned separately with success. The learning is done in simulation,

but Lin (1991) reports only small drops in performance when the controllers are tested

directly in a real robot without any further adaptation.

In a second stage, after the simple behaviours have been learned, Lin uses the same

learning algorithm to learn the coordination of these behaviours, i.e. he considers the
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behaviours themselves as the system's available actions. However, in order to learn

the behaviour coordination successfully, he has to introduce simpli�cations into the

learning task. To start with, each behaviour is associated with pre-de�ned conditions

of activation. For example, the behaviour of door-passing can only be selected if a

door is nearby. Furthermore, the introduction of a persistence rule proved essential

for good results. This rule ensures that the same behaviour is kept until the goal

of the behaviour has been achieved or a previously inapplicable behaviour becomes

applicable.

2.5.2 Pros and cons

Since the focus of this research is emotions' in
uence in control and not control itself, in

the selection of the learning architecture the simpler techniques that have been proven

successful in the past were preferred. This philosophy was carried out even in the

selection of the architecture's various arbitrary parameters that were chosen without

much regard for optimal behaviour. For this reason the selection is far from perfect

and presents several disadvantages:

� The learning abilities of the robot are not su�ciently sophisticated to allow great

degrees of autonomy. Namely, the agent is essentially reactive and cannot deal

with hidden states. Furthermore, a high degree of autonomy would probably

require some form of autonomous decomposition of behaviour.

� The solution for dealing with generalisation over the input state has some prob-

lems. The neural networks have a tendency to be overwhelmed by the large

quantity of training data provided by on-line learning and forget the rare rele-

vant experiences. Filtering the available data in such a way that relevant training

data has more weight in the learning process can help to prevent this problem.

� The agent has available only a restricted number of discrete actions, which may

limit its behavioural capabilities. In this architecture, the selection of more or

less general actions and inputs determines how specialised the agent is.

� The exploration vs. exploitation solution is very simple, yet, it has some ad-

vantages. First, it does not force the division between a learning phase and a
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performance phase, which is obviously undesirable for autonomous learning, be-

cause it allows more or less exploration dependent on the previous di�erences

in performance registered for the di�erent actions. And secondly, it does not

implicitly assume an optimal action at each point, allowing for a more 
exible

policy.

� The fact that the policy acquisition is indistinguishable from world modelling has

the disadvantage to require new policy acquisition from scratch every time the

goal of the agent is changed.

� The navigation abilities provided by the architecture are poor because the agent

does not have any notion of its location in space.

In traditional experiments with reinforcement-learning architectures the agent does not

have homeostatic goals as required for autonomous agents, yet no problems were found

in using this architecture in the pursuit of that kind of goal.

The positive points of the selected architecture are that it endows the agent with fast

reactions, while still allowing it to learn its policy to act in the environment. This policy

can be quite 
exible as long as an adequate action set is chosen. The generalisation

over the input state allows a greater richness of sensory input than usual and provides

an acceleration of the learning process.

2.5.3 Open speci�cations

The selection of the learning architecture described previously left some domain-dependent

details unspeci�ed:

� reinforcement function;

� action set;

� state input;

� state transition;

� Meta-control variable values:

{ back-propagation learning rate;

{ action selection temperature.
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In the design of the �nal autonomous agent all these open speci�cations must be �lled

in a priori. This does not mean that the speci�cations have to be rigid, but simply

that the agent should not receive further external assistance once it starts its learning

task. For example, the learning parameters should not be changed by an external

entity after the learning process has started.

The reinforcement function must specify the correct behaviour of the agent by giving it

rewards when it is performing well and punishments when its behaviour is inadequate.

For this reason it implicitly speci�es the agents' goals or motivations or its task. In

autonomous agents, the selection of the reinforcement must take into consideration the

fact that these implicit goals should be of a homeostatic nature.

The de�nition of the input space implicitly informs the robot which elements of its

environment are important for achieving its task. The generalisation mechanisms pro-

vided by the neural networks allow the agent to discriminate which inputs are more

adequate for the selection of its behaviour, but ultimately the designer has to de�ne

correctly all the possible inputs the agent might need.

Unfortunately the output space is reduced to a �nite number of actions. This means

that the action set should be selected with care, allowing enough 
exibility of move-

ment, namely in giving the robot enough freedom of movement to perform its task

correctly. The actions can either be very primitive or consist of more elaborate be-

haviours. This di�erence in control strategy is actually what di�erentiates the experi-

mental Chapters 4 and 5 from each other.

The state transitions are very important because they specify when the agent should

evaluate the previously selected action and select a new one. A state transition is usu-

ally de�ned by a change of input state which simply consists of a change of the input

values when discrete input is used. If continuous and noisy sensors are used to de�ne

the input space then the de�nition of state transition is not so simple. The problem be-

comes more di�cult if behaviours are used instead of actions making a state transition

at every step inappropriate. The de�nition of the state transition in this case is often

associated with domain-speci�c conditions, yet this seems to represent an unnecessary

stipulation of arbitrary rules that restrain the agent's 
exibility. A solution based on
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determining signi�cant changes in the input state seems more adequate. The problem

of state-transition determination is closely related to the di�culties in determining

when to change behaviour found in sequential behaviour decomposition. The duration

of behaviours must be long enough to allow them to manifest themselves, and short

enough so that they do not become inappropriate (due to changing circumstances) long

before being interrupted.

The learning parameters mentioned above are often changed during learning to enhance

the agent's abilities. This can be useful but should not be done by an external agent.

In particular, the learning and exploration should not be stopped by an external entity

that decides when the agent is su�ciently competent at its task. The agent itself

should determine the value of these parameters as far as possible.

All these speci�cations left open by the learning architecture invoke the need for some

kind of motivational system that can exert some form of meta-control over the learning

algorithm. Later in this thesis, it is discussed and empirically explored how emotions

can ful�ll this role. For instance, emotions are usually associated with reinforcement

and will therefore be used as its main source during the experiments. Furthermore,

emotions can help to de�ne the occurrence of state transitions when behaviours are

used as the elementary actions of the learning architecture. Finally, emotions can also

be used for varying on-line the value of the meta-control variables.
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Chapter 3

Natural and Arti�cial Emotions

3.1 Introduction

In their quest for true intelligence, people usually have a Cartesian approach that

regards emotions as a hindrance carried over from their early evolutionary development,

at odds with their aspiration to high rationality. Psychologists, too, tend to concur with

this popular view of emotions as useless or even disruptive to rationality (Toda, 1993).

Interestingly, such natural distrust towards emotions can be substantiated if we take

the opposite view, i.e. that emotions are indeed central to reasoning. Several reasons

for the disruption caused by emotions, which are a direct consequence of considering

emotions essential, are pointed out throughout this chapter. In fact, this view that

emotions are an integral part of rational behaviour is receiving increasing support from

brain research studies (LeDoux, 1998; Dam�asio, 1994; Cytowic, 1993).

Emotions play an important role in our lives, in
uencing our every day life decisions.

As Goleman (1995) defends, the power of the emotional mind in everyday decision-

making is greater than the power of the rational mind. He convincingly argues that it is

more advantageous for success in life for humans to have a good emotional development

than a high intelligence quotient.

Studies show that human decisions are not always rational (Grossberg and Gutowski,

1987). Pure logic is not enough and shows serious faults when used to model human

intelligence in Arti�cial Intelligence systems (Dreyfus, 1992). Furthermore, emotions

have been suggested in the �eld of Arti�cial Intelligence as the ultimate source of

45
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intelligence that might provide robots with the autonomy they need (Toda, 1994).

Doubts have even been posed on whether machines can exhibit intelligent behaviour

without emotions (Minsky, 1986; Charland, 1995).

Next in this chapter, several views of the in
uence of emotions in cognition are pre-

sented in terms of di�erent cognitive mechanisms like memory, attention and reasoning.

This will be followed by a description of the di�erent emotions' functionalities in nat-

ural systems that can be and have been transfered to the arti�cial systems' domain.

The chapter will �nish with the proposal and analysis of the emotion model that was

used in the experimental work carried out for this thesis.

3.2 Natural Emotions

3.2.1 Emotions and memory

One of the basic reasoning processes that is in
uenced by emotions is memory (see

Blaney, 1986, for an extensive review on the subject). Blaney (1986) presents two

alternative ways in which emotions can in
uence memory:

Mood dependence1 | What one remembers during a given mood is determined

in part by what one learned previously in that mood. A�ective valence of the

material, i.e. the type of emotions associated with material itself, is irrelevant.

Mood congruence | Some material, by virtue of its a�ective content, is more likely

to be stored and/or recalled when one is a congruent mood. Concordance between

mood at exposure and at recall is not required or relevant.

Others (Schwartz and Reisberg, 1991) claim that emotions independent of valence

can contribute to better memorisation, i.e. that the events that are the most vividly

remembered are also the most emotional or even traumatic, while emotionally neutral

events are easily forgotten. Studies of the human brain support the view that emotions

might be responsible for enhancing memorisation (LeDoux, 1998).

1 State dependence in the original work.



CHAPTER 3: Natural and Arti�cial Emotions 47

In his experiments, Bower (1981) showed mood-dependence e�ects and claims that

through their in
uence on memory, emotions have the power of biasing our decisions.

Depending on their current mood, people are more likely to recall events that are

congruent with that mood. These will make the probabilities of possible outcomes for

each choice available at any one time subjective. Under these conditions, it is clear

that the combination of the utilities of prospective outcomes and their probabilities for

each choice will not lead to the selection of an objective optimal choice. When people

are happy they are also more optimistic, because they raise the estimate of positive

future events and reduce estimate of negative future events (Bower and Cohen, 1982).

If, on the contrary, people are sad they will selectively remember more negative events

which in extreme cases, can contribute to the vicious cycle of deepening depression

(Blaney, 1986).

Later experiments (Bower and Mayer, 1985) demonstrated that mood-dependence ef-

fects are unreliable phenomena in laboratory experiments and found mood-congruence

e�ects instead. Nevertheless, it is usually believed that an event is remembered best

when people are in a situation or state similar to the one when the learning took place

(LeDoux, 1998).

3.2.2 Emotions and attention

The mood-dependent recall can also be seen as an adaptive trait that allows the indi-

vidual to recall only events that occurred previously in similar contexts and not to be

distracted by irrelevant information. In general this can be seen as advantageous.

Many emotions theorists agree that emotions are most helpful for focusing attention on

the relevant features of the problem at hand (LeDoux, 1998; De Sousa, 1987; Tomkins,

1984; Plutchick, 1984; Scherer, 1984; Panksepp, 1982) and, in particular, for determin-

ing the salience of the perceptual information (Cytowic, 1993). However, this can also

provide a way for certain emotions to disturb the thinking process, because it makes

it more di�cult to pay attention to all aspects of a complex problem. In particu-

lar, long-term consequences can be ignored (Loewenstein, 1996) which for a wild-life

environment is adequate but can be a serious disadvantage in a highly organised tech-

nological society like our recent man-made society, where the repercussions of decisions
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can spread out over a wide space and are very slow in dying out (Toda, 1982).

Emotions are also often pointed to as essential mechanisms for autonomous agents with

multiple goals and limited resources in uncertain environments (Oatley, 1987; Frijda

and Swagerman, 1987; Mo�at et al., 1993). Their role is associated with the process of

interrupting the agent's ongoing activities to deal with new and unexpected situations

that need to be attended to (Sloman and Croucher, 1981; Simon, 1967) while protecting

the resource-limited activities from unnecessary interruption and computation (Wright,

1994). These interruptions are particularly important when urgency of response is

essential for survival, but in extreme, mostly pathological, cases can also be disruptive

when the generated interruptions become frequent and inappropriate or undesired.

Apart from switching attention away from the task at hand, emotions are also usually

held responsible for bringing to conscious awareness the emotion-inducing event and

preparing the motor system for a reaction (Ortony et al., 1988).

3.2.3 Emotions and reasoning

One of the simplest ways emotions are considered to in
uence reasoning is by providing

an evaluation value of the subjects' situation. It is often assumed that human decision

making consists of the maximization of positive emotions and minimisation of negative

emotions (e.g., Tomkins, 1984).

Recently the role of emotions has been enlarged. Some researchers have proposed

that the human brain is divided in two major independent and interacting systems:

an a�ective and a cognitive one (Zajonc et al., 1982; Dam�asio, 1994; LeDoux, 1998).

Both systems are responsible for behaviour, and their intensive cooperation attributes

a primary role to emotions in reasoning.

On the one hand, to the emotional mind is attributed the responsibility for the faster

responses by providing the system with an e�cient mechanism to spring into action

without pausing to think and only attend to the most striking aspects of its perception.

On the other hand, the cognitive system makes a more extensive and careful evaluation

of the situation and might eventually decide to bring the emotional response to a stop

(LeDoux, 1997).
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Furthermore, recent neurophysiological research suggests that our thinking is not so

detached and ungrounded as we might believe and that emotions also assist the cog-

nitive system. According to this research, with the help of the emotions, the feelings

provided by our body play an important role in reasoning. This is the central claim of

the somatic-marker hypothesis2 (Dam�asio, 1994).

Dam�asio makes a clear distinction between the concepts of emotion and feeling. Feeling

designates the process of monitoring the body. Feelings o�er us the cognition of our

visceral and musculoskeletal state. Emotion is a combination of a mental evaluative

process with dispositional responses to that process, mostly toward the body proper

but also toward the brain itself. According to Dam�asio, all emotions generate feelings,

but only some feelings generate emotions. If feelings are associated with emotions then

the body signals will move from the background to the foreground of our attention.

Somatic markers are special instances of body feelings, generated by emotions, which

are acquired by experience based on internal preference systems and external events and

which help to predict future outcomes of certain scenarios. They will force attention on

the negative or positive outcome of certain options that can be immediately defeated,

leaving fewer alternatives, or can be immediately followed. Through the estimation of

long term-costs and bene�ts, the somatic markers provide humans with a reasoning

system that is free from many of the faults of formal logic, namely the need for much

computational and memory power for having every option thoroughly evaluated.

Dam�asio provides compelling evidence for his hypothesis, by showing examples of how

emotionally impaired people have major problems making decisions. However, the

boldness of his hypothesis has also created some skepticism. Sloman (1998) claims that

the evidence only shows that global central mechanisms are necessary to ensure that

the more speci�c mechanisms are deployed correctly; and that these mechanisms used

for redirecting attention, and therefore essential to intelligence, may also be necessary

for emotion production. He goes on to say that Dam�asio's heuristic control can occur

without emotional mechanisms, because problems with massive search can easily be

solved by humans with a context-addressable memory of slightly generalised special

2 Marker because it marks an internal mental image and somatic because it is marked through body

feelings.
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cases.

Recently, Dam�asio's group has produced further results (Bechara et al., 1997) that

provide stronger support for the somatic-marker hypothesis. Their experiments show

that people reach the right decisions before the cognitive system has access to the

necessary data to make informed decisions. This suggests that there is an independent

process which is quickly attributing value to each decision. Apart from providing

biases that assist the reasoning system in a cooperative manner, the emotional system

is also credited with generating the overt recall of the pertinent facts necessary for the

cognitive evaluation (Bechara et al., 1997). This way the emotion system contributes

to the e�ciency of the decision process.

3.3 Arti�cial Emotions

In this thesis, the approach followed towards emotions is an engineering approach

(Wehrle, 1998). The primary criterion is one of performance of the robot, more specif-

ically the enhancement of its autonomy, and not to improve our knowledge about the

nature of emotions themselves, although the e�ective use of emotions might hopefully

contribute some clues to their understanding.

As such, the aim of this work will not be to try to replicate the experience of human

emotions as reported by the individuals' subjective cognitive observations, but to try

to capture the underlying mechanisms which have an adaptive value that can be trans-

posed to arti�cial creatures. Some properties of emotions that might be useful to an

autonomous arti�cial creature are:

� Source of motivation, where motivation means anything that controls the focus

of attention and orients the current reasoning of the agent. Emotions have been

considered a fundamental source of motivation in psychology (e.g., Beck, 1983)

and have been used as a source of motivation in arti�cial creatures (Morignot

and Hayes-Roth, 1995).

� Control of attention. Emotions in
uence perception by focusing the agent's at-

tention on the most relevant features to solve its immediate problem. In partic-
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ular, they have been attributed the role of interrupting the agent from what it

is doing when new problems arise that need to be attended to (Sloman et al.,

1994; Beaudoin and Sloman, 1993, describe an application within a nurse-maid

scenario).

� Source of reinforcement. Emotions are usually associated with either pleasant

or unpleasant feelings that can act as reinforcement. This allows emotions to

motivate the agent to approach or avoid certain emotional scenarios. This is the

most usual role attributed to emotions in the functionality of an arti�cial agent3

(e.g., Wright, 1996; Albus, 1990, or McCauley and Franklin (1998) in the domain

of Pandemonium Theory).

� Emotion dependent memory. Bower and Cohen (1982) proposed a blackboard

control system to model mood dependency. In their system, the subject's mood

when learning is associated with what is learned. Later, moods act as selective

�lters in the retrieval process, admitting retrieval of events stored in memory

that were originally learned in moods that are congruent with the current mood.

Mood-congruence e�ects have also been modelled (Araujo, 1994) but using a

system composed by two independent but interactive neural-network subsystems,

one cognitive and one a�ective. The reinforcement-learning system developed by

El-Nasr et al. (1998) models emotion dependent recall by making the agent more

or less optimistic when it is respectively more happy or sad.

� Assistance in reasoning. Based on the ideas of Dam�asio (1994), Ventura et al.

(1998) propose an emotion-based agent that simultaneously processes stimuli by

an a�ective and a cognitive system. The agent's a�ective system quickly attains

perceptual images that are used to directly access the cognitive images relevant

for the cognitive system's deliberation.

� Behaviour tendencies or even stereotyped responses are usually associated with

particular emotional scenarios. These built-in responses allow for appropriate be-

haviour to be automatically triggered in emergency situations, avoiding spending

3 There are also some researchers (e.g., Michaud et al., 1996; Shibata et al., 1996) who give emotions

the somehow more sophisticated role of monitoring the robot's performance so that the robot's plans

or actions can be changed if necessary.
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unavailable time on elaborate reasoning. A typical example is the fear emotion

where the source of fear is quickly located and avoidance behaviour is imme-

diately activated. In the architecture proposed by Botelho and Coelho (1997),

emotions are associated with simple procedure responses whose execution directs

the agent to the identi�cation of the emotion's cause so that immediate action

can be taken.

� Physiological arousal of the body. A strong emotion is usually associated with

a general release of energy in anticipation of demanding action response. The

importance of this feature in biological systems is clear: it provides the way to

mobilise extra energy to cope with emergency situations in a complex chemical

entity. However, the translation of this feature to an arti�cial system is not

clear, because in general arti�cial systems are not endowed with di�erent states

for overall performance. Nevertheless emotions can be used to modulate simple

system parameters (Ca~namero, 1997; Bates et al., 1992a), e.g. level of behavioural

activity or speed, that are directly relevant to the overall performance of the

system.

There are many other properties left out, the more pertinent being those of a social

nature, which were left out on purpose. It is clear that emotions play an essential role

in social interaction. The expression of emotions allows the individuals to transmit

to others messages that are often crucial to their survival and therefore have great

adaptiveness value (Darwin, 1965). This is a very interesting dimension of emotions

that has received some attention in Arti�cial Intelligence research. The expression of

emotions can be useful in several domains. It can:

� Enable arti�cial creatures to generate empathy emotions in people, by creat-

ing an illusion of life necessary for believable characters (Bates, 1994). This is

particularly important in entertainment oriented systems.

� Regulate the intensity of the interaction between a learning robot and a teacher

(Breazeal, 1998). The robot's emotional reactions can provide cues to whether

it is being over-stimulated or getting bored. Taking those into consideration,
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the teacher can maintain a suitable learning environment that will enhance the

learning performance of the robot.

� Make arti�cial systems more responsive to human emotions and thus more user

friendly by implementing mechanisms to recognise human emotional expressions.

This can be advantageous in both entertainment and educational applications

(see Picard, 1995, 1997, for numerous suggestions). An example is the simulation

of empathy feelings in computer interfaces in order to help the relief of frustration

in human users (Klein, 1996).

� Allow for new communication mechanisms between arti�cial creatures. For in-

stance, Shibata et al. (1996) use emotions as a communication mechanism that

allows the robot to report to others its internal state, or more speci�cally, its

level of task achievement.

� Help establishing and securing commitments between social agents, so that ar-

ti�cial agents can bene�t from interaction and cooperation with others without

being totally open to exploitation by enemies and pro�teers (Aub�e, 1998a).

These ideas are beyond the scope of the work reported here and will not be explored

further in the current work, which is concerned with more basic mechanisms of simple

survival by a solitary agent.

Some people argue that emotions are mostly important in the realm of social interaction

and that it is in this dimension that they serve a real purpose. Some go as far as to

argue that only social emotions are truly emotions (Aub�e, 1998b). And it is quite true

that in humans emotions of a social nature are among the most numerous, complex and

re�ned. Nevertheless, it is also true that the complexity of social interaction present

in human societies is quite recent in an evolutionary time scale (Papez, 1937) and that

basic emotional mechanisms and their brain structures are much older. This by itself

suggests that there are some basic emotions on top of which social emotions develop.

Instead of denying that those innate emotions are emotions, one can instead name

them primary emotions (Dam�asio, 1994) in contradistinction to the more sophisticated

secondary emotions. These primary emotions are usually associated with basic survival
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instincts. As such, they often look misplaced in highly structured and arti�cial human

societies (Toda, 1982, 1993), where social emotions are often more useful.

Another issue studied in Arti�cial Intelligence is how emotions can help in the cre-

ative process. Arti�cial systems are typically very predictable, because they follow

rigid sets of rules or commands that do to not leave much room for the generation

of new spontaneous behaviour. This is annoying in entertainment applications, but

it is particularly serious in applications where creativity is essential, for instance mu-

sical composition. Some solutions to this problem have been proposed that resort to

emotions (e.g. Riecken, 1998). These rely on the fact that memory retrieval is a key

activity for the free associations necessary in creative work, and that memory retrieval

itself is largely dependent upon emotions. Even the automatic generation of musical

performance can pro�t from emotions, by adding emotional expressiveness taken from

the performance of other music by humans exhibiting the intended mood (Arcos et al.,

1998).

3.4 Proposed Model

3.4.1 Presentation

A large subset of theories of emotions is based on elaborate cognitive appraisal theories

(e.g., Lazarus, 1982; Power and Dalgleish, 1997; Ortony et al., 1988) that stress the role

of conscious reasoning in the generation and de�nition of emotions, in spite of emotions

also being aroused by crude subconscious experiences involving simple information

processing without the need for high level reasoning processes (Zajonc, 1984; Izard,

1993).

Following the psychologists' main stream, most Arti�cial Intelligence models of emo-

tions are based on an analytic and symbolic approach (Sloman et al., 1994; Frijda and

Swagerman, 1987; Dyer, 1987; Pfeifer, 1982; Pfeifer and Nicholas, 1985; Bates et al.,

1992b) that tries to endow the model with the full complexity of human emotions as

perceived from an observer's point of view. However, in both ontological development

and evolution the full richness of emotions is only achieved at a �nal stage. In the

early stages of these processes only certain basic emotions are present and, presumably
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later, other more complex emotions develop on top of these.

In opposition to the traditional approach, a synthetic bottom-up approach based on

the animat approach (Wilson, 1991) was preferred for the current work. This made the

existing models inadequate, because they are over-designed and too complex (Pfeifer,

1994), leaving no other alternative than designing yet another emotion model.

Recently, models have been suggested that also follow a bottom-up approach (Vel�asquez,

1998; Ca~namero, 1997; Foliot and Michel, 1998; Wright, 1996) and it is interesting to

see that they often agree with the present work in the treatment given to the most rel-

evant issues. The problem with reproducing most of these models is that they usually

provide so little architectural speci�cation that they allow almost total freedom of im-

plementation. Furthermore, the evaluation of their practical implementations is often

di�cult, because in general they are presented as an end result, i.e. the adaptiveness

value of the presence of emotions is not evaluated, but only presented as fact. In these

conditions, unless an objective and accurate description of the end product is given,

only its direct observation can make any kind of evaluation possible.

The most signi�cant emotion features that the designed model tries to capture are:

� Emotions have valence, i.e., they provide a positive or negative hedonic value.

� Emotions have some persistence in time, i.e. sudden unrealistic swings between

di�erent emotions should not be allowed, particularly when the emotions in ques-

tion di�er a lot.

� The occurrence of a certain emotion depends not only on direct sensory input,

but also on the agent's recent emotional history.

� Emotions colour perception in that what is perceived is biased by the current

emotional state.

� Emotional state can be neutral or dominated by an emotion. This implies the

existence of a mechanism to decide which emotion, if any, is dominant at any one

time.

The model that was developed | Figure 3.1 | is based on four basic emotions (E):
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Happiness, Sadness, Fear and Anger. These emotions were selected because they are

believed to be the most universally expressed emotions along with Disgust (Ekman,

1992) and are adequate and useful for the robot{environment interaction a�orded by

the experiments. Others might prove too sophisticated or out of place. For instance,

there seems to be no situation where it is appropriate for the robot to feel disgust.

