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“Therefore humble yourselves under the mighty hand of God,  

that He may exalt you at the proper time” 

- 1 Peter 5:6 - 
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ABSTRACT 

 

Jang, Won Seok. Ph.D., Purdue University, December 2016. Integrated Aquifer 

Vulnerability Assessment of Nitrate Contamination on a Watershed Scale. Major 

Professor: Bernard A. Engel. 

 

Groundwater is not easily contaminated, but it is difficult to restore once contaminated.  

Therefore, groundwater management is important to prevent pollutants from reaching 

groundwater.  A common step in developing groundwater management plans is 

assessment of aquifer risk using computational models.  Groundwater modeling with a 

geographic information system (GIS) for efficient groundwater management can provide 

maps of regions where groundwater is contaminated or may be vulnerable and also can 

help select the optimal number of groundwater monitoring locations. 

 

For efficient groundwater resources management, integrated aquifer vulnerability 

assessment is required.  Integrated aquifer vulnerability assessment is incorporated into a 

groundwater characterization and pollutant transport analysis with tiered approaches for 

intrinsic aquifer vulnerability assessment (intrinsic aquifer properties) and aquifer hazard 

assessment (pollutant transport properties).  Intrinsic aquifer vulnerability was conducted 

by using high resolution data to create high resolution results with DRASTIC.  Aquifer 

hazard assessment was performed using a watershed scale hydrological model (SWAT) 

and a machine learning technique (Geo-ANN) developed in this study.  For accurate 
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estimation of aquifer hazard assessment, SWAT 2012 code was modified to 

simultaneously calibrate streamflow and baseflow using SUFI-2.  With the DRASTIC, 

modified SWAT, and Geo-ANN, integrated aquifer assessment was performed in the 

Upper White River Watershed (UWRW) located in the East central IN. 

 

The intrinsic aquifer vulnerability results from DRASTIC without calibration were 

validated with observed nitrate concentrations in wells.  The results showed that 

approximately 35.3% of nitrate detections > 2 ppm are within “High” and “Very high” 

vulnerability areas (represent 3.2% of vulnerability area).  The results from calibrated 

DRASTIC showed that approximately 42.2% of nitrate detections > 2 ppm are within 

DRASTIC “High” and “Very high” vulnerability areas which represent only 3.4% of the 

area.  The calibrated DRASTIC better predicted vulnerability areas using based on 

observed well nitrate levels > 2 ppm. 

 

An efficient flow calibration regime (EFCR) created by incorporating modified SWAT 

2012 code and SUFI-2 was developed for accurate streamflow and baseflow estimation 

by calibrating streamflow and baseflow simultaneously.  The results of the calibration 

and validation in the UWRW showed that the simulated streamflow and baseflow agreed 

well with the observed data.  With the EFCR, for the calibration period (1990 - 2001), 

NSE / R2 / PBIAS for streamflow were 0.85 / 0.87 / 3.90 and NSE / R2 / PBIAS for 

baseflow were 0.63 / 0.73 / 16.7.  For the validation period (2002 - 2010), NSE / R2 / 

PBIAS for streamflow and baseflow showed 0.88 / 0.92 / 1.50 (streamflow) and 0.65 / 

0.70 / 13.8 (baseflow).  These values indicate that the model is more than “Satisfactory” 
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for all periods.  For baseflow-related studies, such as analysis of nitrate leaching for 

aquifer hazard assessment, simultaneous streamflow and baseflow calibration would be a 

reasonable approach. 

 

For integrated aquifer vulnerability assessment in the UWRW, an integrated aquifer 

vulnerability map was produced by combining the intrinsic aquifer vulnerability map 

from DRASTIC and the aquifer hazard map from SWAT and Geo-ANN.  The results of 

integrated aquifer vulnerability assessment were validated with observed nitrate 

concentrations in wells.  Approximately 81.0% of well nitrate detections > 2 ppm were 

within “High” and “Very high” vulnerability areas that represented only 5.8% of the area.  

Approximately 12% of the nitrate detections were within the “Moderate” vulnerability 

class (30.7% of area), and 6.9% of the nitrate detections were within the “Low” 

vulnerability class (50.7% of area).  Well nitrate levels > 2 ppm were not detected within 

the “Very low” vulnerability class (12.8% of area).  The results indicate that integrated 

aquifer vulnerability assessment performed well.  The integrated aquifer vulnerability 

assessment considers both intrinsic aquifer properties and pollutant transport properties.  

Thus, the overall assessment of aquifer vulnerability can be performed using the 

integrated aquifer vulnerability assessment technique provided in this study.  Moreover, 

this approach is expected to be an efficient guide for managing groundwater resources for 

policy makers and groundwater-related researchers.
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

Groundwater is the primary source of water for over 1.5 billion people worldwide (Alley 

et al., 2002).  Moreover, approximately one-half of the U.S. population depends on 

groundwater for its supply of potable water; approximately 36% of all municipal public 

drinking water supply systems and 95% of all rural populations draw potable water from 

groundwater resources (Conservation Foundation, 1985).  Groundwater is a vital resource 

in Indiana as well with approximately 60% of the state’s drinking water coming from 

groundwater.  Despite its widespread use as drinking water in Indiana and globally, 

groundwater is a poorly understood resource by most people (Solly et al. 1998).  

Groundwater is also a critical component of the global environment.  It offers human 

populations a variety of services, including water for drinking and irrigation.  However, 

groundwater systems have been increasingly threatened, directly and indirectly, by 

human activities (Hamblin and Christiansen 2004). 

 

Groundwater is typically not easily contaminated yet once this occurs, it is difficult to 

restore.  Furthermore, groundwater pollution is not visible and is detected only when a 

well or spring becomes noticeably polluted or the pollutant is discharged into surface 

waters (Novotny 2003).  Groundwater management is necessary to maintain clean 
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groundwater.  Groundwater management has usually been facilitated by either modeling 

aquifer vulnerability with computational models or monitoring aquifers using 

groundwater sampling. 

 

Compared with groundwater monitoring and sampling, groundwater modeling is less 

complex and costly, and allows evaluation of broad areas.  Groundwater modeling can 

help select the optimal number of monitoring locations and their spatial distribution for 

detecting pollution in groundwater aquifers and can be useful to assess groundwater 

quality and provide a guide to manage groundwater efficiently (Wu 2004; Chadalavada 

and Datta 2008; Baalousha 2010).  Therefore, if monitoring is conducted after identifying 

the most vulnerable areas by modeling techniques as an initial screening tool, potential 

monitoring sites and areas where Best Management Practices (BMPs) for groundwater 

quality protection can be determined in an effective and economic manner (Fienen et al. 

2011). 

 

There are two methods for effective estimation of groundwater contamination for 

drinking water with regard to aquifer intrinsic and transport properties (Brouyére et al., 

2001).  Aquifer intrinsic and transport properties are analyzed by intrinsic aquifer 

vulnerability assessment, and aquifer hazard assessment, respectively.  Intrinsic aquifer 

vulnerability (intrinsic properties) is defined as natural susceptibility to contamination 

based on the properties of the land and subsurface, and aquifer hazard (transport 

properties) is regarded as pollution potential with respect to pollutant transport from the 

land surface to aquifers (Brouyére et al., 2001).  Intrinsic aquifer vulnerability assessment 
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is usually conducted by overlay and index GIS models, and aquifer hazard assessment is 

implemented by numerical models (Pacheco and Sanches Fernandes, 2013; Chen et al., 

2013; Akhavan et al., 2011; Akhavan et al., 2010). 

 

Among various groundwater models, DRASTIC, an overlay and index GIS model, has 

been widely used to evaluate environmental impact associated with groundwater 

pollution with the use of different ratings criteria, and the strength of the vulnerability 

concept is that it is performed by classifying a geographical area regarding its 

susceptibility to groundwater contamination (Babiker et al. 2005; Akhavan et al. 2011).  

Advantages of the DRASTIC model include the method's low cost of application (Aller 

et al. 1987; Akhavan et al. 2011) and relative accuracy of model results for extensive 

regions (from regional scale to global scale) with a complex geological structure 

(Kalinski et al. 1994; McLay et al. 2001).  Moreover, DRASTIC requires limited input 

data and has small computational needs, because there is no complex numerical analysis 

which requires many parameters and there is no complicated simulation process (Barbash 

and Resek 1996). 

 

SWAT has been widely used for water resources management in part because SWAT has 

a user friendly Graphical User Interface (GUI) and a well-organized database.  SWAT 

simulates surface flow and shallow groundwater dynamics based on hydrological 

response units (HRUs), which are the smallest computational units in SWAT.  Surface 

runoff, shallow groundwater dynamics, soil water content, nutrient cycles, and sediment 

erosion are simulated for each HRU, and then HRUs are summed together in subbasins 
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(Neitsch et al., 2011).  For accurate estimation of aquifer hazard using the watershed 

scale hydrological model (SWAT), surface and groundwater hydrology should be 

calibrated first, and then simulation of pollutant leaching to aquifers should be conducted 

(Santhi et al., 2001; Arnold et al., 2012) because nitrate leaching to aquifers is 

interdependent with baseflow or vice versa.  Thus, streamflow and baseflow calibrations 

should be conducted simultaneously for accurate estimation of aquifer hazard.   

 

Sometimes when a model cannot address a research or project problem, two or more 

models can be used, or a combined model can be utilized to enhance the physical 

representation of hydrologic processes for better estimation.  Many studies related to 

hydrologic and water quality have been conducted to determine efficient water 

management using a coupled model (Noori and Kalin, 2016; Chen and Wu, 2012; 

Maxwell et al., 2015).  The machine learning technique, ANN, is a data-driven model 

based on data experienced in the real world phenomena of a specific system.  In contrast 

to analytical or numerical models, data-driven models can be used to solve problems in 

the field of hydrology and water resources engineering where knowledge of the physical 

behavior of the system and data are limited (Solomatine and Ostfeld, 2008).  Thus, for the 

simulation of complex systems, data-driven models are useful to define the patterns 

within the behavior of the system (Araghinejad, 2014).  ANN does not require detailed 

knowledge of the internal functions of a system to identify the complex, dynamic and 

non-linear relationships from given patterns by input and output (Ha and Stenstrom, 

2003). 
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For efficient groundwater resources management, integrated aquifer vulnerability 

assessments are required.  Integrated aquifer vulnerability assessments are incorporated 

into a groundwater characterization and risk analysis with tiered approaches for intrinsic 

aquifer vulnerability (aquifer intrinsic properties) assessment by DRASTIC and aquifer 

hazard (pollutant transport properties) assessment by SWAT and Geo-ANN (Brouyére et 

al., 2001).  This research focuses on developing and evaluating novel techniques for 

integrated aquifer vulnerability assessment at the watershed scale. 

 

1.2 Objectives 

The overall goals of this study are to: 1) develop and evaluate integrated aquifer 

vulnerability assessment for efficient groundwater management in the Midwestern United 

States, and 2) modify and develop additional models (GA, SUFI-2, and Geo-ANN) for 

better prediction of groundwater contamination.  Groundwater management has usually 

been conducted by either modeling aquifer vulnerability and aquifer hazard with 

computational models or monitoring aquifer and subsurface vulnerability by direct 

groundwater sampling.  In this study, different modeling approaches were used to 

evaluate integrated aquifer vulnerability without groundwater sampling and monitoring, 

but groundwater data were used from different organizations such as USGS, EPA, IDEM, 

and Heidelberg University.  The specific research objectives in this study are as follows:  

 

1. Assessment of intrinsic aquifer vulnerability for sustainable groundwater 

management using DRASTIC: 1) to conduct intrinsic aquifer vulnerability 

assessment with DRASTIC using high resolution data, 2) to calibrate DRASTIC 
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weights using a binary classifier calibration method with a genetic algorithm (Bi-

GA), and 3) to identify areas of potential high aquifer vulnerability and select 

potential aquifer monitoring and management sites for effective monitoring 

planning and areas where BMPs to prevent groundwater contamination might be 

considered. 

 

2. Development of efficient flow calibration regime (EFCR) for accurate estimation 

of hydrologic and water quality components using a watershed scale hydrological 

model: 1) to provide the EFCR for accurate baseflow estimation with SUFI-2 and 

modified SWAT 2012 code, and 2) to evaluate the performance of the EFCR by 

streamflow and baseflow estimation. 

 

3. Evaluation of integrated aquifer vulnerability using DRASTIC, a watershed scale 

hydrological model (SWAT), and Geo-ANN: 1) to generate meaningful data related 

to groundwater pollution by SWAT as significant input variables for aquifer hazard 

assessment, 2) to develop and provide a modeling guideline for aquifer hazard 

assessment by combining SWAT and Geo-ANN for efficient groundwater 

management, 3) to develop Geo-ANN which is compatible with GIS/RS data 

formats for a flexible hydrology and water quality modeling, and 4) to conducted 

integrated aquifer vulnerability assessment by incorporating intrinsic aquifer 

vulnerability and aquifer hazard assessment. 
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1.3 Dissertation Organization 

This dissertation contains five chapters.  Chapter 1: Introduction, focuses on providing 

research needs, and research objectives in this study.  Chapters 2 to 4 discuss the methods 

and results related to the proposed objectives in the Chapter 1.  These chapters are 

reformatted from the journal articles which are ready to submit in various journals.  

Chapter 2 covers objective 1 to conduct intrinsic aquifer vulnerability assessment for 

sustainable groundwater management using DRASTIC.  Chapter 3 covers objective 2 to 

perform efficient flow calibration regime for accurate estimation of hydrologic and water 

quality components using the watershed scale hydrologic model (SWAT).  Chapter 4 

covers objective 3 to conduct integrated aquifer assessment using DRASTIC, SWAT, and 

Geo-ANN.  Chapter 5, Summary and conclusions, provide expected significant findings 

of the study and presents recommendations for future studies. 
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CHAPTER 2. INTRINSIC AQUIFER VULNERABILITY ASSESSMENT FOR 

SUSTAINABLE GROUNDWATER MANAGEMENT USING DRASTIC 

2.1 Abstract 

Groundwater is a vital resource in Indiana, with approximately 60% of the state’s 

drinking water coming from groundwater.  Groundwater systems are increasingly 

threatened, directly and indirectly, by human activities.  Groundwater management is 

necessary to maintain clean groundwater.  Groundwater management has typically been 

facilitated by either modeling aquifer vulnerability with computational models or 

monitoring aquifers through groundwater sampling.  The DRASTIC model, which uses 

overlay and index methods, has been used by many researchers for groundwater quality 

assessment because it uses simple, straightforward methods.  DRASTIC is useful as an 

initial screening tool to evaluate aquifer vulnerability in broad areas.  Intrinsic aquifer 

vulnerability mapping identifies areas with high pollution potential, and in turn, areas for 

priority management and monitoring.  The objectives of this study are to conduct intrinsic 

aquifer vulnerability assessment with DRASTIC using high resolution data, calibrate 

DRASTIC weights using a binary classifier calibration method with a genetic algorithm 

(Bi-GA), identify areas of high potential aquifer vulnerability, and select potential aquifer 

monitoring sites using spatial statistics.  The intrinsic aquifer vulnerability results from 

DRASTIC using Bi-GA were validated with a well database of observed nitrate 

concentrations.  The DRASTIC results using Bi-GA showed that approximately 42.2% of 
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nitrate detections > 2 ppm are within “High” and “Very high” vulnerability areas 

(represent 3.4% of area) as simulated by DRASTIC.  Moreover, 53.4% of the nitrate 

detections were within the “Moderate” vulnerability class (26.9% of area), and 4.3% of 

the nitrate detections were within the “Low” vulnerability class (60.1% of area).  In 

intrinsic aquifer vulnerability assessment, nitrates > 2 ppm were not detected within the 

“Very low” vulnerability class (9.6% of area).  Intrinsic aquifer vulnerability assessment 

using calibration with Bi-GA better predicted nitrate detections than DRASTIC without 

calibration.  Therefore, “High” and “Very high” vulnerability areas should be regarded as 

priority areas to conduct groundwater monitoring and apply practices to prevent 

groundwater contamination.  The results of this study are expected to provide information 

for use as an efficient guide for managing groundwater resources by policy makers and 

groundwater-related researchers. 

 

2.2 Introduction 

Although groundwater accounts for a small percentage of the Earth's total water, 

groundwater comprises approximately thirty percent of the Earth's freshwater.  

Groundwater is the primary source of water for over 1.5 billion people worldwide (Alley 

et al. 2002).  Moreover, approximately one-half of the U.S. population depends on 

groundwater for its supply of potable water; approximately 36% of all municipal public 

drinking water supply systems and 95% of all rural populations draws potable water from 

groundwater resources in the U.S. (Conservation Foundation 1985).  Groundwater is a 

vital resource in Indiana with approximately 60% of the state’s drinking water coming 
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from groundwater.  Despite its widespread use as drinking water in Indiana and globally, 

groundwater is a poorly understood resource by most people (Solly et al. 1998). 

 

Groundwater is also a critical component of the global environment.  It offers human 

populations a variety of services, including water for drinking and irrigation.  However, 

groundwater systems have been increasingly threatened, directly and indirectly, by 

human activities.  In addition to the challenges posed by land use / land cover (LULC) 

change, environmental pollution, and water diversion, groundwater systems are expected 

to be stressed by global climate change (Hamblin and Christiansen 2004). 

 

Groundwater is typically not easily contaminated yet once this occurs, it is difficult to 

restore.  Furthermore, groundwater pollution is not visible and is detected only when a 

well or spring becomes noticeably polluted or the pollutant is discharged into surface 

waters (Novotny 2003).  Groundwater management is necessary to maintain clean 

groundwater.  Groundwater management has usually been facilitated by either modeling 

aquifer vulnerability with computational models or monitoring aquifers using 

groundwater sampling. 

 

Groundwater monitoring and sampling have benefits in analyzing groundwater because 

they can estimate groundwater quality and quantity directly in real time.  A groundwater 

monitoring network can provide quantity and quality data necessary to make informed 

decisions regarding the state of the environment.  A properly designed monitoring system 

provides a representative understanding of the state of the monitored area (Baalousha 
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2010).  Groundwater monitoring and sampling, however, have disadvantages because 

they are complex, difficult to apply for broad areas, and are a costly undertaking.  Also, 

improper distribution of monitoring sites or an insufficient number of sites may not 

provide a representative view of the state of the environment.  On the other hand, if the 

sampled sites are too numerous, the information obtained is redundant and the monitoring 

network is costly and inefficient (Baalousha 2010). 

 

Compared with groundwater monitoring and sampling, groundwater modeling is less 

complex and costly, and allows easy evaluation of broad areas.  Groundwater modeling 

could help select the optimal number of monitoring locations and their spatial distribution 

for detecting pollution in groundwater aquifers and could be useful to assess groundwater 

quality and provide a guide to manage groundwater efficiently (Wu 2004; Chadalavada 

and Datta 2008; Baalousha 2010).  However, if only modeling techniques are used, 

groundwater quality and quantity would be indirectly estimated and could not be 

calibrated and validated.  Therefore, if monitoring is conducted after identifying the most 

vulnerable areas by modeling techniques as an initial screening tool, potential monitoring 

sites and areas where Best Management Practices (BMPs) for groundwater quality 

protection can be determined in an effective and economic manner (Fienen et al. 2011). 

 

There are various groundwater models such as MODFLOW, GSFLOW, and GWM-2005 

(McDonald et al. 1998; Ahlfeld et al. 2005; Harbaugh 2005; Markstrom et al. 2008) 

which have been widely used to evaluate groundwater quality.  They require significant 

input data to run, and for most users it is not easy to use the models because they are 
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complicated.  Moreover, they have limitations to simulate large areas.  For these reasons, 

DRASTIC, which uses overlay / index methods, has been used by many researchers for 

efforts related to groundwater quality assessment because DRASTIC uses simple and 

straightforward methods (Pacheco and Fernandes 2013; Chen et al. 2013). 

 

On the other hand, the DRASTIC method has received criticism due to limited validation.  

Holden et al. (1992) and Maas et al. (1995) reported little correlation between model 

results and field data.  Navulur (1996) used DRASTIC and low resolution aquifer 

vulnerability maps were created using low resolution input data.  In spite of these 

concerns, DRASTIC has been widely used to evaluate environmental impact associated 

with groundwater pollution with the use of different ratings criteria, and the strength of 

the vulnerability concept is that it is performed by classifying a geographical area 

regarding its susceptibility to groundwater contamination (Babiker et al. 2005; Akhavan 

et al. 2011).  Advantages of the DRASTIC model include the method's low cost of 

application (Aller et al. 1987; Akhavan et al. 2011) and relative accuracy of model results 

for extensive regions with a complex geological structure (Kalinski et al. 1994; McLay et 

al. 2001).  Moreover, DRASTIC requires limited input data and has small computational 

needs, because there is no complex numerical analysis which requires many parameters 

and there is no complicated simulation process (Barbash and Resek 1996).  DRASTIC is 

a reconnaissance tool, but has proven its value as an indicator of areas deserving detailed 

hydrogeologic evaluation.  It is useful as an initial screening tool to evaluate aquifer 

vulnerability in a broad area.  Aquifer vulnerability mapping identifies areas with high 

pollution potential, and in turn, priorities for monitoring (Baalousha 2010).  For these 
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reasons, DRASTIC was applied in this study for intrinsic aquifer vulnerability assessment 

and for identifying groundwater monitoring locations. Disadvantages of DRASTIC 

identified in previous studies were modified to improve estimation of aquifer 

vulnerability in this study. 

   

The objectives of this study are to 1) conduct intrinsic aquifer vulnerability assessment 

with DRASTIC using high resolution data, 2) calibrate DRASTIC weights using a binary 

classifier calibration with a genetic algorithm (Bi-GA), and 3) identify areas that are 

potential high aquifer vulnerability and select potential aquifer monitoring and 

management sites for effective monitoring planning and areas where BMPs to prevent 

groundwater contamination might be considered. 

 

2.3 Methodology 

2.3.1 DRASTIC to Estimate Aquifer Vulnerability 

Various groundwater vulnerability assessment approaches have been developed to 

evaluate aquifer vulnerability.  These include process based methods, statistical methods, 

and overlay / index methods (Zhang et al. 1996; Tesoriero et al. 1998).  The process 

based methods use simulation models (i.e., SWAT (Arnold et al. 1998), HSPF (Bicknell 

et al. 2001), and GLEAMS (Knisel 1999)) to simulate contaminant transport (Barbash 

and Resek 1996).  Statistical methods identify relationships between simulated results or 

spatial variables and observed data in the aquifer.  The overlay / index methods (i.e., AVI 

(van Stemproot et al. 1993), COP (Vías et al. 2006), DRASTIC (Aller et al. 1987), GOD 

(Foster 1987), and IRISH (Daly and Drew 1999)) are based on assembling information 
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on the most relevant characteristics affecting aquifer vulnerability.  Using overlay / index 

methods, aquifer vulnerability is evaluated by scoring, integrating, or classifying the 

information to produce an index, rank, or class of vulnerability (Harter and Walker 2001).  

The overlay / index methods are easy to apply, especially on regional or larger areas.  

Therefore, these are the most popular methods used in aquifer vulnerability assessment 

for various spatial scales (from local to global scale). 

 

DRASTIC is a conceptual model defined as a composite description of the most 

important geological and hydrological factors that could potentially affect aquifer 

pollution.  DRASTIC yields a numerical index map that is derived from ratings and 

weights assigned to the seven map parameters (Aller et al. 1987; Akhavan et al. 2011).   

 

DRASTIC has four assumptions (Al-Zabet 2002) as described below: 

1) The pollutant is introduced at the ground surface 

2) The pollutant is flushed into the groundwater by precipitation 

3) The pollutant has the mobility of water 

4) The area being evaluated using DRASTIC is 40 hectares (=0.4 km2) or larger 

DRASTIC is a numerical ranking system, which uses weights, ranges, and ratings to 

provide groundwater vulnerability.  The DRASTIC index is calculated using Equation 

2.1.  The higher the DRASTIC index score, the greater the groundwater vulnerability.  

The smallest possible DRASTIC index is 23 and the largest is 230, if the range of 

DRASTIC weights ranges from 1 to 5. 
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DRASTIC = 
1 2 3 4 5 6 7

1 1 1 1 1 1 1
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D D R R A A S S T T I I C C
      

                (2.1) 

Where: 

Dr = Ratings to the depth to water table 

Dw = Weight assigned to the depth to water table 

Rr = Ratings for ranges of aquifer recharge 

Rw = Weight for aquifer recharge 

Ar = Ratings assigned to aquifer media 

Aw = Weight assigned to aquifer media 

Sr = Ratings for soil media 

Sw = Weight for soil media 

Tr = Ratings for topography 

Tw = Weight assigned to topography 

Ir = Ratings assigned to vadose zone 

Iw = Weight assigned to vadose zone 

Cr = Ratings for rates of hydraulic conductivity 

Cw = Weight given to hydraulic conductivity 

 

With various DRASTIC weights, ranges, and ratings (Table 2.1), users can assign ratings 

and weights in determining D, R, A, S, T, I, and C maps.  The variable rating allows users 

to select either a typical value or to modify the value based on users’ experience and 

knowledge in a specific area.  The DRASTIC model was designed to allow users to make 

a flexible modification so that the local hydrogeological characteristics could be reflected 

and its parameters could be weighted properly (Rahman 2008).  



19 

 

 

 

 

DRASTIC has also been applied to many regions around the world.  Babiker et al. (2005) 

estimated aquifer vulnerability and demonstrated the combined use of DRASTIC and GIS 

in Kakamigahara Heights, Gifu Prefecture, Central Japan.  They utilized sensitivity 

analyses to evaluate the relative importance of the model parameters for aquifer 

vulnerability.  Navulur (1996) developed a technique for estimating groundwater 

vulnerability to nitrate contamination from non-point sources (NPS) on a regional scale.  

The technique was applied to evaluate vulnerability of groundwater systems in Indiana, 

United States using a GIS environment with 1:250,000 scale data.  Vulnerability of Indiana 

aquifer systems to NPS of pollution was also evaluated using DRASTIC and SEEPAGE 

analyses. 

 

Table 2.1 Typical DRASTIC ranges and ratings 

Depth to water (m) 

Range Rating 

0 - 1.5 10 

1.5 - 4.6 9 

4.6 - 6.8 8 

6.8 - 9.1 7 

9.1 - 12.1 6 

12.1 - 15.2 5 

15.2 - 22.9 4 

22.9 - 26.7 3 

26.7 - 30.5 2 

30.5+ 1 
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Net recharge (mm/yr) 

Range Rating 

254+ 10 

235 - 254 9 

216 - 235 8 

178 - 216 7 

147.6 - 178 6 

117.2 - 147.6 5 

91.8 - 117.2 4 

71.4 - 91.8 3 

51 - 71.4 2 

0 - 51 1 

Aquifer media 

Range Rating 

Karst limestone 10 

Basalt 9 

Sand and gravel 8 

Massive sandstone 

Massive limestone 

7 

7 

Bedded sandstone 

Limestone 

6 

6 

Glacial till 5 

Weathered metamorphic igneous 4 

Metamorphic igneous 3 

Massive shale 2 
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Soil media 

Range Rating 

Thin or absent / Gravel 10 

Sand 9 

Peat 8 

Shrinking clay 7 

Loamy sand 6 

Sandy loam 6 

Loam 5 

Sandy clay 4 

Sandy clay loam 4 

Silt loam 4 

Silty clay 3 

Clay loam 3 

Silty clay loam 3 

Muck 2 

Non-shrinking clay 1 

Topography (%) 

Range Rating 

0 - 2 10 

2 - 6 9 

6 - 12 5 

12 - 18 3 

18+ 1 
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Vadose zone media 

Range Rating 

Thin or absent / Gravel 10 

Sand 9 

Peat 8 

Shrinking clay 7 

Loamy sand 6 

Sandy loam 6 

Loam 5 

Sandy clay 4 

Sandy clay loam 4 

Silt loam 4 

Silty clay 3 

Clay loam 3 

Silty clay loam 3 

Muck 2 

Non-shrinking clay 1 

 

 

Hydraulic conductivity (m/s) 

Range Rating 

0.00095 + 10 

0.0005 - 0.00095 8 

0.00033 - 0.0005 6 

0.00015 - 0.00033 4 

0.00005 - 0.00015 2 

0.00000015 - 0.00005 1 

 

2.3.2 Genetic Algorithm for Optimized Calibration 

In hydrologic and water quality modeling, parameter calibration and uncertainty analysis 

are important steps to avoid over or under estimating modeling predictions (Wu and Liu 

2012; Strauch et al. 2012).  In recent years, hydrologic and water quality models have 

become more complicated.  For this reason, manual calibration is almost infeasible due to 

model complexity.  Instead of manual calibration, semi-automated or automated 
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calibration techniques have been widely used by many researchers who utilize hydrologic 

and water quality models (Thompson et al. 2013; Green and van Griensven 2008). 

   

Among various optimization algorithms for calibration, GA has become increasingly 

popular for optimization problems (Wang 1991; Liu et al. 2013; Song et al. 2012; Atia et 

al. 2012). GA is based on heuristic combinatorial search techniques inspired by 

evolutionary biology of natural selection and genetics of Darwin’s evolution principle.  

GA is designed to find a solution that maximizes the fitness function (objective function) 

which is a user supplied function that describes the fitness of a particular solution.  With 

each succeeding generation, the genetic algorithm transforms a population into better 

performing individuals as defined by the objective function (Holland 1975; Goldberg 

1989).  The concept of GA is to simulate the natural evolution mechanisms of 

chromosomes (or strings) including selection, crossover, and mutation.  GA operates on a 

population of decision variable sets which are called chromosomes or strings.  The 

procedures of GA start with initializing a population generation of solutions.  In this 

stage, GA generates random strings from the parameter space.  Each string is a set of 

values of optimization parameters.  In each generation, the individual strings are selected 

by survival of fittest among string structures based on the value of objective function.  

Next, GA generates a new generation by selection, crossover, and mutation operations to 

evolve the solutions in order to find the best one(s).  GA runs for a maximum number of 

generations or until some stopping criterion is met (Zhang et al. 2009).  Users can define 

and specify variables to suit each study’s purpose, and GA can be applied to a wide range 

of areas ranging from science and engineering to business.  For these reasons, GA will be 
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used for calibration of DRASTIC weights to obtain accurate estimation of nitrate 

leaching and its effect on aquifer vulnerability in this study. 

 

2.3.3 Study Area 

The study area (Figure 2.1) is the Upper White River Watershed (UWRW) (Latitude: 

39°29'51"N, Longitude: 86°24'02"W) in Indiana.  The UWRW is a Hydrologic Unit 

Code (HUC) 8 watershed (05120201) located in central Indiana and includes seventeen 

HUC 10 subwatersheds.  UWRW is important for public drinking water supplies because 

UWRW includes more than 3,508 km of streams, numerous artificial lakes, and 4 

reservoirs. Sixteen counties are located in the watershed, and the UWRW serves as a 

portion of the drinking water supply for the city of Indianapolis which is Indiana’s largest 

city.  The water sources in the rural areas of UWRW traditionally are individual wells to 

provide groundwater for residential, commercial, and industrial purposes (Tedesco et al., 

2011; Fleming et al., 1993).  The UWRW was selected to evaluate the improved 

DRASTIC (ver.2015). 
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Figure 2.1 Location of the Upper White River Watershed 

 

2.3.4 Sources of Data 

In this study, improved data (Table 2.2) were applied in the UWRW as described below.  

