
Evaluation of Tradeo�s in Resource Management Techniques forMultimedia Storage ServersLeana Golubchik� John C.S. Luiy Edmundo de Souza e Silvaz H. Richard GailxAbstractManymodern applications can bene�t from sharing of resources such as network bandwidth,disk bandwidth, and so on. In addition, information systems would like to store data that canbe of use to many di�erent classes of applications, e.g., digital libraries type systems. Partof the di�culty in e�cient resource management of such systems can then occur when theseapplications have vastly di�erent performance and quality-of-service (QoS) requirements aswell as resource demand characteristics. In this work, we present a performance study of amultimedia storage system which serves multiple types of workloads, speci�cally a mixture ofreal-time and non-real-time workloads, by allowing sharing of resources among these di�erentworkloads while satisfying their performance requirements and QoS constraints. The broad aimof this work is to examine the issues and tradeo�s associated with mixing multiple workloadson the same server to explore the possibility of maintaining reasonable performance and QoSrequirements without having to partition the resources. The main contribution of this workis the exposition of the tradeo�s involved in resource management in such systems. Althoughmany di�erent resources can be considered, here we concentrate mostly on the I/O bandwidthresource. The performance metrics of interest are the mean and variance of the response timefor the non-real-time applications and the probability of missing a deadline for the real-timeapplications. The increased use of bu�er space resources is also considered as a tradeo� forimprovements in the above stated performance metrics, i.e., response time and probability ofmissing deadlines.1 IntroductionMany modern applications can bene�t (cost-wise) from sharing resources such as network band-width, disk bandwidth, etc. In addition, information systems would like to store data that can beof use to multiple classes of applications, e.g., digital libraries type systems. Part of the di�cultyin e�cient resource management in such systems can then occur when these applications havevastly di�erent performance and quality-of-service (QoS) requirements as well as resource demandcharacteristics.�Contact author. Department of Computer Science, University of Maryland, College Park, MD 20742,leana@cs.umd.edu.yComputer Science & Engineering Dept, CUHK.zFederal University of Rio de Janeiro.xIBM T.J. Watson Research Center. 1

One approach to dealing with this problem would be to simply share the resources amongthe di�erent classes of requests with a best-e�ort attempt to meet the performance or quality-of-service (QoS) requirements of each. Another approach would be to partition the available resourcebetween the di�erent classes of workloads/requests, i.e., essentially maintain separate and indepen-dent servers. However, in general, this is not a good idea, since one set of resources might remainidle while another set is overloaded. Furthermore, if copies of the same data are of use to multipleclasses of applications, we may have to, in addition, incur a \penalty" for having to maintain con-sistency between multiple copies of the data. Thus, a more sensible approach would be to considertechniques which can share the resources among the di�erent types of workloads while satisfying(to some degree) their performance requirements and QoS constraints.In this paper, we consider one such system, namely, we consider a multimedia storage serverwhich, in general, can service a variety of applications, requesting video, image, audio, and textdata1. However, for the purposes of this work and for ease of exposition, we will focus on a storagesystem that services two types of workloads: (1) continuous (or real-time), and (2) non-continuous(or non-real-time)2. For instance, the real-time (with continuity-type requirements) workload cancorrespond to requests for video streams whereas the non-real-time workload can correspond, forinstance, to billing inquiries about the videos, thumbnails of images corresponding to particularscenes in a video, etc.Clearly, the two types of workloads have di�erent performance and QoS requirements. Specif-ically, the real-time workload requirements can be low latency for starting a video display anddelivery of data at a particular rate (e.g., at 1:5 Mbps for an MPEG-I stream) with little jitter,once the video display has been started3. On the other hand, the non-real-time workload, althoughit does not have jitter-type requirements, still requires reasonable response time | by reasonable wemean that it meets a user-speci�ed requirement, e.g., database applications, such a billing service,might require that X% of all transactions complete in under Y minutes.In general, such a storage server can consist of some amount of processing capacity, storage ca-pacity, and I/O transfer capacity, where the storage system is a multi-level hierarchy, e.g., includingbu�er space, disk-level storage, and tertiary storage. The performance/cost characteristics of sucha system will be a function of the techniques used, at the various levels of the storage hierarchy,for data layout, scheduling of data retrieval, fault tolerance, caching4 schemes, admission control,etc. However, to focus the discussion and to expose the tradeo�s involved in resource manage-ment in the mixed workload systems, in this work we will only consider the secondary storage andmain memory levels of the storage hierarchy. More speci�cally, we will not focus on a particular1Here we focus on the storage system and assume that the network can deliver the necessary performance. Ofcourse, similar issues, to the ones considered in this work, exist in networking, but are outside the scope of this paper.2We will use the terms \real-time" and \continuous" interchangeably throughout the paper; likewise for the terms\non-real-time" and \non-continuous".3The low latency can also be viewed as high throughput, i.e., being able to sustain as many simultaneous videostreams as possible, given a particular server architecture.4Here we use \caching" as general term, i.e., between any two levels of a storage hierarchy.2

architecture of the disk subsystem or speci�c data layout technique but rather treat it as a \blackbox" with a certain maximum transfer capacity and overhead characteristics (i.e., seek, rotationallatency, etc.), and instead concentrate on the scheduling of resources for use by both continuousand non-continuous type requests.Thus, in this paper we present a performance study of a multimedia storage system which servesmultiple types of workloads, speci�cally a mixture of continuous (real-time) and non-continuous(non-real-time) workloads, by allowing sharing of resources among these di�erent workloads whilesatisfying their performance requirements and QoS constraints. The broad aim of this work is toexamine the issues and tradeo�s associated with mixing multiple workloads on the same serverto explore the possibility of maintaining reasonable performance and QoS requirements withouthaving to partition the resources. The main contribution of this work is the exposition of thetradeo�s involved in resource management in such systems. Although many di�erent resourcescan be considered, here we concentrate mostly on the I/O bandwidth resource. The performancemetrics of interest are the mean and variance of the response time for the non-real-time applicationsand the probability of missing a deadline for the real-time applications. The increased use of bu�erspace resources is also considered as a tradeo� for improvements in the above stated performancemetrics, i.e., response time and probability of missing deadlines.Before proceeding, we brie
y survey related works and highlight the main contributions of thispaper, where appropriate. There is a multitude of work on the design of continuous media servers,some of which (and by no means all) include [1, 7, 14, 18, 3, 4, 19], where the authors mostly focuson data layout and retrieval and delivery techniques which facilitate maintaining of continuity indata delivery while providing either deterministic or statistical QoS guarantees. Scheduling ofmixed workloads has not received as much attention. Although it was brie
y mentioned in [15], amore detailed (and to our knowledge �rst) study was presented in [10, 11, 13], where the authorsdiscuss a stochastic approach to QoS provisions to both types of workloads as well as present(somewhat coarse) analytical models for computing the performance measures of interest. This isthe work upon which we build here, in studying the tradeo�s involved in servicing mixed workloads.We do this with the aid of a more detailed analytical model and by considering two orthogonalapproaches to more \sophisticated" scheduling of mixed workloads, namely (1) a technique (termed\mini-cycles") for reducing the waiting time of the non-real-time requests and (2) algorithms forproviding better opportunities for seek optimization. (Both are discussed in Section 2 in detail.)However, we would like to stress once again, that the scheduling algorithms presented here are notthe main focus of this work, but rather the tradeo�s which are exposed through the performanceevaluation of such techniques.Lastly, in an independent e�ort in a paper that recently appeared [12], the authors also proposemore sophisticated (than in [10, 11, 13]) scheduling algorithms for servicing mixed workload. Wewould like to point out that in [12] the authors consider only light to moderate real-time workloads,whereas in our study, we investigate the performance tradeo�s under high (and speci�cally maxi-mum possible) real-time workloads. The rationale being that it is desirable for cost-based reasons3

to run the storage server at a high (or maximum) number of real-time requests (provided that QoSrequirements are satis�ed), as long as reasonable response time to non-real-time requests can beprovided. Thus, high real time workloads correspond to reasonable and important operating pointsat which to consider our system. Clearly, if it can be shown that reasonable response time can beprovided to non-real-time requests at high (or maximum) real-time workloads, better response timeto non-real-time requests can be obtained at lighter real-time workloads. Furthermore, the authorsalso (brie
y) consider the concept of \mini-cycles", but do not evaluate the resulting impact onperformance. Speci�cally, they seem to suggest that a greater number of mini-cycles always resultsin better performance | this is not the case, as is clearly illustrated in Section 4. Finally, bu�erspace considerations are not addressed in [12]; bu�er space resources are considered in this paper,as described in Appendix A.2 Mixed Workload SchedulingIn this section, we �rst introduce the basic concept of cycle-based (or group-based) scheduling[5, 17, 20], which is used for servicing continuous requests. We then discuss performance implicationsof deterministic vs. statistical QoS provisions for continuous requests as well as the cycle period(T). Lastly, we propose several algorithms for mixed workload scheduling.2.1 Background on Cycle-Based SchedulingIn cycle-based scheduling algorithms, the retrieval of data from the disk sub-system, for servicingcontinuous requests, is performed on a cyclic basis where each cycle is of length T and in eachcycle, the system retrieves data for Nc continuous requests. Note that in cycle-based scheduling al-gorithms, the transmission of data retrieved in the ith cycle does not start until the beginning of the(i+ 1)th cycle5. This is motivated by the increased opportunities for performing seek optimization(i.e., data blocks needed for service are retrieved using a SCAN-type algorithm). The cost of thisoptimization is that the system needs additional bu�er space to hold the retrieved data until thebeginning of the next cycle. This cycle-based or (group-based) approach to servicing continuousstreams is, for instance, suggested in [5, 17, 20], and the tradeo� between improved utilization ofthe disk bandwidth (due to seek optimization) and the need for additional bu�er space is analyzedin several works6, e.g., [5, 2, 20].One important design parameter in cycle-based scheduling is the actual value of the cycle lengthT . In general, the value of T is a function of the maximum number of continuous requests, Nc, thatcan be service by the system within a cycle and the degree of QoS that the system can provide. Forinstance, when insuring jitter-free retrieval/delivery of data, i.e., providing deterministic (or worst-case) guarantees [17, 2], T can determined by considering the maximum time needed to retrieve Nc5That is, here we assume that the server is responsible for maintaining the continuity in data delivery, where theclients have relatively little bu�er space. Thus, if the data delivery is not \o�set" by one cycle from data retrieval,jitter may occur (due to seek optimization).6In general, larger values of Nc a�ord better seek optimization opportunities, but they also result in larger bu�erspace requirement. 4

