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Abstract

Many modern applications can benefit from sharing of resources such as network bandwidth,
disk bandwidth, and so on. In addition, information systems would like to store data that can
be of use to many different classes of applications, e.g., digital libraries type systems. Part
of the difficulty in efficient resource management of such systems can then occur when these
applications have vastly different performance and quality-of-service (QoS) requirements as
well as resource demand characteristics. In this work, we present a performance study of a
multimedia storage system which serves multiple types of workloads, specifically a mixture of
real-time and non-real-time workloads, by allowing sharing of resources among these different
workloads while satisfying their performance requirements and QoS constraints. The broad aim
of this work is to examine the issues and tradeoffs associated with mixing multiple workloads
on the same server to explore the possibility of maintaining reasonable performance and QoS
requirements without having to partition the resources. The main contribution of this work
is the exposition of the tradeoffs involved in resource management in such systems. Although
many different resources can be considered, here we concentrate mostly on the I/O bandwidth
resource. The performance metrics of interest are the mean and variance of the response time
for the non-real-time applications and the probability of missing a deadline for the real-time
applications. The increased use of buffer space resources is also considered as a tradeoff for
improvements in the above stated performance metrics, i.e., response time and probability of

missing deadlines.

1 Introduction

Many modern applications can benefit (cost-wise) from sharing resources such as network band-
width, disk bandwidth, etc. In addition, information systems would like to store data that can be
of use to multiple classes of applications, e.g., digital libraries type systems. Part of the difficulty
in efficient resource management in such systems can then occur when these applications have
vastly different performance and quality-of-service (QoS) requirements as well as resource demand

characteristics.
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One approach to dealing with this problem would be to simply share the resources among
the different classes of requests with a best-effort attempt to meet the performance or quality-of-
service (QoS) requirements of each. Another approach would be to partition the available resource
between the different classes of workloads/requests, i.e., essentially maintain separate and indepen-
dent servers. However, in general, this is not a good idea, since one set of resources might remain
idle while another set is overloaded. Furthermore, if copies of the same data are of use to multiple
classes of applications, we may have to, in addition, incur a “penalty” for having to maintain con-
sistency between multiple copies of the data. Thus, a more sensible approach would be to consider
techniques which can share the resources among the different types of workloads while satisfying

(to some degree) their performance requirements and QoS constraints.

In this paper, we consider one such system, namely, we consider a multimedia storage server
which, in general, can service a variety of applications, requesting video, image, audio, and text
data'. However, for the purposes of this work and for ease of exposition, we will focus on a storage
system that services two types of workloads: (1) continuous (or real-time), and (2) non-continuous
(or non-real-time)?. For instance, the real-time (with continuity-type requirements) workload can
correspond to requests for video streams whereas the non-real-time workload can correspond, for
instance, to billing inquiries about the videos, thumbnails of images corresponding to particular

scenes in a video, etc.

Clearly, the two types of workloads have different performance and QoS requirements. Specif-
ically, the real-time workload requirements can be low latency for starting a video display and
delivery of data at a particular rate (e.g., at 1.5 Mbps for an MPEG-I stream) with little jitter,
once the video display has been started®. On the other hand, the non-real-time workload, although
it does not have jitter-type requirements, still requires reasonable response time — by reasonable we
mean that it meets a user-specified requirement, e.g., database applications, such a billing service,

might require that X % of all transactions complete in under Y minutes.

In general, such a storage server can consist of some amount of processing capacity, storage ca-
pacity, and 1/O transfer capacity, where the storage system is a multi-level hierarchy, e.g., including
buffer space, disk-level storage, and tertiary storage. The performance/cost characteristics of such
a system will be a function of the techniques used, at the various levels of the storage hierarchy,
for data layout, scheduling of data retrieval, fault tolerance, caching® schemes, admission control,
etc. However, to focus the discussion and to expose the tradeoffs involved in resource manage-
ment in the mixed workload systems, in this work we will only consider the secondary storage and

main memory levels of the storage hierarchy. More specifically, we will not focus on a particular

'Here we focus on the storage system and assume that the network can deliver the necessary performance. Of
course, similar issues, to the ones considered in this work, exist in networking, but are outside the scope of this paper.
2We will use the terms “real-time” and “continuous” interchangeably throughout the paper; likewise for the terms

“non-real-time” and “non-continuous”.
*The low latency can also be viewed as high throughput, i.e., being able to sustain as many simultaneous video

streams as possible, given a particular server architecture.

*Here we use “caching” as general term, i.e., between any two levels of a storage hierarchy.



architecture of the disk subsystem or specific data layout technique but rather treat it as a “black
box” with a certain maximum transfer capacity and overhead characteristics (i.e., seek, rotational
latency, etc.), and instead concentrate on the scheduling of resources for use by both continuous

and non-continuous type requests.

Thus, in this paper we present a performance study of a multimedia storage system which serves
multiple types of workloads, specifically a mixture of continuous (real-time) and non-continuous
(non-real-time) workloads, by allowing sharing of resources among these different workloads while
satisfying their performance requirements and QoS constraints. The broad aim of this work is to
examine the issues and tradeofls associated with mixing multiple workloads on the same server
to explore the possibility of maintaining reasonable performance and QoS requirements without
having to partition the resources. The main contribution of this work is the exposition of the
tradeoffs involved in resource management in such systems. Although many different resources
can be considered, here we concentrate mostly on the I/O bandwidth resource. The performance
metrics of interest are the mean and variance of the response time for the non-real-time applications
and the probability of missing a deadline for the real-time applications. The increased use of buffer
space resources is also considered as a tradeoff for improvements in the above stated performance

metrics, i.e., response time and probability of missing deadlines.

Before proceeding, we briefly survey related works and highlight the main contributions of this
paper, where appropriate. There is a multitude of work on the design of continuous media servers,
some of which (and by no means all) include [1, 7, 14, 18, 3, 4, 19], where the authors mostly focus
on data layout and retrieval and delivery techniques which facilitate maintaining of continuity in
data delivery while providing either deterministic or statistical QoS guarantees. Scheduling of
mized workloads has not received as much attention. Although it was briefly mentioned in [15], a
more detailed (and to our knowledge first) study was presented in [10, 11, 13], where the authors
discuss a stochastic approach to QoS provisions to both types of workloads as well as present
(somewhat coarse) analytical models for computing the performance measures of interest. This is
the work upon which we build here, in studying the tradeofls involved in servicing mixed workloads.
We do this with the aid of a more detailed analytical model and by considering two orthogonal
approaches to more “sophisticated” scheduling of mixed workloads, namely (1) a technique (termed
“mini-cycles”) for reducing the waiting time of the non-real-time requests and (2) algorithms for
providing better opportunities for seek optimization. (Both are discussed in Section 2 in detail.)
However, we would like to stress once again, that the scheduling algorithms presented here are not
the main focus of this work, but rather the tradeoffs which are exposed through the performance

evaluation of such techniques.

