71 research outputs found

    Estimating intrinsic camera parameters from the fundamental matrix using an evolutionary approach

    Get PDF
    Calibration is the process of computing the intrinsic (internal) camera parameters from a series of images. Normally calibration is done by placing predefined targets in the scene or by having special camera motions, such as rotations. If these two restrictions do not hold, then this calibration process is called autocalibration because it is done automatically, without user intervention. Using autocalibration, it is possible to create 3D reconstructions from a sequence of uncalibrated images without having to rely on a formal camera calibration process. The fundamental matrix describes the epipolar geometry between a pair of images, and it can be calculated directly from 2D image correspondences. We show that autocalibration from a set of fundamental matrices can simply be transformed into a global minimization problem utilizing a cost function. We use a stochastic optimization approach taken from the field of evolutionary computing to solve this problem. A number of experiments are performed on published and standardized data sets that show the effectiveness of the approach. The basic assumption of this method is that the internal (intrinsic) camera parameters remain constant throughout the image sequence, that is, the images are taken from the same camera without varying such quantities as the focal length. We show that for the autocalibration of the focal length and aspect ratio, the evolutionary method achieves results comparable to published methods but is simpler to implement and is efficient enough to handle larger image sequences

    Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    Get PDF
    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors

    3D Reconstruction Using a Stereo Vision System with Simplified Inter-Camera Geometry

    Get PDF
    This thesis addresses the relationship between camera configuration and 3D Euclidean reconstruction. Simulations have been conducted and have shown that when error is present, the larger rotation angle, the worse the reconstruction quality. When rotation is avoided, errors in the intrinsic parameters do not affect the 3D reconstruction in a significant way. Therefore, it is suggested to minimize or avoid rotation when constructing a stereo vision system. Once this configuration is applied, inaccurate intrinsic parameters, even without the prior information of intrinsic parameters, can also yield good reconstruction quality. The configuration of pure translation also provides a framework, which can be used to compute elements of intrinsic parameters with an additional geometry constraint. The perpendicular constraint is selected as an example. Focal length can be recovered from this constraint by assuming the principal point is the centre of the image

    Three dimensional information estimation and tracking for moving objects detection using two cameras framework

    Get PDF
    Calibration, matching and tracking are major concerns to obtain 3D information consisting of depth, direction and velocity. In finding depth, camera parameters and matched points are two necessary inputs. Depth, direction and matched points can be achieved accurately if cameras are well calibrated using manual traditional calibration. However, most of the manual traditional calibration methods are inconvenient to use because markers or real size of an object in the real world must be provided or known. Self-calibration can solve the traditional calibration limitation, but not on depth and matched points. Other approaches attempted to match corresponding object using 2D visual information without calibration, but they suffer low matching accuracy under huge perspective distortion. This research focuses on achieving 3D information using self-calibrated tracking system. In this system, matching and tracking are done under self-calibrated condition. There are three contributions introduced in this research to achieve the objectives. Firstly, orientation correction is introduced to obtain better relationship matrices for matching purpose during tracking. Secondly, after having relationship matrices another post-processing method, which is status based matching, is introduced for improving object matching result. This proposed matching algorithm is able to achieve almost 90% of matching rate. Depth is estimated after the status based matching. Thirdly, tracking is done based on x-y coordinates and the estimated depth under self-calibrated condition. Results show that the proposed self-calibrated tracking system successfully differentiates the location of objects even under occlusion in the field of view, and is able to determine the direction and the velocity of multiple moving objects

    INTEGRATED AQUIFER VULNERABILITY ASSESSMENT OF NITRATE CONTAMINATION IN CENTRAL INDIANA

    Get PDF
    Groundwater is not easily contaminated, but it is difficult to restore once contaminated. Therefore, groundwater management is important to prevent pollutants from reaching groundwater. A common step in developing groundwater management plans is assessment of aquifer risk using computational models. Groundwater modeling with a geographic information system (GIS) for efficient groundwater management can provide maps of regions where groundwater is contaminated or may be vulnerable and also can help select the optimal number of groundwater monitoring locations

    Several approaches for the traveling salesman problem

    Get PDF
    We characterize both approaches, mldp and k-mldp, with several methodologies; both a linear and a non-linear mathematical formulation are proposed. Additionally, the design and implementation of an exact methodology to solve both linear formulations is implemented and with it we obtained exact results. Due to the large computation time these formulations take to be solved with the exact methodology proposed, we analyse the complexity each of these approaches and show that both problems are NP-hard. As both problems are NP-hard, we propose three metaheuristic methods to obtain solutions in shorter computation time. Our solution methods are population based metaheuristics which exploit the structure of both problems and give good quality solutions by introducing novel local search procedures which are able to explore more efficiently their search space and to obtain good quality solutions in shorter computation time. Our main contribution is the study and characterization of a bi-objective problematic involving the minimization of two objectives: an economic one which aims to minimize the total travel distance, and a service-quality objective which aims to minimize of the waiting time of the clients to be visited. With this combination of objectives, we aim to characterize the inclusion of the client in the decision-making process to introduce service-quality decisions alongside a classic routing objective.This doctoral dissertation studies and characterizes of a combination of objectives with several logistic applications. This combination aims to pursue not only a company benefit but a benefit to the clients waiting to obtain a service or a product. In classic routing theory, an economic approach is widely studied: the minimization of traveled distance and cost spent to perform the visiting is an economic objective. This dissertation aims to the inclusion of the client in the decision-making process to bring out a certain level of satisfaction in the client set when performing an action. We part from having a set of clients demanding a service to a certain company. Several assumptions are made: when visiting a client, an agent must leave from a known depot and come back to it at the end of the tour assigned to it. All travel times among the clients and the depot are known, as well as all service times on each client. This is to say, the agent knows how long it will take to reach a client and to perform the requested service in the client location. The company is interested in improving two characteristics: an economic objective as well as a servicequality objective by minimizing the total travel distance of the agent while also minimizing the total waiting time of the clients. We study two main approaches: the first one is to fulfill the visits assuming there is a single uncapacitated vehicle, this is to say that such vehicle has infinite capacity to attend all clients. The second one is to fulfill the visits with a fleet of k-uncapacitated vehicles, all of them restricted to an strict constraint of being active and having at least one client to visit. We denominate the single-vehicle approach the minimum latency-distance problem (mldp), and the k-sized fleet the k-minimum latency-distance problem (k-mldp). As previously stated, this company has two options: to fulfil the visits with a single-vehicle or with a fixed-size fleet of k agents to perform the visits

