8,143 research outputs found

    CFD modelling of the fluidised bed coating process

    Get PDF

    Regularized lattice Boltzmann Multicomponent models for low Capillary and Reynolds microfluidics flows

    Full text link
    We present a regularized version of the color gradient lattice Boltzmann (LB) scheme for the simulation of droplet formation in microfluidic devices of experimental relevance. The regularized version is shown to provide computationally efficient access to Capillary number regimes relevant to droplet generation via microfluidic devices, such as flow-focusers and the more recent microfluidic step emulsifier devices.Comment: 9 pages, 5 figure

    Computational fluid dynamics combustion analysis evaluation

    Get PDF
    This study involves the development of numerical modelling in spray combustion. These modelling efforts are mainly motivated to improve the computational efficiency in the stochastic particle tracking method as well as to incorporate the physical submodels of turbulence, combustion, vaporization, and dense spray effects. The present mathematical formulation and numerical methodologies can be casted in any time-marching pressure correction methodologies (PCM) such as FDNS code and MAST code. A sequence of validation cases involving steady burning sprays and transient evaporating sprays will be included

    Biomechanical Models of Human Upper and Tracheal Airway Functionality

    Get PDF
    The respiratory tract, in other words, the airway, is the primary airflow path for several physiological activities such as coughing, breathing, and sneezing. Diseases can impact airway functionality through various means including cancer of the head and neck, Neurological disorders such as Parkinson\u27s disease, and sleep disorders and all of which are considered in this study. In this dissertation, numerical modeling techniques were used to simulate three distinct airway diseases: a weak cough leading to aspiration, upper airway patency in obstructive sleep apnea, and tongue cancer in swallow disorders. The work described in this dissertation, therefore, divided into three biomechanical models, of which fluid and particulate dynamics model of cough is the first. Cough is an airway protective mechanism, which results from a coordinated series of respiratory, laryngeal, and pharyngeal muscle activity. Patients with diminished upper airway protection often exhibit cough impairment resulting in aspiration pneumonia. Computational Fluid Dynamics (CFD) technique was used to simulate airflow and penetrant behavior in the airway geometry reconstructed from Computed Tomography (CT) images acquired from participants. The second study describes Obstructive Sleep Apnea (OSA) and the effects of dilator muscular activation on the human retro-lingual airway in OSA. Computations were performed for the inspiration stage of the breathing cycle, utilizing a fluid-structure interaction (FSI) method to couple structural deformation with airflow dynamics. The spatiotemporal deformation of the structures surrounding the airway wall was predicted and found to be in general agreement with observed changes in luminal opening and the distribution of airflow from upright to supine posture. The third study describes the effects of cancer of the tongue base on tongue motion during swallow. A three-dimensional biomechanical model was developed and used to calculate the spatiotemporal deformation of the tongue under a sequence of movements which simulate the oral stage of swallow

    The XDEM Multi-physics and Multi-scale Simulation Technology: Review on DEM-CFD Coupling, Methodology and Engineering Applications

    Get PDF
    The XDEM multi-physics and multi-scale simulation platform roots in the Ex- tended Discrete Element Method (XDEM) and is being developed at the In- stitute of Computational Engineering at the University of Luxembourg. The platform is an advanced multi- physics simulation technology that combines flexibility and versatility to establish the next generation of multi-physics and multi-scale simulation tools. For this purpose the simulation framework relies on coupling various predictive tools based on both an Eulerian and Lagrangian approach. Eulerian approaches represent the wide field of continuum models while the Lagrange approach is perfectly suited to characterise discrete phases. Thus, continuum models include classical simulation tools such as Computa- tional Fluid Dynamics (CFD) or Finite Element Analysis (FEA) while an ex- tended configuration of the classical Discrete Element Method (DEM) addresses the discrete e.g. particulate phase. Apart from predicting the trajectories of individual particles, XDEM extends the application to estimating the thermo- dynamic state of each particle by advanced and optimised algorithms. The thermodynamic state may include temperature and species distributions due to chemical reaction and external heat sources. Hence, coupling these extended features with either CFD or FEA opens up a wide range of applications as diverse as pharmaceutical industry e.g. drug production, agriculture food and processing industry, mining, construction and agricultural machinery, metals manufacturing, energy production and systems biology