Lastly, in an independent effort in a paper that recently appeared [12], the authors also propose
more sophisticated (than in [10, 11, 13]) scheduling algorithms for servicing mixed workload. We
would like to point out that in [12] the authors consider only light to moderate real-time workloads,
whereas in our study, we investigate the performance tradeoffs under high (and specifically maxi-

mum possible) real-time workloads. The rationale being that it is desirable for cost-based reasons



to run the storage server at a high (or maximum) number of real-time requests (provided that QoS
requirements are satisfied), as long as reasonable response time to non-real-time requests can be
provided. Thus, high real time workloads correspond to reasonable and important operating points
at which to consider our system. Clearly, if it can be shown that reasonable response time can be
provided to non-real-time requests at high (or maximum) real-time workloads, better response time
to non-real-time requests can be obtained at lighter real-time workloads. Furthermore, the authors
also (briefly) consider the concept of “mini-cycles”, but do not evaluate the resulting impact on
performance. Specifically, they seem to suggest that a greater number of mini-cycles always results
in better performance — this is not the case, as is clearly illustrated in Section 4. Finally, buffer
space considerations are not addressed in [12]; buffer space resources are considered in this paper,

as described in Appendix A.

2 Mixed Workload Scheduling

In this section, we first introduce the basic concept of cycle-based (or group-based) scheduling
[5, 17, 20], which is used for servicing continuous requests. We then discuss performance implications
of deterministic vs. statistical QoS provisions for continuous requests as well as the cycle period

(T'). Lastly, we propose several algorithms for mixed workload scheduling.

2.1 Background on Cycle-Based Scheduling

In cycle-based scheduling algorithms, the retrieval of data from the disk sub-system, for servicing
continuous requests, is performed on a cyclic basis where each cycle is of length T and in each
cycle, the system retrieves data for N. continuous requests. Note that in cycle-based scheduling al-
gorithms, the transmission of data retrieved in the i*” cycle does not start until the beginning of the
(i + 1)*" cycle®. This is motivated by the increased opportunities for performing seek optimization
(i.e., data blocks needed for service are retrieved using a SCAN-type algorithm). The cost of this
optimization is that the system needs additional buffer space to hold the retrieved data until the
beginning of the next cycle. This cycle-based or (group-based) approach to servicing continuous
streams is, for instance, suggested in [5, 17, 20], and the tradeoff between improved utilization of
the disk bandwidth (due to seek optimization) and the need for additional buffer space is analyzed

in several works®, e.g., [5, 2, 20].

One important design parameter in cycle-based scheduling is the actual value of the cycle length
T. In general, the value of T is a function of the mazimum number of continuous requests, N., that
can be service by the system within a cycle and the degree of QoS that the system can provide. For
instance, when insuring jitter-free retrieval/delivery of data, i.e., providing deterministic (or worst-

case) guarantees [17, 2], T' can determined by considering the maximum time needed to retrieve N,

®That is, here we assume that the server is responsible for maintaining the continnity in data delivery, where the
clients have relatively little buffer space. Thus, if the data delivery is not “offset” by one cycle from data retrieval,

jitter may occur (due to seek optimization).
In general, larger values of N, afford better seek optimization opportunities, but they also result in larger buffer

space requirement.



data blocks by scanning a disk. Formally, T" can be expressed as:

To= TIEE(N 4 New (7m0 + i) (1)
where 72¢7(N.) refers to the worst case seek time for servicing N, requests, i.e., when these N,

requests are uniformly distributed across the disk surface [8], 7247 refers to the worst case rotational

s Trot
latency (i.e., a full rotation if we assume that the disk cannot support zero latency reads [16]), and
73" refers to the worst case transfer time. Given a variable bit rate (VBR) stream (e.g, an MPEG
stream), the worst case transfer time can be determined by the peak display rate. Based on the
above assumptions, the value of 7' will provide deterministic guarantee (e.g., all requests will receive
service before the end of the cycle). However, the undesirable effect is that it can result in poor
disk bandwidth utilization when there is a large deviation between the peak and the mean display

rate.

Another approach to determining the value of T' is to provide statistical guarantees. That is,
let 7, be the random variable representing the service time of N, continuous requests. Then, the
system guarantees that the probability of the event where 77, is greater than 7' is less than some

predefined system parameter, e.g., p. Mathematically, we have:
Problry, > T] < p (2)

One can rely on the Chernoff’s bound” theorem [9] to determine the value of T so as to service N,
requests under the probability constraint p. Let F3; (s) be the Laplace transform for the random
variable 7, and let FJ

7oi(s) and FY; (s) be the Laplace transforms for the random variables of

rotational latency time and data transfer time, respectively. Since a cycle-based algorithm employs
seek optimization (e.g., some form of a SCAN-type algorithm) and since the worst case seek time

occurs when these N, requests are equally spaced out on the disk surface [8], we have:

max

Nc
Fr(s) = el a0 B (5)Fpy (s)]

(3)
Let Mp_(s) be the moment generating function for the random variable 7, . Since My, (s) is equal
to I3y (—s), applying Chernoff’s theorem to bound the tail of the random variable 7y, gives us the

following:
Mp, (6
Prob[ry, > T]=p < inf {M} (4)

Note that the infimum (inf) operator applies to Equation (4), since, based on the Markov’s in-
equality [9], that inequality holds for all # > 0. Therefore, the tightest bound is obtained by using
the best 8. Using standard numerical solution techniques, we can obtain the optimal #* which
gives the tightest upper bound and thereby obtain the value of T'. If 7, is larger than 7', then an
overflow event occurs. In general, there are several approaches to handling the overflow situation.

For example, the system can allow overflowing into the next cycle (i.e., finish servicing the requests

"Other approaches to bounding the tail of a sum of random variables exist; see [9] for details.



in cycle 7 where, as a consequence, the N, requests in cycle ¢ + 1 will have less than T time units
to meet their deadlines). Or, the system can stop servicing the requests in the (overflowing) cycle
¢ and proceed to service the next V. continuous requests in cycle ¢ + 1. In this work, we only
consider the first approach, i.e., that of allowing overflow into the next cycle. Specifically, in this
work we will provide statistical guarantees of QoS for continuous requests, and thus an important

performance measure under investigation here is the probability of overflow.

We will not focus on the merits of cycle-based (or group-based) scheduling any further here, as
this is a well known approach to scheduling of continuous streams, but consider how to allocate
whatever remains of the disk bandwidth resource to the non-continuous requests and focus on
evaluating the tradeoffs between different approaches to doing this. In general, in our system,
higher priority is given to continuous-type requests, i.e., we will guarantee, with a high probability
of (1 — p) (as suggested above) that blocks for N. continuous requests will be retrieved on-time
(i.e., before time T'), and without jitter. Due to statistical variations of service times among these
N, continuous requests, there will be time left in the cycle which is “not used” by the continuous
requests. Therefore, the system can use this residual time to service non-continuous request. An
interesting question here is, how can we provide reasonable response time to non-continuous requests,
given that (in a sense) higher priority is given to continuous requests. We must first point out that
we will investigate this issue under high system loads (i.e., maximum possible number of continuous
requests using the value of N. computed above) — the reason being that it is desirable for cost-
based reasons to run the server at maximum N, capacity (given a desired value of p), as long as
reasonable response time to non-continuous requests can be provided; of course, better response
time is expected at lighter continuous workloads. Therefore, in what follows, we will consider a
system which always has N, continuous requests present. The focus of the remainder of this section
is a discussion of the various scheduling algorithms that can be used for servicing the continuous

and the non-continuous requests.

