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Abstract

P
attern recognition methods involve several stages starting from the raw data to the
prediction output. This is known as a pipeline. While deep learning has been hailed

as greatly simplifying these stages, it still requires data pre-processing or augmentation,
defining evaluation metrics and class weights, choosing the loss and optimization dynamics,
deciding the architecture, and tweaking the process several times over. This thesis proposes
novel ways of looking at several aspects of this pipeline with a particular emphasis on
classifying and segmenting images.

Firstly, a common practice is to synthetically augment the training set by applying
small transformations to the original data while keeping the original distribution intact.
For example, mirroring images or small rotations are often realistic transformations that
preserve the original distribution. An automatic data augmentation heuristic is pro-
posed so that these transformations are learned during the optimization process. Two
inferences are performed at each optimization step so that the optimal transformation is
found by perturbation differences.

Several techniques may also be required to address “class imbalance”. The problem
is when data are not uniformly distributed among the different classes, which biases the
pattern recognition method in the direction of the majority classes. This is due to the
fact that the typical learning process optimizes each datum in isolation. It is an age-
old problem and learning pairwise models for class imbalance is proposed as a new
alternative to the literature, inspired by the “learning to rank” literature.

Furthermore, serious thought was given at how errors are evaluated. For example, in
medicine, a false negative is naturally considered to be worse than a false positive. The
orthodox approach of specifying costs consists in using a cost matrix and imposing absolute
costs in each type of errors. This cost is difficult to assign – it might be easier to think
in terms of the size of the population. The proposed risk aversion paradigm redefines
error as a tolerance on the percentage of patients that will result in a false positive, and
several approaches are proposed at how learning processes could be adapted to the new
paradigm.

Pattern recognition can also be fooled by variations in the background of images. If
the model is evaluated with images that have a background different than the ones it has
seen before, then the model will output erroneous predictions. Adversarial background
learning is shown to produce robust models against changes of background. It consists in
training a secondary model to dynamically find changes in the background of the images
to teach the primary model to be more robust. This method was evaluated using indoors
and outdoors photographs of insulators, motivated by an autonomous drone problem.

After the learning process, certain types of images may fail to be modeled properly
because they were not well represented in the training set. These failures can then be
compensated by collecting more images from the real-world and including them in the
learning process, an expensive process known as “active learning”. The proposed twist,
called active supervision, uses the model itself to change the existing images in the
direction where the boundary is less-defined, requesting feedback from the user on how
the new image should be classified.
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Finally, traditionally, neural networks learn iteratively, but inference happens in a single
step. A different architecture and training procedure is proposed so that the segmentation
inference itself is also performed iteratively. The network is trained to produce a score
for segmentations of different quality so that new segmentations can then be improved by
gradient ascent using the score as an oracle. The advantage of this iterative inference is
that it becomes possible to improve pre-existing segmentations; also, it makes the inference
process more observable.

Keywords: deep learning; neural networks; computer vision; machine learning pipeline;
data augmentation; class imbalance; adversarial training; background invariance; active
learning; risk aversion.
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Resumo

M
étodos de reconhecimento de padrões envolvem vários passos, começando nos dados
brutos, terminando na previsão final. Este processo é conhecido como uma pipeline.

Enquanto que o “deep learning” tem sido elogiado por simplificar muito os vários passos,
requer, mesmo assim, pré-processamento dos dados ou o seu aumento artificial, definir
métricas de avaliação e pesos nas classes, escolher a função “loss” e as dinâmicas de
otimização, decidir a arquitetura, e afinar o processo várias vezes. Esta tese propõe for-
mas novas de olhar para os vários aspetos da pipeline com particular destaque para a
classificação e segmentação de imagens.

Em primeiro lugar, é prática comum aumentar de forma sintética o conjunto de treino,
aplicando pequenas transformações nos dados originais enquanto se mantém intacta a
distribuição original. Por exemplo, espelhar imagens ou pequenas rotações são normal-
mente transformações realistas que preservam a distribuição original. Uma heuŕıstica
de aumento de dados automático é proposta para que estas transformações sejam
aprendidas durante o processo de otimização. Duas inferências são feitas a cada passo de
otimização para que a transformação ótima seja encontrada pela diferença de perturbações.

Várias técnicas poderão também ser necessárias para mitigar desequiĺıbrio de classes.
Este problema ocorre quando os dados não são uniformemente distribúıdos entre as difer-
entes classes, o que enviesa o método de reconhecimento de padrões na direção da classe
maioritária. Este fenómeno deve-se ao facto de que o processo t́ıpico de aprendizagem
otimiza cada dado de forma isolada. É um velho problema e a aprendizagem de modelos
em pares para desequiĺıbrio de classes é proposta como um método alternativo à
literatura, inspirado pela literatura de “learning to rank”.

Além disso, um grande esforço foi feito na forma como os erros são avaliados. Por ex-
emplo, em medicina, um falso negativo é considerado mais severo que um falso positivo.
A abordagem ortodoxa consiste em especificar uma matriz de custos e impor custos abso-
lutos em cada tipo de erro. Este custo é dif́ıcil de atribuir – pode ser mais fácil pensar em
termos do tamanho da população. O paradigma proposto de aversão ao risco redefine
o erro como uma tolerância na percentagem de pacientes que irão resultar em falsos posi-
tivos, e várias abordagens são propostas à forma como o processo de aprendizagem pode
ser adaptado ao novo paradigma.

O reconhecimento de padrões pode também ser enganado por variações no fundo das
imagens. Se o modelo avaliar imagens cujo fundo seja diferente daquelas que viu anteri-
ormente, então o modelo irá cometer erros de previsão. A aprendizagem adversa de
fundos permite produzir modelos robustos contra mudanças de fundo. Esta consiste em
treinar um modelo secundário para dinamicamente encontrar modificações do fundo das
imagens que ensinem ao modelo primário a ser mais robusto. Este método foi avaliado
usando fotografias de insuladores tiradas dentro e fora de portas, motivado pelo uso de
drones autónomos.

Depois do processo de aprendizagem, alguns tipos de imagens poderão não ser mode-
ladas corretamente porque não estavam bem representadas no conjunto de treino. Estas
falhas podem ser compensadas recolhendo mais imagens do mundo-real e inclúındo-as no
processo de aprendizagem, um processo dispendioso conhecido por “active learning”. Uma
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reviravolta é proposta, chamada de active supervision, que faz uso do próprio modelo
para modificar imagens existentes na direção onde a fronteira está menos definida, pedindo
feedback ao utilizador sobre como as novas imagens devem ser classificadas.

Finalmente, redes neuronais tradicionais aprendem de forma iterativa, mas a inferência
é feita num único passo. Uma arquitetura e treino diferentes são propostas para a in-
ferência duma segmentação seja também ela iterativa. Uma rede é treinada para produzir
uma pontuação para segmentações de diferentes qualidades para que novas segmentações
possam ser melhoradas através de “gradient ascent” usando a pontuação como oráculo.
A vantagem desta inferência iterativa é que torna posśıvel melhorar segmentações pré-
existentes; além disso, também torna o processo de inferência mais observável.

Palavras-chave: deep learning; redes neuronais; visão computacional; pipeline de ma-
chine learning; data augmentation; class imbalance; treino adversarial; invariância de
fundo; active learning; aversão ao risco.
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I
Introduction

P
attern recognition and machine learning aim to find transformations f that convert
raw data into useful knowledge, e.g. f( ) = “cat”. Constructing such a function f

involves multiple steps, also known as a pipeline.

A possible representation of such a pipeline is illustrated in Figure I.1. Firstly, the
data is ingested and possibly pre-processed (e.g. color-space conversion). The learning
phase consists in converting the data into a higher-level semantic representation, and this
can be done automatically or by feature engineering, with parts (or all) of the process
optimized by minimizing an error function known as a loss. The decision process is known
as inference.

The pattern recognition landscape has been flipped upside-down over the last few
decades – especially when it comes to computer vision. Three waves are here briefly
identified: rule-based systems (1st wave), classic machine learning (2nd wave), and, finally,
deep learning (3rd wave). The 1st wave consisted of manually building both representations
and inference using hand-coded rules. The 2nd wave also required manually extracted rep-
resentations (which tried to quantify shapes and texture) but introduced models to learn
the inference part of the pipeline, and a dataset with examples was required to learn.
These first models did not have many learned parameters: for one output tasks, if you
had n input features, then an SVM or a logistic regression would have n+ 1 parameters.
The introduction of single-hidden layer neural networks with h neurons allowed having an
arbitrary number of h(n + 2) + 1 parameters – still, in practice, it was computationally
infeasible to use very big values for h. The 3rd wave, known as deep learning, is based on
these neural networks, but with multiple layers of neurons, and tries to learn everything
end-to-end, completely driven by data.

Has this revolution reduced the need for complicated pipelines? In previous days,
data practitioners would fiddle with the image color-space and manually design filters
for each different task. These are all now automatically learned. On the one hand,
the pre-processing step has been greatly simplified. On the other hand, the new data-
driven/automatic approach is very data-hungry and so the need for pre-processing has not
evaporated – data practitioners spend time tinkling with things like data augmentation

Data Representations Loss Optimization Inference

Training

• Collection
• Pre-processing
• Augmentation

• Feature engineering
• Model architecture
• Model fitting

• Prediction
• Post-processing

Figure I.1: A possible deep learning pipeline in a nutshell.
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Table I.1: Pattern recognition waves in computer vision.

1st Wave
Rule-based

2nd Wave
Classic

3rd Wave
Deep

Data Filters to smooth the image,
colorspace conversion

Data augmentation

Representations Hand-crafted features
e.g. HOG, LBP

Learned

Loss n/a Gini (decision tree),
Huber (SVM), etc

Any C1 function, preferably
convex

Optimization n/a Various Gradient descent
Inference Rule-based Various Matrix products and non-

linearities

transformations, which are transformations applied to the existing dataset to produce new
images that could plausibly be samples from the same distribution. Furthermore, the high
malleability of these new networks means that more strenuous thought must be given to
the architecture and objective functions, as well as introducing domain knowledge through
such techniques as regularization. Finally, some age-old challenges such as class imbalance
have been inherited from the previous family of models.

Table I.1 summarizes the aforementioned pattern recognition waves. Deep learning is
described in more detail below in Section II.1.

I.1 Thesis Organization

The thesis covers several aspects and problems of the deep learning pipeline, as illustrated
by Figure I.1, together with novel and creative approaches to tackle them:

Little pre-processing is applied in deep learning with one exception:
datasets are commonly synthetically augmented to create new data by
applying transformations on the existing data. Chapter 1: Data
Augmentation through Hill Climbing proposes a heuristic to learn
the parameters of these transformations. Publication:

Data

1. R. Cruz, J. F. P. Costa, and J. S. Cardoso, “Automatic Augmentation by Hill
Climbing,” in 28th International Conference on Artificial Neural Networks (ICANN),
Springer, 2019. [doi: 10.1007/978-3-030-30484-3_10]

The way data is modeled will bias the training process. Chapter 2:
Class Imbalance using Pairwise Learning focuses on addressing
problems originating from a biased distribution of the data. Publications:Representations
1. R. Cruz, K. Fernandes, J. S. Cardoso, and J. F. P. Costa, “Tackling Class Im-

balance with Ranking,” in International Joint Conference on Neural Networks
(IJCNN), IEEE, 2016. [doi: 10.1109/IJCNN.2016.7727469]

2. R. Cruz, K. Fernandes, J. F. P. Costa, M. P. Ortiz, and J. S. Cardoso, “Ordi-
nal Class Imbalance with Ranking,” in Iberian Conference on Pattern Recog-
nition, and Image Analysis (Ibpria), LNCS Springer, 2017. [doi: 10.1007/

978-3-319-58838-4_1]
3. R. Cruz, K. Fernandes, J. F. P. Costa, M. P. Ortiz, and J. S. Cardoso, “Com-

bining Ranking with Traditional Methods for Ordinal Class Imbalance,” in 14th
International Work-Conference on Artificial Neural Networks (IWANN), LNCS
Springer, 2017. [doi: 10.1007/978-3-319-59147-6_46]

4. R. Cruz, K. Fernandes, J. F. P. Costa, M. P. Ortiz, and J. S. Cardoso, “Bi-
nary ranking for ordinal class imbalance,” in Pattern Analysis and Applications,
Springer, 2018. [doi: 10.1007/s10044-018-0705-4]
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5. R. Cruz, M. Silveira, and J. S. Cardoso, “A Class Imbalance Ordinal Method for
Alzheimer’s Disease Classification,” in 2018 International Workshop on Pattern
Recognition in Neuroimaging (PRNI), IEEE, 2018. [doi: 10.1109/PRNI.2018.

8423960]
6. M. P. Ortiz, K. Fernandes, R. Cruz, J. S. Cardoso, J. Briceño, and C. Hervás-

Mart́ınez, “Fine-to-Coarse Ranking in Ordinal and Imbalanced Domains: An
Application to Liver Transplantation,” in 14th International Work-Conference
on Artificial Neural Networks (IWANN), LNCS Springer, 2017. [doi: 10.1007/

978-3-319-59147-6_45]

The loss is the function that the learning process tries to minimize. It
should be a close approximation to the evaluation metrics. Chapter 3:
Risk Aversion proposes a new way of looking at the trade-off between
false positives and false negatives and, consequently, possible losses are
suggested to achieve that goal. Publications:

Loss

1. R. Cruz, K. Fernandes, J. F. P. Costa, and J. S. Cardoso, “Constraining Type
II Error: Building Intentionally Biased Classifiers,” in 14th International Work-
Conference on Artificial Neural Networks (IWANN), LNCS Springer, 2017. [doi:
10.1007/978-3-319-59147-6_47]

2. R. Cruz, J. F. P. Costa, and J. S. Cardoso, “Averse Deep Semantic Segmentation,”
in 41st Engineering in Medicine and Biology Conference (EMBC), IEEE, 2019.
[doi: 10.1109/EMBC.2019.8857385]

Gradient descent is the bedrock optimization algorithm of deep learn-
ing. A couple of strategies are proposed on top of gradient descent to
make learning more robust. Chapter 4: Background Invariance
proposes a way for learning to focus on the object of interest and avoid
background distractions. Publications:

Optimization

1. R. M. Prates, R. Cruz, A. P. Marotta, R. P. Ramos, E. F. S. Filho, and J. S.
Cardoso, “Insulator Visual Non-conformity Detection in Overhead Power Dis-
tribution Lines using Deep Learning,” in Computer and Electrical Engineering,
Elsevier, 2019. [doi: 10.1016/j.compeleceng.2019.08.001]

2. R. Cruz, R. M. Prates, E. F. S. Filho, J. F. P. Costa, and J. S. Cardoso, “Back-
ground Invariance by Adversarial Learning,” in 25th International Conference on
Pattern Recognition (ICPR), IEEE, 2021. [accepted]

Also, Chapter 5: Active Supervision introduces the human into the
training loop to guide learning to be more robust. (Not published.)

Typically predictions are performed as a single forward-pass. Chap-
ter 6: Iterative Inference presents a way to make predictions itera-
tively, by gradient ascent, with some advantages. Publication:Inference
1. K. Fernandes, R. Cruz, and J. S. Cardoso, “Deep Image Segmentation by Qual-

ity Inference,” in International Joint Conference on Neural Networks (IJCNN),
IEEE, 2018. [doi: 10.1109/IJCNN.2018.8489696]

This division helps explain the motivation behind the work presented in the thesis.
However, it should come as no surprise that the solutions presented do not fit a single
box. For example, the new metrics presented as risk aversion require changes in the
learning process itself.

The next chapter of the Prologue (Chapter II) provides a brief overview of neural net-
works with a glossary in section II.4. Then, Chapter III introduces the datasets used
across the work. The meat of the work goes through Chapters 1–6. The work concludes
in Chapter IV with a summary and thoughts for future work.

I made an effort at making the chapters succinct, especially regarding the experiments
whenever they have already been published and are easily accessible. Expanded tables
with results may also be found at Appendix A.
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II
Background Knowledge

This chapter provides a brief context for the rest of the thesis. As previously mentioned,
classical computer vision involved a lot of hard-coded and specific rules for each given
problem. The advent of neural networks made methods more generalized so they work well
across a wider ranger of tasks. This renaissance in computer vision began with AlexNet,
which was a deep neural network that won the ILSVRC-2012 computer vision competition,
cutting by almost half the error of previous techniques [1]. All subsequent winners of the
competition have used the same architecture: a convolutional neural network of several
layers with rectifier-based activation functions. The term “deep learning” has since been
coined to mean neural networks with many layers that learn directly from the raw data;
i.e. pixels in the case of images.

II.1 Artificial Neural Networks

A quick digression into (artificial) neural networks: it all started in 1957 when Frank
Rosenblatt, a psychologist at Cornell Aeronautical Laboratory, USA, published the idea
for his “brain analogue” [2], where, using modern notation, the perceptron was defined
as the analogue of the neuron as f(x) = σ(w>x), where both w and x are vectors with x
being the input observation and w the “weights” (parameters) which are to be determined
so that the “activation function” σ produces a decision if the action potential w>x is
greater than a given “bias” threshold b (also a parameter) or the opposite if lower. It has
n+ 1 parameters which severely restricts what it can learn.

A multilayer perceptron was proposed to allow the recognition of more complex
patterns in 1961. In this new formulation, the input of the h-th layer of neurons is the

output of the previous (h−1)-th layer, f (h)(x) = σ(h)
(∑n(h)

i=1 (w
(h)
i )>f (h−1)(x) + b

(h)
i

)
,

with f (0)(x) = x and the final output is known as ŷ. In each layer, there are n(h) neurons
(weights and biases), each weight with a length of n(h−1) since it is connected to each input.
Several parameters must be previously defined by the user, such as the number of layers,
the number of coefficients per layer (n(h)), as well as each activation function (σ(h)). These
are known as hyperparameters. Typically, a single-hidden layer was used, and only the
number of the neurons of that layer (n(1)) was adjusted. Not only because this simplified
the hyperparameter search, but also because it has been shown that a single-hidden layer
is enough for a universal approximator [3] (under certain caveats).

Hinton (1986) shows that the backpropagation algorithm was able to find values for
the neurons that resulted in meaningful representations of the data [4]. This algorithm
estimates parameters w(h) and b(h) in two stages: (i) a forward pass is performed so the
network produces its output ŷ (usually these parameters are initialized at random for the
first iteration), and then (ii) the error is given by a loss function, such as L = (y − ŷ)2,

and is propagated back so that each layer gets updated by w
(h)
i ← w

(h)
i − η ∂L/∂w

(h)
i ,

where η is a hyperparameter provided by the user and is known as the “learning rate”.
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Prologue II Background Knowledge

Several improvements exist on top of this basic algorithm, usually involving adding a
“momentum” where the learning rate is an acceleration rather than a velocity [5].

Typically, the logistic function was used as the activation function, i.e. σ(a) = 1/(1 +
e−a). A new jump takes place in 2000 with the ReLU as an activation function of the form
σ(a) = max(0, a), which helped subdue the vanishing gradient problem. The vanishing

gradient problem happens when the update derivate, ∂L/∂w
(h)
i , in the context of the

backpropagation algorithm, becomes too small as it traverses back the network, because
of the non-linearities introduced by the logistic and tanh activation functions since their
derivatives approach zero as a becomes very large in magnitude while ReLU’s derivative
is a constant [6]. Furthermore, the ReLU activation function produces sparser and faster
models.

Finally, LeCun’s Convolutional Neural Network (CNN), originally known as LeNet,
was first published in 1998 [7] and was shown in 2010 to surpass the performance of
traditional computer vision models. This architecture greatly reduced the number of
parameters of a neural network, which, in turn, made it possible to build larger and more
powerful neural networks. These neural networks reduce the number of parameters by
operating over patches so that each node is connected only to a neighborhood of pixels,
rather than the entire an image. By analogy, what these neurons are performing is a
convolution across the image. The ensuing activation maps outputted by each layer can
themselves be seen as intermediate images, which are passed along to the next layer.
In between these operations, the maps’ resolution can be reduced by such operations as
max-pooling, i.e. selecting values with the highest intensity, or by applying convolutions
with jumping strides. By reducing the image, each following convolution is now using
information from farther away, i.e. the receptive field is enlarged [5].

These same networks used for computer vision have been exported and widely deployed
in other fields, such as DNA pattern recognition, speech recognition, and even to process
human language, among other uses [8], and have also been used on the recent AlphaGo
victory to compute the pruning heuristic [9].

Nowadays, several frameworks are available to automatize the process so that the user
needs only to define the forward pass and the backward pass (differentiation) is automati-
cally symbolically determined. Some of this work was done during a time these frameworks
were unripe and therefore some networks were implemented directly in C++, but most of
the work uses TensorFlow which was first publicly released by the end of 2015.

II.2 Computer Vision Tasks

Computer vision consists of interpreting images into higher-level semantics in order to
perform certain tasks. An image is represented by a tensor Rh×w×c, where w and h
are the width and height dimensions, and c is the number of colors (channels). Two
computer visions tasks are performed during the thesis – classification and segmentation.
Classification concerns with assigning a probability to an entire image (e.g. classifying an
image as a dog or a cat), while segmentation concerns with assigning probabilities to each
pixel in the image of belonging to the object of interest.