data blocks by scanning a disk. Formally, T can be expressed as:T = �maxseek (Nc) +Nc � ��maxrot + �maxtfr � (1)where �maxseek (Nc) refers to the worst case seek time for servicing Nc requests, i.e., when these Ncrequests are uniformly distributed across the disk surface [8], �maxrot refers to the worst case rotationallatency (i.e., a full rotation if we assume that the disk cannot support zero latency reads [16]), and�maxtfr refers to the worst case transfer time. Given a variable bit rate (VBR) stream (e.g, an MPEGstream), the worst case transfer time can be determined by the peak display rate. Based on theabove assumptions, the value of T will provide deterministic guarantee (e.g., all requests will receiveservice before the end of the cycle). However, the undesirable e�ect is that it can result in poordisk bandwidth utilization when there is a large deviation between the peak and the mean displayrate.Another approach to determining the value of T is to provide statistical guarantees. That is,let �Nc be the random variable representing the service time of Nc continuous requests. Then, thesystem guarantees that the probability of the event where �Nc is greater than T is less than someprede�ned system parameter, e.g., p. Mathematically, we have:Prob[�Nc � T] � p (2)One can rely on the Cherno�'s bound7 theorem [9] to determine the value of T so as to service Ncrequests under the probability constraint p. Let F �Nc(s) be the Laplace transform for the randomvariable �Nc and let F �rot(s) and F �tfr(s) be the Laplace transforms for the random variables ofrotational latency time and data transfer time, respectively. Since a cycle-based algorithm employsseek optimization (e.g., some form of a SCAN-type algorithm) and since the worst case seek timeoccurs when these Nc requests are equally spaced out on the disk surface [8], we have:F �Nc(s) = e(�s �maxseek (Nc)) hF �rot(s)F �tfr(s)iNc (3)Let MNc(s) be the moment generating function for the random variable �Nc . Since MNc(s) is equalto F �Nc(�s), applying Cherno�'s theorem to bound the tail of the random variable �Nc , gives us thefollowing: Prob[�Nc � T] = p � inf��0�MNc(�)e�T � (4)Note that the in�mum (inf) operator applies to Equation (4), since, based on the Markov's in-equality [9], that inequality holds for all � � 0. Therefore, the tightest bound is obtained by usingthe best �. Using standard numerical solution techniques, we can obtain the optimal �� whichgives the tightest upper bound and thereby obtain the value of T . If �Nc is larger than T , then anover
ow event occurs. In general, there are several approaches to handling the over
ow situation.For example, the system can allow over
owing into the next cycle (i.e., �nish servicing the requests7Other approaches to bounding the tail of a sum of random variables exist; see [9] for details.5

in cycle i where, as a consequence, the Nc requests in cycle i+ 1 will have less than T time unitsto meet their deadlines). Or, the system can stop servicing the requests in the (over
owing) cyclei and proceed to service the next Nc continuous requests in cycle i + 1. In this work, we onlyconsider the �rst approach, i.e., that of allowing over
ow into the next cycle. Speci�cally, in thiswork we will provide statistical guarantees of QoS for continuous requests, and thus an importantperformance measure under investigation here is the probability of over
ow.We will not focus on the merits of cycle-based (or group-based) scheduling any further here, asthis is a well known approach to scheduling of continuous streams, but consider how to allocatewhatever remains of the disk bandwidth resource to the non-continuous requests and focus onevaluating the tradeo�s between di�erent approaches to doing this. In general, in our system,higher priority is given to continuous-type requests, i.e., we will guarantee, with a high probabilityof (1 � p) (as suggested above) that blocks for Nc continuous requests will be retrieved on-time(i.e., before time T), and without jitter. Due to statistical variations of service times among theseNc continuous requests, there will be time left in the cycle which is \not used" by the continuousrequests. Therefore, the system can use this residual time to service non-continuous request. Aninteresting question here is, how can we provide reasonable response time to non-continuous requests,given that (in a sense) higher priority is given to continuous requests. We must �rst point out thatwe will investigate this issue under high system loads (i.e., maximum possible number of continuousrequests using the value of Nc computed above) | the reason being that it is desirable for cost-based reasons to run the server at maximum Nc capacity (given a desired value of p), as long asreasonable response time to non-continuous requests can be provided; of course, better responsetime is expected at lighter continuous workloads. Therefore, in what follows, we will consider asystem which always has Nc continuous requests present. The focus of the remainder of this sectionis a discussion of the various scheduling algorithms that can be used for servicing the continuousand the non-continuous requests.2.2 Scheduling Algorithms for Supporting Mixed WorkloadAlgorithm 1: Non-work conserving, �rst-come-�rst-serve (NW-FCFS)The �rst simple algorithm is termed the non-work conserving, �rst-come-�rst-serve (NW-FCFS)algorithm. We have already described how the system schedules retrieval of continuous requestsusing cycle-based scheduling and scanning of the disk. Thus, whatever remains of the cycle will beused to service any non-continuous request present in the system, and these will be serviced in aFCFS manner. Formally, let there be two classes of requests in our system, class C (for continuousrequests) and class NC for (non-continuous requests). Let Nc be the number of class C requestswhich can be �xed and then used to compute the cycle time T , as in Equation (4) above. Thus, inthe NW-FCFS algorithm, given a period of length T , we �rst serve Nc customers within the singleperiod T . If after servicing all Nc customers the system still has some residual time within theperiod, that residual time is dedicated to servicing non-continuous requests in a FCFS manner. Ifthe system times out (e.g., at the end of the cycle T) while servicing the non-continuous request,6

the non-continuous request is preempted and re-started from the beginning the next time thereis opportunity to service non-continuous requests. Thus, the non-continuous request receives pre-emptive, non-resume type of service. Note that this algorithm is non-work conserving in the sensethat when some residual time exists and there are no non-continuous requests present, the systemwill not proceed to schedule the waiting continuous requests but rather, will remain idle until theend of the period8. An example of the NW-FCFS scheduling policy is depicted in Figure 1 whereNc = 5 and the over
ow event is depicted in the second period.
T T T

one class C request

one class NC request

In each period T, the system serves 5 class C requests

overloaded periodFigure 1: NW-FCFS Alg.: Within a cycle, serve class C �rst, then serve class NC in FCFS manner.Although NW-FCFS is a possible algorithm for handling mixed workload requests, the resultingQoS (e.g., expected response time) for the non-continuous requests may be poor. For instance, ifa non-continuous request arrives to the system at the beginning of a cycle, it has to wait until thesystem �nishes the service of all continuous requests and only then, if there is some residual timein the cycle, the service of the non-continuous request can start. The situation will become worseif the arrival rate of the non-continuous requests is high which will result in long queueing delaysand consequently further increase response time of the non-continuous requests.To improve the response time of non-continuous requests, we can generalize the NW-FCFSalgorithm, which we term the NW-FCFS(Nmc) algorithm as follows. Instead of having one cyclewith length T , we divide this cycle into Nmc mini-cycles, each with a length of T=Nmc. Withineach mini-cycle, the system uses the NW-FCFS algorithm to serve Nc=Nmc continuous requests9.That is, under this scheme, non-continuous requests can receive service if there is any residual timeleft at the end of each mini-cycle. It is important to note that we have two opposing e�ects here:1. By servicing all continuous requests within one scan, we achieve better disk bandwidth utiliza-tion because greater seek optimization opportunities exist for the continuous requests.2. By servicing the continuous requests in many mini-cycles, we reduce the opportunities forseek optimization of the continuous requests, but we improve the response time of the non-continuous requests. In addition, it is also possible that some continuous requests, especiallythose that are served in the last mini-cycle, will have a higher probability of missing deadline.8The necessity to be non-work conserving is motivated by the need to maintain a speci�c rate of data deliveryfor continuous requests and that \early" data retrieval (i.e., earlier than is dictated by the desired delivery rate) willresult in increasing growth in bu�er space requirements. This non-work conserving property is largely responsible forthe complexity of the analytical model.9In practice, some earlier mini-cycle may serve dNc=Nmce continuous requests while later mini-cycles may servebNc=Nmcc continuous requests. 7