    Detecting Human Activity by Location System and Stereo Vision

    Get PDF

    Image-based 3-D reconstruction of constrained environments

    Get PDF
    Nuclear power plays a important role to the United Kingdom electricity generation infrastructure, providing a reliable baseload of low carbon electricity. The Advanced Gas-cooled Reactor (AGR) design makes up approximately 50% of the existing fleet, however, many of the operating reactors have exceeding their original design lifetimes.To ensure safe reactor operation, engineers perform periodic in-core visual inspections of reactor components to monitor the structural health of the core as it ages. However, current inspection mechanisms deployed provide limited structural information about the fuel channel or defects.;This thesis investigates the suitability of image-based 3-D reconstruction techniques to acquire 3-D structural geometry to enable improved diagnostic and prognostic abilities for inspection engineers. The application of image-based 3-D reconstruction to in-core inspection footage highlights significant challenges, most predominantly that the image saliency proves insuffcient for general reconstruction frameworks. The contribution of the thesis is threefold. Firstly, a novel semi-dense matching scheme which exploits sparse and dense image correspondence in combination with a novel intra-image region strength approach to improve the stability of the correspondence between images.;This results in a percentage increase of 138.53% of correct feature matches over similar state-of-the-art image matching paradigms. Secondly, a bespoke incremental Structure-from-Motion (SfM) framework called the Constrained Homogeneous SfM (CH-SfM) which is able to derive structure from deficient feature spaces and constrained environments. Thirdly, the application of the CH-SfM framework to remote visual inspection footage gathered within AGR fuel channels, outperforming other state-of-the-art reconstruction approaches and extracting representative 3-D structural geometry of orientational scans and fully circumferential reconstructions.;This is demonstrated on in-core and laboratory footage, achieving an approximate 3-D point density of 2.785 - 23.8025NX/cm² for real in-core inspection footage and high quality laboratory footage respectively. The demonstrated novelties have applicability to other constrained or feature-poor environments, with future work looking to producing fully dense, photo-realistic 3-D reconstructions.Nuclear power plays a important role to the United Kingdom electricity generation infrastructure, providing a reliable baseload of low carbon electricity. The Advanced Gas-cooled Reactor (AGR) design makes up approximately 50% of the existing fleet, however, many of the operating reactors have exceeding their original design lifetimes.To ensure safe reactor operation, engineers perform periodic in-core visual inspections of reactor components to monitor the structural health of the core as it ages. However, current inspection mechanisms deployed provide limited structural information about the fuel channel or defects.;This thesis investigates the suitability of image-based 3-D reconstruction techniques to acquire 3-D structural geometry to enable improved diagnostic and prognostic abilities for inspection engineers. The application of image-based 3-D reconstruction to in-core inspection footage highlights significant challenges, most predominantly that the image saliency proves insuffcient for general reconstruction frameworks. The contribution of the thesis is threefold. Firstly, a novel semi-dense matching scheme which exploits sparse and dense image correspondence in combination with a novel intra-image region strength approach to improve the stability of the correspondence between images.;This results in a percentage increase of 138.53% of correct feature matches over similar state-of-the-art image matching paradigms. Secondly, a bespoke incremental Structure-from-Motion (SfM) framework called the Constrained Homogeneous SfM (CH-SfM) which is able to derive structure from deficient feature spaces and constrained environments. Thirdly, the application of the CH-SfM framework to remote visual inspection footage gathered within AGR fuel channels, outperforming other state-of-the-art reconstruction approaches and extracting representative 3-D structural geometry of orientational scans and fully circumferential reconstructions.;This is demonstrated on in-core and laboratory footage, achieving an approximate 3-D point density of 2.785 - 23.8025NX/cm² for real in-core inspection footage and high quality laboratory footage respectively. The demonstrated novelties have applicability to other constrained or feature-poor environments, with future work looking to producing fully dense, photo-realistic 3-D reconstructions

    Object Localization and Tracking in 3D

    Get PDF
    The field of Computer Vision has repeatedly been recognized as an intellectual frontier whose boundaries of applicability are yet to be stipulated. The work attempts to demonstrate that vision can achieve an automatic localization and tracking of targets in a 3D space. Localization of targets has gained importance in the recent past due to the myriad of applications it plays a significant role in. It is analogous to detection of objects in a video sequence in the image processing domain. This work aims to localize a target based on range measurements obtained using a network of sensors scattered in the 3D continuum. To this end, the use of the biologically inspired particle swarm optimization(PSO) algorithm is motivated. In this context, a novel modification of PSO algorithm is proposed that leads to faster convergence, and eliminates the ip ambiguity encountered by coplanar sensors. The initial results over several simulation runs highlight the accuracy and speed of the proposed approach
    corecore