However, if, for instance, toxic food were added to the environment, disgust would

become useful to keep the robot away from it.

E = fHappiness, Sadness, Fear, Angerg4 (3.1)

The emotions chosen are also usually included in the de�nitions of basic or primary

emotions5 (see, for example Shaver et al., 1987; Power and Dalgleish, 1997; Goleman,

1995), which is a good indicator of their relevance and need. Other emotions, like love

and hate, which some authors like to suggest as primary emotions, were not included

because they do not seem very basic6 and the present work does not have, for the

moment, any social aims.

The model determines the intensity of each emotion based on the robot's current

internal feelings (F). The intensity of each emotion is calculated through simple linear

weighted dependencies from feelings. The nature of the feelings depends on the robot

and its task, but might, for example, include Hunger, Pain and Temperature. The set

used in the �rst experiments is given in Equation 3.2.

F = fHunger, Pain, Restlessness, Temperature, Eatingg (3.2)

Furthermore, the emotion state also in
uences the robot's feelings, or body state. The

body reactions that give rise to an emotion are also the ones aroused by the emotion.

This way, each emotion tries to in
uence the body state in such a way that the resulting

4 A di�erent typeface is used for the model's emotions to distinguish them from natural emotions.

5 It should be noted that the paradigm of primary emotions is not undisputed, yet most of the

arguments against it are marginal to the present usage. These arguments refer to the plausibility of

translating all emotions in terms of graduations of primary emotions. The point here is that these

emotions are more universal and fundamental than others and therefore more adequate to animats

with low reasoning capabilities in a simpli�ed environment.

6 There are even arguments against considering them as emotions (e.g., Sloman, 1987).
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Figure 3.1: Emotions model.

body state matches the state that gives rise to that particular emotion. An emotion

only in
uences the body if its intensity value is signi�cantly large, i.e. its value is above

an activation threshold. In this case, the emotion is considered active.

The emotions in
uence the body through a hormone system, by producing appropriate

hormones. The hormone system in the model is a very simpli�ed one. It consists of

having one hormone associated with each feeling. A feeling intensity is not a value

directly obtained from the value of the body sensation that gives rise to it, but from

the sum of the sensation and hormone value. The hormone values can be (positively or

negatively) high enough to totally hide the real sensations from the robot's perception
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of its body. The hormone quantities produced by each emotion are directly related to its

intensity and its dependencies on the associated feelings. The stronger the dependency

on a certain feeling, the greater quantity of the associated hormone is produced by an

emotion.

On the one hand, the hormone mechanism introduces a sort of �ght between the

emotions to gain control over the body which is ultimately what selects which emotion

will be dominant. On the other hand, the robot feelings are not only dependent on

its sensations but are also dependent on its emotional state, i.e. the intensity of its

emotions.

A formal description of the model's functions is given by Equations 3.3 to 3.8. The

function Th[b�;b+](x) was simply needed to con�ne values within an interval [b
�
; b+].

Th[b�;b+](x) =

8>>><
>>>:

b
�

if x < b
�

b+ if x > b+

x otherwise

(3.3)

Equation 3.4 shows how the intensity value of emotion e at step n (Ien) is calculated

from the intensity of the feelings (Ifn) at that step. This calculation involves an emotion

bias (Be) and coupling coe�cients (Cef ) between the emotion e and the feelings f .

8e 2 E ;8n 2 N; Ien = Th[0;1](Be +
X
f2F

(CefIfn)) (3.4)

The calculation of the feeling's intensity has to take into account both the in
uences

provided by the hormone system (Hfn), which are dependent on a coe�cient param-

eter (Ch), and the value of the respective sensation (Sfn). The sensations' values are

directly derived from the sensory data. The hormone values are responsible for the

memory of the emotion system, and depend both on their previous values and the

emotion in
uences (Afn). Note that these emotion in
uences are calculated using the

same coupling coe�cients (Cef ) that were used to calculate the emotions themselves.

Emotions only in
uence the hormone values if their intensity is above the activation

threshold (Itha). To calculate the value of the hormones (Hfn), two di�erent system

parameters are used, the attack gain (�up) and the decay gain (�dn). The �rst one
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is used when the emotions and their in
uences are increasing and the other when the

emotion's intensities are fading away. In general, the attack gain is much higher than

the decay gain. This way the decay of emotions is slow while the emergence of new

emotions is much faster. The values of these parameters and all the other used in the

model are in Appendix A (which also points out some value restrictions).

8f 2 F ;8n 2 N;

Ifn = Th[0;1](ChHfn
+ Sfn) (3.5)

Hfn =

8<
:

0 if n = 1

�nHfn + (1� �n)Afn�1
if n > 1

(3.6)

Afn =
X

e2E: Ien>Itha

CefIen (3.7)

�n =

8<
:

�up if jAfn j > jHfn j
�dn otherwise

(3.8)

The hormones' values can increase quite rapidly, allowing for the quick build up of a

new emotional state, and decrease slowly allowing for the persistence of an emotional

state even when the cause that gave rise to it is gone | another of the characteristic

features of emotions.

Figure 3.2 shows the response of an emotion e to a sensation on which it has a depen-

dency (Cef ) of 0:8 weight. This dependency is actually indirect, through the respective

feeling f . Assuming that the hormone feedback is initially zero, then when the sen-

sation value (Sf ) is 1:0, the emotion intensity (Ie) is 0:8 which is the highest value

possible in this example. The in
uence of the hormone (Hf ) is only noticeable after

the sensation returns to value zero. Before that, the feeling intensity (If ) is saturated

by the stimulus itself. When the stimulus disappears, the emotion intensity has a sud-

den drop in value because it becomes dependent solely on the total value of hormone

(Hf ) that accumulated while the sensation was on. The values of hormone and emo-

tion gradually decay to zero without the presence of the sensation. When the emotion

intensity decays to values below the activation threshold, the emotion's in
uence on

the hormone ceases and the values' decay rate increases.
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Figure 3.2: Emotional response to a sensation.

As a concrete example of the dynamics of the model in terms of robot-environment

interactions consider the situation of the robot colliding with an obstacle. The collision

itself produces a pain sensation that will be captured by the pain feeling. Assuming

that fear has a strong dependency on pain7, then the fear intensity will rise. If

this intensity is high enough to make the fear emotion active then fear will produce

hormones. In particular, the hormone associated with pain will quickly build up during

the collision. This will make the fear emotion grow stronger and possibly overtake

other existing emotions. When the robot �nally manages to cease the collision, it will

still have pain not because the pain sensation is still there, but because the hormone

associated with pain has a high value. So the fear emotion will persist while the

hormone gradually decreases in value. This means that while the robot is gaining

distance from the obstacle, the fear will still be there. Nevertheless, it will usually

fade away as soon as a short distance is gained and the risk of further collisions has

diminished.

It should be noted that the time scales involved in the persistence of an emotion after

the stimulus is gone, particularly when in the presence of a new stimulus that favours

another emotion, are quite small. This allows for what is perceived as quick changes

of emotions, in opposition to the much slower process of changes in mood. One can

only talk of moods when talking of the residual hormone values that might exist in the

system and are not strong enough to stimulate the existence of a dominant emotion.

7 Although this dependency is used in the experiments, aversive stimulation such as pain is more

usually connected to anger in humans (e.g., Izard, 1993).
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That would be consistent with the theory that moods are di�erentiated from emotions

in terms of level of arousal (Panksepp, 1995). These residual hormone values can act

as moods in the sense that they might favour the appearance of certain emotions, but

the short time scales involved in the persistence of the residual values in the model

probably make even this interpretation uncomfortable.

The dominant emotion is the one with the highest intensity, unless no emotion intensity

exceeds a selection threshold8(Iths). In this case, there will not be a dominant emotion

and emotional state will be neutral.

Emotions were divided into two categories: positive and negative. The ones that are

considered \pleasant" are positive (only happiness, in the set of emotions used), the

others are considered negative. This way a value judgement can easily be obtained

from the emotion model by considering the intensity of the current dominant emotion

and whether it is positive or negative.

In summary, the model of emotions described provides not only an emotional state,

based on simple feelings, that is coherent with the current situation, but also in
uences

the body perception.

Side issues associated with emotions as moods and temperaments were not directly

built into the architecture and are only exhibited as a by-product. Di�erent temper-

aments, for instance, can be achieved by having di�erent emotion dependencies on

feelings or changing other parameters of the system.

3.4.2 Discussion

Like many other psychological terms (e.g. intelligence, consciousness), emotion is dif-

�cult to de�ne and the existing emotion models employ mostly working de�nitions

that tend to con
ict with each other. There are even those who defend that emotions

are emergent properties of complete agents and should not be engineered in the agent

(Pfeifer, 1994).

On the one hand, emotions are essentially a private internal experience not subject

8 This threshold is independent of the activation threshold, but should probably not be lower to ensure

that the dominant emotions are always active.
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to direct observation by others than the individual experiencing them, making proper

scienti�c analysis extremely di�cult. A behaviourist approach in particular would

eliminate the emotions themselves. On the other hand, emotions are intrinsically

related to other psychological processes (e.g. cognition) and the arti�cial separation

from them created by the traditional scienti�c approach together with the arti�ciality

of the experimental setups often hide away the true nature of real emotional experiences

(Kaiser and Wehrle, 1996).

Research on the emotions �eld (James, 1890) started by emphasising the role of physi-

ological arousal and emotional behaviour as primary and considering the awareness of

the emotional state as the perception of these responses to the situation.

In opposition, recent emotions models usually take for granted that cognition has

a fundamental part in the mechanism of emotions, namely that the phenomenon of

rational appraisal of the stimuli is essential (e.g., Lazarus, 1982). Most of the them use

as evidence for their position the experiment reported by Schachter (1964) which gives

some evidence for the need of cognition to label body arousal with particular emotions.

However, there are some fundamental problems with this experiment (De Sousa, 1987;

Zajonc, 1984). One is that it relies mostly on verbal reports of the subjects and some

deceit has even been discovered in their reports after the experiment was �nished.

Second, it relies on very simpli�ed arousal mechanisms and meanwhile research has

shown that emotional arousal is much more di�erentiated than was previously thought.

It is well known that the reasons people give for their actions are not necessarily

the real reasons. This has been particularly well demonstrated by experiments with

patients who have the right and left brain hemispheres disconnected, in which the

patient would with one of the hemispheres invent a posteriori an arbitrary reason for

an action commanded by the other hemisphere for a totally di�erent reason (Gazzaniga

and LeDoux, 1978). In particular, these experiments showed that emotional outcomes

can be transmitted from one hemisphere to the other without the knowledge of their

causes being transmitted, demonstrating a dissociation between the emotional reaction

and its cause. The mechanisms that lead us to do what we do, and in particular to

our emotional reactions, are not necessarily knowable to the conscious self, which can

rationalise them to give us the delusion that we act rationally (LeDoux, 1998; Cytowic,
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1993). So apart from the deceit involved in reporting an experience to a third party

there is also an element of self-deceit by the rational mind.

Emotions in particular are often associated with situations of time pressure where

rational decision making similar to the one traditional Arti�cial Intelligence space

search tries to mimic is inadequate. This suggests that emotion mechanisms should

rely to some extent on simple associations of stimuli.

This latter view was accepted as important in de�nition of emotions and of utility in

robotics applications when designing the proposed model of emotions. The decision

of taking this stance re
ects a background in the �eld of behaviour-oriented Arti�cial

Intelligence, where similar issues are discussed under di�erent denominations.

While most of the computational models of emotions rely on distinct entities that

are labelled after human emotions, many researchers, particularly those looking into

bottom-up approaches, would prefer the total dismissal of emotion labels. This is a

valid approach in that emotions' categorisation is unnecessary to their existence and

it can even be argued that the categorisation process is only done at a conscious, and

therefore higher, level than the one required by the initial stages of a bottom-up sys-

tem. The problem is how to take into consideration the di�erent distinctions between

emotions. In particular, an approach that reduces emotions to a simple unidimensional

pleasure/displeasure vector (e.g., Kitano, 1995; Foliot and Michel, 1998) loses much

of the richness provided by emotions.

There are basically two views for the process of categorising emotions with di�erent

labels (Wehrle, 1998): emotions can either be considered emergent labels for the eval-

uation of prototypical situations or events (modal emotions) or evolutionarily achieved

response programs (basic emotions). Either way their richness cannot be reduced to a

one dimensional vector (Ekman, 1992).

Nevertheless, using existing emotion labels is not always an elegant solution. At times

the need for the emotions to be in tune with the agent-environment interaction will

make their meaning farfetched from their human counterpart (Wehrle, 1998) . However,

labelling them often allows a quick grasp of what they stand for.

From a more practical view, using di�erent emotions can be useful by providing a way to
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separate the di�erent problems the robot is confronted with into di�erent categories.

This will, for instance, permit a modular multi-dimensional reinforcement function

when emotions are used as reinforcement (which can be useful, for example, to allow

the agent to concentrate on danger and ignore hunger when under threat); or allow for

each problem to be solved separately, if emotions are used to divide the problem space

into smaller sub-problems.

The proposed model is full of simpli�cations and ignores many of the features expressed

in current de�nitions of emotions. Furthermore, because the robot's environment is

very simple, emotions themselves will also be very simpli�ed | simpli�ed, perhaps,

to the point where their distinction from simpler mechanisms as drives or motivation

systems becomes di�use. However, features that are characteristic of emotions alone

(e.g. persistence and valence) were reproduced to give them more authenticity.

Emotions have evolved from rigid adaptive systems as re
exes and physiological drives,

but are more 
exible mechanisms because they involve an appraisal of signi�cance of

the events in terms of the survival of the individual and action tendencies instead

of a direct coupling from events to action (Staller and Petta, 1998). In the model

presented here this 
exibility is achieved in that events are not directly transformed

in actions but are subjectively evaluated as emotion value. Instead of proposing rigid

behavioural solutions, emotions provide guidance for behaviour by attributing this

value as reinforcement to the performance of the robot's behaviour in terms of its �nal

goals.

One of the simpli�cations consists in the fact that the model only incorporates simple

linear dependencies of feelings in the de�nition of emotion arousal. This has some lim-

itations. For instance, the distress caused by hunger should be much more noticeable

when hunger reaches dangerous levels (Balkenius, 1995) which suggests that the de-

pendence between the two should perhaps be exponential. Moreover, the dependency

should probably not be monotonic. The distress level should possibly rise if the agent

is consuming too much food. In general, stimuli are not minimised or maximised but

kept within comfort values. Nevertheless, this process that we perceive as homeostasis,

i.e. keeping a value within bounds, is often made with the aid of certain environmental

conditions (Bolles, 1980). Furthermore, emotions are modelled as simple response to
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events, without any anticipatory power attached to them. However, unexpectedness

can a�ect emotion intensity (Ortony et al., 1988) and certain emotions can be asso-

ciated with the notion of expected reward (Balkenius, 1995). For example, anger is

often triggered when an expected reward is not obtained and fear can be seen as a

reaction to an expected negative reward.

The hormone system developed is also very simpli�ed and does not try to mimic bio-

logical hormone systems and the naming might be misleading by suggesting di�erent

functions than those modelled in the system. Hormone discharges are usually associ-

ated with transformations in the functioning of the nervous system induced by emo-

tions, but rather at the level of behavioral output (Kravitz, 1988) than at the level of

perception. Nevertheless, emotions are responsible for moving certain body sensations

from the background to the foreground of our attention (Dam�asio, 1994). Moreover,

there is evidence to suggest that sensations are not produced only by stimuli but also

by brain processes. Melzack (1997) defends that sensory input only modulates the

experience of the body generated by the brain, they do not directly cause it. Pain is

referred by Melzack as a demonstrative example: only if a local anaesthetic is deliv-

ered to a person in time to prevent the early pain response does the later pain totally

disappear.

There is no reason to claim that the developed model provides the robot with the

ability to feel emotions in the sense the humans do. To start with, the body plays

a crucial role in human emotional experience (LeDoux, 1998). A robot's underlying

composition is very di�erent from human physiology and the sensors of its physical

state that might de�ne its emotional feelings would also have to be very di�erent

(Picard, 1997). Furthermore, its lack of consciousness (Frijda and Swagerman, 1987;

Ortony et al., 1988) together with the fact that its emotions are far from the complexity

of true emotions as experienced by humans makes such an assumption ludicrous. In

reality, it was considered more important to design emotions that could be a�orded by

the robot-environment interaction than to equip the robot with human-like emotions

(Ca~namero, 1998). However, language will be used that might, implicitly, attribute

emotional feelings to the robot. This kind of language is used only because it is

more practical and concise. Nevertheless, a di�erent typeface was used for the agent's
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\emotions".

3.4.3 Application

The model of emotions behaves appropriately when tested on the robot, in the sense

that the robot consistently displays plausible contextual emotional states during the

process of interacting with the environment. Furthermore, because its emotions are

grounded in subjective body \feelings", and not direct sensory input or \sensations",

it manages to avoid sudden changes of emotional state, from one extreme emotion to a

completely di�erent one. The more di�erent the two emotions are, the more di�cult

it is to change from one to the other. The physiological arousal caused by emotions

was repeatedly left out of cognitive theories of emotions, because it was not considered

cognitively interesting, yet without it emotions lack their characteristic inertia (Mo�at

et al., 1993). Nevertheless, recent arti�cial emotion models based in a sub-symbolic

approach do often try to model this feature (Picard, 1997; Vel�asquez, 1998; Breazeal,

1998).

The developed model does not endow the robot with the feeling of emotions, in the sense

that it has a conscious and subjective experience of emotions (Frijda and Swagerman,

1987), but more importantly it endows it with an emotional state that can be used to

a�ect its behaviour.

In order to evaluate the functional role of emotions in reasoning, the emotional state

should be used for the actual control of a complete agent, determining its behaviour

(Albus, 1990; Wright, 1996; Mo�at et al., 1993). Furthermore, it is important to show

empirically that endowing the robot with emotions has adaptive value by comparing

the developed emotional robot with other non-emotional robots. Although emotions

research in biological systems can be a source of inspiration to guide robot design, it is

not by itself a valid proof of the adaptive value of arti�cial emotions for arti�cial systems

(Ca~namero, 1998). In the next chapters, examples will be given of its use in robot

experiments. In particular, emotions will be used to �ll in much of the speci�cations

left open by the selected learning architecture described in the previous chapter.



Chapter 4

Action-Based Control

4.1 Introduction

In this chapter, a description is given of a �rst attempt at integrating an emotional

system with the control of an autonomous robot. To start with, emotions were allowed

to in
uence control by providing an evaluation of the context.

To investigate the validity of this approach, several experiments were carried out using

a robot simulation. The robot was given a simple survival task that requires learning.

A reinforcement learning controller was developed to solve the task. This controller

makes use of well-known techniques: a Q-learning algorithm to learn its policy and

neural networks for storing the utility values.

Unfortunately, experiments showed that, contrary to expectations, the emotion-based

evaluation was inadequate as a reinforcement signal for policy acquisition by Q-learning.

The problem was investigated and further experiments were done to �nd other ways

in which emotions could be more helpful to the action-based controller. The use of

emotions as modulators of learning system parameters proved much more fruitful.

A detailed description of the experimental setup is presented in the next section, Sec-

tion 4.2, covering the robot's task, emotional system, controller, and experimental

evaluation. This is followed by a report of the experiments done and the results ob-

tained in Section 4.3. Apart from the main experiments, other experiments were done

to determine why the emotion reinforcement was unsuccessful and to explore other

ways in which emotions can in
uence control. The results for these experiments can
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be found in Sections 4.4 and 4.6, respectively. In between these two sections, the results

achieved until that point and the problems found with emotion-dependent reinforce-

ment are summarised. The conclusions reached at that point are later summarised,

together with the conclusions for the alternative emotion roles experiments, in the

section at end of this chapter. For further implementation details consult Appendix C.

4.2 Experimental Setup

4.2.1 Robot, environment and task

Figure 4.1: The Khepera robot.

All the experiments were carried out in a simulator (Michel, 1996) of a Khepera robot

(Mondada et al., 1994) | a small robot with a left and a right wheel motor, and eight

infrared sensors that allow it to detect object proximity and ambient light. Six of the

sensors are located at the front of the robot and two at the rear. Figure 4.1 shows

the original robot. The experiments were done with the simulated robot within the

environment shown by Figure 4.2, which is a closed environment with some walls and

three lights surrounded by bricks1. Figure 4.3 gives an idea of the sensor capabilities

of the simulated robot. Figure 4.3(b) shows the values for the infrared distance sensors

1 The lights had to be surrounded by bricks to avoid the robot becoming permanently stuck in their

concavities. The lights can still be perceived by the robot as the bricks are transparent to light.
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Figure 4.2: The simulated robot and its environment.



70

obtained for situation 4.3(a). The maximum distance sensor range is in between the

distance to the front brick, which is barely detected, and that to the rear brick, which

is not detected at all. The third brick, on the right side, shows how obstacles can be

very close to the robot without being detected.

(a) Robot in environ-

ment.

(b) Sensor values.

Figure 4.3: The infrared sensor readings of proximity for situation 4.3(a) is given in

4.3(b). It should be noticed that these readings can vary between 0 and 1023 and that

the very low values, e.g. 5, are due to noise.

The ultimate goal of the research reported in this dissertation is to develop a fully

autonomous real robot. This was one reason why self-su�ciency was considered a

useful property to include in the system. Another reason for this choice was that it is

easier to conceptually ground emotions in the context of an animal-like creature with

self-maintenance needs. Simulated feeding needs were therefore added to the robot.

The robot is always losing energy: the more it uses its motors the more energy is used

up. It can recover its energy from light. More exactly, the amount of energy that the

robot acquires at each step depends on whether enough light is being received by the

two front sensors and on how much light is being received by those sensors. The main

reason for having lights as food sources is to allow the robot to distinguish its food

sources with its poor perception capabilities. Apart from feeding itself by standing

next to the lights, the robot is supposed to wander around and avoid walls.

4.2.2 Emotion system

An emotion system was developed based on the emotion model presented previously

in Chapter 3.4 and using the following feelings (F): Hunger, Pain, Temperature, Rest-
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lessness and Eating. The sensations that give rise to these feelings are2:

Hunger | is directly related to its current energy de�cit.

Pain | is active if the robot is bumping into obstacles.

Temperature | depends upon the usage of the motors; as long as high velocity is

being demanded of the motors, the temperature will rise3.

Restlessness | increases if the robot does not move.

Eating | depends on the amount of energy the robot is acquiring at the moment.

Its value is high when the hunger sensation is decreasing.

The values of the emotions' dependencies on feelings and biases (see Table 4.1) were

carefully chosen by hand to provide adequate emotions for the possible body states.

The process of selecting these values consisted in �rst deciding which combination of

feelings should lead to an emotional reaction taking into consideration the robot task,

and then selecting some initial dependencies accordingly. These were afterwards cor-

rected if the observation of the robot's emotional reactions while running showed any

unexpected de�ciencies. This did not involve many adjustments and mostly consisted

in balancing the di�erent emotions so that the right emotion would be dominant in

each speci�c emotional context. Some initial tentative dependencies had the drawback

of allowing the saturation of the emotional system but simple restrictions on the de-

pendencies values were found that eliminated this problem (details in Appendix A).

The emotions are such that:

� The robot is happy if there is nothing wrong with the present situation. It will

be particularly happy if it has been using its motors a lot or is in the process of

getting new energy at the moment.

� If the robot is restless, has very low energy and it is not acquiring energy, then

its state will be sad.

2 Further details in Appendix C.1.

3 The real robot's velocity does not matter, in fact; the robot can be demanding high speed from its

motors while heading motionless against a wall.
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� If the robot bumps into the walls then the pain will make it fearful.

� If the robot is hungry, restless and with pain it will get angry.

Hunger Pain Restlessness Temperature Eating Bias

Happiness -0.2 -0.3 -0.2 0.2 0.7 0.1

Sadness 0.7 0.0 0.5 0.0 -0.4 0.0

Fear -0.4 0.8 -0.2 0.15 0.0 0.0

Anger 0.2 0.2 0.3 -0.2 0.0 0.0

Table 4.1: The emotions' dependencies on feelings.

4.2.3 Basic controller

The role of the basic learning controller is to produce actions that maximise the ex-

pected evaluation received. To achieve this purpose the controller can select one of six

possible discrete actions which are speci�ed in detail in Appendix C.3:

� move slowly forward;

� move fast forward;

� turn left;

� turn right;

� stop;

� move slowly backwards with a slight twist to the right.

The controller | Figure 4.4 | implements a Q-learning algorithm using neural net-

works very similar to the one reported by Lin (1992), which was presented in Section

2.5.1. It will be de�ned next in terms of two separate modules:

Associative Memory Module |This plastic module associates the sensor readings

and feelings with the current expected value of each of the actions that the robot

can take.

Action Selection Module | Based on the information provided by the previous

module, this module makes a stochastic selection of the action to take at each

step.
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Action Selection
Module

Associative Memory
Module

Sensor
Readings

Feelings
Values (If)

Reinforcement (R)

Expected Evaluation
of each Action (Q)

Learning Rate (η)

Temperature (T)

Selected Action (a)

Figure 4.4: Basic controller for action-based control.