Therefore, these tradeo�s give room for an optimization problem. That is, how to �nd an op-timal number of mini-cycles so as to minimize the response time of the non-continuous requestswhile providing the required QoS to the continuous requests. We will explore these tradeo�s andoptimization later in the paper.Another approach to further improve the response time of non-continuous requests is to servicethem in groups instead of in a FCFS manner, i.e., provide similar seek optimization opportunities(as in the continuous requests case) by servicing groups of non-continuous requests in a scan-typemanner. We now describe a second algorithm, which we call \non-work conserving, gated (NW-Gated) algorithm", in terms of a single cycle of length T . Of course, the concept of mini-cycles can(and will) be applied to the NW-gated algorithm as well.Algorithm 2: Non-work conserving, gated (NW-Gated)The NW-Gated algorithm is similar to the NW-FCFS with the exception that instead of servingclass NC requests in a FCFS manner, we serve them in a sorted order such that the total seek timeis minimized (i.e., a form of SCAN). To achieve this, the system can organize all class NC requestsand serve them according to their position with respect to the disk head, including the new classNC requests that arrive after the beginning of class NC service. However, this may introduceunacceptable delays for the requests that are far away from the disk head at the beginning of theservice, since new requests that are closer to the head's position would have a higher priority ofservice. To avoid this problem, we use a gated discipline instead which is as follows. When thesystem completes service of the class C requests and there is still some residual time in a cycle,the system switches to servicing class NC requests currently present in the system. However, nonew class NC requests are admitted into service until the current batch completes service (i.e., thegated discipline). If there is still time left in the current cycle, then the new class NC requeststhat arrived while the �rst batch was being served are eligible to start service. The gate is againclosed and the process repeats until the end of the cycle. This discipline guarantees priority of oldNC requests over new ones while trying to make e�cient use of the disk, therefore, some notionof fairness is also provided. Similarly to the NW-FCFS, a non-continuous request receives a pre-emptive, non-resume type of service. Lastly, this algorithm is classi�ed as non-work conservingbecause it is possible that the server is idle while there are some class C requests waiting for service(i.e., when there are no non-continuous requests present in the system and there is still residualtime in a cycle).The NW-Gated algorithm is depicted in Figure 2. In this �gure, the number of continuousrequests that have to be served within a cycle, Nc, is equal to 5. Note that in the �rst cycle, thegate is closed three times, and each batch of non-continuous requests is served in a scan order soas to reduce seek overhead. In case there is an overloaded period (i.e., the second cycle), over
owis allowed into the next cycle.As already mentioned, we can apply the concept of mini-cycles to this algorithm as well. Forexample, in the NW-Gated(Nmc) algorithm, there will be Nmc mini-cycles and the scheduling8

T T T

Each period T, the system serves 5 class C requests

This is to indicate that the class NC requests are gated at this point. Only those
class NC requests inside the gate are considered for service.

one class C request

one class NC request

overloaded periodFigure 2: NW-Gated Alg.: Within a cycle, serve class C, then gated service for class NC.within a mini-cycle is similar to NW-Gated(1) algorithm as described above. Similar performancetradeo�s of disk bandwidth e�ciency and response time of non-continuous requests exist in thisclass of algorithm and we will explore these tradeo�s later in the paper.Of course the problem with the NW-FCFS(Nmc) and the NW-Gated(Nmc) algorithms is thatidle times may be wasted at the end of each mini-cycle. To improve on these algorithms, we proposea third algorithm, which we term the pseudo-work conserving, gated (PW-Gated) algorithm10.Algorithm 3: Pseudo-work conserving, Gated (PW-Gated)Assume we have Nmc mini-cycles. In the �rst mini-cycle, the system �rst starts servicing Nc=Nmcclass C requests. At the end of this service, the system checks whether there are any class NCrequests in the queue, if there is no class NC request waiting, then the system immediately beginsthe next mini-cycle. If there are some class NC requests, the system will serve these class NCrequests in a gated fashion (as in the NW-Gated algorithm above). If the system times out (e.g., atthe end of the mini-cycle) while servicing the non-continuous request, the non-continuous request ispreempted. As in previous algorithms, a non-continuous request receives pre-emptive, non-resumetype of service.The server will switch back to servicing class C requests when either there are no more classNC requests in the queue or when the mini-cycle ends (whichever comes �rst). In either case, atthat point a new mini-cycle begins. The system continues in this manner for the �rst Nmc � 1mini-cycles. For the last mini-cycle, the system will behave like NW-Gated(1). This algorithm ispseudo-work conserving because during the �rst Nmc � 1 mini-cycles, the server is never idle andonly in the last mini-cycle, there is a possibility of the server being idle (while there are continuousrequests in the system). Another important point to observe here is that in this algorithm, thesystem aggressively services class C requests for the �rst Nmc � 1 cycles, therefore, it reduces theprobability of over
ow (i.e., missing the deadline) for class C requests that belong to the last mini-cycle (i.e., those serviced towards the end of the cycle) thereby reducing jitter in delivery. Figure 3depicts the PW-Gated algorithm with Nmc = 3. In this �gure, the system serves 5 class C requestsin each mini-cycle. The system �nishes the �rst mini-cycle early because there is no class NCrequests, and therefore, it switches to the second mini-cycle immediately. For the last mini-cycle,10Note that, when the number of mini-cycles is equal to 1, this algorithm behaves just like NW-Gated.9

T/3 T/3 T/3

This is to indicate that the class NC requests are gated at this point. Only those
class NC requests inside the gate are considered for service.

x

mini-cycle, the system serves 5 class C requests
The system has 3 mini-cycles and in each

one class C request

one class NC request

first mini-cycle second mini-cycle third mini-cycleFigure 3: PW-Gated(3) Alg.: Serving class C requests, then gated service for class NC requests.the system uses the NW-Gated algorithm to service class NC customers.Although there are many other possible algorithms for handling mixed workloads in a storagesystem, we do not present any more alternatives here, since that is not the focus of this work. Inthe remainder of this paper, with the aid of these three algorithms, we focus on investigating andexposing the performance tradeo�s and optimization issues involved in scheduling service of mixedworkloads.3 ModelIn this section we present a queueing model which will allow us to study the system described inSection 1 and the corresponding scheduling algorithms described in Section 2. We then present adiscussion of the derivation of the main parameters needed for this model.3.1 Queueing ModelThe model is depicted in Figure 4. It consists of two queues, Qc and Qnc, corresponding to
on departure

if time left in (mini)cycle

µc
Q

c change
class

λ
µnc

Q
nc

L
nc

token

mini-cycle count)

fnc(

time left in (mini)cycle,

,LncFigure 4: Queueing Model.continuous and non-continuous requests, respectively. We now give an \informal" explanation ofhow this queueing system works; the more formal de�nition is given in Appendix C.Let us, for ease of exposition, �rst assume that Nmc, the number of mini-cycles, is equal to 1.And, as already mentioned in the previous section, there is a notion of (global) cycle time, T , in thesystem and hence in the model as well. The queueing system behaves as follows. All Nc continuousrequests are represented by a single customer of class C, which belongs to a closed chain [6], i.e.,10

the customer is always present in the queueing system and after receiving service at Qc, is routedback to Qc. On the other hand, each of the Nnc non-continuous requests is represented by onecustomer of class NC. Customers of class NC arrive to queue Qnc according to a Poisson processwith a rate of �, and depart from the system after receiving service at Qnc, i.e., they belong to anopen chain [6].There is a single token in the system which, at the beginning of a cycle of length T , starts outat Qc. Once the continuous customer completes service, on its departure, Qc passes the token toQnc if there is still time left in the cycle. The continuous customer then comes back to Qc butdoes not receive service until the token is returned to Qc. If the service of the C customer is longerthan the cycle time, T , by t � 0 time units, then the token remains at Qc and the next cycles is oflength T � t.Operation of Qnc is somewhat di�erent. The server at Qnc does not service any customers untilit receives a token. Once the token is received, Qnc begins servicing customers of class NC andcontinuous to do so until the cycle time expires, at which point it passes the token back to Qc.Of course, if the cycle time has already expired when the token is received, it is passed back toQc immediately, without servicing any of the NC customers. The actual service discipline at Qncdepends on the scheduling algorithm being modeled. Speci�cally, in the case of the NW-FCFSalgorithm, the NC customers are serviced in a FCFS manner until the expiration of the cycle time.If the cycle time expires in the middle of servicing an NC customer, this customer's service ispre-empted and then initiated from the beginning (i.e., this is a non-resume type service) the nexttime the token comes back to Qnc. In the case of the NW-Gated and the PW-Gated algorithms,the service disciple is more complex. Let Lgnc be the number of NC customers at Qc when thetoken arrives. These Lgnc customers are serviced as a batch (i.e., using a SCAN-type algorithmas mentioned in Section 2). Qnc continuous servicing the NC customers in this manner, i.e., inbatches, where the size of the next batch is determined by the number of customers that arriveduring the service of the current batch, until the cycle time expires. Again, as in the case of theNW-FCFS algorithm, if the cycle time expires in the middle of servicing an NC customer, thisservice is pre-empted and initiated from the beginning (i.e., not resumed) the next time the tokenreturns to Qnc.Note that, in all three algorithms, even if the number of customers waiting at Qnc goes tozero at some point, Qnc will continue holding on to the token until the cycle time expires (this isthe non-work-conserving part of these algorithms). Also note that, although this queueing modelconsists of multiple queues, the resources of interest (namely the I/O bandwidth) that this modelrepresents are still shared (i.e., the sharing is done through the token).To extend this model to multiple mini-cycles, i.e., Nmc > 1, the following modi�cation must bemade (the corresponding service times for each type of customer is given in Section 3.2):1. the single C customer now represents NcNmc continuous customers rather than all Nc; howeverwe can still get away with only having a single C customer in the model, except that this singlecustomer will change class [6] every time it departs from (and immediately returns to) Qc |11