Most data for DRASTIC ver.2015 are of 1:24,000 scale, unlike the 1:250,000 scale data 

for DRASTIC ver.1996.  The data include water table depth, precipitation, 

evapotranspiration, LULC, aquifer systems, SSURGO used to produce recharge, soil 

media, and topography layers, lithology, and aquifer transmissivity data (Table 2.2). 
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Table 2.2 Data used for creating DRASTIC input data 

Data type Source Format Scale Date Used to produce 

Water well IDNR1 Point 

Shapefile 

1:24,000 1959 - 2010 Depth to water 

Annual 

Precipitation 

NCDC2 Tabular 

data 
- 

1949 - 2013 Recharge 

LULC MRLC3 Raster 1:250,000 2006 Recharge 

Aquifer 

Systems 

USGS4 Polygon 

Shapefile 

Text 

1:48,000 2003 - 2011 Aquifer media 

SSURGO5 NRCS6 Polygon 

Shapefile 

1:12,000 2005 Recharge 

Soil media 

Topography 

iLITH data IGS7 Point 

Shapefile 

1:24,000 2001 Impact of vadose 

Aquifer  

Transmissivity 

IDNR1 Point 

Shapefile 

1:24,000 2011 Conductivity 

1IDNR: Indiana Department of Natural Resources 

2NCDC: National Climate Data Center 

3MRLC: Multi-Resolution Land Characteristics Consortium 

4USGS: U.S. Geological Survey 

5SSURGO: Soil Survey Geographic Database 

6NRCS: Natural Resources Conservation Service 

7IGS: Indiana Geological Survey 

 

2.3.5 Nitrate Measurements 

In order to calibrate the DRASTIC index map, nitrate concentration was selected as the 

contaminant parameter.  Nitrate levels in groundwater under natural condition are 

typically less than 2 ppm in Indiana.  Any nitrate detection > 2 ppm has been assumed to 

be caused by human activities.  Thus, a threshold value of background concentration has 

been set at 2 ppm in this study (Navulur, 1996).  116 wells (total 678 wells) (Figure 2.2) 

with nitrate levels > 2 ppm (> 2 mg/l) were selected to calibrate and validate estimated 

high aquifer vulnerability areas.  Nitrate levels vary from 0.1 to 18.3 mg/l with an 

average of 1.2 mg/l in the study area. 
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Figure 2.2 Nitrate concentration samples in wells in the UWRW 

 

2.3.6 Intrinsic Aquifer Vulnerability Mapping using DRASTIC 

Methods described below were used for DRASTIC to create an intrinsic aquifer 

vulnerability map with a high resolution.  The seven map layers (Table 2.3), representing 

the seven parameters of DRASTIC, were prepared to create the intrinsic aquifer 

vulnerability mapping for the UWRW.  DRASTIC ratings and weights were assigned to 

each map according to DRASTIC standards (Aller et al., 1985).  Then, weights were 

modified to reflect local characteristics for aquifer vulnerability maps.  Finally, model 

calibration was conducted for more accurate predictions (Figure 2.3).  

  

Intrinsic aquifer vulnerability indices were divided into five classes (“Very low”, “Low”, 

“Moderate”, “High”, and “Very high” vulnerability classes) by normalization of 

DRASTIC indices using Equation 2.2.  Feature scaling (data normalization) is a method 
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used to standardize the range of independent variables (min=0, max=1).  It is generally 

utilized during the data preprocessing procedure.  The map resolutions of previous 

DRASTIC aquifer vulnerability maps usually are crude.  For more detailed evaluation of 

aquifer vulnerability, high resolution aquifer data would be required and innovative 

approaches which were used to produce DRASTIC input data were applied in this study 

as well.  Also, DRASTIC parameters were optimized to adjust DRASTIC weights with 

Bi-GA. 

 

' min( )

max( ) min( )

x x

x x
x




                                                                                                     (2.2) 

where 
'x  is the normalized value and x  is the original value. 
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Table 2.3 Description of DRASTIC parameters and DRASTIC original weights 

DRASTIC parameters Description 
Original 

Weight 

Depth to water (D) 

Depth from the ground surface to the 

water table.  Deeper water table levels 

imply lesser contamination chances 

5 

Recharge (R) 

The amount of water which enters the 

aquifer.  The amount of recharge is 

positively correlated with the 

vulnerability rating 

4 

Aquifer media (A) 

Material property of the saturated zone, 

which controls the pollutant attenuation 

processes based on the permeability of 

each layer of media.   

3 

Soil media (S) 

Soil media affects the transport of the 

contaminant and water from the soil 

surface to the aquifer 

2 

Topography (T) 

Slope of the land surface.  Topography of 

the land affects groundwater 

vulnerability.  With a low slope, the 

contaminant is less likely to become 

runoff and therefore more likely to 

infiltrate the aquifer 

1 

Impact of vadose zone media (I) 

Vadose zone is the typical soil horizon 

above the water table and below the 

ground surface.  If the vadose zone is 

highly permeable then this will lead to a 

high vulnerability rating 

5 

Hydraulic conductivity (C) 

Hydraulic conductivity represents the 

ability of the aquifer to transmit water. 

Hydraulic conductivity is positively 

correlated with the vulnerability rating 

3 
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Figure 2.3 Flowchart for analysis of intrinsic aquifer vulnerability mapping 

 

2.3.6.1 Depth to Water 

High spatial resolution long-term static water level data in wells (1990 ~ 2008 years) 

were utilized to obtain the ‘Depth to water’ (D) map and interpolation was required.  

Minimum, maximum, and average depths to water are 3.1 m, 167.6 m, and 10.6 m, 

respectively.  Kriging interpolation was used because this method is an effective way to 

interpolate a limited number of observations for hydrologic properties, such as rainfall, 

aquifer characteristics, effective recharge and to preserve the theoretical spatial 

correlation (de Marsily, 1984).  Then, interpolated data were reclassified into ratings 

according to Table 2.1. 
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2.3.6.2 Recharge 

Land uses / land covers (LULCs) and soils are sensitive parameters in calculating the 

amount of recharge.  To consider regional LULC and soil characteristics, the Soil 

Conservation Service (SCS) runoff curve number (CN) method was used to estimate 

potential recharge with annual precipitation, soils and LULCs.  Potential recharge in 

DRASTIC was computed by precipitation minus surface runoff which is determined by 

the SCS-CN method.  Annual precipitation data from National Climate Data Center 

(NCDC), LULC data from National Land Cover Database (NLCD) and soil data 

(SSURGO) from Natural Resources Conservation Service (NRCS) were used to produce 

a potential recharge map using the SCS-CN method (Equation 2.3).  Then, DRASTIC 

rating for annual potential recharge was determined using Table 2.1 (Yang and Wang, 

2010; Nobre et al., 2007).  Even though the calculation for potential recharge is 

straightforward, the results (Table 2.1) show various ranges of the amount of recharge 

because the calculation reflects the combination of soils and LULCs based on the SCS-

CN method.  When detailed recharge estimation is needed for small areas with 

DRASTIC, the approach to estimating recharge suggested in this study would be more 

useful than other studies (Babiker et al., 2005; Chen et al., 2013), which calculates the 

amount of recharge using only two LULC classes (e.g., urban and remaining areas). 

 

Many studies have used the CN method or hydrologic soil group (HSG) to estimate 

potential recharge in DRASTIC (Yang and Wang, 2010; Nobre et al., 2007; Poiani, 1996; 

Zomorodi, 2004) because the concept of HSG includes soil permeability and available 

water capacity related to infiltration rate (i.e., Soil A having high infiltration rates, soil B 
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having moderate infiltration rates, soil C having slow infiltration rates, and soil D having 

very slow infiltration rates), and HSG indicates areas with different susceptibilities to 

infiltration.  Potential recharge estimated in this study may not reflect the actual amount 

of recharge but rather indicates possible recharge rate.  Estimation of potential recharge 

(potential infiltration rate) used the concept of HSG, while evapotranspiration (ET) was 

ignored when calculating potential recharge because ET occurs after infiltration.  Thus, 

even though there is a limitation in ignoring ET when calculating potential recharge, this 

approach for estimating potential recharge has been used in DRASTIC (Yang and Wang, 

2010; Nobre et al., 2007; Poiani, 1996; Zomorodi, 2004).   

2( 0.2 )

0.8

P S
Q

P S





 (When aP I )                                                                                   (2.3) 

0.2aI S  

25,400
254S

CN
   

Where, 

Q: Depth of runoff (mm) 

P: Depth of rainfall (mm) 

Ia: Initial abstraction (mm) 

S: Maximum potential retention (mm) 

CN: Curve number (dimensionless) 

 

2.3.6.3 Aquifer Media 

An ‘Aquifer media’ (A) map was created using the aquifer systems map and report by 

U.S. Geological Survey (USGS) and Indiana Department of Natural Resources (IDNR).  

Most aquifer media of the study area were sand and gravel, but based on the INDR 

reports, aquifer media rating was assigned in more detail (IDNR, 2012).  IDNR reports of 
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counties in Indiana described vulnerability of each aquifer system such as ‘very high 

susceptibility to surface contamination (very high)’, ‘highly susceptible to surface 

contamination (high)’, ‘moderately susceptible to surface contamination (moderate)’, 

‘low susceptibility to surface contamination (low)’, and ‘very low susceptibility to 

surface contamination (very low)’.  Vulnerability ratings were divided into five levels 

(very high=10, high=8, moderate=6, low=4, and very low=2).  Then, modified 

reclassification of ratings was conducted as shown in Table 2.4. 

 

Table 2.4 Typical and modified ranges and ratings of aquifer media (A)  

Aquifer media 

Range Rating 

(typical) 

Vulnerability 

(IDNR report) 

Rating 

(modified) 

Karst limestone 10 Very high 10 

Basalt 9 High 8 

Sand and gravel 8 Moderate 6 

Massive sandstone 

Massive limestone 

7 Low 4 

Bedded sandstone 

Limestone 

Shale 

6 Very Low 2 

Glacial till 5   

Weathered 

metamorphic 

4   

Metamorphic 

Igneous 

3   

Massive shale 2   

 

2.3.6.4 Soil Media and Topography 

‘Soil media’ (S) and ‘Topography’ (T) maps were obtained through SSURGO data from 

USDA-NRCS instead of STATSGO data normally used.  The map scale of SSURGO 

data is 1:12,000, whereas STATSGO is 1:250,000.  Of many fields of the SSURGO 



34 

 

 

 

table, ‘MUNAME’ is needed to analyze DRASTIC S and required information is a soil 

type (e.g., loam, silt loam, and sandy loam).  However, a MUNAME field in the original 

SSURGO table describes detailed soil type such as ‘Martinsville loam, 1 to 5 percent 

slopes’, ‘Jasper silt loam, 1 to 5 percent slopes’.  This detailed information is unnecessary 

for DRASTIC ratings, because extracting only soil type of a number of fields is time-

consuming.  Therefore, an essential database to produce DRASTIC S was constructed 

using ArcGIS 10.2 and Python programming, and DRASTIC S and T maps were 

generated using a modified SSURGO data table. The S and T maps have ratings as 

described in Table 2.1. 

 

2.3.6.5 Impact of Vadose Zone Media 

‘Impact of vadose zone media’ (I) map was estimated using sand, silt, and clay thickness 

point data within lithology data from IDNR.  Kriging interpolation was implemented to 

estimate unknown areas with known scattered data points, and DRASTIC ratings were 

assigned according to Table 2.1. 

 

2.3.6.6 Hydraulic Conductivity 

The ‘Hydraulic Conductivity’ (C) map (equation 2.4) was calculated with high resolution 

transmissivity (1:24,000) and saturated thickness data from IDNR based on 

hydrogeological settings.  The C map was then reclassified into ranges and assigned 

ratings from 1 to 10 according to Table 2.1.  Regions with higher hydraulic conductivity 

have a greater possibility of contamination. 
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Hydraulic conductivity (m/s) = Transmissivity (m2/s) / Thickness of aquifer (m)        (2.4) 

 

2.3.7 Model Calibration 

Probabilistic predictive or decision-making models (i.e., DRASTIC and SEEPAGE) 

needs post-processing prior to calibration with observed data because results of 

probabilistic predictive or decision-making models have different scale or format with 

observed data for calibration of the models (Naeini et al., 2015; Xu et al., 2016).  Thus, in 

this study, a binary classifier calibration method was combined with a genetic algorithm 

(hereafter referred to as Bi-GA) and used for calibration of DRASTIC weights.  In the 

binary classifier calibration, a result of model and observed data are classified as 0 or 1.  

DRASTIC produces five vulnerability class (i.e., very high, high, moderate, low, very 

low).  This study classified that very high and high vulnerability class are 1 and other 

classes are 0 and over 2 ppm and below of observed nitrate concentrations in wells are 1 

and 0, respectively because nitrate detections > 2 ppm are conducted with DRASTIC. 

Bi-GA was utilized for calibration of DRASTIC weights using Heidelberg University and 

USGS groundwater quality data which are mean nitrate concentration data from 116 

wells with nitrate levels > 2 ppm which is the threshold value for the background 

concentration level of nitrate.  Calibration with Bi-GA was conducted to improve the 

performance of the DRASTIC model.  Original DRASTIC weights vary from 1 to 5 

(Table 2.3).  Based on original DRASTIC weights, Depth to water (D) and Impact of 

vadose zone (I) are the most sensitive parameters, and the second most sensitive 

parameter is Recharge (R) in assessing an aquifer vulnerability.  However, in many 

studies using DRASTIC, original relationships of DRASTIC weights between the seven 
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maps layers have been ignored in the calibration process.  For this study, even though 

calibrated DRASTIC weights were different from original values, the ratio of DRASTIC 

weights (5 (D), 4 (R), 3 (A), 2 (S), 1 (T), 5 (I), and 3 (C)) was maintained.  The Bi-GA 

modified the ratio of DRASTIC weights based on calibrated weights with Bi-GA, and 

there are weight boundaries which are ±1 from original DRASTIC weights.  For instance, 

maximum and minimum weight values of D are 6 and 4.  Based on calibrated weights by 

the Bi-GA which ignored the original DRASTIC weight relationships between the seven 

map layers, new calibrated weights which consider the ratio of DRASTIC weights (5 (D), 

4 (R), 3 (A), 2 (S), 1 (T), 5 (I), and 3 (C)) were generated by 1) no calibration and 2) 

calibration with Bi-GA.  Root mean square error (RMSE) was used to evaluate the 

effectiveness of the Bi-GA and its ability to make predictions in the calibration procedure 

(Equation 2.5).  The GA driving variables used in this study are shown in Table 2.5. 

 

An accuracy assessment error matrix was computed to validate the results following 

calibration using Bi-GA.  Using an accuracy assessment error matrix, spatial patterns in 

success (detections of nitrate concentration in wells over 2 ppm) and failure (detections 

of nitrate concentration in wells under 2 ppm) of DRASTIC prediction were analyzed 

with a total accuracy. 

 

2( )

1

n
S O
i i

iRMSE
n


                                                                                              (2.5) 

Where 
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S
i

: Simulated nitrate concentration DRASTIC binary value 

O
i

: Observed nitrate concentration binary value 

 

Table 2.5 Driving variables in GA for DRASTIC parameter optimization 

GA driving variables Values 

Population size 100 

Max generation 10,000 

Initial random value 1,000 

Min. value of parameters 0 

Max. value of parameters 6 

Crossover probability 0.5 

Mutation probability 0.02 

 

2.3.8 Intrinsic Aquifer Vulnerability Mapping 

The intrinsic aquifer vulnerability map was created by combining the seven map layers 

after multiplying each map layer with its theoretical ratings and weights (Equation 2.1).  

Then, calibration for DRASTIC weights was carried out using Bi-GA and the statistical 

methods.  Two DRASTIC result maps with no calibration and calibration with Bi-GA 

had different ranges of DRASTIC vulnerability indices because different weight values 

were applied for each DRASTIC result map.  Finally, optimized high resolution intrinsic 

aquifer vulnerability predictions with calibrated DRASTIC weights were generated using 

the Spatial Analyst tool in ArcGIS 10.2. 

 

2.3.9 Evaluation for Potential Groundwater Monitoring Sites 

Hotspot analysis using the Getis-Ord Gi* (Gi*) (Getis and Ord, 1992; Ord and Getis, 

1995) was applied to select potential groundwater monitoring sites.  This method works 

by examining each feature (each grid cell) within the context of neighboring features.  If 



38 

 

 

 

a feature has a high value (high DRASTIC vulnerability index) and is surrounded by 

other features with high values, this feature is defined as a hotspot with statistical 

significance.  The Gi* statistic returned for each feature in the dataset is a z-score.  For 

statistically significant positive z-scores, the larger the z-score, the more intense the 

clustering of high values (hotspot) (Mitchell, 2005).  Thus, potential groundwater 

monitoring sites (where aquifer may be the most vulnerable to contamination) would be 

found based on the z-score with statistical significance.  The hotspot analysis using the 

Gi* statistic was conducted using Equations 2.6 - 2.8 with Spatial Analyst in ArcGIS 

10.2. 
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Where 

*

iG : Getis-Ord local statistic 

jx : Attribute value for feature j 

,i jw : Spatial weight between feature i and j 
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n : Total number of features 

 

2.4 Results and Discussion 

2.4.1 Calibration of DRASTIC Weights 

For accurate estimation of intrinsic aquifer vulnerability, calibration of DRASTIC 

weights was conducted before producing an intrinsic vulnerability map.  116 wells with 

nitrate levels > 2 ppm were used to calibrate DRASTIC weights for better prediction of 

intrinsic aquifer vulnerability.  As shown in Table 2.6, RMSE for intrinsic aquifer 

vulnerability without calibration was 0.70.  The RMSE for intrinsic aquifer vulnerability 

with calibrated DRASTIC parameters using Bi-GA was 0.57.   RMSE for Bi-GA might 

be little decreased (the lower RMSE, the better performance) because calibrated 

DRASTIC weights using Bi-GA maintained the ratios of original DRASTIC weights.  

Previous studies did not maintain the ratios of original DRASTIC weights to improve just 

performance evaluation of DRASTIC.  However, if the ratios of original DRASTIC 

weights are not maintained, the number of degrees of freedom of the DRASTIC index 

(result scores for aquifer vulnerability) would be increased by calibrating DRASTIC 

weights.  Further, physical properties for intrinsic aquifer vulnerability could potentially 

be ignored. 

 

For validation of the results by using Bi-GA, accuracy assessment was computed.  As 

shown in the Tables 2.7 and 2.8, total accuracies of uncalibrated DRASTIC and 

calibrated DRASTIC were 35% and 42%, respectively.  Thus, the results of accuracy 
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assessment indicate calibrated DRASTIC predicted intrinsic aquifer vulnerability areas 

contaminated by human activities more accurately than uncalibrated DRASTIC did. 

 

DRASTIC, an overlay and index GIS model, does not compute nitrate concentrations in 

aquifers, rather it predicts intrinsic aquifer vulnerability classes from very high 

vulnerability to very low vulnerability.  In this study, DRASTIC was used to predict 

locations most vulnerability to contamination by human activities.  This study assumed 

nitrate concentrations greater than 2 ppm were caused by human activities and over 2 

ppm of nitrate concentrations should typically be detected in “High” and “Very high” 

vulnerability classes because the purpose of this study was to identify intrinsic aquifer 

vulnerability.  Thus, the greater the proportion of nitrate detections > 2 ppm in “High” 

and “Very high” vulnerability areas, the better the prediction of intrinsic aquifer 

vulnerability.  If “High” and “Very high” vulnerability areas as a percentage are larger 

than number of nitrate detections > 2 ppm as a percentage, the model performance should 

be regarded as poor, which would be overestimated by DRASTIC.  Thus, the concept of 

detection ratio (percent of nitrate detections > 2 ppm to percent of “Very high” and 

“High” vulnerability areas with larger detection ratio indicating better prediction) was 

used to evaluate model performance in this study. 

 

Table 2.6 Calibrated DRASTIC weights using Bi-GA for better prediction of intrinsic 

aquifer vulnerability 

Calibration 

Methods 
D R A S T I C RMSE 

No calibration 5 4 3 2 1 5 3 0.70 

Bi-GA1 5.7 4.3 3 1.6 0.7 5.4 2.8 0.57 
1Bi-GA: Binary classifier calibration with genetic algorithm 
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Table 2.7. Error matrix for uncalibrated DRASTIC 

    
Uncalibrated 

DRASTIC   

    Success Failure Totals 

Obs N1 
Success 41 75 116 

Failure 75 41 116 

  Totals 116 116 82 
                        1Observed nitrate concentrations in wells 

 

Table 2.8. Error matrix for calibrated DRASTIC 

    
Calibrated 

DRASTIC   

    Success Failure Totals 

Obs N1 
Success 49 75 116 

Failure 75 49 116 

  Totals 116 116 98 
                        1Observed nitrate concentrations in wells 

 

2.4.2 Intrinsic Aquifer Vulnerability Mapping 

Intrinsic aquifer vulnerability maps were created without calibration of DRASTIC 

weights and calibrated weights using Bi-GA.  An intrinsic aquifer vulnerability map 

without calibrating DRASTIC weights was created using DRASTIC (Figure 2.4(a)).  

Intrinsic aquifer vulnerability indices were classified into five classes: 0 - 0.2 (“Very 

low”), 0.2 - 0.4 (“Low”), 0.4 - 0.6 (“Moderate”), 0.6 - 0.8 (“High”), and 0.8 - 1.0 (“Very 

high”).  As shown in Figure 2.4(a) and Table 2.7, 10.6% of the aquifer systems in the 

UWRW were within in “Very low” vulnerability class, and 60.4% of the area was 

estimated as “Low”, 25.8% within “Moderate” vulnerability class, 3.0% within “High” 

vulnerability class, and 0.2% within “Very high” vulnerability class. 
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The intrinsic aquifer vulnerability results (Tables 2.9) without calibration of DRASTIC 

weights were validated with the observed nitrate concentrations in wells.    The results 

showed that approximately 35.3% of nitrate detections > 2 ppm are within “High” and 

“Very high” vulnerability areas (represent 3.2% of vulnerability area) as simulated by 

DRASTIC.  Moreover, 60.3% of the nitrate detections were within the “Moderate” 

vulnerability class (25.8% of area), 3.4% of the nitrate detections were within the “Low” 

vulnerability class (60.4% of area), and 0.9% of the nitrate detections were within the 

“Low” vulnerability class (10.6% of area) (Table 2.9). 

 

An intrinsic aquifer vulnerability map with calibrated DRASTIC using Bi-GA was 

produced (Figure 2.4(b)).  As shown in Figure 2.4(b) and Table 2.10, 9.6% of the aquifer 

systems in the UWRW was within the “Very low” vulnerability class, and 60.1% of the 

area was estimated as “Low”, 26.9% within the “Moderate” vulnerability class, 3.2% 

within the “High” vulnerability class, and 0.2% within the “Very high” vulnerability 

class. 

 

The intrinsic aquifer vulnerability results (Table 2.10) from calibrated DRASTIC using 

Bi-GA were validated with the well database.  The results showed that approximately 

42.2% of nitrate detections > 2 ppm were within “High” and “Very high” vulnerability 

areas (represent 3.4% of vulnerability area) as simulated by DRASTIC.  Moreover, 

53.4% of the nitrate detections were within the “Moderate” vulnerability class (26.9% of 

area), and 4.3% of the nitrate detections were within the “Low” vulnerability class 

(60.1% of area).  In intrinsic aquifer vulnerability assessment, nitrates in wells > 2 ppm 
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were not detected within the “Very low” vulnerability class (9.6% of area) (Table 2.10).  

These results indicated that intrinsic aquifer vulnerability assessment using DRASTIC 

with Bi-GA better predicted nitrate detections than DRASTIC without calibration. 

 

 

(a) 
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(b) 

Figure 2.4 Comparison of intrinsic aquifer vulnerability maps for the UWRW ((a) no 

calibration and (b) calibration using Bi-GA) 

 

Table 2.9 Vulnerability areas (%) and number of nitrate detections > 2 ppm without 

calibration 

Class Area (%) Number of nitrate detections > 2 ppm 

Very low 10.6 1 (0.9%) 

Low 60.4 4 (3.4%) 

Moderate 25.8 70 (60.3%) 

High 3.0 34 (29.3%) 

Very high 0.2 7 (6%) 

 

Table 2.10 Vulnerability areas (%) and number of nitrate detections > 2 ppm with 

calibration 

Class Area (%) Number of nitrate detections > 2 ppm 

Very low 9.6 0 (0%) 

Low 60.1 5 (4.3%) 

Moderate 26.9 62 (53.4%) 

High 3.2 42 (36.2%) 

Very high 0.2 7 (6%) 
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GIS-based overlay and index models such as DRASTIC can be affected by data 

resolution and accuracy (Woodrow et al., 2016).  Navulur (1996) used three models (i.e., 

DRASTIC, SEEPAGE, and combined DRASTIC and NLEAP (Nitrate Leaching and 

Economic Analysis)) to estimate aquifer vulnerability of groundwater systems in Indiana 

using a GIS environment at a 1:250,000 scale.  The data scale used in Navulur’s (1996) 

study was coarse (1:250,000) for field scale simulations.  However, in this study, high 

resolution data (1:24,000) were used by data preprocessing of recharge (R), aquifer media 

(A), soil media (S), topography (T), and impact of vadose zone media (I) maps. 

  

As shown in Navulur’s (1996) results for all of Indiana, the result of DRASTIC shows 

80.7% of nitrate detections in wells > 2 ppm are within “High” and “Very high” 

vulnerability areas (represent 24.8% of area) as predicted by DRASTIC.  For SEEPAGE, 

60.5% of nitrate detections in wells > 2 ppm are within “High” and “Very high” 

vulnerability areas (28.6% of area).  The result of the combined DRASTIC and NLEAP 

indicate 91.8% of nitrate detections in wells > 2 ppm are within “High” and “Very high” 

vulnerability areas (56.9% of area). 

 

Compared with Navulur’s (1996) study, the results presented herein had approximately 

42.2% of nitrate detections in wells > 2 ppm within “High” and “Very high” (3.4% of 

area) vulnerability areas as predicted by DRASTIC with high resolution data.  Detection 

ratio (% of nitrate detections to % of vulnerability areas with larger detection ratio 

indicating better prediction) for “High” and “Very high” areas from Navulur (2006) 

results in a value of 3.3 for DRASTIC, 2.1 for SEEPAGE, and 1.6 for the combined 
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DRASTIC and NLEAP, respectively.  In contrast to the three models from Navulur’s 

(1996) results, the results presented herein provide a value of 12.4.  Thus, the results of 

detection ratio indicate that DRASTIC with high resolution data may estimate areas of 

“High” and “Very high” vulnerability classes more accurately than the models with 

coarse resolution data (Table 2.11).    

 

Table 2.11 Comparison of detection ratio between previous and current study 

 Navulur (1996)  

DRASTIC SEEPAGE Combined DL1 DRASTIC2 

HV-Area3 (%) 24.8 28.6 56.9 3.4 

N-Detections4 (%) 80.7 60.5 91.8 42.2 

D-Ratio5 3.3 2.1 1.6 12.4 
1Combined DRASTIC and NLEAP 

2Results from this study 

3”High” and “Very high” vulnerability areas 

4Number of nitrate detections 

5Detection ratio 

 

2.4.3 Potential Groundwater Monitoring and Management Sites 

The Gi* statistic method was used to determine potential groundwater monitoring and 

management sites.  Three ranges of z-scores (1.65-1.96, 1.96-2.58, and more than 2.58) 

indicate potential groundwater monitoring and management sites (hotspots).  Hotspots 

were predicted based on the z-score with statistical significance using the Gi* statistic 

method.  The Gi* statistic method identifies statistically significant spatial clusters of 

high values (high vulnerability areas) and low values (low vulnerability areas).  The Gi* 

statistic method returns a z-score and the higher the z-score, the stronger the intensity of 

the clustering. 
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In Table 2.12 and Figure 2.5, z-scores of hotspot analysis maps to identify potential 

groundwater monitoring sites were estimated using calibrated DRASTIC by Bi-GA.  

Higher z-scores and red color (potential vulnerability areas) in the maps (Table 2.10 and 

Figure 2.5) indicate hotspots which suggest priority areas for groundwater monitoring 

and management.  The portion of the study area with a z-score ≥ 1.65 for Bi-GA is 

19.9% (percentage of study area, 6,944 km2), suggesting areas where groundwater 

monitoring and BMPs for groundwater quality might be considered.  In Figure 2.5, 

hotspot areas (z-score ≥ 1.65) were located along the stream and river because those 

areas include highly permeable alluvium, sand, and gravel.  Further, depth to water is 

shallow.  These areas would be priorities for groundwater protection. 

 

Table 2.12 Results of hotspot analysis using Gi* statistic method 

Calibration 

Methods 

Potential groundwater monitoring and management sites (%) 

Z-scores 

1.65 - 1.96 1.96 - 2.58 > 2.58 

Bi-GA 3.4 5.6 10.9 
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Figure 2.5 Hotspot analysis maps to determine the potential groundwater monitoring and 

management sites 

 

2.5 Conclusions 

Intrinsic aquifer vulnerability assessment was conducted with improved high resolution 

data and optimized DRASTIC parameters by modifying DRASTIC weights using Bi-GA.  

Simulated results to explore the most vulnerable aquifer areas estimated by DRASTIC 

methods were compared with long-term Heidelberg University and USGS groundwater 

quality data (nitrate concentrations in well) (1949 - 2010) in the UWRW, Indiana.  

Intrinsic aquifer vulnerability indices by improved DRASTIC were compared with 

observed groundwater quality data to explore how well simulated results predict observed 

nitrate data > 2 ppm.  RMSE without calibration was 0.70, and RMSE with calibrating 

DRASTIC weights with Bi-GA was 0.57.   
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An accuracy assessment error matrix was computed for spatial validation of the 

calibrated DRASTIC by using Bi-GA.  Total accuracies of uncalibrated DRASTIC and 

calibrated DRASTIC were 35% and 42%, respectively.  Thus, the results of accuracy 

assessment indicate calibrated DRASTIC by using Bi-GA predicted intrinsic aquifer 

vulnerability areas more accurately than DRASTIC without calibration. 

 

The intrinsic aquifer vulnerability results from DRASTIC using Bi-GA were validated 

with a well database.  The results showed that approximately 42.2% of nitrate detections 

> 2 ppm are within “High” and “Very high” vulnerability areas (represent 3.4% of 

vulnerability area) as simulated by DRASTIC.  Moreover, 53.4% of the nitrate detections 

were within the “Moderate” vulnerability class (26.9% of area), and 4.3% of the nitrate 

detections were within the “Low” vulnerability class (60.1% of area).  In intrinsic aquifer 

vulnerability assessment, nitrates in wells > 2 ppm were not detected within the “Very 

low” vulnerability class (9.6% of area).  Intrinsic aquifer vulnerability assessment using 

calibration with Bi-GA better predicted nitrate detections than DRASTIC without 

calibration. 

 

The selection of potential monitoring locations and areas where groundwater protection 

should be focused was determined based on the Gi* statistic method.  A portion of z-

score over 1.65 by Bi-GA is 19.9% (represents percentage area of total study area, 6,944 

km2), indicating these are areas where groundwater monitoring and BMPs for 

groundwater quality protection should be focused.  Hotspot areas (z-score ≥ 1.65) were 
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seen along the stream and river because those areas include high permeability of 

alluvium, sand, and gravel.  Further, depth to water is very low.  These areas would be 

priority for groundwater protection. 

   

The results of this study are expected to be an efficient guide for managing groundwater 

resources for policy makers, natural resources protection practitioners, and groundwater-

related researchers.  It also could be used as a screening tool prior to applying complex 

numerical groundwater models for more detailed analysis.  Moreover, it is expected that 

better parameterization of DRASTIC input data related to aquifer systems will improve 

aquifer vulnerability assessment and be applicable to other locations in the Midwestern, 

United States. 

   

For integrated aquifer vulnerability assessment, pollutant transport should be considered.  

