244 research outputs found

    Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome roject

    Get PDF
    Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR

    Disambiguating the role of blood flow and global signal with partial information decomposition

    Get PDF
    Global signal (GS) is an ubiquitous construct in resting state functional magnetic resonance imaging (rs-fMRI), associated to nuisance, but containing by definition most of the neuronal signal. Global signal regression (GSR) effectively removes the impact of physiological noise and other artifacts, but at the same time it alters correlational patterns in unpredicted ways. Performing GSR taking into account the underlying physiology (mainly the blood arrival time) has been proven to be beneficial. From these observations we aimed to: 1) characterize the effect of GSR on network-level functional connectivity in a large dataset; 2) assess the complementary role of global signal and vessels; and 3) use the framework of partial information decomposition to further look into the joint dynamics of the global signal and vessels, and their respective influence on the dynamics of cortical areas. We observe that GSR affects intrinsic connectivity networks in the connectome in a non-uniform way. Furthermore, by estimating the predictive information of blood flow and the global signal using partial information decomposition, we observe that both signals are present in different amounts across intrinsic connectivity networks. Simulations showed that differences in blood arrival time can largely explain this phenomenon, while using hemodynamic and calcium mouse recordings we were able to confirm the presence of vascular effects, as calcium recordings lack hemodynamic information. With these results we confirm network-specific effects of GSR and the importance of taking blood flow into account for improving de-noising methods. Additionally, and beyond the mere issue of data denoising, we quantify the diverse and complementary effect of global and vessel BOLD signals on the dynamics of cortical areas

    A multi-measure approach for assessing the performance of fMRI preprocessing strategies in resting-state functional connectivity

    Get PDF
    It is well established that head motion and physiological processes (e.g. cardiac and breathing activity) should be taken into consideration when analyzing and interpreting results in fMRI studies. However, even though recent studies aimed to evaluate the performance of different preprocessing pipelines there is still no consensus on the optimal strategy. This is partly due to the fact that the quality control (QC) metrics used to evaluate differences in performance across pipelines have often yielded contradictory results. Furthermore, preprocessing techniques based on physiological recordings or data decomposition techniques (e.g. aCompCor) have not been comprehensively examined. Here, to address the aforementioned issues, we propose a framework that summarizes the scores from eight previously proposed and novel QC metrics to a reduced set of two QC metrics that reflect the signal-to-noise ratio and the reduction in motion artifacts and biases in the preprocessed fMRI data. Using this framework, we evaluate the performance of three commonly used practices on the quality of data: 1) Removal of nuisance regressors from fMRI data, 2) discarding motion-contaminated volumes (i.e., scrubbing) before regression, and 3) low-pass filtering the data and the nuisance regressors before their removal. Using resting-state fMRI data from the Human Connectome Project, we show that the scores of the examined QC metrics improve the most when the global signal (GS) and about 17% of principal components from white matter (WM) are removed from the data. Finally, we observe a small further improvement with low-pass filtering at 0.20 Hz and milder variants of WM denoising, but not with scrubbing

    Cluster Failure Revisited: Impact of First Level Design and Data Quality on Cluster False Positive Rates

    Full text link
    Methodological research rarely generates a broad interest, yet our work on the validity of cluster inference methods for functional magnetic resonance imaging (fMRI) created intense discussion on both the minutia of our approach and its implications for the discipline. In the present work, we take on various critiques of our work and further explore the limitations of our original work. We address issues about the particular event-related designs we used, considering multiple event types and randomisation of events between subjects. We consider the lack of validity found with one-sample permutation (sign flipping) tests, investigating a number of approaches to improve the false positive control of this widely used procedure. We found that the combination of a two-sided test and cleaning the data using ICA FIX resulted in nominal false positive rates for all datasets, meaning that data cleaning is not only important for resting state fMRI, but also for task fMRI. Finally, we discuss the implications of our work on the fMRI literature as a whole, estimating that at least 10% of the fMRI studies have used the most problematic cluster inference method (P = 0.01 cluster defining threshold), and how individual studies can be interpreted in light of our findings. These additional results underscore our original conclusions, on the importance of data sharing and thorough evaluation of statistical methods on realistic null data