� Classification consists in producing a function f that produces a discrete category
of K classes from an image, f : Rh×w×c → {1, . . . ,K} (e.g. f( ) = “cat”). The
most common metric for classification is accuracy:

Acc(y, ŷ) =
1

N

N∑
i=1

1(yi = ŷi), (II.1)
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where 1 is the indicator function and N the number of observations.

� Segmentation consists in producing a function f that generates a probability maps
f : Rh×w×c → {0, . . . ,K − 1}h×w to highlight the relevant parts of the image (e.g.

f( ) = for binary segmentation). Two popular evaluation metrics for binary

segmentation (K = 2) are:

Jaccard index(y, ŷ) = J(y, ŷ) =
1

Nwh

N∑
i=1

h∑
j=1

w∑
k=1

yijkŷijk
yijk + ŷijk − yijkŷijk

(II.2)

Dice coefficient(y, ŷ) = D(y, ŷ) =
1

Nwhc

N∑
i=1

h∑
j=1

w∑
k=1

2yijkŷijk
yijk + ŷijk

. (II.3)

Both use the product between real and predicted segmentations as the numerator
to represent intersection with slight variations of the denominator. In all cases, the
score has a range of [0, 1] with 1 being a perfect segmentation.

When it comes to segmentation, experiments throughout the thesis focus on (i) binary
segmentation and, in particular, (ii) semantic segmentation. Binary segmentation regards
distinguishing between only two classes (K = 2), typically to distinguish between fore-
ground and background. There is no loss of generality since using multiple classes is
possible by simply predicting multiple binary segmentations. Also, we focus on semantic
segmentation where the goal is to discriminate the different categories of objects, while
instance segmentation would try to distinguish between individual objects.

II.3 Convolutional Neural Networks

Several architectures of neural networks exist. When it comes to images, the most popular
is the convolutional neural network (CNN), originally developed by LeCun in 1998 [7]. It
has become popular even in other fields whenever the data can be arranged as a tensor
(vector, matrices, etc) and local neighborhoods are important.

In a CNN, each neuron is connected locally to the neighbor pixels rather than to all
pixels of the entire image like in multilayer perceptrons networks which is computationally
infeasible for big images. Typically, each neuron would be connected to the 3×3 neighbor
pixels, therefore requiring nine weights plus the bias (ten parameters) – each one of these
parameter arrangements is called a filter. A convolution consists of sliding each one of
these filters across the image producing a feature map, i.e. one feature per pixel.

When it comes to classification, the input is the image – which has one feature (if
monochrome) or three features (if color) – and each convolution layer applies many filters
to increase the number of features. After each convolution, the image size is reduced by
either explicitly downsampling it (e.g. using max-pooling which consists of choosing the

Image
w × h× c

Convolution

f filters

Activation Map
w × h× f

Downsample

2×2 maxpool

Activation Map
w
2 ×

h
2 × f

. . .

Probabilities
1× 1×K

Figure II.1: Example of a typical CNN used for classification.
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. . . . . .

Encoder Decoder

Figure II.2: Example of an U-Net network used for segmentation.

maximum of each 2 × 2 neighborhood) or by implicitly downsampling it (e.g. by sliding
the convolution in strides of two pixels). This reduction in size is important because it
means that later filters are indirectly connected to farther away pixels, as the depth of
focus increases. These layers are repeated several times over, successively reducing the
breadth of the image, but increasing its depth, as illustrated in Figure II.1. Often, the
final layers are fully-connected, and at the end, the initial image, which is a 2D or 3D
tensor, is converted into a 1D vector of length K. Since the model is fully differentiable,
if the loss function L is also differentiable, then the weights w are optimized iteratively
by gradient descent to minimize the loss, i.e.

wt+1 = wt −
∂L
∂w

. (II.4)

One of the most popular architecture for segmentation is U-Net [10], as illustrated in
Figure II.2. This network is composed of two almost-symmetrical halves. In the first
half, the image, with all its three (R,G,B) features (also known as channels), is initially
expanded in terms of features (by the convolutions) and reduced in terms of breadth by ei-
ther pooling layers or convolutional strides, the same process as discussed for classification.
The second half does the reverse process by using as mechanisms upsampling operators
either by linear interpolation of the outputs of the convolutions or by performing an in-
verse convolution (also known as transpose convolution), while the number of nodes in
the convolutions is gradually reduced. Furthermore, each layer in the second half receives
as input both the result of the previous layer, as well as the corresponding layer from the
first half. They are known as “skip-layers” and these techniques help avoid losing minutia
and help produce more robust gradients during the learning process. The rationale for
this is later elaborated on Chapter 6. This causes a slight asymmetry where the neurons
in the second phase receive twice the inputs of their counterparts.

II.4 Glossary

Activation function A non-linearity introduced in neural networks at the output of each
neuron. The most popular nowadays is ReLU. The function for the last neurons
depends on the task: sigmoid and softmax are typically used when predicting prob-
abilities.

Convolutional Neural Network (CNN) Model for grid-based data consisting of convolving
layers composed of filters.

Filter A neuron that is connected to a local neighborhood of pixels, typically 3× 3.

Kernel Another name for filter.

Loss The error function that the optimization process tries to minimize by adjusting the
neurons’ weights. For classification, a popular loss function is cross-entropy.
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Max-pooling Downsampling technique that takes the maximum value within a neighbor-
hood of pixels, typically 2× 2.

Multilayer perceptron Classical neural network where each neuron within a layer is con-
nected to all outputs of the previous layer.

Neuron Processes a set of inputs by multiplying each one by a weight (linear transforma-
tion) and then applying an activation function to the output (non-linear transfor-
mation).
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III
Datasets

S
everal datasets are used along the thesis – they are here listed for easy reference. Most
work uses images, but some work also uses tabular data. Datasets here presented are

divided by the different tasks for which they are used.

III.1 Tabular Data

III.1.1 Binary Classification

Table III.1 lists the sixteen datasets considered for binary classification, with most coming
from the “UCI machine learning repository” (Ref. column). Some of these were multiclass
and were converted to binary using the classes mentioned on the Minority column.

The datasets were selected to represent varying degrees of class imbalance, as measured
by a metric we defined as “Imbalance Ratio” (IR): IR = 2N1/N , with IR ∈ [0, 1], ranging
from very imbalance (� 1) to perfectly balanced (1). The number of features is represented
in the #vars column and the number of samples by N with the number of minority
samples being N1. As conventionally done, and without loss of generality, class 1 (positive)
is the minority class and class 0 (negative) is the majority class. N is typically in the order
of thousands to ensure that what is being tested is “relative rarity” and avoid “absolute
rarity” issues [15]. In this and all proceeding tables, datasets are ordered by IR to help
emphasize the role of imbalance metrics.

Furthermore, an Overlap Ratio (OR) column is presented as a measurement of how
intertwined the observations from the two classes are. There is a big amount of literature
on the role of overlapping in class imbalance [16], with some authors arguing these problems
are often conflated [17]. As an overlap metric (OR), we propose defining OR as the ratio
of minority observations whose closest neighbor is an observation of the majority class.

III.1.2 Ordinal Classification

Datasets from Table III.2 were mostly re-used from [19], including the same 30 folds for
easy comparison. The Imbalance Ratio (IR) metric is now represented by IR = Kmink Nk

N ,
i.e. the proportion of the minority class in the data scaled to [0, 1]. Some authors have
used the arithmetic average of the per-class imbalance ratios, but we thought that was
harder to interpret. Again, the table is ordered by IR. The variable K represents the
number of classes in the dataset, while Nk is the number of samples for class k.

The metric Overlap Ratio (OR) is here formalized and extended to the ordinal case using
the ratio of observations having an observation of another class as its nearest neighbor,
using the normalized Euclidean distance,

OR =
1

N

N∑
i=1

1
(
yi 6= yj with j = arg min

k, k 6=i
(‖zi − zk‖2

)
, (III.1)
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Table III.1: Tabular datasets for binary classification.

Dataset Ref. Minority N #vars IR% ↓ OR%
sonar [11] — 208 60 93.2 22
heart [11] — 270 13 88.8 38
breast-cancer [12] — 699 9 69.0 8
german [11] — 1000 24 60.0 56
haberman [11] — 306 3 53.0 61
transfusion [11] — 748 4 47.6 63
vehicle [13] van 846 18 47.0 9
CTG [11] — 2126 22 44.4 17
hepatitis [11] — 143 14 40.6 62
segment [11] 1 2310 19 28.6 1
winequality-red [14] 7,8 1599 11 27.2 51
vowel [11] 1 990 13 18.2 1
abalone [11] 9vs18 731 7 11.4 60
glass [11] 6 214 9 8.4 56
car [11] good 1728 6 8.0 67
yeast [11] ME1 1484 8 6.0 34

Table III.2: Tabular datasets for ordinal classification.

Dataset Ref. N #vars K IR% ↓ OR%
pyrim5 [18] 74 27 5 100 62
pyrim10 [18] 74 27 10 100 84
stock10 [18] 950 9 10 100 24
abalone5 [11] 4177 10 5 100 60
abalone10 [11] 4177 10 10 100 78
wisconsin5 [11] 194 32 5 100 74
wisconsin10 [11] 194 32 10 100 85
machine10 [11] 209 6 10 100 65
machine5 [11] 209 6 5 100 51
auto5 [11] 392 7 5 73.0 45
newthyroid [11] 215 5 3 68.5 7
cooling [18] 768 8 8 52.8 52
toy [11] 300 2 5 51.0 12
contact-lenses [11] 24 6 3 50.1 44
squash-stored [11] 52 51 3 46.2 56
diabetes5 [18] 43 2 5 45.5 52
triazines5 [18] 186 60 5 40.5 52
triazines10 [18] 186 60 10 40.0 52
auto10 [11] 392 7 10 37.7 62
balance-scale [11] 625 4 3 23.1 25
squash-unstored [11] 52 52 3 23.1 23
diabetes10 [18] 43 2 10 16.7 52
car [11] 1728 21 4 15.2 30
ESL12vs3vs456vs7vs89 [11] 488 4 5 15.0 25
LEV [11] 1000 4 5 14.0 70
SWD [11] 1000 10 4 12.8 61
ERA1vs23456vs7vs8vs9 [11] 1000 4 5 9.5 58
ERA [11] 1000 4 9 7.6 88
ESL [11] 488 4 9 4.5 48
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where z is the normalized (using z-score) x. Again, this metric was motivated to help
testing the hypothesis advanced by some authors that class imbalance performance issues
are due to overlapping problems [17].

III.2 Computer Vision

These are datasets of images. An image is represented by a tensor Rw×h×c, where the
value c = 1 represents a grayscale image, whereas an RGB color image uses c = 3. The
images used throughout this work are square, i.e. w = h. In many datasets, the size of
each image was different, therefore these datasets were normalized to sizes of 128× 128.

Tables III.3 and III.4 represent the two tasks performed during the thesis: classification
and semantic segmentation. A primer on semantic segmentation is provided in Section II.2,
and so are variables defined.

Table III.3: Images datasets for classification.

Dataset Ref. w c N K Seg Examples

CIFAR-10 [20] 32 3 60k 10 —

CIFAR-100 [20] 32 3 60k 100 —

Fashion-MNIST [21] 28 1 70k 10 —

ISIC 2017 [22] 128 3 2750 3 *

MNIST [23] 28 1 70k 10 —

PH2 [24] 128 3 200 3 *

SMARTSKINS [25] 128 3 292 3 *

STL10 [26] 96 3 13k 10 —

SVHN [27] 32 3 ≈99k 10 —

PASCAL VOC 2012 [28] 128 3 ≈12k 20 *

* These datasets can also be used for segmentation tasks.

The datasets were partitioned in 60-20-20 train-val-test partitions, or the original parti-
tioning scheme was used when provided. The column %Fg shows the average percentage
of foreground (positive) values relative to the entire image – notice that class imbalance
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can also be here a problem.

Table III.4: Images datasets for semantic segmentation.

Dataset Ref. w c N %Fg Examples

Breast-Aesthetics [29] 128 3 120 19.1

Cervix-HUC [30] 128 3 261 5.8

Cervix-MobileODT [31] 128 3 1503 17.1

ISIC 2017 [22] 128 3 2750 9.3

MobBIO faces [32] 128 3 2164 23.1

MobBIO iris [32] 128 3 2164 20.8

PH2 [24] 128 3 200 49.1

Retina vessels * [33, 34, 35] 128 3 88 2.6

SMARTSKINS [25] 128 3 292 37.5

Teeth-UCV [36] 128 3 98 23.7

PASCAL VOC 2012 [28] 128 3 ≈12k 5.1

* Composition of multiple datasets.
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1
Data Augmentation through Hill Climbing

Data Representations Loss Optimization Inference

D
ata augmentation is the process of syntactically creating plausible new observations
that could come from the source. Data augmentation has become a staple of deep

learning, in particular when it comes to computer vision [1]. Transformations such as
rotation or shear are applied to create new images from existing images.

Unfortunately, it is not always intuitive for the user how much shear or translation
to apply. For this reason, training multiple models through a hyperparameter search is
required to find the best augmentation policies. But these methods are computationally
expensive. Furthermore, since they generate static policies, they do not take advantage of
smoothly introducing more aggressive augmentation transformations.

Our proposal: repeating each epoch twice with a small difference in data augmentation
intensity, using the validation loss difference to guide data augmentation. This optimiza-
tion process can be seen as a type of hill climbing on the loss, as illustrated in Figure 1.1.
This slow increase in the amount of augmentation during training has also the added
benefit of gradually increasing the difficulty of the observations, which typically adds a
process known as curriculum learning [37]. This process doubles the number of epochs
but avoids having to train multiple models. The method is compared against random and
Bayesian search.

1.1 Related Work

A hyperparameter is any parameter that cannot be estimated by the normal estimation
process of the model; this includes such disparate things as the learning rate, the size
of the neural network, or, in our case, how much rotation or shear to apply during data
augmentation.

Several search heuristics exist to navigate the hyperparameter search space that can be
used as baselines for automatic augmentation. These techniques involve training many
models to find the best hyperparameter(s) θ∗ = arg maxθ s(fθ(X

val)) such that a met-
ric function s is maximized when a surrogate model fθ, trained with θ augmentations,
is evaluated using validation data Xval. Since the effect of the hyperparameters is not
independent, the problem becomes combinatorial.

Given a budget B of how many surrogate models to train, the problem becomes how
best to sample a user-defined range θ ∈ [θ, θ]. All the existing hyperparameter search

Data Representations Loss

Figure 1.1: The proposal uses the loss as a yardstack for data augmentation.
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Chapter 1 Data Augmentation through Hill Climbing

methods consist in suggesting different sampling functions θi ∼ F for each surrogate
model i, 1 ≤ i ≤ B.

� In grid search, the search space is sampled uniformly from θ to θ in increments of
θ + i−1

B (θ − θ).

� Another common approach is random search, which samples of an uniform dis-
tribution, F = U(θ, θ). It has been found to produce better results for a smaller
B [38].

Other techniques exist that focus on the most promising parts of the search space.

� Bayesian optimization samples from the posterior distribution to best solve the
exploration-exploitation trade-off problem involved. This distribution is generally
modeled using a Gaussian Process, and an acquisition function chooses the next point
to sample based on an expectation/variance combination (exploitation/exploration) [39].

� Successive halving uses (i) random search to train each model for a few epochs and
then (ii) discards the worst-half performing models, repeating (i)–(ii) ad nauseam
until only one model is left [40].

� AutoAugment uses an RNN as its F distribution function [41], so that F evolves
in time.

� Evolutionary algorithms have also been used for hyperparameter search [42].

Less research exists in optimizing hyperparameters during the training process itself.
Gradient-based algorithms do exist that allow minimizing a validation loss for particular
problems, such as L2 regularization [43].

After a vector θ is found, it is known as a policy. Most work find a single θ which specifies
a limit on the augmentation; for example, if θ = 30 for rotation, then, for each image,
rotation is applied randomly using U(−30, 30). This is how our experimental section will
work. Other work find two hyperparameters for each transformation: the probability of
the transformation being applied and its absolute magnitude [41].

1.2 Proposal

Our proposal consists in starting with no augmentation (θ1 = 0) and gradually make it
more aggressive (θt+1 > θt). The index refers to the iteration (or epoch). Notice that only
a single model is being used. At each epoch t, the proposal is to perform the epoch twice,
for θt−1−ε and θt−1 +ε, so that the impact of a small perturbation ε can be inferred using
finite differences on the validation set. The procedure consists in the following four steps:

Step 1. Model f is trained for one (or more) epoch(s) without augmentation, obtaining
weights w1.

Step 2. The weights are then forked in two, w
(1)
t+1 and w

(2)
t+1, which are obtained by

minimizing the loss L for one epoch using the training set Xtr(θt), augmented
by vector θt, and labels ytr,

w
(1)
t+1 = arg min

w
L(Xtr(θt −∆), ytr |wt)
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1.3 Experiments
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Figure 1.2: Hyperparameter evolution where θ controls the rotation and s is the validation score.

w
(2)
t+1 = arg min

w
L(Xtr(θt + ∆), ytr |wt).

∆ is a vector which is zero for all values except for a single one j, for which
∆j = ε. This j is chosen randomly in this work. This hyperparameter j is the
one that is being tested.

Step 3. The models are then evaluated and compared

δ = s(f(Xval |w(2)
t+1), yval)− s(f(Xval |w(1)

t+1), yval),

so that

θt+1 = θt −∆ and wt+1 = w
(1)
t+1 if δ < 0,

θt+1 = θt + ∆ and wt+1 = w
(2)
t+1 if δ > 0.

Possible ties (δ = 0) are solved by using the validation loss.

Step 4. Go back to Step 2.

The procedure is illustrated in Figure 1.2. The hyperparameter θ controls the range with
how aggressive augmentation is applied, it controls the probability distribution of how
aggressive the augmentation will be. For example, a rotation of θ = 30 means that the
rotation of each image will be chosen randomly from U(−30, 30).

The augmentation techniques that have been used are the six transformations provided
by the Keras Pre-processing toolkit1 – rotation, x/y translation, shear, zoom in/out,
channel shift (add a constant to each layer), and brightness (multiply each layer by a
constant). The possible range of values for each hyperparameter θ is defined differently per
transformations (for example, rotations are naturally bounded within the range [0, 180]),
as detailed in Table 1.1.

1.3 Experiments

Two different types of tasks were experimented with: classification and semantic segmen-
tation, using several datasets from Tables III.3 and III.4.

Segmentation is an interesting problem to consider since the image and the binary seg-
mentation must synchronously suffer from the same augmentation. Naturally, no bright-
ness or channel shift is applied to the segmentation.

Methods: The methods used in the experiments were:

� Baseline: no data augmentation;

� Random search;

1https://github.com/keras-team/keras-preprocessing
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Chapter 1 Data Augmentation through Hill Climbing

Table 1.1: The six transformations used in the experiments.

Hyperparameter Units θ θ Example

none – – –

Rotation degrees 0 180

Translation x/y pixels 0 width

Shear degrees 0 60

Zoom in/out factor 1/3 3 –

Channel shift value 0 50

Brightness value 0.5 2

� Bayesian search using a Gaussian Process with an RBF kernel, with a seed of 10
random models;

� Proposal as detailed in the previous section;

� Proposal*: a static version of the proposal. This method takes the last policy found
by the proposed method and applies that policy to a new model. The purpose is
to evaluate how much of the gains from the proposed method are accrued from the
incremental nature of the method.

Metrics and loss: The metrics used were accuracy for classification (II.1) and the Jaccard
index for segmentation (II.2). In both cases, the loss used was cross-entropy weighted by
the inverse frequency of each class because of class imbalance.

Architecture: The architecture used for classification was a CNN intertwined with con-
volutions and max-pooling blocks, while a U-Net [10] was used for segmentation.

The classification neural network is made of convolution and maxpooling layers, as
explained in section II.3, reducing the activation maps by halves until it reaches about
6× 6, then dense layers are applied until it outputs a probability of each class K, i.e.

w × w × c → . . . ≈ 6× 6× 32︸ ︷︷ ︸
Encoder

→ ≈ 1152 → 32 → K . (1.1)

For semantic segmentation, an U-Net architecture was used (as mentioned in section II.3),
which is composed of an encoding and a decoding phase. The encoding phase used is the
same as the one highlighted in (1.1), and the decoding phase is also the same but in reverse,
with linear up-sampling being used instead of max-pooling to double the activation map.
Skip-layers are used to connect the first convolutional layer with the last, the second with
the penultimate, and so forth, like in U-Net.

Optimization: We tested our proposal together with no augmentation (none) trained
for 250 epochs, each epoch augmenting a total of 1,024 images in batches of 128 images.

Results: Table 1.2 considers results for 10 datasets for each classification and segmenta-
tion tasks, showing the average metric for these 10 datasets, as well as, how many times
(percentage-wise) each method ranked on the top-1 and top-2 of the best method for each
dataset. For an extended version of the table, consult Appendix A.1. Please notice that
top-1 may exceed 100% due to ties.
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1.3 Experiments

Table 1.2: Evaluation scores (higher is better).

