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Modelling of cavitation in diesel injector nozzles
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A computational fluid dynamics cavitation model based on the Eulerian–Lagrangian
approach and suitable for hole-type diesel injector nozzles is presented and discussed.
The model accounts for a number of primary physical processes pertinent to cavitation
bubbles, which are integrated into the stochastic framework of the model. Its
predictive capability has been assessed through comparison of the calculated onset
and development of cavitation inside diesel nozzle holes against experimental data
obtained in real-size and enlarged models of single- and multi-hole nozzles. For
the real-size nozzle geometry, high-speed cavitation images obtained under realistic
injection pressures are compared against model predictions, whereas for the large-
scale nozzle, validation data include images from a charge-coupled device (CCD)
camera, computed tomography (CT) measurements of the liquid volume fraction and
laser Doppler velocimetry (LDV) measurements of the liquid mean and root mean
square (r.m.s.) velocities at different cavitation numbers (CN) and two needle lifts,
corresponding to different cavitation regimes inside the injection hole. Overall, and
on the basis of this validation exercise, it can be argued that cavitation modelling
has reached a stage of maturity, where it can usefully identify many of the cavitation
structures present in internal nozzle flows and their dependence on nozzle design and
flow conditions.

1. Introduction
Current common-rail fuel injection systems for direct injection diesel engines operate

at very high pressures, up to 1800 bar, while the whole injection process lasts for very
short time intervals – of just a few milliseconds. The injection rate is controlled through
the fast opening and closing of the needle valve, whereas the typical diameter of nozzle
holes is 0.1–0.2 mm. As the flow from the injector enters into the nozzle discharge holes,
it has to turn sharply from the needle seat area, which leads to the static pressure of
the liquid at the entrance of the holes falling below its vapour pressure and initiation
of cavitation. The occurrence of cavitation in orifices and its significant effect on
spray formation have been known for quite some time. From the early experiments of
Bergwerk (1959), using simplified large-scale and real-size single-hole acrylic nozzles,
it was found that the discharge coefficient of the nozzle is mainly dependent on the
cavitation number, which is a non-dimensional parameter indicating the expected
cavitation intensity (see (1)), and is independent of the Reynolds number, i.e.

CN =
pinj − pback

pback − pvapour

(1)

More recent experimental studies of the flow inside real-size and large-scale model
nozzles have revealed the complexity of the two-phase flow structures formed over a
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number of cavitation regimes; for example see Soteriou, Andrews & Smith (1995);
Chaves et al. (1995); Arcoumanis et al. (1999). Other studies have revealed that
cavitation significantly influences the atomization process of the emerging fuel, which
represents one of the key factors affecting the performance and exhaust emissions
of direct-injection diesel engines; e.g. see He & Ruiz (1995) and Tamaki, Shimizu &
Hiroyasu (2001). Due to the difficulty in obtaining real-time measurements during the
injection process, most of the reported experimental studies have employed devices
operating under simulated conditions approaching those of diesel engines. Although
very useful results have been obtained from large-scale nozzle experiments, e.g. see
Soteriou, Smith & Andrews (1998); Afzal et al. (1999); Henry & Collicott (2000) and
Roth, Gavaises & Arcoumanis (2002), the advances in instrumentation technology
have allowed more information to be obtained in real-size injector nozzles. Such
studies have been recently reported by Arcoumanis et al. (2000), Badock et al. (1999),
Badock, Wirth &, Tropea (1999), Goney & Corradini (2000), Henry & Collicott
(2000), Walther et al. (2000) and Blessing et al. (2003).

In contrast to the insight obtained from experimental studies such as the
aforementioned ones, theoretical and modelling studies of nozzle flow cavitation
were somewhat less forthcoming; an extensive coverage of the topic can be found in
the review of Schmidt & Corradini (2001). One of the earliest efforts was reported by
Delannoy & Kueny (1990), who employed a single-fluid mixture approach, combined
with an empirical barotropic law model for the calculation of the mixture density
variation as a function of pressure and the speed of sound. Two-dimensional
simulations of cavitation in a Venturi nozzle have shown only qualitative rather
than quantitative agreement with experiments. A similar two-dimensional model
based on enthalpy considerations (Avva, Singhal & Gibson 1995) assumes thermal
equilibrium between liquid and vapour and has shown acceptable agreement for the
discharge coefficient dependency on cavitation number for nozzle holes with sharp
inlet edges. In the barotropic law model of Schmidt, Rutland & Corradini (1997, 1999),
cavitation was simulated by a continuous compressible liquid–vapour mixture, with
the speed of sound, based on the homogeneous equilibrium model (HEM) of Wallis
(1969). Although it was argued that compressibility is beneficial both physically and
numerically, the authors have acknowledged that a drawback of barotropic models
is the allowance of gradual density changes when gradual pressure gradients exist,
which means that such models would not be easily applicable to large-scale lower-
speed cavitation calculations, where there are very small pressure differences but quite
steep density gradients. Another point about this approach is that it does not take
into account turbulence effects. A similar model was also considered by Dumont,
Simonin & Habchi (2001), who extended it to three dimensions. Another cavitation
model developed and applied to simulations of diesel nozzles is that proposed by
Marcer et al. (2000) and Marcer & LeGouez (2001), in which a volume-of-fluid
(VOF) method was modified and combined with an energy-derived mass transfer
model. The basic model assumption was that cavitation could be approximated by a
larger-scale interface, which rules out the possibility of dispersed bubbles as observed
in experimental studies. Although liquid compressibility was taken into account,
turbulence modelling was not considered in their investigations.

In contrast to the cavitation models that are based on thermodynamic consi-
derations, in which the pressure is considered only as a thermodynamic variable, there
is a group of cavitation models that are based on the assumption that the pressure
difference between the inner bubble and the surrounding liquid, acting as a mechanical
force, is responsible for the appearance of cavitation. Furthermore, models whose basic
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assumption is that cavitation occurs due to the growth of bubble nuclei belong to
the same group. One of the early models in this category is that of Kubota, Kato &
Yamaguchi (1992), although it has not been applied to nozzle flow simulations; in it,
cavitation was treated as a viscous fluid whose density changed significantly due to the
presence of vapour, with pure liquid and pure vapour treated as incompressible media.
A bubble number density, which was assumed to be constant, and a local bubble
radius were used to determine at each location the vapour fraction. The Rayleigh–
Plesset (R-P) bubble dynamics equation expressed on a Eulerian frame of reference
was used for calculating bubble growth and collapse; nevertheless, viscous and
surface tension effects were not taken into account. Moreover, the behaviour inside the
bubble was assumed to be isothermal, but possible existence of contaminant gas was
not considered. In a similar effort by Chen & Heister (1996a, b) the number of bubble
nuclei was assumed to be constant per unit mass of mixture. The flow inside single-
hole diesel-like sharp-edged and rounded nozzles was simulated in two dimensions
(Chen & Heister 1996a), and the above model was further validated (Bunnell et al.
1999) and extended to three dimensions in a single-hole geometry reminiscent of a
diesel nozzle (Bunnell & Heister 2000). A similar model was developed by Grogger &
Alajbegovic (1998) in which, although cavitation was considered as a mixture, the
two-fluid method was employed; two sets of conservation equations were solved,
one for the liquid phase and one for the vapour phase, allowing for a slip velocity.
The mass transfer rate from one phase to the other was calculated by a simplified
version of the classical R-P bubble dynamics equation, which is known as the
Rayleigh or asymptotic equation; it assumes that the growth/collapse of bubbles
depends solely on the difference between the liquid and the vapour pressures. Two-
and three-dimensional simulations of venturi cavitating flows were performed. The
model was able to reproduce the observed cavitation regimes, while the predicted
pressure distribution agreed rather well with the experiment, although in terms of
the vapour volume fraction there were significant differences. Subsequently, a revised
version of the model was presented (Alajbegovic 1999; Alajbegovic, Grogger &
Philipp 1999a, b), in which an empirical equation was used to account for the reduction
of bubble number density with increasing vapour fraction. Variants of this bubble
model were more recently presented (Sauer & Schnerr 2000; Schnerr & Sauer 2001),
in which the classical interface-capturing VOF method was converted into a mixture
model. In subsequent improvements to the initial approach the k-ω turbulence model
was implemented (Yuan, Sauer & Schnerr 2000; Yuan & Schnerr 2001); predictions
of cavitating flow in a single-hole sharp-edged nozzle showed that the inclusion of
a turbulence model led to a steady-state solution, with no evidence of transient
behaviour.

Another bubble-based model is that of Singhal et al. (2001, 2002), in which
a mixture formulation was also followed, combined with the Rayleigh equation
for vapour mass production/destruction. It should be pointed out that ad hoc
coefficients and some empirical assumption about the maximum attainable bubble
radius were employed, which effectively led to different equations for the evaporation
and condensation rates. Simulations of steady-state cavitation through a sharp-
edged orifice matched the dependence of the discharge coefficient on cavitation
number, in agreement with the correlation of Nurick (1976). In contrast to the
aforementioned bubble-based models, which were purely Eulerian, Sou, Masaki &
Nanajima (2001) and Sou, Nitta & Nakajima (2002) utilized a Lagrangian frame
of reference for the tracking of cavitation bubbles. However, in this investigation
the researchers did not consider bubble dynamics; rather, in an arbitrary manner,
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constant-diameter bubbles were introduced in the liquid, and when pressure reached
a pre-selected value they were forced to collapse immediately. As a result, bubble
breakup and coalescence could not be taken into account.

So far, no cavitation model has been presented which assesses the physical processes
such as bubble nucleation, growth/collapse, breakup, coalescence and turbulent
dispersion taking place in hole-type nozzles. Furthermore, past modelling studies
have not considered the inherent stochastic nature of the phenomenon, evident in
all experimental data available. As part of ongoing research on cavitation within
the authors’ group, numerous experimental data relevant to cavitation in diesel
injectors have been presented (Arcoumanis et al. 1998; Arcoumanis et al. 1999;
Arcoumanis et al. 2000; Roth, Gavaises & Arcoumanis 2002; Roth et al. 2005),
together with early modelling efforts (Gavaises & Giannadakis 2004; Giannadakis
et al. 2004). The stochastic flow processes incorporated into the developed model are
thought to provide an improved theoretical framework relative to other models repor-
ted in the literature that adopted a thermodynamic or Eulerian–Eulerian approach for
representing cavitation; this has been demonstrated in a recent study (Giannadakis
et al. 2007) in which a comparison between cavitation models against experimental
data, some of which are also used in the present study, has been performed.

