49 research outputs found

    Supporting Large Scale Communication Systems on Infrastructureless Networks Composed of Commodity Mobile Devices: Practicality, Scalability, and Security.

    Full text link
    Infrastructureless Delay Tolerant Networks (DTNs) composed of commodity mobile devices have the potential to support communication applications resistant to blocking and censorship, as well as certain types of surveillance. In this thesis we study the utility, practicality, robustness, and security of these networks. We collected two sets of wireless connectivity traces of commodity mobile devices with different granularity and scales. The first dataset is collected through active installation of measurement software on volunteer users' own smartphones, involving 111 users of a DTN microblogging application that we developed. The second dataset is collected through passive observation of WiFi association events on a university campus, involving 119,055 mobile devices. Simulation results show consistent message delivery performances of the two datasets. Using an epidemic flooding protocol, the large network achieves an average delivery rate of 0.71 in 24 hours and a median delivery delay of 10.9 hours. We show that this performance is appropriate for sharing information that is not time sensitive, e.g., blogs and photos. We also show that using an energy efficient variant of the epidemic flooding protocol, even the large network can support text messages while only consuming 13.7% of a typical smartphone battery in 14 hours. We found that the network delivery rate and delay are robust to denial-of-service and censorship attacks. Attacks that randomly remove 90% of the network participants only reduce delivery rates by less than 10%. Even when subjected to targeted attacks, the network suffered a less than 10% decrease in delivery rate when 40% of its participants were removed. Although structurally robust, the openness of the proposed network introduces numerous security concerns. The Sybil attack, in which a malicious node poses as many identities in order to gain disproportionate influence, is especially dangerous as it breaks the assumption underlying majority voting. Many defenses based on spatial variability of wireless channels exist, and we extend them to be practical for ad hoc networks of commodity 802.11 devices without mutual trust. We present the Mason test, which uses two efficient methods for separating valid channel measurement results of behaving nodes from those falsified by malicious participants.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120779/1/liuyue_1.pd

    A Comprehensive Survey on the Cooperation of Fog Computing Paradigm-Based IoT Applications: Layered Architecture, Real-Time Security Issues, and Solutions

    Get PDF
    The Internet of Things (IoT) can enable seamless communication between millions of billions of objects. As IoT applications continue to grow, they face several challenges, including high latency, limited processing and storage capacity, and network failures. To address these stated challenges, the fog computing paradigm has been introduced, purpose is to integrate the cloud computing paradigm with IoT to bring the cloud resources closer to the IoT devices. Thus, it extends the computing, storage, and networking facilities toward the edge of the network. However, data processing and storage occur at the IoT devices themselves in the fog-based IoT network, eliminating the need to transmit the data to the cloud. Further, it also provides a faster response as compared to the cloud. Unfortunately, the characteristics of fog-based IoT networks arise traditional real-time security challenges, which may increase severe concern to the end-users. However, this paper aims to focus on fog-based IoT communication, targeting real-time security challenges. In this paper, we examine the layered architecture of fog-based IoT networks along working of IoT applications operating within the context of the fog computing paradigm. Moreover, we highlight real-time security challenges and explore several existing solutions proposed to tackle these challenges. In the end, we investigate the research challenges that need to be addressed and explore potential future research directions that should be followed by the research community.漏2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Certificate status information distribution and validation in vehicular networks

