The XDEM multi-physics and multi-scale simulation platform roots in the Ex-
tended Discrete Element Method (XDEM) and is being developed at the In- stitute
of Computational Engineering at the University of Luxembourg. The platform is
an advanced multi- physics simulation technology that combines flexibility and
versatility to establish the next generation of multi-physics and multi-scale
simulation tools. For this purpose the simulation framework relies on coupling
various predictive tools based on both an Eulerian and Lagrangian approach.
Eulerian approaches represent the wide field of continuum models while the
Lagrange approach is perfectly suited to characterise discrete phases. Thus,
continuum models include classical simulation tools such as Computa- tional
Fluid Dynamics (CFD) or Finite Element Analysis (FEA) while an ex- tended
configuration of the classical Discrete Element Method (DEM) addresses the
discrete e.g. particulate phase. Apart from predicting the trajectories of
individual particles, XDEM extends the application to estimating the thermo-
dynamic state of each particle by advanced and optimised algorithms. The
thermodynamic state may include temperature and species distributions due to
chemical reaction and external heat sources. Hence, coupling these extended
features with either CFD or FEA opens up a wide range of applications as
diverse as pharmaceutical industry e.g. drug production, agriculture food and
processing industry, mining, construction and agricultural machinery, metals
manufacturing, energy production and systems biology