However, DRASTIC does not consider pollutant transport properties such as nitrate 

leaching but only focuses on intrinsic aquifer vulnerability.  Thus, an additional model 

which can estimate pollutant transport should be combined for overall aquifer 

vulnerability assessment. 
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CHAPTER 3. EFFICIENT FLOW CALIBRATION REGIME FOR ACCURATE 

ESTIMATION OF HYDROLOGIC AND WATER QUALITY COMPONENTS USING 

A WATERSHED SCALE HYDROLOGICAL MODEL 

 

3.1 Abstract 

Accurate analysis of water flow (streamflow and baseflow) is important to estimate 

nitrate contamination in aquifers.  For accurate estimation of aquifer hazard, modeled 

surface and groundwater hydrology should be calibrated first, and then simulation of 

nitrate leaching to aquifers should be conducted because nitrate leaching to aquifers is 

interdependent with baseflow or vice versa.  The objectives of this study are: 1) to 

develop an efficient flow calibration regime (EFCR) for accurate baseflow estimation by 

combining the Sequential Uncertainty Fitting algorithm version 2 (SUFI-2) and modified 

SWAT 2012 code, and 2) to evaluate the performance of the EFCR by streamflow and 

baseflow estimation.  Both streamflow and baseflow estimated using the EFCR 

performed well based on three model evaluation methods (i.e., NSE, R2, and PBIAS).  

Thus, the EFCR would be a practical method for aquifer hazard assessment by calibrating 

baseflow accurately as well as streamflow at a watershed scale.  This study can be used 

as a data-driven model for in-depth groundwater modeling because the baseflow-related 

parameters (i.e., groundwater recharge and hydraulic conductivity) calibrated in this 



57 

 

 

 

study can be used as a set of input data (initial parameter values) in computer-based 

numerical groundwater models.   

 

3.2 Introduction 

Groundwater is the primary component of water resources for people worldwide (Alley et 

al., 2002).  Groundwater provides humans water for drinking and irrigation as well as 

being a fundamental contributor to ecological productivity.  However, groundwater has 

been increasingly contaminated resulting from human activities.  Nitrate leaching has 

resulted in risk of groundwater contamination (Dahan et al., 2014; Babiker at al., 2004).  

Nitrate leaching is mainly generated from agricultural fields to groundwater in 

agricultural areas as well as urban areas and nitrate leaching is associated with water flow 

from precipitation to stream and aquifer (Thorosen, 2001).  Accurate analysis of water 

flow (streamflow and baseflow) is important to estimate nitrate leaching to aquifers 

(Molenat, 2002).  Sustainable groundwater management is required for sound ecosystems 

and quality of human life.  For sustainable groundwater management, aquifer hazard 

assessment has been conducted by groundwater modeling or monitoring.  Compared with 

groundwater monitoring, groundwater modeling is less complicated and costly and can be 

used to evaluate broad areas.  There are many groundwater models, but most are 

complicated and need many input data.   

 

The Soil and Water Assessment Tool (SWAT) (Arnold et al, 1998) has been widely used 

for water resources management in part because SWAT has a user friendly Graphical 

User Interface (GUI) and a well-organized database by worldwide users.  SWAT 
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simulates surface flow and shallow groundwater dynamics based on hydrological 

response units (HRUs), which are the smallest computational units in SWAT.  Surface 

runoff, shallow groundwater dynamics, soil water content, nutrient cycles, and sediment 

erosion are simulated for each HRU and then HRUs are combined and calculated for the 

subbasin by a weighted value (Neitsch et al., 2011).  Thus, SWAT has been used to 

predict the risk of groundwater contamination (aquifer hazard) from non-point sources. 

 

For accurate estimation of aquifer hazard, surface and groundwater hydrology should be 

calibrated first, and then simulation of nitrate leaching to aquifers should be conducted 

(Santhi et al., 2001; Arnold et al., 2012) because nitrate leaching to aquifers is 

interdependent with baseflow or vice versa.  However, many studies have only 

considered streamflow (direct runoff + baseflow) calibration without conducting direct 

runoff and baseflow separately (Vilaysane et al., 2015; Zhang et al., 2015).  When SWAT 

users only calibrate streamflow, even though streamflow meets statistical criteria, 

baseflow may not meet statistical criteria for the calibration process (Jang et al., 2011; 

Zhang et al., 2011).  The results showed that direct runoff or baseflow would be 

underestimated or overestimated.  However, when streamflow and baseflow calibrations 

are conducted simultaneously, both variables meet statistical criteria for the calibration 

process (Feyereisen et al., 2007).  Thus, streamflow and baseflow calibrations should be 

conducted simultaneously for accurate estimation of aquifer hazard.  Jang et al. (2010) 

studied evaluation of SWAT direct runoff and baseflow components using web-based K-

means clustering EI estimation system.  They reported that even though the Nash-

Sutcliffe Efficiency (NSE) of total streamflow was high, the NSE values of hydrologic 
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components (i.e., direct runoff and baseflow) were not high.  Zhang et al. (2011) studied 

simultaneous calibration of surface flow and baseflow simulations. The study showed 

that the uncertainty of low flows on baseflow were overestimated while uncertainty of 

high flows on surface flow were underestimated. 

 

In hydrologic and water quality modeling, calibration and uncertainty analysis is required 

to produce reliable prediction by determining the appropriate values of parameters 

(Abbaspour, 2011).  There are two methods of calibration: manual calibration and 

autocalibration.  Many modelers have increasingly used autocalibration instead of manual 

calibration (trial and error calibration) because the autocalibration has several advantages 

over the manual calibration (Shi et al., 2013; Rathjens and Oppelt, 2012; Shrestha et al., 

2016).  The autocalibration can produce parameter estimation by uncertainty analysis in 

the modeling as well as provide minimal labor on the part of the user (Arnold et al., 

2012).  Moreover, autocalibration can minimize the difference between observed and 

simulated values (Van Liew at al., 2005).  SWAT Calibration and Uncertainty Program 

(SWAT-CUP) (Abbaspour, 2011) is one of the most popular autocalibration programs, 

and SWAT users use the program to perform calibration, validation, sensitivity, 

uncertainty analysis of SWAT.  Many SWAT modelers use SWAT-CUP because it is 

well organized and easy to use.  The program includes five different calibration 

procedures such as SUFI-2, Generalized Likelihood Uncertainty Estimation (GLUE) 

(Beven and Bindly, 1992), Parameter Solution (ParaSol) (Van Griesven et al., 2006), 

Markov chain Monte Carlo (MCMC) (Kuczera and Parent, 1998; Vrugt et al., 2003), and 
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Particle Swarm Optimization (PSO) (Eberhart and Kennedy, 1995) for the SWAT 

calibration. 

 

For those reasons, an efficient flow calibration regime for accurate aquifer hazard 

assessment was developed in this study.  The efficient flow calibration regime (EFCR) 

developed in this study allows SWAT to simultaneously calibrate streamflow and 

baseflow by combining the autocalibration algorithm, SUFI-2 (Abbaspour et al., 2004) 

and modified SWAT 2012 code.  Compared with other calibration regimes, the 

calibration regime presented in this study is easy to use because SUFI-2 and modified 

SWAT 2012 code can be used in SWAT-CUP.  With the EFCR, calibration parameter 

space and ranges for Latin Hypercube Sampling (LHS) can be reduced by adjusting and 

resorting parameter range based on a previous calibration step.  This process would 

improve calibration accuracy and reduce simulation time.  The objectives of this study 

are: 1) to develop the EFCR for accurate baseflow estimation with SUFI-2 and modified 

SWAT 2012 code, and 2) to evaluate the performance of the EFCR by streamflow and 

baseflow estimation. 

 

3.3 Materials and Methods  

3.3.1 Study Area 

The study area (Figure 3.1) is the Upper White River Watershed (UWRW) (Latitude: 

39°29'51"N, Longitude: 86°24'02"W) in Indiana.  The UWRW is a Hydrologic Unit 

Code (HUC) 8 watershed (05120201) located in central Indiana and includes seventeen 

HUC 10 subwatersheds.  Drainage area of the study watershed is 6,944 km2, and the most 
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dominant land use is agriculture (3,160 km2).  UWRW is important for public drinking 

water supplies because UWRW includes more than 3,508 km of streams, numerous 

artificial lakes, and 4 reservoirs. Sixteen counties are located in the watershed, and the 

UWRW serves as the drinking water supply for the city of Indianapolis which is 

Indiana’s largest city.  The water sources in the UWRW traditionally are individual wells 

to provide groundwater for residential, commercial, and industrial purposes (Tedesco et 

al., 2011; Fleming et al., 1993).  The UWRW was selected to identify the EFCR for 

aquifer hazard assessment because this watershed has available streamflow (10 USGS 

streamflow stations) and water quality (5 EPA fixed stations) data (Figure 3.1 and Table 

3.1). 

 

Figure 3.1 Location of the Upper White River Watershed, Indiana 
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Table 3.1 Monitoring stations for streamflow and water quality data in the UWRW 

ID Subbasin # Monitoring station 
Drainage area 

(km2) 
Type 

Flow1 #1 1 USGS 03349510 329 Streamflow 

Flow #2 2 USGS 03347000 595 Streamflow 

Flow #8 8 USGS 03348130 1411 Streamflow 

Flow #10 10 USGS 03348000 997 Streamflow 

Flow #11 11 USGS 03349000 2237 Streamflow 

Flow #17 17 USGS 03351000 3201 Streamflow 

Flow #20 20 USGS 03353500 448 Streamflow 

Flow #23 23 USGS 03353611 4756 Streamflow 

Flow #26 26 USGS 03353800 544 Streamflow 

Flow #28 28 USGS 03354000 6227 Streamflow 

WQ2 #10 10 INSTOR WQX3-2398 997 Nitrate 

WQ #17 17 INSTOR WQX-2434 3201 Nitrate 

WQ #19 19 INSTOR WQX-2408 690 Nitrate 

WQ #20 20 INSTOR WQX-2371 448 Nitrate 

WQ #28 28 USGS 03354000 6227 Nitrate 
1Flow: Streamflow data 

2WQ: Water quality data 

3INSTOR WQX: Indiana STORET (STOrage and RETrieval) data warehouse by EPA 

 

3.3.2 Baseflow Separation using the WHAT System 

Baseflow separation techniques have been used to separate direct runoff and baseflow 

from streamflow because it is difficult to measure baseflow in contrast with the 

measurement of streamflow.  Among various baseflow separation techniques (Sloto and 

Crouse, 1996; Rutledge, 1998; Arnold and Allen, 1999), the Web GIS-based Hydrograph 

Analysis Tool (WHAT) (https://engineering.purdue.edu/~what/) (Lim et al., 2005) was 

used to perform baseflow separation from USGS streamflow (USGS 03354000 White 

River near Centerton, IN).  A user friendly and fully automated WHAT system uses the 

maximum value of the baseflow index (BFImax) and filter parameter values proposed by 

Echhardt (2005).  The WHAT system includes a genetic algorithm (GA) to determine 
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optimum BFImax (Eckhardt, 2005) and filter parameter values to reflect local 

hydrological and hydrogeological situations for accurate baseflow separation (Lim et al., 

2010).  A BFImax value of 0.80 and filter parameter value of 0.98 based on Lim et al. 

(2010) and Eckhardt (2005) were used because streams in UWRW are perennial streams 

with porous aquifers.  So, a BFImax value of 0.80 and filter parameter value of 0.98 were 

used to separate baseflow from USGS streamflow.  In the WHAT system, baseflow 

separation from streamflow is conducted with Equation 3.1 as shown below: 

 

(1 BFI ) (1 )BFI
max 1 max

1 BFI
max

b Q
t tb

t

 



  



                                                               (3.1) 

where 
t

b  is the filtered baseflow at the t time step, 
1t

b


 is the filtered baseflow at the t-1 time step, 

BFImax is the maximum value of long-term ratio of baseflow to total streamflow,   is the filter 

parameter, and 
t

Q  is the total streamflow at t time step. 

 

3.3.3 Hydrologic and Water Quality Modeling using SWAT 

3.3.3.1 Overview of SWAT 

SWAT is a physically based distributed, deterministic, and long-term continuous time 

model which is used to predict impact of management practices, LULC change, and 

climate change on hydrology and water quality on a watershed scale with a daily time 

step (Arnold et al., 1998; Neitsch et al., 2011).  SWAT represents the large scale spatial 

heterogeneity of the study area by dividing a watershed into subbasins.  The subbasin is 

the first level of subdivision of the watershed.  Subbasins possess a geographic position 

in the watershed and are spatially related to one another.  The land area in a subbasin may 

be divided into hydrologic response units (HRUs) which are the smallest computational 
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units in SWAT.  HRUs are parts of a subbasin that possess unique land use, management, 

and soil attributes.  HRUs are created by one or more unique land use and soil 

combinations for each subbasin.  Surface runoff, soil water content, crop growth, nutrient 

cycles, and erosion are simulated for each HRU, and then HRUs are combined and 

calculated for the subbasin by a weighted value (Neitsch et al., 2011; Williams et al., 

1984). 

 

3.3.3.2 SWAT Input Data 

Various spatial and temporal data are required for the SWAT simulation.  The period of 

SWAT simulation for this study is from 1990 to 2010 because the SWAT format climate 

data (i.e., precipitation and temperature) were available in this period provided by 

National Climate Data Center (NCDC) and processed by the Agricultural Research 

Service (ARS).  Also, there are sufficient water quality data from 1990 to 2010 for the 

UWRW.  As described in Table 3.2, the primary input data for the SWAT simulation are 

topography, soil, Land Use and Land Cover (LULC), and weather data.  Additionally, for 

nitrate simulation, the scheduled management operation data were prepared to consider 

application of fertilizer, pesticides, and manure (Table 3.3).  A general strategy of 

management practices for corn-soybean rotation is described by Her et al. (2016).  The 

Digital Elevation Model (DEM) (Figure 3.1) from U.S. Geological Survey (USGS) was 

used for watershed delineation, and soil and LULC data from Natural Resources 

Conservation Service (NRCS) and Natural Agricultural Statistics Service (NASS) were 

used with respect to hydrology and water quality in the watershed.  Weather data include 

minimum and maximum temperature, daily precipitation, mean wind speed, relative 
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humidity, and solar radiation which were obtained from National Climate Data Center 

(NCDC) (Table 3.2).  With the input data (Table 3.2), hydrology (surface water + 

groundwater hydrology) and water quality were simulated in the UWRW by SWAT 

(Figure 3.1).  Then, observed streamflow from the USGS were used to calibrate and 

validate SWAT. 

 

The spatial soil map for the UWRW (Figure 3.2(a)) was obtained by USGS.  Twenty 

eight soil types are distributed in the study area such as 33.5% IN013 (Crosby), 24% 

IN040 (Miami), 6.3% IN029 (Sawmill), 6% IN026 (Fox), 5.2% IN054 (Miamian) and 

24.9% other soil types.  LULC in the UWRW (Figure 3.2(b)) includes 45.5% agricultural 

field (22.5% soybeans, 22.2% corn, and 0.8% others), 23.5% urban area, 14.9% forest, 

12.6% pasture, and 3.5% other LULC types.  The mean annual precipitation is 1,093 mm, 

and the highest, the lowest daily temperature, and mean daily temperatures are 36.1°C, -

31.3°C, and 10.8°C, respectively. 

 

Tile drainage was applied in areas where the land use is corn or soybean and the soil 

drainage condition is poorly drained (Boles et al., 2015; Jiang et al., 2014; Sui and 

Frankenberger, 2008).  Based on the previous studies for Indiana watersheds (Boles et al., 

2015; Jiang et al., 2014; Green et al., 2006) and the technical report about tile drainage 

(USDA-NRCS, 2011), parameters related to the tile drainage in SWAT were used as 

Table 3.4. 
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Table 3.2 SWAT input data for hydrologic and water quality modeling 

Data Source Format Scale Date 

DEM USGS1 Raster 1:24,000 2010 

Soil NRCS2 Polygon 1:12,000 2010 

LULC3 NASS4 Raster 1:250,000 2010 

Weather NCDC5 Tabular data - 1986 - 2010 

Streamflow6 USGS1 Tabular data - 1986 - 2010 
1USGS: U.S. Geological Survey 

2NRCS: Natural Resources Conservation Service 

3LULC: Land Use and Land Cover 

4NASS: Natural Agricultural Statistics Service 

5NCDC: National Climate Data Center 

6Data for model calibration and validation 

 

Table 3.3 Management practices for corn-soybean rotation in SWAT 

Year Date Management ID 

Corn 

Year 

Apr-22 Fertilizer application Anhydrous ammonia1 

Apr-22 Pesticide application Atrazine2 

May-6 Tillage Field cultivator 

May-6 Planting Corn 

Jun-6 Fertilizer application Urea3 

Oct-14 Harvest  - 

Oct-15 Kill / end of growing season  - 

Soybean 

Year 

May-24 Tillage No-till 

May-24 Planting Soybean 

Oct-7 Harvest  - 

Oct-8 Kill / end of growing season  - 

Oct-15 Fertilizer application P2O5
4 

Nov-1 Tillage Chisel plow 
1Anhydrous ammonia: 53 kg/ha (N of 43 kg/ha) 

2Atrazine: 2.2 kg/ha 

3Urea: 284 kg/ha (N of 131 kg/ha) 

4P2O5: 123 kg/ha (P of 54 kg/ha) 
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(a) 

 

 

(b) 

Figure 3.2 SSURGO soil map (a) and NLCD land use map (b) of the UWRW 
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 Table 3.4 Tile drainage parameters in SWAT 

Parameter Description Value 

DDRAIN Depth to drains (mm) 1000 

G_DRAIN Drain tile lag time (h) 48 

DRAIN_CO Drainage coefficient (mm/d) 10 

SDRAIN Tile spacing (mm) 20000 

LATKSATF Multiplication factor to determine Ksat 1.2 

RE Effective radius of drains (mm) 20 

ITDRN Tile drainage equations flag/code 1 (new routine) 

 

3.3.3.3 Hydrologic and Water Quality Modeling in SWAT 

The land phase of the hydrological cycle controls the amount of water, sediment, nutrient 

and pesticide loadings to the main channel and to the aquifers in each subbasin.  The land 

phase of the hydrological cycle simulated in SWAT is based on the water balance 

equation (Equation 3.2) (Neitsch et al., 2011). 

 

( )
0 , , , , ,

1

t
SW SW R Q E Q Q

t day i surf i a i lat i gw i
i

     


                                     (3.2) 

where 
t

SW  is the final soil water content (mm) at time t, t is the time (day), 
0

SW  is the initial soil 

water content (mm H2O), 
,day i

R  is the amount of precipitation on day i (mm H2O), 
,surf i

Q  is the 

amount of surface runoff on day i (mm H2O), 
,a i

E  is the amount of evapotranspiration on day i (mm 

H2O), 
,lat i

Q  is the amount of lateral flow released to the main channel on day i (mm H2O), and 
,gw i

Q  

is the amount of return flow on day i (mm H2O). 

 

Water that moves the soil profile by percolation or bypass flow enters and flows through 

the vadose zone.  The shallow aquifer (an unconfined aquifer) receives groundwater 
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recharge from the vadose zone, and a fraction of the groundwater recharge to the shallow 

aquifer can be routed to the deep aquifer (a confined aquifer) by percolation (Equations 

3.3 and 3.4) (Neitsch et al., 2011).   

 

exp( ) [1 exp( )]
, , , , 1 , , , ,

Q Q t w t
gw sh i gw sh i gw sh rchrg sh i gw sh

         


  (3.3) 

where 
, ,gw sh i

Q  is the groundwater flow from the shallow aquifer on day i (mm H2O), 
, , 1gw sh i

Q


 is the 

groundwater flow from the shallow aquifer on day i-1 (mm H2O), 
,gw sh

  is the baseflow recession 

constant, t  is the time step (day), and 
, ,rchrg sh i

w  is the amount of recharge entering the shallow 

aquifer on a day i (mm H2O). 

 

exp( ) [1 exp( )]
, , , , 1 , , , ,

Q Q t w t
gw dp i gw dp i gw dp rchrg dp i gw dp

         


 (3.4) 

where 
, ,gw dp i

Q  is the groundwater flow from the deep aquifer on day i (mm H2O), 
, , 1gw dp i

Q


 is the 

groundwater flow from the deep aquifer on day i-1 (mm H2O), 
,gw dp

  is the baseflow recession 

constant, t  is the time step (day), and 
, ,rchrg dp i

w  is the amount of recharge entering the deep aquifer 

on a day i (mm H2O). 

 

SWAT considers the shallow aquifer and deep aquifer as groundwater storage.  Total 

baseflow (groundwater flow) is calculated by total amount of water in the shallow aquifer 

and deep aquifer (Equation 3.5) (Neitsch et al., 2011). 

 

, , , , ,
Q Q Q

gw i gw sh i gw dp i
                                                                                        (3.5) 
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where 
,gw i

Q  is the total groundwater flow on day i (mm H2O), 
, ,gw sh i

Q  is the total groundwater flow 

in the shallow aquifer on day i (mm H2O), and 
, ,gw dp i

Q  is total groundwater flow in the deep aquifer 

on day i (mm H2O). 

 

Lateral flow is significant in areas with soils having high hydraulic conductivities in 

surface layers and an impermeable layer at a shallow depth.  In such a stream, rainfall 

percolates vertically until it encounters the impermeable layer.  The water then ponds 

above the impermeable layer forming a saturated zone of water (i.e., perched water 

table).  This saturated zone is the source of water for lateral flow.  Lateral flow is 

calculated with Equation 6 (Neitsch et al., 2011). 

 

2
,

0.0224
,

SW K slp
ly excess sat

Q
lat i L

d hill


   
  
 
 

                                                              (3.6) 

where 
,lat i

Q  is the amount of lateral flow released to the main channel on day i (mm H2O), 
,ly excess

SW  

is the drainage volume of water stored in the saturated zone of the hillslope per unit area (mm H2O), 

sat
K  is the saturated hydraulic conductivity (mm/h), slp  is the average slope of the subbasin (m/m), 

d
  is the drainage porosity of soil (mm/mm), and 

hill
L  is the hillslope length (m). 

 

Groundwater flow entering the main channel from the shallow aquifer can contain nitrate.  

Nitrate in the shallow aquifer may remain in the aquifer, move with recharge to the deep 

aquifer, move with groundwater flow into the main channel, or be transported out of the 

shallow aquifer with water moving in the soil zone in response to water deficiencies.  
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SWAT can simulate nitrate in recharge to the shallow aquifer and deep aquifer on a given 

day with Equations 3.7 and 3.8 (Neitsch et al., 2011). 

 

3 (1 exp[ 1/ ]) 3 exp[ 1/ ] 3
, , 1

NO NO NO
rchrg i gw perc gw rchrg i

       


                     (3.7) 

where 
,

3
rchrg i

NO is the amount of nitrate in recharge entering the aquifers on day i (kg N/ha), 
gw

  is 

the delay time (drainage time) of the overlying geologic formation (day), 3
perc

NO  is the total amount 

of nitrate exiting the bottom of the soil profile on day i (kg N/ha), 
, 1

3
rchrg i

NO


 is the amount of nitrate 

in recharge entering the aquifers on day i-1 (mm H2O). 

 

 

3 ( 3 3 ) / ( )
, , 1 , , , , , , ,

NO NO NO Q aq Q w w
gw i sh i rchrg i gw i sh i gw i revap i rchrg dp i

     


                                                                                                                                

                                                                                                                                        (3.8) 

where 
,

3
gw i

NO  is the amount of nitrate in groundwater flow from the shallow aquifer on day i (kg 

N/ha), 
, 1

3
sh i

NO


 is the amount of nitrate in the shallow aquifer at the end of day i-1 (kg N/ha), 
,gw i

Q  

is the groundwater flow into the main channel on day i (mm H2O), 
,sh i

aq  is the amount of water 

stored in the shallow aquifer at the end of day i (mm H2O), 
,revap i

w  is the amount of water moving 

into the soil zone in response to water deficiencies on day i (mm H2O), 
, ,rchrg dp i

w  is the amount of 

recharge entering the deep aquifer on day i (mm H2O). 

 

Many studies about aquifer hydrology and water quality (especially surface and 

subsurface transport of nutrients (mainly nitrogen and phosphorus) in soil and water) 

have been carried out with SWAT and have demonstrated the robustness of SWAT in 
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simulating nutrient losses at the watershed scale (Moriasi et al., 2013; Sultan et al., 2011; 

Cerro et al., 2011; Akhavan et al., 2010; Vale and Holman, 2009).  As shown in Figure 

3.3, in this study, streamflow and baseflow were simulated and calibrated based on USGS 

streamflow data and baseflow data generated by the WHAT system. 

 

 

Figure 3.3 Flowchart of SWAT simulation for hydrology using simultaneous streamflow 

and baseflow calibration 

 

3.3.4 Efficient Flow Calibration Regime using SUFI-2 and Modified SWAT 2012 Code 

3.3.4.1 Overview of SUFI-2 

SUFI-2 represents all uncertainties such as uncertainty of input variables, conceptual 

model, parameters, and observed data.  Uncertainties in the model output are determined 

by the 95% prediction uncertainty (95PPU) calculated at the 2.5% and 97.5% levels of 

the cumulative distribution of the output variables drawn by LHS which is a statistical 
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method to generate controlled random parameter sets from a multidimensional 

distribution (Abbaspour et al., 2007, 2011).  If the number of parameters and simulations 

are 3 (ESCO, GW_REVAP, and ALPHA_BF) (Table 3.5) and 200, LHS is conducted as 

follows (modified from Abbaspour et al., 2011): 

1. Three parameters are divided into the number of simulations that user defined (Figure 

3.4 (a)). 

2. Parameter segments are randomized (Figure 3.4 (b)). 

3. A sample is selected and every vertical combination is defined as a parameter set 

(Figure 3.4(c)). 

 

 

(a) 
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(b) 

 

 

(c) 

Figure 3.4 Latin hypercube sampling procedure to generate controlled random parameter 

sets from a multidimensional distribution 

 

Table 3.5 Example parameter set to describe Latin hypercube sampling 

Parameter Description 
Ranges 

LB1 UB2  

ESCO Soil evaporation compensation factor 0.01 1.00 

GW_REVAP Groundwater “revap” coefficient 0.02 0.1 

ALPHA_BF Baseflow alpha factor 0.5 1.0 
1LB: Lower bound 

2UB: Upper bound 
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In SUFI-2, two indices (P-factor and R-factor) are used to judge the goodness of 

calibration and validation.  P-factor is the percentage of observed data bracketed by the 

995PPU and ranges from 0 to 100%, where 100% represents a perfect model.  R-factor is 

the average thickness of the 995PPU divided by the standard deviation of the observed 

data and varies from 0 to infinity.  The closeness of R-factor to zero indicates that 

simulation in the model exactly corresponds to observed data.  When acceptable values of 

P-factor and R-factor are reached, the parameter ranges are taken as the calibration 

parameters.  For further evaluation of the model performance, Nash-Sutcliff Efficiency 

(NSE), coefficient of determination (R2), and percent bias (PBIAS) were selected as the 

model evaluation methods for calibration and validation of streamflow and baseflow 

(Abbaspour et al., 2007, 2015).  Simulated and observed values were compared using the 

three model evaluation methods, one at a time.  NSE is a normalized statistic that 

explains the relative magnitude of the residual variance ("noise") compared to the 

measured data variance and it varies from minus infinity to 1.  An NSE of 1 indicates a 

perfect match of simulated data to the observed data (Equation 3.9) (Nash and Sutcliffe, 

1970).  R2 is the square of the correlation (r) between simulated and observed values and 

it ranges from 0 to 1.  An R2 of 1 means the simulated data are predicted perfectly 

without error (Equation 3.10) (Krause et al., 2005).  PBIAS measures the average 

tendency of the simulated data to be larger or smaller than the observations.  The optimal 

value of PBIAS is zero, where low magnitude values indicate better model simulations.  

Positive values indicate model underestimation and negative values indicate model 

overestimation (Equation 3.11) (Gupta et al., 1999). 
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where 
obs

iY  is the ith observed data, 
sim

iY  is the ith simulated data, 
meanY  is the mean of observed 

data, and n is the total number of observed data. 
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where obs
iY  is the ith observed data, 

obsY  is the mean of observed data, 
sim

iY  is the ith simulated 

data, 
simY  is the mean of simulated data, and n is the total number of observed data. 
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                                                                   (3.11) 

where 
obs

iY  is the ith observed data, 
sim

iY  is the ith simulated data, and n is the total number of 

observed data. 

 

3.3.4.2 Modification of the SWAT 2012 Code for Baseflow Calibration 

Among various SWAT output files, the ‘output.rch’ file (main channel output file) has 

been used to analyze streamflow at the outlet of each subbasin because USGS-provided 

flow is measured at the outlet of each subbasin.  Also, SWAT users have used the 
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‘output.rch’ file for calibration, validation, sensitivity, and uncertainty analysis of 

streamflow at the outlet of each subbasin because the ‘output.rch’ file contains summary 

information for each routing reach in the watershed (Neitsch et al., 2011).  However, only 

streamflow is calculated and printed in the ‘output.rch’ file while baseflow is not.  

Modified SWAT 2012 code for baseflow calibration allows users to calibrate 

automatically streamflow and baseflow simultaneously.  Through graphical and 

numerical calibration, manual calibration for both streamflow and baseflow-related 

parameters is available as well as autocalibration.  Moreover, if users use the SWAT-

CUP interface, it would be easy to check the simulation results and summary statistics 

file which shows the statistics of comparing observed data with the simulation band 

through P-factor and R-factor and the optimal simulation of the current iteration by using 

various types of the model evaluation methods such as R2, NSE, and PBIAS (Abbaspour 

et al., 2011). 

 

SUFI-2 reads ‘output.rch’ in ‘TxtInOut’ folder which contains all output files of SWAT 

and ‘output.rch’ is used as an input file for the sequence of program execution in SUFI-2.  

In this study, SWAT 2012 code was modified with the FORTRAN programming to 

calculate the amount of baseflow for efficient baseflow calibration using SUFI-2.  

Baseflow (Equation 3.12) is defined as a summation of lateral flow and groundwater flow 

(Equations 3.1-3.6).  If tile drainage is installed and simulated in SWAT, baseflow is 

calculated by adding Equation 3.13 because water entering tiles is considered lateral flow 

(Equation 3.14) (Neitsch et al., 2011).    
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Q Q Q

bf i lat i gw i
                                                                                                  (3.12) 

where 
,bf i

Q  is the total baseflow on day i (mm H2O), 
,lat i

Q  is the amount of lateral flow released to 

the main channel on day i (mm H2O), and 
,gw i

Q  is the total groundwater flow on day i (mm H2O). 
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where 
,wtr i

Tile  is the amount of water removed from the layer on day i by tile drainage (mm H2O), 

,wtbl i
h  is the height of the water table above the impervious zone on day i (mm), 

,drain i
h  is the height 

of the tile drain above the impervious zone on day i (mm), 
i

SW  is the water content of the profile 

on day i (mm H2O), 
i

FC  is the field capacity water content of the profile on day i, and 
drain

t  is the 

time required to drain the soil to field capacity (hrs). 

 

, , , , ,
Q Q Tile Q

bf tile i lat i wtr i gw i
                                                                         (3.14) 

where  
, ,bf tile i

Q  is the total baseflow on day i when tile drainage is applied (mm H2O). 

 

Moreover, baseflow is printed in ‘output.rch’ to be able to calibrate baseflow for the main 

outlet of the watershed using SUFI-2 in SWAT-CUP.  Thus, SWAT users can identify 

baseflow simulation results and the statistics of comparing observed data with the 

simulated data in the SWAT-CUP interface.  As a result, SUFI-2 in SWAT-CUP has 
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become easy and efficient for SWAT users to calibrate baseflow using modified SWAT 

2012 code.  