the (circular) numbering (or labeling) of classes will range from 1 to Nmc and we will nowhave the continuous customer alternating between Nmc classes, i.e., C1; C2; : : : ; CNmc; C1; : : :;this change of classes will represent going from one mini-cycle to the next112. the length of each mini-cycle is TNmc3. the token-passing rules remain the same for NW-FCFS and NW-Gated except that the expi-ration of a mini-cycle (rather than a cycle) triggers passing of the token4. the token-passing rules for PW-Gated in the last mini-cycle, i.e., the (Nmc)th mini-cycle,remain the same5. the token-passing rules for PW-Gated in mini-cycles 1; 2; : : : ; Nmc�1 are modi�ed as follows.If Lgnc = 0 either when the token arrives or after the service of a previous batch, then thetoken is passed back to Qc immediately (this is the work-conserving part of the algorithm)The queueing system described above is fairly complex. (Please see Appendix C for a more formalde�nition of the queueing model.) Thus, in Section 4 we present performance results obtained byit through simulation.3.2 Service Times for Continuous and Non-continuous RequestsGiven the above model of the system, what remains is to discuss the service time distribution forboth the continuous and the non-continuous customers12. Clearly, the service time of any customerin the model will correspond to some combination of seek, rotational latency, and transfer time(since we are modeling accesses to the disk sub-system). We begin our discussion with the seektime. In order to simplify the model somewhat, we will assume a deterministic seek, and derive anappropriate expression for each type of a request and each algorithm. (Note the distinction in thederivation below between seek time and seek distance; this distinction is due to the non-linearityof the seek time function as given in Table 1.)13 Let CY L be the number of cylinders on the disk.Then,1. the seek distance for the continuous customer (for all algorithms) will correspond to theworst case seek time, i.e., the seek time for servicing NcNmc requests uniformly distributedon the surface of the disk (see Section 2.1 for details); we will denote the seek distancecorresponding to each continuous request by dmaxseek (NcNmc), wheredmaxseek (NcNmc) = � CY LNc=Nmc� (5)11Since the performance metric of interest for continuous requests is the probability of missing a deadline in a cycle,this model will su�ce | continuous requests do not experience congestion in this system, i.e., in a sense they havepriority over non-continuous requests.12As already mentioned, the continuous customer belongs to a closed chain, and thus is always \present" in thesystem, whereas the arrival process of the non-continuous customers is Poisson with a rate of �.13The actual values of these seek times will depend on the disk parameters used | these will be given in Section4 for the speci�c experiments discussed there. 12

2. the seek distance for one non-continuous customer in the NW-FCFS algorithm will correspondto the average seek distance on a disk[8], i.e., l13dfullseekm, where dfullseek = CY L denotes themaximum possible seek distance between any two cylinders on the disk (recall that in thisalgorithm the non-continuous customers are just serviced in a FCFS manner)3. the seek distance for a gated group of non-continuous requests of size Lgnc in the NW-Gatedand the PW-Gated algorithms will be given by the following equation (recall that in thesealgorithms non-continuous customers are serviced in groups, and in a SCAN-type manner):dLgncseek = �dfullseek � �� 2Lgnc + 1�� LgncLgnc + 2�+ �Lgnc � 1Lgnc + 1�� LgncLgnc + 2��32��� (6)where dfullseek = CY L denotes the longest possible seek distance (in number of cylinders)between any two cylinders on the diskThe derivation of Equation (6) is given in Appendix B.Given the seek distances derived above, the service time of the continuous customer, for allthree algorithms, is as follows:Sc = � edgeseek + NcNmc � �seek�dmaxseek(NcNmc)�+ � crot + � ctfr� (7)where � edgeseek is an extra seek needed to get to an edge of a disk surface in order to do the SCANcorresponding to service of continuous requests14. The seek(d) is the seek function which givesthe seek time as a function of the seek distance (in number of cylinders). The speci�c functionthat should be used depends on the type of disks used in the system; the seek function for thetype of disk used in our experiments (a Seagate Barracuda) is given in Table 1. The � crot and � ctfrare random variables corresponding to rotational latency and transfer time portions of the servicetime of each continuous request (their distributions, for the experiments discussed in this paper,are given in Section 4), and dmaxseek (NcNmc) is given in Equation (5). Recall that the single continuouscustomer in our model represents all the continuous requests being serviced in a single mini-cyclein the system. Hence, the NcNmc term in Equation (7).The service time of each non-continuous customer in the NW-FCFS algorithm is:S1nc = seek��13dfullseek��+ �ncrot + �nctfr (8)where �ncrot and �nctfr are random variables corresponding to rotational latency and transfer timeportions of the service time of each non-continuous request (their distributions, for the experimentsdiscussed in this paper, are given in Section 4), and dfullseek = CY L. The seek(d) function is thesame as the one above.The service time of one non-continuous customer, in a gated group of size Lgnc, in the NW-Gatedand PW-Gated algorithms is: S2nc = seek &dLgncseekLgnc '!+ �ncrot + �nctfr (9)14Note that, this \extra" seek should not be \counted" in the response time of non-continuous requests; thus weinclude it here. 13

where �ncrot and �nctfr are as above, i.e., random variables corresponding to rotational latency andtransfer time portions of the service time of each non-continuous request whose distributions, forthe experiments discussed in this paper, are given in Section 4. The seek(d) is the same seekfunction as above, and dLgncseek is given in Equation (6).4 ResultsIn this section, we examine the tradeo�s associated with service of mixed workloads by evaluatingthe performance of the scheduling approaches which were described in Section 2. The resultsdiscussed here are obtained through simulation which is based on the model described in Section 3.Speci�cally, let T inc be the random variable representing the response time of the ith non-continuousrequest. The performance metrics used for the non-continuous requests are E[Tnc] and �nc, theexpected response time and the variance of the response time, respectively; that is:E[Tnc] = limn!1 1n nXi=1E[T inc] (10)�nc = limn!1 1n� 1 nXi=1 �T inc � E[Tnc]�2 (11)Let Eimd be the event that the ith continuous request has missed the deadline15 and Eiol be theevent that the ith cycle is overloaded. The performance metrics used for the continuous requestsare Pmd and Pol, the probability of a continuous request missing a deadline and the probability ofan overloaded cycle, respectively; that is:Pmd = limn!1 1n nXi=1 1fEimdg (12)Pol = limk!1 1k kXj=1 1fEjolg (13)where 1ffg = 1 if condition f is true.We consider a system which employs a disk farm to service continuous requests as well as non-continuous requests. Table 1 gives the relevant characteristics of a typical Seagate disk used inthe experiments presented here. Note that the seek time is in seconds, and it is a function of therequest seek distance d. Unless otherwise stated, we use the following parameters in the experimentspresented in this section. We set a requirement that each disk in the system has to support Nc = 24continuous requests, which represent MPEG streams with an average display rate of 1:5 Mbps each.For the non-continuous request, the arrival process is modeled as a Poisson process with rate �,and the transfer size is modeled by an exponential distribution with mean 46:875 KBytes. Weassume that in all experiments (unless otherwise stated), the requirement is that the probability ofan overloaded cycle has to be less than or equal to 0:01 (i.e., Prob[�Nc � T] � 0:01). Given the disk15Recall that, a missed deadline occurs when the server �nishes service of a continuous request after a cycle oflength T has already ended. 14

Disk Capacity 2.25 GBytesNumber of cylinders (CY L) 5288Transfer rate 75 MbpsMaximum rotational latency 8.33 millisecondsseek time function (secs) seek(d) = n 0:6 � 10�3 + 0:3 � 10�3 � pd if d < 4005:75 � 10�3 + 0:002 � 10�3 � d if d � 400Table 1: Seagate Barracuda 4LP Disk Parameters
E

xp
ec

te
d

R
es

po
ns

e
T

im
e

0.40

0.60

0.80

1.00

1.20

1.40

0.00 5.00 10.00 15.00 20.00 λ

NW-FCFS

NW-Gated

PW-Gated

NW-FCFS

NW-Gated

PW-Gated

V
ar

ia
nc

e
in

 R
es

po
ns

e
T

im
e

0.50

1.00

1.50

0.00 5.00 10.00 15.00 20.00 λE[Tnc] for T = 1:48754; Nmc = 1. �nc for T = 1:48754; Nmc = 1.Figure 5: E[Tnc] and �nc for NW-FCFS, NW-Gated and PW-Gated under T = 1:48754; Nmc = 1.parameters and the workload requirements, we can solve Equation (4) numerically to determinethe value of T such that Prob[�Nc � T] � 0:01. The value of T in all experiments (unless otherwisestated) is set to 1:48754 seconds so as to satisfy the QoS constraint. We model the transfer sizeof a continuous request as an exponential distribution with mean 2:25 Mbits (i.e., so that on theaverage, the display rate per stream per cycle is approximately 1:5 Mbps as for an MPEG1 stream).The rotational latency for both the continuous and the non-continuous requests is modeled as auniform distribution in the range of [0; 8:33] milliseconds.Experiment 1: In this experiment, we set the number of mini-cycles Nmc = 1 and T = 1:48754seconds. Figure 5 illustrates E[Tnc], the expected response time, and �nc, the variance of theresponse time, of non-continuous requests for the three scheduling algorithms. Note that boththe NW-Gated and the PW-Gated algorithms have a much lower expected E[Tnc] and �nc for thenon-continuous requests under moderate to high arrival rates. Since the number of mini-cyclesNmc = 1, the improvement in E[Tnc] and �nc is obtained by simply re-ordering the service ofnon-continuous requests. Figure 5 also illustrates that a system using NW-Gated or PW-Gatedscheduling algorithm can schedule more non-continuous requests at higher loads whereas a systemusing NW-FCFS may experience instability earlier, i.e., in the experiment of Figure 5 at � > 18:0.Moreover, Figure 6 illustrates Pmd, the probability of missing deadline, and Pol, the probability ofan overloaded cycle, for all scheduling algorithms. Observe that all three algorithms studied hereperform within our quality of service (QoS) requirement, that is, the probability that the time to15