2.2 Scheduling Algorithms for Supporting Mixed Workload

Algorithm 1: Non-work conserving, first-come-first-serve (NW-FCFS)

The first simple algorithm is termed the non-work conserving, first-come-first-serve (NW-FCF'S)
algorithm. We have already described how the system schedules retrieval of continuous requests
using cycle-based scheduling and scanning of the disk. Thus, whatever remains of the cycle will be
used to service any non-continuous request present in the system, and these will be serviced in a
FCFS manner. Formally, let there be two classes of requests in our system, class C' (for continuous
requests) and class NC for (non-continuous requests). Let N, be the number of class €' requests
which can be fixed and then used to compute the cycle time 7', as in Equation (4) above. Thus, in
the NW-FCFS algorithm, given a period of length T, we first serve V. customers within the single
period T. If after servicing all N. customers the system still has some residual time within the
period, that residual time is dedicated to servicing non-continuous requests in a FCFS manner. If

the system times out (e.g., at the end of the cycle T') while servicing the non-continuous request,



the non-continuous request is preempted and re-started from the beginning the next time there
is opportunity to service non-continuous requests. Thus, the non-continuous request receives pre-
emptive, non-resume type of service. Note that this algorithm is non-work conserving in the sense
that when some residual time exists and there are no non-continuous requests present, the system
will not proceed to schedule the waiting continuous requests but rather, will remain idle until the
end of the period®. An example of the NW-FCFS scheduling policy is depicted in Figure 1 where

N. =5 and the overflow event is depicted in the second period.

[0 oneclassCrequest |neach period T, the system serves 5 class C requests
[ ] one class NC request

overloaded period

I I Y Y O [ [ [ IIIIIIII\D‘
\ T | T \ T |

Figure 1: NW-FCFS Alg.: Within a cycle, serve class C first, then serve class NC in FCFS manner.

Although NW-FCFS is a possible algorithm for handling mixed workload requests, the resulting
QoS (e.g., expected response time) for the non-continuous requests may be poor. For instance, if
a non-continuous request arrives to the system at the beginning of a cycle, it has to wait until the
system finishes the service of all continuous requests and only then, if there is some residual time
in the cycle, the service of the non-continuous request can start. The situation will become worse
if the arrival rate of the non-continuous requests is high which will result in long queueing delays

and consequently further increase response time of the non-continuous requests.

To improve the response time of non-continuous requests, we can generalize the NW-FCEF'S
algorithm, which we term the NW-FCFS(N,,.) algorithm as follows. Instead of having one cycle
with length 7', we divide this cycle into N,,. mini-cycles, each with a length of T'/N,,.. Within
each mini-cycle, the system uses the NW-FCFS algorithm to serve N./N,,. continuous requests®.
That is, under this scheme, non-continuous requests can receive service if there is any residual time

left at the end of each mini-cycle. It is important to note that we have two opposing effects here:

1. By servicing all continuous requests within one scan, we achieve better disk bandwidth utiliza-
tion because greater seek optimization opportunities exist for the continuous requests.

2. By servicing the continuous requests in many mini-cycles, we reduce the opportunities for
seek optimization of the continuous requests, but we improve the response time of the non-
continuous requests. In addition, it is also possible that some continuous requests, especially

those that are served in the last mini-cycle, will have a higher probability of missing deadline.

8The necessity to be non-work conserving is motivated by the need to maintain a specific rate of data delivery
for continuous requests and that “early” data retrieval (i.e., earlier than is dictated by the desired delivery rate) will
result in increasing growth in buffer space requirements. This non-work conserving property is largely responsible for

the complexity of the analytical model.
°In practice, some earlier mini-cycle may serve [Ne/Nye| continuous requests while later mini-cycles may serve

| Ne/Npme| continuous requests.



Therefore, these tradeoffs give room for an optimization problem. That is, how to find an op-
timal number of mini-cycles so as to minimize the response time of the non-continuous requests
while providing the required QoS to the continuous requests. We will explore these tradeoffs and

optimization later in the paper.

Another approach to further improve the response time of non-continuous requests is to service
them in groups instead of in a FCFS manner, i.e., provide similar seek optimization opportunities
(as in the continuous requests case) by servicing groups of non-continuous requests in a scan-type
manner. We now describe a second algorithm, which we call “non-work conserving, gated (NW-
Gated) algorithm”, in terms of a single cycle of length T'. Of course, the concept of mini-cycles can
(and will) be applied to the NW-gated algorithm as well.

Algorithm 2: Non-work conserving, gated (NW-Gated)

The NW-Gated algorithm is similar to the NW-FCFS with the exception that instead of serving
class NC requests in a FCFS manner, we serve them in a sorted order such that the total seek time
is minimized (i.e., a form of SCAN). To achieve this, the system can organize all class NC' requests
and serve them according to their position with respect to the disk head, including the new class
NC requests that arrive after the beginning of class NC' service. However, this may introduce
unacceptable delays for the requests that are far away from the disk head at the beginning of the
service, since new requests that are closer to the head’s position would have a higher priority of
service. To avoid this problem, we use a gated discipline instead which is as follows. When the
system completes service of the class €' requests and there is still some residual time in a cycle,
the system switches to servicing class NC' requests currently present in the system. However, no
new class NC requests are admitted into service until the current batch completes service (i.e., the
gated discipline). If there is still time left in the current cycle, then the new class NC requests
that arrived while the first batch was being served are eligible to start service. The gate is again
closed and the process repeats until the end of the cycle. This discipline guarantees priority of old
NC requests over new ones while trying to make efficient use of the disk, therefore, some notion
of fairness is also provided. Similarly to the NW-FCFS, a non-continuous request receives a pre-
emptive, non-resume type of service. Lastly, this algorithm is classified as non-work conserving
because it is possible that the server is idle while there are some class C' requests waiting for service
(i.e., when there are no non-continuous requests present in the system and there is still residual

time in a cycle).

The NW-Gated algorithm is depicted in Figure 2. In this figure, the number of continuous
requests that have to be served within a cycle, N, is equal to 5. Note that in the first cycle, the
gate is closed three times, and each batch of non-continuous requests is served in a scan order so
as to reduce seek overhead. In case there is an overloaded period (i.e., the second cycle), overflow

is allowed into the next cycle.