This study aims to present the details of the complete form of this Eulerian–
Lagrangian stochastic computational fluid dynamics (CFD) cavitation model and its
application to diesel injector nozzles. The flow processes considered are described,
and their relative importance is addressed, providing new physical insight into such
flows. Special emphasis is given to detailed model validation against the in-house
experimental data. These include CCD and high-speed images of the cavitation
development in single- and multi-hole nozzles, LDV measurements of the liquid
velocity as well as unpublished CT measurements of the cavitation volume fraction
obtained in single-hole enlarged nozzles. In addition, cavitation images obtained in
real-size nozzles incorporating transparent windows as well as measurements of the
nozzle discharge coefficient have further been used for model validation. Finally, it
is worth mentioning that extensions of the present model, linking cavitation with
erosion and its application to new, emerging fuel systems for gasoline direct injection
engines have been recently presented by Gavaises et al. (2007) and Papoulias et al.
(2007), respectively, adding to the model’s predictive capability over a wide range of
applications and nozzle configurations.

In what follows the developed numerical model is described, highlighting the
key assumptions and its applicability limits. Although it is not possible to validate
independently each of the flow processes taking place in the subgrid time and length
scales relevant to cavitation, the variety of the nozzle geometries and operating
conditions tested have allowed macroscopic validation of the developed model, which
has not been previously possible with existing models. The results from the numerous
validation studies are then described followed by a summary of the most important
conclusions.

2. Mathematical model formulation
In this section the developed model is described. Within the framework of the

Eulerian–Lagrangian approach, cavitation is treated as a two-phase flow comprising
the ‘continuous’ liquid and the ‘dispersed’ gas/vapour bubbles. The origin of cavitation
is attributed to small bubble nuclei which are nucleated in the liquid after certain
criteria are met and which grow once they experience steep depressurization.
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Moreover, the cavitation bubbles interact with the flow, break up and coalesce
and are transported through the surrounding liquid with non-zero slip velocity. All
these processes are addressed by means of appropriate sub-models which are based
on fundamental physical mechanisms developed independently elsewhere; they are,
nevertheless, reported here for reasons of completeness and also for revealing their
relative influence on the development of cavitation in hole-type nozzles, which is
information relatively unknown from past studies. It can thus be argued that the
described model does not simply bring together sub-models, which are readily able
to predict cavitation without modifications or adjustments. Important aspects of the
overall model performance include the numerical implementation of the various sub-
models and the physical assumptions required to be made in order to predict the
experimental observations. Most importantly, the numerical procedure established
for the coupling between the Eulerian and the Lagrangian phases is of paramount
importance, and also the treatment of the volume fraction of the cavitation bubbles,
when they become larger than the numerical cells used for the discretization of the
of liquid-phase equations, represents an important aspect of the developed model. A
detailed presentation of the theoretical model is given next.

2.1. Liquid-phase model

For the liquid phase the volume- and ensemble-averaged continuity and Navier–Stokes
equations are solved. As a result of the dynamic interaction of the cavitation bubbles
with the surrounding pressure field, the available volume for the liquid phase can
change significantly. This effectively means that, although the liquid phase is assumed
to be incompressible, the actual flow at locations at which cavitation occurs can be
regarded as compressible due to the fact that the velocity field does not have zero
divergence due to the volume production/destruction caused by vapour. The effect
of the vapour presence is taken into account by including the liquid-phase volume
fraction αL (referred to as liquid fraction) in the conservation equations. Moreover,
due to the slip velocity between the cavitation bubbles and the flowing liquid, there
is additional interaction, which is taken into account through the inclusion of the
appropriate source terms in the conservation equations, i.e.

∂

∂t
(αLρL) + ∇ · (αLρLuL) = 0, (2)

∂(αLρLuL)

∂t
+ ∇ · (αLρLuL ⊗ uL)

= −∇p + αL∇ · ((μL + μt )(∇ ⊗ uL + (∇ ⊗ uL)T − 2

3
(∇ · uL)I)) + smomentum , (3)

where I is the unit tensor and μt is the eddy viscosity calculated as

μt = CμρL

k2
L

εL

. (4)

Since buoyancy effects were found to be negligible, the corresponding term in the
momentum conservation equation has been dropped. In (3) through the term smomentum ,
the effect of the cavitation bubbles’ relative motion upon the liquid phase is taken
into account; its calculation is presented in a following paragraph, after the details of
the cavitation bubbles model have been presented. Due to the fact that a model able
to address the combined effect of turbulence and cavitation on the flow has as yet not
appeared, and since nozzle flows are highly turbulent, the standard two-equation k-ε
model has been employed for the consideration of turbulence effects. The transport
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Constant Cμ Cε1 Cε2 Cε3 σ k σ ε

Value 0.09 1.44 1.92 −0.33 1 1.3

Table 1. Coefficients in the standard k-ε mode.

equations for k and ε read as follows:

∂(αLρLkL)

∂t
+∇ · (αLρLuLkL)−∇ ·

(
αL

(
μL +

μt

σk

)
∇kL

)
= αLP −αLρLε+ skappa , (5)

∂(αLρLεL)

∂t
+ ∇ · (αLρLuLεL) − ∇ ·

(
αL

(
μL +

μt

σε

)
∇εL

)

= αL

εL

kL

(Cε1P − Cε2ρLεL) + Cε3αLρLεL∇ · uL + sepsilon . (6)

All the constants appearing in the above two equations have the standard k-ε
model values (table 1). The terms skappa and sepsilon account for the additional effect
of the bubbles’ relative movement on the liquid-phase turbulent kinetic energy and
its dissipation. Their calculation is based on the approach of Laı́n et al. (2002) and
is presented in a following section. It has to be noted that, as part of the numerical
tests that have been performed during the development of the model, a number
of other two-equation turbulence models have been tested apart from the standard
k-ε, namely the RNG of Yakhot et al. (1992) and the non-equilibrium version of
Shyy et al. (1997); the latter has been applied in the simulation of cavitating flows
(Vaidyanathan et al. 2003). Overall, it can be argued that although a variation of up to
3% in the predicted nozzle discharge coefficient can be attributed to the turbulence
model (Giannadakis et al. 2007), the details of the underlying physical processes
are not affected significantly; furthermore, no model has been found to persistently
predict cavitation better than the rest for all test cases, within the context of the
Reynolds-averaged methodology. For this reason, it is considered that the model
adopted here represents a robust engineering tool at the current state of the model’s
development and level of sophistication. Nevertheless, given the general shortcomings
of two-equation turbulence models, it is expected that a more advanced modelling
approach regarding turbulence, such as Reynolds-stress modelling and large-eddy
simulation, will account for anisotropic effects and capture with enhanced temporal
accuracy the fluctuating behaviour of the flow.

2.2. Lagrangian cavitation model

Within the context of the Lagrangian framework, it is necessary to simulate the large
number of cavitation bubbles by means of a stochastic statistical approximation,
based on the discrete bubble model (DBM) approach. Through this approximation,
the total bubble population is represented by a number of parcels, each containing
a large number of identical and non-interacting bubbles. The properties and some
physical processes of these representative bubbles are randomly approximated from
calculated distribution functions, using the Monte Carlo approximation, similar to the
way that sprays are approximated with the droplet discrete model (DDM) method
(see Dukowicz 1980). In order to describe statistically the total bubble population, a
distribution function f (x, u, R, t) is assumed that determines at time t the probable
number of bubbles per unit volume located in the spatial range (x, x + dx), with
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velocity in the range of (u, u + du) and with radius in the range of (R, R + dR). For
the conservation of the total number of bubbles in any volume of (x, u, R, t) space
moving with the bubbles, the following equation must be satisfied:

∂f

∂t
+ ∇x(f · u) + ∇u(f · a) +

∂

∂R
(f · Ṙ) = ḟ Nucleation + ḟ Breakup + ḟ Coalescence . (7)

In the above equation, all the physical sub-processes that have been considered
in the current model and have an effect on the distribution function f are included.
Apparently, since thermal effects have not been taken into account, temperature
T is not amongst the independent variables of (7). In order to solve the above
equation, the Lagrangian approximation method has been used where the trajectory
and momentum equations are solved for each individual bubble parcel. Subsequently,
by employing single-bubble dynamics, the change of radius of each bubble parcel due
to the surrounding liquid flow field is taken into account.

2.3. Solution procedure

The cavitation model can be used either for an unsteady simulation in a stagnant
flow field or starting from an already-obtained single-phase solution. In the latter
approach, one must allow for a sufficient number of time steps in order to obtain
a pseudo-steady-state multi-phase solution. In this way one can assess the effect of
cavitation on the flow, not only from a numerical but also from a physical perspective.
Due to the different time scales inherent in the two phases, the selected tracking time
step for the bubble phase �tB is much smaller than the corresponding one �tL for
the continuous liquid phase. As a result, a number of sub-cycles are performed within
the dispersed phase large enough to reach the time level of the continuous phase,
which is subsequently calculated. The basic computational steps in the bubble phase
can be summarized as follows:

1. Bubble nucleation on locations at which the pressure falls below the vapour
pressure of the flowing liquid.

2. Calculation of new bubble location due to the initial velocity.
3. Interpolation of scalar and vector quantities from continuous liquid phase

solution at the new location of the bubbles.
4. Computation of bubble momentum and dispersion.
5. Calculation of bubble dynamics, breakup and coalescence with the corres-

ponding sub-models.
6. Estimation of void fraction due to the presence of the cavitating structures;

calculation of the momentum and turbulence interaction source terms for the
continuous liquid phase.

Some steps in this summary need to be explained in detail, since they posed a great
challenge during the development of the current model, both from the conceptual
and the numerical point of view.