P
ro

ba
bi

lit
y

of
 m

is
si

ng
 d

ea
dl

in
e

x
10

-3

0.00

0.20

0.40

0.60

0.80

1.00

0.00 5.00 10.00 15.00 20.00

NW-FCFS

NW-Gated

PW-Gated

λ

P
ro

ba
bi

lit
y

of
 o

ve
rl

oa
de

d
pe

ri
od

 x
 1

0
-3

0.00

1.00

2.00

3.00

4.00

0.00 5.00 10.00 15.00 20.00

NW-FCFS

NW-Gated

PW-Gated

λPmd for T = 1:48754; Nmc = 1. Pol for T = 1:48754; Nmc = 1.Figure 6: Pmd and Pol for NW-FCFS, NW-Gated and PW-Gated under T = 1:48754; Nmc = 1.service Nc continuous requests is larger than T is less than or equal to 0:01.Experiment 2: In this experiment, we study the e�ect of mini-cycles on the performance ofcontinuous and non-continuous requests under the NW-FCFS algorithm. Figure 7 illustrates thecorresponding changes in Tnc and �nc. In this �gure, we observe that the NW-FCFS scheduling
E

xp
ec

te
d

R
es

po
ns

e
T

im
e

 x
 1

0-3

200.00

300.00

400.00

500.00

600.00

700.00

2.00 4.00 6.00 8.00 10.00 12.00

=0.5

=1.0

=3.0

=6.0

=9.0

λ

λ

λ

λ

λ

Νmc

V
ar

ia
nc

e
on

 R
es

po
ns

e
T

im
e

 x
 1

0-
3

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

2.00 4.00 6.00 8.00 10.00 12.00 Νmc

=0.5

=1.0

=3.0

=6.0

=9.0

λ

λ

λ

λ

λE[Tnc] for NW-FCFS with varying Nmc. �nc for NW-FCFS with varying Nmc.Figure 7: E[Tnc] and �nc for NW-FCFS with varying number of mini-cycles and T = 1:48754.algorithm has a convexity property. That is, when we initially increase the number of mini-cycles,there is an improvement in E[Tnc] and �nc for the non-continuous requests. The improvement comesfrom the fact that with more (and therefore shorter) mini-cycles the waiting time (before the serverswitches back to servicing non-continuous requests) is reduced. However, there is a correspondingloss in seek optimization opportunities (due to fewer number of continuous requests being serviced ina mini-cycle). As the number of mini-cycles is increased further, we experience diminishing returnsin performance gains due to reduced waiting time. Moreover, the loss of bandwidth e�ciency (dueto loss of opportunities for seek optimization) becomes the dominant factor, and thus �nally results16

P
ro

ba
bi

lit
y

of
 M

is
si

ng
 d

ea
dl

in
e

 x
 1

0-3
0.00

10.00

20.00

30.00

40.00

2.00 4.00 6.00 8.00 10.00 12.00

=0.5

=1.0

=3.0

=6.0

=9.0

λ

λ

λ

λ

λ
=12.0λ

NmcFigure 8: Pmd for continuous requests under NW-FCFS under di�erent values of mini-cycles.in the reduced performance of the non-continuous requests. The important point to observe hereis that this convexity property implies that there exists an optimal operating point, i.e., an N�mc,which corresponds to the optimal number of mini-cycles that will minimize E[Tnc] and �nc, andthat is where we should be operating our system.Although we can reduce E[Tnc] and �nc for the non-continuous requests by operating the systemat Nmc = 4, the NW-FCFS algorithm may not be able to support, at this operating point, theQoS required by the continuous requests. Figure 8, illustrates that the probability of a continuousrequest to missing a deadline, Pmd, is an increasing function of the number of mini-cycles under allarrival rates. As illustrated in Figure 7, for � = 1:0, N�mc should be equal to 4 so as to minimizeE[Tnc]. However, at that point, the probability of a continuous request missing a deadline (Pmd)is around 0:016, which violates the Prob[�Nc � T] � 0:01 QoS requirement of continuous requests.To investigate this problem further and solve it, we perform the next experiment.Experiment 3: In the previous experiment, we determined that there exists an optimal mini-cyclevalue, N�mc, for the NW-FCFS algorithm. In this experiment, we vary the number of mini-cycles forthe NW-Gated and the PW-Gated algorithms to determine whether a similar convexity propertyexists as well as to compare the performance (i.e., E[Tnc]; �nc; Pmd and Pol) of these algorithms. Theresult of this experiment is illustrated in Figure 9. Several important observations can be madefrom this �gure. Firstly, a convexity property also exists in the NW-Gated and the PW-Gatedalgorithms, which implies that there exists an optimal value for the number of mini-cycle, N�mc,here as well. Secondly, by comparing NW-FCFS and NW-Gated in Figures 9(a)-(d), we observe thatunder a light load (i.e., � � 6:0), most of the performance improvement in E[Tnc] can be obtainedby operating at a proper value of Nmc. That is, re-ordering the service of non-continuous requestsin NW-Gated appears to result in only small performance gains, which is due to the fact that underlight loads very few non-continuous requests are present in the non-continuous queue during the\gating instant". However, under all � loadings, the PW-Gated algorithm improves the E[Tnc]by a large margin because it both (a) aggressively services continuous requests when there are nonon-continuous requests present in the system (i.e., it is work conserving in most mini-cycles) and17

(b) it services non-continuous requests (when they are present), in a re-ordered manner. That is,the \aggressive" service of continuous requests results in less \wasted" time during a cycle of lengthT as well as (on the average) in a greater accumulation of non-continuous requests in the queue atthe \gating instant" which in turn results in greater bene�ts due to re-ordering of service of non-continuous requests. Under a moderate load (i.e., � = 9:0), Figure 9(e) illustrates that NW-Gatedand PW-Gated can reduce the E[Tnc] signi�cantly because there are more non-continuous requestsduring the \gating instances", therefore, re-ordering of service pays o� signi�cantly. Lastly, underhigh loads (i.e., � = 12; 0; 15:0; 18:0), NW-FCFS will not be able to support non-continuous requestswith a reasonable response time16, while NW-Gated and PW-Gated can still perform reasonablywell. Note that at a very high load (i.e, � = 18:0), NW-Gated and PW-Gated have comparableperformance because the probability of not having any non-continuous requests to service in amini-cycle (even without the \aggressive" service of PW-Gated) is very small at such loads.Figure 10 illustrates the variance of non-continuous requests under di�erent arrival rates (�)and di�erent values for number of mini-cycles. (Graphs for other values of � are given in Figure 14in Appendix D.) We can conclude from these �gures that the PW-Gated algorithm performs thebest, both in terms of E[Tnc] and in terms of �nc, and that the convexity property holds for allthree algorithms. An important point to note is that the PW-Gated algorithm has a relatively
atcurve for �nc under di�erent loadings (i.e., di�erent values of �). This is an important characteristicsince this implies that the PW-Gated algorithm not only reduces the E[Tnc] but also makes theresponse time of the non-continuous requests less variable, which should result in better service tonon-continuous customers.Since PW-Gated performs much better than NW-Gated, from this point on we simply comparePW-Gated with NW-FCFS. Figure 15 illustrates that Pmd for the PW-Gated algorithm is muchlower than that for the NW-FCFS algorithm. (Graphs for other values of � are given in Figure 15in Appendix D.) The explanation here is that under di�erent arrival rates of the non-continuousrequests, PW-Gated attempts to aggressively serve continuous requests whenever there are no non-continuous requests in the system. Therefore, it completes each mini-cycle as fast as possible,thereby increasing the probability of having a larger residual time in the last mini-cycle of eachcycle. Since, according to our performance metric, a continuous request can only miss a deadlineif it is processed after the end of a cycle of length T , PW-Gated reduces the probability of thisundesirable event. Note that with PW-Gated, it is possible for a system to operate at an optimalvalue of N�mc so as to minimize the E[Tnc] and at the same time, satisfy the QoS requirement ofthe continuous requests. For example, at � = 9:0, PW-Gated can operate at N�mc = 4 such thatE[Tnc] is minimized and Pmd is only equal to 0:004, which is much lower (i.e., better) than therequired QoS of Prob[�Nc � T] � 0:01. Lastly, Figure 9(h) illustrates that NW-FCFS cannot evensustain such a high load of non-continuous requests (i.e., � � 18:0). From Figure 9, we observe thatPM-Gated can reduce E[Tnc], as compared to NW-FCFS, by as much as 60% while still satisfying16That is, at such high loads NW-FCFS may not be stable and response time may grow to in�nity, or as high asthe maximum queue size will allow. 18

