427 research outputs found

    InterlACE Sound Coding for Unilateral and Bilateral Cochlear Implants

    Full text link
    Objective: Cochlear implant signal processing strategies define the rules of how acoustic signals are converted into electrical stimulation patterns. Technological and anatomical limitations, however, impose constraints on the signal transmission and the accurate excitation of the auditory nerve. Acoustic signals are degraded throughout cochlear implant processing, and electrical signal interactions at the electrode-neuron interface constrain spectral and temporal precision. In this work, we propose a novel InterlACE signal processing strategy to counteract the occurring limitations. Methods: By replacing the maxima selection of the Advanced Combination Encoder strategy with a method that defines spatially and temporally alternating channels, InterlACE can compensate for discarded signal content of the conventional processing. The strategy can be extended bilaterally by introducing synchronized timing and channel selection. InterlACE was explored unilaterally and bilaterally by assessing speech intelligibility and spectral resolution. Five experienced bilaterally implanted cochlear implant recipients participated in the Oldenburg Sentence Recognition Test in background noise and the spectral ripple discrimination task. Results: The introduced alternating channel selection methodology shows promising outcomes for speech intelligibility but could not indicate better spectral ripple discrimination. Conclusion: InterlACE processing positively affects speech intelligibility, increases available unilateral and bilateral signal content, and may potentially counteract signal interactions at the electrode-neuron interface. Significance: This work shows how cochlear implant channel selection can be modified and extended bilaterally. The clinical impact of the modifications needs to be explored with a larger sample size

    Information theoretic evaluation of a noiseband-based cochlear implant simulator

    Get PDF
    Noise-band vocoders are often used to simulate the signal processing algorithms used in cochlear implants (CIs), producing acoustic stimuli that may be presented to normal hearing (NH) subjects. Such evaluations may obviate the heterogeneity of CI user populations, achieving greater experimental control than when testing on CI subjects. However, it remains an open question whether advancements in algorithms developed on NH subjects using a simulator will necessarily improve performance in CI users. This study assessed the similarity in vowel identification of CI subjects and NH subjects using an 8-channel noise-band vocoder simulator configured to match input and output frequencies or to mimic output after a basalward shift of input frequencies. Under each stimulus condition, NH subjects performed the task both with and without feedback/training. Similarity of NH subjects to CI users was evaluated using correct identification rates and information theoretic approaches. Feedback/training produced higher rates of correct identification, as expected, but also resulted in error patterns that were closer to those of the CI users. Further evaluation remains necessary to determine how patterns of confusion at the token level are affected by the various parameters in CI simulators, providing insight into how a true CI simulation may be developed to facilitate more rapid prototyping and testing of novel CI signal processing and electrical stimulation strategies

    Effects of noise suppression and envelope dynamic range compression on the intelligibility of vocoded sentences for a tonal language

    Get PDF
    Vocoder simulation studies have suggested that the carrier signal type employed affects the intelligibility of vocoded speech. The present work further assessed how carrier signal type interacts with additional signal processing, namely, single-channel noise suppression and envelope dynamic range compression, in determining the intelligibility of vocoder simulations. In Experiment 1, Mandarin sentences that had been corrupted by speech spectrum-shaped noise (SSN) or two-talker babble (2TB) were processed by one of four single-channel noise-suppression algorithms before undergoing tone-vocoded (TV) or noise-vocoded (NV) processing. In Experiment 2, dynamic ranges of multiband envelope waveforms were compressed by scaling of the mean-removed envelope waveforms with a compression factor before undergoing TV or NV processing. TV Mandarin sentences yielded higher intelligibility scores with normal-hearing (NH) listeners than did noise-vocoded sentences. The intelligibility advantage of noise-suppressed vocoded speech depended on the masker type (SSN vs 2TB). NV speech was more negatively influenced by envelope dynamic range compression than was TV speech. These findings suggest that an interactional effect exists between the carrier signal type employed in the vocoding process and envelope distortion caused by signal processing

    Auf einem menschlichen Gehörmodell basierende Elektrodenstimulationsstrategie für Cochleaimplantate