    Get PDF
    Vehicular ad hoc networks (VANETs) are emerging as an functional technology for providing a wide range of applications to vehicles and passengers. Ensuring secure functioning is one of the prerequisites for deploying reliable VANETs. The basic solution envisioned to achieve these requirements is to use digital certificates linked to a user by a trusted third party. These certificates can then be used to sign information. Most of the existing solutions manage these certificates by means of a central Certification Authority (CA). According to IEEE 1609.2 standard, vehicular networks will rely on the public key infrastructure (PKI). In PKI, a CA issues an authentic digital certificate for each node in the network. Therefore, an efficient certificate management is crucial for the robust and reliable operation of any PKI. A critical part of any certificate-management scheme is the revocation of certificates. The distribution of certificate status information process, as well as the revocation process itself, is an open research problem for VANETs.In this thesis, firstly we analyze the revocation process itself and develop an accurate and rigorous model for certificate revocation. One of the key findings of our analysis is that the certificate revocation process is statistically self-similar. As none of the currently common formal models for revocation is able to capture the self-similar nature of real revocation data, we develop an ARFIMA model that recreates this pattern. We show that traditional mechanisms that aim to scale could benefit from this model to improve their updating strategies.Secondly, we analyze how to deploy a certificate status checking service for mobile networks and we propose a new criterion based on a risk metric to evaluate cached status data. With this metric, the PKI is able to code information about the revocation process in the standard certificate revocation lists. Thus, users can evaluate a risk function in order to estimate whether a certificate has been revoked while there is no connection to a status checking server. Moreover, we also propose a systematic methodology to build a fuzzy system that assists users in the decision making process related to certificate status checking.Thirdly, we propose two novel mechanisms for distributing and validating certificate status information (CSI) in VANET. This first mechanism is a collaborative certificate status checking mechanism based on the use based on an extended-CRL. The main advantage of this extended-CRL is that the road-side units and repository vehicles can build an efficient structure based on an authenticated hash tree to respond to status checking requests inside the VANET, saving time and bandwidth. The second mechanism aims to optimize the trade- off between the bandwidth necessary to download the CSI and the freshness of the CSI. This mechanism is based on the use of a hybrid delta-CRL scheme and Merkle hash trees, so that the risk of operating with unknown revoked certificates remains below a threshold during the validity interval of the base-CRL, and CAs have the ability to manage this risk by setting the size of the delta-CRLs. Finally, we also analyze the impact of the revocation service in the certificate prices. We model the behavior of the oligopoly of risk-averse certificate providers that issue digital certificates to clients facing iden- tical independent risks. We found the equilibrium in the Bertrand game. In this equilibrium, we proof that certificate providers that offer better revocation information are able to impose higher prices to their certificates without sacrificing market share in favor of the other oligarchs.Las redes vehiculares ad hoc (VANETs) se est谩n convirtiendo en una tecnolog铆a funcional para proporcionar una amplia gama de aplicaciones para veh铆culos y pasajeros. Garantizar un funcionamiento seguro es uno de los requisitos para el despliegue de las VANETs. Sin seguridad, los usuarios podr铆an ser potencialmente vulnerables a la mala conducta de los servicios prestados por la VANET. La soluci贸n b谩sica prevista para lograr estos requisitos es el uso de certificados digitales gestionados a trav茅s de una autoridad de certificaci贸n (CA). De acuerdo con la norma IEEE 1609.2, las redes vehiculares depender谩n de la infraestructura de clave p煤blica (PKI). Sin embargo, el proceso de distribuci贸n del estado de los certificados, as铆 como el propio proceso de revocaci贸n, es un problema abierto para VANETs.En esta tesis, en primer lugar se analiza el proceso de revocaci贸n y se desarrolla un modelo preciso y riguroso que modela este proceso conluyendo que el proceso de revocaci贸n de certificados es estad铆sticamente auto-similar. Como ninguno de los modelos formales actuales para la revocaci贸n es capaz de capturar la naturaleza auto-similar de los datos de revocaci贸n, desarrollamos un modelo ARFIMA que recrea este patr贸n. Mostramos que ignorar la auto-similitud del proceso de revocaci贸n lleva a estrategias de emisi贸n de datos de revocaci贸n ineficientes. El modelo propuesto permite generar trazas de revocaci贸n sint茅ticas con las cuales los esquemas de revocaci贸n actuales pueden ser mejorados mediante la definici贸n de pol铆ticas de emisi贸n de datos de revocaci贸n m谩s precisas. En segundo lugar, se analiza la forma de implementar un mecanismo de emisi贸n de datos de estado de los certificados para redes m贸viles y se propone un nuevo criterio basado en una medida del riesgo para evaluar los datos de revocaci贸n almacenados en la cach茅. Con esta medida, la PKI es capaz de codificar la informaci贸n sobre el proceso de revocaci贸n en las listas de revocaci贸n. As铆, los usuarios pueden estimar en funci贸n del riesgo si un certificado se ha revocado mientras no hay conexi贸n a un servidor de control de estado. Por otra parte, tambi茅n se propone una metodolog铆a sistem谩tica para construir un sistema difuso que ayuda a los usuarios en el proceso de toma de decisiones relacionado con la comprobaci贸n de estado de certificados.En tercer lugar, se proponen dos nuevos mecanismos para la distribuci贸n y validaci贸n de datos de estado de certificados en VANETs. El primer mecanismo est谩 basado en el uso en una extensi贸n de las listas estandares de revocaci贸n. La principal ventaja de esta extensi贸n es que las unidades al borde de la carretera y los veh铆culos repositorio pueden construir una estructura eficiente sobre la base de un 谩rbol de hash autenticado para responder a las peticiones de estado de certificados. El segundo mecanismo tiene como objetivo optimizar el equilibrio entre el ancho de banda necesario para descargar los datos de revocaci贸n y la frescura de los mismos. Este mecanismo se basa en el uso de un esquema h铆brido de 谩rboles de Merkle y delta-CRLs, de modo que el riesgo de operar con certificados revocados desconocidos permanece por debajo de un umbral durante el intervalo de validez de la CRL base, y la CA tiene la capacidad de gestionar este riesgo mediante el ajuste del tama帽o de las delta-CRL. Para cada uno de estos mecanismos, llevamos a cabo el an谩lisis de la seguridad y la evaluaci贸n del desempe帽o para demostrar la seguridad y eficiencia de las acciones que se emprenden