Associative Memory Module

The associative memory consists of six neural networks that each try to predict the

outcome of selecting each one of the six available actions. Each network is a three layer

feed-forward network with:

� 22 input units: one for each distance(8) and light(8) sensor4, one for each feel-

ing(5) and a bias;

� 5 hidden units;

� 1 output unit that represents the expected outcome if the action associated with

this net is selected in the situation represented by the input units.

The activation functions used were the hyperbolic tangent5 in the hidden layer and

the identity function in the output layer. This allows the output nodes of the neural

networks to have values outside the interval between minus one and one. The weights

between the hidden layer and the output layer are initialised with random values, and

the weights between the input layer and the hidden layer are set to zero. This way all

the networks will provide an initial neutral evaluation. The learning algorithm used to

4 The values of IR sensors were converted to values varying between zero and one, with one repre-

senting maximum intensity, before being given as input to the networks.

5 More speci�cally: tanh(�x) = 1�e�2�x

1+e�2�x
, � = 0:25.
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train the networks was back-propagation (see, for example, Hertz et al., 1991, for a

full description).

First attempts that used the networks to associate the received evaluation, i.e. the

reinforcement R, with the network inputs were a failure because the robot's learning

was very poor. Learning from delayed rewards with Q-learning (Watkins, 1989) proved

to be much more successful. The networks were used to learn utility functions that

model util(sn; a):

util(sn; a) = Rn+1 + 
 eval(sn+1) (4.1)

The discount factor (
) was set to 0:9. The function eval(sn+1) is the expected cumu-

lative discounted reinforcement starting from the state sn+1 reached by doing action

a in state sn. The value Rn+1 is the immediate reinforcement in iteration n+ 1. For

each iteration, the target value Tn(sn�1; a) will be given to the network whose action

was used in the previous iteration:

Tn(sn�1; a) = Rn + 
 maxfQn(sn; k) j k 2 actionsg (4.2)

After an action a has been evaluated its network state for situation sn�1 is saved.

The network state is de�ned by the current value of each one of its units, i.e. by

the input values, the hidden units values and the output values of the network. The

new estimative of the utility value (Qn(sn; k)) of each action k for the new state sn

is calculated. The maximum is obtained and used in the previous formula to update

the weights of the network associated with action a and the previous situation. Just

before learning by back-propagation takes place, the network's saved state for situation

sn�1 is restored. After the learning has taken place, the utility value for action a is

recalculated for state sn.

This way, apart from updating the network's prediction with the experience provided

by the last action taken, new predictions are calculated for the present situation. Those

will be used by the Action Selection Module, described below, to decide which action

to take next.
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Action Selection Module

The utility values provided by the associative memory are used for the stochastic

selection of the next action to take. The higher the value provided by the associated

net, the higher the probability of an action to be selected.

The function used to calculate the probability of each action is based on the Boltzmann-

Gibbs distribution. For a selection temperature6 T, the probability of selecting action

a is:

Pn(sn; a) =
e
Qn(sn;a)

T

X

k2actions

e
Qn(sn;k)

T

(4.3)

The selection of a new action is not made every cycle; there is a certain inertia of the

current action that is directly correlated with its probability. The reason for this is to

have a more coherent behaviour. Otherwise, the robot would spend most of its time

trembling, because it would be selecting di�erent actions at each step.

An action is only evaluated, and eventually a new one selected, every second step,

unless there is a signi�cant change in the emotional state, i.e., a change from one of

the following states to another:

� a positive emotion is dominant;

� a negative emotion is dominant;

� no emotion is dominant.

Even if an evaluation takes place, the probability of not choosing an action based on

the above criteria (Equation 4.3), if a is the currently selected action, is:

Pn(No Selection) = 10

q
Pn(sn; a) (4.4)

This way the probability of an action being selected at a given step is extended to a

probability of its being consecutively selected in the following next ten steps.

6 The selection temperature is not related at all to the robot's temperature feeling.
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Both the mechanisms described attempt to give a more coherent behaviour to the

robot, yet care was taken not to do this at the expense of:

� Preventing the controller from taking notice of sudden changes in the emotional

state;

� Giving preference to the previous action independently of how well rated that

action is;

� Giving preference to the previous action even when the conditions have changed

signi�cantly, making it inappropriate to do so.

Summary of one control iteration

% Action a was taken previously in state sn�1

% State sn reached and reinforcement Rn received

PreviousState  network[a].state;

For k 2 Actions do

network[k].update(sn);

Qn(sn; k)  network[k].output;

end;

Tn(sn�1; a)  Rn + 
 maxfQn(sn; k) j k 2 actionsg;
network[a].state  PreviousState;

network[a].learn(Tt(sn�1; a));

network[a].update(sn);

Qt(sn; a)  network[a].output;

if there is a change in emotional state or

random number 2 [0; 1) > 10
p
Pn(sn; a) then

Select new action using the probabilities provided by Equation 4.3;

else

Select action a again;

end;
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4.2.4 Experimental procedure

All experiments consisted in having the robot learn for two thousand steps followed by

an evaluation of its performance, for another two thousand steps, with learning turned

o�. In total, the robot takes one hundred and twenty thousand learning steps and sixty

one evaluation tests, one test after each learning period plus one extra test before any

learning takes place. Tests were made transparent to the experiment: when continuing

with its learning the robot's state is restored to the state just after its last learning

step and previous to the test.

The robot's evaluation was based on the reinforcement values it received in its testing

period. There were two evaluations, each based on a di�erent reinforcement function.

One was the mean of the emotion-dependent reinforcement values and the other

was the mean of the sensation-dependent reinforcement values obtained during its

test period (Sections 4.3.1 and 4.3.2 give a detailed description of the two reinforcement

functions). The higher the value, the better is the evaluation. Good robot behaviour

(i.e. task-adapted behaviour) is usually associated with positive reinforcement and bad

behaviour with negative reinforcement. Nevertheless, positive reinforcement is usually

sporadic so mean reinforcements are not expected to take very high values. Qualitative

evaluations made by an external observer are also reported which show this association

of higher reinforcement values with better overall performance of the robot in its task.

For each experiment, this whole procedure was performed �fty times so that an average

of the evaluations over several trials could be obtained. Each trial had a new robot with

all state values reset and placed in a randomly selected starting position. There are

twenty possible starting positions, shown in Figure 4.5, that were chosen to maximise

the di�erences in starting conditions, but were otherwise arbitrary.

The experimental data shown in the result graphs are the means of the reinforcement

values obtained during the sixty-one testing phases in each of the �fty runs. The error

bars show the 95% con�dence intervals7.

The robot was designed to learn continuously, as any autonomous robot should, and

therefore it might seem strange to have a distinction between a learning phase and

7 See Appendix B for detailed calculations.
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Figure 4.5: The robot's starting positions.

a performance phase. The idea behind having a testing phase with no learning is

that each step in a test represents a snapshot situation that the controller has to deal

with. If the robot was allowed to learn while under evaluation the resulting evaluation

would be the mean performance of consecutive controller learning stages and not the

instantaneous evaluation of the controller's current learning stage.

4.3 Experimental Results

The purpose of the experiments reported in this section was to test whether an emotion-

based evaluation of the context is adequate as a reinforcement signal for policy acqui-

sition by Q-learning8.

The results of an experiment that uses emotions as a source of reinforcement are given

and compared to those of a control experiment that uses a more traditional reinforce-

ment function based on raw sensations. The controllers used in each experiment are:

� Emotion-driven Controller | The basic learning controller using emotion-

dependent reinforcement.

8 This and other speci�c experimental hypotheses to be tested are highlighted in italics in the course

of this dissertation.
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� Sensation-driven Controller | The same basic learning controller but using

sensation-dependent reinforcement instead.

To give a clear idea of the learning algorithm's performance the experimental results

for two other controllers are also presented:

� Random Controller | Shows how the basic controller would perform if it did

not learn at all.

� Hand-crafted Controller | Shows how well a competent controller can per-

form in practice.

The results for each of the four di�erent controllers will be given next, one by one.

4.3.1 Emotion-driven controller: Emotion-dependent reinforcement

The �rst controller tested, the emotion-driven controller, uses an emotion-dependent

reinforcement (Rn = Ren) which is de�ned in Equation 4.6. The reinforcement magni-

tude was set to be the intensity of the current dominant emotion or zero if there was

no dominant emotion. If the dominant emotion was negative then its positive intensity

value would be negated.

8e 2 E ; sign(e) =

8
<
:

1 if e is positive

�1 if e is negative
(4.5)

Ren =

8<
:

0 if 8e 2 E ; Ien < Iths

Iensign(e) where e = argmax
e2E

(Ien) otherwise
(4.6)

Experimental results are shown in Figure 4.6. The right graph shows the values for the

reinforcement function used in this experiment. The left graph shows the reinforcement

function based on direct sensations which was only calculated and shown for direct

comparison with the results of the controller presented next.

The initial analysis of the results suggested the existence of two quite di�erentiated

populations, one that manages to learn the task and another that does not. For this
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Figure 4.6: Emotion-driven controller: Reinforcement values registered while the robot

was learning with emotion-dependent reinforcement (right graph). The sensation-

dependent reinforcement values (left graph) were calculated for comparison with other

experiments.

reason, in the presentation of the results, two populations were distinguished based

on the emotion-dependent reinforcement obtained at the last ten evaluation points.

The trials that had quite negative reinforcement for these testing points formed one

population which amounted to 38% of the total. The remaining trials were included

in the \successful" population.

It should be noticed that the robot's adaptation task must be achieved in a limited

amount of time. If the robot takes too long to adapt, the reinforcement will lose mean-

ing and the task will become impossible. The reason for this is that if the robot does

not learn to feed itself, it will get increasingly hungry. It will eventually arrive at a

state where it will keep getting low reinforcement on account of its hunger, indepen-

dently of what it does. This is why two very di�erent populations can co-exist: only

one managed to learn the task before being dominated by hunger.

An alternative partition of populations was made based on the robot's �nal behaviour.

This new partition is consistent with the previous in that good behaviour is usually
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associated with good reinforcement and bad behaviour with low reinforcement. A total

of 58% of the robots managed to converge to a suitable behaviour, namely circling

near a light or just wandering near a light in such a way that they receive plenty

of light and never get hungry. Two of these robots made use of the fast-forward

action, with di�erent levels of success, to achieve a higher reinforcement through the

increase in temperature. However, the remaining 42% end up behaving in a totally

inappropriate way (e.g. bumping into walls or lights). If the robot ends circling in an

open space getting increasingly hungry because it was not near any light, its behaviour

was also considered inappropriate. This would happen frequently enough to hint that

the circling behaviour near a light was not a robust behaviour, but a sort of accidental

behaviour. In fact, if the robot were moved away from the light to a open space, it

would just remain with its circling behaviour as if nothing had happened. In time, after

hunger begins to be noticeable, it will learn to behave di�erently. However, this change

of behaviour will be mostly due to new learning and not to any previous learning.

4.3.2 Sensation-driven controller: Sensation-dependent reinforcement

At this point, the use of emotions to provide reinforcement was re-evaluated. The

reason for the poor results obtained in the previous experiment appears to be that

the controller is not receiving the kind of reinforcement it needs. The controller needs

a good evaluation of the situation as it stands at the moment and not the mixed

evaluation of present and recent past situations that the emotions provide.

The reinforcement provided by emotions can thus be quite misleading. Even when a

good action selection is made, the robot may still receive negative reinforcement (and

vice versa). An example will make this problem clear. Imagine that the robot bumps

into a wall. It will feel pain and therefore become fearful. During the time that it

is close to the wall it will be fearful but even if it �nally manages to go away, by

taking a move-backwards action for example, it will still receive negative reinforcement

because the fear emotion will persist for a while even when the wall is out of reach.

So, although the fear intensity will get smaller, it will still be providing inappropriate

negative reinforcement.

It looks as if the reason for the emotion-dependent evaluation failure is the recurrent
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and lateral in
uences of emotions in the model. To test this hypothesis, a control

test was made that consisted in using a controller, the sensation-driven controller,

with a putatively more adequate reinforcement signal (Rn = Rsn). This new signal

was based on the previous one but without any temporal or lateral side e�ects. The

sensations were used instead of the feelings to calculate the value of each emotion

and the highest of these values was selected to be the reinforcement value. Figure

4.7 illustrates this modi�cation and Equation 4.7 shows the resulting reinforcement

function. As in the previous experiment, the value of negative emotions was negated.

This procedure provides a more traditional reinforcement that directly re
ects the

immediate situation.

Rsn =

0
@Be +

X
f2F

(CefSfn)

1
A sign(e) where e = argmax

e2E

0
@Be +

X
f2F

(CefSfn)

1
A (4.7)

Dominant  Emotion
Value (Rs)

Emotions (I’e∈ )

Sensations (Sf∈ )

Cef

F

Figure 4.7: Truncated emotion model used to obtain the sensation-dependent rein-

forcement.

The results obtained in this experiment are shown in Figure 4.8 in terms of the mean

sensation-dependent reinforcement and the mean emotion-dependent reinforcement.

The emotion-dependent reinforcement value graph is given for comparison with previ-

ous results while the sensation-dependent reinforcement is the reinforcement actually

received by the robot. They are a considerable improvement on the results obtained

with the previous experiment which used emotion-dependent reinforcement.
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Figure 4.8: Sensation-driven controller: Reinforcement values registered while the

robot was learning with sensation-dependent reinforcement (left graph). The emotion-

dependent reinforcement values (right graph) are shown for comparison with other

experiments.

Qualitatively, most of the �nal behaviours of the robot were quite successful. Many

would converge to the circling behaviour near a light or wandering near a light. These

behaviours tend to be much more robust than the ones of the previous experiment, in

that in general there was not so much preference for just one action. Instead, the �nal

behaviours would use a small subset of actions involving both forward and backward

turning movements much more often, which made them withstand better being placed

away from the light. Another group, about 40%, were wandering about using the

fast-forward action a lot. This kind of behaviour gets them very good reinforcement,

because this action raises the temperature, which is considered bene�cial. However,

because these robots do not always keep within reach of one light, their reinforcement

is unstable. The reinforcement may su�er substantial drops, if the robot becomes

signi�cantly hungry because of being away from a light source for a while. Although

this kind of behaviour has better reinforcement in general, it was only learned once

in the emotion-dependent reinforcement experiment. There was another case in that

experiment where the same sort of behaviour was found, but the robot would bump
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into lights and walls all the time. This led to the suspicion that this kind of behaviour

under emotion-dependent reinforcement might degenerate into some sort of bumping

behaviour. To test this hypothesis, a small experiment was run that consisted in

starting the emotion-dependent reinforcement learning experiment with robots that

had converged to this wandering behaviour. Two out of the ten robots tested converged

to crashing behaviour. When the same experiment was done with sensation-dependent

reinforcement all robots maintained their wandering behaviour.

In the evaluation of the behaviours just described, the restrictive short range of the

robot's sensors and the fact that the inputs of the networks provide only a view of the

current situation should be taken into consideration. So one cannot expect from the

robot some kind of complex behaviour that depends on previous actions or sensings or

some sort of global map of the environment.

4.3.3 Random controller: No learning

The results obtained with both emotion-dependent and sensation-dependent reinforce-

ment do not seem very impressive in terms of �nal reinforcement obtained. Even the

most successful robots do not seem to do much more than to maintain their average

reinforcement. However, it should be clear that even just maintaining reinforcement is

quite good. A controller selecting randomly between all available actions will actually

have decreasing reinforcement, because of increasing hunger, throughout the entire

experiment.

Figure 4.9 shows how the robot performs over time without any adaptation, just with

a random action selection controller. The left graph of Figure 4.9 shows the values of

the reinforcement function based on direct sensations and the right graph shows the

reinforcement function based on emotions. The immediate sensations provide a steady

and gradual decrease of reinforcement over time, that re
ects the decrease in energy

level, while emotions su�er a much more signi�cant drop right at the start due to the

recurrent nature of the emotions model.

The experimental setup provides temporal constraints that add complexity to the prob-

lem. As observed previously in the emotion-driven controller section, the time the robot
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Figure 4.9: Random controller: Reinforcement values registered with a non-learning

robot.

takes to learn its task is crucial to its successful adaptation. If it takes too long, the

reinforcement will lose meaning before any adaptation can be achieved. It should be

noted that this does not make the problem unsolvable, but is an added di�culty that

is successfully overcome by the sensation-driven controller.

4.3.4 Hand-crafted controller: Competent initial state

The fact that the reinforcement received by the robots can theoretically reach the

value of 1:0 is misleading in suggesting that a successful learning controller should,

in time, reach and maintain such a reinforcement. In practice this is not possible,

because maximum reinforcement can only be achieved during short periods of time

widely separated from each other.

In order to have a better understanding of the level of performance of the learning

controllers, a controller was designed to take full advantage of its environment and

achieve high reinforcement, by carefully selecting the initial weights of the networks.

There were two main reasons to hand-craft this controller:
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� to determine how much reinforcement a reasonably successful behaviour might

receive in practice;

� to check if a successful behaviour is stable under the learning algorithm.

To simplify the process of design of this controller, the set of actions from which the

controller makes its selection was slightly modi�ed. In the new set of actions, the

backward movement is done in a straight line instead of with a twist to the right.

The designed behaviour consisted in having the robot, oriented towards a light, se-

lecting between fast forward movement and backward movement, depending on how

far from the light it was at each point. This would give rise to a kind of interleaved

attraction-and-repulsion-to-light behaviour. The robot's reinforcement would be opti-

mal because its temperature would reach its maximum value, the robot would eat a lot

and would not have any hunger, pain or restlessness. The networks' initial weights were

pre-de�ned in such a way that the result behaviour would be the one just described.

Some minor settings of the weights were made in order to give it a little of avoiding

behaviour, although this was not very successful: the avoidance behaviour the robot

exhibited due to this last procedure was quite ine�ective.

Three new experiments were made with the robot starting o� with this human crafted

behaviour, each one of them corresponding to one of the experiments reported pre-

viously: no learning, emotion-dependent learning and sensation-dependent learning.

Figures 4.10, 4.11 and 4.12 show the results.

Without learning, this behaviour would end up receiving a mean emotion-dependent

reinforcement of 0:54 and a mean sensation-dependent reinforcement of 0:30. When

the robot was allowed to learn either with sensation-dependent or emotion-dependent

reinforcement, it maintained the initial behaviour and kept similar reinforcement val-

ues, apart from a small increase in variance due to the exploration characteristic of

learning.

In the experiments reported previously (Figures 4.6 and 4.8), the robots learning from

emotion-dependent and sensation-dependent reinforcement would sometimes reach re-

inforcement levels similar to these. However, the algorithm does not always manage to
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Figure 4.10: Hand-crafted controller with no learning.
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Figure 4.11: Hand-crafted controller learning with emotion-dependent reinforcement

(right graph). The sensation-dependent values (left graph) are for comparison.
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Figure 4.12: Hand-crafted controller learning with sensation-dependent reinforce-

ment(left graph). The emotion-dependent values (right graph) are for comparison.

converge to such good solutions and in the case of some previous emotion-dependent

reinforcement trials it converged to receiving very bad reinforcements. It should be

noticed that the exact behaviour that was designed cannot be achieved with the set

of actions normally used. Nevertheless, slightly more sophisticated behaviours were

learned in these previous experiments that achieved the same kind of reinforcement for

long periods of time. These learned behaviours were less stable, because it is more

di�cult for the controller to keep track of a light with an action set with non-invertible

actions. This might suggest that if the robot was equipped with the new set of ac-

tions then its performance in the learning task would improve. However, experiments

showed the opposite (Figures 4.13, 4.14 and 4.15 show the results of using the new set

of actions with the �rst three controllers of this section). The reason for this worse

performance is probably the fact that it is easier to avoid further encounters with an

obstacle that appears in front of the vehicle if the backward movement is not done in

a straight line. The results with this new set of actions agree, however, with those

previously obtained in that emotions provide an inadequate reinforcement signal for

this task.
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Figure 4.13: Random controller employing the second set of actions.
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Figure 4.14: Emotion-driven controller employing the second set of actions. The rein-

forcement received by the controller is on the right graph and the sensation-dependent

values (left graph) are for comparison.
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Figure 4.15: Sensation-driven controller employing the second set of actions. The

reinforcement received by the controller is on the left graph and the emotion-dependent

values (right graph) are for comparison.

4.4 Further Experiments for Analysis of Results

Given the results presented, one has to conclude that the emotions were quite un-

successful in providing a good reinforcement value, but still the question remains of

whether its failure was not due to some hidden experimental feature. A number of

possible causes were investigated experimentally. Alongside, two other issues were also

explored: emotion in
uence on perception and learning during evaluations. The results

obtained are presented next.

4.4.1 Reinforcement dependent upon rate of change

It was noticed previously that one of the problems of emotions might be that they con-

tinue giving a negative (or positive) reinforcement even when the situation is improving

(or deteriorating). An attempt to minimise this problem was to have the reinforcement

value be the di�erence between the previous and the current emotional value. In other

words, the new reinforcement value (R0) would re
ect the improvement or worsening
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Figure 4.16: Emotion-driven controller with rate-of-change-dependent reinforcement.

The reinforcement received by the controller is on the right graph and the sensation-

dependent values (left graph) are for comparison.
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Figure 4.17: Sensation-driven controller with rate-of-change-dependent reinforcement.

The reinforcement received by the controller is on the left graph and the emotion-

dependent values (right graph) are for comparison.
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of the robot's situation.

R0

n
= Rn �Rn�1 (4.8)

The value of this kind of reinforcement is in general smaller; for this reason, the selection

temperature used by the Action Selection Module was decreased to a more suitable

value of 0.02.

Figures 4.16 and 4.17 show the results for using rate of change for both the emotion-

dependent and sensation-dependent reinforcements. Once again, the robot performs

much better with the sensation-dependent reinforcement. The use of rate of change

proved to be unsuccessful in improving learning with emotion-dependent reinforcement.

4.4.2 Emotion selection threshold in sensation-dependent reinforce-

ment

The main unexplored di�erence between sensation-dependent and emotion-dependent

reinforcement is the selection threshold (Iths) used in process of selecting a dominant

emotion. If the intensity of the emotions is too small, then there will be no dominant

emotion selected and the emotion-dependent reinforcement will be zero. This thresh-

olding implies that the emotion-dependent reinforcement provides less information than

the sensation-dependent reinforcement, because small emotion intensity values are dis-

carded and replaced by zero. The selection threshold used in the previous experiments

was 0:2; an experiment was run applying this same threshold to sensation-dependent

reinforcement. No signi�cant di�erences arise from the use of the threshold in the

sensation-dependent reinforcement | the result graphs (see Figure 4.18) are similar

to those previously obtained (see Figure 4.8). Apparently, the Q-learning mechanism

seems to solve the threshold-added di�culty easily.

The results of this experiment show that the selection threshold by itself is not respon-

sible for the low performance of the emotion-driven controller.



CHAPTER 4: Action-Based Control 93

0 2 4 6 8 10 12

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Number of learning steps

M
ea

n 
re

in
fo

rc
em

en
t (

in
 a

 2
00

0 
st

ep
s 

te
st

)

0 2 4 6 8 10 12

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Number of learning steps

M
ea

n 
re

in
fo

rc
em

en
t (

in
 a

 2
00

0 
st

ep
s 

te
st

)

Sensation-dep. reinforcement value Emotion-dep. reinforcement value

Figure 4.18: Sensation-driven controller with reinforcement subject to thresholding.

The reinforcement received by the controller is on the left graph and the emotion-

dependent values (right graph) are for comparison.

4.4.3 Simple action selection

In the basic controller used in the experiments, extensions were made to the \vanilla"

Q-learning algorithm in terms of the action selection mechanism. This algorithm is

usually associated with an action selection at every step, but in order to have the

current action changed less often, some mechanisms were added that prevent an ac-

tion selection at every step by maintaining the current action. This could also have

in
uenced the performance of the emotion-dependent reinforcement controllers.

A new set of experiments was made with traditional action selection at every step.

The main di�erences found in the new results when compared with the previous ones

are the following:

� as expected, the robot's �nal behaviour is much more hesitant, i.e. less able to

keep an action for a meaningful amount of time;

� new types of behaviours emerged (e.g. circling near a light using the fast-forward
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action in conjunction with other actions);

� the robot is more successful at avoiding collisions;

� in general, the area covered by the robot is smaller;

� energy maintenance improved substantially in the case of emotion-dependent

reinforcement, and declined slightly in the case of the sensation-dependent rein-

forcement;

� the results of the experiment with no learning develop an increase in reinforce-

ment, before the reinforcement begins to drop due to hunger (it was found that

with a random action selection the temperature sensation has a strong tendency

to rise, which makes the robot happier);

� the experiment with sensation-dependent reinforcement received similar rein-

forcements.

� the experiment with emotion-dependent reinforcement received much higher re-

inforcements, although it still performed considerably worse than the experiment

with sensation-dependent reinforcement.

The use of a simpler action selection mechanism has advantages and disadvantages.

Although the task becomes easier to learn (probably due to the reduction in bumping),

the �nal behaviour is not very impressive.