Classification (%) (accuracy)
Baseline Random Bayesian Proposal Proposal*

Average 52.6 49.6 58.7 58.9 55.3
% Top-1 0 0 40 50 10
% Top-2 0 20 60 90 40

Semantic Segmentation (%) (Jaccard index)
Baseline Random Bayesian Proposal Proposal*

Average 88.2 88.4 89.8 90.0 89.5
% Top-1 10 10 30 40 20
% Top-2 30 30 50 70 40

Firstly, it is interesting to note that gains from data augmentation were much greater for
classification than from segmentation. For each dataset, if we contrast the best performing
method against applying no augmentation (baseline), then the average relative gains are
of 32% and 3% for classification and segmentation, respectively. Interestingly, the baseline
ranked three times in top-2 for segmentation.

Secondly, the proposal performed better in the vast majority of cases – top-2 was 90%
and 70% of the cases for classification and segmentation, respectively. The poor perfor-
mance of the other methods may be explained by the vast search space from having 7
transformations, and the fact these methods treat the search space equally, but there is
a bias towards conservative augmentation (centered in zero) performing better. Random
search models performed worse than the baseline in many cases.

Furthermore, proposal* can be contrasted with the proposal column to understand
whether the dynamic nature of the method contributed to its performance, as suggested
by the curriculum learning literature [37]. In most cases, the results are not significantly
different. However, this static version was 60% worse than the dynamic version.

In terms of training time, while the proposal would be expected to double the training
time relative to the baseline, it increased training time by around 5.1 times since weights
must be copied around; this context switch requires extra disk-gpu interaction, which is
something that could be improved.

The hyperparameters evolved more or less stably as can be seen in the rotation examples
from Figure 1.3. It makes sense that rotation is not particularly useful when it comes to
digit recognition. On the other hand, skin lesions do benefit from rotation.

A dendrogram (Figure 1.4) was build to find out how similar the policies produced by
the proposed method, at the end of t = 250 epochs, were between the datasets used.

0

40

80

120

Epochs

R
o
ta

ti
o
n

(a) MNIST

0

40

80

120

Epochs

(b) ISIC 2017

Figure 1.3: Evolution of the rotation hyperparameter for the proposed method.

19



Chapter 1 Data Augmentation through Hill Climbing

ISIC 2017
PH2

VOC 2012

sm
arts

kins

Fashion-M
NIST

CIFAR-100
STL10

CIFAR-10
MNIST

SVHN

0.00

0.25

0.50

0.75

1.00

Figure 1.4: Hierarchical clustering of the final augmentation policies of the proposed method.

Euclidean distance is used between the hyperparameters θ. It would be expected that the
policies would be similar for similar datasets. Indeed, this happens: all melanoma-related
datasets (on the left side of the dendrogram) had similar augmentations and formed a
cluster. Fashion-MNIST and VOC 2012 relate miscellaneous classes and are distanced
similarly, as does MNIST and SVHN which relate numbers.

1.4 Summary

This chapter was motivated out of frustration from finding sensible values for such transfor-
mations as elastic deformations. In the beginning, several multi-armed bandits algorithms
were considered. However, these algorithms are only well developed for discrete decisions
within stochastic environments, and therefore this simple algorithm was published as:

1. R. Cruz, J. F. P. Costa, and J. S. Cardoso, “Automatic Augmentation by Hill Climb-
ing,” in 28th International Conference on Artificial Neural Networks (ICANN),
Springer, 2019. [doi: 10.1007/978-3-030-30484-3_10]

As future work, several details could be improved. The index j, which was here chosen
randomly, could be chosen using a multi-armed bandit heuristic. The timing of when to
make augmentation more aggressive could be based on the loss plateauing, rather than
the end of each epoch. Furthermore, more augmentation could have been evaluated,
especially elastic deformations which are particularly tricky for the user to define since
they can involve multiple parameters.
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2
Class Imbalance using Pairwise Learning

Data Representations Loss Optimization Inference

I
n certain classification domains, class imbalance is pervasive. That is, the class distri-
bution is not uniform, in some cases in an extreme fashion. In medicine, in particular,

there is a broad dispersion of patients of differing disease severity; it is also inherent in
fraud and fault detection where the anomaly is rare. The minority class contributes too
little to the decision boundary because the learning process learns from each observation
in isolation.

Over-populated classes (denoted as majority classes) can exert undue influence in the
decision boundary, as illustrated in Figure 2.1. A naive classifier would have high accuracy
by focusing on the majority classes but have no discriminatory power. Special metrics have
been designed to evaluate the classifier and try to ensure it is unbiased.

As mentioned in the Introduction (Section II.2), the most popular metric for classifica-
tion is accuracy,

Acc(y, ŷ) =
1

N

N∑
i=1

1(yi = ŷi). (2.1)

However, accuracy is biased towards the majority class since it is an unweighted average.
Different metrics are used in cases of imbalance. For binary classification, where K = 2
with labels defined as y ∈ {0, 1} (also called negative and positive, respectively), popular
metrics are F1 and G-mean which correspond to the harmonic and geometric averages
of precision and recall, respectively, and are insensitive to class frequency. Precision and
recall are two popular metrics related to the two types of errors: false positives (FP) and
false negatives (FN), respectively; that is, Precision = TP

TP+FP and Recall = TP
TP+FN with

TP being the true positives. In this chapter, the focus is on F1 which can be written as

F1(y, ŷ) =
1

N

N∑
i=1

2yiŷi
yiŷi + yi(1− ŷi) + (1− yi)ŷi

. (2.2)

Balanced Model
Imbalanced Model

Figure 2.1: Illustration of the impact of class imbalance on two linear SVMs; the balanced version
uses class weights inversely proportional to the class frequency.
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For ordinal classification, Mean Absolute Error (MAE) is typically used,

MAE(y, ŷ) =
1

N

N∑
i=1

|yi − ŷi|. (2.3)

This metric approximates the original problem as a cardinal problem, more strongly pun-
ishing errors that are farther apart – yet, the metric is sensible to the class frequencies,
and is therefore not suitable for class imbalance. Two suggestions from the literature
are the Average Mean Absolute Error (AMAE) and the Maximum Mean Absolute Er-
ror (MMAE) which are the mean and the maximum of MAE classification errors across
classes, respectively [44]. They are defined as

AMAE(y, ŷ) =
1

K

K∑
k=1

MAEk(y, ŷ), (2.4)

MMAE(y, ŷ) = max {MAEk(y, ŷ) | k = 1, . . . ,K} , (2.5)

where K is the number of classes involved and MAEk means MAE is computed only for
class k, i.e.,

MAEk(y, ŷ) =
1

Nk

N∑
i=1

1(yi = k) |yi − ŷi| (2.6)

with Nk being the number of observations of class k. Naturally, MAE is bounded by
[0,K − 1] and so are AMAE and MMAE. Sometimes rank correlations are also used as
ordinal metrics, such as Spearman ρ and Kendall τ .

2.1 Related Work

Traditionally, class imbalance has been addressed by a wide range of approaches:

A. Pre-processing step changing the class priors by undersampling the majority class
and/or creating new synthetic examples of the minority class using SMOTE [45].

B. Training can be adjusted, such as using a cost matrix (weights) so that the training
algorithm maximizes a weighted accuracy, where the cost of misclassifying a class is
inversely proportional to its frequency.

C. Post-processing by tweaking the decision boundary by such measures as changing
a threshold after which one class is selected, sometimes with the aid of a ROC
curve [46].

This list is by no means exhaustive. One-class models, which are models that model
only one of the classes and ignore the others, are also sometimes deployed to focus on
the minority class, though they do not usually produce very interesting results [47, see
Table 4]. On the other hand, some rule induction models can be made to prioritize one of
the classes, and have been found to produce interesting results [48]. Ensembles can also
be used so that each model within the ensemble is trained with balanced subsets of the
data – this balancing needs to use one of the previous pre-processing techniques with the
advantage of not completely discarding undersampled data [49].

We propose a fourth major alternative family of solutions:

D. Pairwise scoring ranking which is a family of models borrowed from the learning
to rank literature where the problem to be optimized uses pairs of observations.
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2.2 Proposal
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Figure 2.2: Adaptation of pairwise ranking to class imbalance data.

2.2 Proposal

In the learning to rank literature, a document xi is compared with another document
xj , and we are interested in predicting whether xi � xj , which means document xi is
“preferred” to document xj by some criterion. The three big umbrellas of rankers are [50]:

� Pointwise, in which each document xi is trained individually and a score function,
s(xi), is given based on its relevance;

� Pairwise: each document xi is compared against all others xj , and if xi � xj , then
we train a function s so that:

– pairwise scoring ranker: if xi � xj then s(xi) > s(xj), with s : X → R;

– pairwise non-scoring ranker: the decision function is such that it decides
which of two documents is preferred, s : X ×X → X;

� Listwise, where the training loss function is based on all documents and their scores.

We will be using the pairwise scoring ranking family for two reasons: Pairwise scoring
models have the advantage that they are trained in pairs, therefore voiding any class
imbalance if used within a binary context (since they are pairwise) and predictions are
still produced individually in the form of a score (since they are scoring), making them
suitable for classification.

To adapt the pairwise scoring rankers for classification, the general framework will
involve first converting the classes to the ranking space (pre-processing) and then convert-
ing back from the ranking space to the space of classes by applying a threshold (post-
processing). This pipeline is illustrated in Figure 2.2.

2.3 Binary Case

The adaptation of the previous framework for the binary classification case is relatively
straight-forward.

A. Pre-processing: For two classes C− with N− observations and C+ with N+ obser-
vations, pairwise rankers are trained with observation pairs, x′ij = (xi,xj) with a
label y′ij . Without loss of generality, we can take C+ as being “preferred” to C− and
assign y′ij = 1 whenever yi = C+ ∧ yj = C−, and yji = −1 otherwise.

B. Training: Training will involve 2N−N+ comparisons between all pairs of each class.
Examples of pairwise scoring ranking models include RankNet (neural networks) [51],
RankSVM (SVM) [52] and RankBoost (boosting) [53], which are detailed below.

C. Post-processing: The threshold T : R → C can be chosen in order to maximize
a balanced metric m(y, ŷ). The metric used could be F1 or G-mean, as described
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in the opening of the chapter. Using the training data, we have si = s(xi) which
is sorted, and then each midpoint s′i = si+si+1

2 is tested as a possible candidate for
threshold T , so that

T = arg max
s′i

m(y, ŷ), (2.7)

where ŷ = C− if si < s′i and ŷ = C+ otherwise.

Some specific examples and adaptations of ranking models are now described. Notice how
all these methods follow the two required properties: pairwise and scoring.

RankSVM [52] is pairwise because it operates in the space of differences of the original
dataset, so that X becomes X′, where x′ij = xi−xj and x′ji = xj −xi, for all pairs
(i, j). RankSVM is also scoring because the base estimator is linear SVM whose
decision rule is w · (xi−xj) > 0 and can be transformed into a scoring function since
w · (xi − xj) > 0⇐⇒ w · xi > w · xj ⇐⇒ s(xi) > s(xj).

RankNet [51] consists in a neural network s that outputs a score given an observation,
s : X → [−1, 1]. The way this neural network is trained is by doing two forward-
passes for each observation of all pairs (i, j) to output scores si and sj ; cross-entropy
(L(y, ŷ) = yŷ) is then used on the score difference using the aforementioned labels:
L(yij , sj − si) = yij(sj − si).

RankBoost [53] is based on AdaBoost, which consists in training a weak model sequen-
tially, ht, to improve on the predictions of the previous weak model, ht−1. Each
model, therefore, is trained on the residuals of all previous models. Furthermore,
two sets of weights are used: each observation i and model t is given a weight wti
and the model itself is given a weight αt; both of these are computed based on an
error function E, typically E(x, y) = exp(yh(x)). The final prediction is given by
a weighted average ŷ =

∑
t αtht(x). In RankBoost, the only thing that changes is

that residuals are given by the difference between the two predictions, therefore the
error function becomes E(xi,xj , sij) = exp (−sij (h(xi)− h(xj))).

All in all, the sample size of the pairs (N ′ = N−N+) is the quadratic of that of the
regular sample size (N = N+ + N−). If the regular training complexity was O(N), this
might mean the new complexity is O(N2). However, due to class imbalance, N− � N+.
Table III.1 shows N− is a small fraction of N+ that can be as low as 3%. Therefore, the
true complexity might be closer to O(N).

2.4 Ordinal Case

The binary case is here extended for the ordinal case. Let C1 ≺ C2 ≺ · · · ≺ CK be the K

classes involved. Let Sk = {x(k)
n } be the set of Nk samples from Ck, with N =

∑K
k=1Nk.

Construct the pairs x
(k`)
mn with Ck ≺ C` and ranking labels -1 and +1 such that {(x(k`)

mn ,+1),

(−x
(k`)
mn ,−1)}.

An issue with this approach arises when one of the classes is strongly misrepresented
when compared with the others. The data from each class Ck is represented as 2Nk(N−Nk)
observations in the ranking space. If 2Nk � 2N` then Nk(N−Nk) � N`(N−N`). For
example, if N1=10 and N2=N3=100, then the data from C1 is contributing with 4,000
elements in the new space, while the data from C2 or C3 is contributing with 22,000. So,
the new learning problem will be dominated by the samples from C2 and C3 and it is likely
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Figure 2.3: Balanced ranking training.

that C1 will be poorly estimated. This makes the pairwise model imbalance in the K-wise
case.

Two approaches at extending the previous framework to ordinal classes are here pre-
sented. The first approach combines ranking with the other balancing techniques (Sec-
tion 2.4.1). The second approach involves adapting a multi-class ensemble (Section 2.4.2).

2.4.1 Combining Traditional Balancing Techniques

The aforementioned problem is here solved by combining pairwise ranking with conven-
tional class imbalance approaches that were previously described in Section 2.1: (a) pre-
processing, (b) training with costs, and (c) ensembles, as depicted in Figure 2.3.

The major modification is in how the ranking continuous score is transformed back to
discrete ordinal classes. Based on the training data, we obtain a score s, where each si
is the score for each observation xi ordered by class yi. To convert this score to classes,
K − 1 thresholds need to be optimized.

The best thresholds T are chosen in order to minimize an error function f ,

T = arg min
T

f(s). (2.8)

Testing all possible threshold combinations would be infeasible; it would run in factorial
time since there are CNK−1 combinations. With N=500 and K=3, testing all 124,750
possible thresholds was empirically estimated to be more than 35 times slower than the
following proposal, with the same results.

Fortunately, it is possible to take advantage of two things: (a) the score produced by
the ranker grows with the class order, given that classes are ordinal, and (b) if the error
metric is a linear function, and therefore each misclassification contributes to the metric
additively, then the threshold selection can be divided into subproblems.

We propose a threshold strategy by defining recursively the threshold path of minimum
error. Let si be the ordered score of the i-th observation and ki be the true class, we search
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the threshold increasingly by invoking the function f with initial parameters (s0, k0, 1).

f(si, ki, k̂) =


0, when i = N

εkik̂ + f(si+1, ki+1, k̂), when k̂ = K

min
{
εkik̂ + f(si+1, ki+1, k̂), f(si, ki, k̂ + 1)

}
, otherwise,

(2.9)

where ε =
[
εkk̂
]

is a cost matrix. Informally, f tests whether, at any given time, it is

less costly to continue assuming observation i to be of class k̂ or if it less costly to make
a threshold and start assuming observations are now k̂+1. Notice that observations have
been ordered by the score and that classes are ordinal.

The threshold itself can then be inferred by transversing the k̂+1 breaking points (second
term of min) which results in the minimum error.

By using dynamic programming’s memoization, the function can be computed inO(KN)
in worst-case scenarios; for instance, when all classes belong to the last class, ki = K, ∀i.
This efficiency is based on the fact that classes are ordinal and comes at the expense of
flexibility of the error function f . Error needs to be defined using a constant cost matrix
because it is computed additively. Therefore, maximizing metrics from binary problems
such as F1 or G-mean would not be possible.

The threshold optimization process itself is subjected to imbalance, since each observa-
tion contributes equally to the error function. This is why ε was defined as a cost matrix
– several strategies can be chosen for this matrix:

� Homogeneous: εkk̂ =
{

1 if k 6= k̂ and 0 otherwise | ∀k, k̂
}

� Absolute costs: εkk̂ =
{
|k − k̂| | ∀k, k̂

}
� Inverse class frequency: εkk̂ =

{
N

KNk+1 if k 6= k̂ and 0 otherwise | ∀k, k̂
}

.

2.4.2 Frank & Hall Ensemble

A vast literature exists for ordinal classification, also referred to as ordinal regression.
Indeed, one family of solutions is to simply treat it as a regression problem where the con-
tinuous prediction is discretized as a post-processing step. Considering only classification
methods, two groups of ordinal models are identified:

(A) solving the ordinal problem by explicitly manipulating the loss function,

(B) turning the ordinal problem into several binary classification problems (decomposi-
tion methods).

Neither of these groups specifically addresses ordinal class imbalance.

Within group (A), a popular SVM model is SVOR [54], with small versions, SVORIM
and SVOREM, which differ only on how the constraints are defined. The idea is to find
K−1 parallel discriminant hyperplanes to properly separate the data into ordered classes
by modeling ranks as intervals [54].

SVM, as originally formulated, solves binary classification by optimizing weights w and
intercept (or bias) b such that they minimize the hinge loss function,

L(x,y |w, b) =

N∑
i=1

max (0, 1− yi(w · xi + b)) + λ‖w‖22. (2.10)

26



2.4 Ordinal Case

K=2

K=1

K=3

K=?

Figure 2.4: Diagram showing the lexicographical violation when decision hyperplanes intersect
within the feature domain.

SVOR [55] adds K−1 biases for the decision boundary, one between every two consec-
utive ordinal classes,

L(x,y |w,b) =
K−1∑
k=1

N∑
i=1

max
(
0, 1− y′i(w · xi + bk)

)
+ λ‖w‖22, (2.11)

where y′i = 1 if yi = k and -1 otherwise. This formulation is based on the adaptation
which can be found in [56].

Notice that weights w are shared between decision boundaries, making them parallel to
each other. The intersection of decision boundaries is seen as problematic since it makes
the ordinal prediction volatile within the intersection region [57]. Consider Figure 2.4, it
is not obvious what class should be placed in the “?” decision space. Most classifiers solve
this problem by ensuring parallelized decision boundaries. An adaptation that allows some
flexibility of the decision boundaries without allowing intersections can be found in [58].

Group (B) are the decomposition methods, which solve the ordinal problem by reducing
it into several binary problems. One such example is oSVM [59] which takes advantage
of the fact that the decision boundaries are parallel in a well-formed ordinal problem. It
starts by transforming the original ordinal problem into a binary problem by expanding
the feature space as a pre-processing step and then translates the SVM coefficients of each
new feature into separate biases as a post-processing step.

The most popular decomposition methods are ensembles: One-vs-rest or one-vs-all are
two such popular ensemble strategies. These, however, exacerbated the imbalance problem
and do not take advantage of the ordinality of the problem [60]. An ensemble designed for
the ordinal case is the one proposed by Frank and Hall (F&H) [61]. This ensemble reduces
the ordinal problem into K− 1 traditional binary classification problems. The k-th model
is trained using classes {C1, . . . , Ck} against {Ck+1, . . . , CK}. If we have four classes, then
three models are produced by using class (i) C1 against {C2, C3, C4}, (ii) {C1, C2} against
{C3, C4} and (iii) {C1, C2, C3} against C4. Each model fk(x) is trained to produce 0 if y ≤ k
or 1 if y > k. This makes each classifier use highly imbalance data, even if the data was
not originally so. The final prediction is then a simple cumulative voting,

ŷ = 1 +
K−1∑
k=1

fk(x). (2.12)

There are two problems with this ensemble: (i) each binary classifier within the ensemble
is highly imbalance, and (ii) the ensuing final model suffers from the aforementioned
intersection problem. More specifically, assume y < i, an inconsistency may arise if model
i votes for ŷ ≤ i while model j > i votes for ŷ > j.

The proposal is made of two contributions: (1) use F&H and train each binary classifier
in a balanced fashion. Furthermore, to avoid the aforementioned intersection problem, (2)
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K classes
k ∈ {1, . . . ,K}

K − 1 models
ki ∈ {0, 1}

Balanced Data
xij = xi − xj

SVM score
sij = w · xij

Threshold
si → k̂i

Vote
k̂ =

∑
i k̂i

Binary RankSVM

Frank and Hall

Figure 2.5: Diagram showing the F&H adaptation for balanced ordinal classification.

a regularization term is added so that each model within the ensemble does not diverge
much. This combines the best of the group of methods (A) and (B).

The combination of F&H is illustrated in Figure 2.5. Contribution (2) alleviates the
F&H violation of the lexicographical order. In order to tackle this problem, we propose:
(a) training a base ordinal estimator g, and then (b) regularize each fk to not diverge much
from g. Using the previous SVM formulation, each individual model k must be tweaked
so that regularization is related to the “base model” g with weights w′,

L(x,y |wk, bk) =

N∑
i=1

max (0, 1− yi(wk · xi + bk)) + λ‖wk −w′‖2. (2.13)

If regularization is set as λ = 0, then the pure F&H solution is used. If regularization
λ → ∞, then the decision boundary orientation will be parallel as in the base ordinal
estimator while only the bias is provided by fk. An illustration of the effect of changing λ
is shown in Figure 2.6 – optimization was done using gradient descent with the learning
rate being η = 1

λit where it is the number of iterations so far, as in Pegasos [62].

-2 -1 0 1 2
-2

-1

0

1

2

λ = 0
λ = 0.01
λ = 1

Figure 2.6: Synthetically generated non-parallel classes. Black points represent hyperplane inter-
sections.