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
 x

 1
0-3

200.00

300.00

400.00

500.00

600.00

700.00

2.00 4.00 6.00 8.00

NW-FCFS

NW-Gated

PW-Gated

Nmc

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
 x

 1
0-3

200.00

300.00

400.00

500.00

600.00

700.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS

NW-Gated

PW-Gated

Nmc

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
 x

 1
0-3

150.00

200.00

250.00

300.00

350.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS

NW-Gated

PW-Gated

Nmc

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
 x

 1
0-3

100.00

150.00

200.00

250.00

300.00

350.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS

NW-Gated

PW-Gated

Nmc(a) E[Tnc] for three algorithms under � = 0:5 (b) E[Tnc] for three algorithms under � = 1:0

(c) E[Tnc] for three algorithms under � = 3:0 (d) E[Tnc] for three algorithms under � = 6:0

(e) E[Tnc] for three algorithms under � = 9:0 (f) E[Tnc] for NW-Gated, PW-Gated under � = 12:0

(g) E[Tnc] for NW-Gated, PW-Gated under � = 15:0 (h) E[Tnc] for NW-Gated, PW-Gated under � = 18:0

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
 x

 1
0-3

100.00

150.00

200.00

250.00

300.00

350.00

2.00 4.00 6.00 8.00 10.00 12.00
Nmc

NW-FCFS

NW-Gated

PW-Gated

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
 x

 1
0-3

300.00

400.00

500.00

600.00

700.00

2.00 4.00 6.00 8.00 Nmc

NW-Gated

PW-Gated

E
xp

ec
te

d
R

es
po

ns
e

T
im

e

0.40

0.60

0.80

1.00

1.20

1.40

2.00 4.00 6.00 8.00

NW-Gated

PW-Gated

Nmc

E
xp

ec
te

d
R

es
po

ns
e

T
im

e

0.50

1.00

1.50

2.00

2.50

3.00

2.00 4.00 6.00 8.00

NW-Gated

PW-Gated

NmcFigure 9: E[Tnc] for various algorithms under di�erent arrival rates.19

V
ar

ia
nc

e
on

 R
es

po
ns

e
T

im
e

0.20

0.40

0.60

0.80

1.00

1.20

2.00 4.00 6.00 8.00 Nmc

NW-Gated, =15.0

PW-Gated, =15.0

λ

λ

NW-Gated, =12.0

PW-Gated, =12.0

λ

λ

(b) �nc for NW-Gated, PW-Gated under � = 12:0&15:0V
ar

ia
nc

e
on

 R
es

po
ns

e
T

im
e

 x
 1

0-
3

50.00

100.00

150.00

200.00

250.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS

NW-Gated

PW-Gated

Nmc(a) �nc for three algorithms under � = 3:0Figure 10: �nc for various algorithms under di�erent arrival rates.
P

ro
ba

bi
lit

y
of

 M
is

si
ng

 d
ea

dl
in

e
 x

 1
0-

3

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1.00 1.50 2.00 2.50 3.00 3.50 4.00
Nmc

PW-Gated

(b) Pmd for NW-FCFS and PW-Gate under � = 18:0P
ro

ba
bi

lit
y

of
 M

is
si

ng
 d

ea
dl

in
e

 x
 1

0-
3

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2.00 4.00 6.00 8.00

NW-FCFS

PW-Gated

Nmc(a) Pmd for NW-FCFS and PW-Gate under � = 9:0Figure 11: Pmd for NW-FCFS and PW-Gated under di�erent arrival rates and mini-cyclesthe the QoS constraint for the continuous requests.Lastly, we would like to point out that further improvements in response time of the non-continuous requests can be achieved through increases in the cycle time T . However, this improve-ment comes at the cost of increases in bu�er space requirements for the continuous requests. Dueto lack of space, we present the experiment illustrating this tradeo� in Appendix A.5 ConclusionsWe have studied the performance tradeo�s in resource management techniques for multimediastorage servers with mixed workloads. This study was performed with the aid of an analyticalmodel and by considering two orthogonal approaches to scheduling of mixed workloads, namely (1)a technique (termed \mini-cycles") for reducing the waiting time of the non-real-time requests and(2) algorithms for providing better opportunities for seek optimization. However, we would like toremind the reader, that the scheduling algorithms presented here are not the main focus of thiswork, where the true focus are the tradeo�s which are exposed through the performance evaluationof such techniques. Finally, we investigated these tradeo�s under high real-time workloads.20

References[1] S. Berson, S. Ghandeharizadeh, and R. Muntz. Staggered Striping in Multimedia Infor-mation Systems. In Internatinoal Conference on Management of Data, pages 79{90, Min-neapolis, Minnesota, May 1994.[2] S. Berson, L. Golubchik, and R. R. Muntz. Fault Tolerant Design of Multimedia Servers.In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 364{375, San Jose,CA, May 1995.[3] E. Chang and A. Zakhor. Variable Bit Rate Mpeg Video Storage on Parallel Disk Arrays.In Proceedings of SPIE Conference on Visual Communication and Image Processing, pages47{60, Chicago, Illinois, October, 1996.[4] H.J. Chen and T.D.C. Little. Storage Allocation Policies for Time-Dependent MultimediaData. IEEE Transactions on Knowledge and Data Engineering, 8(5):855{863, October,1996.[5] M. Chen, D. Kandlur, and P. Yu. Optimization of the Grouped Sweeping Scheduling (GSS)with Heterogeneous Multimedia Streams. ACM Multimedia '93, pages 235{242, 1993.[6] A. E. Conway and N. D. Georganas. Queueing Networks - Exact Computational Algorithms:A Uni�ed Theory Based on Decomposition and Aggregation. MIT Press, 1989.[7] S. Ghandeharizadeh and S.H. Kim. Striping in Multi-disk Video Servers. In Proceedingsof the SPIE High-Density Data Recording and Retrieval Technologies Conference, October1995.[8] S. Ghandeharizadeh and R. R. Muntz. Design and implementation of scalable continuousmedia servers. To appear in the special issue of Parallel Computing Journal on ParallelData Servers and Applications, 1998.[9] L. Kleinrock. Queueing Systems, Volume I. Wiley-Interscience, 1975.[10] G. Nerjes, P. Muth, and G. Weikum. Stochastic Performance Guarantees for Mixed Work-loads in a Multimedia Information System. In Proc. of the IEEE Intl. Workshop on ResearchIssues in Data Engineering (RIDE'97), April 1997.[11] G. Nerjes, P. Muth, and G. Weikum. Stochastic Service Guarantees for Continuous Data onMulti-Zone Disks. In Proc. of the 16th Symp. on Principles of Database Systems (PODS'97),May 1997.[12] G. Nerjes, P.Muth, M. Paterakis, Y. Romboyannakis, P. Trianta�llou, and G. Weikum.Scheduling Strategies for Mixed Workloads in Multimedia Information Servers.http://paris.uni-sb.de/public html/papers/ride98.ps. To appear in Proc. of the IEEE Intl.Workshop on Research Issues in Data Engineering (RIDE'98), Feburary 23-24, 1998.21

[13] G. Nerjes, Y. Romboyannakis, P. Muth, M Paterakis, P. Trianta�llou, and G. Weikum. OnMixed-Workload Multimedia Storage Servers with Guaranteed Performance and ServiceQuality. In Proc. of the 3rd Intl. Workshop on Multimedia Information Systems, Sept.1997.[14] B. Ozden, R. Rastogi, and A. Silberschatz. Disk Striping in Video Server Environment. InProceedings IEEE Internaltional Conference on Multimedia Computing and Systems, June,1996.[15] A.L.N. Reddy and J. Wyllie. I/O Issues in a Multimedia System. IEEE Computer, 27(3):69{74, March, 1994.[16] Chris Ruemmler and John Wilkes. An Introduction to Disk Drive Modeling. IEEE ComputerMagazine, pages 17{28, March 1994.[17] F. A. Tobagi, J. Pang, R. Baird, and M. Gang. Streaming RAID - A Disk Array ManagementSystem For Video Files. ACM Multimedia Conference, pages 393{399, 1993.[18] H.M. Vin, A. Goyal, and P. Goyal. Algorithms for Designing Large-Scale MultimediaServers. In Computer Communciations, March 1995.[19] H.M. Vin, A. Goyal, P. Goyal, and A. Goyal. A Statistical Admission Control Algorithmfor Multimedia Servers. In ACM Multimedia Conference, 1993.[20] P. S. Yu, M.-S. Chen, and D. D. Kandlur. Design and Analysis of a Grouped SweepingScheme for Multimedia Storage Management. Third International Workshop on Networkand Operating System Support for Digital Audio and Video, pages 44{55, November 1992.Appendix A: Improvement in Response Time vs. Increase inBu�er Space RequirementsIn this appendix we illustrate the tradeo� between improvements in response time for non-continuousrequests, achieved through increases in the cycle time T , and the resulting increases in bu�er spacerequirements for continuous requests.Experiment 4: In the previous experiments, the cycle length T is �xed, and it is equal to 1:48754seconds. In the following experiments, we increase the cycle length T while keeping the numberof continuous requests at Nc = 24. The rational for performing these experiments is to determinewhether we can further improve the E[Tnc] and the Pmd at the expense of larger bu�er spacerequirements17. In these experiments, we increase the cycle length T by 25%; 50%; 75% and 100%.The transfer size of the continuous requests is model as an exponential distribution (as before)17Recall that we can not transmit and thus must bu�er the data retrieved for all continuous requests in cycle iuntil the beginning of cycle i + 1. 22