    Get PDF
    Cochleaimplantate (CI), verbunden mit einer professionellen Rehabilitation, haben mehreren hunderttausenden Hörgeschädigten die verbale Kommunikation wieder ermöglicht. Betrachtet man jedoch die Rehabilitationserfolge, so haben CI-Systeme inzwischen ihre Grenzen erreicht. Die Tatsache, dass die meisten CI-Träger nicht in der Lage sind, Musik zu genießen oder einer Konversation in geräuschvoller Umgebung zu folgen, zeigt, dass es noch Raum für Verbesserungen gibt.Diese Dissertation stellt die neue CI-Signalverarbeitungsstrategie Stimulation based on Auditory Modeling (SAM) vor, die vollständig auf einem Computermodell des menschlichen peripheren Hörsystems beruht.Im Rahmen der vorliegenden Arbeit wurde die SAM Strategie dreifach evaluiert: mit vereinfachten Wahrnehmungsmodellen von CI-Nutzern, mit fünf CI-Nutzern, und mit 27 Normalhörenden mittels eines akustischen Modells der CI-Wahrnehmung. Die Evaluationsergebnisse wurden stets mit Ergebnissen, die durch die Verwendung der Advanced Combination Encoder (ACE) Strategie ermittelt wurden, verglichen. ACE stellt die zurzeit verbreitetste Strategie dar. Erste Simulationen zeigten, dass die Sprachverständlichkeit mit SAM genauso gut wie mit ACE ist. Weiterhin lieferte SAM genauere binaurale Merkmale, was potentiell zu einer Verbesserung der Schallquellenlokalisierungfähigkeit führen kann. Die Simulationen zeigten ebenfalls einen erhöhten Anteil an zeitlichen Pitchinformationen, welche von SAM bereitgestellt wurden. Die Ergebnisse der nachfolgenden Pilotstudie mit fünf CI-Nutzern zeigten mehrere Vorteile von SAM auf. Erstens war eine signifikante Verbesserung der Tonhöhenunterscheidung bei Sinustönen und gesungenen Vokalen zu erkennen. Zweitens bestätigten CI-Nutzer, die kontralateral mit einem Hörgerät versorgt waren, eine natürlicheren Klangeindruck. Als ein sehr bedeutender Vorteil stellte sich drittens heraus, dass sich alle Testpersonen in sehr kurzer Zeit (ca. 10 bis 30 Minuten) an SAM gewöhnen konnten. Dies ist besonders wichtig, da typischerweise Wochen oder Monate nötig sind. Tests mit Normalhörenden lieferten weitere Nachweise für die verbesserte Tonhöhenunterscheidung mit SAM.Obwohl SAM noch keine marktreife Alternative ist, versucht sie den Weg für zukünftige Strategien, die auf Gehörmodellen beruhen, zu ebnen und ist somit ein erfolgversprechender Kandidat für weitere Forschungsarbeiten.Cochlear implants (CIs) combined with professional rehabilitation have enabled several hundreds of thousands of hearing-impaired individuals to re-enter the world of verbal communication. Though very successful, current CI systems seem to have reached their peak potential. The fact that most recipients claim not to enjoy listening to music and are not capable of carrying on a conversation in noisy or reverberative environments shows that there is still room for improvement.This dissertation presents a new cochlear implant signal processing strategy called Stimulation based on Auditory Modeling (SAM), which is completely based on a computational model of the human peripheral auditory system.SAM has been evaluated through simplified models of CI listeners, with five cochlear implant users, and with 27 normal-hearing subjects using an acoustic model of CI perception. Results have always been compared to those acquired using Advanced Combination Encoder (ACE), which is today’s most prevalent CI strategy. First simulations showed that speech intelligibility of CI users fitted with SAM should be just as good as that of CI listeners fitted with ACE. Furthermore, it has been shown that SAM provides more accurate binaural cues, which can potentially enhance the sound source localization ability of bilaterally fitted implantees. Simulations have also revealed an increased amount of temporal pitch information provided by SAM. The subsequent pilot study, which ran smoothly, revealed several benefits of using SAM. First, there was a significant improvement in pitch discrimination of pure tones and sung vowels. Second, CI users fitted with a contralateral hearing aid reported a more natural sound of both speech and music. Third, all subjects were accustomed to SAM in a very short period of time (in the order of 10 to 30 minutes), which is particularly important given that a successful CI strategy change typically takes weeks to months. An additional test with 27 normal-hearing listeners using an acoustic model of CI perception delivered further evidence for improved pitch discrimination ability with SAM as compared to ACE.Although SAM is not yet a market-ready alternative, it strives to pave the way for future strategies based on auditory models and it is a promising candidate for further research and investigation