As already mentioned, we can apply the concept of mini-cycles to this algorithm as well. For

example, in the NW-Gated(N,,.) algorithm, there will be N,,. mini-cycles and the scheduling
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Figure 2: NW-Gated Alg.: Within a cycle, serve class (', then gated service for class NC'.

within a mini-cycle is similar to NW-Gated(1) algorithm as described above. Similar performance
tradeoffs of disk bandwidth efficiency and response time of non-continuous requests exist in this

class of algorithm and we will explore these tradeoffs later in the paper.

Of course the problem with the NW-FCFS(N,,.) and the NW-Gated(N,,.) algorithms is that
idle times may be wasted at the end of each mini-cycle. To improve on these algorithms, we propose

a third algorithm, which we term the pseudo-work conserving, gated (PW-Gated) algorithm°.
Algorithm 3: Pseudo-work conserving, Gated (PW-Gated)

Assume we have N,,. mini-cycles. In the first mini-cycle, the system first starts servicing N./N,,.
class C' requests. At the end of this service, the system checks whether there are any class NC
requests in the queue, if there is no class NC request waiting, then the system immediately begins
the next mini-cycle. If there are some class NC' requests, the system will serve these class NC'
requests in a gated fashion (as in the NW-Gated algorithm above). If the system times out (e.g., at
the end of the mini-cycle) while servicing the non-continuous request, the non-continuous request is
preempted. As in previous algorithms, a non-continuous request receives pre-emptive, non-resume

type of service.

The server will switch back to servicing class €' requests when either there are no more class
NC requests in the queue or when the mini-cycle ends (whichever comes first). In either case, at
that point a new mini-cycle begins. The system continues in this manner for the first N. — 1
mini-cycles. For the last mini-cycle, the system will behave like NW-Gated(1). This algorithm is
pseudo-work conserving because during the first N,,. — 1 mini-cycles, the server is never idle and
only in the last mini-cycle, there is a possibility of the server being idle (while there are continuous
requests in the system). Another important point to observe here is that in this algorithm, the
system aggressively services class C' requests for the first N,,. — 1 cycles, therefore, it reduces the
probability of overflow (i.e., missing the deadline) for class C' requests that belong to the last mini-
cycle (i.e., those serviced towards the end of the cycle) thereby reducing jitter in delivery. Figure 3
depicts the PW-Gated algorithm with N,,. = 3. In this figure, the system serves 5 class C' requests
in each mini-cycle. The system finishes the first mini-cycle early because there is no class NC'

requests, and therefore, it switches to the second mini-cycle immediately. For the last mini-cycle,

Note that, when the number of mini-cycles is equal to 1, this algorithm behaves just like NW-Gated.
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Figure 3: PW-Gated(3) Alg.: Serving class C requests, then gated service for class NC requests.

the system uses the NW-Gated algorithm to service class NC' customers.

Although there are many other possible algorithms for handling mixed workloads in a storage
system, we do not present any more alternatives here, since that is not the focus of this work. In
the remainder of this paper, with the aid of these three algorithms, we focus on investigating and
exposing the performance tradeoffs and optimization issues involved in scheduling service of mixed

workloads.

3 Model

In this section we present a queueing model which will allow us to study the system described in
Section 1 and the corresponding scheduling algorithms described in Section 2. We then present a

discussion of the derivation of the main parameters needed for this model.
3.1 Queueing Model

The model is depicted in Figure 4. It consists of two queues, (). and @),., corresponding to
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Figure 4: Queueing Model.

continuous and non-continuous requests, respectively. We now give an “informal” explanation of

how this queueing system works; the more formal definition is given in Appendix C.

Let us, for ease of exposition, first assume that N,,., the number of mini-cycles, is equal to 1.
And, as already mentioned in the previous section, there is a notion of (global) cycle time, T', in the
system and hence in the model as well. The queueing system behaves as follows. All N. continuous

requests are represented by a single customer of class C', which belongs to a closed chain [6], i.e.,
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the customer is always present in the queueing system and after receiving service at )., is routed
back to .. On the other hand, each of the N,. non-continuous requests is represented by one
customer of class NC. Customers of class NC' arrive to queue (). according to a Poisson process
with a rate of A, and depart from the system after receiving service at @, i.e., they belong to an

open chain [6].

There is a single token in the system which, at the beginning of a cycle of length T, starts out
at (.. Once the continuous customer completes service, on its departure, (). passes the token to
Qne if there is still time left in the cycle. The continuous customer then comes back to (). but
does not receive service until the token is returned to (.. If the service of the €' customer is longer
than the cycle time, T', by ¢ > 0 time units, then the token remains at ). and the next cycles is of
length T — .

Operation of ), is somewhat different. The server at ¢),,. does not service any customers until
it receives a token. Once the token is received, (), begins servicing customers of class NC' and
continuous to do so until the cycle time expires, at which point it passes the token back to @)..
Of course, if the cycle time has already expired when the token is received, it is passed back to
(). immediately, without servicing any of the N customers. The actual service discipline at Q).
depends on the scheduling algorithm being modeled. Specifically, in the case of the NW-FCFS
algorithm, the NC' customers are serviced in a FCFS manner until the expiration of the cycle time.
If the cycle time expires in the middle of servicing an NC' customer, this customer’s service is
pre-empted and then initiated from the beginning (i.e., this is a non-resume type service) the next
time the token comes back to Q.. In the case of the NW-Gated and the PW-Gated algorithms,
the service disciple is more complex. Let LY be the number of NC customers at ). when the
token arrives. These L¢_ customers are serviced as a batch (i.e., using a SCAN-type algorithm
as mentioned in Section 2). (). continuous servicing the NC' customers in this manner, i.e., in
batches, where the size of the next batch is determined by the number of customers that arrive
during the service of the current batch, until the cycle time expires. Again, as in the case of the
NW-FCFS algorithm, if the cycle time expires in the middle of servicing an NC customer, this
service is pre-empted and initiated from the beginning (i.e., not resumed) the next time the token

returns to Q..

Note that, in all three algorithms, even if the number of customers waiting at ),. goes to
zero at some point, @, will continue holding on to the token until the cycle time expires (this is
the non-work-conserving part of these algorithms). Also note that, although this queueing model
consists of multiple queues, the resources of interest (namely the I/O bandwidth) that this model

represents are still shared (i.e., the sharing is done through the token).

To extend this model to multiple mini-cycles, i.e., NV,,. > 1, the following modification must be

made (the corresponding service times for each type of customer is given in Section 3.2):

Ne
ch

we can still get away with only having a single C' customer in the model, except that this single

1. the single (' customer now represents continuous customers rather than all N.; however

customer will change class [6] every time it departs from (and immediately returns to) . —
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the (circular) numbering (or labeling) of classes will range from 1 to N,,. and we will now
have the continuous customer alternating between N,,. classes, i.e., C*,C2%,...,CNme CT

this change of classes will represent going from one mini-cycle to the next!!