2.3.1. Bubble volume fraction calculation

The coupling of the Eulerian continuous liquid phase with the Lagrangian
dispersed bubble phase can become problematic if some inherent assumptions of the
methodology are violated. The most important assumption of all Eulerian–Lagrangian
methodologies is that the dispersed-phase volume fraction remains relatively low and
that the typical dimensions of the parcels under consideration remain much smaller
than the typical cell size of the Eulerian mesh. These assumptions can be violated
in cavitating bubble flows, due to the combination of dense grids and the explosive
growth of some bubbles that undergo large pressure drops. One should note that the
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Figure 1. Bubble volume distribution in cells around the cell-containing parcel.

violation of the second assumption can take place not only for a Eulerian–Lagrangian
bubble-based cavitation model but also in bubble-based Eulerian ones; this represents
a universal theoretical weakness of this approach. In order to circumvent this
limitation, a numerical methodology was developed in which the excess volume
of each bubble parcel is distributed to its surrounding Eulerian cells. Normally, for
the calculation of the volume fraction of a single bubble parcel αB with a volume
smaller than that of its host cell Vcell the following expression would suffice:

αB =
1

�tLVcell

∫ t+�tL

t

4

3
πR3N�tB, (8)

where N is the bubble number density of the parcel. With the above equation the time-
averaged dispersed-phase volume fraction would be calculated for each cell, provided
that the total volume of the bubble parcels present in this cell are smaller than the
volume of the cell itself at all times. Time averaging is necessary due to the fact
that the time step for the solution of each dispersed phase sub-cycle is usually much
smaller than the time step for the continuous-phase solution, and so it is possible
that parcels are transported through a number of cells during the sub-cycling part
of the solution procedure. In order to account for this, during each dispersed phase
sub-cycle the volume fraction of the bubbles is calculated for each cell; subsequently it
is multiplied by the dispersed/continuous-phase time step ratio, �tB/�tL, and then it
is integrated over all the dispersed-phase time steps. Nevertheless, in cavitating flows
bubbles experience significant pressure drop within very short distance, which most
of the time leads to their substantial expansion, and as a result the radius of some
bubble parcels becomes larger than the host computational cell. In order to establish
a conservative approach and address this problem, a special methodology has been
developed; bubbles are allowed to grow larger than the cell they are occupying, but
then the excess volume of the host cell is distributed to its adjacent ones. If any of the
adjacent cells is already full of vapour, the distribution continues to the cells that are
located further away, until all the excess volume is allocated. Once the distribution
of the excess bubble volume is completed for all parcels, the volume fraction of
the dispersed phase is calculated. From the dispersed-phase volume fraction, the
continuous-phase void fraction is simply calculated as αL = 1 − αB . In figure 1 a
cylinder is depicted, which has been discretized with a three-dimensional mesh. In
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the centre of the cylinder a bubble is introduced, which is, large enough to fully
enclose three cells across its radius. In the same graph the mesh and the void fraction
on the middle plane of the cylinder are illustrated, together with the bubble under
consideration; evidently, the successful distribution of the bubble volume is verified.
It has to be noted that the method does not require specific cell geometry, since it
can work with any polyhedral cell with arbitrary node location.

2.3.2. Calculation of interphase source terms

The physical interaction between the liquid and the cavitation bubbles due to their
relative motion is taken into account in the current model through the concept of
point source terms, an approach known as ‘particle-in-cell’ (Andrews & O’Rourke
1996). Within the context of this approach, the general form for the cell and the
time-averaged momentum source term reads as follows:

Smomentum =

∫
f (x, u, R, t)ρB

4

3
πR3Nparcel

durel

dt
dx du dR dt, (9)

where urel = uL − uB is the relative velocity between the two phases. In the above
equation it should be mentioned that for cavitating flows buoyancy and latent mass
effects have been neglected. Due to the sub-cycling process, the cell-based momentum
source term Smomentum is averaged temporally over the time step of the continuous
phase �tL, similar to the calculation of the void fraction; the time averaging is
denoted by the overbar. Once the source term is calculated from (9), it is introduced
on the right-hand side of (3), the continuous-phase momentum equation. Although
it is straightforward to estimate mathematically the interphase momentum exchange,
when the focus changes to the effect of the dispersed phase on the turbulence of the
continuous one, the opposite holds true. In the current study the approach of Laı́n
et al. (2002) has been followed; within the context of this approach, a combination
of the instantaneous and mean momentum source term with the dispersed- and
continuous-phase velocities has been employed, leading to the following form for the
turbulent kinetic energy source term:

Skappa = uB · Smomentum − uL · Smomentum , (10)

where the overbar again denotes temporal averaging over the dispersed phase sub-
cycles. Having calculated Skappa , the source term for the turbulence dissipation rate is
approximated as

Sepsilon = Cε

εL

kL

Skappa , (11)

where Cε is a model constant with a recommended default value of 1.8 (Laı́n et al.
2002).

2.3.3. Modelling of bubble interaction with solid boundaries

Another numerical aspect that has been developed and implemented in the present
Eulerian–Lagrangian cavitation model is the approach adopted for the interaction
of large bubbles with their surrounding solid boundaries. In cavitating flows, bubble
expansion occurs very frequently in the vicinity of a solid boundary. Obviously,
a bubble close to a wall should not be allowed to grow without any restriction;
physically, the bubble should grow until its surface reaches the solid boundary. This
is a point frequently overlooked in Eulerian models in which the bubble radius
becomes a virtual variable, with a compromised physical meaning. Another issue that
needs to be addressed with respect to large bubbles and solid boundaries is that of the
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impingement of the former on the latter; normally, within the context of the classical
modelling approach concerning the impingement of particles, droplets and bubbles,
the necessary distance of the dispersed particle from the wall is calculated with respect
to the particle’s centre. Nonetheless, if the bubble radius is significant, i.e. comparable
to the average grid cell size, the actual impingement point can no longer be the centre
of the bubble; therefore, the numerical method that has been implemented identifies
the actual contact point on the bubble surface with the adjacent three-dimensional
solid surface boundary.

2.4. Subgrid length scale and time scale cavitation bubble processes

In this section, the various physical sub-models considered are described, and
their relative influence on the flow development is evaluated; these include bubble
nucleation, growth/collapse, breakup and collision/coalescence as well as bubble
trajectory and associated effects of turbulence.

2.4.1. Bubble nucleation

It is well known that liquids are able to withstand considerable tension prior to the
occurrence of cavitation (see e.g. Briggs 1950; Trevena 1987; Kinjo & Matsumoto
1998; Temperley & Trevena 1994; Xiao & Heyes 2002). In this case the inception
of cavitation is attributed to the existence of microscopic nuclei, originating either
from small crevices filled with contaminant gas and perhaps pure vapour present
in the flowing liquid (heterogeneous nucleation) or from small voids in the liquid
filled only with pure vapour (homogeneous nucleation). Extensive research has been
carried out on the topic over the years by numerous groups (see e.g. Harvey et al.
1944; Fox & Herzfeld 1954; Apfel 1970; Kodama et al. 1981; Atchley & Prosperetti
1989; Rood 1991; Meyer, Billet & Holl 1992; Milton & Arakeri 1992; Vinogradova
et al. 1995; Gindroz & Billet 1998; Liu & Brennen 1998; Arndt & Maines 2000;
Mørch 2000; Hsiao, Chahine & Liu 2003). In the vast majority of engineering
applications in which cavitation takes place, it can be argued that heterogeneous
nucleation dominates, since all working fluids are expected to have a certain level
of contamination and impurities. The currently proposed sub-model for free stream
nucleation assumes microscopic spherical bubbles containing a random mixture of fuel
vapour and contaminant gas; the latter is neglected in most of the Eulerian models.
The majority of published experimental work on cavitating flows employs water
as the working medium; for example see Meyer et al. (1992) and Liu & Brennen
(1998). Both sets of measurements refer to natural and man-made environments,
using water with different levels of contamination. The measured size distributions
are quite scattered, exhibiting significant variance from each other. Clearly, this is an
unavoidable and inherently stochastic behaviour which supports the argument for the
development of a stochastic cavitation model. Given the lack of similar experimental
data for diesel fuel and based on the fact that the above measurements essentially
capture the level of water contamination that causes heterogeneous nucleation, it
is assumed here that the contamination trends identified in water can be adopted
for diesel fuel. Obviously, if homogeneous nucleation had been recognized as the
dominant mechanism responsible for the inception of cavitation in diesel systems
this assumption could not have been made. Observations of the measured nuclei size
distributions from the aforementioned sources have resulted in an analytical linear fit,
in double logarithmic scale, with which a probability density function (pdf hereafter)
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Figure 2. Effect of initial nuclei pdf on predicted cavitation volume percentage (top) and
mean bubble size (bottom) spatial distribution inside the hole of the sharp-edged inlet
single-hole nozzle using (a) logarithmic with Rmin = 0.1 μm and Rmax = 1 μm, (b) logarithmic
with Rmin = 0.01 μm and Rmax =1 μm and (c) uniform with Rmin = 0.1 μm and Rmax = 1 μm
(pinj = 500 bar; pback = 1 bar).

for the radius of the bubble nuclei can be formulated, i.e.

p(R) =

nmin

(
nmax

nmin

)log
(

R
Rmin

)/
log

(
Rmax
Rmin

)

∫ Rmax

Rmin

nmin

(
nmax

nmin

)log
(

R
Rmin

)/
log

(
Rmax
Rmin

)
dR

. (12)

The size range of the existing nuclei population, described by Rmin and Rmax , is
assumed to be known, and it is an input to the model. Moreover, the number densities
nmin and nmax , which correspond to the minimum Rmin and the maximum Rmax nuclei
radii, need to be assumed as well. Typically, nmin > nmax , due to the lower probability
of occurrence of larger nuclei. The above pdf has been termed logarithmic, and from
this distribution function the radii of the newly created nuclei are randomly sampled.
Comparison with experiments on real-size nozzles has led to the conclusion that
nuclei formation should take place in areas in which the liquid pressure falls below
the thermodynamic vapour pressure of the flowing liquid; this area will be referred to
as volume ‘under tension’. Apart from the location, the parameters affecting nucleation
are the volume of the cell (probability pvolume), the liquid volume fraction (probability
pvoid ) and the non-dimensional tension in the cell (probability ptension). After all these
parameters are estimated for each cell, the nucleation joint probability is calculated as

pcell = pvolume × pvoid × ptension . (13)

Numerical tests have revealed that modelling of the size pdf for the newly created
nuclei does not represent an important element of macroscopic model predictions.
These tests are conducted by performing two-dimensional simulations of the flow
through a real-size sharp-edged single-hole planar nozzle; details for this nozzle are
given in the next section. Here, it is only mentioned that it is a highly cavitating
geometry, under realistic pressure conditions (pinj = 500 bar and pback = 1 bar) and
that it is used as a test case for the presented parametric investigations. The effect
of the initial radii pdf is confirmed in figure 2, where the predicted mean cavitation
vapour-volume percentage and the arithmetic mean bubble size distributions within
the hole of a sharp inlet (and thus cavitating) single-hole nozzle are presented. In these
numerical tests, the logarithmic distribution function has been used with two different
sets of initial radii; in figure 2(a, b) two nominal values for the minimum bubble size
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Figure 3. Effect of initial nucleus volume on predicted cavitation volume percentage inside
the hole of the sharp-edged inlet single-hole nozzle using (a) 0.01 % and (b) 0.1 % (pinj =
500 bar; pback = 1 bar).

have been used, namely 0.1 and 0.01 μm, while in figure 2(c) a uniform distribution
instead of the logarithmic one has been employed, with a nominal minimum radius
of 0.01 μm. For all three cases, the maximum radius is 1 μm. It can be argued that
this initial parameter, although it may be more influential in nozzles operating at very
low cavitation numbers is, according to Giannadakis et al. (2007), not so critical for
predictions in highly cavitating nozzles. This can be attributed to the initial explosive
growth and the subsequent processes that the bubbles experience, which seem to be
macroscopically independent from the very small initial nuclei size. Further numerical
tests have revealed that the most influential parameter for model predictions is, rather
than the assumed pdf, the initial volume percentage of the nuclei population at the
time of creation relative to that of the flowing liquid which is under tension. Typically,
the initial volume fraction ranges from 0.01 % to 0.5 % of the volume under tension.
Results from a set of calculations performed with two different initial values of 0.01 %
and 0.1 % can be seen in figure 3(a, b), respectively. Although an order of magnitude
larger nuclei volume has been used, the predicted amount of cavitation vapour volume
percentage has identical distribution with only a small difference in the peak value
of less than 4 %. It should be mentioned that the effect on the predicted cavitation
vapour volume fraction is not a linear function of the initial nuclei volume, and the
outcome greatly depends on the specific nozzle design; fully cavitating nozzles are
less sensitive to the assumed nuclei level, while for high-efficiency (tapered) nozzles or
conditions of incipient cavitation, some dependency should be expected. Finally, as
reported by Giannadakis et al. (2007), up to 2–3 % variation in the nozzle discharge
coefficient could be expected for various initial nuclei populations over a wide range
of nozzle designs considered in that study.