    Coding Strategies for Cochlear Implants Under Adverse Environments

    Get PDF
    Cochlear implants are electronic prosthetic devices that restores partial hearing in patients with severe to profound hearing loss. Although most coding strategies have significantly improved the perception of speech in quite listening conditions, there remains limitations on speech perception under adverse environments such as in background noise, reverberation and band-limited channels, and we propose strategies that improve the intelligibility of speech transmitted over the telephone networks, reverberated speech and speech in the presence of background noise. For telephone processed speech, we propose to examine the effects of adding low-frequency and high- frequency information to the band-limited telephone speech. Four listening conditions were designed to simulate the receiving frequency characteristics of telephone handsets. Results indicated improvement in cochlear implant and bimodal listening when telephone speech was augmented with high frequency information and therefore this study provides support for design of algorithms to extend the bandwidth towards higher frequencies. The results also indicated added benefit from hearing aids for bimodal listeners in all four types of listening conditions. Speech understanding in acoustically reverberant environments is always a difficult task for hearing impaired listeners. Reverberated sounds consists of direct sound, early reflections and late reflections. Late reflections are known to be detrimental to speech intelligibility. In this study, we propose a reverberation suppression strategy based on spectral subtraction to suppress the reverberant energies from late reflections. Results from listening tests for two reverberant conditions (RT60 = 0.3s and 1.0s) indicated significant improvement when stimuli was processed with SS strategy. The proposed strategy operates with little to no prior information on the signal and the room characteristics and therefore, can potentially be implemented in real-time CI speech processors. For speech in background noise, we propose a mechanism underlying the contribution of harmonics to the benefit of electroacoustic stimulations in cochlear implants. The proposed strategy is based on harmonic modeling and uses synthesis driven approach to synthesize the harmonics in voiced segments of speech. Based on objective measures, results indicated improvement in speech quality. This study warrants further work into development of algorithms to regenerate harmonics of voiced segments in the presence of noise

    Temporal fine structure processing, pitch and speech perception in cochlear implant recipients

    Get PDF
    Cochlear implant (CI) recipients usually complain about poor speech understanding in the presence of noise. Indeed, they generally show ceiling effects for understanding sentences presented in quiet, but their scores decrease drastically when testing in the presence of competing noise. One important aspect that contributes to speech perception skills, especially when listening in a fluctuating background, has been described as Temporal Fine Structure (TFS) processing. TFS cues are more dominant in conveying Low Frequency (LF) signals linked in particular to Fundamental Frequency (F0), which is crucial for linguistic and musical perception. A§E Harmonic Intonation (HI) and Disharmonic Intonation (DI) are tests of pitch perception in the LF domain and their outcomes are believed to depend on the availability of TFS cues. Previous findings indicated that the DI test provided more differential LF pitch perception outcomes in that it reflected phase locking and TFS processing capacities of the ear, whereas the HI test provided information on its place coding capacity as well. Previous HI/DI studies were mainly done in adult population showing abnormal pitch perception outcomes in CI recipients and there was no or limited data in paediatric population as well as HI/DI outcomes in relation to speech perception outcomes in the presence of noise. One of the primary objectives of this thesis has been to investigate LF pitch perception skills in a group of pediatric CI recipients in comparison to normal hearing (NH) children. Another objective was to introduce a new assessment tool, the Italian STARR test which was based on measurement of speech perception using a roving-level adaptive method where the presentation level of both speech and noise signals varied across sentences. The STARR test attempts to reflect a better representation of real world listening conditions where background noise is usually present and speech intensity varies according to vocal capacity as well as the distance of the speaker. The Italian STARR outcomes in NH adults were studied to produce normative data, as well as to evaluate interlist variability and learning effects. Finally, LF pitch perception outcomes linked to availability of TFS were investigated in a group of adult CI recipients including bimodal users in relation to speech perception, in particular Italian STARR outcomes. Results were interesting: Although the majority of CI recipient children showed abnormal outcomes for A§E, their scores were considerably better than in the adult CI users. Age had a statistically significant effect on performance in both children and adults; younger children and older adults tended to show poorer performance. Similarly, CI recipient adults (even the better performers) showed abnormal STARR outcomes in comparison to NH subjects and group differences were statistically significant. The duration of profound deafness before implantation had a significant effect on STARR performance. On the other hand, the significant effect of CI thresholds re-emphasized the sensitivity of the test to lower level speech which a CI user can face very often during everyday life. Analysis revealed statistically significant correlations between HI/DI and STARR performance. Moreover, contralateral hearing aid users showed significant bimodal benefit for both HI/DI and STARR tests. Overall findings confirmed the usefulness of evaluating both LF pitch and speech perception in order to track changes in TFS sensitivity for CI recipients over time and across different listening conditions which might be provided by future technological advances as well as to study individual differences