2. the length of each mini-cycle is NL,M

3.  the token-passing rules remain the same for NW-FCFS and NW-Gated except that the expi-
ration of a mini-cycle (rather than a cycle) triggers passing of the token

4. the token-passing rules for PW-Gated in the last mini-cycle, i.e., the (ch)th mini-cycle,
remain the same

5. the token-passing rules for PW-Gated in mini-cycles 1,2,..., N,,. — 1 are modified as follows.
If L9, = 0 either when the token arrives or after the service of a previous batch, then the
token is passed back to (). immediately (this is the work-conserving part of the algorithm)

The queueing system described above is fairly complex. (Please see Appendix C for a more formal

definition of the queueing model.) Thus, in Section 4 we present performance results obtained by

it through simulation.

3.2 Service Times for Continuous and Non-continuous Requests

Given the above model of the system, what remains is to discuss the service time distribution for
both the continuous and the non-continuous customers!?. Clearly, the service time of any customer
in the model will correspond to some combination of seek, rotational latency, and transfer time
(since we are modeling accesses to the disk sub-system). We begin our discussion with the seek
time. In order to simplify the model somewhat, we will assume a deterministic seek, and derive an
appropriate expression for each type of a request and each algorithm. (Note the distinction in the
derivation below between seek time and seek distance; this distinction is due to the non-linearity
of the seek time function as given in Table 1.)'* Let C'Y L be the number of cylinders on the disk.
Then,

1. the seek distance for the continuous customer (for all algorithms) will correspond to the

worst case seek time, i.e., the seek time for servicing ]\],VC requests uniformly distributed
mc

on the surface of the disk (see Section 2.1 for details); we will denote the seek distance

corresponding to each continuous request by d?é‘;,f(]\],\::c ), where
N CYL
maxr ¢ — 5
seek(ch) "Nc/ch-‘ ( )

" Gince the performance metric of interest for continuous requests is the probability of missing a deadline in a cycle,
this model will suffice — continuous requests do not experience congestion in this system, i.e., in a sense they have

priority over non-continuous requests.
12 As already mentioned, the continuous customer belongs to a closed chain, and thus is always “present” in the

system, whereas the arrival process of the non-continuous customers is Poisson with a rate of A.
13The actual values of these seek times will depend on the disk parameters used — these will be given in Section

4 for the specific experiments discussed there.
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2. theseek distance for one non-continuous customer in the NW-FCFS algorithm will correspond
to the average seek distance on a disk[8], i.e., %dﬁ;ﬁﬂ, where dfgel,i = CY L denotes the
maximum possible seek distance between any two cylinders on the disk (recall that in this
algorithm the non-continuous customers are just serviced in a FCFS manner)

3. the seek distance for a gated group of non-continuous requests of size LY, in the NW-Gated
and the PW-Gated algorithms will be given by the following equation (recall that in these

algorithms non-continuous customers are serviced in groups, and in a SCAN-type manner):

7 W 2 L. ) (L%c—1)< L3, )(%)H
Doccke = [dﬁee’“*KL%cH) (L%c+2 IV SVAVIEAT: ®)

A

seek T

where CY L denotes the longest possible seek distance (in number of cylinders)

between any two cylinders on the disk
The derivation of Equation (6) is given in Appendix B.
Given the seek distances derived above, the service time of the continuous customer, for all

three algorithms, is as follows:
edge Nc « [

S. =
Tseck + N

o fsee (@) )+ ik i ™
where T:jé]; is an extra seek needed to get to an edge of a disk surface in order to do the SCAN
corresponding to service of continuous requests'®. The seek(d) is the seek function which gives
the seek time as a function of the seek distance (in number of cylinders). The specific function
that should be used depends on the type of disks used in the system; the seek function for the
type of disk used in our experiments (a Seagate Barracuda) is given in Table 1. The 77, and 7/,
are random variables corresponding to rotational latency and transfer time portions of the service

time of each continuous request (their distributions, for the experiments discussed in this paper,

max( Ne

are given in Section 4), and d77 (5 =) is given in Equation (5). Recall that the single continuous

customer in our model represents all the continuous requests being serviced in a single mini-cycle

in the system. Hence, the ]\],VC

mc

term in Equation (7).
The service time of each non-continuous customer in the NW-FCFS algorithm is:
1
1 i
S, . = seek ("gdfgek-‘) + T + TS (8)
where 775 and 7%, are random variables corresponding to rotational latency and transfer time

portions of the service time of each non-continuous request (their distributions, for the experiments

discussed in this paper, are given in Section 4), and d = CYL. The seek(d) function is the

seek

same as the one above.

The service time of one non-continuous customer, in a gated group of size L ., in the NW-Gated
and PW-Gated algorithms is:

2 dgeg;ck ne nc
Snc = seek LT + Trot + thr (9)

M Note that, this “extra” seek should not be “counted” in the response time of non-continuous requests; thus we

include it here.

13



where 75 and 7/f, are as above, i.e., random variables corresponding to rotational latency and

rot
transfer time portions of the service time of each non-continuous request whose distributions, for
the experiments discussed in this paper, are given in Section 4. The seek(d) is the same seek
Lie

function as above, and d_5

is given in Equation (6).
4 Results

In this section, we examine the tradeofls associated with service of mixed workloads by evaluating
the performance of the scheduling approaches which were described in Section 2. The results
discussed here are obtained through simulation which is based on the model described in Section 3.
Specifically, let 77 be the random variable representing the response time of the i non-continuous
request. The performance metrics used for the non-continuous requests are F[T,.] and o,., the

expected response time and the variance of the response time, respectively; that is:

R .
E[T,] = ggr;o;;E[Tm] (10)
N A 2
One = JLr%on_lz(Tm—E[Tm]) (11)

=1
Let Ejnd be the event that the i*" continuous request has missed the deadline!'® and Eél be the
event that the i** cycle is overloaded. The performance metrics used for the continuous requests

are P4 and P,;, the probability of a continuous request missing a deadline and the probability of

an overloaded cycle, respectively; that is:

1ds
Png = lim =S 1{E! 12
d nggon; {E}4} (12)
1 :
Po = lm — ]Z:; HED} (13)

where 1{f} = 1 if condition f is true.

We consider a system which employs a disk farm to service continuous requests as well as non-
continuous requests. Table 1 gives the relevant characteristics of a typical Seagate disk used in
the experiments presented here. Note that the seek time is in seconds, and it is a function of the
request seek distance d. Unless otherwise stated, we use the following parameters in the experiments
presented in this section. We set a requirement that each disk in the system has to support N. = 24
continuous requests, which represent MPEG streams with an average display rate of 1.5 Mbps each.
For the non-continuous request, the arrival process is modeled as a Poisson process with rate A,
and the transfer size is modeled by an exponential distribution with mean 46.875 KBytes. We
assume that in all experiments (unless otherwise stated), the requirement is that the probability of
an overloaded cycle has to be less than or equal to 0.01 (i.e., Prob[ry, > T] < 0.01). Given the disk

1°Recall that, a missed deadline occurs when the server finishes service of a continuous request after a cycle of
length 7" has already ended.
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Disk Capacity 2.25 GBytes
Number of cylinders (CY L) 5288
Transfer rate 75 Mbps
Maximum rotational latency | 8.33 milliseconds

0.6%1072 4+ 0.3%1072 x+/d  if d < 400
seek(d) = _3 _3 .
5.75%107° 4+ 0.002* 107" = d if d > 400

seek time function (secs)

Table 1: Seagate Barracuda 4LP Disk Parameters
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Figure 5: E[T,.] and o,. for NW-FCFS, NW-Gated and PW-Gated under 7' = 1.48754, N,,,. = 1.

parameters and the workload requirements, we can solve Equation (4) numerically to determine
the value of T' such that Prob[ry, > 7] < 0.01. The value of 7" in all experiments (unless otherwise
stated) is set to 1.48754 seconds so as to satisfy the QoS constraint. We model the transfer size
of a continuous request as an exponential distribution with mean 2.25 Mbits (i.e., so that on the
average, the display rate per stream per cycle is approximately 1.5 Mbps as for an MPEG1 stream).
The rotational latency for both the continuous and the non-continuous requests is modeled as a

uniform distribution in the range of [0, 8.33] milliseconds.