2.4.2. Bubble dynamics

In order to account for the growth and collapse of the bubble nuclei an improved
version of the classical bubble dynamics approach has been pursued; improvements
have been realized in order to account for bubble-to-bubble interactions and the
combined effect of turbulence and the bubbles’ slip velocity on the pressure they
experience locally. It should be mentioned that some of the aforementioned theoretical
studies have employed a reduced bubble dynamics model, namely the asymptotic or
Rayleigh equation (Grogger & Alajbegovic 1998; Sauer & Schnerr 2000; Schnerr &
Sauer 2001; Singhal et al. 2001, 2002). Unfortunately, this approach cannot capture
some important aspects of the highly nonlinear behaviour of bubbles, since inertia
effects on bubble response are discarded. Moreover, the important effect of the
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contaminant gas and the less important surface tension and viscous effects are also
ignored in studies that account for inertia effects (Kubota et al. 1992; Chen & Heister
1996a, b). Noticeably, as was pointed out in Chen & Heister (1996a), with reduced
nozzle size the inertia effects on bubble dynamics become more important, leading
to substantial non-equilibrium hydrodynamic effects. This explains why some of the
Eulerian cavitation models utilize empirical coefficients in order to differentiate vapour
production from the vapour destruction rate (Singhal et al. 2001, 2002). Furthermore,
concerning the model description, due to the classical bubble dynamics framework
the inherent assumptions are that cavitation bubbles remain spherical at all times
and are surrounded by incompressible liquid. Given the omission of thermal effects
from the analysis, the classical R-P equation for the radial motion of the bubble wall
(Plesset & Prosperetti 1977; Brennen 1995) has been extended to the subgrid-scale
(SGS) bubble interaction approach of Kubota et al. (1992):

pV − p∞(t)

ρL

+
pG0

ρL

(
R0

R

)3k

= RR̈ +
3

2
Ṙ2 +

4μL

ρLR
Ṙ +

2σL

ρLR

+ 2π�r2
(
ṅ∗

bubṘR2 + n∗
bubR̈R2 + 2n∗

bubRṘ2
)
, (14)

where p∞ is the far-field pressure in the liquid; pV is the vapour pressure and pG0

the initial partial pressure of the contaminant gas inside the bubble; �r is the radius
of the assumed spherical cluster of interaction; and n∗

bub is the number of bubbles
contained in the parcel under consideration divided by the host cell volume. All the
liquid-phase properties, namely density ρL, dynamic viscosity μL and surface tension
σL, are considered to be constant. For the exponent in the above equation, if k =1
it implies that the bubble content behaves isothermally, and if k = γ it implies that
the behaviour of the bubble content is adiabatic, since γ is the polytropic coefficient.
In the present case the criterion suggested by Moss, Levantin & Szeri (2000) has
been adopted, which is based on the kinetic theory and enables the consideration of
both thermal states within the bubble, depending on the instantaneous bubble wall
velocity. If the following expression holds true, then there is isothermal behaviour
inside the bubble (k = 1), i.e.

4X0

(
R

R0

)3(3−γ )/2

> R|Ṙ|, (15)

and for the opposite case k = γ; in the above equation X0 is the thermal diffusivity
of the contaminant gas at ambient temperature. The initial partial pressure pG0 is
estimated by the following equation, assuming mechanical equilibrium:

pG0 = p∞,t=0 − pV +
2σL

R0

. (16)

The dynamics of a single bubble can be affected by other flow parameters as
well. Due to the local liquid turbulence the pressure around a bubble is subjected
to fluctuations, which leads to the instantaneous pressure experienced by the bubble
becoming much lower than the mean pressure, if the magnitude of the fluctuations
is quite high (Hinze 1975). Moreover, the pressure that is experienced by the flowing
bubble can be lower than the average liquid pressure due to the slip velocity between
the surrounding liquid and the bubble itself (Hsiao, Chahine & Liu 2000). In order to
improve the validity of the Lagrangian approach, the ‘far field’ pressure used for the
calculation of the dynamics of each bubble is not the one interpolated at its centre
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Figure 4. Predicted bubble size history along the length of the sharp-edged single-hole
nozzle (pinj = 500 bar; pback = 1 bar).

but rather the average within the aforementioned cluster of influence. This leads to
the following equation for the ‘effective far field’ pressure p∞(t):

p∞,effective(t) = p∞,aver (t) − CE
2
3
ρLkL − 1

4
ρL |uL − uB |2 , (17)

where CE is the Egler coefficient with a value of 1.2 (Hinze 1975), and kL is the local
turbulent kinetic energy in the surrounding liquid. The effective pressure p∞,effective(t)
is used in this equation in the place of p∞(t); it should be noted at this point that the
effect of relative velocity is much less important than the effect of local turbulence.
For the numerical integration of (14) the explicit fifth-order Runge–Kutta–Fehlberg
method (Press et al. 1992, 1996) has been employed. The algorithm used also features
an embedded fourth-order Runge–Kutta method which makes it possible to obtain
an estimate of the local integration error due to the truncation of the Taylor series
expansion and adjust the local integration time step depending on the prescribed level
of numerical accuracy. Examples of the bubble size history within the injection hole of
a cavitating single-hole nozzle can be seen in figure 4. In these predictions the effect
of the surrounding nozzle hole wall on the dynamics of the bubbles is neglected. The
pressure experienced by the bubbles, as they travel along the injection hole and which
causes this dynamic response, is also indicated in the figure; it has been extracted
from a single-phase simulation. Results are presented for bubbles having an initial
radius ranging from 0.01 to 2 μm. It is interesting to note that in the absence of
a surrounding solid boundary and without taking into account bubble breakup or
coalescence which may affect the nonlinear response of the bubble radius to the
external pressure, the bubbles grow and collapse a few times before reaching the hole
exit. Since the overall cavitation volume fraction is calculated instantly as a function
of this rapidly changing bubble size, it becomes clear that accounting for all terms
in the R-P equation is essential for model predictions. Comparing the curves plotted,
it becomes clear that although some differences exist between them, the bubble size
reaches a peak value which is not highly dependent on the initial size. Figure 5 shows
the spatial distribution of the time-averaged bubble growth and collapse rates. It
can be seen that most growth takes place at the hole inlet, although few bubbles
are predicted to grow along the top part of the injection hole until its exit. On the
contrary, a strong collapse zone is predicted just downstream of the hole entrance,
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Figure 5. Predicted temporally averaged (a) bubble growth and (b) bubble collapse rates
inside the injection hole (pinj = 500 bar; pback =1 bar).

following the initial bubble growth. It is of interest to note that this zone is not just at
the hole inlet but further inside the injection hole; as has been reported in Gavaises
et al. (2007), this region can be associated with the observed wall erosion and material
loss caused by the sudden collapse of the cavitation bubbles.

2.4.3. Bubble breakup and coalescence

One of the assumptions made by classical bubble dynamics is that bubbles retain
their sphericity throughout their lifetimes. In reality, bubbles deform due to the
surrounding non-uniform pressure distribution and hydrodynamic forces acting upon
them. This bubble deformation can result in bubble breakup, from which two or more
smaller bubbles can emerge and which alters the behaviour of the bubble population,
since ‘daughter’ bubbles behave differently due to their different dynamics after
breakup with respect to the ‘mother’ bubble. Therefore, two primary mechanisms
responsible for bubble breakup have been accounted for, namely turbulent breakup
and hydrodynamic breakup. For the modelling of turbulence-induced bubble breakup,
the work of Martı́nez-Bazán, Montañés & Lasheras (1999a, b) has been followed; this
approach is based on purely kinematic arguments and has shown good agreement
with measured data obtained from experiments in which relatively large bubbles
are immersed in a turbulent flow, which is locally isotropic and homogeneous, and
experience no shear due to slip velocity with the continuous liquid. Under these
conditions bubble breakup can be attributed to the turbulence-induced shear acting
upon them. Within the context of this model, the initial bubble size D0 is assumed to
lie within the inertial sub-range, η < D0 <Lx , where η is the Kolmogorov micro-scale
of viscous dissipation of local turbulence, and Lx is the integral length scale. Following
Kolmogorov’s universal theory for the estimation of the local velocity fluctuations
(Batchelor 1953; Martı́nez-Bazán et al. 1999a) the critical bubble diameter Dc is
defined as

Dc = 1.26

(
σL

ρL

)0.6

ε−0.4
L . (18)

Bubbles with a diameter smaller than the critical one can sustain turbulent stresses
without breaking up. Given that a bubble has diameter D0 >Dc, any two points on its
surface separated by distance D′ such that Dmin <D′ < D0 will experience turbulent
stresses sufficient to cause breakup of the bubble. Dmin is calculated by equating the
surface energy of a bubble with diameter D0 to the deformation energy between
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points at a distance Dmin apart, which results in the following equations:

Dmin = 1.77

(
σL

ρLD0

)1.5

ε−1
l or Dmin = η, if 1.77

(
σL

ρLD0

)1.5

ε−1
L < η. (19)

It is clear from the above equation that the smallest possible daughter bubble has
size Dmin; the largest possible size Dmax for the daughter bubble is calculated from
conservation of the ‘mother’ bubble volume. Within the framework of the adopted
model it is assumed that only binary bubble breakup can take place. As for any
mechanical process, it has been postulated that the rate at which breakup occurs
is inversely proportional to the difference between the deformation and confinement
forces. Furthermore, the breakup rate of a bubble with D0 <Dc ought to be zero. If
tbr is the time that elapses before bubble breakup takes place, then the frequency g
of bubble breakup is its reciprocal (Martı́nez-Bazán et al. 1999a):

gbr,turb(εL, D0) =
1

tbr,turb(εL, D0)
=

0.25
√

8.2(εLD0)2/3 − 12σL/ρLD0

D0

. (20)