    On the mechanism of response latencies in auditory nerve fibers

    Get PDF
    Despite the structural differences of the middle and inner ears, the latency pattern in auditory nerve fibers to an identical sound has been found similar across numerous species. Studies have shown the similarity in remarkable species with distinct cochleae or even without a basilar membrane. This stimulus-, neuron-, and species- independent similarity of latency cannot be simply explained by the concept of cochlear traveling waves that is generally accepted as the main cause of the neural latency pattern. An original concept of Fourier pattern is defined, intended to characterize a feature of temporal processing—specifically phase encoding—that is not readily apparent in more conventional analyses. The pattern is created by marking the first amplitude maximum for each sinusoid component of the stimulus, to encode phase information. The hypothesis is that the hearing organ serves as a running analyzer whose output reflects synchronization of auditory neural activity consistent with the Fourier pattern. A combined research of experimental, correlational and meta-analysis approaches is used to test the hypothesis. Manipulations included phase encoding and stimuli to test their effects on the predicted latency pattern. Animal studies in the literature using the same stimulus were then compared to determine the degree of relationship. The results show that each marking accounts for a large percentage of a corresponding peak latency in the peristimulus-time histogram. For each of the stimuli considered, the latency predicted by the Fourier pattern is highly correlated with the observed latency in the auditory nerve fiber of representative species. The results suggest that the hearing organ analyzes not only amplitude spectrum but also phase information in Fourier analysis, to distribute the specific spikes among auditory nerve fibers and within a single unit. This phase-encoding mechanism in Fourier analysis is proposed to be the common mechanism that, in the face of species differences in peripheral auditory hardware, accounts for the considerable similarities across species in their latency-by-frequency functions, in turn assuring optimal phase encoding across species. Also, the mechanism has the potential to improve phase encoding of cochlear implants

    Using blind source separation techniques to improve speech recognition in bilateral cochlear implant patients

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1121/1.2839887.Bilateral cochlear implants seek to restore the advantages of binaural hearing by improving access to binaural cues. Bilateral implant users are currently fitted with two processors, one in each ear, operating independent of one another. In this work, a different approach to bilateral processing is explored based on blind source separation (BSS) by utilizing two implants driven by a single processor. Sentences corrupted by interfering speech or speech-shaped noise are presented to bilateral cochlear implant users at 0dB signal-to-noise ratio in order to evaluate the performance of the proposed BSS method. Subjects are tested in both anechoic and reverberant settings, wherein the target and masker signals are spatially separated. Results indicate substantial improvements in performance in both anechoic and reverberant settings over the subjects’ daily strategies for both masker conditions and at various locations of the masker. It is speculated that such improvements are due to the fact that the proposed BSS algorithm capitalizes on the variations of interaural level differences and interaural time delays present in the mixtures of the signals received by the two microphones, and exploits that information to spatially separate the target from the masker signals
    • …
    corecore