2.5 Survival Analysis

Some problems have a mix of ordinality and cardinality; the most prominent being survival
analysis. Consider the problem of the number of days until a liver transplant failure, which
is a problem considered in the following experimental section. Typically, failures tend to
aggregate in clusters of unequal range and it is easier to think of them that way: “less
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(a) Coarse labels.

o1

o2

o3

o4
C1

C2

C3

(b) Fine labels.

Figure 2.7: Ranking models can be trained to take advantage of the finer labels.

than 15 days”, “between 15 and 90 days”, “between 90 and 365 days”. Furthermore, there
is one extra class, e.g. “more than one year”, when no failure happened during the study
period. This makes a simple regression analysis infeasible because of the high number of
cases that survive the time threshold of the study.

Our learning problem is framed as an ordinal regression problem with two levels of
granularity on the target variable Yfine = {Cfine

1 , Cfine
2 , . . . , Cfine

Qf } and Ycoarse = {Ccoarse
1 ,

Ccoarse
2 , . . . , Ccoarse

Qc }, such that Yfine can be monotonously partitioned in Qc disjoint groups.

This is a very common setting and can be seen in plenty of scenarios. For instance,
students receive a continuous fine-grained mark (e.g. 0–100%) which is usually under-
segmented into a smaller number of intervals (e.g. “fail”, “pass”, “pass with honors”).
Another example can be observed in ranking companies being broadly categorized as small-
medium-large enterprises based on a fine-grained scale given by the number of employees,
annual turnover, etc.

In this sense, coarse labels are a semantic abstraction of the original phenomenon being
quantified. While this abstraction may simplify the analysis for a human, it may impose
a significant loss of information when building the model. For example, in the aforemen-
tioned liver example, the number of comparisons used for training in a coarse scheme
is restricted to patients on different intervals, while on a fine scheme we can distinguish
patients that survived n days from patients that survived n+ 1 days; see Figure 2.7.

The ranking models we have been using have the advantage they can be trained using
the entire original information (fine labels) to obtain a sound and stable ranker, while, at
the same time, the transformation from ranking to ordinal classification can be done using
the ordinal classes (coarse labels).

2.6 Experiments

Some empirical experiments are now performed on the three ranking adaptations previ-
ously proposed. The experiments are here summarized – extended versions of the tables
may be found at Appendix A.2.

Binary case: The datasets from Table III.1 are evaluated and averaged using F1-score.
Three families of models are here presented: SVM with linear kernel, multilayer perceptron
(i.e. single-hidden layer neural network), and AdaBoost. For each family, the models tested
are the unmodified baseline, training with weights inversely proportional to class frequency,
application of SMOTE to synthetically oversample (with k=5) from the minority class [45],
and finally, the proposal rank adaptation, as detailed in Section 2.3. For each dataset,
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Table 2.1: Results for the binary case, measured by F1 (higher is better).

Linear SVM
Baseline Weights SMOTE Proposal

Average 50.3 62.7 62.8 68.1
% Top-1 20 20 0 60
% Top-2 27 33 53 87

Multilayer Perceptron
Baseline Weights SMOTE Proposal

Average 65.1 65.3 58.3 64.0
% Top-1 27 20 20 33
% Top-2 47 67 27 60

Adaboost
Baseline Weights SMOTE Proposal

Average 62.7 62.7 68.3 68.9
% Top-1 13 13 47 53
% Top-2 33 40 73 100

grid-search was used to optimize the number of neurons for the multilayer perceptron, and
L2 regularization for the SVM.

The ranking models have performed statistically significantly better than their counter-
parts from the literature concerning the F1-score; see Table 2.1. ROC curves were also
analyzed, which is a common measure to evaluate how correctly classified observations
would be if the decision threshold T was changed, and there is a slightly lower perfor-
mance for the ranking model, which suggests the threshold optimization itself is partly
responsible for the gain.

Furthermore, data overlap (OR) is contrasted with the imbalance ratio (IR), as described
in Section III.1.1, to better understand whether the ranking model is helping more with
the OR or IR. Performance across datasets was correlated using Spearman’s ρ. For linear
SVM, IR ρ-correlation was of 48% for the baseline and 31% for ranking which suggests
that ranking is more resilient to IR. Also, OR ρ-correlation was of -30% for the baseline
and -19% for ranking, again, showing resiliency.

Correlations were also performed between models of the same family (e.g. SVM vs
RankSVM) and of the same method (e.g. RankSVM vs RankNet) which show rankers
more closely follow the decision function of their family of models than that of the rest of
the rankers. Ranking techniques can therefore be concluded to be an extra technique of
tackling class imbalance to try to improve a currently employed solution.

While we have used a single-hidden layer neural networks in this work and these were
not the best performing family of models, later work by a colleague showed RankNet also
having good results when using a convolutional neural network with images [63].

Ordinal case: Here, datasets from Table III.2 are evaluated and averaged using the
MMAE metric, detailed in the opening of the chapter (2.5). A linear SVM was tested

Table 2.2: Results for the ordinal case, measured by MMAE (lower is better).

Baselines Ranking
OvR/w SVORIM oSVM F&H Weights SMOTE F&H (λ=0.1)

Average 1.88 2.13 1.95 2.17 1.77 1.63 1.60
% Top-1 13 7 0 0 13 33 33
% Top-2 33 7 20 0 40 53 47
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with the baselines being One-vs-Rest with weights inversely proportional to class frequency
(OvR/w), SVORIM, oSVM, and the Frank & Hall ensemble using SVMs, as detailed in
Section 2.4. Furthermore, the two previous ranking strategies to extend the binary case to
the ordinal case are evaluated: combining ranking with traditional balance techniques is
shown in column Weights and SMOTE (Section 2.4.1), while F&H implements our Frank
& Hall adaptation (Section 2.4.2). Absolute costs seem like the ε matrix cost threshold
that is most stable and has been used here.

Ranking performs competitively for ordinal classification, as shown in Table 2.2. Inter-
estingly, One-vs-Rest, which is not an ordinal ensemble, is also competitive, possibly due
to the extra flexibility offered by decision boundaries not being constrained to be parallel.

Kendall’s τ correlation between N and the error was of -0.07 for λ = 0.01 and of -0.01 for
λ = 1. In either case, it makes sense that error reduces as dataset size increases since the
models have more data from which the underlying distribution can be inferred. However,
it is interesting to note that this reduction seems to be inversely proportional to the λ
regularization being used, i.e. forcing parallel decision hyperplanes seems to work best for
data with more observations. This puzzling fact may be answered by another correlation
between IR and the error: -0.22 for λ = 0.01 and -0.16 for λ = 1, confirming that parallel
hyperplanes do work better for higher imbalance data (IR), possibly due to the difficulty
of estimating parameters associated with the minority classes when data is scarce. The
correlation between OR and error are similar, but a little more pronounced (0.26 and 0.20,
respectively).

Survival Analysis: A case study was also performed to validate the adaptation suggested
for survival analysis, as detailed in Section 2.5. The study is on liver transplantation in
co-operation with seven Spanish transplantation units and the London King’s College hos-
pital [64], and multiple metrics are used: MAE, MMAE, and AMAE (2.3)–(2.5). The pre-
vious baselines (SVM and SVORIM) were reused and tested against the normal RankSVM
trained with the coarse labels (Coarse Rank) with the same model trained with the finer
labels (Fine Rank). In either case, the threshold strategy is then trained using the coarse
labels, naturally.

The rank-based learners never beat SVM or SVORIM, but seem to offer more balanced
results across the metrics, see Table 2.3. In fact, the average of all metrics is lower for the
ranking methods than the others.

Table 2.3: Results for the survival lung cancer case study (lower is better).

SVM SVORIM Coarse Rank Fine Rank
MAE 0.30 1.43 0.80 0.67
MMAE 3.00 2.19 2.42 2.45
AMAE 1.50 1.10 1.42 1.41

2.7 Summary

About two hundred papers have been published about class imbalance since 2012 if search-
ing titles by “class imbalance“ in Google Scholar. It is not clear that ranking is a superior
solution, but it is a very competitive and promising alternative that we felt was sorely
lacking in the literature.

Pairwise learning has been a neglected form of producing balanced models, and our
suggestion is to adapt models from the learning-to-rank literature which uses such models.
While pairwise learning is like fish in the water for binary classes, extending them to the
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ordinal case is a possibility as described, and some cardinal problems, such as survival
analysis, might also benefit from ranking because it can potentially take advantage of the
more fine-grained information provided by the problem.

In most cases, the proposed ranking method is found to be highly competitive against
traditional approaches, especially when considering the imbalance-sensitive metrics. While
training times were not the focus of the experiments, a big inconvenience is that training
times are usually higher, possibly insuperably higher for very big datasets.

There is a somehow related line of research on “AUC optimization” whose goal is to
maximize the area under the curve of such metrics as ROC instead of a numeric value
such as accuracy. This research has found rankers to be optimal ways to maximize AUC
in the binary context [65].

Rankers have another latent benefit when considering rankers as possible classifiers; this
latent benefit has not yet been discussed and is outside the scope of this chapter. But it
should be noted that rankers can use extra information about the order of classes. That is,
the data collection process itself could avoid constraining labels to broad categories such
as “healthy” and “sick”, or “credit-worthy” and “not credit-worthy”. In many real-world
applications, it might make more sense to label the data in terms of pairwise comparisons
because it is often more intuitive for the human classifier to use relative labels rather than
absolute labels. For example, it might be easier for a doctor to tell which of two images
of disease is in a later stage, rather than specifying that a patient is in stage 3 or stage 5
of the disease.

Publications: This chapter is a summary of work that was published across several
papers with special participation from my colleague Kelwin Fernandes which has expertise
in ranking and contributed with several ideas. The original idea for binary classification
was published as:

1. R. Cruz, K. Fernandes, J. S. Cardoso, and J. F. P. Costa, “Tackling Class Imbalance
with Ranking,” in International Joint Conference on Neural Networks (IJCNN),
IEEE, 2016. [doi: 10.1109/IJCNN.2016.7727469]

Subsequent attempts at extending to the ordinal case were then published in special col-
laboration with Maŕıa Pérez-Ortiz who is an expert on ordinal imbalance that we met at
the IJCNN conference:

2. R. Cruz, K. Fernandes, J. F. P. Costa, M. P. Ortiz, and J. S. Cardoso, “Ordinal
Class Imbalance with Ranking,” in Iberian Conference on Pattern Recognition and
Image Analysis (Ibpria), LNCS Springer, 2017. [doi: 10.1007/978-3-319-58838-4_1]

3. R. Cruz, K. Fernandes, J. F. P. Costa, M. P. Ortiz, and J. S. Cardoso, “Combining
Ranking with Traditional Methods for Ordinal Class Imbalance,” in 14th Interna-
tional Work-Conference on Artificial Neural Networks (IWANN), LNCS Springer,
2017. [doi: 10.1007/978-3-319-59147-6_46]

4. R. Cruz, K. Fernandes, J. F. P. Costa, M. P. Ortiz, and J. S. Cardoso, “Binary
ranking for ordinal class imbalance,” in Pattern Analysis and Applications, Springer,
2018. [doi: 10.1007/s10044-018-0705-4]

An experiment using Alzheimer data was performed in collaboration with Margarida Sil-
veira of IST:

5. R. Cruz, M. Silveira, and J. S. Cardoso, “A Class Imbalance Ordinal Method for
Alzheimer’s Disease Classification,” in 2018 International Workshop on Pattern
Recognition in Neuroimaging (PRNI), IEEE, 2018. [doi: 10.1109/PRNI.2018.8423960]
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The survival analysis experiment was performed by Maŕıa Pérez-Ortiz using confidential
data from London King’s College:

6. M. P. Ortiz, K. Fernandes, R. Cruz, J. S. Cardoso, J. Briceño, and C. Hervás-
Mart́ınez, “Fine-to-Coarse Ranking in Ordinal and Imbalanced Domains: An Appli-
cation to Liver Transplantation,” in 14th International Work-Conference on Artifi-
cial Neural Networks (IWANN), LNCS Springer, 2017. [doi: 10.1007/978-3-319-59147-6_

45]

The first and original paper on ranking for binary classification [66] was cited 9 times
by other authors than ourselves. Of these, 7 included the method in a review of methods
for class imbalance, 1 cited the paper when discussing ranking, and 1 other extended on
top of our work. In “AP-Loss for Accurate One-Stage Object Detection” from 2020 [67],
the authors use ranking methods in the context of object detection. In that context, class
imbalance rears its ugly head since there are many pixels of background for each pixel of
relevant foreground (object), and using a loss based on pairwise ranking was found to be
fruitful.
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3
Risk Aversion

Data Representations Loss Optimization Inference

I
n many applications, false positives (Type I error) and false negatives (Type II error)
have a different impact. In medicine, it is considered worse to diagnosticate someone

sick as healthy (false negative) than to falsely diagnosticate someone healthy as sick (false
positive). Yet, we are also willing to accept some rate of false negatives errors to make
the classification task possible at all. Where the line is drawn is subjective and prone to
controversy – usually, this compromise is given by a cost matrix where an exchange rate
between errors is defined.

However, for many reasons, it might not be natural to think of this trade-off in terms
of relative costs. We explore novel ways of specifying this trade-off as an absolute cost on
the amount of false negatives (FN) we are willing to tolerate. The classifier then tries to
minimize false positives (FP) while keeping false negatives within that tolerance bound.
In broad strokes, the problem is formulated as the following optimization problem:

Minimize FP

subject to FN ≤ ρ.
(3.1)

The user-defined parameter ρ will be used to represent the tolerance bound FN, and ρ̂ for
the empirical FN produced by the model, as estimated from the data sample.

In this chapter, the focus is going to be on neural networks as trained by gradient
descent, but we start by mentioning preliminary models using density estimation. The
proposed techniques can be used for classification, but also for segmentation. Semantic
segmentation consists of classifying each pixel as belonging to the region of interest or
not, as was explained in Prologue II.2 – erring on the side of having an overdeflated or
overinflated segmentation is also a problem.

3.1 Related Work

Imputing costs via a cost matrix is the de facto approach for tackling false classification
trade-offs, where cp and cn are weights assigned by the user to the positive and negative
cases. In the most common case, when the correct decision has a null cost, then the cost
matrix has only one degree of freedom,(

0 cp/cn
1 0

)
(3.2)

These costs are then taken into account by the model through (A) pre-processing, (B) weights
on the loss function, or (C) through post-processing, usually in the context of a ROC
curve. These solutions are based on a relative trade-off between FP and FN. None of the
approaches offers a means to define an absolute trade-off.
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When it comes to classification using neural networks, a common loss function is binary
cross-entropy with costs introduced as

L(y, p̂) = − 1

N

N∑
i=1

[cpyi log p̂i + cn(1− yi) log(1− p̂i)] , (3.3)

where N is the number of observations, yi ∈ {0, 1} are the labels, and p̂i ∈ [0, 1] are the
probabilities estimated by the model, which then predicts ŷi = 1(p̂i ≥ 0.5).

One way to consider the proposed methodology is to consider that the current approach,
when using loss (3.3), expands the decision boundary until errors are balanced by the given
costs,

∂L
∂p̂

= 0 ⇐⇒ cp

N∑
i=1

yi(1− p̂i) = cn

N∑
i=1

(1− yi)p̂i =⇒ cpFN = cnFP. (3.4)

Or, expressed in statistical learning theory using random variables, cpP(Ŷ = 1 |Y = 0) =
cnP(Ŷ = 0 |Y = 1), as in Figure 3.1 (a). On the other hand, our approach considers
expanding the decision boundary of one class until the total error rate in the other class
is controlled, P(Ŷ = 0 |Y = 1) ≤ ρ and P(Ŷ = 1 |Y = 0)→ 0, see Figure 3.1 (b).

c = 1c = 0

X

P
(Y

=
c
|X

)

(a) Current

ρ

c = 1c = 0

X

P
(Y

=
c
|X

)

(b) Proposal

Figure 3.1: Comparing the current methodology to the proposed one.

3.2 Proposal

Machine learning models may be divided in generative and discriminative models. Gener-
ative models represent data X and labels Y using a joint probability distribution, P(X,Y )
while discriminative models only learn conditional probability distributions, P(Y |X).

By applying Bayes’ rule, any generative model may be converted into a discriminative
model. However, in practice, discriminative models tend to be more accurate for clas-
sification tasks. This section will start by adapting the generative model KDE for risk
aversion (Section 3.2.1) and then moves on to neural networks which are discriminative
models (Section 3.2.2).

3.2.1 Kernel Density Estimation

By modeling data as P ∼ P(X), we can then use a threshold T as the decision. The
threshold T can be estimated as the ρ-quantile using the training data of the positive
cases,

P(P ≤ T |Y = 1) = ρ. (3.5)
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X[2] < -0.93
X[1] < -1.13

-

X[2] > 3.29

-

X[1] > 3.36

-

+

-

Figure 3.2: Example of the one-class cascade approach.

However, modeling data, P(X), requires making strong assumptions about the data, there-
fore, we will be modeling it using Kernel Density Estimation (KDE), also known as the
Parzen-Rosenblatt window method.

KDE is a non-parametric way to estimate the probability density function of a random
variable. Each observation is modeled by a kernel, all sharing the same parameters.
Usually a Gaussian kernel is used (as we did), so that, in essence, the ensuing model is
a Gaussian mixture. In the univariate case, for a given point x, the unknown function is
thus being modeled as

p̂(x) =
1

Nh

N∑
i=1

K

(
x−Xi

h

)
, (3.6)

where K is the Gaussian kernel (the Gaussian density function for N (0, 1)), and h > 0 is

a smoothing hyperparameter. We have used the so-called Scott’s rule [68], h = N−
1

d+4 .
N and d are the number of observations and variables, respectively.

Two approaches that make use of KDE are now proposed:

Multivariate approach: Take the multivariate KDE and model the observations of
only one of the classes – either positives, P (X |Y = 1) (Multivariate+), or negatives,
P (X |Y = 0) (Multivariate−). The threshold T can then be estimated using the positives
observations as in (3.5).

Cascade approach: To include information from both classes, instead of a multivariate
KDE, we propose each variable of the negative class to be modeled independently in
multiple univariate KDE models, i.e., P(Xk |Y = 0) for each feature k.

As illustrated by Figure 3.2, the decision from these multiple models is composed in
the form of a cascade. At each step j, there is a decision in the form of a filter: either
observation i is predicted to be negative, ŷi = 0, or the decision is remitted to the next
step j + 1. When steps are exhausted, the observation is considered positive, ŷi = 1.

The step at iteration j is chosen as

sj = (variable k, binop, threshold T ) , (3.7)

with binop = {<,>}. That is, we must choose what model k to use and what/where
the threshold is. The threshold T at each iteration is fixed and chosen using half-interval
search, Tj = ρ/2j , so that

∑∞
j=1 Tj = ρ. There are yet two parameters to estimate in

sj : the negative class guides the selection of kj by a greedy criterion based on whichever
maximizes the highest TN rate at the iteration, arg mink E[P k |Y = 0], where P k is the
model’s probability distribution for variable Xk. The positive class guides the selection of
the threshold “binop” left/right tail by modeling the positives, choosing one of the tails:
P(Xk |Y = 1) < T or P(Xk |Y = 1) > 1− T , whatever minimizes the FN rate (ρ).

These two approaches are exhibited in Figures 3.3 and 3.4, respectively. There is a
trade-off here. On the one hand, the multivariate approach models only one class using
information from both in the multivariate− case, while the cascade approach uses models of
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FN=0.12 TN=0.91 FN=0.11 TN=0.56 FN=0.08 TN=0.93 FN=0.07 TN=0.95

Figure 3.3: One-class approach using a synthetic example.

FN=0.05 TN=0.89 FN=0.08 TN=0.44 FN=0.02 TN=0.27 FN=0.02 TN=0.31

Figure 3.4: Two-class approach using synthetic example.

both classes. On the other hand, the cascade approach models each variable independently
as a univariate model.

3.2.2 Neural Networks

The bulk of the chapter will focus on neural networks, in particular on the loss function:
adding an averse term to the loss or alternating the loss to focus on one class of errors as
necessary.

Threshold: Considering a model P ∼ P(Y |X), then a threshold T could be found such
that P(P ≤ T |Y = 1) = ρ. Taking the model’s probability output as p̂i for observation i,
then threshold T corresponds to the ρ-quantile of p̂ when evaluated using an external vali-
dation set. This is the simplest of the methods since traditional training can be performed
and the threshold can be adjusted at any time after training.

Averse term: Another line of approaches involves modifying the training itself. Gradi-
ent-based algorithms use a loss function L(y, p̂), which must be C1. An averse term A
may introduce the concept of absolute costs to the loss,

L′(y, p̂) = L(y, p̂) + αA(ρ, ρ̂). (3.8)

where ρ̂ is the estimated FN rate based on the validation set. Possible A(ρ, ρ̂) terms
could be: (i) exp (ρ− ρ̂) − 1, (ii) max (0, ρ̂− ρ)2 which is a truncated squared error,
(iii) max(0,− log(1 − ρ̂ + ρ)) which is less intuitive but has a behavior more similar to
cross-entropy. The latter two are plotted in Figure 3.5. Terms (ii) and (iii) use max so

0.2 0.4 0.6 0.8

1

2

0 ρ̂

max (0,− log(1− ρ̂+ ρ))

max (0, ρ̂− ρ)2

Figure 3.5: Averse loss terms, with ρ = 0.1.
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that values for which ρ̂ ≤ ρ are not penalized, since we had previously formulated the
optimization constraint as such.