Apart from determining the breakup frequency due to turbulent stresses, one needs
to know what is the resulting size of the emerging daughter bubbles. In the second
part of the original work (Martı́nez-Bazán et al. 1999b), a pdf for the daughter bubble
size could be formulated based on energy principles:

f ∗(D∗) =
P (D∗)∫ 1

0

P (D∗)

=

[
D∗2/3 − X5/3

][
(1 − D∗3)2/9 − X5/3

]
∫ Dmax

D∗
min

[
D∗2/3 − X5/3

][
(1 − D∗3)2/9 − X5/3

]
d(D∗)

, (21)

where D∗ = D1/D0, D∗
min = Dmin/D0, D∗

max = Dmax/D0 and X = Dc/D0.
Apart from the turbulence-induced shear, bubbles can break up due to the

significant slip velocities between the dispersed bubbles and the continuous liquid
phase. During the initial stages in the development of the current model it became
obvious that such slip velocities can become quite significant in nozzle flows, and to
account for this effect, a simple model based on the Weber number was followed. The
Weber number, We, is defined here as:

We =
ρLD |uB − uL|2

ρL

, (22)

where uB −uL is the relative velocity between the dispersed bubble and the continuous
liquid; breakup is assumed to occur when We > 12. In order to calculate the resulting
daughter bubble size from the breakup process, a maximum entropy formalism has
been used (Ahmadi & Sellens 1993). Within the context of this approach and in the
absence of any solid mathematical model that can describe daughter sizes from such
a breakup process, it is assumed that the size pdf of the emerging bubbles ought to
maximize the Shannon entropy defined as

S = −
∫ D∗

max

D∗
min

pdf (D∗) ln[pdf (D∗)] dD∗. (23)

Another important phenomenon that takes place in such flows is bubble coalescence.
The implementation of a coalescence sub-model has been pursued as a further
enrichment of the current bubble-based approach which aims to make the model
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applicable to densely cavitating flows. It is known that there is limited time available
for bubble-to-bubble interactions that can lead to coalescence; moreover, when two
bubbles approach each other, a liquid film is formed between them which tends to
resist any further movement that could bring these bubbles even closer. Coalescence
will occur only if the intervening film can drain to a sufficiently small thickness and
rupture in the time available. With respect to coalescence in cavitating flows, there
are two sources of relative bubble motion that are of particular interest: (a) motion
induced by local turbulence in the continuous liquid and (b) motion induced by mean
relative velocities between the bubbles. In some cases bubbles, although much larger
than the Kolmogorov eddies, are smaller than the energy-containing eddies and for
this reason in those flows source (a) is expected to be the dominant source of relative
bubble motion (Kamp et al. 2001). Nevertheless, in the current approach both sources
have been considered and implemented in the coalescence sub-model with a stochastic
formulation, through which the most probable of the two mechanisms is selected. For
the estimation of the interaction time ti the approach of Kamp et al. (2001) has been
followed here:

ti =
π

4

(
ρLCAM D3

eq

3σL

)1/2

, (24)

where Deq is an equivalent bubble diameter defined by

Deq =
2D1D2

D1 + D2

, (25)

and CAM is the added mass coefficient which depends on D1 and D2 and whose
analytic expression can be found in Kamp et al. If bubble deformation had not been
taken into account, the above-added mass coefficient could have been approximated
with the typical value of 0.5.

Another important modelling detail is the calculation of the film drainage time td ,
which has been the subject of many theoretical studies. One of these was performed by
Chesters & Hofman (1982), who obtained a numerical solution for the film drainage
time by employing the assumption that the approach velocity of the two bubbles
remains constant. A key parameter to the whole process is the equivalent film Weber
number:

Weeq =
ρLV 2

relDeq

2σL

, (26)

where Vrel is the relative velocity between the two bubbles. For small Weber numbers
the approximation of a constant approach velocity is an acceptable one, since for
most cases td � ti . Following again Kamp et al. (2001), the film drainage time is

td = k1

ρLV D2
eq

8σL

, (27)

where k1 is a correction coefficient that accounts for finite Weber number effects and
has a recommended value of 2.5. The coalescence probability is defined as

pcoalescence = e−td/ti , (28)

which allows the outcome of a binary bubble collision to be evaluated. As mentioned
previously, there are two primary driving mechanisms for bubble collisions: liquid
turbulence and gradients in the mean bubble velocities. In order to decide which
of the above two mechanisms prevails for each pair of bubble parcels, a stochastic
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approach is followed. First, the collision frequency of each pair of bubble parcels, due
to both mechanisms, is calculated. For turbulence-driven collisions, the frequency with
respect to a parcel containing N1 bubbles is calculated from the following expression
(Kamp et al. 2001):

fturb =

√
8π

3

N1N2

Vp1αL1

(R1 + R2)
2Vturb, (29)

where N1 and N2 are the number of bubbles in each of the two involved bubble
parcels; Vp1 is the volume of the computational cell in which parcel N1 is located; αL1

is the liquid fraction in this cell; and Vturb is the turbulence-induced relative velocity
between the two parcels, which is calculated from the following equation:

Vturb =
(εL(R1 + R2))

1/3

√
2CAM

, (30)

where εL is the average turbulence dissipation rate, calculated from the corresponding
values at the two parcel locations. The frequency of the collisions driven by relative
velocity is calculated from the following equation:

furel =
πN1N2

Vp1αL1

(R1 + R2)
2Vrel . (31)

The probability of no collision taking place due to the relative velocity can be first
estimated through the following equation:

pnocollision,urel = e−furel �tB/Nlarge , (32)

where Nlarge = Max(N1, N2). Subsequently, a random number rrel is sampled from
the uniform distribution function; if rrel > pnocollision,urel , then only collisions of this
type are considered, and it is assumed here that relative velocity collisions have
hierarchical priority. However, if rrel < pnocollision,urel , then the probability of turbulence-
driven collisions taking place is also evaluated using the following equation:

pcollision,turb = fturb�tB. (33)

A uniform distribution random number rturb needs to be sampled again; if
rturb < pcollision,turb a turbulence-induced collision takes place, otherwise there is no
collision at all. Once it is established that a collision will indeed occur, the outcome
of the collision is decided by means of (28).

Since previously published cavitation models do not include such effects, it has been
considered useful to present predictions obtained with and without the introduction
of these physical processes. Figure 6 shows the predicted cavitation vapour volume
percentage and the arithmetic mean bubble size spatial distributions inside the hole
of the sharp-edged nozzle at fully cavitating conditions. Predictions are shown first
without considering these effects (figure 6a), then by considering only breakup and
neglecting bubble coalescence (figure 6b) and finally by considering both processes
(figure 6c). It is clear that the predicted flow regime is strongly affected by the breakup
process. When both effects are neglected, the cavitation cloud formed initially near
the hole entrance has relatively large-sized bubbles which then fully collapse without
reaching the hole exit. On the contrary, when the process of bubble breakup is
considered, bubbles subsequently break down to much smaller sizes. Further growth
is then suppressed due to the low value of the re-initialization pressure inside them,
since after breakup (16) is used locally, in order to assign the bubble mechanical
equilibrium conditions; the end result is a cavitation cloud which reaches the hole
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Figure 6. Effect of breakup and coalescence models on the predicted cavitation volume
percentage (top) and mean bubble size spatial distribution (bottom) inside the hole of the
sharp-edged inlet single-hole nozzle (a) using no breakup and coalescence (b) with breakup
and no coalescence and (c) with breakup and coalescence (pinj = 500 bar; pback = 1 bar).
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Figure 7. Predicted spatial distribution of percentage of bubbles (a) breaking-up and (b)
coalescing along the injection hole, considering non-zero slip (top) and zero slip velocities
(bottom) between the two phases (pinj = 500 bar; pback = 1 bar).

exit. Experimental results to be presented in the following section confirm that this
two-phase flow regime does take place for this particular operating condition. The
effect of bubble coalescence seems to be smaller compared to the effect of breakup, as
can be seen by comparing the predicted distributions of figure 6(b, c). Further insight
into the turbulent versus the hydrodynamic breakup and coalescence mechanisms is
provided in figure 7, where the percentage of the bubbles breaking-up and coalescing
is presented, with and without the slip velocity between the two phases. These results
indicate that most bubbles break due to turbulent breakup, while the opposite holds
true for bubble coalescence, where the relative velocity is the main cause for bubbles
coalescing. It is also interesting to note that breakup phenomena mainly take place
near the hole inlet which is the region in which high turbulence levels are present. At
the same time, this is the region of bubble growth and collapse, which explains the
profound effect on the predicted hydrodynamic regime when considering this process.
On the contrary, bubble coalescence may take place along the entire hole length.
Finally, it ought to be mentioned that although the number of bubbles actually
breaking up or coalescing is in the range of 1–7 %, their volume represents up to
60 % of the total cavitation volume fraction.

2.4.4. Single-bubble motion equation

The last two sub-models considered account for the bubble velocity calculation
and the response of the bubble to liquid turbulence. Following the single-point
particle approximation (Michaelides 1997, 2003; Maxey & Riley 1983), the equation
of motion for a single bubble is formulated after all the forces acting upon it are
added. Since the mass of the bubble itself is negligible, bubble inertia is neglected,
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which implies that the sum of all forces acting upon the bubble should be zero at all
times (Johnson & Hsieh 1966; Tamura, Sugiyama & Matsumoto 2001), i.e.

1

2
CDρLπR2(uL − uB) |uL − uB | + CAρL

4

3
πR3

(
DuL

Dt
− duB

dt

)

− 4

3
πR3∇p − 4

3
πR3ρL g +

1

2
ClρLπR2 |uL − uB |2

× (uL − uB) × ωL

|uL − uB | |ωL| + 2πρLR2(uL − uB)
dR

dt
= 0. (34)

The forces considered in the above equation are the drag, the added mass, the
pressure gradient, buoyancy, lift and the volume variation force. The last appears
essentially due to the added mass effect and is important for bubbles whose volume
changes significantly with time during their motion (Johnson & Hsieh 1966). The
Basset force has not been considered here following the finding of Meyer et al.
(1992). For the drag force coefficient the approach of Feng & Michaelides (2001) has
been followed; i.e. for Reynolds numbers in the range of 0 � ReB � 5 we have

CD =
16

ReB

(1 + 0.1ReB) − 0.02ReB ln(ReB), (35)

and in the range of 5 < ReB � 1000,

CD =
48

ReB

(
1 +

2.21√
ReB

− 2.14

ReB

)
. (36)

The Reynolds number here is defined as ReB =2R |uL − uB | ρL/μL. After the drag
coefficient for a single bubble is calculated from (35) or (36), the ‘dense-flow’ correction
of Rusche & Issa (2000) is applied, where

CD = CD,single bubble

(
e3.64(1−αL) + (1 − αL)0.864

)
. (37)

The above correction addresses the fact that the drag force exerted upon a group
of bubbles is expected to be quite different than that which a single bubble would
experience. The presence of other bubbles distorts the surrounding flow field in such
a way that increased drag forces are exerted upon each one of them. In strongly
cavitating flows, high vapour fraction values are expected, which implies the presence
of a dense population of bubbles. A similar effect takes place with respect to the
added mass phenomenon; for this reason an analogous correction to the added mass
force of van Wijngaarden (1976) has been adopted:

CA = 0.5 + 1.39(1 − αL). (38)

Effectively, what this correction highlights is that the added mass effect on each
bubble is augmented by the presence of other bubbles. For the lift force coefficient
the formula proposed by Sridhar & Katz (1995) has been employed, where the vortex-
induced lift force is considered, which can be much higher than the shear-induced lift
force, i.e.