    Computational Fluid Dynamic Modeling Application as a Design Tool in Air Assisted Pesticide Sprayer Development

    Get PDF
    The complex dynamic behaviors of air assisted pesticides spraying, especially inter-droplets interactions as well as effects of prevailing surrounding fluid environment before and after the spray breakup makes development of an ideal sprayer unattainable. Moreover, plants’ canopy architectures are sophisticated mainly due to variations in features’ orientation amongst species. A prior insight of the sprayer’s performance behavior at design phase can significantly help in avoiding unanticipated future failures. This situation has recently, inevitably paved way for the application of numerical analysis such as Computational Fluid Dynamic (CFD) modeling as a robust design tool. Furthermore, movement of spray droplets from the generator to the targets involve fluid flows, heat transfer and mass flow which are the principle fields in CFD simulation of transport phenomena. As the droplets travel, the surrounding environment is likely to interfere with their physical and chemical properties. The concern to fully utilize the technology has nowadays not only drawn the attention of manufacturing industry but has also captured the interests of researchers. Previous applications of CFD modeling have demonstrated its potential to ease the challenges of cost and time consumption that would have been encountered in physical experimental trials tests. Nevertheless, developing a standard ideal model still remains unattainable. Most researchers have developed simple model mainly of Lagrangian approach whose applications have primarily been on open-fields spraying despite the situation still remaining far underway. This paper gives a state-of-art review of the application of CFD modeling in air atomized pesticide spraying with an aim of highlighting future research needs. Keywords: Computational Fluid Dynamic, Air assisted sprayers, Lagrangian approach, Spray droplet

    Ambit of Multiphase CFD in Modelling Transport Processes Related to Oil Spill Scenario and Microfluidics

    Get PDF
    During the ‘Deepwater Horizon’ accident in the deep sea in 2010, about 4.9 million barrels of oil was released into the Gulf of Mexico, making the spill one of the worst ocean spills in recent times. To mitigate the ill effects of the event on the environment, subsea injection of dispersants was carried out. Dispersant addition lowers the interfacial tension at oil/water interface and presence of local turbulence enhances the droplet disintegration process. The oil droplets contain a plethora of hydrocarbons which are soluble in water. In deep spill scenarios, droplets spend large amounts of time in water column; hence, the dissolution process of soluble hydrocarbons becomes important. In this study, our focus is to exploit the capabilities of multiphase CFD in developing an integrated numerical model which accounts for various transport processes and hence would effectively guide us in predicting the fate of oil mass. In the initial stages, studies were conducted to understand these transport processes at a very fundamental level where the effect of surfactant, on the dynamics of crude oil, droplet rising in a stagnant column, was investigated. To capture the subsurface dissolution of hydrocarbons from oil droplet, a unique experiment was devised wherein a binary organic mixture, representing a pseudo oil droplet comprising of volatile and non-volatile hydrocarbons, was employed to study the effect of unsteady mass transport on the overall dynamics of the droplet. In the next phase of project, we developed a numerical model, by integrating traditional multiphase CFD models and turbulence models, with a population balance (PB) approach, for predicting the droplet size distribution resulting from the interaction of turbulent oil jets with the surrounding quiescent environment. Apart from the simulations specific to oil spill related situations, the multiphase CFD was also employed to study the fluid flow in micro-channels. The mass transfer mechanisms in micro-channels for immiscible fluids in squeezing and dripping regimes were studied by employing the numerical model, which couples the features of the traditional Volume of fluid method and the Continuous Species transport approach for evaluating the concentration fields inside dispersed and continuous phase
    • …
    corecore