    On the realization of VANET using named data networking: On improvement of VANET using NDN-based routing, caching, and security

    Get PDF
    Named data networking (NDN) presents a huge opportunity to tackle some of the unsolved issues of IP-based vehicular ad hoc networks (VANET). The core characteristics of NDN such as the name-based routing, in-network caching, and built-in data security provide better management of VANET proprieties (e.g., the high mobility, link intermittency, and dynamic topology). This study aims at providing a clear view of the state-of-the-art on the developments in place, in order to leverage the characteristics of NDN in VANET. We resort to a systematic literature review (SLR) to perform a reproducible study, gathering the proposed solutions and summarizing the main open challenges on implementing NDN-based VANET. There exist several related studies, but they are more focused on other topics such as forwarding. This work specifically restricts the focus on VANET improvements by NDN-based routing (not forwarding), caching, and security. The surveyed solution herein presented is performed between 2010 and 2021. The results show that proposals on the selected topics for NDN-based VANET are recent (mainly from 2016 to 2021). Among them, caching is the most investigated topic. Finally, the main findings and the possible roadmaps for further development are highlighted

    Digital provenance - models, systems, and applications

    Get PDF
    Data provenance refers to the history of creation and manipulation of a data object and is being widely used in various application domains including scientific experiments, grid computing, file and storage system, streaming data etc. However, existing provenance systems operate at a single layer of abstraction (workflow/process/OS) at which they record and store provenance whereas the provenance captured from different layers provide the highest benefit when integrated through a unified provenance framework. To build such a framework, a comprehensive provenance model able to represent the provenance of data objects with various semantics and granularity is the first step. In this thesis, we propose a such a comprehensive provenance model and present an abstract schema of the model. ^ We further explore the secure provenance solutions for distributed systems, namely streaming data, wireless sensor networks (WSNs) and virtualized environments. We design a customizable file provenance system with an application to the provenance infrastructure for virtualized environments. The system supports automatic collection and management of file provenance metadata, characterized by our provenance model. Based on the proposed provenance framework, we devise a mechanism for detecting data exfiltration attack in a file system. We then move to the direction of secure provenance communication in streaming environment and propose two secure provenance schemes focusing on WSNs. The basic provenance scheme is extended in order to detect packet dropping adversaries on the data flow path over a period of time. We also consider the issue of attack recovery and present an extensive incident response and prevention system specifically designed for WSNs

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    Contribuciones para la Detecci贸n de Ataques Distribuidos de Denegaci贸n de Servicio (DDoS) en la Capa de Aplicaci贸n