 

3.3.4.3 Calibration of Streamflow and Baseflow with the EFCR 

For accurate estimation of streamflow and baseflow and for better parameterization of 

them, the EFCR is proposed and evaluated.  SUFI-2 uses LHS to generate controlled 

random samples for the calibration parameters.  In the EFCR, the calibration parameters 

corresponding to the top 20% optimal NSE are updated three times for each 500 

iterations based on the previous calibration results in order to reduce the size of LHS to 

the population size by adjusting and resorting parameter ranges for improving calibration 

accuracy.  The following steps are suggested for the EFCR with SUFI-2 and modified 

SWAT 2012 code (Figure 3.5): 

1. Conduct baseflow separation from USGS streamflow data using the WHAT 

system and use the baseflow as observed baseflow in the baseflow calibration 

procedure.  If there is observed baseflow, this step can be omitted. 

2. Determine initial parameters for the observed data (i.e., streamflow and 

baseflow) from the previous studies and run SWAT with the initial parameters. 

3. Define calibration and validation periods from the entire simulation period. 

4. Run the SUFI-2 in SWAT-CUP 500 iterations with the modified SWAT2012 

executable file (swat2012.exe) using parallel processing with 4 CPUs, extract 

parameters corresponding to top 20% optimal NSE, and update parameter ranges 

(lower and upper bounds) based on the extracted parameters. 



80 

 

 

 

5. Perform the sensitivity analysis to identify the most sensitive parameters.  Based 

on the results, remove insensitive parameters from the calibration process.  

6. Repeat step 4 and evaluate the model performance until model evaluation 

statistics such as NSE, R2, PBIAS meet the criteria.  However, this iteration has 

stopping point.  I set maximum iteration for updating parameter ranges is five.   

 

 

Figure 3.5 Flowchart of the procedures of the efficient flow calibration regime (EFCR) 

 

There are four scenarios to evaluate streamflow and baseflow and determine which 

scenario is the most suitable calibration regime for accurate baseflow simulation.  First is 

the default SWAT which is the model without streamflow and baseflow calibration 

(hereafter referred as C1).  C1 is the baseline scenario (the default model) in this study to 

be compared with other scenarios to understand impact of baseflow calibration on the 
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levels of nitrates in aquifers.  Second is the model with streamflow calibration alone (C2).  

The third scenario is the model for which streamflow and baseflow calibration were 

conducted simultaneously (C3).  The last scenario is the model with calibration of 

streamflow and baseflow using the EFCR proposed in this study (C4) (Figure 3.5). 

 

The total simulation period was from 1990 - 2010 (21 years) with the first 4 years as the 

model warm up period.  Calibration (1990 - 2001) was carried out with 16 parameters 

and corresponding parameter ranges (Table 3.6) based on the result of sensitivity analysis 

and previous studies (Arnold et al., 2012; Zhang et al., 2011; Park et al., 2014).  Sixteen 

parameters were selected based on sensitivity analysis to identify a set of key parameters 

for model calibration.  These data were adjusted to minimize the differences between 

simulated and observed streamflow and baseflow during the calibration process.  Among 

the 16 parameters, 10 parameters are related to streamflow calibration, and 6 parameters 

are more related to baseflow calibration.  After the model calibration, validation was 

performed from 2002 - 2010 with the calibrated parameters.  The model performance of 

each scenario was assessed for monthly streamflow and baseflow simulations with the 

three statistical metrics (i.e., NSE, R2, and PBIAS) (Equation 3.9-3.11) and the reported 

model performance ratings (Table 3.7) (Moriasi et al., 2007; Van Liew et al., 2003; Singh 

et al., 2004; Engel et al., 2007).  The performance ratings were utilized to evaluate the 

success rate of calibration results.  Calibration results were categorized into four model 

performances: “Very good”, “Good”, “Satisfactory”, and “Unsatisfactory”.  Then, 

percentage of model performances for streamflow and baseflow simulation were 

analyzed based on Table 3.7. 
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Table 3.6 SWAT parameters for calibration of streamflow and baseflow 

Parameter Description Unit 
Variation 

Method 

Ranges 

LB1 UB2 

Water balance 

ESCO Soil evaporation compensation factor - I3 0.01 1 

SFTMP Snowfall temperature °C I -5 5 

SMTMP Snow melt base temperature °C I -5 5 

TIMP Snow pack temperature lag factor - I 0.01 1 

SMFMX Melt factor for snow on June 21 mm/°C I 0.01 10 

SMFMN Melt factor for snow on December 21 mm/°C I 0.01 10 

Subsurface water 

GW_REVAP Groundwater evaporation coefficient - I 0.02 0.2 

REVAPMN Depth of water for evaporation mm I 0.01 250 

GWQMN Depth of water for return flow mm I 0.01 500 

GW_DELAY Groundwater delay time day I 0.1 50 

ALPHA_BF Baseflow alpha factor 1/day I 0.1 1 

RCHRG_DP Deep aquifer percolation fraction - I 0.01 1 

Surface runoff 

CN2 Initial SCS runoff curve number (CN II) - II4 -0.25 0.25 

SURLAG Surface runoff lag coefficient - I 0.1 10 

Physical properties of the soil 

SOL_AWC Available water capacity of the soil layer  mm/mm II -0.25 0.25 

Physical properties of the channel 

CH_K2 Effective hydraulic conductivity mm/hr I 5 300 
1LB: Lower bound / 2UB: Upper bound 

3I: Replace by value  

4II: Multiply by value (%) 

5III: Add to value 

 

Table 3.7 SWAT performance evaluation criteria for NSE, R2, and PBIAS 

Measure Output 

Performance Evaluation Criteria 

Very 

Good 
Good Satisfactory Unsatisfactory 

NSE Flow > 0.80 0.70 < NSE ≤ 0.80 0.50 < NSE ≤ 0.70 NSE ≤ 0.50 

R2 Flow > 0.85 0.75 < R2 ≤ 0.85 0.60 < R2 ≤ 0.75 R2 ≤ 0.60 

PBIAS Flow < ±10 ±10 ≤ PBIAS < ±15 ±15 ≤ PBIAS < ±25 PBIAS ≥ ±25 

Adapted by Van Liew et al. (2003), Singh et al. (2004), and Moriasi et al. (2015) 

 

3.3.4.4 Calibration Effects on Monthly Hydrograph 

After streamflow and baseflow were calibrated and validated, analysis of monthly 

hydrograph characteristics based on three hydrological conditions (wet, normal, and dry 
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years) was implemented for four scenarios (C1, C2, C3, and C4).  Season-based 

evaluation is important for efficient hydrologic simulation and a sufficient range of 

hydrologic events based on wet, normal, and dry years would be required (Gan et al., 

1997; Mueleta, 2012; Zhang, et al., 2012).  In order to determine the hydrological 

conditions (wet, normal, and dry years), the USGS streamflow data (USGS 03354000 

White River near Centerton, IN) were utilized from 1990 to 2010.  Wet years correspond 

to the years with USGS streamflow above the 20th-percentile exceedance level from April 

to July.  Dry years are defined when the USGS streamflow is below the 80th-percentile 

exceedance level from April to July.  Normal years are the years between the 20th-

percentile exceedance level and 80th-percentile exceedance level. 

          

3.4 Results 

3.4.1 Baseflow Separation using the WHAT System 

The WHAT system (Lim et al., 2005) which has a user friendly and fully automated 

interface was used to implement baseflow separation from USGS streamflow to calibrate 

baseflow simulated by SWAT.  For a total simulation period of 21 years (1990 - 2010), 

monthly mean streamflow was 85.7 m3/s and monthly mean baseflow was 35.9 m3/s, 

respectively.  The amount of baseflow contributing to streamflow was 41.9% (monthly 

mean value).  Min, max, and standard deviation of baseflow were 8.07, 231, and 28.8 

m3/s (Figure 3.6).  
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Figure 3.6 USGS streamflow and baseflow separated by the WHAT system (1990 - 2010) 

to calibrate streamflow and baseflow simulated by SWAT 

 

3.4.2 Model Performance Evaluation 

After streamflow and baseflow were simulated, model calibration was conducted with the 

four scenarios.  Based on the calibration results, model performances were analyzed by 

the three model evaluation methods such as NSE, R2, and PBIAS.  As shown in Table 

3.8, compared to default parameter values in C1 (uncalibrated model called the baseline 

model), adjusted ALPHA_BF and RCHRG_DP were considerably different.  

ALPHA_BF, the baseflow recession constant, varies from 0.1 to 0.3 for land with slow 

response to groundwater recharge and from 0.9 to 1.0 for land with a rapid recharge 

response.  Thus, ALPHA_BFs (0.52 to 0.70) of C2, C3, and C4 indicate a slightly rapid 

recharge response.  RCHRG_DP, deep aquifer percolation fraction, increase deep aquifer 

recharge which ranges from 0.0 - 1.0.  This parameter is important for both streamflow 

and baseflow simulation because in SWAT water traveling to a deep aquifer from the 
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root zone is not redistributed into the soil, shallow aquifer or main channel but losses 

from the system boundary.  Parameters of RCHRG_DPs (0.31 to 0.66) in C2, C3, and C4 

were increased, which indicates water traveling to the deep aquifer was increased. 

 

Table 3.8 Final values of the calibration parameters for each scenario 

Parameter 
Final values 

C11 C22 C33 C44 

ESCO 0.95 0.49 0.31 0.35 

SFTMP 1.00 -4.11 -1.09 2.31 

SMTMP 0.50 1.41 0.75 -0.77 

TIMP 1.00 0.54 0.61 0.93 

SMFMX 4.50 7.99 4.05 2.50 

SMFMN 4.50 6.65 2.25 2.50 

GW_REVAP 0.02 0.05 0.19 0.04 

REVAPMN 750 165 238 210 

GWQMN 1000 125 218 52.5 

GW_DELAY 31.0 4.87 10.4 21.0 

ALPHA_BF 0.048 0.53 0.52 0.70 

RCHRG_DP 0.05 0.31 0.66 0.40 

CN26 va5 -0.13 -0.25 -0.23 

SURLAG 4.00 6.72 4.37 7.42 

SOL_AWC6 va 0.13 -0.12 -0.15 

CH_K2 0.00 95.0 269 34.8 
1C1: Default model without calibration (baseline) 

2C2: Streamflow calibration alone 

3C3: Streamflow and baseflow calibration 

4C4: Streamflow and baseflow calibration with the EFCR 

5va: Different value according to HRUs 

6CN2, SOL_AWC: Percentage change (%) 

 

Model performance evaluation was conducted according to NSE, R2, and PBIAS (Table 

3.9).  For the monthly streamflow calibration and validation, NSE values of all scenarios 

range from 0.73 to 0.95.  R2 values vary from 0.74 to 0.95, and PBIAS values range from 

-6.42 to 11.2.  Based on Table 3.7, all scenarios are within the “Very good”, “Good”, and 
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“Satisfactory” ranges.  It indicates all scenarios are adequate.  However, for the monthly 

baseflow calibration and validation, NSE values of all scenarios vary from -0.06 to 0.65.   

 

R2 values range from 0.25 to 0.95, and PBIAS values vary from -6.42 to 11.16.  

Compared with the streamflow calibration and validation, the results of the baseflow 

calibration and validation show “Very good”, “Good”, “Satisfactory”, and 

“Unsatisfactory” ranges.  Especially, C2 (streamflow calibration alone) shows very good 

performance for streamflow calibration and validation, but for baseflow calibration and 

validation, NSE values vary from 0.21 to 0.39.  These values indicate that the model 

performance for baseflow simulation are in “Unsatisfactory” ranges.  C3 (simultaneous 

streamflow and baseflow calibration) shows the model performances for streamflow 

evaluation are more than “Good”.  For baseflow evaluation, all values are within “Good” 

and “Satisfactory” aside from four indications (NSE: 0.48 and PBIAS: 33.6, 34.5, and 

32.5) of “Unsatisfactory” model performance.  C4 (simultaneous streamflow and 

baseflow calibration with the EFCR) indicates all values for streamflow calibration and 

validation are within “Very good” in terms of NSE, R2, and PBIAS.  Also, for baseflow 

calibration and validation, all values fall within “Good” and “Satisfactory”.  However, 

even though C4 provided good model performances for both streamflow and baseflow 

simulation, streamflow and baseflow in the model were still slightly underestimated or 

overestimated. 

 

In all model performances (model performances of streamflow and baseflow) (Figure 

3.7(a)) based on NSE, R2, and PBIAS (Table 3.7), C1 which is the baseline model has 
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22.2 / 33.3 / 11.1 / 33.3% of “Very good” / “Good” / “Satisfactory” / “Unsatisfactory”.  

In C2, model performances show 66.7 / 0.0 / 16.7 / 16.7% of “Very good” / “Good” / 

“Satisfactory” / “Unsatisfactory”.  C3 shows 38.9 / 11.1 / 27.8 / 22.2% of “Very good” / 

“Good” / “Satisfactory” / “Unsatisfactory”.  In C4, model performances indicate 50.0 / 

5.6 / 44.4 / 0.0% of “Very good” / “Good” / “Satisfactory” / “Unsatisfactory”.  These 

values show C4 has fairly good model performances because C4 has 50.0% of “Very 

good” and 0.0% of “Unsatisfactory”.  In model performances for streamflow calibration 

(Figure 3.7(b)), C2 and C4 have performed well for streamflow simulation because 

percentage of model performances indicate 100.0% of “Very good” for both C2 and C4.  

However, in model performances for baseflow calibration (Figure 3.7(c)), C2 show 

33.3% of “Unsatisfactory” while C4 has still performed fairly well (11.1 / 88.9% of 

“Good” / “Satisfactory”) without “Unsatisfactory”.  These values indicate that 

streamflow calibration alone (C2) would result in only good performance but not be good 

for baseflow simulation.  Baseflow-related parameters would be overestimated or 

underestimated when streamflow calibration alone is conducted.  Thus, streamflow and 

baseflow calibration should be carried out simultaneously for accurate baseflow-related 

simulation such as nitrate contamination in aquifers.                 
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Table 3.9 Performance evaluation of streamflow and baseflow simulated from the four 

scenarios   

 Scenario 
Streamflow Baseflow 

NSE R2 PBIAS1 NSE R2 PBIAS 

Total period 
(1990 - 2010) 

C1 0.76 0.77 6.62 -0.01 0.27 8.29 

C2 0.93 0.93 4.69 0.32 0.70 -4.99 

C3 0.83 0.86 -2.49 0.54 0.71 33.6 

C4 0.87 0.89 1.36 0.64 0.71 15.3 

Calibration 
(1990 - 2001)  

C1 0.73 0.74 11.2 -0.06 0.28 13.5 

C2 0.91 0.92 8.55 0.21 0.69 -2.31 

C3 0.80 0.84 1.04 0.48 0.70 34.5 

C4 0.85 0.87 3.90 0.63 0.73 16.7 

Validation 
(2002 - 2010) 

C1 0.79 0.79 1.57 0.01 0.25 2.48 

C2 0.95 0.95 0.40 0.39 0.71 -7.98 

C3 0.85 0.90 -6.42 0.57 0.72 32.5 

C4 0.88 0.92 1.50 0.65 0.70 13.8 
1PBIAS: Percent (%) 

 

 

(a) 
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(b) 

 

 

(c) 

Figure 3.7 Percentage of model performances in four categories (very good, good, 

satisfactory, and unsatisfactory): (a) All model performances (streamflow + baseflow), 

(b) Model performances for streamflow, and (c) Model performances for baseflow 

Note: 1SF: Streamflow and 2BF: Baseflow 
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3.4.3 Calibration Effects on Monthly Hydrograph 

Graphical comparisons between the observed and simulated monthly streamflow during 

the calibration and validation periods are shown in Figure 3.8(a) and (b).  As shown in 

Figure 3.8(a) and (b), even though some peak and low streamflow values were 

underestimated, three scenarios (C2, C3, and C4) performed well for monthly streamflow 

simulation.  C1 mostly underestimated both peak and low streamflow.  In C2, better peak 

and low streamflow simulation was achieved than for other scenarios.  While C3 and C4 

were underestimated during peak streamflow periods, they slightly overestimated during 

low streamflow periods.  Generally, C2 shows the best performances (NSE: 0.93, R2: 

0.93, and PBIAS (%): 4.69) for streamflow simulation for both calibration and validation 

periods (Figure 3.9(a)), and streamflow for the four scenarios during the validation period 

was better estimated during the calibration period.  Figure 3.8(c) and (d) show results of 

monthly baseflow simulation during the calibration and validation periods.  In C1, 

simulated baseflow did not match observed baseflow well in most peak points because an 

obvious time lag existed during whole simulation periods.  C2 strikingly overestimated 

baseflow during both calibration and validation periods.  However, in C3 and C4, 

baseflow was simulated satisfactorily.  Especially, C4 estimated baseflow better than C3 

during all periods.  Thus, it is noted that C4 simulates both streamflow and baseflow well.  

Table 3.10 shows summary statistics for the USGS observed flow (streamflow and 

baseflow) and simulated flow by various scenarios.  As mentioned above, for streamflow 

simulation during both calibration and validation periods, the results of statistical analysis 

(i.e., mean, standard deviation, and max) of calibrated streamflow by C2, C3, and C4 are 

not significantly different from the observed streamflow.  These values indicate all 
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calibrated streamflow replicated the observed streamflow well.  However, for baseflow 

simulation during both calibration and validation periods, only C3 and C4 simulated 

satisfactory results based on mean, standard deviation, and maximum values.  Among the 

four scenarios, C4 shows the best performances (NSE: 0.64, R2: 0.71, and PBIAS (%): 

15.32) for baseflow simulation (Figure 3.9(b)).  Thus, C4 performs both streamflow and 

baseflow simulation well compared with other scenarios.  While C2 shows the best 

performances for streamflow simulation, significant differences were found between the 

observed and simulated baseflow in C2 because C2 represents model calibration for 

streamflow alone.  The results suggest simultaneous streamflow and baseflow calibration 

should be conducted for accurate flow estimation. 

 

Using the calibrated parameters of C4, cross validation was conducted to examine 

whether calibrated parameters of C4 are suitable for other USGS streamflow stations.  As 

shown in Table 3.11, simulated streamflow using calibrated parameters of C4 replicated 

the all observed streamflow (10 USGS streamflow stations) well. 
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(a) 

 

 

(b) 
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(c) 

 

 

(d) 

Figure 3.8 Comparisons of monthly streamflow in the UWRW between four scenarios: 

(a) Streamflow during the calibration period (1990 - 2001), (b) Streamflow during the 

validation period (2002 - 2010), (c) Baseflow during the calibration period (1990 - 2001), 

and (d) Baseflow during the validation period (2002 - 2010) 
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(a) 

 

 

(b) 

Figure 3.9 The best performances of streamflow and baseflow simulations in the 

UWRW: (a) Streamflow hydrograph of C2 (the model with streamflow calibration 

alone), and (b) Baseflow hydrograph of C4 (the model with simultaneous streamflow and 

baseflow calibration) 
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Table 3.10 Summary flow statistics for the USGS observed and simulated streamflow 

and baseflow from the four scenarios in the UWRW 

  Scenario 
Streamflow (cms) Baseflow (cms) 

Mean Std2 Max Min Mean Std Max Min 

Calibration 

(1990 - 

2001)  

USGS1 78.9 68.1 333 8.67 33.2 24.8 158 8.06 

C1 70.2 57.3 259 0.71 28.7 26.9 119 0.17 

C2 72.2 60.0 285 4.32 33.9 37.8 197 0.15 

C3 78.1 48.8 231 9.83 21.7 22.9 110 0.10 

C4 76.4 51.2 248 8.48 27.6 26.5 143 0.12 

Validation 

(2002 - 

2010)   

USGS 94.7 82.4 461 12.5 39.6 33.0 232 10.8 

C1 93.2 75.1 324 2.63 38.6 32.7 115 0.54 

C2 94.3 78.2 405 13.3 42.7 46.2 226 0.29 

C3 101 60.9 319 28.2 26.7 28.2 137 0.20 

C4 98.6 64.1 331 24.9 34.1 32.1 158 0.27 
1USGS observed monthly flow data 

2Standard deviation of monthly flow 

 

Table 3.11 Results of multi-site validation using calibration parameters of C4 (the model 

with simultaneous streamflow and baseflow calibration) in the UWRW 

ID Monitoring station R2 NSE PBIAS Period 

Flow #1 USGS 03349510 0.91 0.89 -14.3 2004-2010 

Flow #2 USGS 03347000 0.77 0.75 10.7 1990-2010 

Flow #8 USGS 03348130 0.90 0.90 -2.7 1999-2010 

Flow #10 USGS 03348000 0.83 0.80 15.9 1990-1993 

Flow #11 USGS 03349000 0.89 0.89 1.2 1990-2010 

Flow #17 USGS 03351000 0.91 0.90 -2.2 1990-2010 

Flow #20 USGS 03353500 0.88 0.86 -16.4 1990-2010 

Flow #23 USGS 03353611 0.92 0.91 -3.9 1992-2010 

Flow #26 USGS 03353800 0.89 0.88 -11.8 1990-2010 

Flow #28 USGS 03354000 0.92 0.88 1.5 1990-2010 

 

3.4.4 Calibration Effects on Streamflow and Baseflow 

As shown in Table 3.12, wet years are the 4 years with streamflow above the 20th-

percentile exceedance level and normal years occur for 13 years.  Dry years are the 4 

years for which streamflow is below the 80th-percentile exceedance level.  In order to 

conduct season-based evaluation in streamflow and baseflow across all scenarios, visual 

analysis was implemented through the observed and simulated streamflow and baseflow 
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exceedance probability distributions based on the hydrologic conditions (Table 3.9) 

(Figures 3.10 and 11). 

   

In wet years for streamflow (Figure 3.10(a)), C1 underestimated streamflow in dry 

conditions and low flow conditions, and C3 and C4 overestimated streamflow in dry 

conditions.  However, C2 replicated the observed streamflow well.  In normal years for 

streamflow (Figure 3.10(b)), C2 also simulated the observed streamflow well.  However, 

C1 underestimated streamflow in low flow conditions and C3 overestimated streamflow 

in dry conditions.  C4 also marginally overestimated streamflow in low flow conditions.  

In dry years (Figure 3.10(c)), all scenarios simulated streamflow well except for C1 

which underestimated streamflow in dry and low flow conditions. 

   

In wet years for baseflow (Figure 3.11(a)), all scenarios underestimated baseflow in dry 

and low flow conditions.  C1 and C2 overestimated baseflow in moist and mid-range 

flow conditions.  C3 simulated baseflow well in high flow, moist, and mid-range flow 

conditions.  C4 slightly overestimated baseflow in moist and mid-range flow conditions.  

In normal years for baseflow (Figure 3.11(b)), C1 and C4 simulated baseflow well in 

high flow and moist conditions but underestimated baseflow in dry and low flow 

conditions.  C2 slightly overestimated baseflow in high flow and moist conditions but 

underestimated baseflow in dry and low flow conditions.  In mid-range, dry, and low 

flow conditions, C3 underestimated baseflow more than the other three scenarios.  In dry 

years for baseflow (Figure 3.11(c)), C1, C3, and C4 simulated baseflow well in high flow 

and moist conditions but underestimated baseflow in dry and low flow conditions.  C2 
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slightly overestimated baseflow in high flow conditions but underestimated baseflow in 

dry and low flow conditions.   

 

As a result, all scenarios are likely to conduct better simulation of streamflow rather than 

baseflow.  All scenarios simulated streamflow and baseflow well in high flow conditions 

but in low flow conditions, all models underestimated streamflow and baseflow.  Even 

though all scenarios overestimated and/or underestimated baseflow, C4 simulated 

baseflow better than the other three scenarios. 

 

Table 3.12 Classification of wet, normal, and dry years to conduct season-based 

evaluation in streamflow and baseflow in the UWRW 

Year 
USGS-SF1 (cms) 

(Apr - Jul) 

Exceedance 

Probability (%) 

Hydrological 

Condition 

1998 683.3 4.5 

Wet year 
1996 648.5 9.1 

2008 627.3 13.6 

2002 609.4 18.2 

2003 551.7 22.7 

Normal year 

  

2009 546.3 27.3 

2010 471.2 31.8 

1992 462.4 36.4 

1990 458.5 40.9 

1993 453.3 45.5 

2006 389.0 50.0 

2004 367.2 54.5 

1995 314.8 59.1 

1997 291.8 63.6 

2005 286.1 68.2 

1994 285.2 72.7 

1991 271.9 77.3 

2001 243.5 81.8 

Dry year 
2007 236.4 86.4 

1999 223.7 90.9 

2000 213.1 95.5 
1USGS streamflow 
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Figure 3.10 Exceedance probability distribution of the USGS observed and simulated 

streamflow based on the hydrologic conditions for the UWRW: (a) Wet years, (b) 

Normal years, and (c) Dry years 

 



99 

 

 

 

 

Figure 3.11 Exceedance probability distribution of the USGS observed and simulated 

baseflow based on the hydrologic conditions for the UWRW: (a) Wet years, (b) Normal 

years, and (c) Dry years 

 

This study presented the efficient flow calibration regime (EFCR) for both accurate 

streamflow and baseflow estimation. The calibration methodology developed and 

suggested in this study was composed of the modified SWAT 2012 code and SUFI-2 in 

order to calibrate automatically streamflow and baseflow simultaneously.  Measured 

streamflow and estimated baseflow (or observed baseflow if available) data are necessary 

to calibrate and validate the model performances.  Measured streamflow was retrieved 

from USGS streamflow gauging station.  However, it was difficult to obtain measured 

baseflow data.  The filter-based model, WHAT system, was used to estimate baseflow 
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data by separating baseflow from a total streamflow hydrograph using USGS streamflow 

data. 

   

Sixteen parameters were selected based on sensitivity analysis to identify a set of key 

parameters for the model calibration.  Using these 16 parameters related to streamflow 

and baseflow, the model performance was evaluated based on Table 3.6 in the UWRW.  

The results of the calibration and validation showed that the simulated streamflow and 

baseflow agreed with the observed data well.  In the case of C4 which is the model with 

simultaneous streamflow and baseflow calibration with the EFCR, for the total simulation 

period (1990 - 2010), NSE / R2 / PBIAS for streamflow and baseflow were 0.87 / 0.89 / 

1.36 (streamflow) and 0.64 / 0.71 / 15.3 (baseflow), respectively.  For the calibration 

period (1990 - 2001), NSE / R2 / PBIAS for streamflow were 0.85 / 0.87 / 3.90 and NSE / 

R2 / PBIAS for baseflow were 0.63 / 0.73 / 16.7.  For the validation period (2002 - 2010), 

NSE / R2 / PBIAS for streamflow and baseflow showed 0.88 / 0.92 / 1.50 (streamflow) 

and 0.65 / 0.70 / 13.8 (baseflow), individually.  These values indicate that the model is 

more than “Satisfactory” for all periods.  In the results, it is noted that even though C2 

(streamflow calibration alone) showed the best performances for both streamflow 

calibration and validation periods, C2 would not be appropriate for baseflow calibration 

and validation.  Thus, this study indicates that calibrating streamflow and baseflow 

simultaneously would be important for t efficient hydrological cycle assessment because 

baseflow is the main part of the hydrological cycle for the study location.  Moreover, for 

baseflow-related study, such as analysis of nitrate leaching for aquifer hazard assessment, 
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simultaneous streamflow and baseflow calibration should be necessary to achieve better 

results for baseflow-related simulation. 

 

C3 and C4 performed streamflow and baseflow simulation well.  However, C4 indicated 

better model performances than C3 because C4 reduced initial condition uncertainty by 

adjusting and resorting calibration parameter ranges based on the previous calibration 

process.  It indicates a proper adjustment of parameter ranges will cause better 

convergence and next-better solutions as next iterations has a better region of the 

parameter space (Abbaspour et al., 2011).  Using the validated model, streamflow and 

baseflow were evaluated based on the different hydrologic conditions (wet, normal and 

dry years).  The results showed that all scenarios estimated streamflow well in high flow 

conditions, but in dry and low flow conditions, C3 and C4 slightly overestimated 

streamflow in dry and low flow conditions.  In baseflow simulation, C1 and C2 

overestimated baseflow in high flow conditions and underestimated it in dry and low 

flow conditions.  Even though in high flow conditions baseflow values were simulated 

well, but C3 and C4 underestimated baseflow in dry and low flow conditions.  It means 

all scenarios underestimated baseflow in dry and low flow conditions. 

   

Dry and low flow conditions usually appear during the winter season.  If the soil 

temperature module in SWAT underestimates soil temperature in the soil 

freezing/thawing area, less frozen soil would be thawed and it would cause the amount of 

soil moisture to be reduced at that time (Yang et al., 2014).  Thus, proper soil temperature 

estimation would be important to enhance hydrological cycle representation by increasing 
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the amount of soil moisture in dry and low flow conditions.  According to Benham et al. 

(2006), SWAT was not able to capture the conditions of a dry year in combination with 

flows and SWAT.  Benaman et al. (2005) found that SWAT reasonably replicated 

streamflow but the model underestimated snowmelt‐driven winter and spring streamflow.  

Tolston and Shoemaker (2007) found that lateral subsurface flow does not occur in 

frozen soils because if the soil temperature in a particular layer reaches less than or equal 

to 0 °C, no percolation is allowed from that layer (Neitsch et al., 2002).  The uncertainty 

of meteorological input would exist because it would be difficult to measure small or 

accurate amount of precipitation.  In addition, because NSE and R2 were used as the 

model evaluation methods which are sensitive to high flow, low flow in dry and low flow 

conditions might be ignored.  Thus, different model evaluation methods capturing low 

flow well should be utilized for better low flow estimation in dry and low flow 

conditions.  Moreover, other parameters related to soil moisture and baseflow (not used 

in this study) would be required to conduct sensitivity and uncertainty analysis for more 

detailed description of baseflow simulation in dry and low flow conditions.  For coarse-

to-fine calibration, both autocalibration and manual calibration should be conducted 

together to capture flow well.  Once autocalibration is implemented for tuning flows 

coarsely with recommended parameter ranges based on the watershed characteristics, fine 

tuning of flow-related parameters should be conducted by manual calibration.  Wet, 

normal, and dry seasonal calibration would also be necessary to capture more detailed 

flow regimes. 
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As shown in Table 3.9, for baseflow calibration and validation, C4 performed baseflow 

simulation better than C3.  However, the differences of NSE, R2, and PBIAS between C3 

and C4 are not significant.  Even though the differences between C3 and C4 are 

insignificant in terms of the values computed for the three model evaluation methods, the 

differences would be very significant in terms of the model parameter values.  For 

example, GW_REVAP (groundwater evaporation coefficient) / GWQMN (depth of water 

for return flow) / GW_DELAY (groundwater delay time) in C3 and C4 are 0.19 / 218 / 

10.4 and 0.04 / 52.5 / 21, respectively.  Compared with C3, C4 shows a decrease in 

GW_REVAP (-375%), and GWQMN (-315%) but an increase in GW_DELAY (51%). 

 

3.5 Conclusions 

A new calibration regime created by incorporating the modified SWAT 2012 code and 

SUFI-2 was developed for accurate streamflow and baseflow estimation by calibrating 

streamflow and baseflow simultaneously.  This new calibration regime called the 

efficient flow calibration regime (EFCR) was tested for hydrologic and water quality 

modeling in the Upper White River Watershed, Indiana.  The EFCR is a user-friendly 

baseflow calibration methodology for outlet-based calibration using SWAT.  Both 

streamflow and baseflow using the EFCR performed well based on three model 

evaluation methods (i.e., NSE, R2, and PBIAS).  Calibration methodology should be 

flexible based on the purpose of research.  The EFCR was developed for aquifer hazard 

assessment and this study focused on accurate baseflow calibration.  Thus, the EFCR 

would be a practical method for aquifer hazard assessment by calibrating baseflow 

accurately as well as streamflow at a watershed scale.  This study is expected to be used 
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as a data-driven model for in-depth groundwater modeling because the baseflow-related 

parameters (i.e., groundwater recharge, hydraulic conductivity, and so on) calibrated in 

this study can be used as a set of input data (initial parameter values) in computer-based 

numerical groundwater models.  If calibrated baseflow-related data are used as initial 

parameter values in groundwater modeling, the uncertainty of groundwater modeling 

would be reduced by minimizing the initial parameter uncertainty.   