Since the loss must be differentiable of class C1, so must be ρ̂. We propose the following
empirical FN rate,

ρ̂(y, p̂) =
1∑N
i=1 yi

N∑
i=1

yi(1− p̂i), (3.9)

as an approximation to the true FN rate, ρ = E[1− Ŷ |Y = 1].

Alternating Loss: Instead of the extra term A, binary cross-entropy L could be split up
into its positive and negative components and β = cn could be adjusted dynamically,

L′ = L(+) + βL(−). (3.10)

At small update intervals (e.g. the end of a mini-batch), the empirical FN (ρ̂) is estimated
from the validation set. If ρ̂ is above the reference value, i.e. ρ̂ > ρ, then β is set to zero
to focus the learning process on the positive cases; that is,

β(ρ, ρ̂) =

{
1, if ρ̂ ≤ ρ,
0, if ρ̂ > ρ.

(3.11)

Also, ρ̂ no longer must be differentiable and so can now be estimated directly,

ρ̂(y, ŷ) =
1∑N
i=1 yi

N∑
i=1

yi(1− ŷi), (3.12)

without using the aforementioned approximation (3.9). We suggest allowing a “warmup”
period of a few epochs where β = 1 in order to help stabilize training.

Fine-tune after training: Here, normal cross-entropy training is used until convergence
at epoch t′. The model can then be re-trained (fine-tuned) using L′ = L(+) until false
negatives are restrained and training stops; that is,

β(t) =

{
1, if t ≤ t′,
0, if t > t′, until ρ̂ ≤ ρ.

(3.13)

This can be seen as a type of transfer-learning whereby initially the model learns from
positive and negative examples, and the final model is then tweaked to learn only from
positive examples until ρ̂ ≤ ρ. A smaller learning rate λ is recommended for this later
fine-tuning period.

3.3 Experiments

The datasets used were the ones previously described in Prologue III for tabular data
(Kernel Density Estimation) or image and segmentation cases (loss adaptation).

Results for Kernel Density Estimation methods are presented in Table 3.1 for the testing
set. While multivariate+ is able to properly contain ρ̂ < 5% for the training set, it fails
miserably when extrapolating to the testing set, perhaps because ignoring the negative
class, which is the majority class, provides for a poor model. Multivariate− is maybe
better at containing risk relative to the cascade approach, but at a considerably higher
FN rate. An extended version of the tables is available in Appendix A.3.
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Chapter 3 Risk Aversion

Table 3.1: Aggregated test results using KDE for desired ρ = 5%, broken down for the two types
of errors.

Multivariate+ Multivariate− Cascade
FN FP FN FP FN FP

Average 90.2 7.4 5.9 75.2 6.1 60.0
% FN ≤ ρ 0 40 50
% Lowest FP 90 0 10

Table 3.2: Aggregated test results using the loss adaptations for desired ρ = 5%, broken down
for the two types of errors.

Classification (%)
Threshold Averse term Alternating
FN FP FN FP FN FP

Average 5.9 49.3 4.2 45.5 17.5 37.1
% FN ≤ ρ 20 60 30
% Lowest FP 20 10 80

Semantic Segmentation (%)
Threshold Averse term Alternating Fine-tune
FN FP FN FP FN FP FN FP

Average 5.9 25.6 2.3 52.9 3.9 44.4 2.6 33.6
% FN ≤ ρ 56 89 78 89
% Lowest FP 78 0 11 22

Results for convolutional neural networks using the loss adaptations are now presented
in Table 3.2 using the four previous: threshold, averse term, alternative loss, and fine-tune
after training.

For encoding and decoding, both in the CNN for classification and U-Net for segmenta-
tion, three blocks were used, each consisting of a convolution layer followed by max-pooling,
plus the bottleneck block between the phases. Leaky ReLU activations were used, with a
slope of 0.1, to avoid running into the dying ReLU problem. This was a prescient problem
given the dynamic aspect of the training. The number of filters along the network was
3−32−64−128−256−128−64−32−1, with the last being the sigmoid output. The size of
the pixel-map was 224−112−56−28−56−112−224, with downsampling and upsampling
through max-pooling and bilinear interpolation, respectively. Adam was used as the opti-
mizer for 75 epochs.

Firstly, not surprisingly the expressiveness of these models manage to greatly reduce
FN error rate. More surprisingly, risk (FP rate) is also better contained.

The post-processing threshold method tends to be worst at ensuring FN stays below
the user-defined ρ tolerance-bound. The averse term was the best in this criterion with
“fine-tune” (only evaluated for semantic segmentation) beating all other methods.

Examples of segmentations are provided in Figure 3.6 for different values of ρ using the
threshold method. Figure 3.7 illustrates the percentage of true and false negative rates
(TN and FN, respectively) while the model is being trained. The alternating loss was
found to be quite stable during training while the others were more stochastic. It may
provide a good compromise and is the most flexible of methods for improvements because
the alternating criterion needs not be differentiable.
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Figure 3.6: Examples of varying the risk threshold.
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Figure 3.7: Training history, as evaluated by the validation set, for the ISBI2017 dataset. The
dotted horizontal line is the desired ρ.

3.4 Summary

A new way to define the class errors trade-off is proposed: instead of defining a relative
trade-off using cost matrices, we suggest it might be useful in some cases for learning
algorithms to allow defining an absolute trade-off in the form of a false negative threshold
(risk). Some preliminary results using density estimation allow containing risk but at a
generally low performance.

The methods involving neural networks, which are more expressive models, were more
promising. These methods consist in: a threshold on the output probabilities, adding a
term to the loss function, dynamically alternating losses whenever false negatives must be
restrained, and change loss after training, akin to transfer-learning.

All these methods performed well except for the added term. The alternating loss
and fine-tuning training methods provided more robust results at generalizing the false
negative rate to out-of-train data than merely tweaking with the threshold probability.
alternating and fine-tuning methods generalized better.

One major difficulty was to keep the training in tandem with the final test results
regarding FPs. Solutions could encompass (a) aggressive regularization strategies, (b)
using a smaller desired FP value ρ′ = ηρ, with 0 < η < 1, and obtained by cross-validation
to ensure desired FP is controlled or (c) controlling for FN for a few more iterations even
after the target ρ has been met.

41



Chapter 3 Risk Aversion

Publications: This chapter was based on work first published on:

1. R. Cruz, K. Fernandes, J. F. P. Costa, and J. S. Cardoso, “Constraining Type
II Error: Building Intentionally Biased Classifiers,” in 14th International Work-
Conference on Artificial Neural Networks (IWANN), LNCS Springer, 2017. [doi:

10.1007/978-3-319-59147-6_47]

2. R. Cruz, J. F. P. Costa and J. S. Cardoso, “Averse Deep Semantic Segmentation,”
in 41st Engineering in Medicine and Biology Conference (EMBC), IEEE, 2019. [doi:

10.1109/EMBC.2019.8857385]

42

https://doi.org/10.1007/978-3-319-59147-6_47
https://doi.org/10.1109/EMBC.2019.8857385


4

Background Invariance

Data Representations Loss Optimization Inference

T
he third wave of machine learning (as mentioned by Prologue I) made it harder to
introduce prior knowledge into the learning pipeline due to learning being largely

hands-off. When this is done, it is typically done by introducing knowledge into the input
data, the loss, or by constraining the output. For example, for ordinal classification, work
exists that encodes classes in an ordinal fashion [69] and other work exists to constrain
the output so that the output probabilities are unimodal [70].

We propose teaching the neural network what the foreground (object) is and to avoid
being fooled by background changes. This will be done by introducing knowledge into the
optimization process itself. Possibly due to the fact that neural networks learn from static
images, and so do not have to deal with depth as us humans, they are vulnerable to changes
in the background – for example, when there is a mismatch in the background between
the training and test sets, performance degrades terribly, as exemplified by Figure 4.1.
The classifier is trained with digits in a clean, white background (a trivial task) and then
evaluated with digits inserted in diverse backgrounds. These after-training changes in the
background have not been studied in detail. There is one work that uses an attention
mechanism but only avoids some artifacts, such as irregular borders [71].

Data augmentation has been typically deployed to make neural networks more robust.
This consists of expanding the training set by stochastically applying transformations [72].
For example, data augmentation through style transfer has been used to ensure the CNN
is robust against changes in texture [73]. The method proposed here makes use of data
augmentation on the background of the images in the training set.

In this chapter, a generator is proposed to augment the training set by producing back-
grounds that purposefully harm the performance of the target neural network, making
that target network more robust as a result. To avoid manual segmentation, backgrounds
are introduced by a third neural network that unsupervisedly segments the object.

Stripes Board Border Circles Clock Random

Traditional 38.0 24.3 61.4 32.9 19.7 11.2
Proposal 92.3 76.8 93.1 93.7 70.8 86.2

The model is a CNN with VGG blocks as detailed in Section 4.4.1, trained for MNIST. Accuracy values for the
entire testing set when different backgrounds are used.

Figure 4.1: Background change can produce wild disparate accuracies (%).

43



Chapter 4 Background Invariance

y = 1 y = 2

y = 3 y = 4

(a) Training set

y = 1 y = 2

y = 3 y = 4

(b) Testing set

Figure 4.2: The insulators dataset has four materials [75] and was constructed from images taken
inside the laboratory (a) and outside the laboratory (b).

4.1 Motivation

In Brazil, overhead power distribution lines comprise more than 95% of the total medium
voltage power circuits [74] and there is interest in using drones to help maintenance. In
previous work [75], we collaborated with Ricardo Prates, which was a Ph.D. student from
Brazil (Univasf) visiting INESC TEC. The goal was to produce a classifier that was trained
with images of insulators acquired in-doors and that would successfully extrapolate to later
out-doors images when used by a drone. The striking difference in background between
the two datasets is illustrated in Figure 4.2.

The in-doors dataset (a) has been constructed by taking a series of photos of varying
degrees from insulators made of four different materials – 480 in total (120 of each material)
and an out-doors dataset (b) made of 520 images of each insulator taken from actual
overhead power lines is used as a testing set. The dataset is available at http://www.

dee.eng.ufba.br/dslab/index.php/opdl_dataset/. The task we propose solving is
distinguishing between the four families of materials.

The original solution we published [75] was highly specific to this problem: (i) the
training set was manually segmented, (ii) a data augmentation procedure was designed to
randomly add patches taken from outdoor environments as the background, and (iii) some
other foreground elements such as top tie and free electric conductors were also added to
the data augmentation procedure. This generator is illustrated in Figure 4.3.

Not satisfied with this ad-hoc solution, we experimented with potential universal solu-
tions and published a promising solution [76], which is detailed in this chapter. While
we focus on classifiers, the method can be used on regression problems, reinforcement
learning, or other problems using a CNN.

44

http://www.dee.eng.ufba.br/dslab/index.php/opdl_dataset/
http://www.dee.eng.ufba.br/dslab/index.php/opdl_dataset/


4.2 Related Work

InsulatorTop Tie

Insulator Top Tie

Geometric juxtaposition

Data Augmentation Wires combination

Images

x

Mask

x

With Background Patch

output

Conductor

Background

P=50%

Free Conductors

P=25%P=25%

Generated Images

Random
Patch

P=50%

Segmentation

P=12.5%

P=37.5%

Segmentation and duplication
01 or 02 wires

+ 48.000 Images
InsulatorTop Tie

Masks

Figure 4.3: Image generator pipeline to make insulators background-insensitive [75].

4.2 Related Work

Literature exists in predicting classifier confidence for dataset shifts. It has been found
that deep CNNs can produce wrong predictions with high confidence when the object
is subject to translations, rotations, or changes in the background, sometimes even when
using a completely unrelated dataset. The statistics of the image can be compared against
the original training distribution through a probabilistic neural network and therefore
detect a dataset shift, producing a low confidence score in such cases, so that those images
can be rejected [77]. Using these techniques, we could detect if the background in the
testing set is different from that used in the training set.

However, making the classifier itself robust to changes in the background seems to have
been the subject of little study. One work proposes an attention mechanism to avoid
artifacts, particularly irregular borders, from influencing the classifier [71]. Two classifiers
are used: a global CNN, G, and a local CNN, L. The proposal works by having G find
the bounding box of the relevant object to create a cropped version of the image and then
use L to classify the cropped version.

As illustrated in Figure 4.4, this is done in two phases. Firstly, G is trained to classify
the entire image x. After G is trained, a truncated version of G is extracted, called GT ,
which does not contain the last few layers, therefore producing an activation map, A.
Then, a function f produces (i) a heatmap by merging the activation channels using the
element-wise maximum absolute value, Hij = maxc |Aijc|, and (ii) uses the connected
components algorithm to produce a bounding box and extract a cropped version x′ of the
image x. Finally, L is then trained using x′ [71].

To then predict the class y of the image x, this chained process outputs

ŷ = L
(
f(GT (x),x)

)
. (4.1)
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x Model G
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Figure 4.4: Attention mechanism diagram proposed by [71].

Two disadvantages are immediate: (i) L operates on a rectangular cropped version of
the image and therefore is still influenced by artifacts that remain within the rectangle,
and (ii) the effect of the artifact on G may be strong enough to divert attention from the
activation maps and capture attention away from the object.

Notice that model G is still influenced by artifacts because it did not have the benefit of
being trained against the artifacts. While such artifacts are not presented in the training
set, they could be generated in a controlled fashion.

Generative Adversarial Networks (GANs) generate images through a min-max opti-
mization problem whereby two models try to optimize a given function in the opposite
direction [78]. In an unsupervised fashion, the discriminator D tries to detect if an image
x comes from the training set X or has been produced by a generator G. Some random
noise z is given as input to the generator. The min-max optimization problem is thus

min
G

max
D

N∑
i=1

[logD(xi) + log (1−D(G(zi)))] , (4.2)

where N is the number of training images. The proposed method makes use of the min-
max idea, but no discriminator is used – instead, the generator and the target model are
the competitors.

4.3 Proposal

The goal is to, during training, be able to place the object in a multitude of contexts
(backgrounds), facilitating the learning of robust representations, focusing on “what” the
object is rather than “where” the object is. We propose to adopt adversarially generated
backgrounds to promote the learning of strong representations. However, the insertion of
adversarial backgrounds in the image cannot be allowed to destroy the concept (class) one
is trying to learn. Since the spatial delineation of the object is unknown, we propose to
learn, simultaneously with the recognition, the segmentation mask. This mask is used to
inject the adversarial background only in the non-object pixels.

Model: A model f is optimized to minimize a loss L (f(x), y) using an image x as input
with label y as the ground-truth. This image is subject to data augmentation through the
process illustrated in Figure 4.5.

In the experiments, we will use cross-entropy for L since we focus on classification tasks,
but the framework is agnostic of the task and other losses could be used for different tasks:
regression, semantic segmentation, reinforcement learning, etc.

Mask generator: Firstly, a model fm is trained to produce a mask m̂ using a sigmoid
activation function to ensure m̂ij ∈ [0, 1], ∀i, j, so that it can be used to segment the image
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Figure 4.5: Proposed adversarial background augmentation during training.

through a element-wise product,

x′ = x� m̂. (4.3)

The model fm can be optimized in an unsupervised fashion by finding the mask that
minimizes the previous loss, L (f(x� fm(x)), y). To help prevent the mask from including
background, a term LA is used to constraint its size

LA(m̂) = max(0, A(m̂)− a), (4.4)

where A approximates the percentage of the area of the mask by computing

A(m̂) =
1

wh

∑
i,j

m̂ij , (4.5)

and a is the average area for the object given as an hyperparameter (a = 0.2 is used
in all experiments). For better performance, after model fm has been trained, a non-
differentiable transformation t can henceforth be applied to further improve the segmen-
tation. For example, a threshold T ,

t(m̂) = 1i,j(m̂ij ≥ T ), (4.6)

can be chosen using Otsu’s method or the a-quantile such that A(t(m̂)) = a.

Notice that the mask generator being background invariant is unimportant since it is
only used during training and on training images. A typical architecture for the mask
generator would be a U-Net [10]. For better results, the mask could be provided by the
user through manual segmentation.

Background generator: Secondly, the background is generated by a neural network
fg that transforms noise z into a background b̂ image. Unlike the others, this model
is trained to maximize the loss L. The generator focuses on producing backgrounds or
artifacts that could potentially adversely affect the output of the model. However, the
scope of realistic backgrounds must be limited. Most importantly, copies of the object
may not be generated in the background – this is ensured through the following constraint:
the generator produces only a small nb× nb patch of the background – so n2

b independent
forward-passes are performed on the generator and the patches are then concatenated, ‖,
together to produce the background

b̂ = ‖n
2
b
j=1fb(zj). (4.7)

This avoids unrealistic backgrounds while keeping the pipeline differentiable.

47



Chapter 4 Background Invariance

Furthermore, in the case of MNIST and Fashion-MNIST where objects have the same
color, the background generator could “cheat” by producing a background with the same
color of the object, thus obfuscating the object. In such cases, an additional regularization
LBA

(b̂) term is added to disallow the background from filling over half the pixels,

LBA
(b̂) = max

(
1

N

N∑
i=1

b̂i − 0.5, 0

)
. (4.8)

All in all, the min-max optimization problem can be summarized as

min
f,fm

max
fb

N∑
i=1

L
(
f
(
m̂i � xi + ‖n

2
b
j=1b̂j � (1− m̂i)

)
, yi

)
+ LA (m̂i) . (4.9)

Notice that, while the optimization problem was inspired by GANs, this is not a GAN
framework, there is no discriminator used. Also, while this problem could be optimized
end-to-end, we have performed this optimization in three stages: (i) train model f ,
(ii) train mask generator fm, (iii) train both model f and its adversarial background
generator fb. Training in stages is useful for debugging and fine-tuning and it also al-
lows applying non-differentiable transformations on top of fm such as thresholds to help
produce more realistic masks.

4.4 Experiments

Two types of experiments are now briefly described: first experiments start by synthetically
introducing backgrounds on MNIST and Fashion-MNIST from Table III.3, then the focus
becomes the case study discussed in the previous Section 4.1.

4.4.1 Synthetic Experiments

MNIST [23] and Fashion-MNIST [21] are artificially enhanced by introducing backgrounds
as illustrated in Figure 4.6. There is a one-pixel mask dilation to slightly highlight the ob-
ject and ensure the performance difference comes from the different context (background)
and not because the object itself has become harder to differentiate. This enhanced ver-
sion will be used only for testing purposes, while the original unmodified dataset is used
for training. The idea is to see how well the model performs when background textures
are introduced.

(a) Original (b) Stripes (c) Board (d) Border (e) Circles (f) Clock (g) Random

Figure 4.6: Backgrounds introduced for MNIST and Fashion-MNIST.
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Table 4.1: General results (testing accuracy in %).

Method Original Stripes Board Border Circles Clock Random Avg
MNIST

Traditional 97.3 38.0 24.3 61.4 32.9 19.7 11.2 31.2
Attention [71] 93.4 28.1 26.8 57.3 40.1 29.3 25.1 34.5
Proposal 94.9 92.3 76.8 93.1 93.7 70.8 86.2 85.5

Fashion MNIST
Traditional 90.1 21.3 24.6 36.9 28.5 29.6 16.8 26.7
Attention [71] 81.2 18.2 20.1 51.8 26.0 31.8 36.2 30.7
Proposal 70.7 62.9 61.5 66.5 60.9 60.8 45.9 59.8

Table 4.2: Effect of varying the random noise rate in terms of accuracy (%).

0.0 0.01 0.05 0.1 0.2 0.3 0.4 0.5
Baseline 90.1 33.3 13.2 11.2 10.5 10.2 10.2 10.6
Proposal 70.7 70.1 61.6 56.7 45.5 43.2 39.6 35.0
Proposal with 85.4 85.4 84.4 83.4 82.1 80.6 78.1 78.4
manual segmentation

Table 4.1 summarizes the results showing the proposal is unbeatable. Interestingly
the attention mechanism results only negligibly improve on the baseline classifier. This
mechanism works by cropping the image and, not surprisingly, it was found to perform
best in the border case (with over 50% accuracy); still, this result was worse than the
proposal.

To better understand the impact of changes in the background, let us vary the rate of the
random parameter from the previous Figure 4.6 (g). In Table 4.2, a Bernoulli distribution
is used for the background with varying parameter values, as illustrated in the images.
While the baseline naturally produces better results for the unchanged image, as the rate
is increased, the drop in baseline’s performance is precipitous while the proposal drops
more smoothly.

Furthermore, since we suspected that the mask generator is the major obstacle in the
framework, we also performed experiments using manual segmentation instead of the one
produced by the mask generator neural network. The last line of Table 4.2 (“proposal
with manual segmentations”) shows much higher accuracy for manual segmentations, con-
firming that indeed the mask generator is a problem. Two conclusions are evident: (a) the
fact that we train the mask generator in an unsupervised fashion means that the masks
are imperfect which greatly influence performance, (b) using noise as the background is
not sufficient to avoid the network being fooled by more intricate patterns as those in the
testing set (Figure 4.6).