These results might suggest that the problems of the \vanilla" controller could be easily

overcome if the action selection temperature were lowered, yet this is not the case. The

experiment was repeated with a temperature of 0.07 instead of the usual 0.1 and the

results in terms of reinforcements were worse.

4.4.4 Di�erent networks

Contrary to what might be suggested by the poor results, the networks used are actually

somewhat over-complex for the task in hand, because using only one neuron in the

hidden layer showed similar results (see Figure 4.19).
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Figure 4.19: Sensation-driven controller using networks with only one hidden unit. The

reinforcement received by the controller is on the left graph and the emotion-dependent

values (right graph) are for comparison.
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Figure 4.20: Sensation-driven controller using networks with initial random values in

all weights. The reinforcement received by the controller is on the left graph and the

emotion-dependent values (right graph) are for comparison.
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Figure 4.21: Sensation-driven controller with faithful perception. The reinforcement

received by the controller is on the left graph and the emotion-dependent values (right

graph) are for comparison.

In opposition to traditional experiments with learning neural-networks, the weights

between the input layer and the hidden layer were initially set to zero instead of

randomised. Not using random initialisations for all the network weights might seem

strange and prone to failure, but results of experiments that use random initialisations

of all weights show that this has not negatively in
uenced the learning performance

(compare Figures 4.20 and 4.8).

4.4.5 Non-emotional perception

The value of the feelings given as input to the neural networks are not the robot's

raw sensations, but are in
uenced by the emotions through the hormone system: the

robot has a false image of its body sensations. Does this in
uence the learning task?

A brief analysis of the networks' weights showed that the feelings had an active role in

in
uencing the controllers' preferences in the selection of actions.

Figure 4.21 shows the results for a learning experiment where the controller neural
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networks (see Figure 4.4) input sensations (Sf ) instead of feelings (If ). There were no

signi�cant changes in the reinforcement rewards.

Even if the robot learns with the networks' feelings inputs totally removed and only

the sensor readings' inputs are kept (i.e. the feelings' input values are replaced by a

constant number) the results are still similar to those previously reported: performance

for both sensation-dependent and emotion-dependent reinforcement does not su�er any

signi�cant change.

4.4.6 Learning during tests

The robot's controller is designed to learn continuously, yet learning is turned o�

during the evaluation period9. The reason for this is simply to have an instantaneous

evaluation of the same controller in two thousand di�erent scenarios provided by the

steps of the evaluation period. The problem is that these are not arbitrarily chosen

random scenarios, but are the scenarios consecutively reached by the robot due to its

action selections. Therefore, a test's individual evaluations are not always a fair sample

of the evaluations the robot can get. The behaviour of the robot in the earlier steps of

the evaluation period will bias its evaluation in later steps. Extreme behaviours may

cause long runs of good or bad reinforcement. For instance, if the controller is not

aware of certain features of the environment it might repeatedly perform a misplaced

action that will keep it in this situation and the evaluation will be biased. For example,

it might be running into a wall for the whole of a test. If the space localisation of each

individual evaluation were made independent, the �nal evaluation would be improved

by evaluations done in di�erent places in space (e.g. near a light).

The main problem with any testing approach for this experiment is that each evaluation

can not be dissociated from the robot's previous experiences and it is intimately related

with the previous step situation both in terms of the robot's spatial location and

internal state. There are few alternatives for how the test may be done, because the

robot's location and internal state cannot be arbitrarily chosen. These are always the

result of the robot's history.

9 For details on the experimental procedure consult Section 4.2.4.
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Figure 4.22: Sensation-driven controller learning during tests. The reinforcement re-

ceived by the controller is on the left graph and the emotion-dependent values (right

graph) are for comparison.

One possible alternative would be to have several smaller learning test periods instead

of one, at each testing phase. After each one of these test periods the robot state

would be restored to the state prior to the test phase. Executing several tests starting

from the same point would result in di�erent evaluations due to the randomness of

the controller. However, following this evaluation method would result in a signi�cant

increase in the complexity of the evaluation process that would probably not be justi�ed

by the evaluation improvements obtained.

A more radical alternative would be to allow learning during the test period. The

previously described test problems would not happen if the robot were allowed to

learn, because the robot would learn to go away from the obstacles. This alternative

is also not devoid of faults. If the two thousand step test is kept, then it will not

be same controller under test during the period, but a controller that is constantly

changing. Furthermore, it will be impossible to di�erentiate what the controller has

actually learned from what it learns and unlearns as situations change. However, this

is probably a more adequate evaluation procedure, because the robot is supposed to
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learn continuously anyway; and possibly the evaluation procedure in use is actually

providing a worse evaluation than the one deserved by the robot's performance.

To test whether performance would be better, an experiment was run that employed

learning while evaluating the robot's performance. Results are shown in Figure 4.22.

The robot seems to perform a bit better, although not signi�cantly better, when learn-

ing all the time. It is also interesting to notice that the variance of the sensation-

dependent reinforcements is much smaller, which can be easily explained by the eval-

uations not favouring extremes as much as before.

4.5 Summary

Table 4.2 presents a summary of the results obtained in the experiments carried out

with the four di�erent controllers both in terms of emotion-dependent and sensation-

dependent reinforcement value. Results show that emotions were unsuccessful in pro-

viding a competitive reinforcement function when compared with a more traditional

reinforcement function based on sensations. Although not presented here, results con-

sistent with this �nding were obtained even with slightly di�erent emotion models (an

example is given in Appendix C.5). The main di�erence between the reinforcement

functions, and the only identi�ed cause for the emotions' failure, was the existence of

recurrent and lateral in
uences in the emotions model.

In Section 4.4, several other causes were tested, but no other suitable explanations were

Emotion-dependent Sensation-dependent

Controllers Section Figure reinforcement reinforcement

Emotion-driven group 1 x4.3.1 4.6 �0:04 � 0:10 0:04 � 0:06

group 2 x4.3.1 4.6 �0:91 � 0:07 �0:78� 0:12

Sensation-driven x4.3.2 4.8 0:07 � 0:09 0:07 � 0:05

Random x4.3.3 4.9 �0:80 � 0:07 �0:32� 0:06

Hand-crafted no learning x4.3.4 4.10 0:54 � 0:00 0:30 � 0:00

with learning x4.3.4 4.11 & 4.12 0:53 � 0:01 0:29 � 0:00

Table 4.2: Comparison of the emotion-driven, the sensation-driven, the random and

the hand-crafted controllers. The means of the emotion-dependent and sensation-

dependent reinforcement values and their 95% con�dence interval obtained in the last

ten testing points of the trials are presented.
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found. In each case, no signi�cant change in results was observed when the possible

cause was eliminated or controlled for. In particular:

� The use of rate-of-change-dependent reinforcement instead of absolute value re-

inforcement does not a�ect results | emotion-dependent reinforcement still per-

forms worse than sensation-dependent reinforcement.

� The emotion selection threshold is not responsible for the di�erences in perfor-

mance between the emotion-dependent and the sensation-dependent reinforce-

ment. The same threshold can be applied to the sensation-dependent reinforce-

ment with no detrimental e�ect.

� The use of traditional action selection at every step produces equivalent results.

The main di�erences found in those results when compared with the ones shown

here are that it is easier for the agent to reach higher reinforcement values, but

the �nal behaviour observed by external visual inspection is less impressive. As

expected, the robot's �nal behaviour is much more hesitant and in general, the

area covered by the robot is smaller. However, the robot seems more successful

at avoiding collisions which probably makes the learning task easier.

� Networks with di�erent numbers of hidden units and networks with all their

weights initialised with random values were also tested and found to make no

signi�cant di�erence.

Another issue relevant to the model used is whether using feelings or sensations for

the robot's perception makes a di�erence in terms of its �nal performance. In general,

the values given as input to the neural networks are not the robot's raw sensations,

but feelings that are in
uenced by the emotions through the hormone system. In the

particular task tested, the in
uence of emotions on perception is unnoticeable in terms

of �nal behaviour.

As a side issue, a di�erent evaluation mechanism was also attempted. The question

of whether the robot should be allowed to learn while being evaluated was raised.

Arguments for and against such procedure were presented. In practice, results show

that there is not much di�erence in terms of �nal evaluation whether the robot is
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learning or not. This result will be used in next chapter to reduce the experiments'

computational e�ort by evaluating the robot while it is learning its task.

4.6 Exploring Alternative Uses of Emotions

The experiments reported previously have repeatedly shown that using emotions as

reinforcement in the present controller is detrimental. However, other uses of emotions

might be more fruitful. The fact that emotions performed poorly as reinforcement

value should not discourage their use in arti�cial systems: the importance of emotions

in human reasoning is widely acknowledged and there are many other possible roles

for them that should be considered.

In this section two alternative uses are suggested and tested. In both cases, emotions

modulate the learning process instead of directly attributing value to the situations

the robot experiences10.

4.6.1 Emotions modulating learning rate

Human learning abilities are strongly dependent on the person's emotional state. For

instance, strong emotions often give rise to vivid memories, while lack of emotion is

often associated with disinterest and di�culties in learning (Schwartz and Reisberg,

1991). Along this line, experiments were made using emotions to modulate the learning

rate. In these experiments, the robot would have a higher learning rate | directly

proportional to the intensity of the current dominant emotion | if under a dominant

emotion, be this positive or negative, than if there were no dominant emotion.

The use of reinforcement value to modulate learning rate is not new in the domain

of robotic research, experiments using a similar modulation have been reported that

showed an increase of learning performance in terms of robustness (Verschure et al.,

1995).

This experiment explores the use of emotions as a sort of learning gain. This learning

gain (G) is used to in
uence the learning rate (�) in the following way:

10 Sensation-dependent reinforcement will be used in these experiments.
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� = 2G(Emotion) �default (4.9)

To obtain the normal results with �xed learning rate, we should have a constant learn-

ing gain (G) of 0:5.

First of all and before starting the actual experiments, di�erent values of learning rates

were tried out. Figure 4.23 shows the results, including the use of the learning rate

default value of 0:1 used by all previous experiments (same as in Figure 4.8).

Next some experiments were done using a variable learning rate dependent on the

robot's emotional state. In these experiments (results in Figures 4.24 and 4.25) the

learning gain was set to the intensity of the present emotion which varies between the

selection threshold and 1, or zero if there were no dominant emotion, i.e.:

G(Emotion) =

8<
:

Ie if there is is a dominant emotion e

0 otherwise
(4.10)

The learning rate itself was calculated through Equation 4.9 and took values between

0:04 and 0:2 or was zero. This means that if a dominant emotion is not present the

robot will not learn at all. It is quite surprising how the robot still manages to maintain

its high rate of success in the learning task (although the learning is a bit slower) if one

takes into consideration that neutral states are not being learned at all by the neural

networks. If the weights of all network layers are initialised with random values (see

Figure 4.25), some (64%) of the robots present severe di�culties in learning (although

they do manage to learn in the end). This is the result of the initial preferences of the

system not being neutral. If these initial preferences happen to favour the wrong kind

of actions, the robot will �rst have to unlearn these. Since the robot is not learning all

the time, this can result in a high performance cost.

It is possible to conclude that the robot does not need to waste computing time on

learning if there is no emotion present. This will not compromise its performance,

unless the robot's initial preferences are very misleading. Even in this case, the drop

in performance is only temporary.
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Figure 4.23: Di�erent learning rates.
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Figure 4.24: Learning rate dependent on current emotion. The reinforcement received

by the controller is on the left graph and the emotion-dependent values (right graph)

are for comparison.
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Figure 4.25: Learning rate dependent on current emotion. Random initial weights. The

reinforcement received by the controller is on the left graph and the emotion-dependent

values (right graph) are for comparison.
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4.6.2 Variable emotion-dependent selection temperature

Emotions were also used to modulate the action selection temperature with success.

In these experiments, the �xed exploration versus exploitation ratio was upgraded to

a more sophisticated selection algorithm that takes into consideration the deadlock

situations in which the robot gets trapped. In these situations, there is an option that

is by far better ranked than the others and therefore always gets selected although its

practical utility turns out to be very low and it is not able to change the situation at all.

The solution used to circumvent this problem was increasing the selection temperature

when the robot was in a negative emotional state and thus triggering more exploration

than usual.

To begin with, some experiments were run to discover how well the robot would perform

with di�erent �xed temperatures. See Figure 4.26 for results. Previous experiments

used an action selection temperature of 0:1. Consult Figure 4.8 for comparison.

Next, emotions were used to modulate the exploration versus exploitation ratio, by

directly in
uencing the temperature parameter of the action selection module. Two

emotion-dependent functions (F1 and F2) were designed to yield values in the range

0:05 and 0:25. This is a suitable selection temperature range because it includes values

for which the learning controller performs well, but is slightly extended towards the

upper bound to allow more exploration in action selection.

F1(Emotion) =

8<
:

Ie=4:0 if there is is a dominant emotion e

0:05 otherwise
(4.11)

F2(Emotion) =

8<
:

Ie=4:0 if there is is a negative dominant emotion e

0:05 otherwise
(4.12)

The results for using the function F1 and F2 to determine selection temperature (T)

are presented in Figures 4.27 and 4.28, respectively.

Apparently, the results for function F2 (see Figure 4.28) are an improvement over the

results previously achieved. The use of this function allows the robot to explore new

solutions when it is in a bad situation. The function F1, increases the temperature

independently of whether the robot's emotional state is positive or negative. Disrupting
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Figure 4.26: Di�erent action selection temperatures.
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Figure 4.27: Selection temperature in
uenced by emotions: F1. The reinforcement

received by the controller is on the left graph and the emotion-dependent values (right

graph) are for comparison.
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Figure 4.28: Selection temperature in
uenced by emotions: F2. The reinforcement

received by the controller is on the left graph and the emotion-dependent values (right

graph) are for comparison.
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behaviour that is being successful does not seem to be such a good idea, although no

signi�cant changes can be found in using F1 (see Figure 4.27) when compared with

the standard experiment (Figure 4.8). Table 4.3 summarises the results.

Emotion-dependent Sensation-dependent

Sensation-driven controllers Figure reinforcement reinforcement

Selection temperature = 0.1 4.8 0:07� 0:09 0:07 � 0:05

Selection temperature = F1 4.27 0:05� 0:09 0:08 � 0:05

Selection temperature = F2 4.28 0:17� 0:09 0:13 � 0:04

Table 4.3: Comparison of experiments with di�erent selection temperature. The table

presents the means of reinforcement values and 95% con�dence interval in the last ten

testing points of each experiment.

4.7 Conclusions

Unfortunately, the experiments reported in this chapter failed to show that emotions

can be used for reinforcement in robot learning. More importantly, the results do

show that the role of emotions is more intricate than often assumed and that a simple

approach to the use of emotions as context judgement values suitable for direct use as

reinforcement is not very successful when a more than usually realistic emotion model

is used. This suggests that more attention should be given to the role attributed to

emotions in adaptation.

The emotions do not really provide a good evaluation of what is going on at any

one moment, but are a sort of mixed evaluation the robot has acquired from its past

experiences. This may be good for modulating its behaviour, but should not be taken

at face value when trying to predict the outcome of each one of its primitive actions.

In Section 4.6 preliminary results were presented that suggest that emotions can be

successfully used in modulating the learning rate and the exploration versus exploita-

tion ratio. Although these alternative approaches to the use of emotions appeared

to be successful in improving performance, no solid conclusions could be drawn with

the data obtained, the problem being that the simpler sensation-dependent controllers

are already quite good at their task, making it di�cult to demonstrate clearly any

signi�cant improvement provided by more sophisticated controllers. For a thorough
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examination of these mechanisms the complexity of the robot's task must be increased,

and that is the topic of the next chapter.
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Chapter 5

Behaviour-Based Control

5.1 Introduction

The task described in the previous chapter was extended to provide a more challeng-

ing robot-environment interaction. This prompted an upgrade of the basic learning

controller. The new controller is based on the action-based one described in Section

4.2.3, but the actions were replaced by behaviours that add extra competence to the

controller. As is demonstrated in this chapter, the higher level of abstraction of this

controller makes it more suitable for the use of emotions.

Once more, emotions were used to in
uence control, but this time with more success.

Three possible forms of emotional in
uence were examined:

Control triggering | One of the most di�cult problems faced when employing re-

inforcement learning techniques in robotics applications is to determine when a

discrete state transition occurs. This transition can be triggered by some internal

or external event and must be identi�ed by the designer, because it determines

when the controller needs to re-evaluate its previous decision and make a new

one. An incorrect state transition design can be fatal to the success of the learn-

ing agent. In fact, this was the reason why it was found necessary to tackle this

problem �rst.

Experiments were done to test whether emotions can successfully ful�ll the role

of determining state transitions. In practice, the learning controller was triggered

whenever:

111



112

� there was a change of dominant emotion;

� the current dominant emotion intensity value was statistically di�erent from

the values recorded since a state transition was last made.

Reinforcement | In the initial experiments with behaviour-based control, emotion-

dependent reinforcement was set aside and sensation-dependent reinforcement

used instead1. The poor results obtained with the earlier task suggested that

emotion-dependent reinforcement might compromise the experiments' results.

Once the event-detection mechanism was settled, emotions were tested again as

source of reinforcement.

Perception | Another mechanism re-evaluated was the in
uence of emotions on

the robot's perception. When the robot learns associations between states and

rewards through its neural networks, it is using feelings to represent state by

using the feelings as network inputs. In the emotion model developed, feelings

are in
uenced by emotions through the hormone system. So the represented

robot state is emotion-dependent: the state which the robot learns to associate

with rewards is actually being biased by emotions. It is being changed to be

more compatible with the active emotions, thus making the relevant features of

the environment more salient because those are usually the ones associated with

emotional value. The question is, what is the impact of this on the robot's �nal

performance.

To start with, the next section provides a detailed description of the testbed used for the

experiments. A description is given of the extended task, emotion system and learning

controller, stressing the di�erences from the previous experimental setup. In addition,

this chapter's experiments bene�ted from a more elaborate experimental procedure

that is also described within that section. Three sections follow, each reporting on

experiments that explore one of the roles of emotion mentioned above. This is followed

by a global analysis of the �nal emotional controller in Section 5.6, and some conclusions

on the overall accomplishments of emotions in the last section of the chapter. Some of

the speci�c implementation details of the experiments are relegated to Appendix D.

1 Sections 4.3.1 and 4.3.2 provide a full description of each of these reinforcement functions.
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5.2 Experimental Setup

5.2.1 Robot, environment and task

As before, the robot's task consists in collecting energy from food sources scattered

throughout the environment, but the survival problem was made more di�cult by

making energy harder to obtain. This was accomplished by two di�erent means:

� The robot has to perform elaborate behaviour to receive energy. To gain energy

from a food source, the robot has to bump into it. This will make energy available

for a short period of time. At the same time an odour will be released that can

be sensed by the robot. It is important that the agent is able to discriminate

this state through its sensors, because the agent can only get energy during this

period. This energy is obtained by receiving high values of light in its rear light

sensors, which means that the robot must quickly turn its back to the food source

as soon as it senses that energy is available. To receive further energy the robot

has to restart the whole process by hitting the light again so that a new time

window of released energy is started.

� The robot can only extract a limited amount of energy from each food source. A

food source can only release energy a few times before it is exhausted. In time,

the food source will recover its ability to provide energy again, but meanwhile

the robot is forced to look for other sources of energy in order to survive. The

robot cannot be successful by relying on a single food source for energy, i.e. the

time it takes for new energy to be available in a single food source is longer than

the time it takes for the robot to use it.

When a food source has no energy, the light associated with it is turned o�. This

was done in order to avoid the robot staying around the same food source, even when

that source has no more energy left. When the light is turned o�, the food source

becomes an obstacle like any other and the robot can look for a new food source with

its light sensors again. A light is on when it has energy available to release and during

the periods it is releasing energy. This last point is important, because otherwise the

robot would not be able to extract the energy through its light sensors. Although it was
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felt necessary to use the mechanism of turning the lights o� in the experiments to make

the task a bit easier for the robot, experiments a posteriori with emotion-dependent

event detection proved this mechanism super
uous. The robot would exhibit a slightly

worse performance, but still managed to successfully learn the task.

The task can be translated into multiple goals: moving around the environment in order

to �nd di�erent food sources and, if a food source is found, extracting energy from it.

Furthermore, the robot should not keep still in the same place for long durations of

time or collide with obstacles.

All the experiments were carried out with the same Khepera simulated robot, but

placed in the environment shown in Figure 5.2. There are a few exceptions in which

the environment pictured in Figure 5.1 is used instead. This is a more demanding

environment that is used to distinguish between controllers that exhibit similar per-

formances in the normal environment. The new environments are more corridor-like

than the previous, allowing the robot to travel from one light to another by wall fol-

lowing. The length of the corridors an agent must travel to go from one light to

another measures the di�culty of the environment, because longer corridors demand

more persistence from the robot.

Figure 5.1: The robot in its more demanding environment.
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Figure 5.2: The simulated robot and its normal environment.
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5.2.2 Emotion system

A new instantiation of the emotions model was made. On account of the added com-

plexity of the task, three new sensations were added to the emotion system: Smell,

Warmth and Proximity.

F = f Hunger, Pain, Restlessness, Temperature, Eating, Smell, Warmth,

Proximity g (5.1)

In addition, slight changes were introduced in the calculation of the previously existing

sensations. For details consult Appendix D.1. The sensations used were:

� Hunger: The robot's energy de�cit;

� Pain: High if the robot is bumping into obstacles;

� Restlessness: Increases if the robot does not move and it is reset whenever a

behaviour is selected;

� Temperature: Rises with high motor usage and returns to zero with low motor

usage;

� Eating: High when the robot is acquiring energy;

� Smell: Active when there is energy available;

� Warmth: Directly dependent on the intensity of light perceived by the robot's

light sensors;

� Proximity: Re
ects the proximity of the nearest obstacle perceived by the

distance sensors.

In order to have the robot's emotional state compatible with its new task, the emotions'

dependencies on feelings are such that:
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� The robot is happy if there is nothing wrong with the present situation. It will

be particularly happy if it has been using its motors a lot or is in the process

of getting new energy at the moment. Even just the smell of food can make it

happy.

� If the robot has very low energy and it is not acquiring energy, then its state will

be sad. It will be more sad if it cannot sense any light.

� If the robot bumps into obstacles then the pain will make it fearful. It will be

less fearful if it is hungry or restless.

� If the robot stays in the same place too long it will start to get restless. This will

make it angry. The anger will persist for as long as the robot does not move

away or change its current action. A hungry robot will tend to be more angry.

Table 5.1 presents the actual values for each of the emotion dependencies on feelings.

Again �nding the adequate dependencies values was a simple process of trial and

error, requiring few adjustments. One example was the need to adjust the fear and

happiness dependencies so that when the agent bumps into an obstacle around a light

to obtain food, the happiness generated is larger than the fear generated by the

pain. No emotion dependencies were created for the feeling of Proximity; this feeling

is used only to determine state within the learning controller.

Hunger Pain Restlessness Temperature Eating Smelling Warmth Bias

Happiness �0:2 �0:3 �0:2 0:2 0:4 0:3 0:0 0:1

Sadness 0:7 0:0 0:1 �0:2 �0:4 0:0 �0:2 �0:1

Fear �0:2 0:7 �0:2 0:1 �0:2 �0:2 0:0 0:0

Anger 0:2 0:1 0:7 �0:2 �0:2 0:0 0:0 0:0

Table 5.1: The emotions' dependencies on feelings.

5.2.3 Basic controller

The main improvement that was introduced with the new learning controller | Figure

5.3 | was the replacement of the primitive actions by behaviours. Taking into account

the current robot feelings, and the previously received evaluations, this controller tries

to maximise the evaluation received by selecting between one of the three possible
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behaviours. These three primitive behaviours were hand-designed and consist of the

following:

Avoid obstacles | Turn away from the nearest obstacle and move away from it. If

the sensors cannot detect any obstacle nearby, then remain still.

Seek Light | Go in the direction of the nearest light. If no light can be seen, remain

still.

Wall Following | If there is no wall in sight, move forwards at full speed. Once

a wall is found, follow it. This behaviour by itself is not very reliable in that

the robot can crash, i.e. become immobilized against a wall. The avoid-obstacles

behaviour can easily help in these situations.

It was chosen to have the primitive behaviours hand-designed and learn only the harder

task of behaviour coordination in the hope that emotions might be helpful in solving

some of problems found at this level.

Behaviour Selection
Module

Associative Memory
Module

Feelings
Values (If)

Reinforcement (R)

Expected Evaluation
of each Behaviour (Q)

Selected Behaviour (b)

Figure 5.3: Basic controller for behaviour-based control.

Apart from being behaviour-based, this controller is very similar to the previous, but

has a few other di�erences that are highlighted next in the context of each of its

modules: the Associative Memory Module and the Behaviour Selection Module.
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Associative Memory Module

This plastic module uses three neural networks to associate the robot feelings with the

current expected value of each of the three robot behaviours. These are three layer

feed-forward neural networks, with the following characteristics:

� 9 input units, one for each feeling and a bias2;

� 10 hidden units;

� 1 output unit that represents the expected outcome of the associated behaviour.