This study has limitations that should be considered in future research.  The EFCR should 

be applied in more watersheds and more uncertainty analysis of baseflow-related 

parameters should be conducted to determine if baseflow estimation can be improved 

further.   
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CHAPTER 4. EFFECTIVE INTEGRATED AQUIFER VULNERABILITY 

ASSESSMENT: A CASE STUDY OF THE UPPER WHITE RIVER WATERSHED 

4.1 Abstract 

Agriculture can be a major cause of groundwater degradation due to movement of 

chemicals applied for agricultural production.  High nitrate concentrations in 

groundwater are detected in some areas within Midwest states.  In this study, nitrate 

contamination in groundwater was evaluated using the concept of integrated aquifer 

assessment (by combining an intrinsic aquifer vulnerability assessment and aquifer 

hazard assessment) in the Upper White River Watershed (UWRW) in Indiana.  The 

intrinsic aquifer vulnerability map was created by DRASTIC, and aquifer hazard 

assessment was conducted using a distributed watershed model (Soil and Water 

Assessment Tool (SWAT)) and a machine learning technique (Geospatial-Artificial 

Neural Network (Geo-ANN)).  Finally, integrated aquifer vulnerability assessment was 

conducted by combining intrinsic aquifer vulnerability assessment and aquifer hazard 

assessment.  Approximately 81.0% of nitrate detections > 2 ppm were within “High” and 

“Very high” vulnerability classes (represent 5.8% of area) as predicted by incorporating 

DRASTIC, SWAT, and Geo-ANN.  Moreover, 12.1% of the nitrate detections were 

within the “Moderate” vulnerability class (30.7% of area), and 6.9% of the nitrate 

detections were within the “Low” vulnerability class (50.7% of area).  This approach did 

not result in observed nitrates in wells > 2 ppm within the “Very low” vulnerability class 
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(12.8% of area).  The results indicate that integrated aquifer vulnerability assessment 

performed better than only DRASTIC or SWAT/Geo-ANN.  Thus, overall assessment of 

aquifer vulnerability can be performed using the integrated aquifer vulnerability 

assessment technique provided in this study.  Moreover, this approach is expected to be 

an efficient guide for managing groundwater resources for policy makers and 

groundwater-related researchers. 

 

4.2 Introduction 

Groundwater is an important water resource for many people in the world and is also a 

primary resource in Indiana with 60% of the state’s drinking water coming from 

groundwater (Alley et al., 2002; Solley et al., 1998).  Moreover, groundwater is a vital 

component of the local, regional and global environment with groundwater feeding 

ecosystems as well as providing baseflow in rivers (Morris et al., 2003; NSW Department 

of Land and Water Conservation, 1998).  Anthropogenic activities affect the quantity and 

quality of water resources including groundwater which offers human populations a 

number of services such as water for drinking and irrigation (Winter et al., 1998).  

Contaminated groundwater has been identified in both urban and rural areas.  Agriculture 

can cause groundwater degradation due to application of chemicals in agriculture and 

chemicals (e.g., fertilizers, pesticides, and herbicides) that are spread across wide 

agricultural areas.  If chemicals used in agriculture are slightly soluble in water, they are 

less likely to result in groundwater contamination.  However, ammonium which is a 

major fertilizer and manure which mainly consists of nitrogen and phosphorus is highly 

soluble and mobile in water, and nitrate concentrations generated by nitrification of 
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ammonium are widespread in both surface water and groundwater.  High nitrate 

concentrations are detected in some areas of Midwest states (Puckett et al., 1994; Kellogg 

et al., 1994; Winter et al., 1998). 

 

To alleviate the negative effects of agriculture on groundwater resources and to maintain 

clean groundwater, groundwater management has been facilitated by groundwater 

monitoring and modeling (Petheram et al., 2003; Nourani et al., 2015; Unland et al., 

2015; Grimmeisen et al., 2016).  Groundwater monitoring has a benefit to identify 

groundwater quality and quantity directly in real time, and groundwater monitoring data 

can help enhance the planning, sustainable development, and management of 

groundwater resources.  However, groundwater monitoring is complicated and an 

expensive process.  Therefore, many areas would be data sparse areas with regard to 

groundwater monitoring data (Alcalá et al., 2005). 

       

Compared with groundwater monitoring, groundwater modeling is less complicated and 

less expensive.  Also, groundwater modeling allows assessment of broad areas.  Both 

groundwater monitoring and modeling should be mutual and complementary for efficient 

evaluation of groundwater quality and quantity in broad areas (i.e., regional scale or 

continental) if the two systems are utilized simultaneously. 

     

Various hydrologic and water quality models have been developed based on conceptual, 

statistical, stochastic, analytic, physical and numerical models of surface water and 

groundwater systems, which provide a means for predicting surface water and 
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groundwater system responses to future conditions.  Thus, each model has its own 

purpose and characteristics.  A particular model is usually selected and used as a suitable 

tool depending on a research or project goal.  However, various research efforts related to 

water management require interdisciplinary fields.  For example, if a research effort or 

project is considered for the analysis, planning and management of a wide range of water 

resources and environmental problems related to surface water and groundwater, the 

model or models not only should address surface water but should also deal with 

groundwater.  Thus, this often results in the demand for an integrated approach and 

coupled models for different systems (Kamp and Savenije, 2007; Koudstaal et al., 1992).  

Therefore, sometimes when a model cannot address a research or project problem, two or 

more models can be used, or a combined model can be utilized to enhance the physical 

representation of hydrologic process for better estimation.  Many studies related to 

hydrologic and water quality have been conducted to determine efficient water 

management using a coupled model (Noori and Kalin, 2016; Chen and Wu, 2012; 

Maxwell et al., 2015). 

 

For efficient groundwater resources management, integrated aquifer vulnerability 

assessments are required.  Integrated aquifer vulnerability assessments are incorporated 

into a groundwater characterization and risk analysis with tiered approaches for aquifer 

intrinsic vulnerability (aquifer intrinsic properties) and aquifer hazard (pollutant transport 

properties) assessment.  Thus, overlay and index GIS model (DRASTIC) provided in 

Chapter 2, Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998), and Geo-
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spatial ANN (Geo-ANN) were used to evaluate both aquifer intrinsic properties and 

aquifer hazard potential. 

 

Aquifer hazard is regarded as potential sources of aquifer contaminations transported 

from the land surface to aquifers (Brouyére et al., 2001).  Output variables from SWAT 

are used as input variables of ANN to conduct aquifer hazard assessment by forecasting 

nitrate concentration in aquifers. 

   

The machine learning technique, ANN, is a data-driven model based on data experienced 

in the real world phenomena of a specific system.  In contrast to analytical or numerical 

models, data-driven models can be used to solve problems in the field of hydrology and 

water resources engineering where knowledge of the physical behavior of the system and 

data are limited (Solomatine and Ostfeld, 2008).  Thus, for the simulation of complex 

systems, data-driven models are useful to define the patterns within the behavior of the 

system (Araghinejad, 2014).  ANN is also called a black box model that does not require 

detailed knowledge of the internal functions of a system to identify the complex, dynamic 

and non-linear relationships from given patterns by input and output (Ha and Stenstrom, 

2003).  However, as a black box model, users have no control except providing input data 

and initial parameters such as learning rate, maximum number of training cycle, and 

target error (Ali et al., 2015). 

   

Machine learning is a study of artificial intelligence for improving the computer’s ability 

to learn without being explicitly programmed.  The main goal of machine learning is to 
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find relationships between the system state variables and to replace time-consuming 

manual processes with automatic techniques that improve accuracy or efficiency by 

exploring and determining regularities in training data (Simon and Langley, 1995; 

Solomatine and Shrestha, 2009). 

   

As time passes nonstationary trends of hydrology and water resources time series has 

been exhibited more frequently (Yu and Lin, 2015; Coulibaly and Baldwin, 2005).  Thus, 

for accurate estimation of hydrology and water resources systems, techniques which can 

simulate the nonstationary patterns of variables of hydrology and water resources are 

required.  Many studies have already proven that machine learning is a suitable technique 

in predicting nonstationary behavior of hydrology and water resources systems (Pulido 

Calvo et al., 2003; Nourani et al., 2009; Nourani et al., 2015).  For those reasons, ANN 

was used to conduct aquifer hazard assessment using data related to aquifer hazard (i.e., 

nitrate leached from the soil profile and nitrate transported into main stream in the 

groundwater loading) by SWAT and the nitrate concentration data in wells which are 

utilized for the training and validation processes in ANN. 

   

If ANN manipulates polygon and/or raster files, ANN would be more useful in hydrology 

and water quality modeling.  Thus, in this study Graphic User Interface (GUI)-based 

Geospatial-ANN (Geo-ANN) was developed to be compatible with GIS/RS data format 

(e.g., polygon and raster). 
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The objectives of this study were: 1) to develop Geo-ANN which is compatible with 

GIS/RS data formats for flexible hydrology and water quality modeling, and 2) to 

evaluate integrated aquifer vulnerability by incorporating intrinsic aquifer vulnerability 

and aquifer hazard assessment. 

 

4.3 Methodology 

4.3.1 Study Area 

The Upper White River Watershed (UWRW) (Latitude: 39°29'51"N, Longitude: 

86°24'02"W) is located in central Indiana (Figure 4.1).  The drainage area of the UWRW 

is 6,944 km2, and the most dominant land use is agriculture (3,160 km2).  The UWRW is 

important for public drinking water supply because the UWRW includes more than 3,508 

km of streams, numerous artificial lakes, and 4 reservoirs.  The UWRW serves as a 

drinking water supply for part of the city of Indianapolis which is Indiana’s largest city.  

The water sources in the rural areas of UWRW traditionally are individual wells to 

provide groundwater for residential, commercial, and industrial purposes (Tedesco et al., 

2011; Tedesco, 2005; Fleming et al., 1993).  The UWRW was selected to identify 

hydrologic, water quality and aquifer risk assessment because the UWRW has available 

streamflow (U.S. Geological Survey (USGS) streamflow stations), water quality 

(Environmental Protection Agency (EPA) fixed stations and USGS monitoring well 

stations) data for both streamflow and groundwater (Figure 4.1 and Table 4.1). 
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Figure 4.1 Location of the Upper White River Watershed, Indiana 

 

Table 4.1 Monitoring stations for streamflow and water quality data in the UWRW 

ID Subbasin # Monitoring station 
Drainage area  

(km2) 
Type 

Flow1 #1 1 USGS 03349510 329 Streamflow 

Flow #2 2 USGS 03347000 595 Streamflow 

Flow #8 8 USGS 03348130 1411 Streamflow 

Flow #10 10 USGS 03348000 997 Streamflow 

Flow #11 11 USGS 03349000 2237 Streamflow 

Flow #17 17 USGS 03351000 3201 Streamflow 

Flow #20 20 USGS 03353500 448 Streamflow 

Flow #23 23 USGS 03353611 4756 Streamflow 

Flow #26 26 USGS 03353800 544 Streamflow 

Flow #28 28 USGS 03354000 6227 Streamflow 

WQ2 #10 10 INSTOR WQX3-2398 997 Nitrate 

WQ #17 17 INSTOR WQX-2434 3201 Nitrate 

WQ #19 19 INSTOR WQX-2408 690 Nitrate 

WQ #20 20 INSTOR WQX-2371 448 Nitrate 

WQ #28 28 USGS 03354000 6227 Nitrate 
1Flow: Streamflow data 

2WQ: Water quality data 

3INSTOR WQX: Indiana STORET (STOrage and RETrieval) data warehouse by EPA 
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4.3.2 Integrated Aquifer Vulnerability Assessment 

4.3.2.1 Overview of Integrated Aquifer Vulnerability Assessment 

For overall aquifer vulnerability assessment, intrinsic and hazard potential assessment 

should be carried out together.  In this study, overall aquifer vulnerability assessment is 

called integrated aquifer vulnerability assessment which includes intrinsic vulnerability 

and hazard potential assessment. Integrated aquifer vulnerability assessment would be an 

effective method for estimation of groundwater contamination for drinking water with 

regard to aquifer intrinsic and transport properties (Brouyére et al., 2001).  Aquifer 

intrinsic and transport properties are analyzed by aquifer vulnerability assessment and 

aquifer hazard assessment, respectively.  Aquifer vulnerability (intrinsic properties) is 

defined as natural susceptibility to contamination based on the properties of the land, and 

subsurface and aquifer hazard (transport properties) is regarded as pollution potential 

with respect to nitrate transporting from the land surface to aquifers (Brouyére et al., 

2001) (Figure 4.2).  Aquifer vulnerability assessment is usually conducted by overlay and 

index GIS model (DRASTIC), and aquifer hazard assessment is implemented by 

numerical models (Pacheco and Sanches Fernandes, 2013; Chen et al., 2013; Akhavan et 

al., 2011; Akhavan et al., 2010).  In this study, intrinsic aquifer vulnerability was 

conducted with DRASTIC, and aquifer hazard assessment was implemented using a 

distributed watershed model (SWAT) and machine learning technique (Geo-ANN). 
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Figure 4.2 Concept of integrated aquifer vulnerability 

 

4.3.2.2 Intrinsic Aquifer Vulnerability Assessment 

4.3.2.2.1 Overview of DRASTIC 

For intrinsic aquifer vulnerability assessment, DRASTIC, overlay and index GIS model, 

was used in this chapter.  DRASTIC is a conceptual model defined as a composite 

description of the most important hydrogeological factors with regard to natural 

susceptibility to aquifer contamination based on the properties of the land and subsurface 

(Brouyére et al., 2001).  DRASTIC yields a numerical index map that is derived from 

ratings and weights assigned to the seven map parameters (Aller et al. 1987; Akhavan et 

al. 2011).  DRASTIC is a numerical ranking system, which uses weights, ranges, and 

ratings to provide groundwater vulnerability.  The DRASTIC index is calculated using 

Equation 4.1.  The higher the DRASTIC index score, the greater the groundwater 

vulnerability.  In this chapter, DRASTIC is not described in detail because DRASTIC 

was already described in chapter 2. 
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Where 

Dr = Ratings to the depth to water table 

Dw = Weight assigned to the depth to water table 

Rr = Ratings for ranges of aquifer recharge 

Rw = Weight for aquifer recharge 

Ar = Ratings assigned to aquifer media 

Aw = Weight assigned to aquifer media 

Sr = Ratings for soil media 

Sw = Weight for soil media 

Tr = Ratings for topography 

Tw = Weight assigned to topography 

Ir = Ratings assigned to vadose zone 

Iw = Weight assigned to vadose zone 

Cr = Ratings for rates of hydraulic conductivity 

Cw = Weight given to hydraulic conductivity 

 

4.3.2.2.2 Intrinsic aquifer vulnerability mapping using DRASTIC 

Detailed methods for creating intrinsic aquifer vulnerability mapping for the UWRW 

using DRASTIC are described in the methods of chapter 2.  With hydrogeology and 

weather data used for creating DRASTIC input data shown in Table 4.2, the seven map 

layers (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of 
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vadose zone media, and Hydraulic conductivity), representing the seven variables of 

DRASTIC, were prepared to create the intrinsic aquifer vulnerability map for the 

UWRW.  After the intrinsic aquifer vulnerability map was created by Equation 4.1, 

model calibration was conducted using a binary classifier calibration with a genetic 

algorithm (Bi-GA) and manual calibration to adjust DRASTIC weights.  A more detailed 

description used to create the intrinsic aquifer vulnerability map is provided in the 

methodology part of chapter 2. 

 

Table 4.2 Data used for creating DRASTIC inputs for the UWRW 

Data type Source Scale Date Used to produce 

Water well IDNR1 1:24,000 1959 - 2010 Depth to water 

Annual precipitation NCDC2 - 1949 - 2010 Recharge 

LULC MRLC3 1:250,000 2006 Recharge 

Aquifer systems USGS4 1:48,000 2003 - 2010 Aquifer media 

SSURGO5 NRCS6 1:12,000 2005 Recharge 

Soil media 

Topography 

iLITH7 IGS8 1:24,000 2001 Impact of vadose 

Aquifer 

transmissivity 

IDNR1 1:24,000 2011 Conductivity 

1IDNR: Indiana Department of Natural Resources 

2NCDC: National Climate Data Center 

3MRLC: Multi-Resolution Land Characteristics Consortium 

4USGS: U.S. Geological Survey 

5SSURGO: Soil Survey Geographic Database 

6NRCS: Natural Resources Conservation Service 

7iLITH: Lithology data for Indiana wells edited by Indiana Geological Survey 

8IGS: Indiana Geological Survey 
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4.3.2.3 Configuration of Aquifer Hazard Assessment 

4.3.2.3.1 Overview of Hydrologic and Water Quality Model (SWAT) 

SWAT is a physically based distributed, deterministic, and long-term continuous time 

model which is used to predict impact of management practices, Land Use and Land 

Cover (LULC) change, and climate change on hydrology and water quality on a 

watershed scale at a daily time step (Arnold et al., 1998; Neitsch et al., 2011).  SWAT 

represents the large scale spatial heterogeneity of the study area by dividing a watershed 

into subbasins.  The subbasin is the first level of subdivision of the watershed.  Subbasins 

possess a geographic position in the watershed and are spatially related to one another.  

The land area in a subbasin may be divided into hydrologic response units (HRUs) which 

are the smallest computational units in SWAT.  HRUs are parts of a subbasin that possess 

unique land use, management, and soil attributes.  HRUs are created by one or more 

unique land use and soil combinations for each subbasin.  Surface runoff, soil water 

content, crop growth, nutrient cycles, and erosion are simulated for each HRU, and then 

HRUs are combined and calculated for the subbasin by a weighted value (Neitsch et al., 

2011; Williams et al., 1984).  In this study, variables related to nitrate movement were 

extracted for each HRU, and HRU maps were created as input data for aquifer risk 

assessment using Geo-ANN.  

 

4.3.2.3.2 SWAT Input Data 

The period of SWAT simulation is from 1990 to 2010 because the SWAT format climate 

data (i.e., precipitation and temperature) were available in this period provided by 
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National Climate Data Center (NCDC) and processed by the Agricultural Research 

Service (ARS).  Also, there are sufficient water quality data from 1990 to 2010 for the 

UWRW.  As described in Table 4.3, the primary input data for the SWAT simulation are 

Digital Elevation Model (DEM), soil, LULC, and weather data.  Additionally, for nitrate 

simulation, the scheduled management operation data were prepared to consider 

application of fertilizer, pesticide, and manure (Table 4.4).  A general strategy of 

management practices for corn-soybean rotation is described in Table 4.4 (Her et al., 

2016).  DEM from U.S. Geological Survey (USGS) was used for watershed delineation, 

and soil and LULC data from Natural Resources Conservation Service (NRCS) and 

Natural Agricultural Statistics Service (NASS) were used with respect to the hydrological 

response in the watershed.  Weather data include minimum and maximum temperature, 

daily precipitation, mean wind speed, relative humidity, and solar radiation which were 

obtained from National Climate Data Center (NCDC) (Table 4.3).   

 

The spatial DEM (Figure 4.3(a)) and soil maps in the UWRW (Figure 4.3(b)) were 

obtained from USGS.  Elevation of the UWRW varies from 162.9 to 371.7 m.  Twenty 

eight soil types are distributed in the study area such as 33.5% IN013 (Crosby), 24% 

IN040 (Miami), 6.3% IN029 (Sawmill), 6% IN026 (Fox), 5.2% IN054 (Miamian) and 

24.9% other soil types.  LULC in the UWRW (Figure 4.3(c)) includes 45.5% agricultural 

fields (22.5% soybeans, 22.2% corn, and 0.8% others).  The mean annual precipitation is 

1,093 mm, and the highest, the lowest daily temperature, and mean daily temperatures are 

36.1°C, -31.3°C, and 10.8°C, respectively.  Figure 4.3(d) shows well locations in the 

UWRW.  678 well nitrate data were utilized for the training, validation, and testing of 
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Geo-ANN using SWAT outputs (Appendix A).  The well nitrate data were obtained from 

Heidelberg University and the Water Quality Portal (WQP) sponsored by the U.S. 

Geological Survey (USGS), the U.S. Environmental Protection Agency (EPA), and the 

National Water Quality Monitoring Council (NWQMC).  Min/max/mean values of well 

nitrate data are 0.1/18.29/1.22 mg/L, respectively. 

 

With the input data (Table 4.3), hydrology (surface water + groundwater hydrology) and 

water quality were simulated in the UWRW by SWAT.  Then, observed streamflow and 

estimated baseflow (or observed baseflow if available) from the USGS were used to 

calibrate and validate SWAT. 

 

Tile drainage was applied in areas where the land use is corn or soybean and the soil 

drainage condition is poorly drained (Boles et al., 2015; Jiang et al., 2014; Sui and 

Frankenberger, 2008).  Based on the previous studies for Indiana watersheds (Boles et al., 

2015; Jiang et al., 2014; Green et al., 2006) and the technical report about tile drainage 

(USDA-NRCS, 2011), parameters related to the tile drainage in SWAT were used as 

described in Table 4.5. 

 

Annual average (2008 - 2015) mass of point source pollutants related to NO3 showed less 

than 1 ton/year from the National Pollutant Discharge Elimination System (NPDES) in 

the UWRW.  Observed NO3 loads (estimated NO3 loads using LOADEST) were 

approximately 2,333 ton/year.  The small amount of point source pollutants (0.04% of 

observed NO3 loads) would not significantly affect results of this study.  Further, point 
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source data years were not matched for the periods of this study (1990 - 2010).  Thus, 

point sources were not considered in the UWRW. 

 

Table 4.3 SWAT input data for hydrologic and water quality modeling 

Data Source Format Date 

DEM USGS1 Raster 2010 

Soil NRCS2 Polygon 2010 

LULC3 NASS4 Raster 2010 

Weather NCDC5 Tabular data 1986 - 2010 

Streamflow USGS Tabular data 1986 - 2010 

Baseflow WHAT6 Tabular data 1986 - 2010 

Stream nitrate USGS Tabular data 1991 - 2010 
1USGS: U.S. Geological Survey 
2NRCS: Natural Resources Conservation Service 
3LULC: Land Use and Land Cover 
4NASS: Natural Agricultural Statistics Service 
5NCDC: National Climate Data Center 
6WHAT: Web-based Hydrograph Analysis Tool 

 

Table 4.4 Management practices for corn-soybean rotation in SWAT 

Year Date Management ID 

Corn 

Year 

Apr-22 Fertilizer application Anhydrous ammonia1 

Apr-22 Pesticide application Atrazine2 

May-6 Tillage Field cultivator 

May-6 Planting Corn 

Jun-6 Fertilizer application Urea3 

Oct-14 Harvest  - 

Oct-15 Kill / end of growing season  - 

Soybean 

Year 

May-24 Tillage No-till 

May-24 Planting Soybean 

Oct-7 Harvest  - 

Oct-8 Kill / end of growing season  - 

Oct-15 Fertilizer application P2O5
4 

Nov-1 Tillage Chisel plow 
1Anhydrous ammonia: 53 kg/ha (N of 43 kg/ha) 

2Atrazine: 2.2 kg/ha 

3Urea: 284 kg/ha (N of 131 kg/ha) 

4P2O5: 123 kg/ha (P of 54 kg/ha) 
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                                    (a)                                                               (b) 

 

 

                                    (c)                                                               (d) 

Figure 4.3 DEM (a), soil (b), land use (c), and sampled well locations (d) of the UWRW 
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Table 4.5 Tile drainage parameters in SWAT 

Parameter Description Value 

DDRAIN Depth to drains (mm) 1000 

G_DRAIN Drain tile lag time (h) 48 

DRAIN_CO Drainage coefficient (mm/d) 10 

SDRAIN Tile spacing (mm) 20000 

LATKSATF Multiplication factor to determine Ksat 1.2 

RE Effective radius of drains (mm) 20 

ITDRN Tile drainage equations flag/code 1 (new routine) 

 

4.3.2.3.3 Hydrologic and Water Quality Modeling using SWAT 

The land phase of the hydrologic cycle controls the amount of water, sediment, nutrient 

and pesticide loadings to the main channel and to the aquifers in each subbasin.  The 

hydrologic cycle simulated in SWAT is based on the water balance equation (Equation 

4.2).  Also, nitrate leaching from the soil profile to the aquifer and nitrate loading to 

streamflow contributed by baseflow are estimated in SWAT (Figure 4.4) (Neitsch et al., 

2009). 
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Figure 4.4 Schematic diagram of the hydrologic cycle and nitrate transport 

Note: P is the precipitation, ET is the evapotranspiration, IF is the infiltration, RV is the 

water moving from the shallow aquifer into the overlaying unsaturated zone, PC is the 

percolation, RC is the groundwater recharge, QSurf is the surface runoff, QLat is the lateral 

flow, QTile is the drainage from tiles, QBase is the baseflow contribution to streamflow, QSF 

is the streamflow, LNO3 is the leachate nitrate, and QNO3 is the nitrate loading into the 

streamflow   

 

( )
0 , , , , , ,

1

t
SW SW R Q ET Q Q Q

t day i surf i a i tile i lat i gw i
i

      


                     (4.2) 

where tSW  is the final soil water content (mm) at time t, t is the time (day), 0SW  is the initial 

soil water content (mm H2O), ,day iR  is the amount of precipitation on day i (mm H2O), ,surf iQ  is 

the amount of surface runoff on day i (mm H2O), ,a iET  is the amount of evapotranspiration on 

day i (mm H2O), ,tile iQ  is the amount of water removed from the layer by tile drainage on day i, 

,lat iQ  is the amount of lateral flow released to the main channel on day i (mm H2O), and ,gw iQ  is 

the amount of return flow on day i (mm H2O) 
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Surface runoff ( ,surf iQ ) was estimated using the Soil Conservation Service (SCS) curve 

number (CN) method (Equation 4.3) (SCS, 1972). 

    

2( 0.2 )
,

, 0.8
,

R S
day i

Q
surf i R S

day i






                                                                                          (4.3) 

0.2I S
a
  

25,400
254S

CN
   

Where aI  is the initial abstraction (mm H2O), S is the retention parameter (mm H2O), and CN is 

the curve number (dimensionless) 

 

The Penman-Monteith method was used to calculate the rate of evapotranspiration 

( ,a iET ) (Equation 4.4) (Monteith, 1965). 

 

0( ) ( ) /

, (1 / )

H G c e e r
net air p z z a

ET
a i r r

c a



 

      


    

                                                         (4.4) 

where   is the slope of the saturation vapor pressure-temperature curve (de/dT, kPa °C), netH  is 

the net radiation (MJ m-2d-1), G  is the heat flux density to the ground (MJ m-2d-1), air  is the air 

density (kg m-3), pc  is the specific heat at constant pressure (MJ kg-1 °C-1), 
0

ze  is the saturation 
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vapor pressure of air height z (kPa), ze  is the water vapor pressure of air at height z (kPa),   is 

the psychrometric constant (kPa °C-1), cr  is the plant canopy resistance (s m-1), ar  is the diffusion 

resistance of the air layer (aerodynamic resistance) (s m-1), and   is the volumetric latent heat of 

vaporization (Energy required per water volume vaporized) (MJ m-3) 

 

Lateral flow was calculated with Equation 4.5 (Neitsch et al., 2009). 

 

 

2
,

0.0224
,

SW K slp
ly excess sat

Q
lat i L

d hill


   
  
 
 

                                                              (4.5) 

where 
,ly excessSW  is the drainage volume of water stored in the saturated zone of the hillslope per 

unit area (mm H2O), sat
K  is the saturated hydraulic conductivity (mm/h), slp  is the average 

slope of the subbasin (m/m), d
  is the drainage porosity of soil (mm/mm), and hill

L  is the 

hillslope length (m) 

 

Both shallow aquifer and deep aquifers are considered as groundwater storage.  Total 

baseflow (groundwater flow) was calculated by total amount of water in the shallow 

aquifer and deep aquifer (Equation 4.6 - 4.11) (Neitsch et al., 2009). 

 

, , , , ,
Q Q Q

gw i gw sh i gw dp i
                                                                                        (4.6) 

where ,gw i
Q  is the total groundwater flow on day i (mm H2O), , ,gw sh i

Q  is the total groundwater 

flow in the shallow aquifer on day i (mm H2O), and , ,gw dp i
Q  is total groundwater flow in the deep 

aquifer on day i (mm H2O) 

 



132 

 

 

 

exp( ) [1 exp( )]
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Q Q t w t
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         


   

                                                                                                                                        (4.7) 

where , , 1gw sh i
Q

  is the groundwater flow from the shallow aquifer on day i-1 (mm H2O), ,gw sh
  

is the baseflow recession constant, t  is the time step (day), and , ,rchrg sh i
w  is the amount of 

recharge entering the shallow aquifer on a day i (mm H2O) 

 

exp( ) [1 exp( )]
, , , , 1 , , , ,

Q Q t w t
gw dp i gw dp i gw dp rchrg dp i gw dp

         


 

                                                                                                                                        (4.8) 

where , , 1gw dp i
Q

  is the groundwater flow from the deep aquifer on day i-1 (mm H2O), ,gw dp
  is 

the baseflow recession constant, t  is the time step (day), and , ,rchrg dp i
w  is the amount of 

recharge entering the deep aquifer on a day i (mm H2O) 

 

(1 exp( 1/ ) exp( 1/ )
, , , 1

w w w
rchrg i gw seep i gw rchrg i

       


                          (4.9) 

, , ,
w w

rchrg dp i dp rchrg i
                                                                                       (4.10)  

, , , , ,
w w w

rchrg sh i rchrg i rchrg dp i
                                                                         (4.11) 

where ,rchrg i
w  is the amount of recharge entering the both aquifers on day i (mm H2O), gw  is the 

drainage time of the overlaying geologic formations (days), ,seep i
w  is the total amount of water 

exiting the bottom of the soil profile on day i (mm H2O), , 1rchrg i
w

  is the amount of recharge 
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entering the aquifers on day i-1 (mm H2O), dp
  is the aquifer percolation coefficient 

(dimensionless) 

 

Nitrate in the shallow aquifer may remain in the aquifer, move with recharge to the deep 

aquifer, move with groundwater flow into the main channel, or be transported out of the 

shallow aquifer with water moving in the soil zone in response to water deficiencies.  

Nitrate in recharge to the shallow aquifer and deep aquifer on a given day was calculated 

with Equations 4.12 and 4.13 (Neitsch et al., 2009). 

 

3 (1 exp[ 1/ ]) 3 exp[ 1/ ] 3
, , 1

NO NO NO
rchrg i gw perc gw rchrg i

       


                  (4.12) 

where 
,

3
rchrg i

NO is the amount of nitrate in recharge entering the aquifers on day i (kg N/ha), gw
  

is the delay time (drainage time) of the overlying geologic formation (day), 3
perc

NO  is the total 

amount of nitrate exiting the bottom of the soil profile on day i (kg N/ha), , 1
3

rchrg i
NO

  is the 

amount of nitrate in recharge entering the aquifers on day i-1 (mm H2O) 

 

3 ( 3 3 ) / ( )
, , 1 , , , , , , ,

NO NO NO Q aq Q w w
gw i sh i rchrg i gw i sh i gw i revap i rchrg dp i

     


                                                                                                                                                 

                                                                                                                                      (4.13) 

where ,
3

gw i
NO  is the amount of nitrate in groundwater flow from the shallow aquifer on day i (kg 

N/ha), , 1
3

sh i
NO

  is the amount of nitrate in the shallow aquifer at the end of day i-1 (kg N/ha), 

,gw i
Q  is the groundwater flow into the main channel on day i (mm H2O), ,sh i

aq  is the amount of 
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water stored in the shallow aquifer at the end of day i (mm H2O), ,revap i
w  is the amount of water 

moving into the soil zone in response to water deficiencies on day i (mm H2O), , ,rchrg dp i
w  is the 

amount of recharge entering the deep aquifer on day i (mm H2O). 