Finally, an example of the dynamic dataset created by the adversarial optimization is
shown in Figure 4.7, and some examples of images fooled by the baseline but not by our
classifier are shown in Figure 4.8.

4.4.2 Case Study

Experiments were also performed on the aforementioned insulator dataset which motivated
the work. A VGG-19, pre-trained using ImageNet, was used as the classifier, which had
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(a) t = 1 (b) t = 10 (c) t = 20 (d) t = 30 (e) t = 40

Figure 4.7: Examples of the dynamic background along the epochs.

(a) ŷ = 6 (b) ŷ = 6 (c) ŷ = 6 (d) ŷ = 8 (e) ŷ = 0 (f) ŷ = 0

Figure 4.8: Examples of misclassifications made by the traditionally-trained classifier, but not by
the adversarially-trained one.

previously been found to have good performance for this dataset [75].

The baseline arrives at an accuracy of 72% which the proposal can raise to 89%, as
shown in Table 4.3. This is almost as good as using real background images, as described
in Section 4.1, which arrived at a 94% accuracy (last column). Using random noise, instead
of our generator, degrades performance to 60%, worse than just using the training set,
showing that the background generator is indeed helping.

Finally, sensitivity analysis contrasts the baseline with the adversarially-trained classi-
fier – the impact is illustrated in Figures 4.9 and 4.10. The heatmaps are produced by
normalizing the gradients ∂ŷ

∂x , and taking the pixel-wise maximum of each channel. They
clearly illustrate the fact that the proposed method makes the classifier significantly less
sensitive to the target background.

Table 4.3: Results for drone case study.

Method Traditional Attention [71] Proposal Noise background Real backgrounds
Accuracy (%) 71.9 45.8 88.7 59.6 93.8

4.5 Summary

Motivated by the problem of training drones with the in-doors images while generalizing
to the out-doors, an adversarially trained model is proposed that is invariant to the back-

Figure 4.9: Sensitivity analysis for the naive method, with gradients in red.
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Figure 4.10: Sensitivity analysis for the mask-inference method, with gradients in red.

ground. During training, while the target model tries to minimize its loss, a background
generator augments the data by trying to search for backgrounds that maximize the target
model’s loss, thus making the target model robust to background changes. The method
was evaluated using synthetic datasets and a real dataset.

The proposal was evaluated using classifiers, but could potentially be used for other tasks
involving a CNN, such as regression problems, segmentation, or reinforcement learning
tasks.

Publications: This work was prompted by a collaboration with Ph.D. colleague Ricardo
Prates of Univasf, Brazil, during his stay at INESC TEC. The initial physical collaboration
involved mostly engineering work, building a process by which out-door visual elements
were introduced in the in-doors through automatic heuristics:

1. R. M. Prates, R. Cruz, A. P. Marotta, R. P. Ramos, E. F. S. Filho, and J. S. Cardoso,
“Insulator Visual Non-conformity Detection in Overhead Power Distribution Lines
using Deep Learning,” in Computer and Electrical Engineering, Elsevier, 2019. [doi:

10.1016/j.compeleceng.2019.08.001]

The general-purpose way to train a classifier using adversarial training was later proposed
in:

2. R. Cruz, R. M. Prates, E. F. S. Filho, J. F. P. Costa, and J. S. Cardoso, “Background
Invariance by Adversarial Learning,” in 25th International Conference on Pattern
Recognition (ICPR), IEEE, 2021. [accepted]

A preliminary version of this work earned the best oral presentation award at RECPAD
2020, a national conference – that paper is not included here since the proceedings of this
conference are not indexed. Current plans are to publish a co-joint paper with Ricardo
Prates combining the adversarially generated backgrounds with the insulators (foreground)
themselves generated by a GAN. This might make training more resilient, and be espe-
cially useful in cases of condition imbalance, i.e. some of the insulators have been recently
introduced to the network and, therefore, no or little examples exist of them with defects.

Classic adversarial training focuses solely on making classifiers robust to small image
perturbations, often called adversarial examples. This framework opens a new line of
research and it is inspired by another work from within Professor Jaime S. Cardoso’s
group: classifiers trained to recognize sign language, the language used by people who
are deaf, often focus on the person doing the sign (undesirable) rather than his/her hand
(desirable) causing overfitting. Adversarial training had been used to train a person-
invariant classifier [79]. The details are, however, very different from ours since they used
a Variational Autoencoder. Since our work, promising experiments have been performed to
use adversarial training to make various biometric models robust to intrusion – for example,
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anti-spoofing measures may be improved if the spoofing detector is made invariant to the
type of material used by the adversary [80].
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Active Supervision

Data Representations Loss Optimization Inference

In supervised learning, the role of the data practitioner is to collect and label data.
After training, the misclassified classes may be identified and the practitioner can im-
prove performance by (a) coarsely tuning the model by tweaking hyperparameters or by
(b) collecting more data from the real world to improve classification of the disadvantaged
classes, a costly process known as active learning [81].

The proposal is to short-circuit active learning by acquiring data from the model itself –
the model can interpolate or extrapolate from the existing data and have the practitioner
label the new data. The model itself could be used to identify and manipulate images
near the decision boundary in a direction orthogonal to the boundary. We have called this
process active supervision, as illustrated by Figure 5.1.

The proposal is found to be especially beneficial in the context of few-short learning,
when there are very few cases of one of the classes. In the experiments, only 10 images of
the digit “2” of MNIST are used (and 6,000 of each other digit), then active supervision
is used to significantly improve recognition of this digit.

5.1 Related Work

The distance of the data relative to the decision boundary has been found to be a major
predictor of overfitting [82].

This problem can be ameliorated in an unsupervised manner: by using adversarial
training [83, 84] or by manifold interpolations [85]. The goal of both techniques is to make
the boundary smoother and avoid small perturbations from percolating into big decision
changes. A typical approach involves minimizing the loss L both for data x and also for
x + δ, where δ is Gaussian noise. However, these techniques make the model insensitive
to small changes in the input, which sometimes is undesirable – think of breast cancer
detection or melanoma classification which involve very small changes in morphology.
While such techniques produce more resilient models that are harder to fool, most often
they come at the cost of performance [83]. It would be highly desirable for the user to

Real-world Data Human Model

Active learning

Active supervision

Figure 5.1: Active supervision short-circuits the traditional active learning pipeline.
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actively observe and classify the perturbations as they are performed during training;
albeit that would be of course infeasible.

Another line of approaches is to use the distance to the decision boundary to ascertain
uncertainty and request the data practitioner to focus labeling on the data where uncer-
tainty is highest, a process known as active learning [81]. However, unless there is an
existing pool of unlabeled data, this process requires collecting more data from the real-
world which can be highly expensive. In the next section, we propose combining active
learning with data perturbations during training.

5.2 Proposal

The proposal combines active learning with perturbations on the images, as previously
described. The perturbations are introduced in the semantic layers and then reversed to
the original image until the model produces fuzzy predictions, and the user is then asked
for a label.

Architecture: A traditional classifier can be seen as having two components: an encoder
E and a classifier C component. In the encoding phase, convolutions are applied until
a (semantic) vector captures the essential semantics of the image. Then, the classifier
consists of dense layers that transform this semantic vector into K outputs neurons, at
which point a softmax is applied to ensure a probability distribution. Since AlexNet [1],
most deep classifiers have been using this formula, including popular architectures such as
VGG and ResNet.

Our proposal extends this model by adding a decoder D, as depicted in blue in Fig-
ure 5.2 – this decoder is responsible to create new images from the semantic vector. The
output of the decoder is an image of the same size as the original image; the goal is that it
learns to make the neural network invertible. This extra component is an extension that
can be trained independently of the rest of the classifier. An alternative to introducing a
decoder would have been to back-propagate the feature vector back to the original images;
however, in our experience, that typically produces poorer images.

Training: The previous architecture can be trained as follows: The encoder E and clas-
sifier C part are trained for the supervised task. Typically, the classifier produces a
probability ŷi,k = P(k|xi) = C(E(xi)) of each image xi being of class k, and the loss to
minimize is cross-entropy where each yi,k is an one-hot representation of the real class,

LCE = −
K∑
k=1

N∑
i=1

yi,k log ŷi,k. (5.1)

Image
x

Encoder E

Semantic
vector f

Classifier C

y = P(class)

Image
x̂

Decoder D

Figure 5.2: The classifier (in black) is extended so that a decoder (in blue) reproduced the image
using the same semantic vector.
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Afterwards, the decoder D is trained to produce an invertible representation of the
neural network, i.e. the goal is for the decoder to be the inverse function of the encoder,
D = E−1. Both are optimized so that the output image x̂i is the same as the input
image xi, i.e. x̂i = D(E(xi)) ≈ xi. This correspondence is approximated using L2 as
traditionally done when training autoencoders,

LD =

N∑
i=1

‖φ(xi)− φ(x̂i))‖22. (5.2)

A function φ may be applied to both the original and the produced image in order to
correspond higher-level features rather than force pixel-wise equivalence. This is known
as a perceptual loss [86]. In the experiments, the identity function is used as φ.

User Feedback: After the previously described training phase, user feedback can be used
to improve the classifier. In this phase, the goal is to have the user indirectly tune the
decision boundary of the classifier by finding an observation of one class and manipulating
it until the model thinks it has cross the boundary into a different class. The user is then
asked about the class and the feedback is used to gradually reshape the decision boundary.
The detailed procedure is shown in Algorithm 1.

Algorithm 1 Training algorithm using user feedback

1: Input: xi, yi, ȳi
2: Output: x̄i

// Produce interpolations of xi from yi to desired class ȳi
3: j ← 0
4: v(j) ← E(xi)
5: while

(
ŷi ← C(v(j))

)
6= ȳi do

6: v(j+1) ← v(j) + η ∂ŷi
∂v(j)

7: j ← j + 1

8: x̂
(j)
i ← D(v(j))

9: end while
// Ask user which images still belong to the original class yi

10: j ← user feedback
(
x̂

(1)
i , . . . , x̂

(j)
i

)
11: x̄i ←

(
x̂

(1)
i , . . . , x̂

(j)
i

)
// Update weights based on user feedback

12: for t← 1 to j do

13: while
(
ŷ

(t)
i ← C(E(x̄

(t)
i ))

)
6= t do

14: wE,C ← wE,C − η
∂LCE(ŷ

(t)
i ,ȳi)

∂wE,C

15: end while
16: end for

Various mechanisms of user feedback (line 10) could have been used – in the experiments,
we just request the user to select the images which have been correctly transformed to the
target class, i.e. crosses over the decision boundary. The model is then updated for several
iterations using a bigger weight for these new images.

A visual example of how the feature space of random observations travel in the direction
of class “2” of MNIST (lines 3–9) is depicted in Figure 5.3. For illustration purposes,
PCA was performed to reduce the feature space to two-dimensions, and the dataset used
is MNIST. Furthermore, Figure 5.4 shows results of the decoder (line 8) for several class
extrapolations.
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Figure 5.3: PCA of latent space of a MNIST classifier showing the transition between each class
clusters and class “2”.

(a) 1→ 9 (b) 2→ 0

(c) 2→ 1 (d) 3→ 2

(e) 5→ 6 (f) 6→ 4

(g) 7→ 1 (h) 8→ 5

(i) 8→ 9 (j) 9→ 7

Figure 5.4: Examples of several extrapolations for MNIST.
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5.3 Experiments

5.3 Experiments

The MNIST digits dataset was used for the experiments. This dataset comprises 6,000
training examples of each one of the ten Indo-Arabic digits (0–9) hand-written; with also
another 1,000 examples of each digit for testing purposes. Since LeNet (see Section II.1),
it has been trivial to obtain an accuracy of over 99% for this dataset. Therefore, we down-
sample the number of digits “2” from 6,000 images to only 10 images. Subsequently, we
train a classifier for 1,000 epochs to ensure convergence and obtain a base accuracy of 33%
for the digit “2” and of over 99% for all other digits. High rates of accuracy are common
for this dataset.

The implementation of the architecture shown in Figure 5.2 uses an encoder that applies
three convolutions with a stride of two, with each i-th layer having 24+i filters. Thus, the
original 32×32×1 images are reduced to a tensor of size 4×4×128. The classifier flattens
this tensor and applies a dense layer with 256 neurons followed by another with the 10
output classes. The decoder is the opposite of the encoder with transpose convolutions.
All filters are 3× 3 and Adam was used as the optimizer.

After the base model is trained, Algorithm 1 is performed: ten random images of each
one of the ten digits are extrapolated to convert them into something that the model
considers a “2”, and ten intermediate extrapolations are used. All in all, there are 1,000
images from which to choose from, but the user typically chooses only a small fraction
of these. The new images selected by the user are then incorporated and the model is
optimized for 100 epochs. The new images are given a weight of 10 times the weight of
the normal images.

Results are presented for 5 different experiments as Figure 5.5 using the base model with
an accuracy of 33% for digit “2” at iteration #1. Then, user feedback is integrated for two
iterations. The first thing to notice is how disparate the results are (Figure 5.5 (a)). In
all cases, active supervision improves results dramatically, but somehow erratically since
the process is time-consuming (albeit less than active learning would be) and the number
of new labeled images has to be finite. A less gleeful result is that after the first iteration,
performance plateaus and seems to, if anything, to decrease.

Average results are shown in Figure 5.5 (b). The average accuracy gain was of 9.5% for
the target digit “2”. This could have conceivable come at the cost of misclassifying the
other digits, but actually, no. The average accuracy for the other digits almost does not
budge, and it increases in some cases.

#1 #2 #3

30

40

50

Feedback Iteration

A
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u
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)

Accuracy of “2”

(a) Impact of each feedback iterations in 5 exper-
iments.

99

99.1

99.2
Accuracy except “2”

#1 #2 #3

30

40

50

Feedback Iteration

Accuracy of “2”

(b) Average across the 5 experiments.

Figure 5.5: Results of active supervision using MNIST to augment digit “2”.
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5.4 Summary

The proposal is to introduce the user into the learning loop. The proposal consists in
using the model itself to modify images across the decision boundary so that the user is
able to more directly tune the boundary once the model has been trained. The process
intersects with previous work on class imbalance, data augmentation, and optimization –
the work was shown to be beneficial in an experiment where the dataset was augmented
with the help of the user in the context of absolute class imbalance (few-shot learning).

The work has gone through several major revisions for a long time. This is because
there are a few non-trivial difficulties associated with this process that are not immediately
apparent and should be disclosed:

(i) One inherent flaw in the concept is that, on the one hand, it requires enough data
for the extrapolation to be trained and work seamlessly, but on the other hand, the
classification component is easier to train than the extrapolation one, therefore, if
we have enough data to train the extrapolation component, then the impact of the
method in the classifier is almost minuscule to even be measured. For the purpose of
this chapter, the problem was overcome by limiting this solution to the less ambitious
context of few-shot learning. This context is perfect for this process since there is
enough data to train a robust extrapolation component, but there is one class on
which to focus efforts. How to generalize the process to other contexts is an open
problem. Possibilities could involve using transfer-learning or by changing the way
feedback is given and the way that feedback is integrated, which takes us to:

(ii) There are many different ways to conceive each one of the components, some of
which we alluded to, such as using back-propagation to extrapolate rather than a
decoder, but there are also many conceivable ways how the way feedback may be
requested and how it may be integrated into the optimization process. Small changes
to the feedback process could include ranking or even do interpolations between two
images rather than an extrapolation from one image. More interesting would be
looking for different ways of how this feedback could be integrated; one possibility is
to use only the direction that the user prefers, which would avoid having to create
perfect images, another would be to ask for feedback on the decision gradients for
each pixel. Pixel-level feedback is an interesting idea – the user could specify that
some regions should not be considered for the decision – but it is trickier than it
sounds: experiments using CIFAR-10 show that the user tends to underestimate how
important things like background features are for classifying objects (for example,
clouds are associated with airplanes and water with boats). Still, it is a promising
line of approach for several problems.

(iii) While this technique of active supervision is naturally less time-consuming than
active learning, as we argued at the opening of the chapter, the technique itself is
very time-consuming to research. For active learning, researchers already have a pre-
arranged dataset for which they simulate the acquisition. On this line of research,
any change, small as it may be, requires redoing experiments, each of which is very
time consuming since it requires continuous user feedback, and must be repeated
more than once to ensure reproducibility.

This process of active supervision was developed together with ASM Shihavuddin, orig-
inally at DTU in Denmark, and now at the Green University of Bangladesh. Despite the
aforementioned problems, we feel there is potential for the sprout of a new line of research
and for real-world applications.
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6
Iterative Inference

Data Representations Loss Optimization Inference

S
egmentation of images into its constituent parts is a decades-old problem. Traditional
methods range from the usage of color threshold to clustering, and iterative methods

such as region growing and active contours. However, all these methods require strong
human supervision and tuning to find the right parameters.

The advent of machine learning, in particular convolutional neural networks like Seg-
Net [87], has allowed semantic segmentation – where the parameters of the model are
optimized automatically in a supervised manner on the object of interest. These new
methods lack the iterative nature of previous techniques. The downside of such methods
is the great amount of data required for training.

In this chapter, a novel segmentation paradigm is presented: the convolutional neural
network is trained to learn the quality of an image-segmentation pair. After training, the
segmentation process makes use of the network as an oracle of the current segmentation
quality to refine the mask in an iterative fashion using gradient ascent. The proposal is
illustrated in Figure 6.1.

Image Model Mask

(a) Traditional approach

Model

Image

Mask

Quality

(b) Proposal

Figure 6.1: Diagram contrasting the proposal to the traditional approach.

6.1 Related Work

Many traditional computer vision techniques have involved iterative processes. This is the
case, for example, of region growing and active contours (also known as snakes).

� Region growing (Figure 6.2 (a)) methods [88] are based on the principle of clus-
tering pixels with similar properties to form a homogenous region. An image x is
divided by regions,

⋃n
i=1Ri = x and Ri

⋂
Rj = ∅, i 6= j, and each region Ri is

connected to adjacent regions given by N(Ri). Typically, each region is a pixel of
the image and the adjacent regions are the 4-neighbors or 8-neighbors.
An initial segmentation S1 (seed) grows to include its neighbors according to a pred-
icate rule P (R) that evaluates whether region R is homogeneous or not,

St+1 = St ∪ {Ri |Ri ∈ N(St), P (Ri ∪ St)} . (6.1)
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St

St+1

(a) Region growing (b) Active contour model

Figure 6.2: Illustration of two iterative segmentation methods.

The method convergences when St = St+1. A common criteria for the predicate is
whether the average gray-scale level is below a certain threshold T , P (R) = R̄ < T .
An alternative method is called region splitting, which works the other way around.

� Active contour [89] (Figure 6.2 (b)), also known as snake, is a curve represented
by v(s), composed of discrete points, indexed by s ∈ [0, 1]. This curve starts off with
a given shape (seed) and its shape is modified by minimizing an energy function

Esnake =

∫ 1

0
[Einternal(v(s)) + Eexternal(v(s))] ds, (6.2)

where Einternal acts as a regularizer punishing oscillations in the curve, and Eexternal

takes in consideration the image and corresponds to the intensity or gradients of
the image. For example, Eexternal = v(s) would grow the curve iteratively along
the brighter parts of the image. Several proposals exist on how the curve should be
initialized.

These traditional techniques have recently been surpassed by convolutional neural net-
works, as described in Section II.3. For the practitioner, the difference is that a training
set is required to guide the learning process and inference happens in a single step as in
Figure 6.1 (a), i.e. they are no longer iterative. The most widely used architectures are
based on an encoder-decoder two-phased neural network; the image is first compressed
into a smaller semantic representation, usually using convolutions and pooling (the encod-
ing phase), and then decompressed into the final segmentation, usually using transposed
convolutions (the decoding phase). The first example of this was SegNet [87].

A big problem in this architecture is the so-called checkerboard problem: some detail is
lost during the encoding step, which prevents the decoding step from doing as good a job
as it could in refining the segmentation. That helps explain the popularity of U-Net [10]
which takes advantage of the symmetry nature of the encoder-decoder with “skip-layers”,
as previously discussed and illustrated in Figure II.2. U-Net is one of our baselines.

Another important landmark in avoiding checkerboard effects are dilated kernels,
originally known as atrous convolutions. DeepLab [90], which makes use of such kernels,
ranks first place in many benchmarks, including PASCAL VOC (Table III.4). Previous ar-
chitectures, integrated spacial information by making activation maps smaller and smaller
during the encoding phase, which were then restored during the decoding phase. In this
architecture, there are no distinct encoding and decoding phases, and all activation maps
keep the size of the original image. Instead, spatial information is integrated by dilating
the filters themselves, as illustrated in Figure 6.3. DeepLab is also used as a baseline.

Also, worth mentioning is that iterative segmentation already exists in the form of
recurrent neural networks adapted for segmentation [91]. The current work is innovative
in that it is far simpler than any such previous approach since it most resembles classical
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(a) Normal filter (b) Dilated filter (rate=2) (c) Dilated filter (rate=3)

Figure 6.3: Dilated kernels avoid the checkerboard effect.

methods used for segmentation. The proposed model is illustrated in Figure 6.1 (b) and
is presented in the next section.

6.2 Proposal

The proposed model takes an image-segmentation pair and outputs a quality score. The
model may be seen as an oracle. This oracle is then used to guide the iterative search
process to change the segmentation in the direction that increases the quality score. Any
number of methods could be used for the search; since a CNN is used as the oracle, the
process is differentiable, and we use gradient ascent. Figure 6.4 illustrates the process.