The neural networks initially used were not powerful enough to learn the solution for

the new problem. The number of hidden units had to be increased. Tests showed

that 10 hidden units allowed enough memory capacity without increasing too much

the computation time for each learning iteration3. More important than avoiding too

expensive computation times for the experiments is to avoid slow convergence of the

learning algorithm which was proved previously, in Section 4.3, to have a detrimental

e�ect on the success of the learning task. Furthermore, it was found that the linear

function on the output activation function had to be replaced by the hyperbolic tangent,

because the �rst performed very poorly. This way, both the hidden and output units

have the same activation function. Replacing the output activation function by a

hyperbolic tangent stipulated that the output values learned by the neural networks

be bounded between -1 and 1. To circumvent that problem, the utility values given to

the networks as target values were truncated to �t within that interval. This imposed

some compression of the utility values, but no obvious problem was found from this in

the experiments.

Behaviour Selection Module

Taking into account the value attributed to each behaviour by the previous module,

this module makes a straightforward stochastic selection of the behaviour to execute

2 The sensor readings are not necessary anymore because they are implicit in the new feelings.

3 Tests following the procedure used to mimic the hand-crafted behaviour (described in Section 5.6.3)

were made using 5, 6, 8, 10, 15 and 25 units. Best results were obtained for 10 and 15 units with

very small di�erences for 8 or more units.
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next based on the Boltzmann-Gibbs distribution. For a selection temperature4 T, the

probability of selecting behaviour b is:

Pn(sn; b) =
e
Qn(sn;b)

T

X

k2behaviours

e
Qn(sn;k)

T

(5.2)

5.2.4 Experimental procedure

The previous evaluation procedure5 had to be modi�ed to cope with the new task.

The learning period was extended to provide more time for knowledge acquisition to

take place. This resulted in a huge increase in the processing time of the experiences

that was redeemed in part by discarding the separate testing phases and evaluating

the robot while it learned. The distinction made between a learning phase and a

performance testing phase was thus eradicated. New evaluation measures were also

introduced that allow a more thorough interpretation of the results.

Each experiment consisted in having thirty di�erent robot trials of three million learn-

ing steps. In reality this duration could be made shorter, because the learning algo-

rithm converges long before the end of these trials. The reason for the long runs was

to make sure that the learning algorithm was stable and that the robot's performance

would not suddenly drop, for instance. This is particularly important in the context

of continuously learning agents. Nevertheless some of the preliminary experiments of

Section 5.3 were made with shorter trials of only twelve hundred thousand steps.

In each trial, a new fully recharged robot with all state values reset was placed at a

randomly selected starting position6. For evaluation purposes, the trial period was

divided into sixty smaller periods of �fty thousand steps (or thirty periods of forty

thousand steps, in the case of the shorter trials). For each of these periods the following

statistics were taken:

4 The selection temperature should not be confused with the temperature feeling.

5 Details in Section 4.2.4.

6 Any physical position, with a random orientation, in the environment that does not overlap any

obstacle.
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Emotion | mean of the reinforcement value provided by emotions, a measure of

how positive the robot's emotional state is, which is equivalent to the emotion-

dependent reinforcement measure taken in previous experiments;

Reinforcement | mean of the reinforcement obtained during all the steps which is

equivalent to the previous measure if emotion-dependent reinforcement is used or

to the sensation-dependent reinforcement measure taken in previous experiments

if sensation-dependent reinforcement is used in the experiment;

Event reinforcement | mean of the reinforcement obtained only for the steps at

which the learning controller was triggered;

Energy | mean energy level of the robot;

Distance | mean value of the Euclidean distance d, taken at one hundred steps

intervals, between the opposing points of the rectangular extent that contains all

the points the robot visited during the last interval,

d =
1

100

q
(xmax � xmin)2 + (ymax � ymin)2

a measure of how much distance was covered by the robot7;

Collisions | percentage of steps where a collision was detected;

Events | percentage of steps where the adaptive controller was triggered.

It should be noticed that while the reinforcement statistic is a good measure of overall

performance, the event reinforcement re
ects the actual reinforcement received by the

adaptive controller.

In the graphs of the results, an average of the di�erent statistics over the several trials

is presented with error bars representing the 95% con�dence interval8.

7 An iterative step-by-step distance measure would o�er little information, because it would equally

result in high values for situations where the robot is energetically moving in a very small region

and situations where the robot quickly covers its entire environment. The hundred step interval

was carefully chosen to capture the di�erence implicit in the previous situations and still be small

enough to measure most of the robot's motion.

8 The same as previously, consult Appendix B for details.
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Also reported within this chapter are a few follow-up experiments that consisted of

taking one of the �nal robots achieved by a normal experiment trial and testing it for

a further hundred thousand steps. These experiments were done to examine certain

behavioural details of the trained robots which are described during the presentation

of results.

In Appendix D.2, a summary of the di�erent settings used in individual experiments

is presented together with the values of the various system parameters.

5.3 Experiments: Control Triggering

5.3.1 Introduction

In a robotic environment, a distinct state can be found at virtually every step. The

perception of the world will always be at least slightly di�erent from step to step due

to noise. Nevertheless, making a re-evaluation of a behaviour-based system every step

by performing an evaluation of the previous behaviour and selecting a new behaviour

is not wise. It is both a computational waste and a hindrance to successfully learning

the advantages of each of the behaviours. If the behaviour is evaluated and eventually

replaced every step, then it will not have time to develop to its full potential and

will be reduced to small individual actions that will look almost random. This will

make it di�cult for the learning system to make a correct evaluation of the possible

achievements of the behaviours. On the other hand, if the behaviours are left running

for too long, events may occur that will make them inappropriate for the new situation.

The ideal would be to know when a signi�cant change has occurred in the environment

that makes a re-evaluation necessary.

Using emotions to trigger state transition seems reasonable, because emotions can

provide a global summarised vision of the environment. Any important change in the

environment is liable to be captured by changes in the emotional state.

Emotions are frequently pointed to as a source of interruption of behaviour (Sloman

and Croucher, 1981; Simon, 1967) in the domain of more traditional symbolic Arti�cial

Intelligence architectures. In general, it is considered that behaviour should be inter-
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rupted and eventually replaced whenever a strong emotion is felt. My added claim is

that if the emotional intensity falls, then behaviour should also be changed, because

the crisis that gave rise to the emotion has probably been solved. So state transition

is triggered not only by sudden rises of emotional intensity but also by abrupt drops.

Implicit in this approach is the fact that the emotion model being used is continuous

and so does not provide a clear cut onset or termination of emotions, requiring that

abrupt changes be detected instead.

Emotion
System

Perception
System

Behaviour
System

Adaptive
Controller

Reinforcement
Function

Event
Detector

Sensations

Feelings

Behaviour

Reinforcement

TriggerDominant emotion

Figure 5.4: Emotions triggering state transition.

In order to test whether emotions can successfully be used to trigger state transitions

(see Figure 5.4), two controllers were designed:

Event-triggered | Based on the ideas expounded above, a controller was designed

that has state transitions triggered by the detection of signi�cant changes in the

emotional state. From the robot's point of the view, an event occurs whenever

there is a signi�cant change in emotional state, as this should re
ect a relevant

event in the robot-environment interaction.

Interval-triggered | A simple alternative to emotion-dependent event detection

used for comparison. This controller triggers the adaptive controller at regular

intervals. In particular, the inadequacy of establishing a state transition at every

step is shown empirically.
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The development and evaluation of these two controllers is the topic of the following two

subsections. Next, a comparison between the two is made also taking into consideration

the performance of both a competent and a random controller. Finally, experiments

with a further increase in task di�culty are reported that make clear the advantages

of emotion-triggered state transition.

5.3.2 Event-triggered controller

To test the hypothesis above, a controller with emotion-dependent event detection was

designed. An event is detected whenever:

� there is a change of dominant emotion, including changes between emotional

states and neutral emotional states (i.e. states with no dominant emotion);

� the current dominant emotion value is statistically di�erent from the values

recorded since a state transition was last made, i.e. if the di�erence between

the new value and the mean of the previous values exceeds both a small toler-

ance threshold and � times the standard deviation of those previous values, where

� is a constant (details below);

� A maximum limit of 10 000 steps is reached.

If an event occurs, then the adaptive controller is triggered: the previous behaviour is

evaluated and a new behaviour is selected according to the new situation. Otherwise,

the current behaviour is left running.

The calculation of the mean and the standard deviation of the emotion intensity takes

into account all the steps between events. When a new event is detected, the rest-

lessness feeling is reset and the emotional state is re-evaluated. This is the �rst state

taken in the calculation of the two statistical variables. In the following steps, these

variables are iteratively updated until an event is detected. It should be noticed that

a new state can only be discriminated statistically after at least two states have been

recorded.

A minimum di�erence for value discrimination was required, a tolerance threshold of

0:02, to disregard insigni�cant variations in intensity value. Otherwise, in situations
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Figure 5.5: Event-triggered controller with di�erent values of � and no limit on the

maximum number of steps.

of very low standard deviation, imperceptible variations would be caught by the event

detection mechanism.

The factor � is the key parameter of the event detection mechanism. Although an

appropriate value was easily found, it was considered important to do a more extensive

investigation of the possible values it could take, so several short experiments were done

to test di�erent values. Figures 5.5 and 5.6 show two iterations of this process.

For values of � below or equal to 2, the maximum limit of steps is actually not required.

It was only for higher values that problems were found. The higher the value the larger

the number of robots that would stop detecting events altogether. The problem is that

if � is set too high then it becomes impossible for the event detection mechanism to
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Figure 5.6: Event-triggered controller with di�erent values of �.

discriminate between di�erent intensities of the same emotion. In experimental trials

where detection of events had ceased, robots were often found doing a wall-following

trajectory in an advanced state of starvation. In this case, no new emotion was liable

to pop up and the intensities of sadness felt by the robot were not di�erent enough to

trigger an event, even if the robot happened to pass by a light. The cycle could only

be broken by forcing an event after a maximum step limit. This limit was chosen high

enough to be the least intrusive possible, while still solving this problem. For instance,

with � set to 2, the robot would rarely reach intervals between events larger than a

thousand steps. In fact, results in Figure 5.6 show that using the maximum step limit

or not with this value of � does not make any signi�cant di�erence.
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It should be clear at this point that triggering events by detection of a signi�cant change

in the intensity of the dominant emotion is essential for the system. Experiments

showed that, even with a smaller maximum limit of 1000 steps, the system does not

work properly if the only di�erence in emotional state taken into consideration is the

change from one dominant emotion to another.

Figure 5.5 shows the results for di�erent values of � without the use of a maximum step

limit. The di�erent performances are generally good: the robots manage to maintain a

high energy value and a reduced number of collisions. The value of � = 2 was preferred

over the other tested values because it has good performance with many fewer events.

The fact that 2 was the highest value suggested that still higher values should be

tested, which required the introduction of the maximum step limit. Figure 5.6 shows

the results obtained compared with the best obtained previously. The new results

did not show either an improvement in performance or a substantial reduction in the

number of events.

The conclusion reached was that either 2 or 2:5 was an adequate value for � and

therefore the experiments in the next sections use the value 2 by default.

As Figure 5.7 shows, the discrepancy between the mean reinforcement and the event

reinforcement a robot actually receives is quite signi�cant for the event-triggered con-

troller. The event reinforcement is worse because an event usually signals a situation

where something went wrong and a new behaviour must be tried. To ensure that the

mean reinforcement is not more adequate than the event reinforcement, a new test

was done using as reinforcement the mean reinforcement obtained during the whole

period the robot was executing the previous behaviour. Figure 5.8 demonstrates that

there are no substantial di�erences in performance between the use of the two types of

reinforcement. For simplicity event reinforcement will continue to be used.

5.3.3 Interval-triggered controller

As stated before, generating an evaluation and selection of a behaviour in every step is

not fruitful. The initial experiments done with the behaviour-based controller did so

and were an endless source of disappointment. In Figure 5.9, the results obtained are
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Figure 5.7: Event and mean reinforcements of the event-triggered controller (� set to

2:5).
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Figure 5.8: Event-triggered controller using mean reinforcement (� set to 2:5).
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Figure 5.9: Step-triggered controller with and without learning.

shown and compared with the results for the same step-triggered controller without

learning. Results show that the controller does not learn much: its performance is not

very di�erent from that generated by the random selection of behaviours exhibited by

the non-learning controller.

An increase in the time interval between consecutive control iterations is imperative,

but �nding the right interval is not trivial and required extensive testing. On the one

hand, small intervals do not allow a proper behaviour evaluation, leading to a poor

overall learning performance. Under these conditions, the robot is unable to maintain

its energy level. On the other hand, if the interval is too large, the number of collisions

increases, because it takes longer for the robot to notice the obstacles it crashes into.

If the interval is increased enough the robot will also become incapable of maintaining
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Figure 5.10: Interval-triggered controller with di�erent durations of intervals.

its energy level, because its change of behaviours will not be fast enough to enable

energy acquisition. Figures 5.10 and 5.11 portray two sets of short experiments done

to �nd the right interval. In the �rst of these �gures, the issues discussed above are

particularly patent. In the second �gure, the performance of the di�erent intervals is

not as diverse, because the space of search has been reduced.

Experiments such as these show how important it is to synchronise the duration of

behaviour execution with the dynamics of the robot-environment interaction and thus

allow compatible time-scales between them. The interval of 35 steps was considered the

best suited, because it nicely accommodates the di�erent issues involved, maximising

the trade-o� between reduced number of collisions and energy maintainance.
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Figure 5.11: Interval-triggered controller with di�erent durations of intervals.

5.3.4 Assessment

Establishing the standards

For a better evaluation of the controllers realised in the previous two subsections, two

other controllers were produced:

Random | This controller simply selects a random behaviour at each step. It was

included in the experiments to give a baseline to the result values, showing how

low the performance of an unsuccessful learning controller can be. This is partic-

ularly relevant for the experiments at hand, where reinforcement tends to drop

naturally with time, making it di�cult to evaluate the real achievements made

by the learning systems.
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Hand-crafted |The purpose of designing a controller by hand was to determine how

much reinforcement a reasonably successfully controller would receive. For a fair

comparison with the other controllers, this controller uses the same behaviours

and no extra external or memory information unavailable to the others, but has

to resort to a random number generator to deal with some di�cult environmental

situations.

The random controller described above is the non-learning step-triggered controller

examined earlier. When learning is turned o�, controllers display random behaviour

selection, because the initial controller's preferences are neutral, i.e. every behaviour

starts o� with the same utility value.

Designing the hand-crafted controller was not trivial. It was actually a slow and ardu-

ous cycle of test and redesign. Solving the problems of wandering in the environment

and successfully eating when necessary was quite straightforward. Avoiding obstacles,

on the other hand, was quite tricky and would often lead to fatal deadlock situations,

the main reason being the poor sensory capabilities of the robot which allow it to lose

sight of nearby obstacles very easily.

The hand-crafted controller uses the emotion-dependent event detection, with the rel-

atively low value of 1:5 for the � parameter. In fact, changes in the control triggering

of this controller produce signi�cant alterations in its performance. Figure 5.12 shows

examples of other settings. When the controller was tested with � = 2 or � = 2:5, its

energy level dropped signi�cantly. If, on the other hand, the hand-crafted controller

is triggered at every step, the result is eventually a robot trapped in some part of the

environment and incapable of maintaining its energy. An example of such a deadlock

is presented in Figure 5.13. This was obtained for a robot using event triggering with

� set to 2. These robots also su�ered this kind of crash situation frequently, but would

eventually recover after some thousands of steps.

It is natural that the controller works better with the settings it was designed for in

the �rst place. Nevertheless, this pronounced dependence on the triggering mecha-

nism shows once again how important the latter is. Setting the triggering mechanism

correctly can make the di�erence between a successful robot or a failed robot.
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Figure 5.12: Hand-crafted controller with di�erent triggering mechanisms.

Figure 5.13: Crashed situation of a hand-crafted controller tested with � = 2.
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Analysis of relative performance

Four identical experiments were done, each using one of the di�erent controllers. In

Table 5.2, a summary of the results is given. Looking at the graph curves in Figure

5.14, it can be safely assumed that, for every controller, learning has fully converged

when a robot reaches the middle of its trial. The summary table presents the average

of the values obtained from that point onwards.

Controller Reinforcement Reinforcement Emotion Events Energy Collisions Distance

(Events) (%) (%)

Event-triggered 0:13 0:07 0:19 0:4 0:71 2:8 1:5

Interval-triggered 0:18 0:17 0:22 2:9 0:65 1:5 0:9

Random { { �0:38 100:0 0:02 5:6 0:6

Hand-crafted 0:24 �0:07 0:34 6:2 0:83 3:0 1:9

Table 5.2: Summary of results obtained for the controllers employing di�erent trigger-

ing mechanisms. The values presented are the mean of all the values obtained in the

last half of the trials.

Looking at the graphs, one can see that the learning controllers do manage to learn their

task. Their performance is much better than that exhibited by the random controller.

It is also noticeable that the successful learning controllers have signi�cantly worse

reinforcement than the hand-crafted controller. This is directly related to the higher

average energy obtained by the latter. In fact, in terms of obstacle avoidance the

hand-crafted controller performs worse. The lower energy of the learning controllers

is actually not much of a problem, as long as they are able to keep it relatively high

above zero: and this is done with success.

The hand-crafted controller having higher energy only shows that this controller ac-

quires energy more often, which can be at least partially attributed to the higher

number of events it has available. With � set to the relatively low value of 1:5, it has

a more sensitive event detection mechanism that is triggered by smaller variations in

the emotion intensity. In reality, as shown in Figure 5.12, the results obtained with �

set to a larger value are very similar to those of the learning controllers.

There is no signi�cant di�erence in performance between the two learning controllers.

The di�erence in terms of event reinforcement does not reveal much apart from the
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Figure 5.14: Comparison of the di�erent triggering mechanisms.
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fact that the event-driven controllers are often triggered when something goes wrong.

On the one hand, the event reinforcements of the interval-triggered controller are very

similar to its overall reinforcement, because the events are picked at regular intervals

and independently of their value. On the other hand, the event-driven controllers are

triggered in very speci�c situations that are often associated with negative evaluations;

typically, circumstances where the current behaviour had to be changed, because it was

not adequate anymore.

The event-triggered controller does not perform better than its interval-triggered coun-

terpart, but manages to have similar learning performance with a much reduced number

of events. This can also be an important issue in real time systems like robots, because

it saves precious computation time.

In fact, the performance of the event-triggered controller converges in a much smaller

number of learning steps than that of the interval-triggered controller. Figure 5.15

demonstrates this point by presenting the performance of the controllers in terms of

the number of events, instead of the number of steps. It is the number of events that

accounts for the number of learning steps because it is only during events that the

robot learns, i.e. it updates the utility values of its behaviours. In order to obtain

these results, two experiments were done: one for each controller. Each experiment

consisted of thirty di�erent robot trials of sixty intervals of �ve hundred events each.

This actually corresponded to a signi�cantly di�erent number of total steps for each

controller (see Table 5.3), and slightly di�erent values for the various trials of the

event-triggered controller.

Controller Total in millions Relative to normal

Event-triggered 6:08 � 0:06 203%

Interval-triggered 1:05 � 0:00 35%

Table 5.3: Mean duration of trials in steps and 95% con�dence interval.

The graphs show that although the event-triggered controller has learned its task after

one tenth of the trial, the interval-triggered is still improving its performance by the

end of the trial. It is clear that the e�ciency of the learning algorithm is increased by

presenting it with only event-related situations.
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Figure 5.15: Comparing learning speeds of controllers with di�erent triggering mech-

anisms in terms of events.

In the case of the event-triggered controller, it is interesting to notice how the number

of events decreases as the agent learns its task. After learning how to prevent certain

problems, like obstacle collisions, the robot is not as interrupted as before.

Analysis of the improvement induced by learning

The question arises of whether the triggering mechanism is not solving the task by itself.

In reality, this is true to some extent. This e�ect can be observed in Figure 5.16 where

the di�erent triggering mechanisms are compared again, but this time with learning

turned o�. The task performance of the robot varies signi�cantly with the di�erent

triggering mechanisms, even when the robot's behaviours are selected at random.

While the step-triggered continues to exhibit the worst performance, it's surprising

to notice that it is actually the interval-triggered controller that has the starting ad-

vantage, because its timing is in synchrony with the task. It has an edge in terms

of obstacle avoidance and energy maintainance. The event-triggered controller travels

more, because it is interrupted less frequently, which is its hidden advantage.
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Figure 5.16: Comparing the di�erent triggering mechanisms with no learning.

It is also interesting to consider the di�erence in performance between the learning

controllers and the equivalent non-learning controllers. Figure 5.17 shows the relative

performance of the learning controllers, taking the respective non-learning experiments

as a base | i.e. the distribution of the non-learning performance was subtracted from

the learning performance (details in Appendix B.1.2). If the learning controllers

are compared in these terms then it is clear that through learning the event-triggered

controller improves its performance much more than the others while the step-triggered

controller is a very poor learner.
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ent triggering mechanisms.
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Analysis of experiments' design

A closer observation of the robot's �nal behaviour brought forward two problems with

the experiments' design:

� The restlessness feeling is intended as an indicator of the progression of the

behaviour at hand. Through the emotion of anger it punishes the robot when

the behaviour it has selected is incapable of moving the robot. Restlessness will

also provide the necessary interruption in the case of emotion-dependent event

detection. The problem is that it is necessary to avoid its saturation. If this

happens, no more interruptions will be detected, because the dominant emotion

of anger will not change. For this reason, the restlessness value must be reset

whenever an event is detected. This is not a very far fetched solution, because

it is natural for the frustration to go away when a new behaviour is selected, at

least until the selected behaviour proves to be ine�cient as well. However, the

fact that the newly selected behaviour might be the same behaviour that was

showing problems previously makes the solution a bit strange. Nevertheless, this

was necessary for the controller to work e�ectively.

� The interval-triggered controller managed to exploit being still to save energy,

and thus exhibit local behaviour around a single light. This was not the intended

behaviour at all, and the only reason why the controller can get away with it

follows directly from the �rst problem. With the frequent events provided by

the control triggering of this controller, the anger emotion cannot reach in-

tensities high enough to dissuade this kind of solution. Moreover, controllers

that frequently select behaviours bene�t from an unfair advantage in terms of

reinforcement, because the anger emotion is not able to manifest itself.

5.3.5 Increased task di�culty

In order to prevent controllers from exploiting the low usage of the motors to save

energy, two measures were taken9:

9 Details of the parameter changes are in Appendix D.2.
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� The normal environment was replaced by the more demanding environment pic-

tured in Figure 5.1. This is a more corridor-like environment, where it is more

di�cult to travel from one light to another by chance.

� The �rst measure proved insu�cient by itself, because the robots can apparently

still manage to maintain high levels of energy if only one light is available. So the

robot energetic needs were increased. Furthermore, the advantage of not moving

was removed by making the value of energy decrease independent of motor usage.

Figure 5.18 shows the results obtained with the changed environment. The interval-

triggered controller behaves worse than the event-triggered, but it is still quite compe-

tent. It still achieves a good level of energy by not moving a lot. This will in
uence

its reinforcement, because it will not be rewarded by moving around the environment.

However, it will not lead to punishment due to restlessness, because this feeling is reset

frequently.

In order to further re�ne the distinction between the two, a new set of experiments

was performed applying both measures discussed above: change in environment and

increase in energy usage. The results shown in Figure 5.19 demonstrate the di�erences

between the two controllers in this context. In this case, the advantages of the event-

triggered controller are more evident. In particular, Figure 5.20 shows how the interval-

triggered controller frequently allows its energy to reach dangerous levels while the

event-triggered controller's energy is kept in a sensible range.

5.3.6 Conclusions

It was established during the experiments that triggering the controller at every step

was totally inadequate. Nevertheless, the interval-triggered controller that regularly

triggers the controller at longer intervals of time was found adequate. This controller

has even a starting advantage over the event-triggered controller because it performs

better with random behaviour selection. However, it is also less 
exible. The fact that

intervals are �xed a priori to �t the task makes it more task dependent. Furthermore,

�nding the right interval for the task can be time-consuming.

The event-triggered controller which triggers control at variable intervals dependent
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Figure 5.18: Comparing the di�erent triggering mechanisms in the more demanding

environment.

on the detection of signi�cant changes in emotional state was the best learner. This

controller has the advantage of both being a more time-e�cient learner and being

able to master more di�cult tasks. Moreover, it manages to achieve a reinforcement

similar to that of the interval-triggered controller which takes advantage of not being

punished for restlessness. The reset of restlessness that permitted this unfair advantage

was necessary for the event-triggered controller to work. However, other approaches to

emotion-dependent control triggering could avoid this problem by looking into emotion

intensity instead of variation. An example would be to have the frequency of control

triggerings directly proportional to the intensity of the current emotional state.

An alternative to the use of emotion-dependent detection of events would be to look

at all the controller's feelings inputs for statistical novelty instead of looking at the
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Figure 5.19: Comparing the di�erent triggering mechanisms in the more demanding

environment and with harder energy requirements.
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Figure 5.20: Energy values for the individual trials of di�erent triggering mechanisms.
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emotion value alone. The problem is that this solution is much less clean. Instead

of only one set of statistics, this solution requires several, each one of them with a

very particular behaviour. This will make a uniform test of all them di�cult or even

impossible, eventually requiring a separate analysis for each one of the inputs. Another

advantage of using the emotional state is that emotions already take into consideration

what is and what is not important in each situation, and the relative importance of

each individual feature. The fact that they hide away details can even be bene�cial.