 

4.3.2.3.4 Streamflow, baseflow, and nitrate calibration/validation 

Streamflow and baseflow were calibrated and validated simultaneously based on USGS 

streamflow and simulated baseflow by modified SWAT 2012 code and the Web GIS-

based Hydrograph Analysis Tool (WHAT) system (Lim et al., 2005) which can separate 

baseflow from streamflow.  For calibration and validation of nitrate loads in streamflow, 

daily or monthly nitrate loads are necessary.  However, nitrate concentration data were 

available only for a few days each year.  Thus, LOADESTimator (LOADEST) (Runkel et 

al., 2004) was used to estimate mean monthly nitrate loads.  Using estimated nitrate loads 

by LOADEST, calibration and validation of nitrate loads at the main outlet were 

conducted.  For accurate estimation of nitrate concentrations in the aquifer, calibration 

and validation of nitrate loads in streamflow are necessary because nitrate transport to 

streamflow and nitrate leaching to the aquifer are interdependent (Phillips et al., 1999). 

 

Sequential Uncertainty Fitting algorithm version 2 (SUFI-2) (Abbaspour et al., 2004; 

Abbaspour, 2011) was used to perform sensitivity and uncertainty analysis as well as 

calibration and validation (Grusson et al., 2015; Yang et al., 2008).  For evaluation of the 

model performance, Nash-Sutcliff Efficiency (NSE) (Equation 4.14), coefficient of 

determination (R2) (Equation 4.15), and Percent Bias (PBIAS) (Equation 4.16) were 
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selected as the objective function for calibration and validation of streamflow, baseflow, 

and nitrate loads (Nash and Sutcliffe, 1970; Krause et al., 2005; Gupta et al., 1999).  The 

total simulation period was from 1990 - 2010 (21 years) with the first 4 years as the 

model warm up period.  Calibration for streamflow and baseflow (streamflow calibration: 

10 outlets and baseflow calibration: 1 main outlet) was implemented with the parameters 

related to water balance, subsurface water, surface runoff, physical properties of soil, and 

physical properties of channel.  Calibration for nitrate loads (nitrate loads calibration: 5 

outlets) was conducted with the parameters associated with the nitrogen cycle (Table 

4.6).  Calibration parameter ranges for streamflow, baseflow, and nitrate loads (Table 

4.6) were defined based on the results of sensitivity analysis and previous studies (Arnold 

et al., 2012; Zhang et al., 2011; Du et al., 2006; Lam et al., 2010; Yeo et al., 2014).  After 

model calibration, validation for streamflow, baseflow, and nitrate loads were performed 

with the calibrated parameters.  Model performance ratings for streamflow, baseflow, and 

nitrate loads were evaluated with three quantitative statistics shown in Table 4.7 (Moriasi 

at al., 2007; Van Liew et al., 2003; Singh et al., 2004; Engel et al., 2007). 
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                                                                                (4.14) 

where obs

iY  is the ith observed data, sim

iY  is the ith simulated data, meanY  is the mean of observed 

data, and n is the total number of observed data 
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where obs

iY  is the ith observed data, obsY  is the mean of observed data, sim

iY  is the ith simulated 

data, simY  is the mean of simulated data, and n is the total number of observed data 
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where obs

iY  is the ith observed data, sim

iY  is the ith simulated data, and n is the total 

number of observed data. 
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Table 4.6 SWAT parameters for calibration of streamflow, baseflow, and nitrate loads 

Parameter Description Unit 
Ranges 

LB1 UB2 

Water balance 

ESCO Soil evaporation compensation factor - 0.01 1 

SFTMP Snowfall temperature °C -5 5 

SMTMP Snow melt base temperature °C -5 5 

TIMP Snow pack temperature lag factor - 0.01 1 

SMFMX Melt factor for snow on June 21 mm/°C 0.01 10 

SMFMN Melt factor for snow on December 21 mm/°C 0.01 10 

Subsurface water 

GW_REVAP Groundwater evaporation coefficient - 0.02 0.2 

REVAPMN Depth of water for evaporation mm 0.01 250 

GWQMN Depth of water for return flow mm 0.01 500 

GW_DELAY Groundwater delay time day 0.1 20 

ALPHA_BF Baseflow alpha factor 1/day 0.1 1 

RCHRG_DP Deep aquifer percolation fraction - 0.01 1 

Surface runoff 

CN2 Initial SCS runoff curve number - -0.25 0.25 

SURLAG Surface runoff lag coefficient - 0.1 10 

Physical properties of the soil 

SOL_AWC Available water capacity of soil layer  mm/mm -0.25 0.25 

Physical properties of the channel 

CH_K2 Effective hydraulic conductivity mm/hr 5 300 

Nitrogen cycle 

ANION_EXCL Fraction of porosity3 - 0 1 

SDNCO Denitrification threshold water content - 0 1 

CDN Denitrification exponential rate - 0 3 

NPERCO Nitrogen percolation coefficient - 0 1 

BIOMIX Biological mixing efficiency - 0 1 

N_UPDIS Denitrification coefficient - 1 50 

AI1 Fraction of algal biomass (nitrogen) mg/mg 0.07 0.09 

RCN Concentration of nitrogen in rainfall mg/L 0 10 

SHALLST_N Initial concentration of nitrate in SA4 mg/L 0 50 

SOL_ORGN Initial organic N concentration in the SL5 mg/kg 0 1500 
1LB: Lower bound 

2UB: Upper bound 

3ANION_EXCL: Fraction of porosity from which anion are excluded 

4SA: Shallow aquifer 

5SL: Soil layer 
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Table 4.7 SWAT performance evaluation criteria for NSE, R2, and PBIAS 

 Output 

Performance Evaluation Criteria 

Very 

Good 
Good Satisfactory Unsatisfactory 

NSE 
Flow > 0.80 0.70 < N ≤ 0.80 0.50 < N ≤ 0.70 N ≤ 0.50 

Nitrate > 0.65 0.50 < N ≤ 0.65 0.30 < N ≤ 0.50 N ≤ 0.30 

R2 
Flow > 0.85 0.75 < R2 ≤ 0.85 0.60 < R2 ≤ 0.75 R2 ≤ 0.60 

Nitrate > 0.70 0.60 < R2 ≤ 0.70 0.35 < R2 ≤ 0.60 R2 ≤ 0.35 

PBIAS 

(%) 

Flow < ±10 ±10 ≤ P < ±15 ±15 ≤ P < ±25 P ≥ ±25 

Nitrate < ±25 ±25 ≤ P < ±40 ±40 ≤ P < ±70 P ≥ ±70 

Adapted by Van Liew et al. (2003), Singh et al. (2004), and Moriasi et al. (2015) 

 

4.3.2.3.5 Retrieval of variables of aquifer hazard using SWAT 

As mentioned earlier, two variables in Equations 4.12 and 4.13 are related to nitrate 

contamination in aquifers in SWAT.  The first variable (NO3L, 
,

3
rchrg i

NO ) is the nitrate 

leached from the soil profile, and the second variable (NO3GW, ,
3

gw i
NO ) is the nitrate 

transported into the main stream from the groundwater loading.  Those two variables 

were selected from the SWAT outputs to estimate aquifer hazard.  The two variables 

were retrieved at HRU levels by an HRU extractor developed for this study.  Then, 

spatial input variable maps for Geo-ANN were created to identify potential aquifer 

hazard areas. 

 

4.3.2.4 Aquifer Hazard Assessment 

4.3.2.4.1 Development of Geo-ANN 

ANN is composed of a network architecture, activation function, and learning rule.  The 

network architecture has a number of neurons and layers of neurons.  Sigmoid, 
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hyperbolic tangent, and Gaussian functions have been widely used as the activation 

function.  Basic learning rules are supervised, unsupervised, and reinforcement learning.   

 

ANN can be categorized based on the direction of information flow and processing.  In a 

feed forward network, the neurons (nodes) are generally arranged in layers, starting from 

a first input layer and ending at the final output layer.  Information passes from the input 

to the output side.  A synaptic weight is assigned to each link to represent the relative 

connection strength of two nodes at both ends in predicting the input and output 

relationship (ASCE Task Committee, 2000).  ANN requires a large number of examples 

of input and output for training and validation.  The primary goal of training is to 

minimize the error function by searching for a set of connection strengths and threshold 

values defined by users.  Then, ANN can predict outputs that are equal or close to target 

error (ASCE Task Committee, 2000).  The following Equations 4.17-4.22 provide a brief 

description of the neural network operation. 

 

Forward calculation: 

U ( )j i ijX w                                                                                                          (4.17) 

where 
jU  is the internal value of the neural network operation, j  is the every neuron in a layer, 

iX  is the each of the i input, and 
ijw  is the weight associated with input i  of neuron 

 

2

2

1

1

x

x

e
AF

e









                                                                                                            

(4.18) 
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where AF  is the activation function, and   is the gain parameter 

 

Y ( )j j jAF U thr                                                                                                      (4.19) 

where 
jY  is the output of neuron j  in the current layer, and 

jthr  is the threshold value in terms of 

neuron j  

 

Backpropagation calculation: 

e (1 ) ( )j j j j jY Y T Y                                                                                                 (4.20) 

where 
je  is the error signal for the output layer, 

jY  is the actual output value, and 
jT  is the scaled 

target value 

 

'e (1 ) ( )j j j k jkY Y e w                                                                                            (4.21) 

where 
ke  is the error signal for the hidden layer, and 

'

jkw  is the prior weights of k-th neuron in the 

immediately succeeding layer 

 

' ' ''(1 ) ( )ij j j ij ijjkw w M LR e X M w w                                                                (4.22) 

where M  is the momentum parameter, LR is the learning rate parameter 
'

ijw  is the previous weight 

value, and 
''

ijw  is the next previous weight value 

 

Geo-ANN was developed to train, validate, and predict geospatial data as well as tabular 

data using Artificial Neural Networks (ANN).  Geo-ANN would be suitable for studies of 

hydrology and water quality modeling because those studies usually use geospatial data 

as an input or output to conduct spatial analysis and prediction.  Geo-ANN provides a 

user-friendly graphical user interface (GUI) for optimizing the parameters of the ANN 

architecture and training the network for the prediction.  The shapefile and tabular format 
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can be directly used as input without converting to a new format and can be mapped with 

predicted values by ANN.   

 

Various metrics for water resources and environmental management studies such as NSE, 

R2, and PBIAS are implemented to evaluate the performance of the user-configured ANN 

models.  Cross validation techniques are included in the Geo-ANN such as k-fold and 

leave-one-out cross validation (LOOCV).  Cross validation is an effective validation 

method when the amount of calibration and validation data are limited (Shao and Er, 

2016; Wong, 2015).  Because there are limited data for groundwater hydrology and water 

quality, cross validation would be a supportive technique in groundwater hydrology 

studies. 

 

The optimal neural network parameters were designed based on the nitrate observation 

data used in this study.  Because the nitrate observation data are limited in most cases, 

training and validation have to proceed with limited data.  However, validation using 

limited data often fails to accurately estimate the performance of the designed prediction 

model, causing overfitting or underfitting problems.  Thus, cross validation was used, 

which partitions a sample data into different subsets of training, validation, and testing 

data.  A k-fold cross validation was used as the cross validation technique which 

randomly divides the k-number of subset of sample data in each run (Heaton, 2008).  In a 

rule of the thumb, the division ratios of training and validation are set as 70% and 30%, 

individually (Guyon, 1997).  Once the sample data are split into these three sets, the 
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network performance is evaluated.  The performance of the Geo-ANN is evaluated using 

the three metrics NSE, R2, and PBIAS. 

 

For the network design, the size of hidden layers and number of neurons (nodes) are one 

of the most important factors.  No unified theory exists for determining such an optimal 

ANN architecture but, in a rule of thumb, it is known to set the number of neurons similar 

to the number of inputs and outputs.  Before assigning the input and output data into the 

Geo-ANN, all data are normalized to fall in [0.1 0.9] using Equation 4.23 because the 

normalization improves accuracy, performance, and speed of Geo-ANN (Kalin et al., 

2010; Sethi et al., 2010).  In this study, the number of inputs and output are 2 and 1 and 

the number of neurons ranges from 2 to 4.  For determining the number of layers, 1 or 2 

is/are a typical number in a small or moderate size of the network for this study.  The 

whole application including training/validation algorithms and GUI for Geo-ANN was 

developed using neural network toolbox in MATLAB.  Many MATLAB users mainly 

use MATLAB version 2013, 2014, 2015, and 2016.  Therefore, compatibility test for 

Geo-ANN was conducted and successfully completed. 

 

0 min

max min

0.1norm

x x
x

x x

 
 
 


 


                                                                                          (4.23) 

where normx  is the normalized value, 0x  is the observed value, minx  is the minimum value, and 

maxx  is the maximum value 
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The functionalities of the Geo-ANN are summarized as follows:  

(1) Design of the ANN layers: number of hidden layers and number of neurons.  

(2) Selection of training (optimization) algorithm: Levenberg-Marquardt, gradient 

descent, or Bayesian regularization (Beale et al., 2016). 

(3) Selection of normalization methods (pre-conditioning): normalization of the 

user-defined range (e.g. [0.1,0.9], [0,1], or [-1, 1]).  

(4) Functions for importing and exporting a raw shapefile or tabular format for 

training, validation, and prediction. 

(5) Various metrics for performance measurements for hydrology and water quality 

modeling: NSE, R2, and PBIAS (Moriasi et al., 2007). 

(6) Two cross-validation techniques: LOOCV and k-fold cross validation (Heaton, 

2008).  

(7) Stopping criteria design: maximum number of validation increases, minimum 

performance value, and maximum number of training epochs (iterations). 

(8) Enable GPU and/or parallel computing capability for large ANN training. 

 

4.3.2.4.2 Analysis of Aquifer Hazard Using Geo- ANN 

For aquifer hazard assessment (Figure 4.5), two predefined input variables (NO3L and 

NO3GW) were retrieved from the SWAT simulation.  Maps for nitrate leached from the 

soil profile and nitrate in groundwater were obtained through surface and groundwater 

hydrology and water quality simulation by SWAT.   
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NO3L and NO3GW were utilized as input data to Geo-ANN that was developed in this 

study.  Nitrate concentration data from 678 monitoring wells (Appendix A) (Figure 4.6) 

were used for training/validation/testing of Geo-ANN.  562 data points were less than 2 

ppm and 116 data points were greater than 2 ppm.  Nitrate levels over 2 ppm were 

assumed to be caused by human activities because nitrate levels in aquifers under natural 

conditions are typically less than 2 ppm in Indiana (Navulur, 1996).  Thus, a threshold 

value of background concentration was set at 2 ppm in this study. Integrated vulnerability 

assessment was conducted using nitrate detections > 2 ppm as elevated N levels.  In order 

to fill the data gap and validate spatially distributed nitrate concentrations, k-fold cross 

validation was used for training and validation of Geo-ANN.  Many studies revealed that 

k-fold cross validation is a reliable method when the number of training/validation data 

are small (Wong, 2015; Shao and Er, 2016).  Kalin et al. (2010) recommended model 

performance criteria for ANN with two metrics (i.e., NSE and PBIAS) in watershed 

modeling at a monthly time scale (Noori et al., 2016; Kalin et al., 2010).  Model 

performance criteria for Geo-ANN were modified by adding one more metric (i.e., 

coefficient of determination, R2) based on Moriasi et al. (2015) and Kalin et al. (2010).  

As shown in Table 4.8, Geo-ANN performance was evaluated using the three metrics 

(i.e., NSE, R2, and PBIAS) (Equations 4.14 - 4.16). 
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Table 4.8 Geo-ANN performance evaluation criteria for NSE, R2, and PBIAS 

 Output 

Performance Evaluation Criteria 

Very 

Good 
Good Satisfactory Unsatisfactory 

NSE 
Flow 

> 0.70 0.50 < N ≤ 0.70 0.30 < N ≤ 0.50 N ≤ 0.30 
WQ* 

R2 
Flow 

> 0.75 0.55 < R2 ≤ 0.75 0.35 < R2 ≤ 0.55 R2 ≤ 0.35 
WQ 

PBIAS 

(%) 

Flow 
< ±25 ±25 ≤ P < ±50 ±50 ≤ P < ±70 P ≥ ±70 

WQ 

Adapted by Kalin et al. (2010) and Moriasi et al. (2015) 

*WQ: Water quality 

 

 

Figure 4.5 Flowchart of the aquifer hazard assessment procedure 
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Figure 4.6 Nitrate concentration samples in wells in the UWRW 

 

4.3.2.5 Analysis of Integrated Aquifer Vulnerability 

As mentioned above, integrated aquifer vulnerability map was created by combining the 

intrinsic aquifer vulnerability map using DRASTIC and aquifer hazard map using SWAT 

and Geo-ANN.  Each map was standardized by feature scaling (Equation 4.24) and both 

maps have the same range of values (min = 0 and max = 1) which means the intrinsic 

aquifer vulnerability map and aquifer hazard map have the same weight.  This study 

assumed that two maps have the same impact on aquifer vulnerability. 

 

min( )'

max( ) min( )

x x
x

x x





                                                                                                   (4.24) 

where 
'x  is the normalized value and x  is the original value. 
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4.4 Results and Discussion 

4.4.1 Calibration and Validation of Streamflow, Baseflow, and Nitrate Loads  

For the simulation period of 21 years (1990 - 2010), monthly mean streamflow was 85.7 

m3/s, and monthly mean baseflow was 35.9 m3/s, according to the WHAT system (Lim et 

al., 2005).  Monthly mean baseflow accounted for 41.9 percent of monthly mean 

streamflow. 

 

The comparison between the LOADEST-estimated and USGS observed nitrate loads 

indicate NSE of 0.84, R2 of 0.89, and PBIAS of 0.92.  These values indicate that 

LOADEST estimated nitrate loads quite well. 

  

Model calibration and validation of streamflow, baseflow, and nitrate loads at the main 

outlet were conducted by adjusting twenty six parameters (Table 4.9).  As shown in Table 

4.9, calibrated values were estimated with simultaneous streamflow and baseflow 

calibration and nitrate loads calibration with multi-site flow and water quality stations.   
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Table 4.9 Final values of the SWAT calibration parameters for each scenario in the 

UWRW 

Parameter 
   Initial value Calibrated value 

Default Final range Final value 

ESCO 0.95 0.3 - 0.9 0.35 

SFTMP 1 -5 - 5 2.31 

SMTMP 0.5 -5 - 5 -0.77 

TIMP 1 0 - 5 0.93 

SMFMX 4.5 0 - 10 2.5 

SMFMN 4.5 0 - 10 2.5 

GW_REVAP 0.02 0.02 - 0.2 0.04 

REVAPMN 750 0 - 250 210 

GWQMN 1000 0 - 500 52.5 

GW_DELAY 31 0 - 50 21 

ALPHA_BF 0.048 0.1 - 1 0.7 

RCHRG_DP 0.05 0.01 - 1 0.4 

CN22 va1 -25 - 25 -23 

SURLAG 4 1 - 10 7.42 

SOL_AWC2 va1 -0.2 - 0.2 -0.15 

CH_K2 0 5 - 300 34.8 

ANION_EXCL 0.5 0.01 - 1 0.15 

SDNCO 1.1 0 - 1 0.32 

CDN 1.4 0 - 3 0.3 

NPERCO 0.2 0 - 1  0.19 

BIOMIX 0.2 0.01 - 1 0.69 

N_UPDIS 20 1 - 50 21 

AI1 0.08 0.07 - 0.09 0.07 

RCN 0 0 - 10 1.9 

SHALLST_N 0 1 - 50 10.9 

SOL_ORGN 0 500 - 1500 1200 
1va: Different value according to HRUs 

2CN2, SOL_AWC: Percentage change (%) 

 

Hydrographs reproduced by SWAT between the observed and simulated monthly 

streamflow and baseflow at the main outlet (flow #28 and WQ #28) during the calibration 

and validation periods are shown in Figure 4.7(a) and (b).  As shown in Figure 4.7(a), 

even though some peak and low streamflow values were underestimated, the calibrated 

model performed well for monthly streamflow simulation.  The calibrated model 

underestimated during peak streamflow periods, and the model slightly overestimated 
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during some low streamflow periods.  Streamflow during the validation period was better 

estimated than during the calibration period.  Figure 4.7(b) shows results of monthly 

baseflow simulation during the calibration and validation periods.  Baseflow simulated 

with the calibrated model was estimated satisfactorily.  Thus, the result shows that the 

calibrated model simulates both streamflow and baseflow well.  It is noted that 

simultaneous streamflow and baseflow calibration are necessary for robust estimation of 

hydrological parameters.   

 

Based on the calibrated parameters from the main outlet of the UWRW, cross validation 

for streamflow was conducted at other 9 additional USGS streamflow stations.  Even 

though some peak flows were underestimated, all simulations replicated the observed 

streamflow well.  The calibrated parameters explained hydrology characteristics for the 

entire watershed (Figure 4.8).      

       

 

(a) 
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(b) 

Figure 4.7 Comparison of monthly flow between USGS observed and SWAT calibrated 

flow at the main outlet of the UWRW (1990 - 2010): (a) Streamflow and (b) Baseflow 
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Figure 4.8 Comparison of monthly USGS observed and SWAT calibrated streamflow at 

the 9 USGS streamflow stations in the UWRW 

 

After hydrology calibration and validation using 10 stations, calibration and validation 

for nitrate loads were conducted.  Figure 4.9 shows that even though the calibrated model 

simulated nitrate loads reasonably well, the model greatly underestimated nitrate loads 

for some points.  At WQ #10 for 1993, WQ #17 for 1998, and WQ #28 for 1992 and 

1993, there was underestimation because timing of fertilizer application was unknown 

and simulated streamflow was underestimated by SWAT for those periods.   The other 

reason for underestimated nitrate loads could be the uncertainties of nitrate monitoring 

data and LOADEST. 
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Figure 4.9 Comparison of monthly observed and SWAT calibrated NO3 loads at the 5 

water quality stations in the UWRW 

 

Model performance for streamflow, baseflow, and nitrate load simulation at the main 

outlet was evaluated by NSE, R2, and PBIAS (Table 4.10).  For monthly streamflow 

calibration and validation at the main outlet, NSE values range from 0.85 to 0.88.  R2 

values vary from 0.87 to 0.92, and PBIAS values range from 1.36 to 3.90.  Based on 

Table 4.7, all simulation periods for streamflow (total period, calibration, and validation) 
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are within the “Very good” range, indicating all simulation periods are acceptable.  For 

the monthly baseflow calibration and validation, NSE values (total period, calibration, 

and validation) vary from 0.63 to 0.65.  R2 values range from 0.70 to 0.73, and PBIAS 

values vary from 13.8 to 16.7.  The results of the baseflow calibration and validation 

show “Very good”, “Good”, and “Satisfactory” ranges which mean all simulation periods 

for baseflow (total period, calibration, and validation) are acceptable.  The results of 

simultaneous streamflow and baseflow calibration indicate good performance for 

baseflow calibration as well as streamflow calibration.  Even though the calibrated model 

provided good model performances for both streamflow and baseflow simulation, 

streamflow and baseflow in the model were still slightly underestimated or 

overestimated.  For monthly nitrate load calibration and validation at the main outlet, 

NSE values of all simulation periods range from 0.51 to 0.72.  R2 values vary from 0.58 

to 0.77 and PBIAS values ranges from 13.9 to 20.1.  Based on Table 4.8, all simulation 

periods are within the “Very good”, “Good”, and “Satisfactory” ranges.  The calibrated 

model is acceptable for all simulation periods of streamflow, baseflow, and nitrate loads. 

 

As shown in Table 4.10, simulated streamflow using calibrated parameters at the main 

outlet replicated observed streamflow at the 9 USGS streamflow stations well.  Based on 

Table 4.7, all simulated streamflow at the 9 USGS streamflow stations are within the 

“Very good”, “Good” and “Satisfactory” ranges which mean all 9 flow simulations are 

acceptable.  NSE values vary from 0.75 to 0.91 and 90% of NSE are “Very good”.  R2 

values range from 0.77 to 0.92 and 90 % of R2 are also “Very good”.  PBIAS values vary 

from -16.4 to 15.9 and 50% of PBIAS are “Very good” (Table 4.11). 
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For accurate nitrate load estimation, multi-site calibration was performed to satisfy all 

nitrate load simulations at the 4 EPA fixed stations and 1 USGS water quality station.  

All nitrate load simulations are better than “Satisfactory”.  NSE values vary from 0.58 to 

0.77 and 40% of NSE are “Very good”.  R2 values range from 0.60 to 0.79 and 40% of R2 

are also “Very good”.  PBIAS values vary from 3.5 to 29.7 and 80% of PBIAS are “Very 

good” (Table 4.12).  Even though all simulations for nitrate loads are within acceptable 

ranges based on Table 4.7, most PBIAS values indicate most simulated nitrate were 

underestimated. 

 

Table 4.10 Model performance for streamflow at the main outlet (Flow #28) in the 

UWRW 

 
Streamflow Baseflow 

NSE R2 PBIAS NSE R2 PBIAS 

Total period 

(1990 - 2010) 
0.87 0.89 1.36 0.64 0.71 15.3 

Calibration 

(1990 - 2001) 
0.85 0.87 3.90 0.63 0.73 16.7 

Validation 

(2002 - 2010) 
0.88 0.92 1.50 0.65 0.70 13.8 
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Table 4.11 Model performance for streamflow at the 9 USGS streamflow stations in the 

UWRW 

ID Evaluation NSE R2 PBIAS Period 

Flow #1  Calibration 0.89 0.92 -13.3 2004-2007 

 Validation 0.89 0.91 -15.4 2008-2010 

Flow #2 Calibration 0.67 0.69 4.2 1990-2001 

 Validation 0.80 0.85 17.3 2002-2010 

Flow #8 Calibration 0.87 0.88 0.5 1999-2006 

 Validation 0.94 0.94 -8.6 2007-2010 

Flow #10 Calibration 0.65 0.71 16.3 1990-1993 

 Validation 0.89 0.94 15.5 2006-2010 

Flow #11 Calibration 0.85 0.85 1.1 1990-2001 

 Validation 0.92 0.92 1.4 2002-2010 

Flow #17 Calibration 0.88 0.88 0.2 1990-2001 

 Validation 0.93 0.93 -4.8 2002-2010 

Flow #20 Calibration 0.87 0.89 -16.0 1990-2001 

 Validation 0.85 0.88 -16.8 2002-2010 

Flow #23 Calibration 0.91 0.91 -0.8 1992-2003 

 Validation 0.92 0.92 -8.1 2004-2010 

Flow #26 Calibration 0.87 0.89 -13.7 1990-2001 

 Validation 0.88 0.90 -9.9 2002-2010 

 

Table 4.12 Model performance for nitrate loads at the 5 water quality stations in the 

UWRW 

ID Evaluation NSE R2 PBIAS Period 

WQ #10 Calibration 0.43 0.60 3.1 1993-1998 

 Validation 0.56 0.60 15.7 1999-2002 

WQ #17 Calibration 0.61 0.67 24.8 1993-1998 

 Validation 0.57 0.71 35.3 1999-2002 

WQ #19 Calibration 0.72 0.73 7.9 1994-2003 

 Validation 0.7 0.73 -2.3 2004-2009 

WQ #20 Calibration 0.77 0.81 10.3 1993-2003 

 Validation 0.76 0.76 -1.6 2004-2009 

WQ #28 Calibration 0.51 0.58 20.1 1991-1993 

 Validation 0.72 0.77 13.9 1994-1995 
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4.4.2 Development and Application of Geo-ANN  

The interface of Geo-ANN developed in this study is shown as Figure 4.10.  The network 

performance was validated using different combinations of the number of neurons and 

hidden layers within the ranges (i.e., neuron ranges: 2 to 4 and layer ranges: 1 to 2).  In 

all simulations, the Levenberg-Marquardt algorithm was used for training the network 

and a hyperbolic tangent sigmoid was implemented as the transfer function for hidden 

layers and output layer.  The training process stops if the maximum number of 

incremental validation reaches more than 30.  With two input variables (NO3L (kg/ha), 

NO3GW (kg/ha)) calculated by Equations 4.12-13 and observed well nitrate data, the two 

input variables and one observed variable were trained/validated/tested with the 

parameters and structures of the Geo-ANN to create the new model which can predict 

nitrate concentrations in wells.  Then, three performance metrics were produced as shown 

in Table 4.13.  Final outcomes of model performance are calculated using the median 

value of all outcomes by the number of k-fold cross validation.  Among different 

combinations of the number of neurons and hidden layers, 2 hidden layers and 2 neurons 

produced the optimal solutions of NSE, R2, and PBIAS during the testing.  

NSE/R2/PBIAS for the testing shows 0.66/0.70/0.07 (each value is median out of 1000 

simulation results).  According to Table 4.8, all model performance for the testing of the 

Geo-ANN indicates better than “Satisfactory”.  Nitrate prediction for HRUs which do not 

have observed nitrate data was conducted using the structure of 2 hidden layers and 2 

neurons for each hidden layer (HL-NR-NR: 2-2-2). 
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Figure 4.10 The interface of Geo-ANN developed in this study 

 

Table 4.13 Model performance evaluation for the testing of the Geo-ANN in the UWRW 

 Testing 

HL-NR-NR1 NSE R2 PBIAS 

1-2-2 0.65 0.68 -0.03 

1-3-3 0.63 0.67 0.13 

1-4-4 0.62 0.66 0.50 

2-2-2 0.66 0.70 0.07 

2-3-3 0.63 0.67 -0.87 

2-4-4 0.61 0.66 -0.29 
1HL-NR-NR: # of hidden layer and neurons 

 

4.4.3 Analysis of Integrated Aquifer Vulnerability 

According to Pohlert et al. (2007), De Paz et al. (2009) and Akhavan et al. (2010), it is 

not easy to find correlation between the nitrate leached from the soil profile and the 

nitrate concentrations in aquifers because other factors such as groundwater age, 

groundwater depth, lateral flow and denitrification in the unsaturated zone also play a 

role.  In this study, in order to reduce complexities in estimation of nitrate concentrations 

in aquifers, DRASTIC, SWAT, and Geo-ANN were utilized to find a relationship 
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between the nitrates leached from the soil profile and nitrate concentrations in aquifers 

and to identify intrinsic aquifer vulnerability and aquifer hazard areas.   

 

An intrinsic aquifer vulnerability map was created using DRASTIC (Figure 4.11).  

DRASTIC scores range from 76 to 196, and they were normalized (from 0 to 1) by 

Equation 4.24 to have an equal weight when combining the intrinsic aquifer vulnerability 

map with the aquifer hazard map to produce the integrated aquifer vulnerability map.  

Intrinsic aquifer vulnerability indices were classified into five classes: 0 - 0.2 (“Very 

low”), 0.2 - 0.4 (“Low”), 0.4 - 0.6 (“Moderate”), 0.6 - 0.8 (“High”), and 0.8 - 1.0 (“Very 

high”).  As shown in Figure 4.11 and Table 4.14, 9.6% of the aquifer systems in the 

UWRW was within in “Very low” vulnerability class, and 60.1% of the area was 

estimated as “Low”, 26.9% within “Moderate” vulnerability class, 3.2% within “High” 

vulnerability class, and 0.2% within “Very high” vulnerability class. 

 

The intrinsic vulnerability results (Table 4.14) from DRASTIC were validated with the 

observed nitrate concentrations in wells (hereinafter, "well database") (Appendix A).  The 

well database has 678 data points, including 116 nitrate data > 2 ppm.  The results 

showed that approximately 42.2% of nitrate detections > 2 ppm are within “High” and 

“Very high” vulnerability areas (represent 3.4% of vulnerability area) as simulated by 

DRASTIC.  Moreover, 53.4% of the nitrate detections were within “Moderate” 

vulnerability class (26.9% of area), and 4.3% of the nitrate detections were within “Low” 

vulnerability class (60.1% of area).  In intrinsic aquifer vulnerability assessment, nitrates 
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> 2 ppm were not detected within the “Very low” vulnerability class (9.6% of area) 

(Table 4.14 and 4.17).    