Experiment 1: In this experiment, we set the number of mini-cycles N,,. = 1 and T = 1.48754
seconds. Figure 5 illustrates E[T).], the expected response time, and o,., the variance of the
response time, of non-continuous requests for the three scheduling algorithms. Note that both
the NW-Gated and the PW-Gated algorithms have a much lower expected E[T),.] and o, for the
non-continuous requests under moderate to high arrival rates. Since the number of mini-cycles
Ny = 1, the improvement in E[T,.] and o,. is obtained by simply re-ordering the service of
non-continuous requests. Figure 5 also illustrates that a system using NW-Gated or PW-Gated
scheduling algorithm can schedule more non-continuous requests at higher loads whereas a system
using NW-FCFS may experience instability earlier, i.e., in the experiment of Figure 5 at A > 18.0.
Moreover, Figure 6 illustrates P, 4, the probability of missing deadline, and P,;, the probability of
an overloaded cycle, for all scheduling algorithms. Observe that all three algorithms studied here

perform within our quality of service (QoS) requirement, that is, the probability that the time to
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Figure 6: P4 and P,; for NW-FCFS, NW-Gated and PW-Gated under T' = 1.48754, N,,,. = 1.

service N, continuous requests is larger than 7 is less than or equal to 0.01.

Experiment 2: In this experiment, we study the effect of mini-cycles on the performance of
continuous and non-continuous requests under the NW-FCFS algorithm. Figure 7 illustrates the

corresponding changes in T},. and o,.. In this figure, we observe that the NW-FCFS scheduling
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Figure 7: E[T,.] and o,. for NW-FCFS with varying number of mini-cycles and T' = 1.48754.

algorithm has a convexzity property. That is, when we initially increase the number of mini-cycles,
there is an improvement in E[T),.] and o, for the non-continuous requests. The improvement comes
from the fact that with more (and therefore shorter) mini-cycles the waiting time (before the server
switches back to servicing non-continuous requests) is reduced. However, there is a corresponding
loss in seek optimization opportunities (due to fewer number of continuous requests being serviced in
a mini-cycle). As the number of mini-cycles is increased further, we experience diminishing returns
in performance gains due to reduced waiting time. Moreover, the loss of bandwidth efficiency (due

to loss of opportunities for seek optimization) becomes the dominant factor, and thus finally results
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Probability of Missing deadline x 103

ch

Figure 8: P,,4 for continuous requests under NW-FCFS under different values of mini-cycles.

in the reduced performance of the non-continuous requests. The important point to observe here
is that this convexity property implies that there exists an optimal operating point, i.e., an N ..

which corresponds to the optimal number of mini-cycles that will minimize F[T,.] and o,., and

that is where we should be operating our system.

Although we can reduce E[T),.] and o, for the non-continuous requests by operating the system
at N, = 4, the NW-FCFS algorithm may not be able to support, at this operating point, the
QoS required by the continuous requests. Figure &, illustrates that the probability of a continuous
request to missing a deadline, P,,4, is an increasing function of the number of mini-cycles under all
arrival rates. As illustrated in Figure 7, for A = 1.0, N} . should be equal to 4 so as to minimize
E[T,.]. However, at that point, the probability of a continuous request missing a deadline (P,,q)
is around 0.016, which violates the Prob[ry, > T] < 0.01 QoS requirement of continuous requests.

To investigate this problem further and solve it, we perform the next experiment.

Experiment 3: In the previous experiment, we determined that there exists an optimal mini-cycle

value, N*

v ., for the NW-FCFS algorithm. In this experiment, we vary the number of mini-cycles for

the NW-Gated and the PW-Gated algorithms to determine whether a similar convexity property
exists as well as to compare the performance (i.e., E[T,..], 0pnc, Prd and Py;) of these algorithms. The
result of this experiment is illustrated in Figure 9. Several important observations can be made
from this figure. Firstly, a convexity property also exists in the NW-Gated and the PW-Gated
algorithms, which implies that there exists an optimal value for the number of mini-cycle, N,
here as well. Secondly, by comparing NW-FCFS and NW-Gated in Figures 9(a)-(d), we observe that
under a light load (i.e., A < 6.0), most of the performance improvement in E[T,.] can be obtained
by operating at a proper value of N,,.. That is, re-ordering the service of non-continuous requests
in NW-Gated appears to result in only small performance gains, which is due to the fact that under
light loads very few non-continuous requests are present in the non-continuous queue during the
“gating instant”. However, under all A loadings, the PW-Gated algorithm improves the E[T,.]
by a large margin because it both (a) aggressively services continuous requests when there are no

non-continuous requests present in the system (i.e., it is work conserving in most mini-cycles) and
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(b) it services non-continuous requests (when they are present), in a re-ordered manner. That is,
the “aggressive” service of continuous requests results in less “wasted” time during a cycle of length
T as well as (on the average) in a greater accumulation of non-continuous requests in the queue at
the “gating instant” which in turn results in greater benefits due to re-ordering of service of non-
continuous requests. Under a moderate load (i.e., A = 9.0), Figure 9(e) illustrates that NW-Gated
and PW-Gated can reduce the F[T),] significantly because there are more non-continuous requests
during the “gating instances”, therefore, re-ordering of service pays off significantly. Lastly, under
high loads (i.e., A = 12,0, 15.0,18.0), NW-FCF'S will not be able to support non-continuous requests
with a reasonable response time!®, while NW-Gated and PW-Gated can still perform reasonably
well. Note that at a very high load (i.e, A = 18.0), NW-Gated and PW-Gated have comparable
performance because the probability of not having any non-continuous requests to service in a

mini-cycle (even without the “aggressive” service of PW-Gated) is very small at such loads.