5.4 Experiments: Reinforcement

5.4.1 Emotion-dependent vs. sensation-dependent reinforcement

After the control triggering mechanism had been established it was decided to re-test

the role of emotions as a source of reinforcement (see Figure 5.21). Exactly the same

emotion-dependent reinforcement function was used (see Equation 4.6). At any mo-

ment in time, the reinforcement absolute value is the intensity of the current dominant

emotion or zero if there is no dominant emotion. The signal of the reinforcement value

is positive when the dominant emotion is positive and negative when the dominant

emotion is negative.

Emotion
System

Perception
System

Behaviour
System

Adaptive
Controller

Event
Detector

Sensations

Feelings

Behaviour

Dominant emotion Trigger

Reinforcement
Function

Reinforcement

Figure 5.21: Emotions determining reinforcement value.

Again an experiment was done to test whether emotion-dependent reinforcement is
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Figure 5.22: Comparing emotion-dependent reinforcement with sensation-dependent

reinforcement.

competitive when compared with a more traditional reinforcement function. With the

new setup for the behaviour-based controller the discrepancies between sensation-

dependent and emotion-dependent reinforcement found in Chapter 4 have faded away.

As shown by Figure 5.22, the emotion-dependent reinforcement is now successful and

its performance is similar to that of sensation-dependent reinforcement. This can be

observed in the emotion graph which is a good indicator of overall performance. The

di�erence registered in terms of reinforcement value should not be considered in the

comparative evaluation because di�erent reinforcement functions were used for each

experiment. The purpose of this particular graph is only to show the learning curve

of each controller.

Taking into consideration the good results obtained, the emotion-dependent reinforce-
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ment was taken as the default for the rest of the experiments.

5.4.2 Comparison with an undi�erentiated reinforcement function

The emotion-dependent reinforcement has the characteristic of only depending on one

emotion at a time, if any. The reinforcement information that might be provided by

emotions other than the dominant emotion is ignored. For example, if the robot is sad

and bumps into an obstacle then fear will overcome sadness and only fear will be

taken into consideration for reinforcement. This means that reinforcement information

will mostly ignore the hunger feeling and will be dominated by the pain feeling. To test

whether this is an advantage for the learning controller or not, the di�erent motivations

of the agent were joined together in an undi�erentiated reinforcement function (Rn =

Ru).

The undi�erentiated function (Ru, de�ned in Equation 5.3) was obtained from the

emotions' dependencies on the feelings. It consisted in subtracting from the happi-

ness' dependence the other emotions' dependencies and dividing the result by four

to obtain a weight for each feeling. These weights were then used for the weighted

sum of the sensations' values of which consists the undi�erentiated reinforcement func-

tion. This would be equivalent to adding together the reinforcement values provided

by each emotion and dividing by four, if the hormone system were eliminated as it

was for the sensation-dependent reinforcement (see Figure 4.7). In a normal robot-

environment interaction, this function has less than 0.1% di�erence in sign from the

emotion-dependent reinforcement. This means that it rarely punishes the robot in

the situations where the emotion-dependent reinforcement rewards the robot and vice-

versa.

Run =
1

4

X
e2E

0
@(Be +

X
f2F

(CefSfn))sign(e)

1
A (5.3)

This undi�erentiated reinforcement function is not tuned but its poor performance,

shown in Figure 5.23, supports the view that the non-linearities in reinforcement are

important for the system. Nevertheless, it was possible to hand-craft another undi�er-

entiated reinforcement function (R0

u, de�ned in Equation 5.4), by adjusting the several
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Figure 5.23: Comparing the emotion-dependent reinforcement with an undi�erentiated

sensation based reinforcement.

weights by trial and error, that managed to perform as well as the emotion-dependent

reinforcement function.

f Hunger Pain Restlessness Temperature Eating Smelling Warmth Proximity

Wf -0.3 -0.3 -0.3 0.2 0.5 0.2 0.1 -0.1

R0

un
=
X
f2F

(WfSfn) (5.4)

5.4.3 Re-assessment of control triggering mechanisms.

Figure 5.24 and Table 5.4 demonstrate that the results for the di�erent triggering

mechanisms when using emotion-dependent reinforcement are consistent with the pre-
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Figure 5.24: Comparing the di�erent triggering mechanisms with emotion-dependent

reinforcement.

Controller Emotion Events Energy Collisions Distance

(%) (%)

Event-triggered 0:24 0:5 0:63 0:6 1:0

Interval-triggered 0:21 2:9 0:62 1:7 0:9

Step-triggered �0:34 100:0 0:07 5:9 0:6

Hand-crafted 0:34 6:1 0:83 3:0 1:9

Table 5.4: Summary of results obtained for di�erent triggering mechanisms with

emotion-dependent reinforcement. The values presented are the mean of all the values

obtained in the last half of the trials.
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viously obtained results with sensation-dependent reinforcement. The event-triggered

controller still does not perform outstandingly better than the interval-triggered coun-

terpart, but is much more e�cient in terms of events. There is now also a slight

di�erence in the number of collisions. It is natural that the event-triggered controller

does better in terms of obstacle avoidance, because this controller is triggered to deal

with the obstacles that the robot �nds in its way instead of having to wait until the

next triggering point to deal with them. However, previous results, reported in Figure

5.14, did not show a di�erence, possibly due to the sensation-dependent reinforcement

function and the emotion-dependent triggering mechanism being out of synchronisa-

tion.

5.5 Experiments: Perception

In this section, the in
uence of emotions on perception was brie
y examined. More

speci�cally, a set of experiments was run to test whether perception being in
uenced by

the hormone system or not has an impact on the performance of the robot (see Figure

5.25). Experiments failed to show signi�cant di�erences in performance, which means

that the robot can cope with a biased view of reality but does not demonstrate that

emotions can be useful in this domain.

Emotion
System

Perception
System

Behaviour
System

Adaptive
Controller

Event
Detector

Sensations

Feelings

Behaviour

Dominant emotion
Trigger

Reinforcement
Function

Reinforcement

Figure 5.25: Emotions' in
uence on perception.

Figure 5.26 compares the normal experimental results with those obtained by replacing
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Figure 5.26: Emotional and non-emotional perception.

the neural-network inputs by sensations instead of feelings (see Figure 5.3). Although

the graphs suggest that there might be an improvement provided by the emotions'

in
uence on perception, such a deduction is not su�ciently supported by the results

for a de�nitive conclusion to be drawn. The fact that no signi�cant di�erences were

found might be purely task dependent. However, the selected learning controller is

surely responsible for the results to some extent. The use of neural networks to process

the inputs allows for more abstraction of the input values and to compensate for any

changes in magnitude caused by emotions.
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5.6 Experiments: Assessment of the Emotional Controller

5.6.1 Introduction

The �nal emotional controller achieved is presented in Figure 5.27. It has emotional

reinforcement, perception and control triggering. This controller as a whole is the topic

of the present section.

Emotion
System

Perception
System

Behaviour
System

Adaptive
Controller

Reinforcement
Function

Event
Detector

Sensations

Feelings

Behaviour

Reinforcement

Dominant emotion Trigger

Figure 5.27: Emotional controller.

In the �rst subsection, this controller is compared with its non-emotional counter-

part. Next, a more extensive comparison is made of the emotional controller with the

hand-crafted controller. In particular, an attempt is made to mimic the hand-crafted

controller through the learning controller. The �nal subsections examine the in
uence

of emotions' persistence and the behaviour selection method on the performance of the

emotional controller.

5.6.2 Relative to a non-emotional controller

Experiments were done to assess the competence of the �nal emotional system as a

learning controller when compared to a non-emotional system. Results are shown

in Figures 5.28 and 5.29. Figure 5.28 reports on a set of experiments done under

normal conditions and Figure 5.29 on experiments done under the more demanding
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Figure 5.28: Comparing an emotional with an non-emotional controller.

environment and with harder energy requirements10. The di�erences between the two

are particularly clear in more severe conditions, in which case the emotional controller's

performance is much better.

Some other experiments were presented previously that had only one of the mechanisms

replaced at a time by its non-emotional counterpart. Table 5.5 describes the di�erences

between the di�erent controllers in detail. A summary of the results obtained in normal

experiments for each controller is presented in Table 5.6.

The most signi�cant di�erence between the emotional and non-emotional controllers

is in the number of events which is obviously due to the control triggering mechanism

used. This mechanism is what is really responsible for the advantage of the emotional

10 Details in Section 5.3.5.
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Figure 5.29: Emotional and non-emotional controllers performance in the more de-

manding environment and with harder energy requirements.

Controller Reinforcement Networks Control Figure

Inputs Triggering

Emotional Emotion-dependent Feelings Event-triggered 5.28

Non-emotional triggering Emotion-dependent Feelings Interval-triggered 5.24

Non-emotional reinforcement Sensation-dependent Feelings Event-triggered 5.22

Non-emotional perception Emotion-dependent Sensations Event-triggered 5.26

Non-emotional Sensation-dependent Sensations Interval-triggered 5.28

Table 5.5: Di�erent mechanisms used by emotional and non-emotional controllers.
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Controller Emotion Events Energy Collisions Distance

(%) (%)

Emotional 0:24 � 0:01 0:5� 0:0 0:63 � 0:01 0:6� 0:3 1:0� 0:2

Non-emotional triggering 0:21 � 0:02 2:9� 0:0 0:62 � 0:04 1:7� 0:1 0:9� 0:0

Non-emotional reinforcement 0:22 � 0:02 0:5� 0:0 0:70 � 0:02 1:6� 1:1 1:4� 0:1

Non-emotional perception 0:22 � 0:03 0:5� 0:0 0:61 � 0:03 1:2� 0:7 1:0� 0:2

Non-emotional 0:21 � 0:02 2:9� 0:0 0:64 � 0:04 1:4� 0:1 0:9� 0:0

Table 5.6: Summary of the comparison between emotional and non-emotional con-

trollers. The means of the values and their 95% con�dence interval obtained in the

last half of the trials are presented.

controller over the non-emotional controller.

The emotional controller also has a slight advantage in terms of obstacle avoidance

when compared with the other controllers, suggesting that the temporal synchrony

between the di�erent mechanisms might be a bene�cial factor. Although the emo-

tional controller su�ers from intrinsic delays with respect to the robot-environment

interaction due to the emotions' persistence, it is the only one where the learning con-

troller input state or perception, the reinforcement and the triggering mechanism are

in perfect synchronism.

5.6.3 Relative to the hand-crafted controller

The initial hope at the start of the experiments was that the learning controller would

learn to behave similarly to the hand-crafted controller, or at least with the same level

of reinforcement. However, this was not the case according to the results presented in

Figure 5.24 and Table 5.411:

Controller Emotion Events Energy Collisions Distance

(%) (%)

Emotional 0:24� 0:01 0:5� 0:0 0:63� 0:01 0:7� 0:4 1:0 � 0:2

Hand-crafted 0:34� 0:01 6:1� 1:7 0:83� 0:01 3:0� 0:8 1:9 � 0:1

Table 5.7: Comparing the performance of the emotional controller and the hand-crafted

controller. The values presented are the means of the values and their 95% con�dence

interval of only the last ten test points.

11 In the presentation of these results the emotional controller is referred to as event-triggered controller.
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In this subsection, an analysis is made of the di�erences between the two in terms

of both emotional states and behavioural preferences. For this purpose, a follow-up

experiment was done for the emotional controller and another for the hand-crafted

controller that recorded the required information. Next, attempts to replicate the

hand-crafted controller's �nal behaviour are described.

Analysis of emotional states

A follow-up experiment was run for the emotional controller and another for the hand-

crafted controller to analyse the di�erences in emotional states between the two. Re-

sults are shown in Figure 5.30. Although the distribution of the emotional states of the

hand-crafted controller is quite stable, the same does not happen with the emotional

controller and the results shown should be only taken as an indicative sample. Even

so, some general conclusions can be drawn.

The two graphs represent two distinct distributions of emotion states: during all steps

and during the steps where an event was detected. The di�erences between these two

distributions account for the di�erences between reinforcement and event reinforcement

found in both controllers12. Although, in general, negative emotional states are not

frequent, they are much more frequent during events. This is particularly noticeable in

the case of the hand-crafted controller which is also the controller that presents more

substantial di�erences between the two types of reinforcement. In the case of this

controller, the fear emotion is almost as frequent as the happiness emotion during

events, suggesting that a considerable number of the events consist in the detection

of collisions via the fear emotion. The fact that events are triggered by emotion

states that tend to be more negative explains why reinforcement during events is lower

than average. It is also clear that the excessive number of events of the hand-crafted

controller is partly due to its large number of collisions. In these particular follow-up

experiments the total number of events of the hand-crafted controller was 1512 against

the 470 events of the emotional controller.

The emotional controller is di�erent from the hand-crafted controller in that it is happy

less frequently and is often more sad and angry. The occurrence of the negative

12 These di�erences in reinforcements were observed in Figures 5.8 and 5.14.
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Figure 5.30: Occurrence of each emotion.

emotions can simply be due to the fact that the learning controller at times will have

to test its policy by exploring behaviours other than the best one. In fact, the controller

needs to be punished in order to know what it should and should not do. Another

reason for the di�erences might be that the learning controller is concentrating its

e�orts in not bumping, in which it is more successful than the hand-crafted controller,

and that has a detrimental e�ect on the rest of the problems it has to handle. The

fact that the learning controller is happy less often is probably due to not being so

persistent in the wall-following behaviour and therefore not having the temperature

high so often.

The di�erences between the two suggest that the emotional controller's behaviour is

temporally and spatially more local. The lack of a global picture of its interaction
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Figure 5.31: Occurrence of each behaviour.

with the environment will make it concentrate its e�orts on more immediate problems,

namely, by solving the obstacle avoidance problem particularly well, and eating when

it is already sad or trying another behaviour after anger has manifested itself.

Analysis of behaviour preferences

In the follow-up experiment of the emotional controller and the hand-crafted controller

the behaviour selections were also recorded. The distribution of the selection and actual

execution steps of each one of the behaviours is shown in Figure 5.31.

The di�erences between the distributions of each graph show that the wall following

behaviour tends to be performed for long periods of time with no interruption. The

other two behaviours are more likely to cause events, namely by quickly achieving their
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purposes.

The di�erences between the two controllers show, as was suspected before, that the

emotional controller does not wall-follow as much as the hand-crafted controller and

that the emotional controller will select the seek-light behaviour much more often.

Attending to the fact that the emotional controller's energy level is lower (see Table

5.7), the emotional controller is probably having di�culties acquiring energy e�ciently.

Learning the hand-crafted behaviour

In the previous sections, the di�erences between the emotional controller and the hand-

crafted behaviour have been highlighted. In this section, several attempts at trying to

transfer the knowledge of the hand-crafted behaviour into the learning controller are

described. Di�erent methods were tested to try to mimic the hand-crafted behaviour

by the learning controller, but none with much success.

The �rst attempt consisted of having the networks learn during the normal robot

simulation while the hand-crafted controller was controlling the robot. A more sophis-

ticated attempt required saving all the details of a hundred thousand step experiment

using the hand-crafted controller and then repeatedly going over the recorded expe-

riences to learn them with the emotional controller. Randomising the order of these

hundred thousand single experiences actually helped the neural networks a bit, but

the results for all these methods were consistently unsatisfactory. The main problem

with these methods is that the learning controller does not have a chance to learn the

results of bad behaviour. The answer to this problem was to slightly punish the non-

selected behaviours apart from attributing the received reinforcement to the selected

behaviour. This procedure assumes that the hand-crafted controller has selected the

right behaviour and the others are inappropriate for that particular situation. Even so

the learning algorithm was lacking a wider range of experiences. The intrinsic random

nature of the emotional controller, even when it is not learning, will always allow the

controller to step into situations that are outside the normal range of the hand-crafted

behaviour.

So a radically di�erent approach was taken that consisted of directly training the neural
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networks with random inputs taken from a uniformly distributed input space. Each

experiment consisted of 5 million steps separated by tests done at intervals of a hundred

thousand steps. At each step a random neural network input vector is determined.

Then the behaviour selected by the hand-designed controller for this input vector is

determined. The networks are trained with a target value of 5 or -5 depending on

whether their associated behaviour is the one selected or one of the others. During

each test a hundred thousand di�erent random input vectors are selected. For each

input vector the hand-crafted behaviour selection is determined and compared with

behaviour whose neural network has the highest value for that particular input vector.

The error is the percentage of behaviour mismatches. The results for 5 di�erent trials

are presented in Figure 5.32.
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Figure 5.32: Neural networks error when knowledge is directly transfered to them from

the hand-crafted controller.

It should be noticed that a deterministic procedure such as the one of selecting the

network with the highest value will never reach a zero error value, because the hand-

crafted controller is not totally deterministic itself. In fact, when the hand-crafted

controller is evaluated against itself it returns an error of about 2:7%, also shown in

the �gure. The neural networks' error is not much more, with a mean of 3:1% in the last

10 tests. The error starts o� quite low, only 7:3%, because the algorithm for selecting

the better-ranked behaviour gives preference to the avoid-obstacles behaviour, i.e. this

behaviour is selected when all the networks' outputs are the same value as it is at

the start of the learning13. This reduces the starting error because the avoid-obstacles

13 This problem was never corrected because as soon as the neural-networks start learning it disappears.
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behaviour is also by far the most frequent choice of the hand-crafted controller in a

uniform distribution of the input state.

It was found that a uniform distribution of the input space is very di�erent from the

distribution of the input space experienced by the robot. Namely, the distribution of

the behaviours selected by the hand-designed control procedure is very di�erent from

the one obtained in normal robot simulation. For a uniform distribution the percentage

of selection of the avoid-obstacles behaviour is much increased and much higher than

that of any other behaviour, including the wall-following behaviour which is reduced

drastically. So it is possible that the networks are being over-trained with situations

that will never even be found by the robot. It is also possible that the behaviours

suggested by the hand-crafted controller outside its normal range of execution are not

the most appropriate.

After these networks had been set up they were put to the test, by using them in the

emotional controller in a normal simulation experiment. Two experiments are reported

in Figure 5.33, one with learning and one without. The results for the hand-crafted

controller are also given in the �gure for comparison. Both experiments use a � value

of 1:5, which is the most adequate value for the hand-crafted controller14.

From the non-learning controller's performances we can observe that the networks'

previous experience was not very helpful. The non-learning controller's performance

soon starts to diverge from the normal hand-crafted controller and it will continue to

deteriorate right through to the end of the experiment. The randomness introduced by

the emotional controller can easily take it away from the normal scenarios dealt with

by the hand-crafted controller. Once out of its domain of expertise, it is natural that

its performance deteriorates.

The learning controller overall performance, measured by emotion value, also diverges

away from that of the hand-crafted controller, but will converge to a level in between

the hand-crafted performance and the normal performance of an emotional controller

without pre-trained neural networks. See Table 5.8 for a short summary of the

performance of the three.

14 The results for � valued 2 and 2:5 are shown in Appendix D.4.
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Figure 5.33: Emotional controller starting o� with customised neural networks. The

performance of the hand-crafted controller, i.e. the target, is also shown.

Controller Emotion Events Energy Collisions Distance

(%) (%)

Emotional normal 0:24 � 0:01 0:5� 0:0 0:63 � 0:01 0:7 � 0:4 1:0� 0:2

pre-trained 0:28 � 0:01 0:8� 0:1 0:70 � 0:03 0:3 � 0:2 1:0� 0:1

Hand-crafted 0:34 � 0:01 6:1� 1:7 0:83 � 0:01 3:0 � 0:8 1:9� 0:1

Table 5.8: Comparing the performance of the normal emotional controller and the one

with pre-trained neural networks. The values presented are the means of the values

and their 95% con�dence interval of only the last ten test points.
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One of the main reasons for the poor results obtained is the fragility of the hand-

crafted controller. The limitations of the hand-crafted controller have been discussed

previously during its presentation in Section 5.3.4 where it is shown how the perfor-

mance of this controller is strongly dependent on the event triggering mechanism in

use. The development of this controller was an arduous process that even required

engineering the environment to discard hazardous environmental locations. However,

the results also point to de�ciencies in the capacity of the emotional controller to learn

to perform the task just as the hand-crafted controller does. It is possible that the

behaviour-selection procedure used by the hand-crafted controller is not representable

by the neural-network architecture used by the emotional controller.

5.6.4 Temporal persistence of emotions

For the action-based controller, the most severe drawback of the emotion system was

the temporal persistence of emotions introduced by the hormone system. This suggests

that the hormone system might also strongly in
uence the performance of the present

controller.

The parameter most responsible for emotional persistence is the hormones' decay rate.

In this subsection, its in
uence on the emotional controller is examined.

Figure 5.34 shows how the hormones' decay rate in
uences the emotional response. The

values of decay rates examined in the �gure are actually the ones used in the robot

experiments shown in Figure 5.35. Although these parameters change the emotional

response signi�cantly, their in
uence in the emotional controller's performance is not

noticeable.

All experiments of this subsection were done in the more demanding environment and

with harder energy requirements15. This way the controllers are all tested in the most

adverse circumstances available, allowing the di�erences between them to be more

easily noticed.

In reality, the emotional controller is quite robust to changes in the temporal char-

acteristics of the emotional system. Even if the hormone system is totally removed,

15 Consult Section 5.3.5, for details.
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Figure 5.34: Emotional temporal response with di�erent hormone decay rates. The

default value for this parameter in previous experiments has been 0:996.
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Figure 5.35: Emotional controller with di�erent values for the hormone decay rate.
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Figure 5.36: Emotional controller with and without hormones.

taking away all the emotions' persistence, the emotional controller's performance is

not a�ected. Figure 5.36 demonstrates this point.

5.6.5 Exploration strategy in behaviour selection

In reinforcement learning there is a fundamental trade-o� between exploration and

exploitation of the policies learned. On the one hand, too much exploitation can lead

to sub-optimal policies. On the other hand, the agent must exploit its knowledge at

some point.

In the present controller, the relatively simple approach of Boltzmann exploration

was taken. Another reasonable ad-hoc strategy that is widely used in reinforcement
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learning is p-probability exploration16. It consists of selecting an action at random

with a probability p and otherwise taking the action with the best expected reward.

This strategy has the advantage of being simpler, but unfortunately is inappropriate

for the present controller as we shall see below.

The main disadvantage of this strategy is that it does not take into consideration what

is known about the expected rewards of each behaviour during exploration. So it will

equally select between behaviours that have proven to be promising in the past and

others that are clearly hopeless.

The Boltzmann exploration allows the agent to explore more when the behaviours are

similarly ranked and exploit more when one of the behaviours appears to be much more

appropriate than the others. Furthermore, as the controller explores its environment

and gathers knowledge about it, its preferences will grow stronger and the exploitation

will increase. This e�ect can be observed in Figure 5.37 where an account was made

of the number of times the controller did not select the best ranked behaviour in the

course of a normal experiment.
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Figure 5.37: Record of how often the emotional controller does not select the best

behaviour.

Another interesting advantage of the Boltzmann exploration strategy is that it does

not implicitly assume the existence of a single optimal behaviour at each point. This

is particularly advantageous in the case of the robot's speci�c task which demanded

that the hand-crafted controller itself use a random generator for behaviour selection.

16 Designated the �-greedy strategy by Sutton and Barto (1998).
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Figure 5.38: Di�erent exploration strategies.

This was found necessary for speci�c environmental situations which would otherwise

lead to dead-locks.

The experimental results in Figures 5.38 and 5.39 con�rm the inadequacy of the p-

probability exploration. In the �rst instance, experiments were done for two values of p:

10% which is the value most often used in the literature and 1% which is more similar

to the level of exploration provided by the default Boltzmann exploration strategy.

When compared with an experiment using the Boltzmann strategy, the simpler scheme

performs worse. The 1% exploration is particularly ine�ective, probably because it does

not allow for enough policy exploration. The use of a more demanding environment

and harsher energy requirements made the poor performance of the 10% exploration

particularly evident (see Figure 5.39).
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Figure 5.39: Di�erent exploration strategies in the more demanding environment and

with harder energy requirements.

The exploration vs. exploitation issue is particularly relevant in systems that are sup-

posed to learn all the time, i.e. without an arti�cial division between a learning phase

and an execution phase. In this case, the agent has to make the best of its knowledge to

know how and when to explore, because it will not have available a separate execution

phase where the randomness of its choices can be eliminated in favour of exploitation.

The exploitation should increase as the agent learns about its environment. Some re-

searchers will decrease the temperature value in the case of the Boltzmann exploration

or the p in the p-probability exploration to achieve this e�ect. The problem with this

is that it assumes that the environment conditions will not change and that the agent

will learn all it needs in a certain pre-de�ned amount of time. In the absence of a more

sophisticated exploration strategy, the decrease of the exploration as a side-e�ect of
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the Boltzmann exploration strategy seems more natural and preferable for autonomous

agents' learning.