    Correction of respiratory artifacts in MRI head motion estimates

    Get PDF
    Head motion represents one of the greatest technical obstacles in magnetic resonance imaging (MRI) of the human brain. Accurate detection of artifacts induced by head motion requires precise estimation of movement. However, head motion estimates may be corrupted by artifacts due to magnetic main field fluctuations generated by body motion. In the current report, we examine head motion estimation in multiband resting state functional connectivity MRI (rs-fcMRI) data from the Adolescent Brain and Cognitive Development (ABCD) Study and comparison \u27single-shot\u27 datasets. We show that respirations contaminate movement estimates in functional MRI and that respiration generates apparent head motion not associated with functional MRI quality reductions. We have developed a novel approach using a band-stop filter that accurately removes these respiratory effects from motion estimates. Subsequently, we demonstrate that utilizing a band-stop filter improves post-processing fMRI data quality. Lastly, we demonstrate the real-time implementation of motion estimate filtering in our FIRMM (Framewise Integrated Real-Time MRI Monitoring) software package

    Experimental Design Modulates Variance in BOLD Activation: The Variance Design General Linear Model

    Full text link
    Typical fMRI studies have focused on either the mean trend in the blood-oxygen-level-dependent (BOLD) time course or functional connectivity (FC). However, other statistics of the neuroimaging data may contain important information. Despite studies showing links between the variance in the BOLD time series (BV) and age and cognitive performance, a formal framework for testing these effects has not yet been developed. We introduce the Variance Design General Linear Model (VDGLM), a novel framework that facilitates the detection of variance effects. We designed the framework for general use in any fMRI study by modeling both mean and variance in BOLD activation as a function of experimental design. The flexibility of this approach allows the VDGLM to i) simultaneously make inferences about a mean or variance effect while controlling for the other and ii) test for variance effects that could be associated with multiple conditions and/or noise regressors. We demonstrate the use of the VDGLM in a working memory application and show that engagement in a working memory task is associated with whole-brain decreases in BOLD variance.Comment: 18 pages, 7 figure

    The Human Connectome Project's neuroimaging approach

    Get PDF
    Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease

    Probing resting-state functional connectivity in the infant brain: methods and potentiality

    Full text link
    Early brain development is characterized by rapid growth and perpetual reconfiguration, driven by a dynamic milieu of heterogeneous processes. Moreover, potent postnatal brain plasticity engenders increased vulnerability to environmental stimuli. However, little is known regarding the ontogeny and temporal manifestations of inter- and intra-regional functional connectivity that comprise functional brain networks. Recently, resting-state functional magnetic resonance imaging (fMRI) emerged as a promising non-invasive neuroinvestigative tool, measuring spontaneous fluctuations in blood oxygen level dependent (BOLD) signal at rest that reflect baseline neuronal activity. Its application has expanded to infant populations in the past decade, providing unprecedented insight into functional organization of the developing brain, as well as early biomarkers of abnormal/ disease states. However, rapid extension of the resting-state technique to infant populations leaves many methodological issues need to be resolved prior to standardization of the technique. The purpose of this thesis is to describe a protocol for intrinsic functional connectivity analysis, and extraction of resting-state networks in infants <12 months of age using the data-driven approach independent component analysis (ICA). To begin, we review the evolution of resting-state fMRI application in infant populations, including the biological premise for neural networks. Next, we present a protocol designed such that investigators without previous knowledge in the field can implement the analysis and reliably obtain viable results consistent with previous literature. Presented protocol provides detailed, albeit basic framework for RSN analysis, with interwoven discussion of basic theory behind each technique, as well as the rationale behind selecting parameters. The overarching goal is to catalyze efforts towards development of robust, infant-specific acquisition and preprocessing pipelines, as well as promote greater transparency by researchers regarding methods used. Finally, we review the literature, current methodological challenges and potential future directions for the field of infant resting-state fMRI

    Hand classification of fMRI ICA noise components

    Get PDF
    We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets
    • …
    corecore