Figure 10 illustrates the variance of non-continuous requests under different arrival rates ()
and different values for number of mini-cycles. (Graphs for other values of A are given in Figure 14
in Appendix D.) We can conclude from these figures that the PW-Gated algorithm performs the
best, both in terms of E[T),.] and in terms of o,., and that the convexity property holds for all
three algorithms. An important point to note is that the PW-Gated algorithm has a relatively flat
curve for 0, under different loadings (i.e., different values of A). This is an important characteristic
since this implies that the PW-Gated algorithm not only reduces the E[T,.] but also makes the
response time of the non-continuous requests less variable, which should result in better service to

non-continuous customers.

Since PW-Gated performs much better than NW-Gated, from this point on we simply compare
PW-Gated with NW-FCFS. Figure 15 illustrates that P4 for the PW-Gated algorithm is much
lower than that for the NW-FCFS algorithm. (Graphs for other values of A are given in Figure 15
in Appendix D.) The explanation here is that under different arrival rates of the non-continuous
requests, PW-Gated attempts to aggressively serve continuous requests whenever there are no non-
continuous requests in the system. Therefore, it completes each mini-cycle as fast as possible,
thereby increasing the probability of having a larger residual time in the last mini-cycle of each
cycle. Since, according to our performance metric, a continuous request can only miss a deadline
if it is processed after the end of a cycle of length 7', PW-Gated reduces the probability of this
undesirable event. Note that with PW-Gated, it is possible for a system to operate at an optimal
value of N . so as to minimize the E[T),.] and at the same time, satisfy the QoS requirement of
the continuous requests. For example, at A = 9.0, PW-Gated can operate at N . = 4 such that
E[T,.] is minimized and P4 is only equal to 0.004, which is much lower (i.e., better) than the
required QoS of Prob[ry, > T < 0.01. Lastly, Figure 9(h) illustrates that NW-FCFS cannot even
sustain such a high load of non-continuous requests (i.e., A > 18.0). From Figure 9, we observe that
PM-Gated can reduce E[T,.], as compared to NW-FCFS, by as much as 60% while still satisfying

$That is, at such high loads NW-FCFS may not be stable and response time may grow to infinity, or as high as

the maximum queue size will allow.
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the the QoS constraint for the continuous requests.

Lastly, we would like to point out that further improvements in response time of the non-
continuous requests can be achieved through increases in the cycle time T'. However, this improve-
ment comes at the cost of increases in buffer space requirements for the continuous requests. Due

to lack of space, we present the experiment illustrating this tradeoff in Appendix A.

5 Conclusions

We have studied the performance tradeoffs in resource management techniques for multimedia
storage servers with mized workloads. This study was performed with the aid of an analytical
model and by considering two orthogonal approaches to scheduling of mixed workloads, namely (1)
a technique (termed “mini-cycles”) for reducing the waiting time of the non-real-time requests and
(2) algorithms for providing better opportunities for seek optimization. However, we would like to
remind the reader, that the scheduling algorithms presented here are not the main focus of this
work, where the true focus are the tradeoffs which are exposed through the performance evaluation

of such techniques. Finally, we investigated these tradeoffs under high real-time workloads.
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Appendix A: Improvement in Response Time vs. Increase in

Buffer Space Requirements

In this appendix we illustrate the tradeoff between improvements in response time for non-continuous
requests, achieved through increases in the cycle time 7', and the resulting increases in buffer space

requirements for continuous requests.

Experiment 4: In the previous experiments, the cycle length T is fixed, and it is equal to 1.48754
seconds. In the following experiments, we increase the cycle length T" while keeping the number
of continuous requests at N. = 24. The rational for performing these experiments is to determine
whether we can further improve the E[T,. and the P, 4 at the expense of larger buffer space
requirements'”. In these experiments, we increase the cycle length 7' by 25%,50%, 75% and 100%.

The transfer size of the continuous requests is model as an exponential distribution (as before)

17Recall that we can not transmit and thus must buffer the data retrieved for all continuous requests in cycle ¢

until the beginning of cycle ¢ + 1.
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and accordingly, we increase the transfer size so that the continuous requests can still represent an

MPEG video stream with a mean display rate of ~ 1.5 Mbps'®. Specifically, we have:

increase in T | length of T' (in secs) | mean transfer size (Mbits)
T 1.487540 2.2500
1.25T 1.859425 2.8125
1.50T 2.231310 3.3750
1.75T 2.603195 3.9375
2T 2.975080 4.5000

Figure 12 illustrates the case where T is increased by 25%, or T' = 1.859425 seconds. To make
a fair comparison, we consider the scheduling algorithms at their respective optimal operating
points, N* . and observe that PW-Gated reduces the E[T).] by as much as 49.4%, as compared
to NW-FCFS when 7' = 1.48754 (see Figure 12(g)), and at the same time still satisfies the QoS of
continuous requests (see Figure 12(h)). However, this gain occurs the cost of a (potentially) 25%

increase in buffer space requirements for the continuous requests.

Figure 13 further illustrates improvements in F[7},.] for different values of T under PW-Gated.
It shows that we can reduce F[T,.] by as much as 44% if we increase the value of T' from 1.487540 to
2.97508 (see Figure 13(c) with the corresponding probabilities of missing a deadline in Figure 13(d)).
This improvement also, of course, comes at the cost of an increase in buffer space requirements of

continuous requests.

Lastly, we would like to make the following observation. Thus far, the technique of “mini-cycles”
has been used for improvements in response time of non-continuous requests. And, in contrast, we
have only considered performance characteristics of continuous requests on full cycle basis, i.e., the
computation of probability of missing a deadline as well as the buffer space considerations were
discussed with respect to a full cycle of length T'. However, observe that NW-FCFS and NW-Gated
behave identically on all mini-cycles (in contrast to PW-Gated). Thus, we could consider assigning
each continuous request to a specific mini-cycle within a cycle, i.e., always retrieve continuous
request C; during mini-cycle j, where 1 < ¢ < N, and 1 < 7 < Np,.. Then, the transmision of data
corresponding to C; can begin in mini-cycle 7+ 1, rather than being held in memory until the next
cycle. This will reduce the buffer space requirements of continuous requests. However, the tradeoff
here is that the probability of missing a deadline would have to be computed on a per-mini-cycle
basis as well, rather than on per-cycle basis; this will surely increase in the probability of missing
a deadline, although it is not clear how significantly. A quantitative assessment of this tradeoff is

outside the scope of this paper.

18For example, if T = 1.859425, then we need to increase the average transfer size to 2.8125 Mbits such that with
this cycle length 7', on the average ~ 1.5 Mbps are transfered.
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Appendix B: Derivation of Seek Distance Equation

In this appendix we give the derivation of Equation (6), and specifically, the expected seek distance
for a gated group of non-continuous requests, which is as follows. Firstly, note that, after finishing
service of the continuous requests, the disk head is positioned in a random place on the disk, and
thus, in general, the disk may have to service the L?  requests by doing sweeps in both directions
(one at at time, of course). That is, the LY_ requests are going to be serviced by sorting them
based on the current location (i.e., where the disk head stopped after the last group of serviced
requests) and direction (i.e., whichever direction the previous sweep was going in) of the disk head
and then retrieved in that order. Secondly, we make another simplifying assumption, namely that
the LY, customers together with the disk head, are uniformly distributed on the surface of the disk,
i.e., they correspond to LI, + 1 equally spaced points that divide the disk surface into LY, + 2
partitions of equal size. Then, the first term in Equation (6) represents all the cases where the disk
head corresponds to a point on an edge of the disk surface — in such cases, the disk head needs to

. g
seek a distance of —Lne_g/u!