 

 

Figure 4.11 Intrinsic aquifer vulnerability map (DRASTIC) of the UWRW 

 

Table 4.14 Vulnerability areas (%) and # of nitrate detections > 2 ppm within intrinsic 

aquifer vulnerability classes in the UWRW 

Class Areas (%) Number of nitrate detections > 2 ppm 

Very low 9.6 0 (0%) 

Low 60.1 5 (4.3%) 

Moderate 26.9 62 (53.4%) 

High 3.2 42 (36.2%) 

Very high 0.2 7 (6%) 

 

NO3L (the nitrate leached from the soil profile) (mean value: 3.86 kg/ha/yr) and NO3GW 

(the nitrate transported into main stream from the groundwater loading) (mean value: 

0.18 kg/ha/yr) were estimated for HRUs by SWAT simulation.  Then, average (1990-

2010) estimated annual nitrate concentrations in aquifers were predicted after 
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training/validation/testing using the Geo-ANN.  Estimated nitrate concentration ranges 

from 0 to 12.25 mg/L, and these nitrate concentration values were also normalized (from 

0 to 1) by Equation 4.24 for creating the integrated aquifer vulnerability map.  Aquifer 

hazard indices were divided into five classes: 0 - 0.2 (“Very low”), 0.2 - 0.4 (“Low”), 0.4 

- 0.6 (“Moderate”), 0.6 - 0.8 (“High”), and 0.8 - 1.0 (“Very high”).  As shown in Figure 

4.12 and Table 4.15, 25.0% of the aquifer systems in the UWRW was within in “Very 

low” vulnerability class, and 41.2% of the area was estimated as “Low”, 22.7% within 

“Moderate” vulnerability class, 8.8% within “High” vulnerability class, and 2.4% within 

“Very high” vulnerability class. 

 

The aquifer hazard results (Table 4.15) from SWAT and Geo-ANN were validated with 

the well database (Appendix A).  The results indicated that approximately 79.3% of 

nitrate detections > 2 ppm are within “High” and “Very high” vulnerability areas 

(represent 11.2% of area) as predicted by SWAT and Geo-ANN.  Moreover, 9.5% of the 

nitrate detections were within “Moderate” vulnerability class (22.7% of area), 8.6% of 

the nitrate detections were within “Low” vulnerability class (41.2% of area), and 2.6% of 

the nitrate detections were within “Very low” vulnerability class (25% of area) (Table 

4.15 and 4.17).    
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Figure 4.12 Aquifer hazard map (SWAT and Geo-ANN) of the UWRW 

 

Table 4.15 Vulnerability areas (%) and # of nitrate detections > 2 ppm within aquifer 

hazard classes in the UWRW 

Class Area (%) Number of nitrate detections > 2 ppm 

Very low 25.0 3 (2.6%) 

Low 41.2 10 (8.6%) 

Moderate 22.7 11 (9.5%) 

High 8.8 61 (52.6%) 

Very high 2.4 31 (26.7%) 

 

Finally, an integrated aquifer vulnerability map (Figure 4.12(a) and (b)) was generated by 

combining the normalized intrinsic aquifer vulnerability and the aquifer hazard maps.  

Then, integrated aquifer vulnerability indices were normalized again and its indices were 

also classified into five classes: 0 - 0.2 (“Very low”), 0.2 - 0.4 (“Low”), 0.4 - 0.6 

(“Moderate”), 0.6 - 0.8 (“High”), and 0.8 - 1.0 (“Very high”).  As shown in Figure 4.13 

and Table 4.16, 12.8% of the aquifer system areas in the UWRW were within the “Very 

low” vulnerability class, and 50.7% of the area was estimated as “Low”, 30.7% within 
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“Moderate” vulnerability class, 5.4% within “High” vulnerability class, and 0.4% within 

“Very high” vulnerability class. 

 

The results (Table 4.16) of integrated aquifer vulnerability assessment were validated 

with the well database (Appendix A).  The results indicated that approximately 81.0% of 

nitrate detections > 2 ppm are within “High” and “Very high” (represent 5.8% of area) 

vulnerability areas as predicted by incorporating DRASTIC, SWAT, and Geo-ANN.  

Moreover, 12.1% of the nitrate detections were within “Moderate” vulnerability class 

(30.7% of area), and 4.3% of the nitrate detections were within “Low” vulnerability class 

(50.7% of area).  Nitrates > 2 ppm were not detected within the “Very low” vulnerability 

class (12.8% of area) (Table 4.16 and 4.17).  As shown in Tables 4.17 and 4.18, 

integrated aquifer vulnerability assessment better predicted nitrate detections than 

DRASTIC or SWAT/Geo-ANN by themselves. Table 4.18 indicates that detection ratio 

of integrated aquifer vulnerability assessment is the largest value among the three 

methods of aquifer vulnerability assessment (intrinsic aquifer vulnerability assessment by 

DRASTIC, aquifer hazard assessment by SWAT/Geo-ANN, and integrated aquifer 

vulnerability assessment by combining DRASTIC and SWAT/Geo-ANN). 

 

For integrated aquifer vulnerability assessment, 19% of nitrate detections > 2 ppm were 

within the “Low”, and “Moderate” vulnerability areas, which should have fallen in the 

“High”, “Very High”, or “Moderate” vulnerability areas.  The nitrates detected in the 

“Low” and “Moderate” vulnerability areas might be caused by point sources, application 

timing, and excessive fertilizer application among other reasons which were not 
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considered in this study.  These factors (i.e., point sources, application timing, and 

excessive fertilizer application) should be considered by adding additional data and 

modifying the models used in this study. 

  

There were more nitrate detections in high classes (“High” + “Very high”) in aquifer 

hazard and integrated aquifer vulnerability maps and fewer in the intrinsic vulnerability 

map.  Areas of high classes in each map were different and the area of high classes might 

influence the number of nitrate detections.  Machine learning may predict better than 

overlay and index GIS models, such as DRASTIC, because machine learning creates a 

model based on observed data – in this case nitrate concentrations in wells.  Moreover, 

DRASTIC has limited ranges of parameters (i.e., DRASTIC ratings and weights).  

Further, the number of nitrate observations > 2 ppm are 116 (17.1%) out of 678.  The 

small number of well samples > 2 ppm would increase uncertainties when models detect 

nitrates > 2 ppm in high classes (“High” + “Very high”).  Also, if there are more well 

observations with nitrate > 2 ppm, better prediction would be expected. 

 

This study assumed that the intrinsic aquifer vulnerability and aquifer hazard contribute 

equally to groundwater contamination in the UWRW.  So, the intrinsic aquifer 

vulnerability and aquifer hazard indices were assigned equal weights when the integrated 

aquifer vulnerability map was produced.  Researchers or policy makers can adjust each 

index’s weight based on additional information or scientific experience. 
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Figure 4.13 Integrated aquifer vulnerability map (combined intrinsic aquifer vulnerability 

map and aquifer hazard map) of the UWRW 

 

Table 4.16 Vulnerability areas (%) and # of nitrate detections > 2 ppm within integrated 

aquifer vulnerability classes in the UWRW 

Class Area (%) Number of nitrate detections > 2 ppm 

Very low 12.8 0 (0%) 

Low 50.7 8 (6.9%) 

Moderate 30.7 14 (12.1%) 

High 5.4 82 (70.7%) 

Very high 0.4 12 (10.3%) 

 

Table 4.17 Comparison of nitrate detections in wells with three types of aquifer 

assessment in the UWRW 

 Number of nitrate detections > 2ppm 

Vulnerability class IV1 AH2 IT3 

Very low 0 (0%) 3 (2.6%) 0 (0%) 

Low 5 (4.3%) 10 (8.6%) 8 (6.9%) 

Moderate 62 (53.4%) 11 (9.5%) 14 (12.1%) 

High 42 (36.2%) 61 (52.6%) 82 (70.7%) 

Very high 7 (6.0 %) 31 (26.7%) 12 (10.3%) 
                1IV: Intrinsic aquifer vulnerability assessment using DRASTIC 

                2AH: Aquifer hazard assessment using SWAT and Geo-ANN 
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                3IT: Integrated aquifer vulnerability assessment by combining IV and AH 

 

Table 4.18 Comparison of detection ratio with three aquifer assessments in the UWRW 

Category 
Result (2016) 

IV1 AH2 IT3 

HV-Area4 (%) 3.4 11.2 5.8 

N-Detections5 (%) 42.2 79.3 81.0 

D-Ratio6 12.4 7.1 14.0 
    1IV: Intrinsic aquifer vulnerability assessment using DRASTIC 

    2AH: Aquifer hazard assessment using SWAT and Geo-ANN 

    3IT: Integrated aquifer vulnerability assessment by combining IV and AH 

    4HV-Area: “High” and “Very high” vulnerability areas (%)   

    5N-Detection: Nitrate detections > 2 ppm 

    6D-Ratio: Detection ratio 

 

“High” and “Very high” vulnerability classes in the integrated aquifer vulnerability map 

(Figure 4.13) include crop areas (mainly corn/soybean areas).  A primary cause of nitrate 

contamination in aquifers results from anthropogenic fertilization (Lin et al., 2001; Behm, 

1989).  Because most farmers consider nitrogen fertilizer to be "cheap insurance" against 

a crop failure, farmers would obviously rather add too much nitrogen to their crops for 

increasing profits (Looker, 1991).  According to the study by Burkart and Kolpin (1993), 

they found that water samples from wells surrounded by corn/soybean have a 

dramatically larger frequency of excess nitrate than wells with other crops.  Similarly, 

corn/soybean acreage is responsible for 11 times more nitrate contamination than acreage 

used as rangeland (Department of Commerce, 1993; Puckett, 1994).  Therefore, Figure 

4.13 would explain the previous studies and this study for nitrate contamination in 

aquifers. 
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In terms of the nitrate contamination in aquifers, the most effective approach to avoid 

health risks (e.g., methemoglobinemia (blue baby syndrome)) is to reduce application rate 

of fertilization and to check wells frequently.  Further, fertilizer application timing is a 

critical factor to cause groundwater degradation (Sullivan et al., 2000).  Various Best 

Management Practices (BMPs) to prevent aquifers from nitrate contamination should be 

implemented and they would help reduce nitrate leaching from the soil profile into 

aquifers.  However, BMPs such as restriction of fertilizer application rate would help 

alleviate nitrate concentrations to biologically safe levels. 

 

In previous studies, various models were combined to overcome model limitations in an 

attempt to improve prediction.  Lim (2001) used two models to predict pollutant losses to 

shallow groundwater in the White River Basin from crop land, pasture, urban, and forest.  

The results of NAPRA (National Agricultural Pesticide Risk Analysis) for pasture and 

crop land and L-THIA for urban, forest, and water were combined to reduce limitations 

of each model.  However, there were still limitations for watershed scale modeling.  

NAPRA uses the GLEAMS (Groundwater Loading Effects of Agricultural Management 

Systems) model, a field scale model, and thus does not represent some important 

watershed processes (Lim, 2001). In the work presented herein, the watershed model 

SWAT was used to estimate nitrate leaching to shallow aquifers to provide input data for 

Geo-ANN which was utilized to predict nitrate concentrations in wells.   

Navulur (1996) used two models to estimate aquifer vulnerability of groundwater 

systems in Indiana using a GIS environment at a 1:250,000 scale.  Navulur (1996) 
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combined DRASTIC with NLEAP (Nitrate Leaching and Economic Analysis) to predict 

well nitrate detections for aquifer vulnerability assessment.  The data scale used in 

Navulur’s (1996) study was coarse (1:250,000) for field scale simulations.  The use of a 

single rainfall event and coarse data scale may result in underestimated “Low” 

vulnerability areas and overestimated “High” vulnerability areas.  In this study, high 

resolution data (1:24,000) were used. Further, estimated nitrate leaching results from 

SWAT, which uses long-term and continuous rainfall data, were used to predict nitrate 

concentrations in wells using Geo-ANN. 

 

As shown in Navulur’s (1996) results, approximately 91.8% of nitrate detections in wells 

> 2 ppm are within “High” and “Very high” vulnerability areas (represent 56.9% of area) 

as predicted by the combined model.  Compared with Navulur’s (1996) study, the results 

presented herein had approximately 81.0% of nitrate detections in wells > 2 ppm within 

“High” and “Very high” (represent 5.8% of area) vulnerability areas as predicted by 

incorporating DRASTIC, SWAT, and Geo-ANN.  Detection ratio (% of nitrate detections 

to % of vulnerability areas with the larger the detection ratio, the better the prediction) for 

“High” and “Very high” areas from Navulur (2006) results in a value of 1.6, and results 

presented herein provide a value of 14.0.  Thus, Navulur’s (1996) combined model may 

overestimate areas of “High” and “Very high” vulnerability classes.   

 

4.5 Conclusions 

Integrated aquifer vulnerability assessment was conducted using DRASTIC, SWAT, and 

Geo-ANN in the Upper White River Watershed (UWRW) located in central Indiana.  
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Integrated aquifer vulnerability was performed by combining intrinsic aquifer 

vulnerability assessment and aquifer hazard assessment in a GIS environment. The 

intrinsic aquifer vulnerability map was created using DRASTIC.  Then, the integrated 

aquifer vulnerability map was produced by combining the intrinsic aquifer vulnerability 

map and aquifer hazard map.  Each map was standardized by feature scaling, and both 

maps have a same range of values (min = 0 and max = 1) which mean the intrinsic 

aquifer vulnerability map and aquifer hazard map have the same weight.  This study 

assumed both maps have the same impact to aquifer vulnerability. 

 

In the analysis of integrated aquifer vulnerability, 12.8% of the aquifer systems in the 

UWRW was within in “Very low” vulnerability class, and 50.7% of the area was 

estimated as “Low”, 30.7% within “Moderate” vulnerability class, 5.4% within “High” 

vulnerability class, and 0.4% within “Very high” vulnerability class. 

 

Approximately 81.0% of nitrate detections in wells > 2 ppm were within “High” and 

“Very high” vulnerability areas (represent 5.8% of area) as predicted by incorporating 

DRASTIC, SWAT, and Geo-ANN.  Moreover, 12.1% of the nitrate detections were 

within “Moderate” vulnerability class (30.7% of area), and 6.9% of the nitrate detections 

were within “Low” vulnerability class (50.7% of area).  Nitrates in wells > 2 ppm were 

not detected within the “Very low” vulnerability class (12.8% of area).  Those results 

show that integrated aquifer vulnerability assessment performed well.  Integrated aquifer 

vulnerability assessment better predicted nitrate detections than DRASTIC or 

SWAT/Geo-ANN by themselves according to the results of detection ratio.  Detection 
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ratio (percent of nitrate detections > 2 ppm to percent of “Very high” and “High” 

vulnerability areas with larger detection ratio indicating better prediction) indicated a 

value of 12.4 for intrinsic vulnerability assessment using DRASTIC, 7.1 for aquifer 

hazard assessment using SWAT/Geo-ANN, and 14.0 for integrated aquifer vulnerability 

assessment using the combined DRASTIC and SWAT/Geo-ANN. 

 

For the simulation of complex systems such as groundwater dynamics in aquifers, this 

study indicates that machine learning is a suitable technique in predicting nonstationary 

behavior of groundwater quality.  Also, with lack of detailed knowledge of the internal 

functions of complex systems and insufficient data for calibration and validation, 

machine learning techniques would be an efficient method to identify the nonstationary 

patterns of variables of groundwater quality. 

 

The integrated aquifer vulnerability assessment considers both intrinsic aquifer properties 

and pollutant transport properties.  Thus, the overall assessment of aquifer vulnerability 

can be performed using the integrated aquifer vulnerability assessment technique 

provided in this study.  Moreover, this approach is expected to be an efficient guide for 

managing groundwater resources for policy makers and groundwater-related researchers. 

 

The models used in this study are data-driven models.  Therefore, if more data (i.e., 

nitrate concentration data in well, point sources, application timing, and fertilizer 

application) are available, the approach suggested in this study would be improved and 

more accurate.  
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Potential next steps in extending this work are to: 1) conduct comparison of various 

machine learning algorithms (e.g., convolution neural network, Bayesian linear 

regression, and decision forest regression) to better predict nitrate contamination in 

aquifers and 2) evaluate the application of BMPs to reduce nitrate leaching from the soil 

profile into aquifers.   
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CHAPTER 5. CONCLUSIONS 

5.1 Summary and Conclusions 

Integrated aquifer vulnerability assessment was conducted using DRASTIC, SWAT, and 

Geo-ANN in the Upper White River Watershed (UWRW) located in central Indiana.  

Integrated aquifer vulnerability was performed by combining intrinsic aquifer 

vulnerability assessment and aquifer hazard assessment.  DRASTIC was used for 

intrinsic aquifer vulnerability assessment, and SWAT and Geo-ANN were utilized to 

evaluate aquifer hazard in the UWRW.  In an attempt to improve estimation of integrated 

aquifer vulnerability including intrinsic aquifer vulnerability and aquifer hazard, 

methodologies were modified and developed in a GIS environment. 

 

The three objectives of the dissertation were to: 

1. Assess intrinsic aquifer vulnerability for sustainable groundwater management 

using DRASTIC. 

2. Develop efficient flow calibration regime (EFCR) for accurate estimation of 

hydrologic and water quality components using a watershed scale hydrological 

model (SWAT). 

3. Evaluate integrated aquifer vulnerability using DRASTIC, a watershed scale 

hydrological model (SWAT), and Geo-ANN. 
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In the first objective, intrinsic aquifer vulnerability assessment was implemented using 

DRASTIC in the UWRW.  Approaches for intrinsic aquifer vulnerability assessment 

were improved with high resolution data by data preprocessing.   The Soil Conservation 

Service (SCS) runoff curve number (CN) method was used to produce a recharge (R) 

map with annual rainfall, SSURGO data and National Land Cover Database (NLCD), 

providing a wide range of recharge values compared with previous studies because high 

resolution SSURGO data generated various CN and recharge values.  An aquifer media 

(A) map was created using the aquifer systems map and report from the U.S. Geological 

Survey (USGS) and Indiana Department of Natural Resources (IDNR).  Most aquifer 

media of the study area were sand and gravel, but based on the INDR reports, aquifer 

media ratings were assigned in more detail.  IDNR reports described vulnerability of each 

aquifer system such as ‘very high susceptibility to surface contamination (very high)’, 

‘highly susceptible to surface contamination (high)’, ‘moderately susceptible to surface 

contamination (moderate)’, ‘low susceptibility to surface contamination (low)’, and ‘very 

low susceptibility to surface contamination (very low)’.  Soil media (S) and topography 

(T) maps were obtained through SSURGO data from USDA-NRCS instead of 

STATSGO data often used.  The map scale of SSURGO data is 1:12,000, whereas 

STATSGO is 1:250,000.  The impact of vadose zone media (I) map was estimated using 

sand, silt, and clay thickness point data within lithology data from IDNR. 

 

116 wells (total 678 wells) with nitrate levels > 2 ppm were selected to calibrate and 

validate estimated aquifer vulnerability areas.  Nitrate levels vary from 0.1 to 18.3 mg/l 

(ppm) with an average of 1.2 mg/l in this area.  DRASTIC parameters were optimized by 
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calibrating DRASTIC weights using a binary classifier calibration method with a genetic 

algorithm (Bi-GA).  In the binary classifier calibration process, results of the model and 

observed data are classified as 0 or 1.  DRASTIC produced five vulnerability classes (i.e., 

very high, high, moderate, low, very low) using data normalization (feature scaling), 

which is a method used to standardize the range of independent variables (min=0, 

max=1).  Very high and high vulnerability classes were classified as 1, and other classes 

were classified as 0. Observed nitrate concentrations in wells > 2 ppm were classified as 

1 because the purpose of this study is to identify high or low vulnerability areas using 

nitrate concentrations in wells > 2 ppm with DRASTIC.  Root mean square error (RMSE) 

was used to evaluate the effectiveness of the Bi-GA and its ability to make predictions in 

the calibration procedure.  Intrinsic aquifer vulnerability indices from the improved 

DRASTIC were compared with observed groundwater quality data to explore how well 

simulated results match observed nitrate data > 2 ppm.  RMSE without calibration was 

0.70, and RMSE following calibration of DRASTIC weights with Bi-GA was 0.57 (the 

lower RMSE, the better the performance).  An accuracy assessment error matrix was 

computed for spatial validation of the calibrated DRASTIC by using Bi-GA.  Total 

accuracies of uncalibrated DRASTIC and calibrated DRASTIC were 35% and 42%, 

respectively.  Thus, the results of accuracy assessment indicate calibrated DRASTIC 

using Bi-GA predicted intrinsic aquifer vulnerability areas more accurately than 

DRASTIC without calibration. 

 

The intrinsic aquifer vulnerability results from DRASTIC calibrated by using Bi-GA 

were validated with a well database of nitrate concentrations > 2 ppm.  The results 
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showed that approximately 42.2% of nitrate detections in wells > 2 ppm are within the 

“High” and “Very high” vulnerability areas (represent 3.4% of area) as simulated by 

DRASTIC.  Moreover, 53.4% of the nitrate detections were within “Moderate” 

vulnerability class (26.9% of area), and 4.3% of the nitrate detections were within “Low” 

vulnerability class (60.1% of area).  In intrinsic aquifer vulnerability assessment, nitrates 

in wells > 2 ppm were not detected within the “Very low” vulnerability class (9.6% of 

area).  Intrinsic aquifer vulnerability assessment with DRASTIC calibrated by using Bi-

GA better predicted nitrate detections than DRASTIC without calibration.   

 

Potential monitoring locations and areas where groundwater protection and management 

should be focused were determined based on the Gi* statistic method.  The Gi* statistic 

method identifies statistically significant spatial clusters of high values (high 

vulnerability areas) and low values (low vulnerability areas).  The Gi* statistic method 

returns z-score and the higher the z-score, the stronger the intensity of the clustering.  The 

portion of z-score over 1.65 is 19.9% of the study area, indicating these are areas where 

groundwater monitoring and BMPs for groundwater quality protection should be focused.  

Hotspot areas were found along the stream and river because those areas include high 

permeability of alluvium, sand, and gravel.  Further, depth to water is shallow.  These 

areas should be priority areas for groundwater protection. 

 

The second objective developed the EFCR for both accurate streamflow and baseflow 

estimation and for better prediction of aquifer hazard.  The calibration methodology 

developed and suggested in the second objective was composed of the modified SWAT 
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2012 code and SUFI-2 in order to automatically calibrate streamflow and baseflow 

simultaneously. 

 

Simultaneous streamflow and baseflow calibration with the EFCR (C4) for the 

calibration period (1990 - 2001) showed that NSE / R2 / PBIAS for streamflow were 0.85 

/ 0.87 / 3.90, and NSE / R2 / PBIAS for baseflow were 0.63 / 0.73 / 16.7.  For the 

validation period (2002 - 2010), NSE / R2 / PBIAS for streamflow and baseflow showed 

0.88 / 0.92 / 1.50 (streamflow) and 0.65 / 0.70 / 13.8 (baseflow), respectively.  These 

values indicate that the calibrated model (C4) is more than “Satisfactory” for both 

streamflow and baseflow estimation.   

 

The results of the second objective indicated that even though the model with streamflow 

calibration alone (C2) showed the best performances for both streamflow calibration and 

validation periods, C2 would not be appropriate for baseflow calibration and validation.  

Calibrating streamflow and baseflow simultaneously would be needed for efficient 

hydrological cycle assessment because baseflow is the main part of the hydrological 

cycle for aquifer hazard assessment.  Thus, the EFCR would be a practical step in the 

process for aquifer hazard assessment by calibrating baseflow accurately as well as 

streamflow at a watershed scale.   

 

The second objective is expected to be used in data-driven models for in-depth 

groundwater modeling because the baseflow-related parameters (i.e., groundwater 

recharge, hydraulic conductivity, and so on) calibrated in the second objective can be 
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used as a set of input data (initial parameter values) in computer-based numerical 

groundwater models.  If calibrated baseflow-related data is used as initial parameter 

values in groundwater modeling, the uncertainty of groundwater modeling would be 

reduced by minimizing the initial parameter uncertainty. 

 

In the third objective, integrated aquifer vulnerability assessment was conducted using 

improved methodologies from the first and second objectives.  For aquifer hazard 

assessment, Geo-ANN was developed for training, validation, testing, and predicting well 

nitrate concentrations with the shapefile format as well as tabular format using ANN.  

Geo-ANN provides a user-friendly GUI for optimizing the parameters of the ANN 

architecture and training the network for the prediction.  Two predefined input variables 

(NO3L: the nitrate leached from the soil profile and NO3GW: the nitrate transported into 

streams from groundwater loading) which are concerned with aquifer hazard that reflects 

potential pollution transport from the land surface to aquifers were retrieved from the 

calibrated SWAT.  SWAT and Geo-ANN were utilized to find the relationship between 

the nitrates leached from the soil profile and nitrate concentrations in aquifers and to 

identify potential aquifer hazard areas.  Through these simulation processes, NO3L and 

NO3GW were estimated at the HRU level using SWAT.  Then, with those two variables 

from SWAT and observed nitrate concentration data in wells after training, validation, 

and testing (NSE/R2/PBIAS: 0.66/0.70/0.7) using the Geo-ANN, an aquifer hazard map 

was created. 
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An integrated aquifer vulnerability map was produced by combining the intrinsic aquifer 

vulnerability map from the first objective and aquifer hazard map.  In the analysis of 

integrated aquifer vulnerability, 12.8% of the aquifer systems in the UWRW were within 

the “Very low” vulnerability class, and 50.7% of the area was estimated as “Low”, 30.7% 

within the “Moderate” vulnerability class, 5.4% within the “High” vulnerability class, 

and 0.4% within the “Very high” vulnerability class.  Approximately 81.0% of nitrate 

detections in wells > 2 ppm were within “High” and “Very high” vulnerability areas 

(represent 5.8% of area) as predicted by incorporating DRASTIC, SWAT, and Geo-

ANN.  An additional 12.1% of the nitrate detections were within the “Moderate” 

vulnerability class (30.7% of area), and 6.9% of the nitrate detections were within the 

“Low” vulnerability class (50.7% of area).  Nitrates in wells > 2 ppm were not detected 

within the “Very low” vulnerability class (12.8% of area).  Detection ratio (percent of 

nitrate detections > 2 ppm to percent of “Very high” and “High” vulnerability areas with 

larger detection ratio indicating better prediction) indicated a value of 12.4 for intrinsic 

vulnerability assessment using DRASTIC, 7.1 for aquifer hazard assessment using 

SWAT/Geo-ANN, and 14.0 for integrated aquifer vulnerability assessment using the 

combined DRASTIC and SWAT/Geo-ANN.  Based on the results of detection ratio, 

integrated aquifer vulnerability assessment better predicted nitrate detections than 

DRASTIC or SWAT/Geo-ANN by themselves. 

 

For the simulation of complex systems such as groundwater dynamics in aquifers, the 

third objective indicated that machine learning is a suitable technique in predicting 

nonstationary behavior of groundwater quality.  Also, with lack of detailed knowledge of 
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the internal functions of complex systems and insufficient data for calibration and 

validation, machine learning techniques would be an efficient method to identify the 

nonstationary patterns of variables of groundwater quality. 

 

The integrated aquifer vulnerability assessment considers both intrinsic aquifer properties 

and pollutant transport properties.  Thus, the overall assessment of aquifer vulnerability 

can be performed using the integrated aquifer vulnerability assessment technique 

provided in the third objective.  Moreover, results from this approach are expected to be 

an efficient guide for managing groundwater resources for policy makers and 

groundwater-related researchers. 

 

5.2 Recommendations for Future Research 

Even though the methodologies modified and developed in this dissertation show 

promise for efficient integrated aquifer vulnerability assessment, this study also indicates 

that further study is needed. Specific recommendations include the following: 

 

1. Bi-GA was used as a new calibration framework for overlay and index modeling 

(DRASTIC).  However, in this study only two groups were classified with over (high and 

very high vulnerability classes) or under (other vulnerability classes) 2 ppm of nitrate 

concentrations in wells.  More classification is required for more accurate intrinsic 

aquifer vulnerability assessment.  Thus, an improved calibration framework for 

DRASTIC should be developed and suggested for spatial optimization. 
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2. Optimal grid cell size for intrinsic aquifer assessment and aquifer hazard assessment 

should be determined based on the resolution of input data.  Using different resolution 

data (various resolution data) in various study areas, optimal grid cell size should be 

suggested for each of aquifer systems. 

 

3. Estimated nitrate loads and baseflow data from LOADEST and WHAT were used as 

observed nitrate loads and baseflow data, respectively, because of limited observed 

nitrate loads and baseflow data when calibrating nitrate loads and baseflow at each outlet.  

For more accurate calibration of nitrate loads and baseflow, additional observed nitrate 

loads and baseflow are needed.  

 

4. Even though the model (C4: the model with simultaneous streamflow and baseflow 

calibration) performance with baseflow calibration was acceptable, baseflow calibration 

in low flow conditions needs to be improved because simulated baseflow did not 

replicate observed baseflow in the lowest flow conditions.  Thus, baseflow calibration 

should be conducted by separately clustering high flow and low flow conditions for more 

accurate baseflow estimation. 

 

5. The EFCR was only applied in the UWRW.  The EFCR should be applied in more 

watersheds and more uncertainty analysis of baseflow-related parameters should be 

conducted for better baseflow estimation. 
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6. More observed nitrate concentrations in wells > 2 ppm (17.1% of total nitrate database) 

are required for better prediction of nitrate detections > 2 ppm.  The models used in this 

dissertation are data-driven models (i.e., DRASTIC and Geo-ANN).  Therefore, if more 

well nitrate concentration data are available, the approaches suggested in this study could 

potentially be improved, and better results would likely be provided because calibration 

and validation of DRASTIC or Geo-ANN using more observed nitrate concentrations in 

wells > 2 ppm could be performed more accurately. 

