110 research outputs found

    The connection machine

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1988.Bibliography: leaves 134-157.by William Daniel Hillis.Ph.D

    서비스 균등 분배와 고성능을 위한 다중프로세서칩 상의 재구성형 통신 구조

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 최기영.The chip multiprocessor (CMP) era has long begun due to the diminishing return from instruction-level parallelism (ILP) harvesting techniques, the rising power and temperature from frequency scaling, etc. One powerful processor has been replaced by many less-powerful processors forming a CMP. One of the issues arose from this paradigm shift is the management of communication among the processors. Buses, which has been a common choice for the systems with one or several processors, failed to sustain the increased communication burden of CMPs. Many bus-based improvements including hierarchical buses and bus-matrices, were proposed but eventually, network-on-chip (NoC) has become the de facto standard for designing a CMP system, replacing the bus-based techniques. NoCs strengths over bus mainly come from its capability of conveying multiple transactions simultaneously from different components to the others. The concurrent communications between the cores are conducted by the distributed, yet shared network components, routers. Routers provide cores with services such as bandwidths. One of the design issues in implementing NoC is to distribute these services evenly across all the cores requesting for them. Arbiter is a component that regulates the accesses to shared resources such as channels and buffers. It has the policy under which requests get services in turn from the shared resources so that the requestors dont fall into deadlock or starvation. One of the common policies for an arbiter is the round-robin, where requests get their grant one by one so that fairness is assured among the requestors. When applied to routers in NoC, it fails to provide the fairness because each request goes through multiple routers, thus multiple round-robin arbiters on a transaction route. The cascaded effect of the round-robin arbitration is that the farther a source is from the destination, the less service it gets from the destination. The first part of this thesis addresses this issue, and proposes thus far the simplest yet the most effective way of providing the fairness to all the nodes on NoC. It applies weighted round-robin scheme where the weights are determined at run-time depending on which cores are allocated to applications or threads running on the CMP. RTL implementation and synthesis are done to show the simplicity of the proposed scheme. Simulation with synthetic traffic patterns and SPEC CPU2006 benchmark applications show that the proposed approach results in outstanding equality-of-service characteristics. The second part of this thesis deals with the impact of the reconfigurable communication architecture on the performance of a CMP system. One of the pitfalls of NoC is long access latency due to increased hop count between a source and its destination. For example, NoC with mesh topology has its hop count proportional to its size. Because of this, while being a common choice for CMP, mesh topology is said to be inscalable in terms of the number of cores. Some alternatives to mesh topology exist, one of them being high radix NoCs. They replace short and wide channels of mesh with long and narrow ones achieving fewer hop counts. Another option is to cluster cores so that the dimension of mesh network reduces. The clusters are formed by grouping cores via local communication fabric. The clusters are interconnected by a global communication fabric, often in the shape of mesh topology. Many types of local communication fabric are explored in previous researches, including another NoC with topologies of mesh, ring, etc. However, bus has become one of the most favorable choices for the local connection because of its simplicity. The simplicity leads local communications to be performed with high performance, low chip area, low power consumption, etc. One of the issues in forming core clusters in CMP is their grain size. Tying too many cores into a cluster results in the congestion on the bus, reducing the performance of the local communications. On the other hand, too few cores in a cluster misses the chances of improving system performance by efficient local communications through the bus. It is obvious that the optimal number of cores in a cluster depends on the applications that run on the CMP. Bus reconfiguration with bus segments and switches can be a solution for varying cluster size on a CMP. In addition to the variable cluster sizes, bus reconfiguration has another advantage of processor (not process) migration. Bus reconfiguration can reconnect cores and caches so that the distance between cores and data are reduced dynamically. In this way, data copies and network transactions can be dramatically reduced to improve the system performance. The second part of this thesis addresses this issue and proposes a reconfigurable bus-mesh architecture to accelerate pipelined applications. With the proposed architecture, the data transfer between the successive pipeline stages are done not by data copies but by processor migrations. Systematic management of bus segments and L1 data caches are required to achieve efficient use of the reconfigurability. The proposed architecture is compared with the baseline architecture, which maintains cache coherence with hardware. Multilayer perceptron (MLP), convolutional neural network (CNN), and JPEG decoder are implemented as example pipelined applications using multi-threaded programming model. The in-house full system simulator is implemented and used to measure the performance improvement of the proposed architecture. The experimental results show that 21.75 %, 14.40 %, and 12.74 % execution cycle reductions are achieved for MLP, CNN, and JPEG decoder, respectively.Part I Adaptively Weighted Round-Robin Arbitration for Equality of Service in a Many-Core Network-on-Chip [1] 1 Chapter 1 Introduction 3 Chapter 2 Previous Work 7 Chapter 3 Position-Based Weighted Round-Robin Arbitration 11 Chapter 4 Adaptively Weighted Round-Robin Arbitration 17 4.1 Hardware Implementation for weight update 18 4.2 Arbitration Weight Determination 22 Chapter 5 Experimental Results 25 5.1 Open-Loop Measurements 25 5.2 Closed-Loop Measurements 29 5.3 Hardware Implementation 33 Chapter 6 Conclusion 35 Part II Accelerating Pipelined Applications with Reconfigurable Bus-Mesh Communication Architecture in Chip Multiprocessors 37 Chapter 7 Introduction 39 Chapter 8 Backgrounds and Previous Work 43 8.1 Segmented Bus 43 8.2 CMPs with Reconfigurable Bus-Mesh Communication Architecture 44 8.3 Near-Threshold Computing 48 Chapter 9 Baseline Architecture 51 Chapter 10 Motivation 55 Chapter 11 Reconfigurable Bus-Mesh Architecture 61 11.1 Thread Programming Model 61 11.2 Cluster Size 64 11.3 Organizing Multiple L1Ds and SPM Banks in a Cluster 66 11.4 L1 Data Cache / SPM Partitioning 70 11.5 Reconfiguration Overheads 71 Chapter 12 Experimental Results 75 12.1 Pipelined Applications 75 12.2 Simulation Environment 78 12.3 Memory Operations Latency Breakdown 79 Chapter 13 Conclusion 85 Bibliography 87 국문초록 95Docto

