54 research outputs found

    Context-sensitive dynamic ordinal regression for intensity estimation of facial action units

    Get PDF
    Modeling intensity of facial action units from spontaneously displayed facial expressions is challenging mainly because of high variability in subject-specific facial expressiveness, head-movements, illumination changes, etc. These factors make the target problem highly context-sensitive. However, existing methods usually ignore this context-sensitivity of the target problem. We propose a novel Conditional Ordinal Random Field (CORF) model for context-sensitive modeling of the facial action unit intensity, where the W5+ (who, when, what, where, why and how) definition of the context is used. While the proposed model is general enough to handle all six context questions, in this paper we focus on the context questions: who (the observed subject), how (the changes in facial expressions), and when (the timing of facial expressions and their intensity). The context questions who and howare modeled by means of the newly introduced context-dependent covariate effects, and the context question when is modeled in terms of temporal correlation between the ordinal outputs, i.e., intensity levels of action units. We also introduce a weighted softmax-margin learning of CRFs from data with skewed distribution of the intensity levels, which is commonly encountered in spontaneous facial data. The proposed model is evaluated on intensity estimation of pain and facial action units using two recently published datasets (UNBC Shoulder Pain and DISFA) of spontaneously displayed facial expressions. Our experiments show that the proposed model performs significantly better on the target tasks compared to the state-of-the-art approaches. Furthermore, compared to traditional learning of CRFs, we show that the proposed weighted learning results in more robust parameter estimation from the imbalanced intensity data

    Announcements of conferences

    Get PDF

    Ordinal regression methods: survey and experimental study

    Get PDF
    Abstract—Ordinal regression problems are those machine learning problems where the objective is to classify patterns using a categorical scale which shows a natural order between the labels. Many real-world applications present this labelling structure and that has increased the number of methods and algorithms developed over the last years in this field. Although ordinal regression can be faced using standard nominal classification techniques, there are several algorithms which can specifically benefit from the ordering information. Therefore, this paper is aimed at reviewing the state of the art on these techniques and proposing a taxonomy based on how the models are constructed to take the order into account. Furthermore, a thorough experimental study is proposed to check if the use of the order information improves the performance of the models obtained, considering some of the approaches within the taxonomy. The results confirm that ordering information benefits ordinal models improving their accuracy and the closeness of the predictions to actual targets in the ordinal scal

    Convolutional and Deep Learning based techniques for Time Series Ordinal Classification

    Full text link
    Time Series Classification (TSC) covers the supervised learning problem where input data is provided in the form of series of values observed through repeated measurements over time, and whose objective is to predict the category to which they belong. When the class values are ordinal, classifiers that take this into account can perform better than nominal classifiers. Time Series Ordinal Classification (TSOC) is the field covering this gap, yet unexplored in the literature. There are a wide range of time series problems showing an ordered label structure, and TSC techniques that ignore the order relationship discard useful information. Hence, this paper presents a first benchmarking of TSOC methodologies, exploiting the ordering of the target labels to boost the performance of current TSC state-of-the-art. Both convolutional- and deep learning-based methodologies (among the best performing alternatives for nominal TSC) are adapted for TSOC. For the experiments, a selection of 18 ordinal problems from two well-known archives has been made. In this way, this paper contributes to the establishment of the state-of-the-art in TSOC. The results obtained by ordinal versions are found to be significantly better than current nominal TSC techniques in terms of ordinal performance metrics, outlining the importance of considering the ordering of the labels when dealing with this kind of problems.Comment: 13 pages, 9 figures, 3 table

    Enhancing Trajectory-Based Operations for UAVs through Hexagonal Grid Indexing: A Step towards 4D Integration of UTM and ATM

    Get PDF
    Aviation is expected to face a surge in the number of manned aircraft and drones in the coming years, making it necessary to integrate Unmanned Aircraft System Traffic Management (UTM) into Air Traffic Management (ATM) to ensure safe and efficient operations. This research proposes a novel hexagonal grid-based 4D trajectory representation framework for unmanned aerial vehicle (UAV) traffic management that overcomes the limitations of existing square/cubic trajectory representation methods. The proposed model employs a hierarchical indexing structure using hexagonal cells, enabling efficient ground based strategic conflict detection and conflict free 4D trajectory planning. Additionally, the use of Hexagonal Discrete Global Grid Systems provides a more accurate representation of UAV trajectories, improved sampling efficiency and higher angular resolution. The proposed approach can be used for predeparture conflict free 4D trajectory planning, reducing computational complexity and memory requirements while improving the accuracy of strategic trajectory conflict detection. The proposed framework can also be extended for air traffic flow management trajectory planning, Air Traffic Control (ATC) workload measurement, sector capacity estimation, dynamics airspace sectorization using hexagonal sectors and traffic density calculation, contributing to the development of an efficient UTM system, and facilitating the integration of UAVs into the national airspace system with AT

    Web-centric systems in support of argumentation, negotiation, and organizatioinal memory

    Get PDF
    The purpose of this thesis is to propose and demonstrate a new negotiation and argumentation medium. This medium will take advantage of the latest in web technologies while conducting a detailed analysis and design of a prototype web based decision support system to support on-line argumentation, claims, and team decisions. The information obtained from the application will be stored in an ODBC database, to be used as part of the organizational memory. Organization memory will significantly enhance an organizations ability to utilize historical data in conjunction with current decision making requirements. The findings in this study strongly support the strengths of the action-resource based argumentation system (ARBAS) model and indicate that future research and application development would significantly advance the fields of web-based negotiation and argumentation. A web-centric prototype developed during this research can be viewed at HTTP://WWW.CIMNET. NPS. NAVY. MIL/ THESIShttp://archive.org/details/webcentricsystem00vickCaptain, United States ArmyApproved for public release; distribution is unlimited
    corecore