 

7. Various machine learning algorithms (e.g., convolution neural network, Bayesian 

linear regression, and decision forest regression) for aquifer hazard assessment should be 

tested to better predict elevated nitrate levels in aquifers. 
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Table A Nitrate concentrations in wells in the UWRW 

ID Station 
NO3 

(mg/L) 
Lat Long 

1 HDB 0.10 39.903 -86.324 

2 HDB 0.21 39.588 -86.429 

3 NWQMC 4.95 40.066 -85.939 

4 NWQMC 1.79 40.164 -85.261 

5 HDB 0.10 39.534 -86.351 

6 HDB 0.10 39.916 -86.292 

7 HDB 0.10 40.228 -85.563 

8 HDB 0.10 40.086 -85.960 

9 HDB 0.10 40.035 -86.086 

10 HDB 0.26 39.955 -85.996 

11 HDB 10.42 40.048 -86.196 

12 HDB 0.12 40.077 -85.733 

13 HDB 0.10 39.686 -86.263 

14 HDB 0.10 40.116 -86.001 

15 HDB 0.10 40.268 -86.039 

16 HDB 0.10 40.160 -85.730 

17 HDB 0.10 39.987 -85.902 

18 HDB 1.78 39.933 -86.118 

19 HDB 0.10 40.006 -86.013 

20 HDB 0.25 40.094 -85.982 

21 HDB 0.10 40.005 -86.225 

22 HDB 0.10 40.081 -85.986 

23 HDB 0.10 40.142 -85.830 

24 HDB 0.10 39.958 -86.226 

25 HDB 0.10 39.441 -86.398 

26 NWQMC 6.00 39.952 -86.067 

27 HDB 0.10 40.174 -85.831 

28 HDB 0.10 40.000 -85.887 

29 HDB 0.10 40.145 -86.080 

30 HDB 0.10 40.046 -85.534 

31 HDB 0.10 40.050 -85.863 

32 HDB 0.10 40.044 -86.026 

33 HDB 0.10 39.962 -85.775 

34 HDB 5.53 40.127 -85.964 
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35 HDB 0.10 40.093 -85.318 

36 HDB 0.10 39.916 -86.174 

37 HDB 0.10 40.018 -86.192 

38 HDB 0.10 40.040 -85.968 

39 HDB 0.34 40.057 -85.345 

40 HDB 0.10 39.670 -86.152 

41 HDB 0.12 40.278 -85.628 

42 NWQMC 10.00 39.788 -86.161 

43 HDB 0.10 40.196 -85.289 

44 HDB 0.10 40.036 -85.362 

45 HDB 1.50 39.614 -86.436 

46 NWQMC 0.29 40.066 -85.939 

47 HDB 0.12 40.116 -85.633 

48 HDB 0.10 40.068 -85.963 

49 HDB 0.11 39.917 -86.311 

50 HDB 0.10 40.065 -85.737 

51 NWQMC 5.36 39.952 -86.067 

52 HDB 1.72 39.570 -86.311 

53 HDB 0.13 40.019 -85.531 

54 HDB 0.10 40.091 -86.093 

55 HDB 4.23 40.067 -86.000 

56 HDB 0.10 40.333 -85.525 

57 HDB 0.10 39.692 -86.058 

58 HDB 0.10 40.214 -85.429 

59 HDB 0.11 40.081 -85.753 

60 HDB 0.10 40.031 -85.688 

61 HDB 0.60 39.393 -86.592 

62 HDB 0.10 40.165 -85.861 

63 HDB 0.10 40.125 -85.930 

64 HDB 0.10 40.094 -85.301 

65 HDB 0.10 39.967 -86.060 

66 HDB 1.19 39.494 -86.406 

67 HDB 12.84 39.998 -85.735 

68 HDB 0.10 39.846 -86.323 

69 HDB 0.10 39.940 -86.114 

70 HDB 0.10 40.270 -86.024 

71 HDB 0.10 39.499 -86.251 

72 HDB 0.10 40.083 -85.811 

73 HDB 6.64 40.124 -85.848 

74 HDB 0.11 40.105 -85.754 
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75 HDB 0.10 40.224 -85.828 

76 HDB 1.86 40.145 -85.448 

77 HDB 3.47 40.061 -86.004 

78 HDB 0.17 39.596 -86.404 

79 HDB 0.11 40.080 -85.834 

80 HDB 0.10 40.158 -85.378 

81 HDB 7.13 39.636 -86.292 

82 HDB 0.10 40.291 -85.765 

83 HDB 11.98 40.027 -85.380 

84 HDB 0.10 40.166 -85.994 

85 HDB 1.22 39.592 -86.313 

86 HDB 0.10 40.030 -86.106 

87 HDB 0.10 40.245 -86.034 

88 HDB 0.10 40.275 -85.472 

89 HDB 0.10 39.672 -86.142 

90 HDB 0.10 39.977 -85.665 

91 HDB 0.10 40.110 -85.504 

92 HDB 0.79 40.086 -86.077 

93 HDB 4.39 39.639 -86.291 

94 HDB 0.10 40.269 -85.407 

95 HDB 5.21 40.101 -85.313 

96 HDB 0.10 39.657 -86.188 

97 HDB 0.10 39.966 -85.866 

98 HDB 0.16 40.229 -85.708 

99 HDB 0.11 39.966 -85.748 

100 HDB 0.10 39.932 -85.969 

101 HDB 0.10 40.049 -86.041 

102 HDB 0.73 39.960 -85.931 

103 HDB 0.48 39.896 -86.010 

104 HDB 2.31 39.583 -86.489 

105 HDB 6.71 39.630 -86.331 

106 HDB 0.10 39.932 -86.213 

107 HDB 0.10 40.312 -86.103 

108 HDB 0.13 40.246 -85.614 

109 HDB 0.10 39.953 -86.122 

110 HDB 0.10 39.993 -85.901 

111 HDB 0.10 39.974 -85.733 

112 HDB 3.14 39.961 -85.917 

113 HDB 0.10 40.285 -86.138 

114 HDB 0.10 40.059 -85.959 
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115 HDB 0.11 40.286 -85.800 

116 HDB 0.12 40.326 -85.652 

117 HDB 7.56 40.123 -85.949 

118 HDB 0.33 40.183 -85.956 

119 HDB 0.10 39.846 -86.251 

120 HDB 0.10 40.302 -85.573 

121 HDB 0.10 39.837 -86.266 

122 HDB 0.10 40.017 -85.738 

123 HDB 0.10 40.065 -85.290 

124 HDB 0.10 40.132 -85.243 

125 HDB 7.01 40.076 -85.980 

126 HDB 0.10 40.156 -85.696 

127 HDB 0.10 39.596 -86.386 

128 HDB 0.10 40.113 -86.026 

129 HDB 0.10 40.055 -86.220 

130 NWQMC 0.42 39.866 -86.287 

131 HDB 0.10 40.172 -85.266 

132 HDB 0.10 40.008 -86.112 

133 HDB 0.10 39.613 -86.283 

134 HDB 0.10 39.967 -86.058 

135 HDB 0.10 40.333 -85.634 

136 HDB 3.37 39.997 -86.019 

137 NWQMC 2.19 39.911 -86.113 

138 HDB 5.00 40.037 -86.046 

139 HDB 0.11 39.983 -85.673 

140 HDB 0.10 40.061 -86.196 

141 HDB 0.10 40.076 -86.007 

142 HDB 0.10 40.074 -85.911 

143 HDB 0.10 40.238 -86.003 

144 HDB 0.10 40.073 -85.424 

145 HDB 0.10 39.653 -86.147 

146 HDB 0.10 40.141 -86.087 

147 HDB 0.10 39.434 -86.403 

148 HDB 0.11 40.299 -85.856 

149 HDB 0.10 40.033 -85.769 

150 HDB 0.98 39.999 -86.067 

151 HDB 0.15 39.907 -86.138 

152 HDB 0.80 40.200 -85.457 

153 HDB 2.77 39.601 -86.356 

154 HDB 0.16 39.570 -86.431 
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155 HDB 0.10 40.100 -86.124 

156 HDB 16.52 40.085 -86.082 

157 HDB 0.10 40.013 -85.950 

158 HDB 0.10 40.127 -86.085 

159 HDB 0.10 39.907 -86.288 

160 NWQMC 4.40 39.832 -86.145 

161 HDB 0.70 40.121 -85.819 

162 HDB 0.10 40.156 -86.221 

163 NWQMC 9.43 40.066 -85.939 

164 HDB 4.88 39.647 -86.106 

165 HDB 0.10 40.086 -86.200 

166 HDB 0.10 39.633 -86.295 

167 HDB 0.10 39.980 -86.049 

168 HDB 0.18 39.901 -85.926 

169 HDB 0.10 39.696 -86.128 

170 HDB 0.10 39.957 -85.769 

171 HDB 0.10 40.178 -85.748 

172 HDB 0.12 40.150 -85.737 

173 HDB 4.56 39.490 -86.302 

174 HDB 0.10 40.078 -85.988 

175 HDB 0.11 39.951 -85.766 

176 HDB 0.10 40.193 -86.092 

177 HDB 0.11 40.252 -85.812 

178 HDB 0.10 40.292 -85.994 

179 HDB 0.10 39.876 -86.263 

180 HDB 0.10 40.071 -85.942 

181 HDB 5.22 40.201 -85.487 

182 HDB 0.10 40.158 -85.901 

183 HDB 0.67 39.495 -86.410 

184 HDB 0.11 40.294 -85.717 

185 HDB 0.10 40.060 -86.031 

186 HDB 6.48 40.067 -85.604 

187 HDB 0.10 39.674 -86.176 

188 HDB 1.00 40.016 -85.649 

189 HDB 0.11 40.011 -85.747 

190 HDB 1.70 39.959 -85.915 

191 HDB 0.10 39.971 -85.650 

192 HDB 0.10 40.182 -85.694 

193 HDB 0.10 40.254 -85.445 

194 NWQMC 3.60 39.405 -86.460 
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195 HDB 0.10 39.422 -86.607 

196 HDB 0.14 40.144 -85.602 

197 HDB 0.63 39.879 -86.098 

198 HDB 0.11 40.068 -85.661 

199 HDB 0.16 40.165 -85.693 

200 HDB 0.10 40.248 -86.051 

201 HDB 0.11 40.102 -85.765 

202 HDB 0.10 40.013 -85.750 

203 HDB 0.10 40.247 -86.034 

204 HDB 0.10 39.903 -85.935 

205 HDB 0.10 39.908 -86.151 

206 HDB 0.80 39.357 -86.290 

207 NWQMC 0.29 39.866 -86.287 

208 HDB 0.10 40.010 -85.528 

209 HDB 0.10 39.420 -86.389 

210 HDB 0.10 40.251 -86.159 

211 HDB 0.10 40.015 -85.993 

212 HDB 0.11 40.204 -85.790 

213 HDB 0.49 40.078 -85.415 

214 HDB 0.10 39.671 -86.140 

215 HDB 0.71 39.533 -86.417 

216 HDB 0.10 39.635 -86.315 

217 HDB 0.10 40.220 -85.498 

218 HDB 0.10 40.301 -85.824 

219 HDB 0.14 40.268 -86.035 

220 HDB 0.10 40.108 -86.041 

221 HDB 0.72 39.439 -86.397 

222 HDB 0.10 40.208 -85.927 

223 NWQMC 3.30 39.405 -86.460 

224 HDB 0.10 40.189 -86.205 

225 HDB 0.21 40.067 -85.532 

226 HDB 0.10 40.106 -86.239 

227 HDB 0.10 40.207 -85.664 

228 HDB 0.10 39.619 -86.393 

229 HDB 0.10 39.628 -86.343 

230 HDB 0.10 39.543 -86.320 

231 HDB 0.10 39.503 -86.290 

232 NWQMC 8.20 39.604 -86.229 

233 HDB 3.48 39.532 -86.518 

234 HDB 0.10 40.010 -85.772 
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235 HDB 0.10 39.738 -86.322 

236 HDB 0.10 40.107 -86.040 

237 HDB 2.26 39.686 -86.153 

238 HDB 0.10 40.078 -86.182 

239 HDB 0.18 39.613 -86.440 

240 HDB 0.10 39.945 -85.888 

241 HDB 2.05 40.144 -85.440 

242 HDB 0.10 39.567 -86.367 

243 HDB 0.10 40.249 -86.034 

244 HDB 5.38 39.472 -86.351 

245 HDB 10.90 40.065 -86.216 

246 HDB 0.10 40.192 -86.151 

247 HDB 0.10 40.293 -86.155 

248 HDB 0.35 40.178 -85.623 

249 HDB 0.10 40.111 -85.419 

250 HDB 0.47 39.414 -86.303 

251 HDB 0.10 40.163 -85.998 

252 HDB 0.10 40.106 -85.237 

253 HDB 0.10 39.840 -86.264 

254 NWQMC 9.18 40.121 -85.058 

255 HDB 4.65 40.154 -85.440 

256 HDB 0.10 39.978 -86.022 

257 HDB 0.11 40.215 -85.717 

258 NWQMC 1.20 40.145 -86.161 

259 HDB 0.10 39.993 -85.902 

260 HDB 0.10 39.924 -85.729 

261 HDB 0.10 40.084 -86.196 

262 NWQMC 1.60 40.111 -85.694 

263 HDB 0.16 40.016 -85.831 

264 HDB 1.02 39.953 -86.226 

265 HDB 0.10 40.318 -86.121 

266 HDB 0.10 40.001 -86.093 

267 HDB 0.10 39.642 -86.120 

268 HDB 4.30 40.045 -85.536 

269 HDB 0.10 39.887 -86.089 

270 HDB 0.10 39.413 -86.389 

271 HDB 3.10 39.674 -86.185 

272 HDB 0.10 39.632 -86.283 

273 NWQMC 2.40 39.734 -86.223 

274 HDB 0.10 39.443 -86.341 
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275 HDB 0.52 39.599 -86.430 

276 HDB 0.11 40.064 -85.772 

277 HDB 0.11 40.193 -85.947 

278 HDB 0.10 39.995 -86.097 

279 NWQMC 3.60 39.861 -86.160 

280 HDB 0.10 40.236 -86.113 

281 NWQMC 0.21 39.866 -86.287 

282 HDB 0.10 39.982 -86.140 

283 HDB 0.10 39.927 -86.216 

284 HDB 0.10 39.715 -86.244 

285 HDB 0.10 40.171 -85.988 

286 HDB 0.38 39.919 -86.307 

287 HDB 0.22 39.482 -86.320 

288 HDB 0.10 39.912 -86.312 

289 HDB 0.10 39.399 -86.501 

290 HDB 0.10 39.999 -85.444 

291 HDB 0.10 40.055 -85.588 

292 HDB 0.15 39.506 -86.537 

293 HDB 0.10 40.187 -86.004 

294 HDB 2.37 40.180 -85.428 

295 HDB 0.10 39.781 -86.043 

296 NWQMC 8.22 40.329 -85.538 

297 HDB 1.83 39.664 -86.164 

298 HDB 0.10 40.213 -85.938 

299 HDB 0.10 40.023 -85.976 

300 NWQMC 5.79 39.771 -86.195 

301 HDB 0.10 39.845 -86.323 

302 HDB 0.10 40.047 -85.980 

303 HDB 3.61 39.459 -86.410 

304 HDB 3.21 39.578 -86.302 

305 HDB 0.10 40.047 -85.536 

306 NWQMC 2.25 40.066 -85.939 

307 HDB 0.10 39.919 -85.745 

308 HDB 0.10 39.956 -85.995 

309 HDB 15.23 39.390 -86.599 

310 HDB 0.10 40.300 -85.808 

311 NWQMC 1.77 40.066 -85.939 

312 HDB 0.11 40.145 -85.619 

313 HDB 0.10 39.687 -86.172 

314 HDB 0.10 40.104 -85.366 
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315 HDB 1.63 40.066 -86.000 

316 HDB 0.10 39.992 -85.571 

317 HDB 0.10 40.161 -85.993 

318 HDB 0.10 40.221 -85.784 

319 HDB 0.10 40.073 -85.501 

320 HDB 0.10 40.144 -85.638 

321 HDB 1.64 39.408 -86.500 

322 HDB 0.10 40.050 -85.538 

323 NWQMC 2.70 39.817 -86.117 

324 HDB 0.10 40.126 -86.084 

325 HDB 9.31 40.054 -85.869 

326 HDB 0.12 40.333 -85.653 

327 HDB 0.10 40.081 -86.024 

328 HDB 0.87 39.869 -85.993 

329 NWQMC 1.60 40.145 -86.161 

330 HDB 0.10 39.409 -86.432 

331 NWQMC 3.29 39.755 -86.165 

332 HDB 0.12 40.235 -85.798 

333 HDB 0.15 39.410 -86.403 

334 HDB 0.10 40.287 -85.768 

335 HDB 0.10 40.020 -85.962 

336 HDB 0.10 39.959 -86.065 

337 HDB 0.11 40.026 -85.601 

338 HDB 4.81 39.591 -86.485 

339 HDB 0.11 40.096 -85.792 

340 HDB 17.96 40.133 -85.838 

341 NWQMC 0.48 39.782 -86.224 

342 HDB 0.10 40.314 -85.646 

343 HDB 9.18 40.024 -85.689 

344 NWQMC 6.04 40.066 -85.939 

345 HDB 18.29 40.083 -86.074 

346 HDB 0.10 39.923 -86.158 

347 HDB 0.10 39.900 -86.134 

348 HDB 0.10 39.849 -86.324 

349 HDB 0.10 40.206 -85.691 

350 HDB 0.10 40.010 -86.028 

351 HDB 2.17 39.431 -86.383 

352 HDB 0.10 40.114 -86.108 

353 HDB 11.21 40.116 -85.855 

354 HDB 0.18 39.476 -86.386 
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355 HDB 4.88 39.696 -86.168 

356 HDB 0.10 40.154 -86.203 

357 HDB 7.01 39.399 -86.267 

358 HDB 0.10 39.762 -86.313 

359 HDB 0.10 39.670 -86.156 

360 HDB 7.53 39.528 -86.374 

361 HDB 15.05 40.084 -86.073 

362 HDB 0.11 40.223 -85.837 

363 HDB 0.10 40.066 -85.497 

364 HDB 0.10 40.122 -85.504 

365 HDB 0.10 40.321 -85.625 

366 HDB 0.18 39.436 -86.554 

367 HDB 0.66 39.957 -86.090 

368 HDB 0.18 40.282 -86.085 

369 HDB 0.10 39.978 -86.049 

370 HDB 1.50 39.433 -86.554 

371 HDB 0.10 40.075 -85.987 

372 HDB 0.10 39.981 -86.009 

373 HDB 0.10 40.093 -85.391 

374 HDB 0.30 39.584 -86.399 

375 HDB 0.10 39.672 -86.080 

376 HDB 0.10 40.301 -85.512 

377 HDB 0.10 40.303 -85.512 

378 HDB 0.10 39.341 -86.530 

379 HDB 0.10 40.035 -85.386 

380 HDB 0.12 40.090 -85.844 

381 HDB 0.10 40.069 -85.574 

382 HDB 0.10 40.187 -86.099 

383 HDB 0.10 39.545 -86.325 

384 NWQMC 4.80 39.869 -86.132 

385 HDB 0.10 40.200 -85.968 

386 NWQMC 0.37 39.866 -86.287 

387 HDB 3.40 39.995 -86.019 

388 HDB 0.10 40.064 -86.145 

389 NWQMC 2.67 39.801 -86.269 

390 HDB 0.10 39.561 -86.341 

391 HDB 3.38 40.199 -85.482 

392 HDB 0.10 39.897 -86.130 

393 HDB 0.14 39.426 -86.303 

394 HDB 0.10 40.156 -86.066 
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395 HDB 0.10 40.060 -85.566 

396 HDB 0.11 39.985 -85.821 

397 HDB 2.31 39.463 -86.276 

398 HDB 0.10 40.278 -85.336 

399 HDB 0.10 39.658 -86.061 

400 HDB 0.10 40.029 -85.652 

401 HDB 0.10 40.029 -85.878 

402 HDB 0.10 40.088 -85.969 

403 HDB 0.10 40.210 -86.027 

404 HDB 0.13 40.276 -85.623 

405 HDB 0.10 40.105 -85.462 

406 HDB 4.57 40.200 -85.484 

407 HDB 0.10 39.902 -86.299 

408 HDB 1.18 39.498 -86.406 

409 HDB 0.10 40.064 -86.003 

410 HDB 0.10 40.231 -85.448 

411 HDB 0.15 39.621 -86.436 

412 HDB 0.17 40.011 -85.548 

413 HDB 0.10 40.330 -85.655 

414 HDB 0.10 39.845 -86.319 

415 HDB 0.10 39.963 -86.068 

416 HDB 0.10 39.837 -86.258 

417 HDB 0.10 40.060 -86.224 

418 HDB 0.39 39.710 -86.212 

419 HDB 0.10 40.042 -85.326 

420 HDB 0.10 39.852 -86.254 

421 NWQMC 2.60 39.800 -86.213 

422 HDB 0.10 40.046 -85.771 

423 NWQMC 3.00 39.807 -86.155 

424 HDB 0.10 40.326 -85.847 

425 HDB 0.10 40.053 -85.514 

426 HDB 10.24 40.017 -85.681 

427 HDB 0.10 39.671 -86.056 

428 HDB 3.74 40.060 -86.003 

429 HDB 0.10 39.963 -85.553 

430 HDB 0.14 39.542 -86.365 

431 HDB 0.10 40.001 -86.092 

432 HDB 0.10 40.030 -85.883 

433 HDB 0.10 40.333 -85.755 

434 HDB 0.10 39.678 -86.162 
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435 HDB 0.14 39.416 -86.403 

436 HDB 0.10 39.653 -86.190 

437 HDB 0.10 39.423 -86.401 

438 HDB 0.10 39.979 -86.021 

439 HDB 2.86 40.059 -86.032 

440 NWQMC 5.20 39.511 -86.372 

441 HDB 3.41 39.996 -86.018 

442 NWQMC 10.00 40.135 -85.883 

443 HDB 0.10 39.455 -86.411 

444 HDB 0.11 39.988 -85.791 

445 HDB 0.10 40.192 -85.989 

446 HDB 0.10 40.273 -85.750 

447 HDB 0.43 40.293 -85.351 

448 HDB 0.10 40.304 -86.089 

449 HDB 0.10 39.829 -86.211 

450 NWQMC 0.89 39.788 -86.161 

451 HDB 0.10 39.553 -86.258 

452 HDB 0.10 40.256 -85.482 

453 HDB 6.14 40.109 -85.957 

454 HDB 0.10 40.288 -85.456 

455 HDB 0.11 40.188 -85.755 

456 HDB 0.10 40.045 -85.561 

457 HDB 0.10 40.278 -85.965 

458 HDB 0.10 40.345 -85.781 

459 HDB 0.10 39.729 -86.051 

460 HDB 0.10 39.526 -86.333 

461 HDB 0.30 39.613 -86.298 

462 HDB 0.14 39.606 -86.436 

463 NWQMC 7.40 39.370 -86.477 

464 HDB 0.10 40.104 -85.867 

465 HDB 0.10 40.124 -85.992 

466 HDB 0.10 39.866 -86.323 

467 HDB 0.14 40.058 -85.283 

468 HDB 0.10 40.074 -86.205 

469 HDB 0.10 39.426 -86.607 

470 HDB 0.10 40.123 -85.791 

471 HDB 0.10 39.720 -86.314 

472 HDB 0.10 39.682 -86.089 

473 HDB 0.10 40.276 -85.364 

474 HDB 0.10 40.186 -85.973 
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475 HDB 0.10 40.196 -85.457 

476 HDB 0.10 40.290 -85.457 

477 HDB 0.10 40.042 -86.024 

478 HDB 0.10 40.053 -85.428 

479 HDB 6.05 39.686 -86.176 

480 HDB 4.09 39.631 -86.255 

481 HDB 0.10 39.846 -86.319 

482 HDB 2.87 39.914 -86.117 

483 HDB 0.11 40.050 -85.666 

484 HDB 12.73 39.576 -86.312 

485 HDB 0.10 40.110 -85.983 

486 HDB 0.12 40.025 -85.826 

487 HDB 0.10 40.205 -85.981 

488 HDB 8.69 39.456 -86.305 

489 HDB 0.10 40.191 -86.203 

490 HDB 7.04 39.607 -86.294 

491 HDB 0.10 39.900 -85.928 

492 HDB 0.10 40.144 -86.188 

493 HDB 0.10 39.931 -85.910 

494 HDB 0.10 39.949 -86.034 

495 HDB 0.10 40.117 -86.067 

496 HDB 0.10 39.878 -86.260 

497 HDB 0.10 40.329 -85.852 

498 HDB 0.10 39.960 -85.731 

499 HDB 0.10 40.051 -86.196 

500 HDB 0.10 40.261 -86.044 

501 HDB 8.24 40.146 -85.829 

502 HDB 0.10 39.568 -86.332 

503 HDB 0.10 39.914 -86.314 

504 HDB 0.21 39.465 -86.547 

505 HDB 0.10 39.838 -86.312 

506 HDB 0.10 39.738 -86.323 

507 HDB 0.10 40.168 -86.106 

508 HDB 0.10 40.278 -85.632 

509 HDB 0.13 39.343 -86.576 

510 NWQMC 2.69 40.066 -85.939 

511 HDB 0.17 40.053 -86.016 

512 HDB 0.10 40.092 -85.388 

513 HDB 0.10 40.245 -85.418 

514 HDB 0.11 40.067 -85.588 
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515 NWQMC 7.16 40.066 -85.939 

516 HDB 0.10 39.992 -86.089 

517 HDB 0.10 40.174 -86.034 

518 HDB 0.10 40.243 -86.036 

519 HDB 0.21 39.712 -86.231 

520 HDB 0.10 39.913 -86.283 

521 HDB 0.10 40.017 -85.877 

522 HDB 0.10 40.066 -86.216 

523 HDB 3.60 40.054 -86.036 

524 HDB 0.10 40.134 -86.025 

525 HDB 7.65 40.140 -85.324 

526 HDB 6.96 39.413 -86.405 

527 HDB 0.55 39.878 -86.090 

528 HDB 0.10 40.070 -85.554 

529 NWQMC 15.90 39.791 -86.056 

530 HDB 0.14 40.056 -85.701 

531 HDB 0.10 40.024 -86.212 

532 HDB 0.10 40.081 -86.192 

533 HDB 0.11 40.336 -85.731 

534 HDB 0.10 40.108 -85.500 

535 HDB 0.10 40.051 -85.508 

536 HDB 0.12 39.982 -85.688 

537 HDB 0.10 40.012 -85.549 

538 HDB 0.10 39.906 -85.935 

539 HDB 0.10 39.988 -85.780 

540 HDB 0.10 39.995 -85.950 

541 HDB 0.10 39.966 -86.064 

542 HDB 10.19 39.459 -86.305 

543 HDB 0.10 40.034 -85.973 

544 HDB 0.10 39.910 -86.148 

545 HDB 0.10 40.032 -86.126 

546 HDB 0.12 40.154 -85.812 

547 HDB 0.10 39.655 -86.106 

548 HDB 0.10 40.284 -85.318 

549 HDB 0.10 39.953 -85.914 

550 HDB 0.12 40.102 -85.720 

551 HDB 0.10 40.027 -85.825 

552 HDB 0.11 40.050 -86.194 

553 HDB 0.10 39.954 -86.233 

554 NWQMC 8.10 39.405 -86.460 



203 

 

555 HDB 0.10 40.193 -85.992 

556 HDB 3.28 40.073 -85.517 

557 HDB 0.11 40.047 -85.613 

558 HDB 0.10 40.143 -86.088 

559 HDB 0.17 39.967 -85.686 

560 HDB 0.12 40.203 -85.737 

561 HDB 0.10 40.187 -86.102 

562 HDB 0.19 40.311 -85.849 

563 HDB 0.10 39.956 -85.959 

564 HDB 0.10 40.058 -86.022 

565 HDB 0.10 39.955 -85.999 

566 HDB 0.10 40.074 -86.079 

567 HDB 0.10 39.703 -86.167 

568 HDB 0.10 40.220 -85.599 

569 HDB 0.10 40.025 -85.563 

570 HDB 9.20 40.124 -85.497 

571 HDB 0.13 39.977 -85.661 

572 HDB 0.60 40.088 -85.748 

573 HDB 0.28 39.595 -86.479 

574 HDB 0.10 39.675 -86.091 

575 HDB 0.10 40.050 -85.779 

576 HDB 0.10 40.082 -86.003 

577 HDB 0.13 40.254 -85.978 

578 HDB 0.10 40.063 -85.762 

579 HDB 0.10 40.296 -85.866 

580 NWQMC 9.78 40.174 -85.529 

581 HDB 0.10 39.686 -86.053 

582 HDB 0.10 40.117 -86.180 

583 HDB 7.01 40.109 -85.955 

584 HDB 0.10 39.971 -85.575 

585 HDB 0.10 40.250 -85.415 

586 HDB 0.14 40.031 -86.062 

587 HDB 0.10 39.916 -86.168 

588 NWQMC 2.60 39.869 -86.132 

589 HDB 0.10 40.038 -86.229 

590 HDB 0.10 39.647 -86.157 

591 HDB 0.10 40.171 -85.976 

592 HDB 0.16 39.877 -86.091 

593 HDB 0.10 40.168 -86.190 

594 HDB 0.10 39.957 -85.769 
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595 HDB 0.10 40.120 -86.070 

596 HDB 0.10 39.671 -86.077 

597 HDB 0.10 39.889 -85.987 

598 HDB 0.10 40.181 -86.025 

599 HDB 0.10 40.146 -85.880 

600 HDB 0.10 40.062 -85.972 

601 HDB 0.84 39.623 -86.324 

602 HDB 0.10 40.316 -85.551 

603 HDB 0.16 40.096 -85.607 

604 HDB 0.12 40.245 -85.827 

605 HDB 3.23 40.069 -86.000 

606 HDB 5.87 40.061 -85.995 

607 HDB 0.10 39.652 -86.166 

608 NWQMC 0.39 39.866 -86.287 

609 HDB 0.10 40.031 -86.101 

610 HDB 0.10 39.953 -86.156 

611 HDB 0.10 39.728 -86.310 

612 HDB 0.10 39.507 -86.477 

613 HDB 5.22 39.614 -86.300 

614 HDB 0.10 40.001 -86.091 

615 HDB 0.12 40.304 -85.706 

616 HDB 0.10 39.978 -86.048 

617 HDB 0.11 40.315 -85.752 

618 HDB 0.10 39.953 -86.122 

619 NWQMC 4.00 39.604 -86.229 

620 HDB 0.10 39.970 -85.954 

621 HDB 0.10 39.996 -86.021 

622 HDB 0.10 40.221 -85.571 

623 HDB 0.13 40.102 -86.136 

624 HDB 0.10 39.994 -85.568 

625 HDB 0.12 40.276 -85.625 

626 HDB 0.10 39.900 -85.928 

627 HDB 0.34 39.481 -86.370 

628 HDB 0.10 40.265 -85.511 

629 HDB 0.10 40.260 -85.632 

630 HDB 0.10 40.158 -85.378 

631 HDB 0.10 39.978 -85.438 

632 HDB 7.98 39.696 -86.166 

633 HDB 0.10 39.649 -86.145 

634 HDB 4.67 39.660 -86.124 
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635 HDB 0.10 40.020 -85.880 

636 HDB 0.10 40.212 -85.938 

637 NWQMC 0.59 39.949 -86.321 

638 HDB 0.12 40.236 -85.841 

639 HDB 0.10 39.931 -86.111 

640 HDB 2.14 40.086 -85.993 

641 HDB 0.10 40.153 -86.205 

642 HDB 0.47 40.111 -85.880 

643 HDB 0.10 39.994 -86.060 

644 HDB 1.71 39.608 -86.273 

645 HDB 0.10 40.196 -85.993 

646 HDB 2.43 39.394 -86.456 

647 HDB 0.10 39.657 -86.068 

648 HDB 0.10 40.050 -86.193 

649 HDB 0.10 40.153 -85.792 

650 HDB 0.10 40.362 -85.750 

651 HDB 0.11 40.290 -85.803 

652 HDB 0.10 40.277 -85.705 

653 HDB 17.02 40.135 -85.834 

654 NWQMC 5.00 39.670 -86.213 

655 NWQMC 0.59 39.779 -86.216 

656 HDB 0.10 39.925 -86.146 

657 HDB 0.10 40.180 -86.015 

658 HDB 0.10 40.360 -85.753 

659 HDB 0.10 40.156 -85.437 

660 HDB 0.10 40.146 -85.933 

661 NWQMC 5.01 39.952 -86.067 

662 HDB 3.23 39.994 -86.019 

663 HDB 0.11 40.024 -85.798 

664 HDB 0.10 39.666 -86.203 

665 NWQMC 8.00 39.405 -86.460 

666 HDB 5.91 40.034 -86.041 

667 NWQMC 4.40 39.775 -86.149 

668 HDB 0.10 39.982 -85.556 

669 HDB 0.35 40.279 -85.987 

670 HDB 0.10 40.075 -85.373 

671 HDB 0.10 40.005 -86.008 

672 HDB 0.10 40.025 -85.398 

673 HDB 1.46 39.684 -86.191 

674 HDB 0.10 40.038 -85.525 
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675 HDB 0.34 39.681 -86.246 

676 HDB 0.10 40.059 -86.024 

677 HDB 0.10 39.403 -86.258 

678 HDB 0.10 40.050 -86.217 
1HDB: Heidelberg University, OH 

2NWQMC: National Water Quality Monitoring Council  

                   (http://www.waterqualitydata.us/) 
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