5.7 Conclusions

Experiments showed that emotions can be used as an attention mechanism at di�erent

levels of a reinforcement learning task:

� making more evident the relevant aspects of the environment, i.e. those directly

related with the current emotional state, by in
uencing the robot current state

through the hormones;

� providing a straightforward reinforcement function which works like a powerful

attention mechanism in a reinforcement learning task by attributing value to the

di�erent environmental situations;

� determining the occurrence of the signi�cant changes in the environment that

should trigger state transition, by looking at sudden changes in the emotional

system state.

These were three di�erent mechanisms that worked well experimentally. Each one of

them had di�erent levels of performance when compared with alternative methods.

No signi�cant di�erences were found in using emotion-dependent perception, i.e. mak-

ing the emotionally relevant aspects of the environment more salient, or not. This re-

sult might be task dependent but is certainly controller dependent because the learning

controller used can easily ignore the di�erences in magnitude of the input values in-

troduced by emotions by compensating for them with changes in the neural-network's

weights. A proper assessment of this emotion role would bene�t from the employment

of a controller equipped with proper mechanisms of attention for input processing,

i.e. a controller where di�erent weights could be given to the analysis of the di�erent

inputs.

It was found that emotion-dependent reinforcement is adequate for behaviour-based

control and that the non-linearities of this reinforcement function have an active role
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in its success.

The behaviour-based controller provides more appropriate time scales than action-

based control for the use of emotion-dependent reinforcement. The di�erence between

behaviour-based and action-based control is not only restricted to temporal duration.

The behaviours themselves are by nature distinct from simple actions. They are not de-

�ned by constant motor values, but rather by a simple reactive \goal" that determines

the motor values at each step as a function of the agent's current perception. This

allows them enough versatility to run for longer durations of time which is their main

advantage for use with emotions. The persistence of emotions over time in natural

systems also suggests that they should be related to a higher level of decision-making

which does not rely on simple primitive actions but on complex action patterns more

suitably expressed at a behavioural level.

The emotion-dependent event detector was very successful. It allowed drastic cuts in

the frequency of triggering of the learning controller while maintaining overall per-

formance. This can be particularly advantageous in the case of very time-consuming

learning controllers, where each triggering of the controller can result in a signi�cant

loss of precious real time. These results were obtained with both sensation-dependent

reinforcement and emotion-dependent reinforcement.

A later analysis of the distribution of the emotional states of the emotional controller

in general and in the particular situations where events were detected, showed that the

robot control is triggered more often in adverse situations. This has adaptive value, be-

cause it arouses the agent's attention to the need to change behaviour when the current

behaviour becomes inappropriate. Furthermore, behaviours that have some immediate

goal like avoid-obstacles and seek-light tend to have shorter durations because they are

terminated the moment their goal is reached.

After each of these mechanisms was evaluated on its own, the emotional controller as

a whole was also evaluated.

This controller proved to be more successful than an equivalent non-emotional con-

troller where the emotional mechanisms were replaced by their non-emotional counter-

parts. The triggering mechanism was strongly responsible for the di�erence in perfor-
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mance between the two, but the joint use of all three mechanisms also seems to provide

an advantage.

Nevertheless, the �nal emotional controller exhibits a performance that falls short of

the one achieved by a hand-crafted controller. Despite all the e�orts to reproduce the

hand-crafted behaviour with the emotional controller this was not accomplished. The

conclusion reached was that the hand-crafted controller behaviour was very fragile and

could not be achieved by the particular learning architecture used. The permanent

element of randomness present in this architecture would move the robot to scenarios

where the competence of that behaviour would quickly deteriorate.

Finally, the emotional controller was found to be robust to di�erent degrees of emotion

persistence and strongly dependent on the exploration strategy.
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Concluding Discussion

6.1 Introduction

The work reported in this dissertation consisted in bringing emotions to the �eld of

autonomous robots following an animat approach. In opposition to more traditional

approaches, the emotional agent deals with a continuous and non-symbolic environment

and has to adapt to its environment through learning. Emotions were mostly used to

help it in its learning task by providing the domain-dependent mechanisms necessary

to ful�ll key reinforcement-learning components.

To test the feasibility of the approach a body of experimental work was carried out

in a realistic simulated robot which tested the integration of several emotion functions

in a reinforcement learning framework. Experiments compared these functions with

other more traditional reinforcement-learning approaches while always looking after

the several problems posed by robot autonomy.

This work required the development of an emotional model adequate for the animat

approach. The model was designed to cope with a non-discrete world and to be suitable

for integration in a simple, but complete, robot control architecture. In fact, the

emotion system itself was found useful for the temporal segmentation of the world.

The developed and empirically tested emotion model has the characteristic property of

directly in
uencing the perception of the agent through a hormone system. This allows

emotions to colour the agent's perception by focusing its attention on the features of the

environment that are most congruent with the agent's dominant emotion. Furthermore,

171
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this hormone system also endows the system with persistence of emotions through the

near future and avoids sudden swings of emotional state. Modelling the persistence

of emotions uncovered di�culties in the use of emotions as reinforcement that were

hidden away by the fact that most existing emotion models do not incorporate inertia.

The persistence of emotions modelled in the experiments introduced some restrictions

in the e�ective use of emotions in robot control. Experiments showed such an emotion

system can be used much more successfully in the context of behaviour-based control

than action-based control. In particular, the role usually attributed to emotions of

providing an evaluation of the state of the world was particularly unsuccessful in a

action-based controller. The time-scales involved in the execution of a behaviour proved

to be more appropriate for emotion-dependent reinforcement than the smaller time-

scales associated with the execution of single primitive actions. In fact, the behaviour-

based controller was quite robust to variable degrees of emotion persistence. Therefore,

results seem to point to the intuition that emotion-level information is more relevant

to higher level control, such as behaviour-based, than to lower level control, such as

based on primitive actions.

This introduction is only a brief summary of the achievements of the work carried out

for this thesis. The next sections provide a more detailed discussion of the di�erent

issues involved in this work both in terms of autonomy and emotions. This is followed

by the presentation of some suggestions for future work. The use of emotions o�ered a

new perspective over autonomous learning which grounds the �nal conclusions drawn

in this dissertation.

6.2 Issues in Autonomous Learning Robots Research

6.2.1 Design guidelines

In Section 2.2.8, a few guidelines were established for the design of autonomous robots.

These guidelines were followed to some extent in the design of the autonomous learning

robot presented in this dissertation:

Perception | Unfortunately the selected robot simulator did not provide the robot
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with very rich sensory input, yet attempts were made to endow the agent with

some attention mechanisms;

Movement |The movement required in the behaviour-based control experiments in-

volved both moving around in the environment and interacting with food sources,

but although the global robot behaviour had some degree of complexity the num-

ber of available actions, or sources of di�erent movements, at any one time was

relatively small;

Homeostatic Goals | The agent was given several homeostatic goals in the de�ni-

tion of its task: maintain energy level, move around, avoid obstacles;

Reactions and Learning | the selected learning architecture permits fast reactions

while providing the means for the robot to adapt to its environment;

Navigation | the robot has limited navigation capabilities but still manages to travel

from light to light in order to obtain food.

Taking into consideration the state of the art in robot technology and autonomy, the

developed robot exhibits a fair amount of autonomy. However, the simplicity of its

controller and its limited capacity to learn complex behaviour constrain its autonomy.

In particular, the network-based architecture has a tendency to forget important but

rare experiences easily and shows di�culties in correctly di�erentiating di�erent expe-

riences. Furthermore, if the agent is changed to a di�erent environment it will be able

to adapt to it but, in the process of learning, it will forget what it had learned speci�c

to the previous environment.

6.2.2 Design problems

The learning architecture selected has a few disadvantages in terms of autonomy

achievement that have been pointed out previously in Section 2.5.2, yet those were

not subject to investigation. An exception was made for the examination of the explo-

ration strategy of the learning architecture, which proved to have an important role in

the success of the robot. The limitations of the simpler p-probability exploration or

�-greedy strategy were demonstrated in Section 5.6.5.
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Most of the problems identi�ed in the development of the autonomous learning robot

were related with the learning controller's open speci�cations detailed in Section 2.5.3,

which were central to the topic of this thesis: emotions interacting with control. These

problems, which were often responsible for robot learning failures are discussed next

in terms of those speci�cations.

Reinforcement function

As expected, the learning algorithm was very sensitive to the reinforcement function.

Employing emotion-dependent reinforcement was not straightforward. The lack of

synchrony between reinforcement and local goal achievement proved fatal in the domain

of the action-based controller. The reinforcement delay was not properly handled by the

learning algorithm probably because this was unable to e�ectively propagate rewards

across long sequences of actions.

This hypothesis was con�rmed by the experiments with behaviour-based control. The

decomposition into behaviours permitted an increase of the number of physical steps

between learning iterations which allowed a reduction in the reinforcement delay in

terms of number of learning iterations and enabled an e�ective propagation of rewards

and punishments.

The emotion-dependent reinforcement function designed has the characteristic of only

taking at most one emotion into consideration at each time step and ignoring the

reinforcement information provided by all the non-dominant emotions. This introduced

non-linearities in the reinforcement function procedure that not only did not impair

the performance of the learning algorithm, but were actually used advantageously.

Action set

One interesting point that was uncovered by the experiments was that providing the

agent with a complete action set, in the sense that it can reach every state of its

environment, might not be enough. In Section 4.3.4 it was shown that the use of

a slightly di�erent complete action set can result in a signi�cant drop in learning

performance. In this particular case the existence of a single action, moving backwards
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with a twist, that permitted the robot to ward o� obstacles, proved to be important.

This was probably due to a question of hidden space: once the robot has simply backed

o� an obstacle and its sensors do not register it anymore, the robot can easily select

a forward movement that will lead it to the same obstacle. The problem is that the

robot has no available memory to inform it that the obstacle is there and that other

actions should be taken.

The behaviour complexity achieved by the learning algorithm through the use of an

action set composed of primitive actions is limited. It is clear that it is necessary to

have some kind of hierarchical solution if complex behaviour is intended. The simpli�ed

solution found for the experiments was to add competence to the action set by replacing

the primitive actions by behaviours. This is a very rigid solution that by itself does not

provide much in terms of added complexity. Solutions that enable the robot to learn

its own hierarchy of behaviours allowing it to organise by itself its task in sub-problems

to solve, like the reinforcement-learning system proposed by Digney (1998), are much

more 
exible and are probably the correct route to robot autonomy. Unfortunately

the solution proposed is still at a rudimentary stage and is not yet applicable to robot

domains.

Input state

The particular algorithm used was quite robust in terms of sensory input. The in
uence

of emotions on the state input was largely ignored by the system.

It was thought that the short term memory provided by this emotional in
uence might

be helpful to solve the hidden state problem for obstacle avoidance but apparently

this was not the case. However, the concordance in delay between sensory input and

reinforcement seemed to help slightly.

State transition

Although not much importance is usually given to this issue and people usually resort to

domain-speci�c solutions that arti�cially constrain the learning algorithm, the system

proved to be particularly sensitive to the de�nition of state transition used.
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The simplest solution of de�ning a state transition at each step proved particularly dis-

astrous for the behaviour-based controller. Furthermore, if intervals were used instead,

the performance of controller was strongly dependent on the interval size. Neverthe-

less, the failure of a step-triggered controller can be partly task dependent, because

this agent has to persist in its action to travel from one light to another.

The proposed solution based on the detection of signi�cant changes in the input state

was quite successful. Unlike other work in the �eld, the detection of changes in the

input state was dependent on the robot's dominant emotion and therefore intrinsically

related with its reinforcement.

Meta-control variables' values

There were no problems in �nding suitable values for the two major learning param-

eters of the learning algorithm: back-propagation learning rate and action selection

temperature. Nevertheless, it seems inadequate having to tune these parameters a pri-

ori, i.e. there should not be a need to run preliminary experiments to explore di�erent

values for these parameters. Furthermore, the robot would certainly bene�t from being

able to change them on-line. The autonomous learning of complex behaviour probably

requires that the agent is able to determine when it needs new skills and when it should

simply use the skills it has and avoid forgetting them by over-learning.

6.2.3 Evaluation methods

Test procedure

To avoid the problems concerning evaluation discussed in the reinforcement-learning

review (Section 2.4.2), the controllers reported in this document were evaluated in

di�erent trials and using di�erent evaluation mechanisms.

Other issues concerning the evaluation of autonomous learning agents were raised fur-

ther along the dissertation.

The main one was whether the agents should or should not be allowed to learn during

the testing phase. As autonomous learning agents, they should not have a distinctive
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performance phase with learning turned o�, but be able to learn throughout their

lifetime. Learning can cease if the agent itself so determines, but that should not be

an external decision. This suggests that learning should not be externally turned o�

for tests. However, a more through evaluation of a certain learning stage may demand

that the controller be evaluated in di�erent situations while still in that stage, i.e. with

no learning in between. Moreover, if the robot is continually learning it is di�cult to

evaluate whether the learning controller is actually acquiring long term knowledge or

just temporally learning to solve the immediate problems it is faced with. On the other

hand, this last ability can be considered an advantage of the continuous learning agent

that should be taken into account in the evaluation; and instead be taken as one more

reason for not turning learning o�.

Experiments revealed that either testing method resulted in similar evaluations for the

present controller. This demonstrated that the agent is actually taking advantage of

long term knowledge and that it is able to maintain its performance while learning.

This last point is important for a learning agent that does not have the advantage of

having its exploratory learning mechanisms turned o� for the execution of its task.

This characteristic of autonomous learning agents also raises the important point of

learning stability. These agents should be subject to long tests so that possible stability

problems of the learning algorithm can be detected.

In the particular task chosen for the experiments, the performance criteria are such

that the performance of the agent su�ers a deterioration in time if the agent does not

successfully learn its task. This is typical of a survival task where the non-observance of

a certain number of subsistence behaviours can lead to a decrease in the welfare of the

agent. In these cases, the performance may not be required to reach a maximum value

but to be maintained at an adequate level during the agent's lifetime. This means that

a proper evaluation of the learning algorithm requires a comparison of its performance

with other non-learning algorithms and eventually taking the non-learning counterpart

as a base in the presentation of the results. Only this way can the learning abilities of

the agent be properly tested.
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Unsuccessful experiments

Usually people tend to write only about successful experiments, but unsuccessful ex-

periments can also provide valuable knowledge. It is important to report on innovative

designs that are bound to be useful, but is also important to point out their limita-

tions and capacity to adapt to di�erent circumstances. In particular, it is important

to mention which were the most crucial design issues so that others can avoid the

trouble of rediscovering them through failures. This was the philosophy followed in

this dissertation and the reason why a considerable part of the presented results were

negative.

Simulation vs. real world

The experimental work reported in these dissertation was done in a simulated robot

instead of in a real robot. There were a few reasons for this choice:

� longer experiments are possible;

� the evaluation of di�erent control strategies is less time-consuming;

� much more data can be extracted from the experiments for analysis of the results;

� experiments can be reproduced, making it possible to answer particular questions

that were not contemplated in the �rst instance of the experiment;

� environment and task can be easily modi�ed;

� there is more freedom in the agent design, for instance sensors that are readily

available for the physical robot can be easily provided to the simulated robot.

These are all signi�cant advantages particularly for research that is still in its early

stages. Even so many robotic researchers tend to consider robot simulation unwor-

thy. The reason for this is the simpli�cations that are necessarily introduced in robot

simulation, which can introduce unrealistic simpli�cations of the robot-environment in-

teraction that can both hinder the development of simpler solutions and o�er solutions

grounded on specious abstractions.
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Sometimes robot controllers are faced with control problems in simulation that disap-

pear once the controller is changed to the real world. For instance, real world noise can

help to take the robot out of what in simulation are unsolvable dead-lock situations

(e.g., Mahadevan and Connell, 1992). Although the Khepera simulator used in the

experimental work modelled noise to some extent, it would also often produce this kind

of problem. Modelling noise in simulation is important to avoid this problem and can

even be bene�cial to the robot training (Meeden et al., 1993).

Furthermore, modelling realistic physics with some accuracy is extremely di�cult

(Webb, 1994). This means that if the control strategy is strongly dependent on the

physics of the robot-environment interaction then the use of a real robot is probably a

more practical solution.

A typical example of the dangers of robot simulation in producing incorrect control

solutions is the temptation of using reinforcement, or even behaviour, dependent on

information that is normally not accessible to the real robot | in particular, the

simulation of sensory data that cannot be obtained with robotic technology. In the

work reported in this dissertation special care was taken to avoid falling into such

traps. All the data available to the robot controller is based on sensory data available

to real Kheperas apart from detection of battery level and rough movement detection

not available in the robot simulator. These and other sensory information not ready

available to the robot were found necessary in order to add some complexity to the

agent's emotional system. Nevertheless, all this sensory information can be easily

acquired by a real robot.

Nowadays, a few robot simulators, like for example the Khepera simulator used, are

being made available avoiding the need for each researcher to develop their own. Apart

from saving e�ort, these also allow the use of the same platform by di�erent researchers

making their results more easily comparable. As real robots' software programming

tools become increasingly sophisticated, it would be worthwhile for the manufacturers

to consider the inclusion of a simulator of the robot as well.
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6.3 Emotions in Autonomous Robots

Emotions play an important motivational role in natural systems, directing their atten-

tion to what is relevant for their survival. They do so in multiple ways by in
uencing

di�erent basic cognition mechanisms such as attention, memory, learning and reason-

ing.

In autonomous robots, emotions can play a similar role, �lling in the lack in motiva-

tional mechanisms of traditional architectures. In the current research, this approach

was taken within a reinforcement-learning architecture. An emotional system was used

as a uni�ed construct to solve separate problems that implicitly demanded some sort

of attention mechanism. The emotional system is particularly appropriate for this

purpose because it attributes relevance to the di�erent experiences of the agent in the

context of its internal motivations.

The existence of an explicit global appraisal system proved helpful in providing an inte-

grated solution for di�erent mechanisms such as reinforcement, behaviour interruption,

modulation of the learning rate and the tradeo� between exploration and exploitation

through the variation of the selection temperature.

The di�erent mechanisms were tested under two di�erent control strategies, one based

on actions and one based on behaviours.

Emotions were found more useful in systems with behaviour level complexity, in par-

ticular the use of emotion-dependent reinforcement in an action-based controller was

found inadequate although it was adequate for behaviour-based control.

In the experiments with the behaviour-based controller, behaviour interruption was

used as an alternative to the modulation of learning parameters used in the action-

based controller. In fact, these are two alternative ways to in
uence the learning

process that serve common goals. On the one hand, the interruption of behaviour

at particular points is actually determining when the agent should learn, which is

equivalent to setting the learning rate to a non-zero value only at these points. On the

other hand, the frequency of behaviour interruption directly in
uences the number of

di�erent behaviours the agent tries out, which also happens if the selection temperature
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is raised.

Furthermore, the developed emotion model also in
uences the robot's perception. This

was devised as one more mechanism of attention that would make salient the features

of the environment that were related to the current emotional state. Unfortunately,

this mechanism was not demonstrably useful for the controllers here, which performed

as well with or without this mechanism.

The robot emotions themselves were very simpli�ed and not very realistic when com-

pared with human-like emotions. It was considered more important to have emotions

�t for purpose.

6.4 Future Work

The work reported in this dissertation focuses mostly on the di�erent roles emotions

can have in autonomous robots. For this reason, the learning architecture used leaves

much room for improvement in terms of autonomy. In fact, this architecture has not

even been particularly tuned for performance. The use of evolutionary techniques

would probably be helpful for the re�ning of the architecture by selecting the design

options and parameters most �t for the robot adaptation.

However, following the same line of reasoning as before, the suggestions that are given

below for future research are also directed towards the strengthening of the interaction

between emotions and control.

6.4.1 Emotions and their in
uence on control

First of all, the emotion model itself could be improved. Some de�ciencies have al-

ready been pointed out during its presentation that could be corrected. For example,

the emotion dependency on feelings is rather simpli�ed. The model can certainly be

extended to take into consideration temporal relations and more complex functional

dependencies.

Another simpli�cation of the current work was to associate each emotion with a single

problem when in reality emotions are much more multi-coloured and complex, suggest-
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ing that they should be associated with groups of related problems instead.

Furthermore, from all the di�erent roles associated with emotions that were discussed

in Chapter 3 only a few were explored and even those with only limited success.

One of the solutions that was particularly poor in this work was the in
uence of

emotion on perception. In fact, the learning architecture used was quite limiting.

The only form of attention possible in perception was changing the perceptual values

themselves, and those changes were actually compensated for by the architecture's

neural networks. To properly solve this problem the learning architecture itself would

have to be changed to another one which was equipped or liable to be equipped with

mechanisms of attention at the level of perception. An example of such an architecture

is a case-based architecture (Kolodner, 1993) where variable weights could be given to

the di�erent perceptions in the selection of the most similar case.

One of the most interesting roles of emotions that was not explored was their in
uence

on memory. This is an extension that could be easily made to the system by associating

each emotion with di�erent memory mechanisms, more speci�cally with di�erent neural

networks to compute the utility values of each action. This way the robot could be

made to only remember the experiences that were associated with emotional states

similar to the current one. This would probably be an advantage, because it would

produce a categorisation of the memorised events according to the type of problem.

In fact the recall of only the directly relevant facts is one of the bene�ts provided

by emotions to reasoning. For example, in the solution provided by Ventura et al.

(1998) emotions are actually considered an alternative method of classi�cation that

provide extra e�ciency by selecting only the relevant cases at each decision point.

Another alternative for memory dependent reasoning proposed by El-Nasr et al. (1998)

used mood dependent recall with non-deterministic Q-learning. In this solution, when

the agent is choosing an action, it gives more weight to positive outcomes if it is

in a happy state, and conversely more weight to negative outcomes if it is in a sad

state. Unfortunately, this algorithm required a table to save the reinforcement-learning

utility values and an implementation of the algorithm with neural networks is not

straightforward.
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Emotions are also usually associated with action tendencies which can be important

for making fast decisions. Di�erent emotions endow the agent with di�erent domains

of actions, specifying which actions or behaviour are more appropriate for the di�erent

emotional states. For example, the emotion of fear is usually associated with 
eeing

or freezing and anger with �ghting. This was one of the aspects of emotions that was

totally overlooked by the current work where the emphasis was given to the freedom

of action choice. Nevertheless, there are clear advantages to equipping the robot with

a set of fast responses for emergency situations.

Another issue associated with fast responses is the physiological arousal of the body

by emotions. This is a clear advantage to biological systems, but its transposition to

arti�cial systems is not very straightforward. However, a simple solution can consist

of having the robot's motor response dependent on the emotional state.

Finally all the emotions' in
uence on social interaction, which was omitted in the

current work, can be a great source of future development.

6.4.2 Emotions development

A very important aspect of emotions that has been left out for the moment is the

development of more sophisticated emotions. Humans have innate emotions that are

experienced early in life (Primary emotions) and emotions that are built on the previ-

ous (Secondary emotions) by pairing experiences with emotional responses (Dam�asio,

1994).

The emotions model that was implemented did not support the development of the

emotions through learning during the agent lifetime. The agent depends only on its

primary emotions for survival. However, the system could be extended to contemplate

the emergence of secondary emotions. These could for instance result from the as-

sociations between stimuli, or feelings in the case of the current model, and existing

emotions. The development of new and more complex emotions on the top of the pri-

mary ones is a more di�cult issue and a subject of research. This can be based on the

exploration of temporal relations between the existing emotion (e.g., relief) and consist

of the categorisation of recurrent patterns of emotion activation. In the case of social
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agents, the new emotions can also consist of the categorisation of recurrent emotional

experiences associated with certain individuals (e.g., love and hate) or characteristic

experiences of social interaction (e.g., jealousy).

In the current model, the initial hand-designed associations between feelings and basic

emotions constitute the robot's initial frame of reference. These associations should

be maintained by the robot and new ones should be developed on top based on the

robot's experiences. This added feature can provide an element of change in the value

system that will, hopefully, increase its autonomy.

The fact that emotions are used as reinforcement means that if the emotion system has

the ability to develop during the agent lifetime then the agent will have a dynamical

and incremental value system that is also learned by the agent. In the adaptation of

an agent to its environment, value systems, although needed and useful, will always

work as a limitation on what the robot can learn. If the value system is very broad, the

learning task will be very slow, very di�cult or even impossible. On the other hand, if

the value system is very speci�c, the learning will be very limited. A solution to this

problem that might help in scaling-up learning architectures is to have a dynamical and

incremental value system that is also learned by the system. Several researchers (Ver-

schure et al., 1995; Cariani, 1992a) have suggested in the past the on-line development

of the value system for higher adaptation to the environment.

For the introduction of new emotions, the triggering mechanism as it is might be

inadequate. The introduction of an emotion of surprise might be necessary to allow

the agent to take notice and learn about features of its environment that have not been

caught by its emotional system, because they have never been experienced before.

It is fundamental for the correct functioning of the control system that this is triggered

whenever something that might be relevant happens. For example, it was crucial for

the correct execution of its task that the presence of lights, its food source, in
uenced

the robot's emotional state, which they do through the feeling of warmth. For the

same reasons, it is important that the controller can also be triggered by a sense of

novelty.