and accordingly, we increase the transfer size so that the continuous requests can still represent anMPEG video stream with a mean display rate of � 1:5 Mbps18. Speci�cally, we have:increase in T length of T (in secs) mean transfer size (Mbits)T 1.487540 2.25001.25T 1.859425 2.81251.50T 2.231310 3.37501.75T 2.603195 3.93752T 2.975080 4.5000Figure 12 illustrates the case where T is increased by 25%, or T = 1:859425 seconds. To makea fair comparison, we consider the scheduling algorithms at their respective optimal operatingpoints, N�mc, and observe that PW-Gated reduces the E[Tnc] by as much as 49:4%, as comparedto NW-FCFS when T = 1:48754 (see Figure 12(g)), and at the same time still satis�es the QoS ofcontinuous requests (see Figure 12(h)). However, this gain occurs the cost of a (potentially) 25%increase in bu�er space requirements for the continuous requests.Figure 13 further illustrates improvements in E[Tnc] for di�erent values of T under PW-Gated.It shows that we can reduce E[Tnc] by as much as 44% if we increase the value of T from 1:487540 to2:97508 (see Figure 13(c) with the corresponding probabilities of missing a deadline in Figure 13(d)).This improvement also, of course, comes at the cost of an increase in bu�er space requirements ofcontinuous requests.Lastly, we would like to make the following observation. Thus far, the technique of \mini-cycles"has been used for improvements in response time of non-continuous requests. And, in contrast, wehave only considered performance characteristics of continuous requests on full cycle basis, i.e., thecomputation of probability of missing a deadline as well as the bu�er space considerations werediscussed with respect to a full cycle of length T . However, observe that NW-FCFS and NW-Gatedbehave identically on all mini-cycles (in contrast to PW-Gated). Thus, we could consider assigningeach continuous request to a speci�c mini-cycle within a cycle, i.e., always retrieve continuousrequest Ci during mini-cycle j, where 1 � i � Nc and 1 � j � Nmc. Then, the transmision of datacorresponding to Ci can begin in mini-cycle j+1, rather than being held in memory until the nextcycle. This will reduce the bu�er space requirements of continuous requests. However, the tradeo�here is that the probability of missing a deadline would have to be computed on a per-mini-cyclebasis as well, rather than on per-cycle basis; this will surely increase in the probability of missinga deadline, although it is not clear how signi�cantly. A quantitative assessment of this tradeo� isoutside the scope of this paper.18For example, if T = 1:859425, then we need to increase the average transfer size to 2:8125 Mbits such that withthis cycle length T , on the average � 1:5 Mbps are transfered.23

P
ro

ba
bi

lit
y

of
 m

is
si

ng
 d

ea
dl

in
e

x
10

-3

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2.00 4.00 6.00 8.00

NW-FCFS at T=1.487540

NW-FCFS at T=1.859425

PW-Gated at T=1.859425

Nmc

P
ro

ba
bi

lit
y

of
 m

is
si

ng
 d

ea
dl

in
e

x
10

-3

0.00

5.00

10.00

15.00

20.00

25.00

1.00 2.00 3.00 4.00 5.00 6.00

NW-FCFS at T=1.487540

NW-FCFS at T=1.859425

PW-Gated at T=1.859425

Nmc

P
ro

ba
bi

lit
y

of
 m

is
si

ng
 d

ea
dl

in
e

x
10

-3

0.00

10.00

20.00

30.00

40.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS at T=1.487540

NW-FCFS at T=1.859425

PW-Gated at T=1.859425

Nmc

P
ro

ba
bi

lit
y

of
 m

is
si

ng
 d

ea
dl

in
e

x
10

-3

0.00

10.00

20.00

30.00

40.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS at T=1.487540

NW-FCFS at T=1.859425

PW-Gated at T=1.859425

Nmc

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
 x

 1
0-

3

200.00

300.00

400.00

500.00

600.00

700.00

2.00 4.00 6.00 8.00

NW-FCFS at T=1.487540

NW-FCFS at T=1.859425

PW-Gated at T=1.859425

Nmc

E
xp

ec
te

d
R

es
po

ns
e

T
im

e

0.20

0.40

0.60

0.80

1.00

1.20

2.00 4.00 6.00 8.00

NW-FCFS at T=1.487540

NW-FCFS at T=1.859425

PW-Gated at T=1.859425

Nmc

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
 x

 1
0-

3

200.00

300.00

400.00

500.00

600.00

700.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS at T=1.487540

NW-FCFS at T=1.859425

PW-Gated at T=1.859425

Nmc

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
 x

 1
0-

3

100.00

150.00

200.00

250.00

300.00

350.00

400.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS at T=1.487540

NW-FCFS at T=1.859425

PW-Gated at T=1.859425

Nmc(a) E[Tnc] for NW-FCFS and PW-Gated under � = 1:0 (b) Pmd for NW-FCFS and PW-Gated under � = 1:0

(c) E[Tnc] for NW-FCFS and PW-Gated under � = 6:0 (d) Pmd for NW-FCFS and PW-Gated under � = 6:0

(e) E[Tnc] for NW-FCFS and PW-Gated under � = 9:0 (f) Pmd for NW-FCFS and PW-Gated under � = 9:0

(g) E[Tnc] for NW-FCFS and PW-Gated under � = 12:0 (h) Pmd for NW-FCFS and PW-Gated under � = 12:0Figure 12: E[Tnc] and Pmd for NW-FCFS and PW-Gated under 1:25T and various loading.24

(a) E[Tnc] for PW-Gated under � = 15:0 (b) Pmd for PW-Gated under � = 15:0

(c) E[Tnc] for PW-Gated under � = 18:0 (d) Pmd for PW-Gated under � = 18:0

E
xp

ec
te

d
R

es
po

ns
e

T
im

e

0.30

0.40

0.50

0.60

0.70

2.00 4.00 6.00 8.00 10.00 12.00

T=1.487540

T=1.859425

T=2.231310

T=2.603195

T=2.975080

N

mc

P
ro

ba
bi

lit
y

of
 m

is
si

ng
 d

ea
dl

in
e

x
10

-3

0.00

5.00

10.00

15.00

20.00

2.00 4.00 6.00 8.00 10.00 12.00

T=1.487540

T=1.859425

T=2.231310

T=2.603195

T=2.975080

N

mc

E
xp

ec
te

d
R

es
po

ns
e

T
im

e

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2.00 4.00 6.00 8.00 10.00 12.00

T=1.487540

T=1.859425

T=2.231310

T=2.603195

T=2.975080

N

mc

P
ro

ba
bi

lit
y

of
 m

is
si

ng
 d

ea
dl

in
e

x
10

-3

0.00

5.00

10.00

15.00

20.00

2.00 4.00 6.00 8.00 10.00 12.00

T=1.487540

T=1.859425

T=2.231310

T=2.603195

T=2.975080

N

mcFigure 13: E[Tnc] and Pmd for PW-Gated under di�erent values of T and at high �.
25

Appendix B: Derivation of Seek Distance EquationIn this appendix we give the derivation of Equation (6), and speci�cally, the expected seek distancefor a gated group of non-continuous requests, which is as follows. Firstly, note that, after �nishingservice of the continuous requests, the disk head is positioned in a random place on the disk, andthus, in general, the disk may have to service the Lgnc requests by doing sweeps in both directions(one at at time, of course). That is, the Lgnc requests are going to be serviced by sorting thembased on the current location (i.e., where the disk head stopped after the last group of servicedrequests) and direction (i.e., whichever direction the previous sweep was going in) of the disk headand then retrieved in that order. Secondly, we make another simplifying assumption, namely thatthe Lgnc customers together with the disk head, are uniformly distributed on the surface of the disk,i.e., they correspond to Lgnc + 1 equally spaced points that divide the disk surface into Lgnc + 2partitions of equal size. Then, the �rst term in Equation (6) represents all the cases where the diskhead corresponds to a point on an edge of the disk surface | in such cases, the disk head needs toseek a distance of LgncLgnc+2dfullseek to service these Lgnc requests, and these cases occur with probability� 2Lgnc+1�. The second term in Equation (6) represents all the cases where the disk is not on an edgeof the disk surface | in such cases, the disk head needs to seek a distance of (32)(LgncLgnc+2)dfullseek , andthese cases occur with probability �Lgnc�1Lgnc+1�.Appendix C: Formal De�nition of the Queueing SystemIn this appendix we give a more formal de�nition of the behavior of the queueing system describedin Section 3. Let Lnc be the queue length at queue Qnc, and Lgnc be the number of customers atqueue Qnc when they are gated (refer to Section 3). Finally, let mc count be the number of thecurrent mini-cycle, where 1 � mc count � Nmc.Before we proceed with the more formal de�nition of the queueing model, we �rst explain thenotation used in this de�nition. Below, we describe the behavior of each queue as a collectionof event's and msg recv's, where an event can correspond to either an \internal" event (suchas a service completion) or an \external" event (such as an arrival of a new customer). On theother hand, the receiving and sending of messages notation allows us to illustrate communication ofcontrol information (such as token passing) between the two queues. Each event andmsg recv isannotated with a condition and an action, meaning that the action is taken only if the conditionis true. Each type of an event occurs at a given rate with a given distribution; for instance,the statement event: arrival(rate type,ratearrival), where rate type is equal to \exponential" andratearrival = �, means that the random variable corresponding to the time between consecutiveevents of type \arrival" is distributed exponentially with a mean of 1=�. Thus, we can view thedescription given below as an event-driven type of a description, i.e., each event is generated,independently of other events, with a given distribution and rate. Finally, in order to make thedescription of the model more general19 and at the same time more analytically tractable [9], the19In general, it is not possible to fully describe a distribution with just a mean, with some exceptions, of course.26