Cl = 0.59

(
|ωL| R

|uL − uB |

)1/4

. (39)

For the calculation of the new bubble velocity, (34) is rearranged algebraically,
and the term duB/dt is isolated in order to be integrated numerically. The first-order
explicit Euler scheme is employed, since the time step used for the Lagrangian
component of the model is always relatively small in cavitation calculations.
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Cavitation Reynolds pinj (bar) Uinj (m s−1) Flow regime
number number

Large-scale 1.05 221 700 1.775 11.14 Incipient
1.63 253 400 2.090 12.73 Fully developed

Real-size sharp inlet 499 ∼16 500 500 ∼240 Fully developed
Real-size rounded inlet 499 ∼19 000 500 ∼280 Incipient

Table 2. Test cases referring to the single-hole nozzle and used for model validation.

Cavitation number Reynolds number pinj (bar) Uinj (m s−1) Flow regime

Large-scale 0.45 21 000 1.80 9.84 Non-cavitating
1.09 30 200 2.40 14.20 Incipient
1.48 34 100 3.00 16.00 Fully developed

Real-size 5.00 5 300 90.00 91.00 Incipient
15.00 5 000 80.00 86.00 Fully developed

Table 3. Test cases referring to the six-hole nozzle with the needle at its nominal lift of
300 μm and used for model validation.

Cavitation number Reynolds number pinj (bar) Uinj (m s−1) Flow regime

Large-scale 1.48 ∼26 800 2.8 12.6 Incipient
2.39 ∼33 200 4.0 15.6 Fully developed

Real-size 5.00 ∼4 100 90.0 ∼72.0 Incipient
15.00 ∼4 000 80.0 ∼70.0 Fully developed

Table 4. Test cases referring to the six-hole nozzle with the needle at its low lift of 80 μm and
used for model validation.

2.4.5. Effect of turbulence on bubble motion

The turbulent nature of the flow has a significant effect on bubble motion, since
the fluctuating liquid velocity causes some dispersion in its movement. Due to the
uncertainties regarding the applicability of complex modelling efforts to this issue, the
approach of Farrell (2003) has been followed in the current model, where a Gaussian
approach is employed. Typically, the effect of turbulence upon the particle’s movement
is modelled with the addition of a fluctuating component to the mean velocity of
the liquid phase, namely uL = ūL + u′

L; this velocity is used subsequently in (34), the
single-bubble momentum equation, as the instantaneous continuous-phase velocity.
For the calculation of the fluctuating velocity component, a Gaussian distribution
is assumed, which has zero mean value and standard deviation of σ =

√
2kL/3.

The Gaussian approach used for the evaluation of the continuous-phase fluctuating-
velocity component is given as

u′
L,i = σ ∗erf−1(2ri − 1), where σ ∗ = min(

√
4kL/3, 0.2 |uL|), (40)

where erf−1 is the inverse error-function and ri is a random number sampled from a
uniform distribution. This Gaussian function does not allow high fluctuating velocities
to be calculated in areas in which the mean velocity of the liquid is low; this
modification has been considered necessary from comparison of predictions against
cavitation images, as reported in detail by Giannadakis (2005).
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Figure 8. (a) Grid for the 0 %HG nozzle with 4590 cells and the 9.5%HG nozzle with 4521
cells. (b) Large-scale single-hole nozzle used for CT measurements. (c) Transparent nozzle and
LDV measurement planes. (d) Optically accessible real-size nozzle and visualization area.

3. Test cases
Numerous test cases were simulated for the experimental validation of the cavitation

model. Tables 2–4 summarize the more detailed validation test cases to be presented
here. Table 2 includes the real-size single-hole nozzle test cases reported in König &
Blessing (2000) and Walther et al. (2001). This particular nozzle is the planar version
of a single-hole sac-type axisymmetric nozzle used in the past by Walther et al. (2001)
for experimental studies on cavitation. The experimental data consist of high-speed
images obtained in the planar channel, where cavitation was formed in the upper
section of the hole inlet. Two different geometries were tested, as shown in figure
8(a). The first one had a sharp hole entry (0 % degree of hydro-grinding, referred to
as %HG), which promoted cavitation, while the second one had a 9.5 %HG and,
thus, significantly less cavitation; the percentage indicates for each nozzle the flow
rate increase relative to the sharp design due to hole inlet rounding by the hydro-
grinding process. The rounding of the second nozzle was selected to be such that the
two nozzles would give roughly the same flow rate at the same operating pressure,
since the sharp-edged nozzle had a slightly larger hole size of 205 μm compared
to the 192 μm of the hydro-ground one; the needle lift for both cases was 250 μm.
Two-dimensional simulations of these geometries were performed using grids that
featured local refinement at the point of cavitation incipience. Various grids were
tested in order to check the model behaviour, and those finally selected were dense
enough to allow grid-independent results. The working fluid was diesel with density
ρ = 835 kg m−3 and dynamic viscosity μ = 2.5 × 10−3 kg m−1 s−1. For both cases, the
upstream pressure was provided by a common-rail system and remained relatively
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constant during the injection period; its nominal value was approximately 500 bar,
but for the simulations the actual transient pressure trace, measured at a location very
close to the nozzle inlet, was used as boundary condition. The model inputs controlling
bubble formation are (i) the initial volume fraction with respect to the available volume
for nucleation and (ii) the minimum and maximum initial radii of the bubble with the
corresponding weighting number densities to be used in their size pdf described by
(12). The corresponding values used for these initial parameters were (i) αV 0 = 0.05 %
for the initial volume fraction of the nuclei and (ii) Rmin = 0.25 μm with nmin = 1020

nuclei m−4 and Rmax = 1.5 μm with nmax = 1019 nuclei m−4 for the size pdf parameters.
With these values the calculated initial number density of each parcel nparcel varied
from 500 to 2000 bubbles per parcel. The combination of the above parameters gives
an average number density estimated by the pdf of Naver = 2.3 × 1014 nuclei m−3; this
value refers to nuclei of all possible diameters within the aforementioned limits of the
considered pdf. In order to compare with a monodisperse distribution, had bubbles
of uniform R =1 μm been formed, then their number density equivalent to the one
estimated above would have been N = 1014 nuclei m−3, which is in agreement with
values that have appeared in the literature for real-size nozzle simulations (Yuan
et al. 2000; Yuan & Schnerr 2001).

The large-scale single-hole nozzle used for the CT images is shown in fig-
ure 8(b); this particular sharp-edged nozzle has been designed and manufactured for
the quantitative validation of the cavitation model described earlier. Its hole diameter
is 20 mm, and its hole length is 100 mm. Details about the experiments performed
in this nozzle can be found in Roth (2004) and Bauer (2005); here, only sample
results are included to provide evidence of model validation. The presented results
refer to two different cavitation numbers of 1.05 and 1.63, respectively. Although the
difference between these operating points is not significant, the actual flow regime
differences observed were significant. The lower cavitation number case corresponds to
the so-called incipient cavitation regime, where the cavitation structures fully collapse
before reaching the hole exit. The higher cavitation number case corresponds to the
‘fully developed’ cavitation regime, where the cavitation structures formed at the hole
inlet survive up to the hole exit. Although the transition from one regime to the other
does not happen at the same cavitation numbers for the large-scale and real-size
nozzle, it is a specific characteristic of the flow that can be easily identified from the
CCD images and used as a criterion to assess the predictive capability of cavitation
models. The working fluid for these tests was water with density ρ =1000 kg m−3

and dynamic viscosity μ = 1.05 × 10−3 kg m−1 s−1. The initial radii for the logarithmic
pdf were selected to be Rmin = 2.5 μm and Rmax = 50 μm. For this particular case a
broader range of nucleus sizes was considered, due to the fact that this geometry was
significantly larger than the rest, and the experiment was performed with water which,
as already mentioned, is usually contaminated by nuclei of a broader size range. The
numerical grid used consisted of ∼1.6 × 105 cells, with approximately 20 000 bubble
parcels present inside the injection hole at every time step. As has been pointed out,
although boundary conditions of constant inlet flow rate were employed, the flow
itself was transient. This was mainly due to the formation, growth and transport of
the cavitation bubbles, which, in turn, affected the pressure and velocity distribution
inside the injection hole. This necessitated approximately 100 continuous-phase time
steps of 5 × 10−4 s each in order to reach a pseudo-steady flow condition comparable
to the CT measurements; the time step for the tracking of the cavitation bubbles was
2.5 × 10−6 s.
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Model validation was also performed against a realistic six-hole diesel nozzle
geometry; tables 3 and 4 summarize the test cases simulated with this nozzle operating
at its nominal and low needle lifts, respectively. This nozzle geometry corresponds
to that of a typical vertical mini-sac diesel injector; the nominal hole diameter of
the real-size nozzle is 0.175 mm which corresponds to 3.5 mm for the model enlarged
20 times. The holes are equally distributed every 60◦ around the periphery, while
their inclination angle is 11◦ from the horizontal. The nominal needle lift is 0.3 mm
which corresponds to 6.0 mm in the enlarged model; the investigated value of lower
needle lift corresponds to 0.08 mm in the real-size injector and 1.6 mm in the enlarged
model. Detailed experimental investigations about this nozzle have been reported
in past papers (Afzal et al. 1999; Arcoumanis et al. 2000; Roth et al. 2002). They
include high-speed/CCD flow images and LDV measurements obtained in the large-
scale fully transparent nozzle, shown in figure 8(c), and CCD flow images from the
real-size nozzle incorporating a transparent window allowing for optical access in
one of the six holes, shown in figure 8(d). Calculated results to be presented here
include both the time-averaged mean velocity component in the direction of the
injection hole as well as its standard deviation with respect to the temporal mean;
the latter is due to the cavitation-induced unsteadiness of the flow. For both nozzles,
various cavitation numbers have been selected for presentation. For the large-scale
six-hole nozzle at its nominal lift, in addition to the measurements for the cavitating
conditions, LDV measurements corresponding to the lowest cavitation number for
this nozzle/lift combination (CN = 0.45) are presented for non-cavitating conditions
as well. For all the other cavitation numbers reported, the lower one corresponds
to the ‘incipient cavitation regime’, and the higher cavitation number corresponds
to ‘fully developed cavitation’. Regarding the initial values of the cavitation sub-
models, the same physical properties and assumptions as those described earlier for
the real-size single-hole nozzles have been also used here, with the exception of
the initial radii of the logarithmic pdf for the large-scale nozzle; in agreement with
experimentally observed scaling of nucleus sizes, the selected values were Rmin = 1 μm
and Rmax =15 μm. Moreover, in the experiments with the large-scale nozzle a mixture
of 32 % by volume of tetraline (1,2,3,4-Tetrahydronaphthalene) and 68 % by volume
of oil of turpentine was taken as the working fluid in order to produce a liquid
that has the same refractive index as the acrylic nozzle and has fuel properties
similar to diesel (density and kinematic viscosity of 893 kgm−3 and 1.64 × 10−6 m2 s−1

at 25 ◦C, respectively). This refractive-index-matching method (Arcoumanis, Nouri &
Andrews 1992) enables optical access without any distortion of light at the liquid–solid
interfaces, allowing imaging techniques and laser Doppler velocimetry to be applied
successfully.