Oracle 0.4 Search

Oracle 0.7 Search

...

Oracle 0.9

Figure 6.4: The quality measure produced by the model (oracle) guides the iterative process of
segmentation inference.

In order to simplify the learning process (i.e. decision models and optimization), the
neural network models the quality of a segmentation mask as a scoring function. This is
a quality qi representing the correspondence between an image xi and a segmentation yi.
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This can be learnt by optimizing

min
w

N∑
i=1

Lw (qi, q̂i) , (6.3)

where q̂i is the quality predicted by the neural network, q̂i = f(xi,yi), and Lw can be
instantiated to be the squared error, cross-entropy, etc.

The hope is that the complexity of the optimization problem is reduced since the output,
instead of being of size 2wh which is the area of the entire segmentation probability, is a
single number corresponding to the quality of the given segmentation. Only an encoder
architecture is now necessary, instead of an encoder-decoder.

Inference: An initial segmentation ŷi must be given, which could be empty (zeros),
and is then updated by gradient ascent using backpropagation in order to maximize the
predicted quality q̂i,

ŷi ← ŷi + α
∂q̂i
∂ŷi

. (6.4)

An alternative to backpropagation would have been to use an exhaustive or heuristic ex-
ploration of the search space of segmentations using the network as an oracle. While these
techniques would be able to discover non-local improvements, backpropagation stands as
an efficient exploration strategy when the decision function is known and C1.

Training: This is the tricky part, since we must teach the network what a good and
a bad segmentation is. For that, different transformations (see Figure 6.5) are applied
to the known segmentation (yi) and a new segmentation is created (ỹi). The quality
measure qi is then computed between the real and the transformed segmentation. Dice
coefficient was used to compute qi, which corresponds to the intersection over the union
of the segmentations,

q(yi, ỹi) =
2|yi ∩ ỹi|
|yi|+ |ỹi|

. (6.5)

It is desirable to teach the network using a balanced range of qualities of Dice, there-
fore the impact of the transformations parameters and Dice was empirically estimated.
For each transformation, the parameters are drawn by grid-search, and a similarity index
D(y, ỹ) is computed between the ground-truth segmentation y and the synthetically cre-
ated ỹ. Dice was discretized into B bins (in our case, B = 8). A frequency distribution
pib was then found that represents how many times the parameter combination i resulted
in Dice b. A second distribution qib can then be computed to find the proportion of each
transformation i that produces Dice b, by minimizing a system composed of B equations,∑

i pibqib = 1
B for each b. This was solved as a non-negative least squares problem.

Original Elastic Dilation Erosion Random
switches

Rotate Flip &
offset

Figure 6.5: Examples of synthetically created segmentations.
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Figure 6.6: Oracle network architecture in detail.

The optimization problem from (6.3) can then be solved by gradient descent,

w← w − α∂Lw
∂w

. (6.6)

Notice how training and inference use the same optimization procedure, see (6.4) and
(6.6).

Architecture: To ease the optimization process, instead of concatenating xi and yi, we
first perform element-wise multiplication to extract the foreground (fi = xi ⊗ yi) and
the same on the segmentation inverse to extract the background (bi = xi ⊗ (1 − yi)), as
illustrated by Figure 6.6 (a). Both of these are then given to an encoder to produce the
quality score. This blending of the image and mask is also performed along the layers
to allow streams to communicate (“gossip”) in order to combine information from both
streams, as in Figure 6.6 (b).

Furthermore, since the propagation of gradients through max-pooling blocks is sparse,
we have found better results using average pooling which ensures gradients are propagated
through all the pixels in the block.

6.3 Experiments

The datasets used for the experiments can be found in Table 6.1, with an extended version
at Appendix A.6. The proposal is constrasted with the state-of-the-art U-Net [10] and
U-Net with dilated convolutions (DilatedNet) [90].

The architecture consisted of several conv-conv-pool blocks, the number of repetitions
was chosen by the validation set. We use 32 filters on the first convolutional layer and
double the value on each level as suggested by U-Net [10]. ReLU activations were used
on the intermediate dense layers and a sigmoid activation on the final layer to predict a
quality value between 0 and 1. The loss function for the oracle network was the mean

Table 6.1: Results in terms of Dice coefficient (%).

U-Net Dilated Proposal
Average 80.5 80.7 82.5
% Top-1 12 0 88
% Top-2 38 75 100
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Chapter 6 Iterative Inference

(a) Source
image

(b) Ground
truth

(c) Initial mask (d) 5 steps (e) 10 steps (f) 100 steps

(g) Source
image

(h) Ground
truth

(i) Initial mask (j) 5 steps (k) 10 steps (l) 100 steps

Figure 6.7: Iterative refinement of images from PH2 and Breast Aesthetics datasets, respectively.
Initial masks are completely void.

squared error, optimized using Adam for 500 epochs with early-stopping after 50 iterations
without improvement, and the best validation model was used.

The proposal is shown to be slightly superior to the baselines. Furthermore, models
were also trained in one dataset and evaluated in another: on average, Dice coefficients
were 61% (U-Net), 59% (Dilated-Net), and 63% (proposal).

Then, we explored the performance of the model in the most extreme scenario, where the
initial segmentation is completely empty (i.e. black). Figure 6.7 illustrates results after a
few steps of refinement. The network converges to a good solution on about 20 iterations.
The remaining steps of the optimization focus on minor details with little impact on
the overall performance. The proposed approach emulates the traditional region-growing
strategy [88], where the segmentation is progressively extended.

6.4 Summary

This chapter addresses the problem of semantic image segmentation with deep neural net-
works. We propose a new paradigm, based on similarity learning techniques, where the
model tries to learn a quality function that maps an image-mask pair to the corresponding
segmentation quality. Using the proposed architecture and, in combination with backprop-
agation, the proposed strategy is able to improve segmentation masks by maximizing the
expected quality. By framing the problem as a regression task, the output complexity is
reduced.

Publications: This chapter was a collaboration with Ph.D. colleague Kelwin Fernandes
and was published at IJCNN:

1. K. Fernandes, R. Cruz, and J. S. Cardoso, “Deep Image Segmentation by Quality
Inference,” in International Joint Conference on Neural Networks (IJCNN), IEEE,
2018. [doi: 10.1109/IJCNN.2018.8489696]

A master’s thesis exploring further experiments was written by José Soares Rebelo, “CNN-
Based Refinement for Image Segmentation” (2018). So far, four papers from other authors
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6.4 Summary

have cited and mentioned this work in their state-of-the-art.
While the method was proposed and evaluated in the context of semantic segmentation,

it could potentially be extended to other tasks such as signal processing or NLP. For
example, generating text guided by a quality metric.
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IV
Conclusion

S
everal titles were considered for the thesis: rethink, redesign, out-of-box, divergent.
Throughout the Ph.D., several encrusted ideas from machine learning were challenged

and new solutions proposed. The scope of contributions involves the entire learning pro-
cess, also known as the pipeline (Figure IV.1). Most of these actually seem to outperform
the state-of-the-art, or at least look like promising trailblazers. They have included ideas
on automatic data augmentation (Chapter 1), class imbalance using pairwise learning
(Chapter 2), a new way to look at risk optimization (Chapter 3), training for background
invariance (Chapter 4), active supervision (Chapter 5), and iterative inference (Chapter 6).
A general conclusion of these works is now provided, as is when the work was performed.

IV.1 Summary

Data augmentation through Hill Climbing (2019) trains models in parallel to perform
hyperparameter search to find the best augmentation policies. The method only doubles
training time, and is shown to be beneficial for two reasons: (i) the hyperparameter
search itself (static policy), and (ii) the dynamic process itself of gradually increasing
augmentation intensity (dynamic policy). Results were similar to traditional Bayesian
search for 4% of the training epochs.

Class Imbalance using Pairwise Learning (2016–2018) proposed a new family of solutions
for an age-old problem for binary and ordinal classification tasks, and also for survival
analysis. Pairwise models were borrowed from the learning to rank literature which learns
two observations in unison. There was an overall 15% improvement relative to the state-
of-the-art, as evaluated by a balanced metric.

Risk Aversion (2017, 2019) is a new way to look at how costs are considered in modeling.
In the context of binary classification, two types of errors are possible: false positives and
false negatives. Typically, the trade-off between the two types of errors is defined as a
relative trade-off using a cost matrix. Several approaches are proposed to define this trade-
off in terms of an absolute constraint on one type of error while trying to minimize the
other. These methods are applied for binary classification and segmentation.

Background Invariance (2019–2020) is, as far as we know, the first work that proposes
a method at making neural networks robust to changes in the background. The pro-
posed method is an end-to-end method that augments the training set by introducing new

Data Representations Loss

OptimizationInference

Figure IV.1: Pipeline diagram.
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Epilogue IV Conclusion

backgrounds during the training process. These backgrounds are created by a generative
network that is trained as an adversary to the model. The proposed method improves
performance by over 20% for a case study using overhead power line insulators detection.

Active Supervision (2019) is an attempt at avoiding the expensive task of performing
active learning, where new observations are collected from the real-world to improve the
model’s performance. The method proposed uses the model to extrapolate the existing
dataset and uses the user to provide labels during training, helping improve the model’s
performance without the expense of performing extra data acquisition.

Iterative Inference (2018) provides the first known way to make neural network inference
be iterative rather than as a single-pass. This can have several applications, for example, in
terms of improving existing predictions or making inference more intuitive. Furthermore,
the performance of the proposed methodology seems to achieve competitive results relative
to state-of-the-art segmentation methods, and even improve on their segmentations.

IV.2 Production

The first work on class imbalance was published before joining the Ph.D. after becoming
a researcher at INESC TEC in November 2015. The rest was published while doing the
Ph.D. (2016–2020). All in all, 11 papers were published during the Ph.D., two of these in
journals and the rest in conferences, three of these in top conferences (IEEE IJCNN and
ICPR) and the impact factor of the journals is 1.5 and 2.6. These publications are divided
by chapter and rank in Table IV.1. As a proxy to the quality of the publication venues,
CORE2020 was used1, except for Ibpria that was not listed, for which ERA2010 listed
as Rank C. Chapter 4 earned the best oral presentation award in RECPAD 2020; we did
not include here papers submitted to RECPAD since it a national Portuguese conference
whose proceedings are not indexed.

Along the way, we left a large graveyard of unfinished or impractical work. For repro-
ducibility purposes, most work performed during the Ph.D. may be found at my personal
github repository: https://github.com/rpmcruz.

Table IV.1: Paper production during the thesis, split by chapter.

Chapter 1 2 3 4 5 6 Σ

C
O

R
E

20
20

1 Rank A 0 1 0 0 0 1 2
Rank B 1 0 0 2 0 0 3
Rank C 0 2 1 0 0 0 3
National 0 2 1 0 0 0 3
Unranked 0 1 0 0 0 0 1
Awards 0 0 0 1 0 0 1

IV.3 Limitations

A well-known limitation of deep learning experiments is that there is a tendency to be
overly optimistic of one’s own proposals since more time is spent refining them. Yet, we
have tried to validate them using several varied datasets, and in some cases, such as in class
imbalance, perform statistical tests. For work such as background invariance (Chapter 4),
while fewer datasets were used, many synthetic backgrounds are created and the difference

1https://www.core.edu.au/conference-portal
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IV.4 Future Work

Table IV.2: Summary of Applicability Limitations

Chapter Only images Only deep learning Task limitations
1 Yes Yes None
2 No No Classification and segmentation
3 No Yes Binary classification
4 Yes Yes None
5 Yes Yes Classification
6 No Yes Multi-output tasks, such as

segmentation

is so striking as to make it unlikely to be due to chance. Furthermore, experiments are
repeated several times.

The thesis has focused on deep learning as the vehicle and images as the passangers.
The proposals are in some cases limited to these use-cases, but not always. Table IV.2
summarizes these limitations. In some cases, such as active supervision (Chapter 5), while
it might be possible to extend it beyond that realm, it would require significant changes.

Furthermore, the proposals have been evaluated in either classification or segmentation
tasks, and are sometimes limited to one or the other task. For example, it would not
be trivial to apply ranking for class imbalance (Chapter 2) to segmentation or iterative
inference (Chapter 6) to classification.

IV.4 Future Work

We feel several chapters in the thesis could potentially sprout new lines of research. Aug-
mentation during training (Chapter 1) could potentially be improved by resorting to
the multi-armed bandit literature, which are heuristics for dealing with the exploration-
explotation trade-off that do not require much data. Usually, multi-armed bandits are for-
mulated for categorical decision-making, but variants exist, such as X -Armed Bandits [92]
which can be used for the numerical search space. In our work, fixed step increments were
used, and we did also experimented with X -Armed Bandits which could potentially be
used to decide the step increment. One problem is that our problem is non-stationary
(the loss naturally becomes smaller and smaller, on average) which would require deeper
exploration of the literature.

The optimization/training proposals in background invariance (Chapter 4) and active
supervision (Chapter 5) made use of the latest generative techniques from the literature
and have potential to be improved, especially as the generative literature itself develops.

Iterative inference (Chapter 6) has been so far used only for image segmentation, but
could potentially be used in other contexts such as NLP for text generation. In fact,
it could apply to any problem where several decisions must be made but where it is
harder to measure performance using more than one metric. For example, some interesting
experiments were performed where a recurrent neural network evaluated a cardiac signal
and iterative inference was used to classify its subsequent parts.

It is our hope that the work presented here endures and serves as inspiration for future
research and new methods.

69





A

Appendices

A.1 Data Augmentation through Hill Climbing

Table A.1: Classification scores in percentage using the testing set (higher is better)

Classification (balanced accuracy)
Dataset None Random Bayesian Proposal Proposal*

CIFAR-10 64.1 70.0 73.6 78.2 73.7
CIFAR-100 27.4 27.3 30.4 38.5 18.5
Fashion-MNIST 91.4 83.7 92.0 92.0 92.1
ISIC 2017 48.7 46.7 53.7 49.8 43.0
MNIST 99.1 99.0 99.5 99.4 99.2
PH2 46.7 62.8 64.7 48.6 52.1
smartskins 32.7 34.3 35.9 37.9 37.1
STL10 57.2 62.4 58.5 64.8 56.8
SVHN 79.4 10.0 81.8 87.1 85.6
VOC 2012 12.7 28.9 34.9 33.5 30.8
# Top 1 0 0 4 5 1
# Top 2 0 2 6 9 4
Avg Rel Gain 0.0 8.5 26.6 27.2 14.6

bold: best method; italic: second-best.

Table A.2: Segmentation scores in percentage using the testing set (higher is better)

Semantic Segmentation (Jaccard index)
Dataset None Random Bayesian Proposal Proposal*

breast-asthetic 95.6 90.6 96.8 95.9 96.9
cervix-huc 82.4 84.5 84.2 83.7 84.9
cervix-kaggle 92.6 91.1 93.2 93.4 93.2
iris 99.1 98.4 98.2 99.2 98.9
ISIC 2017 90.7 91.5 91.7 91.7 91.1
PH2 87.5 91.3 89.9 90.7 89.7
smartskins 97.9 94.6 96.7 96.2 97.1
teeth 94.0 91.5 91.0 94.1 93.0
vessels 67.7 75.4 77.8 76.8 73.6
VOC 2012 74.0 75.1 78.7 77.8 76.2
# Top 1 1 1 3 4 2
# Top 2 3 3 5 7 4
Avg Rel Gain 0.0 0.7 2.4 2.5 1.8

bold: best method; italic: second-best.
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Appendix A Appendices

A.2 Class Imbalance using Pairwise Learning

A.2.1 Binary Case

Table A.3: Pairwise ranking for binary imbalance.

Linear SVM family
F1 score (higher is better) ROC AUC (higher is better)

Dataset Ranking Baseline Weights SMOTE MSMOTE MetaCost Ranking Baseline Weights SMOTE MSMOTE MetaCost
sonar 0.741 0.723 0.734 0.723 0.724 0.725 0.832 0.823 0.826 0.823 0.823 0.816
breast-cancer-wisconsin 0.957 0.953 0.954 0.955 0.954 0.953 0.994 0.994 0.994 0.994 0.994 0.994
german 0.618 0.568 0.622 0.616 0.617 0.598 0.808 0.809 0.809 0.806 0.804 0.808
haberman 0.485 0.188 0.476 0.484 0.469 0.253 0.685 0.689 0.690 0.677 0.668 0.688
transfusion 0.516 0.154 0.528 0.518 0.522 0.174 0.758 0.758 0.757 0.753 0.752 0.758
vehicle-van 0.937 0.940 0.930 0.932 0.934 0.927 0.995 0.995 0.995 0.995 0.994 0.994
CTG 0.925 0.931 0.915 0.917 0.919 0.934 0.993 0.993 0.993 0.993 0.992 0.993
hepatitis 0.634 0.606 0.651 0.630 0.632 0.648 0.882 0.877 0.884 0.882 0.871 0.881
segment-1 0.986 0.991 0.988 0.990 0.990 0.990 0.996 0.998 0.997 0.998 0.998 0.999
winequality-red-7,8 0.517 0.228 0.479 0.482 0.491 0.346 0.858 0.857 0.858 0.856 0.850 0.855
vowel-1 0.457 0.180 0.445 0.442 0.421 0.273 0.892 0.884 0.893 0.887 0.850 0.870
abalone-9vs18 0.652 0.502 0.473 0.493 0.500 0.632 0.948 0.952 0.950 0.948 0.926 0.950
glass-6 0.695 0.000 0.234 0.236 0.226 0.010 0.984 0.507 0.763 0.752 0.761 0.436
car-good 0.476 0.064 0.422 0.438 0.391 0.274 0.959 0.958 0.959 0.958 0.941 0.955
yeast-ME1 0.612 0.523 0.556 0.562 0.564 0.571 0.986 0.986 0.986 0.985 0.984 0.986
Average 0.681 0.503 0.627 0.628 0.624 0.554 0.905 0.872 0.890 0.887 0.881 0.865
Winner 80% 20% 40% 26% 26% 20% 80% 66% 73% 13% 20% 46%

Multilayer perceptron family
F1 score (higher is better) ROC AUC (higher is better)

Dataset Ranking Baseline Weights SMOTE MSMOTE MetaCost Ranking Baseline Weights SMOTE MSMOTE MetaCost
sonar 0.805 0.804 0.801 0.731 0.732 0.725 0.881 0.896 0.895 0.830 0.829 0.817
breast-cancer 0.946 0.942 0.947 0.955 0.954 0.955 0.975 0.989 0.991 0.994 0.993 0.994
german 0.513 0.540 0.543 0.618 0.609 0.623 0.665 0.744 0.721 0.808 0.807 0.809
haberman 0.444 0.361 0.459 0.435 0.431 0.497 0.604 0.675 0.678 0.676 0.663 0.688
transfusion 0.495 0.391 0.506 0.492 0.502 0.525 0.549 0.764 0.753 0.757 0.755 0.758
vehicle-van 0.944 0.940 0.941 0.593 0.596 0.596 0.982 0.996 0.996 0.985 0.985 0.923
CTG 0.961 0.965 0.963 0.919 0.919 0.925 0.993 0.997 0.998 0.993 0.993 0.993
hepatitis 0.600 0.502 0.528 0.520 0.515 0.611 0.828 0.803 0.801 0.795 0.791 0.846
segment-1 0.989 0.990 0.975 0.984 0.984 0.986 0.999 0.999 0.999 0.996 0.996 0.996
winequality-red-7,8 0.477 0.482 0.508 0.316 0.317 0.269 0.555 0.823 0.843 0.790 0.786 0.655
vowel-1 0.397 0.946 0.855 0.480 0.482 0.379 0.516 0.989 0.973 0.963 0.954 0.899
abalone-9vs18 0.511 0.485 0.362 0.301 0.347 0.358 0.801 0.917 0.907 0.927 0.922 0.889
glass-6 0.024 0.000 0.136 0.350 0.347 0.290 0.442 0.338 0.556 0.683 0.698 0.610
car-good 0.839 0.849 0.737 0.447 0.402 0.392 0.959 0.996 0.982 0.966 0.951 0.953
yeast-ME1 0.653 0.564 0.528 0.603 0.583 0.597 0.950 0.986 0.983 0.986 0.984 0.986
Average 0.640 0.651 0.653 0.583 0.581 0.582 0.780 0.861 0.872 0.876 0.874 0.854
Winner 46% 40% 33% 20% 13% 33% 26% 60% 40% 26% 13% 33%

Adaboost family
F1 score ROC AUC

Dataset Ranking Baseline Weights SMOTE MSMOTE MetaCost Ranking Baseline Weights SMOTE MSMOTE MetaCost
sonar 0.787 0.824 0.824 0.824 0.824 0.818 0.891 0.917 0.917 0.917 0.917 0.916
breast-cancer 0.937 0.932 0.932 0.937 0.934 0.948 0.990 0.989 0.989 0.990 0.989 0.991
german 0.597 0.541 0.541 0.588 0.583 0.587 0.783 0.794 0.794 0.792 0.793 0.796
haberman 0.419 0.375 0.375 0.464 0.458 0.441 0.638 0.663 0.663 0.671 0.673 0.692
transfusion 0.502 0.418 0.418 0.511 0.509 0.493 0.718 0.745 0.745 0.737 0.737 0.740
vehicle-van 0.928 0.901 0.901 0.905 0.909 0.906 0.993 0.991 0.991 0.991 0.991 0.989
CTG 0.973 0.972 0.972 0.970 0.971 0.979 0.996 0.997 0.997 0.996 0.997 0.996
hepatitis 0.578 0.525 0.525 0.581 0.596 0.596 0.822 0.808 0.808 0.833 0.842 0.846
segment-1 0.993 0.990 0.990 0.987 0.988 0.988 1.000 1.000 1.000 1.000 1.000 1.000
winequality-red-7,8 0.520 0.431 0.431 0.509 0.511 0.528 0.867 0.868 0.868 0.864 0.863 0.869
vowel-1 0.692 0.443 0.443 0.610 0.549 0.633 0.953 0.946 0.946 0.948 0.930 0.939
abalone-9vs18 0.369 0.318 0.318 0.287 0.298 0.377 0.803 0.820 0.820 0.793 0.791 0.822
glass-6 0.801 0.670 0.670 0.825 0.777 0.713 0.996 0.998 0.998 0.993 0.989 0.982
car-good 0.573 0.388 0.388 0.596 0.515 0.401 0.974 0.977 0.977 0.976 0.965 0.919
yeast-ME1 0.667 0.671 0.671 0.654 0.635 0.698 0.982 0.986 0.986 0.985 0.982 0.986
Average 0.689 0.627 0.627 0.683 0.671 0.674 0.894 0.900 0.900 0.899 0.897 0.899
Winner 73% 13% 13% 46% 33% 46% 40% 66% 66% 46% 33% 60%

72



A.2 Class Imbalance using Pairwise Learning

A.2.2 Ordinal Case

Table A.4: Combining pairwise ranking with traditional methods for ordinal imbalance (linear
SVM).