service of the continuous customer is described in terms of a series of stages; for instance, it couldrepresent an r-stage Erlang distribution with r = LASTSTAGE [9].The initial settings of the following variables, used in the description below, are:� mc count = 1: global variable which keeps track of the current mini-cycle number, i.e.,1 � mc count � Nmc� done == false: keeps track of whether the mini-cycle time has expired yet� stage == 1: keeps track of in which stage of service the continuous customer is (as describedabove)� class == 1: keeps track of to which class the continuous customer belongs (as described inSection 3 class switching represents going from one mini-cycle to the next)The description of the behaviour of the queues is as follows.Continuous Queue (NW-FCFS and NW-Gated)1. event: change stage(rate type, ratestage)/* changing of stage | service not �nished */� condition: (stage < LASTSTAGE) and (token == 1)� action: stage+ + /* changing of stage | service �nished, timer not expired */� condition: (stage == LASTSTAGE) and (token == 1) and (done == false)� action:(a) stage = 1(b) token = 0(c) if ((class+ 1) > Nmc) then class = 1 else class++(d) send-msg(Qnc, token msg)/* changing of stage | service �nished, timer expired */� condition: (stage == LASTSTAGE) and (token == 1) and (done == true)� action:(a) stage = 1(b) done = false(c) if ((class+ 1) > Nmc) then class = 1 else class++2. event: timeout(rate type, ratetimeout)/* timer expired | still have the token */� condition: (token == 1) 27

� action: done = true /* timer expired | don't have the token */� condition: (token == 0)� action:(a) token = 1(b) send-msg(Qnc, timeout msg)Non-continuous Queue (NW-FCFS and NW-Gated)1. event: serve(rate type, rateservice)/* service non-continuous customer */� condition: (Lnc > 0) and (token == 1)� action: Lnc ��2. event: arrival(rate type, ratearrival)/* arrival of a non-continuous customer */� condition: true� action: Lnc ++3. msg recv: token msg/* receive message of token being passed in */� condition: true� action: token = 14. msg recv: timeout msg/* receive message of timeout */� condition: true� action: token = 0Continuous Queue (PW-Gated)1. event: change stage(rate type, ratestage)/* changing of stage | service not �nished */� condition: (stage < LASTSTAGE) and (token == 1)� action: stage+ + /* changing of stage | service �nished, timer not expired */� condition: (stage == LASTSTAGE) and (token == 1) and (done == false)� action:(a) stage = 1(b) token = 0 28

(c) if ((class+ 1) > Nmc) then class = 1 else class++(d) send-msg(Qnc, token msg)/* changing of stage | service �nished, timer expired */� condition: (stage == LASTSTAGE) and (token == 1) and (done == true)� action:(a) stage = 1(b) done = false(c) if ((class+ 1) > Nmc) then class = 1 else class++2. event: timeout(rate type, ratetimeout)/* timer expired | still have the token */� condition: (token == 1)� action:(a) done = true(b) if ((mc count+ 1) > Nmc) then mc count = 1 else mc count ++/* timer expired | don't have the token */� condition: (token == 0)� action:(a) token = 1(b) if ((mc count+ 1) > Nmc) then mc count = 1 else mc count ++(c) send-msg(Qnc, timeout msg)3. msg recv: token msg/* receive message of token being passed in */� condition: true� action: token = 1Non-continuous Queue (PW-Gated)1. event: serve(rate type, rateservice)/* service non-continuous customer */� condition: (Lgnc > 0) and (Lnc > 0) and (token == 1)� action:(a) Lgnc = Lnc(b) Lnc = 02. event: serve(rate type, rateservice)/* service last non-continuous customer */� condition: (Lnc == 0) and (token == 1) and (mc count < Nmc)29

� action:(a) Lgnc = 0(b) send-msg(Qc, token msg)3. event: serve(rate type, rateservice)/* service last non-continuous customer */� condition: (Lnc == 0) and (token == 1) and (mc count == Nmc)� action: Lgnc = 04. event: arrival(rate type, ratearrival)/* arrival of a non-continuous customer */� condition: true� action: Lnc ++5. msg recv: token msg/* receive message of token being passed in */� condition: Lnc > 0� action:(a) token = 1(b) Lgnc = Lnc(c) Lnc = 0� condition: Lnc == 0� action: send-msg(Qc, token msg)6. msg recv: timeout msg/* receive message of timeout */� condition: true� action:(a) token = 0(b) Lnc = Lnc + Lgnc(c) Lgnc = 0Appendix D: Additional GraphsIn this appendix we give additional graphs corresponding to the discussion in Section 4.30

V
ar

ia
nc

e
on

 R
es

po
ns

e
T

im
e

0.20

0.40

0.60

0.80

1.00

1.20

2.00 4.00 6.00 8.00 Nmc

NW-Gated, =15.0

PW-Gated, =15.0

λ

λ

NW-Gated, =12.0

PW-Gated, =12.0

λ

λ

V
ar

ia
nc

e
on

 R
es

po
ns

e
T

im
e

 x
 1

0-
3

100.00

200.00

300.00

400.00

500.00

600.00

2.00 4.00 6.00 8.00

NW-FCFS

NW-Gated

PW-Gated

Nmc

V
ar

ia
nc

e
on

 R
es

po
ns

e
T

im
e

 x
 1

0-
3

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS

NW-Gated

PW-Gated

Nmc

V
ar

ia
nc

e
on

 R
es

po
ns

e
T

im
e

 x
 1

0-
3

50.00

100.00

150.00

200.00

250.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS

NW-Gated

PW-Gated

Nmc

V
ar

ia
nc

e
on

 R
es

po
ns

e
T

im
e

 x
 1

0-
3

20.00

40.00

60.00

80.00

100.00

120.00

140.00

2.00 4.00 6.00 8.00 10.00 12.00 Nmc

NW-FCFS

NW-Gated

PW-Gated

V
ar

ia
nc

e
on

 R
es

po
ns

e
T

im
e

 x
 1

0-
3

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

2.00 4.00 6.00 8.00 10.00 12.00 Nmc

NW-FCFS

NW-Gated

PW-Gated

(a) �nc for three algorithms under � = 0:5 (b) �nc for three algorithms under � = 1:0

(c) �nc for three algorithms under � = 3:0 (d) �nc for three algorithms under � = 6:0

(e) �nc for three algorithms under � = 9:0 (f) �nc for NW-Gated, PW-Gated under � = 12:0&15:0Figure 14: �nc for various algorithms under di�erent arrival rates.31

P
ro

ba
bi

lit
y

of
 M

is
si

ng
 d

ea
dl

in
e

 x
 1

0-
3

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2.00 4.00 6.00 8.00

NW-FCFS

PW-Gated

Nmc

P
ro

ba
bi

lit
y

of
 M

is
si

ng
 d

ea
dl

in
e

 x
 1

0-
3

0.00

5.00

10.00

15.00

20.00

25.00

1.00 2.00 3.00 4.00 5.00 6.00

NW-FCFS

PW-Gated

Nmc

P
ro

ba
bi

lit
y

of
 M

is
si

ng
 d

ea
dl

in
e

 x
 1

0-
3

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1.00 1.50 2.00 2.50 3.00 3.50 4.00
Nmc

PW-Gated

P
ro

ba
bi

lit
y

of
 M

is
si

ng
 d

ea
dl

in
e

 x
 1

0-
3

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1.00 1.50 2.00 2.50 3.00 3.50 4.00

NW-FCFS

PW-Gated

Nmc

P
ro

ba
bi

lit
y

of
 M

is
si

ng
 d

ea
dl

in
e

 x
 1

0-
3

0.00

10.00

20.00

30.00

40.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS

PW-Gated

Nmc

P
ro

ba
bi

lit
y

of
 M

is
si

ng
 d

ea
dl

in
e

 x
 1

0-
3

0.00

10.00

20.00

30.00

40.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS

PW-Gated

Nmc

P
ro

ba
bi

lit
y

of
 M

is
si

ng
 d

ea
dl

in
e

 x
 1

0-
3

0.00

10.00

20.00

30.00

40.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS

PW-Gated

Nmc

P
ro

ba
bi

lit
y

of
 M

is
si

ng
 d

ea
dl

in
e

 x
 1

0-
3

0.00

10.00

20.00

30.00

40.00

2.00 4.00 6.00 8.00 10.00 12.00

NW-FCFS

PW-Gated

Nmc(a) Pmd for NW-FCFS and PW-Gate under � = 0:5 (b) Pmd for NW-FCFS and PW-Gate under � = 1:0

(c) Pmd for NW-FCFS and PW-Gate under � = 3:0 (d) Pmd for NW-FCFS and PW-Gate under � = 6:0

(e) Pmd for NW-FCFS and PW-Gate under � = 9:0 (f) Pmd for NW-FCFS and PW-Gate under � = 12:0

(g) Pmd for NW-FCFS and PW-Gate under � = 15:0 (h) Pmd for NW-FCFS and PW-Gate under � = 18:0Figure 15: Pmd for NW-FCFS and PW-Gated under di�erent arrival rates and mini-cycles32