4. Results and discussion
In this section the various results obtained with the developed model are presented.

Initially the results from the single-hole nozzle studies are presented, followed by
validation studies from the more practically relevant six-hole nozzle geometry.

4.1. Single-hole nozzle

The first nozzle series simulated is the transparent real-size single-hole one. Due to
the symmetrical design, half-nozzle simulations in a two-dimensional plane have been
performed. Figure 9 shows a comparison between model predictions against CCD
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Figure 9. (a) CCD images of temporal cavitation vapour distribution from König & Blessing
(2000) for the 0 %HG (top) and 9.5 %HG nozzle (bottom). (b) Temporal mean cavitation
volume percentage distribution. (c) Standard deviation of cavitation volume percentage (pinj =
500 bar, pback = 1 bar).

images of cavitation inside the sharp-edged and rounded inlet nozzles. Although
the instantaneous CCD images of figure 9(a) reveal the extent of cavitation inside
the flow channel, they do not provide any quantitative information about the flow,
contrary to predictions which characterize the temporal mean vapour volume fraction
distribution over the whole injection event. Figure 9(b) shows the predicted effect of
hole inlet rounding on the mean cavitation volume fraction. Large differences do
exist between the two nozzles, with more than 50 % of the hole covered by cavitation
in the sharp-inlet nozzle, while the corresponding prediction for the rounded nozzle
is just ∼6 %, with the cavitation zone significantly reduced. Clearly, the geometric
characteristics of the hole entry have a dominant effect on the amount of vapour
volume formed as well as on its growth. Moreover, both predictions and flow images
show that cavitation is rather unstable even during the main injection period despite
the fact that the needle is fixed at its maximum lift, and the injection pressure
provided by the common-rail injection system does not change considerably. This can
be realized in figure 9(c) which shows the predicted standard deviation of the mean
cavitation vapour volume fraction, attributed to the nucleation process taking place
at the inlet to the injection hole in areas in which the local pressure falls below the
vapour pressure of the liquid. Once vapour is produced, the simulated pressure at
this location ‘recovers’ towards the threshold value or even exceeds it and results in
no new vapour volume formation. This, in turn, induces new tension (local pressure
below vapour) in the computational cells that become re-occupied with liquid, and
the process continues in a cyclic pattern.

It is evident from the above discussion that model predictions are sensitive to
the amount of vapour produced, and thus quantitative validation is required. Such
measurements of the vapour volume fraction produced in cavitating flows have been
reported in Roth (2004) and Bauer (2005) for the large-scale single-hole nozzle and are
used here for model validation. The conditions to be reported refer to two different
cavitation numbers corresponding to the incipient and fully developed cavitation
regimes. Past studies have revealed that the cavitation number is the dominant flow
parameter that determines the flow regime inside cylindrical nozzle holes instead of
the Reynolds number. This can also be seen in figures 10 and 11, where experiments
and model predictions are presented for the low and high CN cases, respectively.
For the low CN case the CCD images, a sample of which is plotted in figure 10(a),
show that cavitation is formed at the hole inlet and collapses within a short distance
downstream into the hole. The sequence of events captured with a high-speed camera
actually shows that the cavitation structures are rather unstable, something also
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Figure 10. (a) CCD image of cavitation inside the large-scale single-hole nozzle for the
incipient cavitation case. (b) Predicted instantaneous vapour volume fraction iso-surfaces. (c)
CT measurements of liquid volume fraction at different cross-sections across the hole length.
(d) Predicted liquid volume fraction.

predicted by the computational model. Figure 10(b) shows an instantaneous image
of the predicted vapour volume fraction iso-surfaces; the model also predicts the
collapse of the cavitation cloud at a distance similar to the collapse observed from the
CCD images. Time-averaged liquid volume fraction measurements and predictions
at cross-sections along the injection hole are plotted in figure 10(c, d), respectively.
The observed differences between model predictions and experimental values are not
negligible, but it is important to note that the model appears to follow quantitatively
the measured cavitation trends, especially when considering that a very small change
to the cavitation number may result in a fully developed cavitation regime, as shown
in figure 11(a) in which the cavitation cloud is extended up to the hole exit. Near
the inlet, and almost up to 40 % into the hole length, the amount of vapour formed
seems to behave in a rather stable fashion, remaining attached to the nozzle wall
surface. Breakdown of the formed vapour is observed at distances greater than 40 %
of the hole length. This breakdown is associated with formation of a bubbly, rather
unstable, cloud, as high-speed images have revealed. This can be also deduced from
figure 11(b) which shows the CT measurements of the time-averaged liquid volume
distribution at various cross-sections along the hole length. Close to the hole entrance,
the formed vapour stays attached to the wall, and a relatively sharp interface between
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Figure 11. (a) CCD image of cavitation inside the large-scale single-hole nozzle for the
fully developed cavitation case. (b) CT measurements of liquid volume fraction at different
cross-sections across the hole length. (c) Predicted liquid volume fraction. (d) Predicted vapour
volume fraction standard deviation.

the two phases is observed. Once this interface breaks down, vapour is gradually
dispersed across the whole cross-section of the discharge hole, in agreement with the
model predictions presented in figure 11(c). Estimates of the spatial distribution of the
liquid volume fraction standard deviation along the same cross-sections are plotted in
figure 11(d); these model predictions indicate that, close to the hole inlet, the standard
deviation of the vapour is almost zero, while maximum values are observed towards
the hole exit. This is an important result, since it demonstrates that the model not
only captures the time-averaged cavitation volume fraction levels but also indicates
the locations at which cavitation becomes unstable. Predictions reported recently in
Gavaises et al. (2007) have indicated that this predictive capability of the model allows
the link to cavitation erosion, observed within the injection hole of high-pressure fuel
injection systems, to be identified. Figure 12 depicts quantitative comparison between
model predictions and CT measurements of the liquid volume fraction, averaged over
all the cross-sections along the hole length, for both test cases simulated. In both
cases, the model predicts with reasonable accuracy the amount of vapour produced
close to the hole entry as well as the transition from one flow regime to the other.
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Figure 12. Comparison between experimental data and model predictions for the spatially
averaged liquid volume percentage across cross-sections along the injection hole for the two
cavitation numbers investigated.

More discrepancies are realized towards the hole exit for the higher CN case;
up to 90 % of the hole length the CT measurements indicate that the amount
of vapour actually increases, while predictions indicate an almost fixed percentage
of vapour. Moreover, from that point onwards and up to the hole exit the CT
measurements show a sharp increase in water mass, whereas in the simulation
there is only a slight decrease in the amount of vapour at the very end of the hole.
Possible reasons for the observed differences include the non-resolved fluctuations of
the local pressure that can result in further growth or collapse and the internal bubble
re-initialization pressure required upon bubble breakup. Due to the significantly
smaller pressure differences encountered in cavitating flows in large-scale nozzles, the
temporal resolution of pressure fluctuations in the simulation of such cases is more
critical than for cavitating flow simulations in real-size nozzles; this fact points to
the need for a turbulence model that is less momentum-dissipative than the typical
two-equation models, like the standard k-ε adopted here. Regarding the already-
discussed issue of the internal bubble pressure, the present model assumes that when
a bubble breaks, the contaminant gas partial pressure is re-initialized based on the
local liquid pressure under equilibrium conditions. In this way, the bubbles’ ‘memory’
of being compressed at much higher pressures before entering the hole, responsibile
for a growth production and subsequent collapse according to the R-P equation, is
lost. Since bubble breakup is observed at the mid-distance of the injection hole at
which the local pressure is almost equal to the back pressure, it is expected that the
above assumption causes the bubbles to become less responsive to the very small local
pressure variation they encounter from that point to the hole exit. Unfortunately, in
the absence of a rigorous theory for the calculation of the internal bubble pressure
during breakup, the adopted simplification may give rise to the observed differences
between the predicted and measured values.

From this part of the investigation on single-hole nozzles, it has become evident
that the model is capable of predicting some important aspects of cavitating flows in
injector nozzle holes. These include the inherent instability of cavitation development
even at fixed operating conditions, the transition between the incipient and the
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Figure 13. Comparison between computational and experimental results for the mean axial
velocity at four different locations inside the injection hole for all conditions investigated
(nominal needle lift).

fully developed cavitation regime as well as the amount of vapour produced. The
applicability of the model to more realistic six-hole diesel nozzle geometries is explored
next.