    Design of complex integrated systems based on networks-on-chip: Trading off performance, power and reliability

    Get PDF
    The steady advancement of microelectronics is associated with an escalating number of challenges for design engineers due to both the tiny dimensions and the enormous complexity of integrated systems. Against this background, this work deals with Network-On-Chip (NOC) as the emerging design paradigm to cope with diverse issues of nanotechnology. The detailed investigations within the chapters focus on the communication-centric aspects of multi-core-systems, whereas performance, power consumption as well as reliability are considered likewise as the essential design criteria

    ICASE

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in the areas of (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving Langley facilities and scientists; and (4) computer science

    Ambisonics

    Get PDF
    This open access book provides a concise explanation of the fundamentals and background of the surround sound recording and playback technology Ambisonics. It equips readers with the psychoacoustical, signal processing, acoustical, and mathematical knowledge needed to understand the inner workings of modern processing utilities, special equipment for recording, manipulation, and reproduction in the higher-order Ambisonic format. The book comes with various practical examples based on free software tools and open scientific data for reproducible research. The book’s introductory section offers a perspective on Ambisonics spanning from the origins of coincident recordings in the 1930s to the Ambisonic concepts of the 1970s, as well as classical ways of applying Ambisonics in first-order coincident sound scene recording and reproduction that have been practiced since the 1980s. As, from time to time, the underlying mathematics become quite involved, but should be comprehensive without sacrificing readability, the book includes an extensive mathematical appendix. The book offers readers a deeper understanding of Ambisonic technologies, and will especially benefit scientists, audio-system and audio-recording engineers. In the advanced sections of the book, fundamentals and modern techniques as higher-order Ambisonic decoding, 3D audio effects, and higher-order recording are explained. Those techniques are shown to be suitable to supply audience areas ranging from studio-sized to hundreds of listeners, or headphone-based playback, regardless whether it is live, interactive, or studio-produced 3D audio material