7755 Dsceh to service these LY. requests, and these cases occur with probability

(ﬁ) The second term in Equation (6) represents all the cases where the disk is not on an edge
of the disk surface — in such cases, the disk head needs to seek a distance of (3)( L yd vl

L8 42/ seek? and

these cases occur with probability (ézw_:)

Appendix C: Formal Definition of the Queueing System

In this appendix we give a more formal definition of the behavior of the queueing system described
in Section 3. Let L,. be the queue length at queue (,., and LZ, be the number of customers at
queue Q,. when they are gated (refer to Section 3). Finally, let mec_count be the number of the

current mini-cycle, where 1 < me_count < N,..

Before we proceed with the more formal definition of the queueing model, we first explain the
notation used in this definition. Below, we describe the behavior of each queue as a collection
of event’s and msg_recv’s, where an event can correspond to either an “internal” event (such
as a service completion) or an “external” event (such as an arrival of a new customer). On the
other hand, the receiving and sending of messages notation allows us to illustrate communication of
control information (such as token passing) between the two queues. Each event and msg_recv is
annotated with a condition and an action, meaning that the action is taken only if the condition
is true. Fach type of an event occurs at a given rate with a given distribution; for instance,
the statement event: arrival(rate_type,rateq rivai), where rate_type is equal to “exponential” and
ralégrrival = A, means that the random variable corresponding to the time between consecutive
events of type “arrival” is distributed exponentially with a mean of 1/A. Thus, we can view the
description given below as an event-driven type of a description, i.e., each event is generated,
independently of other events, with a given distribution and rate. Finally, in order to make the

description of the model more general'® and at the same time more analytically tractable [9], the

191n general, it is not possible to fully describe a distribution with just a mean, with some exceptions, of course.
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service of the continuous customer is described in terms of a series of stages; for instance, it could
represent an r-stage Erlang distribution with » = LASTSTAGE [9].

The initial settings of the following variables, used in the description below, are:

me_count = 1: global variable which keeps track of the current mini-cycle number, i.e.,
1 < me_count < N,

done == false: keeps track of whether the mini-cycle time has expired yet

stage == 1: keeps track of in which stage of service the continuous customer is (as described
above)

class == 1: keeps track of to which class the continuous customer belongs (as described in

Section 3 class switching represents going from one mini-cycle to the next)

The description of the behaviour of the queues is as follows.

Continuous Queue (NW-FCFS and NW-Gated)

1.

event: change_stage(rate_type, ratesige)

/* changing of stage — service not finished */

e condition: (stage < LASTSTAGE) and (token == 1)
. action: stage + +
/* changing of stage — service finished, timer not expired */
e condition: (stage == LASTSTAGFE) and (token == 1) and (done == false)
e action:

(a
(b
(c
(d

) stage=1
) token =0
) if ((class + 1) > Ny,) then class = 1 else class + +
) send-msg(Q),., token_msg)
/* changing of stage — service finished, timer expired */

e condition: (stage == LASTSTAGLE) and (token == 1) and (done == true)
e action:

(a) stage=1

(b)  done = false

(¢) if ((class +1) > N,,.) then class = 1 else class + +

event: timeout(rate_type, rateymeout)

/* timer expired — still have the token */

. condition: (token == 1)
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. action: done = true

/* timer expired — don’t have the token */
¢ condition: (foken == 0)
e action:
(a) token =1
(b)  send-msg(Q),., timeout_msg)

Non-continuous Queue (NW-FCFS and NW-Gated)
1. event: serve(rate_type, rates. yice)

/* service non-continuous customer */
e condition: (L,. > 0) and (token == 1)

e action: L,.— —

2. event: arrival(rate_type, rateq, ival)
/* arrival of a non-continuous customer */

. condition: true

. action: L,.+ +

3.  msg._recv: token_msg
/* receive message of token being passed in */

. condition: true
. action: token =1
4. msg_recv: timeout_msg

/* receive message of timeout */

. condition: true

. action: token =0

Continuous Queue (PW-Gated)
1. event: change_stage(rate_type, rategqge)

/* changing of stage — service not finished */

e condition: (stage < LASTSTAGE) and (token == 1)

. action: stage + +

/* changing of stage — service finished, timer not expired */

e condition: (stage == LASTSTAGFE) and (token == 1) and (done == false)
e action:

(a) stage=1
(b)  token =0

28



(¢) if ((class +1) > N,,.) then class = 1 else class + +
(d) send-msg(Q,., token_msg)

/* changing of stage — service finished, timer expired */
e condition: (stage == LASTSTAGLE) and (token == 1) and (done == true)
e action:
(a) stage=1
(b)  done = false
(¢) if ((class +1) > N,,.) then class = 1 else class + +

2. event: timeout(rate_type, ratemeout )

/* timer expired — still have the token */
e condition: (foken == 1)

e action:
(a)  done = true

(b)  if ((mec_count + 1) > N,,.) then mc_count = 1 else mc_count + +

/* timer expired — don’t have the token */

e condition: (token == 0)

. action:
(a) token =1

(b)  if ((mec_count + 1) > N,,.) then mc_count = 1 else mc_count + +

(¢) send-msg(Q,., timeout_msg)

3.  msg._recv: token_msg
/* receive message of token being passed in */

. condition: true

. action: token =1

Non-continuous Queue (PW-Gated)
1. event: serve(rate_type, rates. yice)

/* service non-continuous customer */
e condition: (LY. > 0) and (L, > 0) and (token == 1)
e action:

(a) L= Lne

(b)  L,.=0

2. event: serve(rate_type, ratese yice )

/* service last non-continuous customer */

e condition: (L,. == 0) and (token == 1) and (mc_count < N,,.)
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e action:
(a)  Lh.=0
(b)  send-msg(Q)., token_msg)

3. event: serve(rate_type, ratese,yice )

/* service last non-continuous customer */
e condition: (L,. == 0) and (token == 1) and (mc_count == N,,.)
e action: L7 =0

4. event: arrival(rate_type, rate, rival)

/* arrival of a non-continuous customer */

. condition: true
. action: L,.+ +

5. msg_recv: token_msg

/* receive message of token being passed in */

° condition: L,. > 0
e action:

(a) token =1

(b) L. = Lnc

(c) L,.=0

. condition: L,. == 0

¢ action: send-msg(Q)., token_msg)

6. msg_recv: timeout_msg

/* receive message of timeout */

¢ condition: true

e action:
(a) token =0
(b)  Lpe= Lne+ L],
(c) L§.=0

Appendix D: Additional Graphs

In this appendix we give additional graphs corresponding to the discussion in Section 4.
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