Linear SVM
MAE score (lower is better)

Dataset WRank BRank SRank MSRank OvR OvR/w SVOREX SVORIM oSVM
balance-scale 0.12 0.52 0.11 1.00 0.20 0.19 0.11 0.11 0.12
car 0.09 0.11 0.09 1.07 0.12 0.09 0.14 0.12 0.08
contact-lenses 0.42 0.48 0.38 0.39 0.42 0.44 0.51 0.54 0.42
cooling 0.41 1.05 1.13 1.28 0.44 0.55 0.48 0.50 0.49
diabetes5 0.64 0.67 0.74 0.77 0.72 0.95 0.84 0.67 0.85
diabetes10 1.68 1.72 1.77 1.77 2.06 2.15 1.81 1.69 2.41
newthyroid 0.04 0.18 0.05 1.00 0.04 0.03 0.04 0.04 0.03
pyrim5 0.58 0.99 1.16 1.16 0.58 0.70 1.08 0.99 0.65
pyrim10 1.34 1.26 1.29 1.33 1.52 1.49 2.89 1.32 1.50
squash-stored 0.46 0.86 1.11 1.13 0.47 0.47 0.41 0.44 0.38
squash-unstored 0.27 0.27 0.27 0.26 0.30 0.30 0.26 0.26 0.33
stock10 0.64 0.66 0.67 1.02 0.42 0.42 0.68 0.63 0.70
toy 0.84 0.93 0.87 1.21 1.02 1.01 1.13 0.95 0.96
triazines5 0.70 1.31 0.98 1.08 0.69 0.67 0.67 0.67 0.70
triazines10 1.40 1.95 2.01 1.97 1.33 1.51 1.37 1.39 1.45
Average 0.64 0.86 0.84 1.10 0.69 0.73 0.83 0.69 0.74
Deviation 0.48 0.52 0.58 0.42 0.55 0.58 0.73 0.48 0.62
Winner 40% 26% 26% 13% 26% 26% 33% 33% 33%

MMAE score (lower is better)
Dataset WRank BRank SRank MSRank OvR OvR/w SVOREX SVORIM oSVM
balance-scale 0.21 1.01 0.15 1.10 1.00 0.96 0.17 0.14 0.21
car 0.47 1.06 0.28 1.15 0.77 0.29 1.36 1.01 0.49
contact-lenses 0.81 1.20 0.78 0.76 0.88 0.73 0.97 1.04 0.82
cooling 2.32 1.72 1.73 1.81 2.24 1.80 2.98 2.88 2.07
diabetes5 1.15 1.17 1.20 1.23 1.48 1.52 1.51 1.30 1.43
diabetes10 3.09 3.16 3.12 3.26 3.82 3.98 3.47 2.94 4.33
newthyroid 0.14 1.00 0.09 1.04 0.16 0.13 0.14 0.14 0.13
pyrim5 1.40 1.83 2.26 2.31 1.30 1.62 3.00 2.00 1.87
pyrim10 3.80 3.91 3.84 3.75 3.86 3.84 6.37 4.33 4.18
squash-stored 0.83 1.23 1.42 1.46 1.06 0.94 0.76 0.83 0.66
squash-unstored 0.57 1.00 0.55 0.52 0.76 0.80 0.46 0.46 0.57
stock10 1.02 1.04 0.97 1.64 1.03 0.85 1.30 1.05 1.29
toy 1.79 2.17 1.67 2.49 1.92 1.57 3.00 2.00 1.82
triazines5 2.77 2.11 1.73 2.52 2.99 2.94 3.00 3.00 2.79
triazines10 6.14 4.46 4.58 4.55 6.58 6.35 7.00 6.83 6.80
Average 1.77 1.87 1.63 1.97 1.99 1.89 2.37 2.00 1.96
Deviation 1.58 1.08 1.30 1.12 1.63 1.64 2.02 1.74 1.81
Winner 40% 33% 66% 26% 20% 40% 13% 13% 26%
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Table A.5: Combining pairwise ranking with traditional methods for ordinal imbalance (RBF-
kernel SVM).

RBF-kernel SVM
MAE score (lower is better)

Dataset WRank BRank SRank MSRank OvR OvR/w SVOREX SVORIM
balance-scale 0.11 0.92 0.14 0.15 0.14 0.18 0.11 0.05
car 0.13 0.19 0.25 0.24 0.12 0.21 0.41 0.41
contact-lenses 0.52 0.51 0.45 0.46 0.47 0.33 1.31 0.98
cooling 0.62 0.61 0.63 0.63 0.54 0.62 0.58 0.55
diabetes5 0.65 0.68 0.64 0.65 0.65 0.67 0.72 0.69
diabetes10 1.35 1.53 1.38 1.37 1.75 1.78 1.62 1.56
newthyroid 0.29 0.31 0.29 0.29 0.25 0.23 0.16 0.16
pyrim5 0.47 0.64 0.56 0.60 1.08 1.10 1.08 0.99
pyrim10 1.02 1.18 1.03 1.06 2.73 2.18 2.88 2.00
squash-stored 0.57 0.57 0.57 0.57 0.73 0.57 0.73 0.57
squash-unstored 0.54 0.54 0.54 0.54 0.44 0.44 0.49 0.50
stock10 1.35 1.38 1.33 1.30 0.18 0.17 0.27 0.26
toy 0.03 0.12 0.03 0.04 0.91 0.66 1.08 0.95
triazines5 0.68 1.10 0.88 0.87 0.67 1.18 0.67 0.67
triazines10 1.28 1.76 1.67 1.64 1.37 2.45 1.37 1.37
Average 0.64 0.80 0.69 0.69 0.80 0.85 0.90 0.78
Deviation 0.42 0.48 0.46 0.45 0.68 0.72 0.69 0.52
Winner 53% 6% 20% 26% 33% 20% 6% 20%

MMAE score (lower is better)
Dataset WRank BRank SRank MSRank OvR OvR/w SVOREX SVORIM
balance-scale 0.20 1.79 0.19 0.19 1.00 0.24 1.00 0.13
car 1.98 2.00 1.00 1.01 1.13 0.27 3.00 3.00
contact-lenses 1.27 1.97 1.23 1.22 0.88 0.53 1.82 1.32
cooling 1.26 1.22 0.99 0.98 1.77 1.01 2.00 2.00
diabetes5 1.90 1.97 1.97 1.88 2.00 2.00 2.00 2.00
diabetes10 3.57 3.77 3.63 3.57 4.27 4.27 3.06 2.84
newthyroid 1.00 1.03 1.00 1.00 1.00 0.97 0.64 0.64
pyrim5 1.15 1.78 1.14 1.22 3.00 2.90 3.00 2.00
pyrim10 2.65 3.65 2.82 2.82 6.63 5.67 6.30 4.93
squash-stored 1.00 1.00 1.00 1.00 2.00 1.00 2.00 1.00
squash-unstored 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
stock10 3.71 4.84 3.27 3.16 0.66 0.45 1.14 1.11
toy 0.10 1.00 0.10 0.10 1.83 1.15 2.80 2.00
triazines5 2.66 1.93 1.97 1.91 3.00 2.82 3.00 3.00
triazines10 5.83 4.73 4.99 4.69 7.00 5.66 7.00 7.00
Average 1.95 2.25 1.75 1.72 2.48 1.99 2.65 2.26
Deviation 1.47 1.29 1.32 1.25 1.95 1.81 1.76 1.71
Winner 40% 20% 40% 40% 0% 26% 13% 13%
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Table A.6: Combining pairwise ranking with Frank & Hall for ordinal imbalance.

Regularization Regularization
AMAE score (lower is better)

SVOR F&H w/ SVM RankSVM F&H w/ RankSVM
λ=1 λ=0.1 λ=0.01 λ=0 λ=1 λ=0.1 λ=0.01 λ=0

toy 1.20 1.20 1.20 1.18 1.18 1.35 1.10 0.98 0.93 0.91
wisconsin5 1.16 1.21 1.21 1.24 1.24 1.23 1.22 1.25 1.30 1.26
wisconsin10 2.44 2.51 2.51 2.56 2.51 2.59 2.67 2.71 2.75 2.70
diabetes10 1.46 1.48 1.48 1.57 1.66 1.56 1.29 1.29 1.38 1.39
contact-lenses 0.43 0.44 0.44 0.44 0.40 0.40 0.49 0.48 0.48 0.45
ERA 1.49 1.41 1.41 1.51 1.66 1.49 1.27 1.26 1.26 1.26
diabetes5 0.85 0.84 0.84 0.87 0.91 0.69 0.63 0.60 0.60 0.60
auto5 0.43 0.41 0.41 0.42 0.42 0.42 0.39 0.36 0.34 0.34
LEV 0.73 0.65 0.65 0.66 0.66 0.65 0.59 0.59 0.58 0.58
auto10 1.01 0.78 0.78 0.89 0.95 0.80 0.74 0.72 0.67 0.68
SWD 0.61 0.61 0.61 0.61 0.62 0.61 0.53 0.53 0.54 0.54
machine10 1.08 1.01 1.01 1.04 1.43 1.05 0.96 0.94 0.93 0.93
machine5 0.52 0.45 0.45 0.46 0.60 0.49 0.43 0.41 0.41 0.42
ESL12vs3vs456... 0.61 0.29 0.29 0.49 0.62 0.34 0.32 0.31 0.32 0.33
ERA1vs23456vs... 1.06 0.88 0.88 1.14 1.34 0.66 0.62 0.61 0.62 0.63
Average 1.00 0.94 0.94 1.00 1.08 0.96 0.88 0.87 0.87 0.87
Winner 20% 20% 20% 7% 7% 7% 47% 47% 53% 60%

MMAE score (lower is better)
SVOR F&H w/ SVM RankSVM F&H w/ RankSVM

λ=1 λ=0.1 λ=0.01 λ=0 λ=1 λ=0.1 λ=0.01 λ=0
toy 2.00 2.00 2.00 2.00 2.00 2.02 1.70 1.45 1.40 1.38
wisconsin5 1.88 1.90 1.90 1.91 1.98 1.81 1.74 1.75 1.84 1.80
wisconsin10 4.66 4.71 4.71 4.83 4.87 4.31 4.47 4.54 4.61 4.49
diabetes10 3.12 3.18 3.18 3.40 3.50 3.06 2.58 2.66 2.86 2.80
contact-lenses 0.88 1.01 1.01 0.95 0.89 0.88 1.00 1.00 1.06 1.01
ERA 2.47 2.26 2.26 2.52 2.99 2.25 1.84 1.85 1.83 1.84
diabetes5 1.48 1.50 1.50 1.48 1.52 1.24 1.04 1.03 1.04 1.03
auto5 1.00 1.00 1.00 1.00 1.00 0.83 0.83 0.75 0.73 0.71
LEV 1.37 1.30 1.30 1.29 1.28 1.01 1.03 1.06 1.04 1.05
auto10 2.97 2.05 2.05 2.48 2.67 1.71 1.74 1.74 1.69 1.70
SWD 1.11 1.12 1.12 1.10 1.10 1.00 0.71 0.73 0.77 0.78
machine10 2.97 3.02 3.02 2.69 3.62 3.17 2.98 2.91 2.77 2.72
machine5 1.12 1.05 1.05 1.06 1.35 1.12 0.97 0.96 0.97 1.00
ESL12vs3vs456... 1.07 0.68 0.68 0.98 1.09 0.72 0.58 0.57 0.57 0.59
ERA1vs23456vs... 2.10 1.51 1.51 2.16 2.77 1.10 1.07 1.07 1.11 1.11
Average 2.01 1.89 1.89 1.99 2.17 1.75 1.62 1.60 1.62 1.60
Winner 7% 13% 13% 13% 7% 40% 80% 87% 60% 80%
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A.2.3 Survival Analysis

Table A.7: Survival analysis results across several metrics.

Method Accuracy MAE AMAE MMAE
Nominal and ordinal classifiers
LSVM 85.11± 0.34 0 .304 ± 0 .004 1.500± 0.000 3.000± 0.000
CS-LSVM 85.04± 0.47 0.306± 0.008 1.501± 0.002 3.000± 0.000
SVM 85.11± 0.34 0 .304 ± 0 .004 1.500± 0.000 3.000± 0.000
CS-SVM 85.11± 0.34 0.303± 0.005 1.500± 0.000 3.000± 0.000
LSVM+OGO 85.11± 0.79 0.303± 0.017 1.500± 0.000 3.000± 0.000
LSVORIM 20.20± 31.69 1.435± 0.196 1.102± 0.196 2.185± 0.393
LSVORIM+OGO 54.82± 31.97 0.994± 0.822 1.420± 0.179 2.566± 0.402
POM 84 .97 ± 0 .34 0.304± 0.006 1.500± 0.001 3.000± 0.000
POM+OGO 63.33± 3.12 0.540± 0.049 1.410± 0.086 2.562± 0.179
Rank-based learners
Rank 64.37± 19.29 0.804± 0.439 1.422± 0.081 2 .416 ± 0 .541
F2C-Rank 67.75± 12.85 0.669± 0.281 1 .407 ± 0 .096 2.452± 0.511
Rank+OGO 69.74± 20.14 0.600± 0.399 1.443± 0.109 2.624± 0.497
F2C-Rank+OR 84.69± 0.45 0.310± 0.012 1.493± 0.021 2.975± 0.079
Comparison between threshold optimisation strategies for ranking
Rank-Inv 64.37± 19.29 0.804± 0.439 1.422± 0.081 2.416± 0.541
Rank-Unif 84.55± 1.05 0.314± 0.018 1.495± 0.022 3.000± 0.000
Rank-Abs 85.04± 0.36 0.306± 0.010 1.489± 0.026 3.000± 0.000
F2C-Rank-Inv 67.75± 12.85 0.669± 0.281 1.407± 0.096 2.452± 0.511
F2C-Rank-Unif 84 .97 ± 0 .32 0.306± 0.009 1.495± 0.020 3.000± 0.000
F2C-Rank-Abs 84.83± 0.26 0.310± 0.010 1.499± 0.011 3.000± 0.000

bold: best method; italic: second-best.
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A.3 Risk Aversion

Table A.8: Risk aversion results for Kernel Density Estimation for ρ = 0.05 (testing set).

Multivariate+ Multivariate− Cascade
FN TN FN TN FN TN

breast-cancer-wisconsin 0.98 1.00 0.06 0.97 0.03 0.88
car-good 1.00 1.00 0.19 0.27 0.00 0.93
german 1.00 1.00 0.06 0.07 0.06 0.07
haberman 0.36 0.37 0.00 0.00 0.01 0.00
heart 1.00 1.00 0.06 0.36 0.07 0.08
sonar 1.00 1.00 0.05 0.04 0.15 0.32
transfusion – – 0.07 0.03 0.07 0.15
vehicle-van 1.00 1.00 0.06 0.66 0.02 0.67
vowel-1 1.00 1.00 0.00 0.00 0.10 0.60
winequality-red-7,8 0.78 0.96 0.04 0.08 0.10 0.30
#FNR ≤ ρ 0 4 5
#Highest TN 9 0 1
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Table A.9: Risk aversion results adapting the loss across several values of ρ (testing set).

ρ = 0.05
Threshold Term Dynamic Fine-tune

Dataset FN TN FN TN FN TN FN TN
breast-aesthetic 0.04 0.71 0.01 0.63 0.01 0.61 0.03 0.71
cervixhuc 0.06 0.52 0.00 0.04 0.03 0.28 0.04 0.47
cervixkaggle 0.06 0.83 0.02 0.52 0.04 0.63 0.01 0.58
iris 0.05 1.00 0.05 0.98 0.01 0.99 0.00 0.98
ISBI2017 0.04 0.64 0.05 0.58 0.07 0.75 0.03 0.56
PH2 0.08 0.72 0.01 0.41 0.14 0.71 0.07 0.78
smartskins 0.05 0.98 0.06 0.61 0.02 0.51 0.00 0.71
teeth 0.05 0.85 0.00 0.13 0.02 0.18 0.03 0.79
vessels 0.10 0.45 0.01 0.34 0.01 0.34 0.02 0.40
#FN ≤ ρ 5 8 7 8
#Highest TN 5 1 1 3

ρ = 0.01
Threshold Term Dynamic Fine-tune

Dataset FN TN FN TN FN TN FN TN
breast-aesthetic 0.01 0.63 0.00 0.61 0.01 0.64 0.01 0.64
cervixhuc 0.02 0.27 0.00 0.12 0.01 0.16 0.01 0.21
cervixkaggle 0.01 0.66 0.02 0.57 0.01 0.54 0.01 0.56
iris 0.01 0.99 0.00 0.95 0.00 0.00 0.00 0.99
ISBI2017 0.01 0.34 0.02 0.42 0.02 0.49 0.00 0.26
PH2 0.01 0.30 0.01 0.36 0.02 0.49 0.03 0.64
smartskins 0.01 0.93 0.02 0.75 0.00 0.66 0.00 0.87
teeth 0.01 0.65 0.04 0.37 0.01 0.10 0.01 0.47
vessels 0.01 0.34 0.00 0.33 0.01 0.34 0.01 0.37
#FN ≤ ρ 8 5 7 8
#Highest TN 5 1 1 4

ρ = 0.005
Threshold Term Dynamic Fine-tune

Dataset FN TN FN TN FN TN FN TN
breast-aesthetic 0.005 0.60 0.007 0.68 0.006 0.67 0.007 0.67
cervixhuc 0.010 0.21 0.000 0.03 0.002 0.10 0.004 0.15
cervixkaggle 0.005 0.58 0.020 0.58 0.002 0.27 0.005 0.50
iris 0.006 0.99 0.006 0.97 0.003 0.96 0.004 0.99
ISBI2017 0.006 0.27 0.024 0.44 0.010 0.38 0.003 0.21
PH2 0.004 0.17 0.004 0.33 0.015 0.28 0.015 0.46
smartskins 0.004 0.91 0.002 0.90 0.000 0.05 0.000 0.30
teeth 0.005 0.58 0.085 0.57 0.006 0.07 0.000 0.12
vessels 0.003 0.33 0.001 0.33 0.003 0.34 0.007 0.34
#FN ≤ ρ 6 4 5 6
#Highest TN 4 1 1 3
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A.6 Iterative Inference

Table A.10: Contrasting models with and without iterative forecasting, in terms of Dice coeffi-
cient (higher is better).

U-Net Dilated-Net
Dataset Original Iterative Original Iterative
SmartSkins 76.62 79.45 76.35 83.36
PH2 83.70 84.09 85.52 86.41
ISBI 2017 71.35 76.52 72.06 76.11
Teeth-UCV 85.85 85.91 86.03 86.14
Breast Aesthetics 93.08 93.31 94.03 94.15
Cervix-HUC 77.25 77.26 75.37 75.37
Cervix-MobileODT 88.24 88.25 86.38 88.25
Mobbio 67.91 68.23 69.90 70.11

bold: best method.
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[34] J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken,
“Ridge-based vessel segmentation in color images of the retina,” IEEE Transactions
on Medical Imaging, vol. 23, no. 4, pp. 501–509, 2004.

[35] A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal im-
ages by piecewise threshold probing of a matched filter response,” IEEE Transactions
on Medical imaging, vol. 19, no. 3, pp. 203–210, 2000.

[36] K. Fernandez and C. Chang, “Teeth/palate and interdental segmentation using arti-
ficial neural networks,” in IAPR Workshop on Artificial Neural Networks in Pattern
Recognition, pp. 175–185, Springer, 2012.

[37] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pp. 41–
48, ACM, 2009.

[38] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” Jour-
nal of Machine Learning Research, vol. 13, pp. 281–305, 2012.

[39] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter
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