    Rack-Scale Memory Pooling for Datacenters

    Get PDF
    The rise of web-scale services has led to a staggering growth in user data on the Internet. To transform such a vast raw data into valuable information for the user and provide quality assurances, it is important to minimize access latency and enable in-memory processing. For more than a decade, the only practical way to accommodate for ever-growing data in memory has been to scale out server resources, which has led to the emergence of large-scale datacenters and distributed non-relational databases (NoSQL). Such horizontal scaling of resources translates to an increasing number of servers that participate in processing individual user requests. Typically, each user request results in hundreds of independent queries targeting different NoSQL nodes - servers, and the larger the number of servers involved, the higher the fan-out. To complete a single user request, all of the queries associated with that request have to complete first, and thus, the slowest query determines the completion time. Because of skewed popularity distributions and resource contention, the more servers we have, the harder it is to achieve high throughput and facilitate server utilization, without violating service level objectives. This thesis proposes rack-scale memory pooling (RSMP), a new scaling technique for future datacenters that reduces networking overheads and improves the performance of core datacenter software. RSMP is an approach to building larger, rack-scale capacity units for datacenters through specialized fabric interconnects with support for one-sided operations, and using them, in lieu of conventional servers (e.g. 1U), to scale out. We define an RSMP unit to be a server rack connecting 10s to 100s of servers to a secondary network enabling direct, low-latency access to the global memory of the rack. We, then, propose a new RSMP design - Scale-Out NUMA that leverages integration and a NUMA fabric to bridge the gap between local and remote memory to only 5× difference in access latency. Finally, we show how RSMP impacts NoSQL data serving, a key datacenter service used by most web-scale applications today. We show that using fewer larger data shards leads to less load imbalance and higher effective throughput, without violating applications¿ service level objectives. For example, by using Scale-Out NUMA, RSMP improves the throughput of a key-value store up to 8.2× over a traditional scale-out deployment

    Proceedings, MSVSCC 2015

    Get PDF
    The Virginia Modeling, Analysis and Simulation Center (VMASC) of Old Dominion University hosted the 2015 Modeling, Simulation, & Visualization Student capstone Conference on April 16th. The Capstone Conference features students in Modeling and Simulation, undergraduates and graduate degree programs, and fields from many colleges and/or universities. Students present their research to an audience of fellow students, faculty, judges, and other distinguished guests. For the students, these presentations afford them the opportunity to impart their innovative research to members of the M&S community from academic, industry, and government backgrounds. Also participating in the conference are faculty and judges who have volunteered their time to impart direct support to their students’ research, facilitate the various conference tracks, serve as judges for each of the tracks, and provide overall assistance to this conference. 2015 marks the ninth year of the VMASC Capstone Conference for Modeling, Simulation and Visualization. This year our conference attracted a number of fine student written papers and presentations, resulting in a total of 51 research works that were presented. This year’s conference had record attendance thanks to the support from the various different departments at Old Dominion University, other local Universities, and the United States Military Academy, at West Point. We greatly appreciated all of the work and energy that has gone into this year’s conference, it truly was a highly collaborative effort that has resulted in a very successful symposium for the M&S community and all of those involved. Below you will find a brief summary of the best papers and best presentations with some simple statistics of the overall conference contribution. Followed by that is a table of contents that breaks down by conference track category with a copy of each included body of work. Thank you again for your time and your contribution as this conference is designed to continuously evolve and adapt to better suit the authors and M&S supporters. Dr.Yuzhong Shen Graduate Program Director, MSVE Capstone Conference Chair John ShullGraduate Student, MSVE Capstone Conference Student Chai

    Large Space Antenna Systems Technology, part 1

    Get PDF
    A compilation of the unclassified papers presented at the NASA Conference on Large Space Antenna Systems Technology covers the following areas: systems, structures technology, control technology, electromagnetics, and space flight test and evaluation

    Performance modelling and the representation of large scale distributed system functions

    Get PDF
    This thesis presents a resource based approach to model generation for performance characterization and correctness checking of large scale telecommunications networks. A notion called the timed automaton is proposed and then developed to encapsulate behaviours of networking equipment, system control policies and non-deterministic user behaviours. The states of pooled network resources and the behaviours of resource consumers are represented as continually varying geometric patterns; these patterns form part of the data operated upon by the timed automata. Such a representation technique allows for great flexibility regarding the level of abstraction that can be chosen in the modelling of telecommunications systems. None the less, the notion of system functions is proposed to serve as a constraining framework for specifying bounded behaviours and features of telecommunications systems. Operational concepts are developed for the timed automata; these concepts are based on limit preserving relations. Relations over system states represent the evolution of system properties observable at various locations within the network under study. The declarative nature of such permutative state relations provides a direct framework for generating highly expressive models suitable for carrying out optimization experiments. The usefulness of the developed procedure is demonstrated by tackling a large scale case study, in particular the problem of congestion avoidance in networks; it is shown that there can be global coupling among local behaviours within a telecommunications network. The uncovering of such a phenomenon through a function oriented simulation is a contribution to the area of network modelling. The direct and faithful way of deriving performance metrics for loss in networks from resource utilization patterns is also a new contribution to the work area

    Sixth Biennial Report : August 2001 - May 2003

    No full text
    corecore