Surprise has been proposed previously to drive learning (e.g., Mo�at and Frijda, 1995).
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Similarly, the detection of a failure in predicting the environment has been used to drive

learning but under the denomination of curiosity (Schmidhuber, 1991). Together with

interest, excitement and boredom these are probably the most used emotions in robot

applications where emotions in
uence learning.

In the long run, the triggering mechanism will end up bene�ting from the introduction

of new emotions in a straightforward way. As the new emotion associations are created

they will in
uence the robot's emotional state which in turn will result in the detection

by the triggering mechanisms of events related to the new associations.

This will not only happen with the control triggering mechanism but with all the other

mechanisms that are based on emotions | one of the advantages of having a uni�ed

solution.

6.5 Conclusions

The experimental test of the developed emotional mechanisms against more traditional

approaches to the realization of di�erent reinforcement-learning problematic compo-

nents demonstrated that emotions were a competent alternative. In the speci�c case of

the detection of state transition, emotions were actually a more successful alternative

in terms of the agent's learning performance.

The use of emotions as an abstraction has the advantage of allowing di�erent compo-

nents of reinforcement learning to be brought together under the same construct. This

was found helpful for two reasons:

� the synchrony and coherence between the di�erent components achieved by this

uni�ed solution represented a slight enhancement of the agent's performance;

� the design of the di�erent components was simpli�ed to the design of a single

construct, the robot's emotions;

Furthermore, the use of emotions provided a new perspective over these di�erent task-

dependent components of a reinforcement-learning framework. This resulted in the

introduction of innovative mechanisms that were tested in the robot experiments. The



186

most important innovations being in terms of the reinforcement function and the spec-

i�cation of state transition:

� a multi-dimensional reinforcement function that takes into consideration the dif-

ferent problems faced by the robot with variable degrees of attention dependent

on the robot's current priorities;

� a simpli�ed de�nition of state transition based on detection of signi�cant events

captured by variation in the reinforcement function value.

The emotional system selects between di�erent reinforcement functions according to

the context of the world, i.e. it might choose to ignore other problems that exist

when faced with a more important one. For example, the reinforcement function

might not punish the robot for its collision with an obstacle and instead reinforce it

for successfully extracting energy from a light. The attribution by the reinforcement

function of variable degrees of attention to each of the di�erent problems might be

taken to be a source of confusion for the learning process. However, experiments

showed that instead of confusing the learning process, this was actually advantageous

and that the learning algorithm was exploiting the non-linearities of the reinforcement

function.

The presented event detection mechanism also pro�ts from the novel structure of the

reinforcement function. Apart from providing an absolute reinforcement value that

varies with the robot's situation, the developed reinforcement function based on emo-

tion also di�erentiates and prioritises the di�erent problems faced by the robot. This

added information allows the detection of events when there is a di�erence in type of

dominant problem and not just in problem degree.

Emotions have a vital motivational role in natural cognition. They have the power

to drive and in
uence a great variety of basic cognition mechanisms. As such they

served as inspiration for the current research in the development of innovative mech-

anisms in an arti�cial robot, but many of the important features of emotions were

left unexplored and can be considered for possible extensions of this research. The

�eld of emotional agents has promising research directions and should be regarded as
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an important source of inspiration to meet some of the serious de�ciencies present in

today's arti�cial systems.
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Appendix A

Emotions model

A.1 Parameters

The system parameters used in the emotions model's functions are the following:

Cef = Value of the emotion-feeling dependency between emotion e and feeling f

Be = Value of the bias of emotion e

Itha = EmotionActiveTH

Iths = EmotionSelectTH

Ch = HormCoef

�up = HormAlphaUp

�dn = HormAlphaDn

These parameters can take values within [0; 1) apart from Cef and Be which can take

values within (�1; 1).

�1 < Cef ; Be < 1 (A.1)

0 � Ch; Itha ; Iths ; �up; �down < 1 (A.2)

It is also assumed that the sensations (Sfn) have been normalised to the range [0; 1].

Furthermore, to prevent the system from saturating by the feedback of values through

the hormone system, it was found necessary to make extra restrictions to the system

parameters. In practice, it must be guaranteed that if no stimulus is available then the

hormone values will decrease.

If Sfn = 0 then jHfn+1
j < jHfn j (A.3)

The following restrictions allow to guarantee this. The sum of the positive coupling
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coe�cients associated with an emotion (C+
e
) or with a feeling (C+

f
) should be limited

in the following way:

8e 2 E ; C+
e
= B+

e
+ Ch

X
f2F

C+
ef
� 1 (A.4)

8f 2 F ; C+
f
=
X
e2E

C+
ef

< 1 (A.5)

C+
ef

=

8<
:

Cef if Cef > 0

0 otherwise
(A.6)

B+
e
=

8<
:

Be if Be > 0

0 otherwise
(A.7)

Care should also be taken to have Cef high enough to guarantee the emotions to be

active when necessary and to enable them to take high values.

Consult the appendices concerning experimental details to know which parameter val-

ues were used. The emotions' bias (Be) and dependencies on feelings (Cef ) used in

the di�erent control strategies are speci�ed in the main text while the implementa-

tion details of how the sensations are calculated from the sensors are speci�ed in the

appendices.



Appendix B

Presentation of Experimental

Results

B.1 Error Bar Calculation

B.1.1 Single experiment

The error bars displayed on the graphs assume a normal distribution of the raw values

and are based on the following calculations. The mean and the standard deviation of

the means obtained for each one of the runs was calculated.

So supposing that x1; x2 � � � xn are the means obtained for each of the n runs at a

particular testing point, the following standard formulae show how the mean (�) and

the standard deviation (�) are calculated.

� =
1

n

nX
i=1

xi (B.1)

� =

vuut 1

n� 1

nX
i=1

(xi � �)2 (B.2)

The error bars are based on the con�dence interval of 1�q, where q = 5%. Their value

is ���. � is calculated as shown in the following equation.

� = �1�
q
2

�p
n

(B.3)

�1�
q
2

= 1:96 (B.4)
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B.1.2 Di�erence between two experiments

In some cases, it is interesting to show the di�erence between two experiments, instead

of each one of them by themselves. This is only done for experiments of the same size.

In these cases, the mean and standard deviation of the �nal displayed results are calcu-

lated from the individual mean and standard deviation of each of the two experiments.

So consider that, through the calculations speci�ed above, the mean and standard de-

viation obtained are �r and �r for one of the experiments, and �b and �b for the other.

Supposing that the latter is taken to be the base experiment and that the distributions

of the data are independent from experiment to experiment, the mean and standard

deviation of the di�erence between the two are:

� = �r � �b (B.5)

� =
q
�2
r
+ �2

b
(B.6)

Once again, the error bars shown in the graphs are ���, where � is the same function

of � as before.



Appendix C

Action-Based Control

Experimental Details

C.1 Sensations Speci�cation

Energy level and sensation intensities are values bounded between zero and one.

The robot is initialised with maximum energy level. To lose all its energy, the robot

takes EnergyAutoStopSteps iteration steps if it is stopped, and EnergyAutoRunSteps

if it is moving at full speed. The decrease in energy level is proportional to the

total motor activity (i.e. the sum of the absolute values of both left and right motor

values). EnergyRechargSteps is the number of steps necessary to recover all its energy

if the robot receives maximum light on its sensors. The energy will increase only if

the sum of the values of the robot's front light sensors is high enough (i.e. 60% of

its maximum value). If that condition is met, then the increase in energy is directly

proportional to the light received by these sensors. The previous descriptions of the

processes of increase and decrease of energy level assume independent processes, i.e.

each description considers that the energy value is only modi�ed by the process being

described. In reality, the e�ects of both processes in the energy level are calculated

separately and subsequently added.

Hunger is one minus the energy level.

The Eating sensation is non-zero and directly proportional to the light perceived if

the light received by the robot's front sensors is considered high enough to increase

its energy level. If the energy level is very high (> 0:95) the Eating sensation is in

addition multiplied by one minus the energy level, i.e. the Hunger sensation.

If the robot is bumping then the Pain is proportional to the number of distance sensors

with high values (over 1020), otherwise it is zero. The pain value starts at 1=3 and

increases by 1=6 for each high-valued distance sensor until it reaches its maximum

value. This means that the Pain sensation does not di�erentiate between 3 or more

high-valued sensors.

If the robot travels a good distance (Manhattan distance higher than 1), its Restless-
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ness will decrease; otherwise it increases. The parameter BoredomRaiseSteps is the

number of steps the robot has to be totally stopped to reach its maximum restlessness

value. While the increase in restlessness is inversely proportional to BoredomRaiseSteps,

the decrease is inversely proportional to the parameter BoredomLowerSteps. The

change in restlessness intensity is directly proportional to one minus the Manhattan

distance (i.e. the sum of the absolute values of the distances covered in x and in y),

which lies between �4 and 1.

If the total motor activity is above the TempRaiseTh threshold then the Temperature

will rise. If the value is low (i.e., motor activity < TempLowerTh), then the temperature

will decrease. Basically, the robot will lose temperature with all actions in its action

set except for the fast-forward action. When motors are at full power (motor activity

= 20), the robot takes TempRaiseSteps steps to go from no temperature to maximum

temperature. It will take TempLowerSteps to lower its temperature back to zero with

the motors o�. The temperature increase is directly proportional to the total motor

activity and the decrease is directly proportional to one minus the rescaled total motor

activity (rescaled to lie between 0 and 1).

The values used for the constants mentioned above are given in Table C.1.

C.2 System Parameters

Emotions Parameters

EmotionActiveTH 0.2

EmotionSelectTH 0.2

HormCoef 0.9

HormAlphaUp 0.98

HormAlphaDn 0.996

Controller Parameters

Learning Rate 0.1

Selection Temperature 0.1

Sensation Constants

EnergyAutoStopSteps 1000000

EnergyAutoRunSteps 50000

EnergyRechargSteps 2000

BoredomRaiseSteps 600

BoredomLowerSteps 600

TempRaiseSteps 200

TempLowerSteps 1000

TempRaiseTh 14

TempLowerTh 10

Table C.1: Parameter values used in the experiments.

C.3 Actions

The set of discrete actions used in the experiments is de�ned by the motor values shown

in Table C.2. The second set of action used in the experiments reported in Section

4.3.4 is de�ned by the same motor values, except for the backwards movement.
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Actions Motor power

Right motor Left motor

Slow forward 3 3

Turn left 5 2

Turn right 2 5

Fast forward 8 8

Stop 0 0

Backwards -1 (-3) -5 (-3)

Table C.2: Values of the robot's motors for each action. The values in brackets are the

modi�ed values for the second set of actions.

C.4 Program Environment and Performance

The program developed, sim, is an extension of the X-windows simulator by Olivier

Michel (Michel, 1996). The original code was in C, but the extensions were done in

C++. Some extensions were made to the original code in order to allow it to run in

the background with no graphical output.

The sim program takes about �ve hours to run an experiment with one hundred and

twenty thousand learning steps and sixty-one two thousand step evaluation tests (e.g.

the experiment reported in Figure 4.8). The execution time reported was obtained

for a Sun SparcStation 4 at 125 MHz with sim running in the background with low

priority while other programs were running on the same machine.

C.5 Earlier Experiments

The experiments reported in this dissertation are the end result of many other exper-

iments that provided insights for the gradual improvement of the system.

Much of the improvement consisted in having a more adequate adaptive controller

whether by changing the networks used or the learning algorithms. Others introduced

changes in the emotional system with the purpose of achieving a more stable sys-

tem able to provide a reinforcement function more adequate for learning interesting

behaviour.

This involved re-design of the basic emotions, by changing the existing relations be-

tween feelings and emotions, changing many of the system functions and even rede�ning

the feelings. Although the magnitudes of the reinforcements received and the �nal be-

haviours learned by this early system where quite di�erent, the conclusions that were

derived are consistent with the ones reported in the main text.

Some of the di�erences of one of these earlier systems when compared with the �nal

version follow.
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The functions used by the earlier emotion system which are di�erent are:

8f 2 F ;8n 2 N; Hfn+1
= �Hfn

+ (1� �) tanh(dAfn
) (C.1)

� = HormAlpha (C.2)

d = HormDeclive (C.3)

The Temperature and Pain sensations and the energy level were calculated in a sightly

di�erent fashion. The main di�erences being:

� the temperature would only decrease if the action taken was the stop action;

� even if the robot was not bumping, pain could be non-zero if distance sensors

with high values existed;

� the light sensor used for increasing the energy level was the middle right light

sensor. This selection was made in the assumption that a slightly o�set sensor

should provide a more di�cult task. However, this was not case.

In addition, the turning actions of the action set were associated with the following

motor values:

Actions Motor power

Right motor Left motor

Turn left 7 3

Turn right 3 7

Furthermore, the system parameters had the values shown in Tables C.3 and C.4.

Hunger Pain Restlessness Temperature Eating Bias

Happiness -0.4 -0.3 -0.2 0.4 0.7 0.15

Sadness 0.7 0.0 0.5 0.0 -0.4 0.0

Fear -0.4 0.6 -0.2 0.4 0.0 0.0

Anger 0.2 0.4 0.3 -0.2 0.0 0.0

Table C.3: The emotions' dependencies on feelings for earlier experiments.

Finally, the robot's environment was simpler (see Figure C.1). In the more recent

version, lights had to be surrounded by bricks to avoid having the robot getting stuck

on the lights. This would happen quite frequently, especially with the new setup. As a

result, experiments would often have to be invalidated, because the robot was caught in

one of these situations where it would become helpless with no action available capable
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Emotions Parameters

EmotionActiveTH 0.2

EmotionSelectTH 0.2

HormCoef 0.5

HormAlpha 0.996

HormDeclive 3.0

Controller Parameters

Learning Rate 0.1

Selection Temperature 0.04

Sensation Constants

EnergyAutoStopSteps 1000000

EnergyAutoRunSteps 50000

EnergyRechargSteps 2000

BoredomRaiseSteps 600

BoredomLowerSteps 600

TempRaiseSteps 800

TempLowerSteps 1000

TempRaiseTh 14

TempLowerTh 6

Table C.4: Parameter values used in the earlier experiments.

of getting it out of its stuck position. It was found that the robot would \jump" into

such positions because the simulator only veri�es intersection with obstacles for the

�nal position of the step movement, and not for all the intermediate positions. This

way, the robot can arrive at invalid positions that should normally not be reachable.

When this happens, in order to get back to a valid position, the robot might have to

execute the exact inverse action that led to the invalid position in the �rst place and

might be unable to free itself only because of a question of speed of the motors.

Figure C.1: The robot and its environment. Earlier version.
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Appendix D

Behaviour-Based Control

Experimental Details

D.1 Sensations and Food Sources Speci�cation

As stated in the main text, the acquisition of new energy can only be made at speci�c

intervals of time, and the sensors used for this purpose are now the two rear light

sensors instead of the two front ones. To specify the implications of the robot's harder

task for its sensations, this task will be described in detail next.

Each light in the robot's environment is a food source. A food source contains several

food items, varying between 0 and MaxFoodItems, that are decreased by one every

time it releases energy. Food items are continuously being produced, unless the limit

of food items per food source, i.e. MaxFoodItems, is reached. A new food item is

created after a random number of steps varying between 1 and MaxNewFoodSteps,

unless production is stopped. In the latter case, a food item has to be used up �rst. If

the robot collides with the associated light, then a food item is released in the form of

available energy to the robot and therefore used up. This energy will only be available

for MaxFoodAvailableSteps steps. Only during this interval of time can the robot

acquire energy by receiving light in its rear sensors. The food items are actually only

released when the robot state changes from not bumping to bumping. So after having

received a food item, to have a new one, the robot has to back out and hit the light

again. This avoids all the food items being released in one go when the robot keeps in

collision with the light for a few steps.

For simpli�cation of the implementation, it is not necessary that the robot actually

collide with the light or the bricks around it. The robot has only to collide with some

wall within a pre-speci�ed square area around the light. Around each light, there is

such an area. These areas are represented in Figure D.1 by the smaller and lighter

areas around the lights. This �gure also shows the larger areas, represented by a less

bright colour, where the robot can smell and eventually eat the food provided by the

light.

The other modi�cations introduced to previously existing sensations are:
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Figure D.1: Di�erent regions for energy acquisition.

� Temperature | The temperature's variation thresholds were lowered because

the actions employed by the behaviours tend to be smaller than the primitive

actions previously used.

� Restlessness | Is calculated just the same way as before, but is reset to value

zero, together with the associated hormone, whenever the controller selects a

behaviour.

Three new sensations were introduced. These, like the original sensations, also have

values bounded between zero and one.

� Smell | is only active if there is food available and its intensity is directly

proportional to the number of time steps it will still be available. It has the

maximum value of one when the food is made available.

� Warmth | is the normalised value of the light sensor that is receiving most

light at the moment; the highest the the intensity of the light received in that

sensor, the higher the value of warmth.

� Proximity | is the normalised value of the distance sensor with the highest

value. Re
ects the proximity of the nearest obstacle.

The parameter values used by the behaviour-based controller in the calculation of the

sensations and food availability are given in Section D.2.
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D.2 System Parameters

Figure Experiment Reinforcement Environment Parameters

5.5, 5.6, 5.7, 5.8 Short Sensation { {

5.9 { Sensation { {

5.10, 5.11 Short Sensation { {

5.12 { N. A. { {

5.14 { Sensation { {

5.15 Event-driven Sensation { {

5.16, 5.17 { Sensation { {

5.18 { Sensation Demanding {

5.19, 5.20 { Sensation Demanding Energy

5.22, 5.23 { N. A. { {

5.24 { Emotion { {

5.26 { Emotion { {

5.28 { N. A. { {

5.29 { N. A. Demanding Energy

5.30, 5.31 Follow-up Emotion { {

5.33, D.2, D.3 { Emotion { {

5.35 { Emotion Demanding Energy + Hormone decay

5.36 { Emotion Demanding Energy + No hormones

5.38 { Emotion { {

5.39 { Emotion Demanding Energy

Table D.1: Experimental procedure for individual experiments.

Interpretation of Table D.1:

Figure | Indicates the �gures where the experimental results are shown. The list of

�gures provides a brief description of the experiments themselves.

Experiment | The di�erence between short experiments and normal experiments

lies in the number of steps per trial, see Section 5.2.4 for details. Some of the

experiments are actually follow-ups on other experiments, showing particular

details of the behaviour of a controller after learning has converged.

Reinforcement | Speci�es whether sensation-dependent or emotion-dependent re-

inforcement was used during the experiments.

Environment | The di�erent available environments, the default and the demand-

ing, are pictured in Figures 5.2 and 5.1, respectively.

Parameters | The default parameters are the ones on Table D.2, the modi�cations

made are speci�ed in Tables D.3 (energy), D.4 (no hormones) and D.5 (hormone

decay).
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Emotions Parameters

EmotionActiveTH 0.2

EmotionSelectTH 0.2

HormCoef 0.9

HormAlphaUp 0.98

HormAlphaDn 0.996

Controller Parameters

Learning Rate 0.3

Selection Temperature 0.1

Triggering Parameters

Tolerance Threshold 0.02

Maximum Step Limit 10000

Sensation Constants

EnergyAutoStopSteps 100000

EnergyAutoRunSteps 20000

EnergyRechargSteps 100

BoredomRaiseSteps 1000

BoredomLowerSteps 200

TempRaiseSteps 200

TempLowerSteps 1000

TempRaiseTh 10

TempLowerTh 3

Food Constants

MaxFoodItems 5

MaxNewFoodSteps 20000

MaxFoodAvailableSteps 200

Table D.2: Parameter values used in the experiments.

Sensation Constants

EnergyAutoStopSteps 15000

EnergyAutoRunSteps 15000

Table D.3: Modi�ed parameters for harder energy requirements.

Emotions Parameters

HormCoef 0

HormAlphaUp 0

HormAlphaDn 0

Table D.4: Modi�ed parameters for no in
uence from hormone system.

Emotions Parameters

HormAlphaDn 0.99, 0.998, 0.999

Table D.5: Modi�ed parameter values for hormone decay rate.
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D.3 Behaviours

For an accurate description of the behaviours, their pseudo-code is given next starting

by the presentation of the constants1 and auxiliary functions used.

% Constants

SmallProximityValue  10;

MediumProximityValue  400;

AllSensors  f 0, 1, 2, 3, 4, 5, 6, 7 g;
LeftSensors  f 0, 1, 2 g;
RightSensors  f 3, 4, 5 g;
RearSensors  f 6, 7 g;

RightOrientTo  [ 8, 8, 10, 8, 2, -4, -10, -10 ];

LeftOrientTo  [ -4, 2, 8, 10, 8, 8, 10, 10 ];

RightWall.Th  [ 5, 5, 5, 5, 100, 800, 5, 5 ];

RightWall.left  [ -1, -1, -1, 5, 8, 8, 0, 0 ];

RightWall.leftSum  100 � P j RightWall.left[8 i 2 AllSensors] j
RightWall.right  [ 1, 1, 1, -5, -2, -2, 0, 0 ];

RightWall.rightSum  100 � P j RightWall.right[8 i 2 AllSensors] j

LeftWall.th  [ 800, 100, 5, 5, 5, 5, 5, 5 ];

LeftWall.left  [ -2, -2, -5, 1, 1, 1, 0, 0 ];

LeftWall.leftSum  100 � P j LeftWall.left[8 i 2 AllSensors] j
LeftWall.right  [ 8, 8, 5, -1, -1, -1, 0, 0 ];

LeftWall.rightSum  100 � P j LeftWall.right[8 i 2 AllSensors] j

function BoundMotorValue(x)

return max( -10, min( 10, x));

end

1 Some of the wall-following constants were actually determined by genetic algorithms, thanks to

Hanson Schmidt-Cornelius.
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function ApplyRe
ex(re
ex, proximity)

leftMotor  0;

rightMotor  0;

For i 2 AllSensors do

leftMotor  leftMotor + re
ex.left[i] � (re
ex.th[i] - proximity[i]);

rightMotor  rightMotor + re
ex.right[i] � (re
ex.th[i] - proximity[i]);

leftMotor  BoundMotorValue((leftMotor / re
ex.leftSum) + 1 );

rightMotor  BoundMotorValue((rightMotor / re
ex.rightSum) + 1);

end

Behaviour Avoid Obstacles

For i 2 AllSensors do

proximity[i]  Value registered by distance sensor i;

end

imax  i : proximity[i] � proximity[8 j 2 AllSensors];

if (imax =2 RearSensors) or

(j proximity[6] - proximity[7] j > MediumProximityValue) do

% Turn back to the obstacle

leftMotor  4;

rightMotor  -4;

return;

end

leftMotor  (proximity[7] - max(proximity[8 i 2 RightSensors])) / 51;

rightMotor  (proximity[6] - max(proximity[8 i 2 LeftSensors])) / 51;

end

Behaviour Seek Light

For i 2 AllSensors do

value[i]  Value registered by light sensor i;

light[i]  450 - value[i];

end

if max(light[8 i 2 AllSensors]) < 0 do

% No lights nearby

leftMotor  0;

rightMotor  0;

return;

end

adjust  2 � max(light[8 i 2 AllSensors]);

leftMotor  BoundMotorValue((light � LeftOrientTo)/adjust);

rightMotor  BoundMotorValue((light � RightOrientTo)/adjust);

end
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Behaviour Wall Following

For i 2 AllSensors do

proximity[i]  Value registered by distance sensor i;

end

imax  i : proximity[i] � proximity[8 j 2 AllSensors];

if (max(proximity[imax]) < SmallProximityValue) or imax 2 RearSensors do

% No walls nearby or on the back of the robot

wall  none;

leftMotor  10;

rightMotor  10;

return;

end

if wall = none do

if imax 2 LeftSensors do

wall  left;

else

wall  right;

end

end

if wall = left do

ApplyRe
ex(LeftWall, proximity);

else

ApplyRe
ex(RightWall, proximity);

end

leftMotor  BoundMotorValue(6 � leftMotor);

rightMotor  BoundMotorValue(6 � rightMotor);

end
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D.4 Additional Experimental Results
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Figure D.2: Emotional controller starting o� with customised neural networks. Repe-

tition of learning experiment in Figure 5.33 testing di�erent � values.
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Figure D.3: Emotional controller with no learning and starting o� with customised

neural networks. Repetition of non-learning experiment in Figure 5.33 testing di�erent

� values.
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D.5 Program Environment and Performance

The new controller demanded further modi�cations to the Khepera simulator, apart

from those already done for the action-based controller. As discussed previously, some-

times the robot would end up in crash situations where all its available actions were

useless to move it away. With the new controller the problems with robot crash situa-

tions increased dramatically, making it necessary to change the Test Collision routine

of the simulator. Minor changes to the routine were su�cient to make it much more ro-

bust and avoid crashing problems altogether. As a side e�ect, the overall performance

of the robots, not taking into account the crashed robots, also improved slightly.

The new controller is more complex and takes more steps to run. This resulted in a

signi�cant increase in the computing time of each experiment. Now a normal experi-

ment, as described in Section 5.2.4 and usually corresponding to one of the curves of

the results graphs, takes about ten hours processing time on a Sun Ultra 5 workstation.
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