2,232 research outputs found

    Evaluation of Tradeoffs in Resource Management Techniques for Multimedia Storage Servers

    Get PDF
    Many modern applications can benefit from sharing of resources such as network bandwidth, disk bandwidth, and so on. In addition, many information systems store (or would like to store) data that can be of use to many different classes of applications, e.g., digital libraries type systems. Part of the difficulty in efficient resource management of such systems can then occur when these applications have vastly different performance and quality-of-service (QoS) requirements as well as resource demand characteristics. In this work we present a performance study of a multimedia storage system which serves multiple types of workloads, specifically a mixture of real-time and non-real-time workloads, by allowing sharing of resources among these different workloads while satisfying their performance requirements and QoS constraints. The broad aim of this work is to examine the issues and tradeoffs associated with mixing multiple workloads on the same server to explore the possibility of maintaining reasonable performance and QoS requirements without having to partition the resources. The main contribution of this work is the exposition of the tradeoffs involved in resource management in such systems. Although many different resources can be considered, here we concentrate mostly on the I/O bandwidth resource. The performance metrics of interest are the mean and variance of the response time for the non-real-time applications and the probability of missing a deadline for the real-time applications. The increased use of buffer space resources is also considered as a tradeoff for improvements in the above stated performance metrics, i.e., response time and probability of missing deadlines. (Also cross-referenced as UMIACS-TR-98-30

    Architecture for Cooperative Prefetching in P2P Video-on- Demand System

    Full text link
    Most P2P VoD schemes focused on service architectures and overlays optimization without considering segments rarity and the performance of prefetching strategies. As a result, they cannot better support VCRoriented service in heterogeneous environment having clients using free VCR controls. Despite the remarkable popularity in VoD systems, there exist no prior work that studies the performance gap between different prefetching strategies. In this paper, we analyze and understand the performance of different prefetching strategies. Our analytical characterization brings us not only a better understanding of several fundamental tradeoffs in prefetching strategies, but also important insights on the design of P2P VoD system. On the basis of this analysis, we finally proposed a cooperative prefetching strategy called "cooching". In this strategy, the requested segments in VCR interactivities are prefetched into session beforehand using the information collected through gossips. We evaluate our strategy through extensive simulations. The results indicate that the proposed strategy outperforms the existing prefetching mechanisms.Comment: 13 Pages, IJCN

    An Optimal Virtual Machine Placement Method in Cloud Computing Environment

    Get PDF
    Cloud computing is formally known as an Internet-centered computing technique used for computing purposes in the cloud network. It must compute on a system where an application may simultaneously run on many connected computers. Cloud computing uses computing resources to achieve the efficiency of data centres using the virtualization concept in the cloud. The load balancers consistently allocate the workloads to all the virtual machines in the cloud to avoid an overload situation. The virtualization process implements the instances from the physical state machines to fully utilize servers. Then the dynamic data centres encompass a stochastic modelling approach for resource optimization for high performance in a cloud computing environment. This paper defines the virtualization process for obtaining energy productivity in cloud data centres. The algorithm proposed involves a stochastic modelling approach in cloud data centres for resource optimization. The load balancing method is applied in the cloud data centres to obtain the appropriate efficiency

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    Reporting an Experience on Design and Implementation of e-Health Systems on Azure Cloud

    Full text link
    Electronic Health (e-Health) technology has brought the world with significant transformation from traditional paper-based medical practice to Information and Communication Technologies (ICT)-based systems for automatic management (storage, processing, and archiving) of information. Traditionally e-Health systems have been designed to operate within stovepipes on dedicated networks, physical computers, and locally managed software platforms that make it susceptible to many serious limitations including: 1) lack of on-demand scalability during critical situations; 2) high administrative overheads and costs; and 3) in-efficient resource utilization and energy consumption due to lack of automation. In this paper, we present an approach to migrate the ICT systems in the e-Health sector from traditional in-house Client/Server (C/S) architecture to the virtualised cloud computing environment. To this end, we developed two cloud-based e-Health applications (Medical Practice Management System and Telemedicine Practice System) for demonstrating how cloud services can be leveraged for developing and deploying such applications. The Windows Azure cloud computing platform is selected as an example public cloud platform for our study. We conducted several performance evaluation experiments to understand the Quality Service (QoS) tradeoffs of our applications under variable workload on Azure.Comment: Submitted to third IEEE International Conference on Cloud and Green Computing (CGC 2013

    Clouds + Games: A multifaceted approach

    Get PDF
    The computer game landscape is changing: people play games on multiple computing devices with heterogeneous form-factors, capability, and connectivity. Providing high playability on such devices concurrently is difficult. To enhance the gaming experience, designers could leverage abundant and elastic cloud resources, but current cloud platforms aren't optimized for highly interactive games. Existing studies focus on streaming-based cloud gaming, which is a special case for the more general cloud game architecture. The authors explain how to integrate techniques from the cloud and game research communities into a complete architecture for enhanced online gaming quality. They examine several open issues that appear only when clouds and games are put together. © 2014 IEEE
    • …
    corecore