4.2. Multi-hole nozzle

As has been pointed out, in the enlarged six-hole injector both CCD images and
LDV measurements are available from Roth (2004). In particular, mean and r.m.s.
velocity measurements in the direction of the injection hole have been obtained at
different vertical planes, shown in figure 8(c). Results are presented here for two
different cavitation numbers corresponding to two different cavitation regimes and
two needle lifts. Further results include, for the nominal lift case of the enlarged
nozzle, LDV measurements and predictions for non-cavitating conditions. Figure 13
shows the comparison of the mean velocity for all cavitation numbers investigated
at the nominal needle lift of 6 mm (equivalent to 0.3 mm in the real size), while
figure 14 shows the corresponding results for the lower needle lift case of 1.6 mm. The
velocity values plotted have been normalized by the mean injection velocity derived
from the flow rate and the hole cross-sectional area. In addition to the time-averaged
cavitating predictions, single-phase simulation results for the cavitating cases are also
presented. This allows the effect of increasing cavitation number to be realized and,
moreover, the acceleration of the fuel due to cavitation to be appreciated more clearly
when compared to the single-phase case. Beginning with the non-cavitating conditions
(CN = 0.45) for the nominal lift case, it can be argued that the relative agreement
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Figure 14. Comparison between computational and experimental results for the mean axial
velocity at four different locations inside the injection hole for all conditions investigated (low
needle lift).

between the predictions and the measurements is quite satisfactory. Nevertheless, there
is some discrepancy in the shape of the velocity profile at locations near the upper
part of the hole, where the experiment shows some decay of the axial velocity at the
locations just before the middle of the hole length (x = 0.22L and x =0.46L). Possible
explanations for the observed difference include that, in multi-hole nozzles, the flow
can never be truly symmetric amongst the holes due to some unavoidable needle
eccentricity; this alone could explain the velocity differences in the middle plane.
However, as will be seen from the r.m.s. comparisons, another reason could be that a
more sophisticated turbulence modelling approach is needed, with which potentially
present anisotropic and non-equilibrium effects would be captured. In any case, the
difference between the non-cavitating velocity measurements and their corresponding
predictions determines the uncertainty level for the velocity comparisons in the
cavitating cases. As can be seen in figures 13 and 14, in the axial location close to the
hole inlet (x = 0.14L), the model predicts a velocity profile similar to the measured
one. However, moving further downstream inside the injection hole, the model seems
to ‘underpredict’ the velocity level close to the hole exit (x =0.70L) for the incipient
cavitation case, but it seems to match closely the measured higher velocities for the
two fully developed cavitation cases. Towards the mid-plane (x = 0.46L) and at the
hole exit (x = 0.70L), the predictions are close to the experimental values. On these
locations, the differences between the non-cavitating and the fully cavitating cases are
maximized. As can be seen, cavitation leads to an acceleration of the flow of ∼15 %
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Figure 15. Comparison between computational and experimental results for the turbulent
(r.m.s.) velocity at four different locations inside the injection hole for all conditions investigated
(nominal needle lift).

for this particular nozzle and operating conditions; this acceleration is higher for the
lower needle lift case in which more cavitation is formed due to the sharper turn of
the flow imposed by the restricted needle seat flow passage. As mentioned already,
the corresponding measurements and predictions for the r.m.s. (turbulent) velocity
component at the same locations and for the same operating conditions are presented
in figures 15 and 16, respectively. From the comparison of the r.m.s. velocities for
the non-cavitating condition in figure 15, it can be seen that for all locations there
is a peak in the measured r.m.s. velocity which is not captured by the predictions.
This peak occurs at nearly 75 % of the hole height, and it seems to settle down
downstream and relocate towards the centre of the hole height. This discrepancy may
justify the need to explore a more sophisticated approach to turbulence modelling
in the future, as already mentioned. Regarding the cavitating cases, in both graphs
two different r.m.s. velocities are calculated; the first one is the time-averaged r.m.s.
velocity estimated from the turbulence model, while the second one is the velocity
temporal standard deviation from the mean value at each location. Unfortunately,
this information could not be resolved from the LDV measurements in which the
unsteadiness that is recorded includes the contribution of both turbulence and the
mean velocity temporal variation due to the fluctuating nature of cavitation. As is
clear from the plotted results, the standard deviation velocity seems to have relatively
smaller values at the lower section of the hole in which mainly liquid flow is present
but increases substantially in the cavitating region. The r.m.s. velocity calculated from
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Figure 16. Comparison between computational and experimental results for the turbulent
(r.m.s.) velocity at four different locations inside the injection hole for all conditions investigated
(low needle lift).

the turbulence model seems to be quite close to the measured values at the lower
part of the hole; this seems to be captured well by the model. Moving towards the
cavitating region, the measured r.m.s. values increase substantially up to the point
at which measurements could not be obtained, due to the very dense vapour cloud
present. This trend is captured in the model, although actual values deviate in some
locations from the measured ones. It is also interesting to note that the fluctuating part
of the mean velocity may take values as high as those calculated from the turbulence
model itself. Arguably, cavitation appears to induce an additional unsteadiness in the
flow, apart from that of turbulence, and this combined instability is expected to have
a positive effect on liquid-core atomization.

The last of the validation studies to be presented here is qualitative rather than
quantitative; it shows a comparison of the cavitation structure inside the injection
hole as visualized using a CCD camera, against model predictions. Results for the
large-scale nozzle are presented in figures 17 and 18 for the nominal needle lift case as
seen from the side view and the top view, respectively. Results are presented for both
the incipient and the fully developed cavitation number cases. The corresponding
flow images and model predictions for the low needle lift case are shown in figures 19
and 20 from the same side and top views, respectively. Finally, flow images obtained
inside the transparent hole window of the real-size nozzle can be seen in figures 21
and 22 for the two equivalent needle lifts, respectively. For the large-scale nozzle,
the CCD images show quite an unsteady flow development for both CN cases. For
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Figure 17. Side-view comparison between CCD images and model predictions for the vapour
distribution on the surface of the large-scale nozzle: (a) incipient cavitation number case
(CN = 1.09) and (b) fully developed cavitation (CN= 1.48) at nominal needle lift.
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Figure 18. Top-view comparison between CCD images and model predictions for the vapour
distribution on the surface of the large-scale nozzle: (a) incipient cavitation number case
(CN = 1.09) and (b) fully developed cavitation (CN= 1.48) at nominal needle lift.
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Figure 19. Side-view comparison between CCD images and model predictions for the vapour
distribution on the surface of the large-scale nozzle: (a) incipient cavitation number case
(CN= 1.48) and (b) fully developed cavitation (CN= 2.39) at low needle lift.
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Figure 20. Top-view comparison between CCD images and model predictions for the vapour
distribution on the surface of the large-scale nozzle: (a) incipient cavitation number case
(CN= 1.48) and (b) fully developed cavitation (CN= 2.39) at low needle lift.
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Figure 21. Comparison between CCD images and model predictions for the vapour
distribution inside the real-size nozzle: (a) incipient cavitation number case (CN= 5) and
(b) fully developed cavitation (CN = 15) at nominal needle lift.
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Figure 22. Comparison between CCD images and model predictions for the vapour
distribution inside the real-size nozzle: (a) incipient cavitation number case (CN= 5) and
(b) fully developed cavitation (CN = 15) at low needle lift.

the incipient cavitation, the bubble cloud reaches the hole exit periodically, while
in the higher CN case, the bubble cloud is more opaque with a higher percentage
of the hole occupied by vapour. The Eulerian–Lagrangian model predicts a similar
vapour distribution; in the images plotted, three different levels of vapour volume
fraction iso-surfaces are presented together with sample cavitation bubbles. The model
predicts a gradual distribution of the vapour fraction with the highest values present
at the top corner of the injection hole. A distinctive difference between the incipient
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and developed cavitation regimes for both needle lifts can be seen in the shape
of the simulated cavitation structures; from the side-view comparison shown in fig-
ures 17 and 19 one can note that in the incipient cavitation cases vapour structures are
relatively more confined. The cavitation pockets appear to vanish towards the exit of
the hole, and moreover, the plotted liquid volume fraction iso-surfaces are relatively
close; this means that vapour volume fraction gradients are large, indicative of a sharp
vapour-to-liquid transition. In contrast, for the developed cavitation cases cavitation
structures appear to spread towards the exit of the hole; moreover, the distance
between the plotted liquid volume fraction iso-surfaces appears to become larger as
well. The latter means that a relatively homogeneous bubble cloud is formed towards
the exit of the hole. Similar differences between the two cavitating regimes can be
identified in the top-view comparison shown in figures 18 and 20, where the variation
in the extent of the cavitation structures is also evident. Once again, in the incipient
cases cavitation appears to diminish around the hole exit, whereas for the fully
developed cavitation cases vapour structures appear to exit the hole with almost the
same extent.

A similar situation is also found when comparing CCD images and model
predictions for the real-size nozzle. The model seems to capture not only the change
of the flow with respect to the increased cavitation number but also the relative
increase observed with decreasing needle lift; this is caused by the more sudden
flow turn experienced by the liquid just upstream of the hole entry at decreasing
needle lifts. From the comparison with the large-scale nozzle experimental data it
can be argued that, similar to the single-hole nozzle, the cavitation model captures
both qualitatively and quantitatively the observed flow regimes, the mean and r.m.s.
velocities as well as the change of the flow regime with respect to cavitation number
and needle lift. Concerning the qualitative agreement between the experiment and
the simulations it is quite satisfactory even in the case of the realistic six-hole nozzle
geometry. Moreover, it seems that it is easier for predictions of the real-size nozzle to
match the experimental images, possibly due to the shorter residence time available
to the cavitation bubbles inside the injection hole. This may prevent uncertainties
inherent in the rather incomplete physical sub-models from becoming relatively
important.

5. Conclusions
The predictive capability of a stochastic Lagrangian multi-dimensional CFD model

accounting for the onset and development of cavitation inside diesel nozzle holes has
been assessed against experimental data. The fluid flow conservation equations have
been solved numerically on fully unstructured numerical grids, which allows modelling
of complex nozzle geometries and the cavitating phase. A numerical method able to
simulate flow cases in which the size of the formed bubble parcels exceeds that
of the underlying numerical cells has been developed. The model accounts for a
number of physical processes considered to be taking place in cavitating nozzle flows.
Cavitation is triggered by pre-existing nuclei assumed to be present inside the bulk
of the liquid and consisting of a mixture of compressed dissolved gas and vapour.
Once they reach areas in which the local pressure falls below the threshold pressure
for cavitation, bubble growth/collapse is simulated using the full form of the R-P
equation. Further phenomena such as bubble breakup, coalescence and turbulent
dispersion have been considered for the first time in cavitation flow models and
found to play a major role in model predictions. Model validation has been performed
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against numerous experimental data for real-size and large-scale models of single and
multi-hole nozzles. For the single-hole nozzle, high-speed cavitation imaging under
injection pressures up to 500 bar in nozzles having different degrees of hydro-grinding
at the hole inlet has been compared against model predictions, while CT measurements
of the liquid volume fraction obtained in a sharp-edged large-scale single-hole nozzle,
designed solely for the validation of the current cavitation model, have been used for
quantitative evaluation of the amount of cavitation vapour produced and distributed
inside the nozzle hole. High-speed CCD images obtained inside a real-size six-hole
mini-sac nozzle, modified to incorporate a transparent hole window, have further
been used for model validation. In addition to CCD images, LDV measurements of
the liquid mean and r.m.s. velocities inside an identical large-scale fully transparent
nozzle model have been used for further quantitative validation. Results available for
two different cavitation numbers and two needle lifts, which correspond to different
cavitation regimes formed inside the injection hole, have been included. Comparison
between model predictions and experimental data has revealed that the developed
model captures the increase of the mean liquid velocity caused by the onset and
development of cavitation. The same is also true in the case of the r.m.s. velocity
which has been found to be equally influenced by the turbulent nature of the flow
and by the inherent unsteadiness caused by cavitation. In conclusion, it can be argued
that cavitation modelling has reached a stage of maturity at which it can consistently
identify many of the effects of nozzle design on cavitation, thus making a significant
contribution to nozzle performance and optimization.
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