    Get PDF
    Se analizaron seis aspectos sobre la detecci贸n de ataques DDoS: t茅cnicas, variables, herramientas, ubicaci贸n de implementaci贸n, punto en el tiempo y precisi贸n de detecci贸n. Este an谩lisis permiti贸 realizar una contribuci贸n 煤til al dise帽o de una estrategia adecuada para neutralizar estos ataques. En los 煤ltimos a帽os, estos ataques se han dirigido hacia la capa de aplicaci贸n. Este fen贸meno se debe principalmente a la gran cantidad de herramientas para la generaci贸n de este tipo de ataque. Por ello, adem谩s, en este trabajo se propone una alternativa de detecci贸n basada en el dinamismo del usuario web. Para esto, se evaluaron las caracter铆sticas del dinamismo del usuario extra铆das de las funciones del mouse y del teclado. Finalmente, el presente trabajo propone un enfoque de detecci贸n de bajo costo que consta de dos pasos: primero, las caracter铆sticas del usuario se extraen en tiempo real mientras se navega por la aplicaci贸n web; en segundo lugar, cada caracter铆stica extra铆da es utilizada por un algoritmo de orden (O1) para diferenciar a un usuario real de un ataque DDoS. Los resultados de las pruebas con las herramientas de ataque LOIC, OWASP y GoldenEye muestran que el m茅todo propuesto tiene una eficacia de detecci贸n del 100% y que las caracter铆sticas del dinamismo del usuario de la web permiten diferenciar entre un usuario real y un robot

    Trust-based energy efficient routing protocol for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) consist of a number of distributed sensor nodes that are connected within a specified area. Generally, WSN is used for monitoring purposes and can be applied in many fields including health, environmental and habitat monitoring, weather forecasting, home automation, and in the military. Similar, to traditional wired networks, WSNs require security measures to ensure a trustworthy environment for communication. However, due to deployment scenarios nodes are exposed to physical capture and inclusion of malicious node led to internal network attacks hence providing the reliable delivery of data and trustworthy communication environment is a real challenge. Also, malicious nodes intentionally dropping data packets, spreading false reporting, and degrading the network performance. Trust based security solutions are regarded as a significant measure to improve the sensor network security, integrity, and identification of malicious nodes. Another extremely important issue for WSNs is energy conversation and efficiency, as energy sources and battery capacity are often limited, meaning that the implementation of efficient, reliable data delivery is an equally important consideration that is made more challenging due to the unpredictable behaviour of sensor nodes. Thus, this research aims to develop a trust and energy efficient routing protocol that ensures a trustworthy environment for communication and reliable delivery of data. Firstly, a Belief based Trust Evaluation Scheme (BTES) is proposed that identifies malicious nodes and maintains a trustworthy environment among sensor nodes while reducing the impact of false reporting. Secondly, a State based Energy Calculation Scheme (SECS) is proposed which periodically evaluates node energy levels, leading to increased network lifetime. Finally, as an integrated outcome of these two schemes, a Trust and Energy Efficient Path Selection (TEEPS) protocol has been proposed. The proposed protocol is benchmarked with A Trust-based Neighbour selection system using activation function (AF-TNS), and with A Novel Trust of dynamic optimization (Trust-Doe). The experimental results show that the proposed protocol performs better as compared to existing schemes in terms of throughput (by 40.14%), packet delivery ratio (by 28.91%), and end-to-end delay (by 41.86%). In conclusion, the proposed routing protocol able to identify malicious nodes provides a trustworthy environment and improves network energy efficiency and lifetime

    Message traceback systems dancing with the devil

    Get PDF
    The research community has produced a great deal of work in recent years in the areas of IP, layer 2 and connection-chain traceback. We collectively designate these as message traceback systems which, invariably aim to locate the origin of network data, in spite of any alterations effected to that data (whether legitimately or fraudulently). This thesis provides a unifying definition of spoofing and a classification based on this which aims to encompass all streams of message traceback research. The feasibility of this classification is established through its application to our literature review of the numerous known message traceback systems. We propose two layer 2 (L2) traceback systems, switch-SPIE and COTraSE, which adopt different approaches to logging based L2 traceback for switched ethernet. Whilst message traceback in spite of spoofing is interesting and perhaps more challenging than at first seems, one might say that it is rather academic. Logging of network data is a controversial and unpopular notion and network administrators don't want the added installation and maintenance costs. However, European Parliament Directive 2006/24/EC requires that providers of publicly available electronic communications networks retain data in a form similar to mobile telephony call records, from April 2009 and for periods of up to 2 years. This thesis identifies the relevance of work in all areas of message traceback to the European data retention legislation. In the final part of this thesis we apply our experiences with L2 traceback, together with our definitions and classification of spoofing to discuss the issues that EU data retention implementations should consider. It is possible to 'do logging right' and even safeguard user privacy. However this can only occur if we fully understand the technical challenges, requiring much further work in all areas of logging based, message traceback systems. We have no choice but to dance with the devil.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore